WO2019177163A1 - マウス人工染色体ベクター及びその使用 - Google Patents

マウス人工染色体ベクター及びその使用 Download PDF

Info

Publication number
WO2019177163A1
WO2019177163A1 PCT/JP2019/010953 JP2019010953W WO2019177163A1 WO 2019177163 A1 WO2019177163 A1 WO 2019177163A1 JP 2019010953 W JP2019010953 W JP 2019010953W WO 2019177163 A1 WO2019177163 A1 WO 2019177163A1
Authority
WO
WIPO (PCT)
Prior art keywords
mouse
gene
human
chromosome
cells
Prior art date
Application number
PCT/JP2019/010953
Other languages
English (en)
French (fr)
Inventor
康宏 香月
光雄 押村
智志 阿部
Original Assignee
国立大学法人鳥取大学
株式会社Trans Chromosomics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人鳥取大学, 株式会社Trans Chromosomics filed Critical 国立大学法人鳥取大学
Priority to CN201980032877.XA priority Critical patent/CN112352054A/zh
Priority to EP19767483.1A priority patent/EP3766980A4/en
Priority to JP2020506682A priority patent/JP6775224B2/ja
Priority to US16/981,164 priority patent/US20210095311A1/en
Publication of WO2019177163A1 publication Critical patent/WO2019177163A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/01Animal expressing industrially exogenous proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • C12N2015/8518Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic expressing industrially exogenous proteins, e.g. for pharmaceutical use, human insulin, blood factors, immunoglobulins, pseudoparticles

Definitions

  • the present invention relates to a novel mouse artificial chromosome vector that is stably maintained in rodent cells, tissues or individuals and is capable of transmitting offspring, specifically, a mouse derived from each of mouse chromosome 10 and mouse chromosome 16. Related to artificial chromosomes.
  • the present invention also relates to a mammal-derived cell containing the mouse artificial chromosome vector.
  • the present invention further relates to a non-human animal such as a rodent comprising the mouse artificial chromosome vector.
  • the present invention further relates to a method for producing useful proteins or human antibodies using the cells or the non-human animals.
  • HAC vectors can introduce DNA of a large size exceeding about 200 kb (eg, megabase size chromosome fragments), and thus can be used for non-human animals that can be used for human antibody production, drug metabolism studies, disease models, etc. Used for production.
  • human artificial chromosome (HAC) vectors mouse artificial chromosome (MAC) vectors and the like are known.
  • HAC vectors are described in Patent Documents 1, 2, and 3 and Non-Patent Documents 1, 2, and 3 regarding vectors derived from human chromosome 14 and human chromosome 21, and MAC vectors are mice.
  • a vector derived from chromosome 11 is described in Patent Document 4.
  • the present inventors have attempted to produce two types of MAC vectors derived from mouse chromosome 10 and mouse chromosome 16 vectors.
  • MAC vector introduction does not cause unintended host gene expression fluctuations, and is stably maintained in rodent cells or tissues or rodent individuals, and transmitted to offspring. Although it should be a vector, as described above, trial and error is required to produce such a vector.
  • An object of this invention is to provide the novel MAC vector which solves said subject.
  • the present invention includes the following features.
  • the long-arm distal is deleted from gene Gm8155, which is a chromosomal site of mouse 10 chromosome long arm in the vicinity of centromere, natural centromere derived from mouse chromosome selected from the group consisting of mouse chromosome 10 and mouse chromosome 16.
  • a long arm fragment derived from mouse chromosome 10, or a long arm fragment derived from mouse chromosome 16 from which the distal end of the long arm was deleted from gene Gm35974, which is the chromosomal site of mouse 16 chromosome long arm near centromere, and telomere sequence A mouse artificial chromosome vector characterized in that it contains and is stably maintained in a rodent cell, tissue or individual and is capable of offspring transmission.
  • mice artificial chromosome vector comprising a mouse artificial chromosome contained in the deposited cell line DT40 (10MAC) T5-26 (NITE BP-02656).
  • mice artificial chromosome vector according to (1) above which contains a mouse artificial chromosome contained in the deposited cell line DT40 (16MAC) T1-14 (NITE BP-02657).
  • mice artificial chromosome vector according to any one of (1) to (4) above, further comprising one or a plurality of DNA sequence insertion sites.
  • the DNA sequence insertion site is at least one selected from the group consisting of loxP sequences, FRT sequences, ⁇ C31attB and ⁇ C31attP sequences, R4attB and R4attP sequences, TP901-1attB and TP901-1attP sequences, and Bxb1attB and Bxb1attP sequences
  • mice artificial chromosome vector according to any one of (1) to (6), further comprising a reporter gene, a selectable marker gene, or both.
  • the foreign DNA sequence encodes polypeptides such as cytokines, hormones, growth factors, nutrient factors, hematopoietic factors, blood coagulation / lysis factors, G protein-coupled receptors, enzymes, etc.
  • Gene or DNA sequence, or therapeutic gene or DNA sequence related to diseases such as tumor, muscular dystrophy, hemophilia, neurodegenerative disease, autoimmune disease, allergic disease, hereditary disease, and T cell
  • the gene or DNA sequence selected from the group consisting of immune system genes such as receptors (TCR) and human leukocyte antigens (HLA) or DNA sequences, or the DNA sequence according to any one of (8) to (10) above Mouse artificial chromosome vector.
  • a mammal-derived cell comprising the mouse artificial chromosome vector according to any one of (1) to (12) above.
  • a non-human animal comprising the mouse artificial chromosome vector according to any one of (1) to (12) above.
  • a novel mouse artificial chromosome vector that is stable in a rodent tissue derived from each mouse chromosome of mouse chromosome 10 and chromosome 16 is provided, and a mouse capable of producing a human antibody using these vectors, It enables the production of rodent animals such as rats and the production of human antibodies by the animals.
  • an A9-like cell carrying each mouse chromosome is prepared by cell fusion of a mouse fetal fibroblast carrying mouse chromosome 10 or 16 marked with a drug resistance gene and mouse A9 cell. It is the figure which showed that.
  • This figure shows that each mouse chromosome is transferred to chicken DT40 cells by the micronucleus cell fusion method from A9-like cells containing mouse chromosome 10 or chromosome 16 marked with a drug resistance gene.
  • This figure is a schematic diagram of the steps of constructing a mouse artificial chromosome (MAC) from each of natural mouse chromosomes 10 and 16 by telomere truncation, and inserting a cassette containing loxP, EGFP genes, etc. into the MAC.
  • MAC mouse artificial chromosome
  • HS4 is an insulator
  • CAG and PGK are promoters
  • EGFP is a gene encoding a fluorescent protein
  • NeoR, Puro and Neo are drug resistance genes
  • HPRT is a hypoxanthine guanine phosphoribosyltransferase gene.
  • This figure is a schematic diagram of telomere truncation of mouse chromosome 10.
  • This figure is a FISH analysis image showing mouse chromosome 10 before deletion of the long arm part and mouse chromosome 10 (10MAC; T5-26, T6-37, T7-34) from which the long arm part was deleted. is there.
  • This figure is a schematic diagram of mounting loxP and EGFP expression units on mouse chromosome 10 (10MAC).
  • This figure is FISH analysis images before and after mounting loxP and EGFP expression units on mouse chromosome 10 (10MAC) (10MAC1).
  • T5-26 and T6-37 are before mounting, and T5-26L1-2, T5-26L2-3, and T6-37L1-5 are after mounting.
  • Arrows indicate 10MAC and 10MAC1.
  • This figure is a FISH analysis image of CHO cells retaining 10MAC1.
  • the arrow indicates 10MAC1.
  • This figure is a schematic diagram of telomere truncation of mouse chromosome 16.
  • This figure shows two patterns of alleles obtained by deleting most of the long arms obtained by telomere truncation of mouse chromosome 16.
  • one pattern is T1-14, and the other pattern is T2-64 and T2-65.
  • This figure is a FISH analysis image showing mouse chromosome 16 before deletion of the long arm part and mouse chromosome 16 (16MAC; T1-14, T2-64, T2-65) from which the long arm part was deleted. is there. Arrows indicate mouse chromosome 16, each 16 MAC.
  • This figure is a schematic diagram (pattern 1) in which loxP and EGFP expression units are mounted on mouse chromosome 16 from which the long arm portion has been deleted.
  • This figure is a schematic diagram (pattern 2) in which loxP and EGFP expression units are mounted on mouse chromosome 16 from which the long arm portion has been deleted.
  • This figure shows (16MAC; T1-14, T2-64, T2-65) and after (16MAC1HA; T1-14 L1-4, 16MAC1Gm) before loading loxP and EGFP expression units on mouse chromosome 16 (16MAC);
  • These are FISH analysis images of T2-64 L1-4 and T2-65HL1-4). Arrows indicate 16MAC, 16MAC1HA, and 16MAC1Gm.
  • This figure is a FISH analysis image of mouse ES cell TT2F carrying 10MAC1. The arrow indicates 10MAC1.
  • This figure shows the bright field (top) and GFP fluorescence (bottom) of mice in which 10MAC1 was transmitted to offspring. Since the GFP expression cassette is mounted on 10MAC1, cells holding 10MAC1 become GFP fluorescence positive.
  • This figure is a schematic diagram of the construction of human antibody-producing mice or rats containing IGHK-NAC construction and IGHK-NAC.
  • This figure is a FISH analysis image of CHO cells carrying modified human chromosome 2 and NAC (the novel artificial chromosome vector of the present invention). The left arrow indicates NAC, and the right arrow indicates the modified human chromosome 2.
  • This figure is a schematic of IGK-NAC construction by reciprocal translocation caused by Cre / loxP system.
  • HAT resistance those that have undergone recombination with the loxP sequence are linked to 5'HPRT and 3'HPRT, and the HPRT gene is reconstructed and becomes HAT resistant, so that it can be selected with the drug HAT.
  • Ig ⁇ represents an immunoglobulin light chain ⁇ gene (locus).
  • Cen. represents centromere
  • Tel. represents telomere.
  • HS4 is an insulator
  • CAG, CMV and PGK are promoters
  • EGFP is a gene encoding a fluorescent protein
  • Bsd, hyg, Puro and Neo are drug resistance genes
  • HPRT is a hypoxanthine guanine phosphoribosyltransferase gene.
  • This figure is a schematic diagram of IGHK-NAC construction by reciprocal translocation caused by Flp / FRT system.
  • those that have undergone recombination with the FRT sequence are linked to 5'HPRT and 3'HPRT, and the HPRT gene is reconstructed and becomes HAT resistant, so that it can be selected with the drug HAT.
  • Ig ⁇ represents an immunoglobulin light chain ⁇ gene (locus).
  • IgH represents an immunoglobulin heavy chain gene (locus).
  • HS4 is an insulator
  • CAG, CMV and PGK are promoters
  • EGFP is a gene encoding a fluorescent protein
  • Bsd, hyg and Neo are drug resistance genes
  • HPRT is a hypoxanthine guanine phosphoribosyltransferase gene.
  • This figure is a schematic diagram of construction of a human antibody-producing mouse or rat containing IGHL-NAC construction and IGHL-NAC.
  • This figure is a schematic diagram of IGL-NAC construction by reciprocal translocation caused by Cre / loxP system.
  • HAT resistance those that have undergone recombination with the loxP sequence are linked to 5'HPRT and 3'HPRT, and the HPRT gene is reconstructed and becomes HAT resistant, so that it can be selected with the drug HAT.
  • Ig ⁇ represents an immunoglobulin light chain ⁇ gene (locus).
  • Cen. represents centromere
  • Tel Represents telomere.
  • HS4 is an insulator
  • CAG, CMV and PGK are promoters
  • EGFP is a gene encoding a fluorescent protein
  • Bsd, hyg, Puro and Neo are drug resistance genes
  • HPRT is a hypoxanthine guanine phosphoribosyltransferase gene.
  • This figure is a schematic diagram of IGHL-NAC construction by reciprocal translocation caused by Flp / FRT system.
  • HAT resistance those that have undergone recombination with the FRT sequence are linked to 5'HPRT and 3'HPRT, and the HPRT gene is reconstructed and becomes HAT resistant, so that it can be selected with the drug HAT.
  • Cen Cen.
  • HS4 is an insulator
  • CAG is an insulator
  • CMV and PGK are promoters
  • EGFP is a gene encoding a fluorescent protein
  • Bsd is drug resistance genes
  • HPRT is a hypoxanthine guanine phosphoribosyltransferase gene.
  • 10MAC2 is a schematic diagram of the construction of 10MAC2 in which a loxP sequence for circular DNA insertion and a neomycin resistance gene are loaded into mouse chromosome 10 (10MAC).
  • This figure is a schematic diagram of construction of 10MAC3 in which mouse chromosomal chromosome 10 (10MAC) is loaded with a GFP fluorescent expression unit, a loxP sequence for circular DNA insertion and a neomycin resistance gene.
  • This figure is a FISH analysis image of DT40 cells carrying 10MAC2.
  • the arrow indicates the constructed 10 MAC2.
  • This figure is a FISH analysis image of DT40 cells carrying 10MAC3.
  • the arrow indicates the constructed 10 MAC3.
  • This figure is a FISH analysis image of a CHO cell carrying 10MAC2.
  • the arrow indicates 10MAC2.
  • This figure is a FISH analysis image of a CHO cell carrying 10MAC3.
  • the arrow indicates 10MAC3.
  • the present invention relates to a gene Gm8155 (NCBI) which is a natural centromere derived from a mouse chromosome selected from the group consisting of mouse chromosome 10 and mouse chromosome 16, and the chromosomal portion of the long arm of mouse chromosome 10 near the centromere.
  • NCBI a gene Gm8155
  • a mouse artificial chromosome vector is provided.
  • the term “natural centromere derived from mouse chromosome” refers to the entire centromere (complete centromere) of mouse chromosome 10 or mouse chromosome 16. Therefore, such a centromere does not include a structure having a centromere function that is accidentally or artificially obtained by using a part of a centromere sequence of a mouse chromosome, and a centromere of a chromosome of another animal species. .
  • “mouse artificial chromosome” or “mouse artificial chromosome vector” is an artificial chromosome constructed by a top-down approach, not an artificial chromosome constructed by a bottom-up approach.
  • the top-down approach is a method of constructing a natural centromere as a part of an artificial chromosome vector by deleting a gene region from a natural chromosome by chromosome modification.
  • the bottom-up approach is a method of constructing an artificial chromosome having a centromere function by acquiring a part of a centromere sequence as cloned DNA and transfecting a mammalian cell. In the present invention, this method is used. It has not been.
  • mouse number 10 in which the distal end of the long arm is deleted from gene Gm8155 (or gene Gm35974), which is the chromosomal site of mouse number 10 (or number 16) near the centromere, or “No. 16) Chromosome-derived long arm fragment” means that the vector of the present invention is stably maintained in rodent cells or individual tissues of mice, rats, etc. It is desirable to eliminate the influence of the endogenous gene as much as possible so as not to interfere with it. For this reason, the gene Gm8155 in the long arm region close to the centromere so as to substantially eliminate the endogenous gene in the long arm of the mouse chromosome.
  • substantially remove means at least 99.5%, preferably at least 99.7%, more preferably at least 99.8% of all endogenous genes (number) of mouse chromosome 10 or mouse chromosome 16. %, Most preferably 99.9-100% is removed.
  • the “upstream region” is the 5 ′ end region of the gene, preferably the region from the transcription start site to the 5 ′ untranslated region end.
  • retention rate when a mouse artificial chromosome is stably held in a cell, tissue or individual of a rodent such as a mouse or rat is a cultured cell or a tissue of a rodent The percentage of cells in which artificial chromosomes are present.
  • stablely maintained of the chromosomal vector of the present invention means that the chromosomal vector does not easily fall off during cell division, that is, it is stably maintained in the cell even after division. This means that the chromosome vector is efficiently transmitted to daughter cells and offspring mice.
  • the long arm fragment is, for example, without limitation, a long arm in which a region distal to the long arm marker gene Gm8155 of chromosome 10 is deleted. It consists of fragments.
  • the long arm fragment is, for example, without limitation, a length in which a region farther than the long arm marker gene Gm35974 of chromosome 16 is deleted. It consists of arm pieces.
  • the long arm fragment is contained in the deposited cell line DT40 (10MAC) T5-26 (accession number: NITE BP-02656) or the deposited cell line DT40 (16MAC) T1-14 (accession number: NITE BP-02657).
  • DT40 10MAC
  • NITE BP-02656 accession number: NITE BP-02656
  • 16MAC deposited cell line DT40
  • NITE BP-02657 accession number: NITE BP-02657
  • These basic structures can further include DNA sequence insertion sites such as loxP and FRT for inserting foreign DNA or genes or loci.
  • the vector of the present invention can contain a site for inserting foreign DNA or gene sequence
  • the vector can be introduced into any cell by incorporating the desired foreign DNA or gene or gene locus into this site.
  • the target foreign DNA or gene or gene locus can be expressed, and therefore, protein production, therapeutic drug screening, drug metabolism testing, DNA functional analysis, gene therapy, useful non-human animals It can be used for the application to the production of
  • DNA in this specification shall be used for all types of DNA nucleic acids including genes or loci, cDNA, and chemically modified DNA.
  • the term “foreign gene” or “foreign DNA” in the present specification is a gene or DNA of interest for insertion into a vector that is inserted into the gene insertion site of the vector, and is inherently present in the target cell. It means a gene or DNA to be expressed in a target cell that does not exist, or a sequence thereof.
  • DNA sequence insertion site means a site in an artificial chromosome where a target DNA (eg gene, gene locus, etc.) sequence can be inserted, for example, a site-specific recombinase recognition site.
  • target DNA eg gene, gene locus, etc.
  • Such recognition sites include, but are not limited to, for example, loxP (Cre recombinase recognition site), FRT (Flp recombinase recognition site), ⁇ C31attB and ⁇ C31attP ( ⁇ C31 recombinase recognition site), R4attB and R4attP (R4 recombinase recognition site), TP901-1attB and TP901-1attP (TP901-1 recombinase recognition site) or Bxb1attB and Bxb1attP (Bxb1 recombinase recognition site) are included.
  • the “site-specific recombination enzyme” in the present specification is an enzyme for causing recombination specifically with a target DNA sequence at a recognition site of these enzymes.
  • examples thereof include Cre integrase (also referred to as Cre recombinase), Flp recombinase, ⁇ C31 integrase, R4 integrase, TP901-1 integrase, Bxb1 integrase, and the like.
  • the vector of the present invention also modifies mouse chromosomes and uses mouse-derived natural centromeres as they are for the production of vectors.
  • the retention rate in rodent cells or individual tissues such as mice, rats, hamsters, etc. is improved, thereby being stably retained in the cells, and thus lengthening the target gene (s). It can be stably contained for a period of time, can be expressed for a long time without variation in the amount of transgene between rodent individuals or tissues, and is also a pluripotent cell (eg, ES cell, iPS cell, etc.)
  • the retention rate is about 90% or more in the tested tissue (eg, tissue derived from liver, intestine, kidney, spleen, lung, heart, skeletal muscle, brain or bone marrow), and the mouse artificial chromosome of the present invention has It can grow efficiently and allows multiple (multiple) copies to be retained within the cell.
  • mouse chromosomes 10 and 16 can be found in DDBJ / EMBL / GenBank, Santa Cruz Biotechnology, Inc. Available from Chromosome Databases.
  • the “long arm” of a chromosome refers to a chromosomal region including a gene region from the centromere side of a mouse chromosome. On the other hand, there are almost no short arms in the mouse chromosome.
  • distal in the present specification means a region far from the centromere (that is, the telomere side). Conversely, the region close to the centromere (ie, the centromere side) is referred to as “proximal”.
  • the long arm distal means a region located on the telomere side of the specific cutting site of the long arm, and the long arm proximal means a region positioned on the centromeric side of the specific cutting site of the long arm.
  • This specific cleavage site is at least 99.5%, preferably at least 99.7%, more preferably at least 99.8% of all endogenous genes (number) present in the long arm of mouse chromosome 10 or mouse chromosome 16. Most preferably, 99.9 to 100% of the sites (positions) are deleted.
  • telomere sequence is a homologous or heterogeneous natural telomere sequence or an artificial telomere sequence.
  • the same species means an animal of the same species as the mouse from which the chromosome fragment of the artificial chromosome vector is derived, while the heterogeneous means mammals other than the mouse (including humans).
  • the artificial telomere sequence refers to a sequence having a telomere function produced artificially, such as a (TTAGGG) n sequence (n means repetition).
  • the telomere sequence can be introduced into the artificial chromosome by telomere truncation (replacement of telomere sequence) as described in, for example, International Publication No. WO00 / 10383. Telomere truncation can be used for chromosome shortening in the production of the artificial chromosome of the present invention.
  • non-human animal refers to primates such as monkeys and chimpanzees, rodents such as mice, rats, hamsters, and guinea pigs, and ungulates such as cows, pigs, sheep, and goats, excluding humans. Mammals such as but not limited to.
  • an “embryonic stem cell” or “ES cell” in the present specification is a stem cell having a differentiation pluripotency and a semi-permanent proliferation ability established from an inner cell mass of a blastocyst of a fertilized egg derived from a mammal.
  • the artificial chromosome vector of the present invention comprises the following steps (a) to (c): (A) obtaining a cell containing a mouse chromosome; (B) deleting the distal long arm of the mouse chromosome so as not to include the majority (99.5% to 100%) of the endogenous gene (number); and (c) one or more proximal to the long arm It can be produced by a method including a step of inserting the DNA sequence insertion site.
  • the order of the steps (b) and (c) may be reversed.
  • mouse embryonic fibroblast mChr11-neo
  • a drug resistance gene for example, the neo gene which is a G418 resistance gene
  • the BSr gene which is a blasticinin S resistance gene were introduced.
  • Mouse A9 hybrid mouse (BSr; mChr-neo), a mouse A9 hybrid cell containing a mouse chromosome labeled with a drug resistance gene, fused with mouse A9 (BSr), which is a mouse A9 cell (ATCC VA20110-2209) Therefore, the chromosome can be prepared by transferring the chromosome into a cell having a high homologous recombination rate.
  • Mouse fibroblasts can be obtained based on methods described in the literature. For example, mouse fibroblasts can be established from mice of ICR strain or C57B6 strain available from CLEA Japan.
  • cells having a high homologous recombination rate for example, chicken DT40 cells (Dieken et al., Nature Genetics, 12: 174-182, 1996) can be used. Furthermore, the transfer can be performed by a known chromosome transfer method, for example, the micronucleus cell fusion method (Koi et al., Jpn. J. Cancer Res., 80: 413-418, 1973).
  • an accurate analysis of the target gene (s) can be stably and highly retained in cells, tissues or individuals derived from rodents, preferably from mice or rats, into which artificial chromosomes have been introduced. It can be used for substance production.
  • the deletion of the endogenous gene can be performed, for example, by telomere truncation described in WO00 / 10383. Specifically, in a cell containing a mouse chromosome, a targeting vector containing an artificial telomere sequence is constructed, and a clone in which the (artificial) telomere sequence is inserted at a desired position on the chromosome by homologous recombination is obtained.
  • Deletion mutants are obtained by telomere truncation. That is, the desired position (or site) is the cutting position of the distal long arm to be deleted, and the artificial telomere sequence is replaced and inserted at this position by homologous recombination, and the distal long arm is deleted.
  • This position can be appropriately set by designing the target sequence when constructing the targeting vector.
  • the target is based on the DNA sequence of NC_000076. 6 (GenBank registration number) of mouse chromosome 10 long arm and the DNA sequence of NC_000082.6 (GenBank registration number) of mouse chromosome 16 long arm.
  • the sequence is designed so that telomere truncation occurs on the telomere side of the target sequence.
  • a mouse chromosome 10 fragment or mouse chromosome 16 fragment from which most of the endogenous gene has been deleted is obtained.
  • a system comprising an enzyme recognition site, a target gene or DNA sequence can be inserted and mounted.
  • a Cre enzyme derived from bacteriophage P1 and a system of a loxP sequence that is a recognition site thereof (Cre / loxP system; B.
  • Flp enzyme derived from Saccharomyces cerevisiae and FRT (Flp Recombination Target) sequence system Flp / FRT system
  • FRT Flp Recombination Target sequence system
  • ⁇ C31 integrase derived from Streptomyces phage and ⁇ C31attB / attP sequence that is the recognition site System
  • R4 integrase, its recognition site R4attB / attP sequence system TP901-1 integrase, its recognition site TP901-1 attB / attP sequence system
  • Bxb1 integrase and its recognition unit
  • the Bxb1attB / attP sequence system which is a position, can be mentioned, but the system is not limited to the above system as long as it can function as a DNA sequence insertion site.
  • a known method such as homologous recombination can be used, and the insertion position and number are within the proximal and proximal arm. It can be set appropriately.
  • the insertion position of the foreign gene or DNA can be specified, so that the insertion position is constant and does not receive an unexpected position effect.
  • the gene inserted in the recognition site loxP sequence of the site-specific recombinase on the mouse chromosome can be expressed in a tissue-specific manner.
  • a reporter gene may be inserted in advance, preferably leaving the insertion site of the target gene or DNA sequence.
  • the reporter gene is not particularly limited.
  • fluorescent protein eg, green fluorescent protein (GFP, EGFP, etc.
  • YFP yellow fluorescent protein
  • tag protein-encoding DNA ⁇ -galactosidase
  • examples thereof include genes and luminescent genes (luciferase gene, etc.), and GFP or EGFP is preferred.
  • the mouse artificial chromosome vector of the present invention may further contain a selection marker gene.
  • the selectable marker is effective in selecting cells transformed with the vector.
  • Examples of the selection marker gene include either a positive selection marker gene and a negative selection marker gene, or both.
  • Positive selectable marker genes include drug resistance genes such as neomycin resistance gene (Neo or NeoR), ampicillin resistance gene, blasticidin S (BS) resistance gene, puromycin resistance gene (Puro), geneticin (G418) resistance gene, Hygromycin resistance gene (Hyg) and the like are included.
  • the negative selectable marker gene includes, for example, herpes simplex thymidine kinase (HSV-TK) gene, diphtheria toxin A fragment (DT-A) gene and the like. In general, HSV-TK is used in combination with ganciclovir or cyclovir.
  • Homologous recombination can be preferably used as a technique for inserting a reporter gene or a desired foreign gene or DNA into the mouse artificial chromosome vector of the present invention.
  • Homologous recombination involves both sequences (5′arm and 3 ′) that are homologous to the nucleotide sequences of the 5 ′ region and 3 ′ region of the insertion position on the mouse chromosome (each about 1 to 6 kb, preferably about 2 to 4 kb). arm) can be performed using a targeting vector obtained by ligating the DNA cassette to be inserted.
  • the vector used for this purpose include plasmids, phages, cosmids, viruses and the like, with plasmids being preferred.
  • Examples of basic plasmids for constructing targeting vectors include V907 or V913 (Lexicon Genetics), but are not limited thereto.
  • a basic vector may include one or more sequences or elements that are commonly inserted in vector construction, such as a promoter, enhancer, selectable marker gene, origin of replication, and the like.
  • promoters can include phosphoglycerate kinase (PGK) promoter, chicken beta actin (CAG) promoter, cytomegalovirus (CMV) promoter, elongation factor 1 ⁇ (EF1 ⁇ ) promoter, and the like.
  • PGK phosphoglycerate kinase
  • CAG chicken beta actin
  • CMV cytomegalovirus
  • EF1 ⁇ elongation factor 1 ⁇
  • the mouse artificial chromosome vector prepared by the above-described method is a mouse-derived chromosome fragment (this includes a long arm fragment from which the endogenous gene of natural centromere, at least 99%, preferably at least 99.5%) has been deleted, And a short arm (if present)) and an artificial telomere sequence.
  • the centromere is the entire centromere structure of the mouse chromosome used for the production of an artificial chromosome.
  • mouse artificial chromosome vector of the present invention is a mouse artificial chromosome vector prepared in Examples described later, and this artificial chromosome is obtained by deleting the long arm distal end in the mouse chromosome 10 in the upstream region of the gene Gm8155. This is a vector obtained by deleting the distal long arm in the upstream region of the gene Gm35974 in mouse chromosome 16 and the obtained vector.
  • These vectors are mouse artificial chromosomes contained in the deposited cell line DT40 (10MAC) T5-26 (Accession number: NITE BP-02656) or the deposited cell line DT40 (16MAC) T1-14 (Accession number: NITE BP-02657). Is included as a basic structure. Since it is a basic structure, the following DNA sequence insertion site, selection marker gene, foreign gene (or DNA), etc. can be inserted into this DNA structure.
  • the mouse artificial chromosome vector can preferably contain one or a plurality of DNA sequence insertion sites, for example, a site-specific recombination enzyme recognition site (for example, a loxP sequence which is a Cre enzyme recognition site).
  • a site-specific recombination enzyme recognition site for example, a loxP sequence which is a Cre enzyme recognition site.
  • the recognition site of the site-specific recombinase is, for example, a GFP-PGKneo-loxP-3′HPRT type loxP sequence, a 5′HPRT-loxP-hyg type, or a PGKneo-loxP.
  • -3′HPRT type loxP sequence or GFP-5′HPRT-loxP-PGKhyg type loxP sequence but is not limited thereto.
  • GFP is a green fluorescent protein gene
  • PGKneo is a phosphoglycerate kinase promoter / neomycin resistance gene cassette
  • HPRT is a hypoxanthine-guanine phosphoribosyltransferase gene
  • hyg is a hygromycin resistance gene. is there.
  • the mouse artificial chromosome vector may further contain a reporter gene and a selection marker gene (eg, a positive selection marker gene and a negative selection marker gene).
  • the mouse artificial chromosome vector may further contain a foreign gene or a DNA sequence.
  • the foreign gene or DNA includes, but is not limited to, a human gene or DNA, and examples thereof include a human chromosome long arm or short arm gene or locus DNA (see (2) below).
  • Advantages of the mouse artificial chromosome vector of the present invention are the advantages of the conventional artificial chromosome vector: 1) Since it is not inserted into the host chromosome and is maintained independently, it does not destroy the host gene. 2) Constant copy number (Multiple (multiple) copies are possible) are retained stably and are subject to physiological expression control of the host cell, so there is no overexpression or loss of expression of the inserted gene. 3) There is a restriction on the size of DNA that can be introduced. In addition to being able to introduce genes and multiple genes / isoforms containing expression control regions, the retention rate in rodent cells or rodents is improved, and the long-term transgenes are introduced. Realization of stable expression and improvement of offspring transmission rate improves the efficiency of producing transgenic mice. 4) There is little variation between tissues after vector introduction. Retention is about 90% or more, include advantages such.
  • a foreign gene or DNA can be introduced into the mouse artificial chromosome vector of the present invention.
  • the size of the foreign gene or DNA sequence is not particularly limited and may be 20 kb or less, or may exceed 20 kb, for example, 50 kb or more, 100 kb or more, 200 kb or more, 500 kb or more, 700 kb or more, 1 Mb or more, It is 10 Mb or more, 20 Mb or more, 30 Mb or more, 40 Mb or more, or 50 Mb or more.
  • the vector of the present invention can be loaded with foreign DNA (chromosomal fragment) having a size that is difficult for artificial chromosome vectors such as BAC, PAC, and YAC, that is, 1 Mb or more.
  • the vector of the present invention contains a large foreign gene or DNA of 200 kb or more, such as 1 Mb or more, in a rodent cell, tissue or individual with a stable and high retention rate. Enable.
  • the present invention is capable of stably maintaining a foreign gene or DNA having a huge size of 200 kb or more with a retention rate of 90% or more in rodent cells, tissues or individuals. And a method for producing the vector.
  • the foreign gene or DNA is a nucleic acid derived from a biological species other than rodents such as mouse and rat, and is not particularly limited, and may be a gene or DNA derived from any biological species or from any tissue or cell. Yes, preferably a mammal-derived gene or DNA, more preferably a human-derived gene or DNA.
  • genes or DNA include genes encoding polypeptides such as cytokines, hormones, growth factors, nutrient factors, hematopoietic factors, immunoglobulins, G protein coupled receptors, enzymes, etc.
  • DNA other tumors, muscular dystrophy, hemophilia, neurodegenerative diseases (eg Alzheimer's disease, Huntington's disease, Parkinson's disease, etc.), autoimmune diseases, allergic diseases, genetic diseases, infections, obstructive arteriosclerosis ,
  • Cytokines include, for example, interferons (eg, IF- ⁇ , IF- ⁇ , IF- ⁇ , etc.), interleukins (eg, IL-1, IL-2, IL-4, IL-6, IL-11, IL-12 etc.), tumor necrosis factor (eg TNF- ⁇ , TNF- ⁇ ), TGF- ⁇ family protein (eg osteogenesis promoting protein (BMP), etc.) and the like.
  • interferons eg, IF- ⁇ , IF- ⁇ , IF- ⁇ , etc.
  • interleukins eg, IL-1, IL-2, IL-4, IL-6, IL-11, IL-12 etc.
  • tumor necrosis factor eg TNF- ⁇ , TNF- ⁇
  • TGF- ⁇ family protein eg osteogenesis promoting protein (BMP), etc.
  • Hormones include, for example, growth hormone, human chorionic gonadotropin (hCG), human placental lactogen (hPL), human pituitary gonadotropin, thyroid stimulating hormone (TSH), luteinizing hormone releasing factor, insulin, glucagon , Somatostatin, prolactin and the like.
  • hCG human chorionic gonadotropin
  • hPL human placental lactogen
  • TSH thyroid stimulating hormone
  • luteinizing hormone releasing factor insulin
  • glucagon glucagon
  • Somatostatin prolactin and the like.
  • growth factors or nutrient factors examples include insulin-like growth factor, brain-derived neurotrophic factor (BDNF), albumin-fused villous-like neurotrophic factor, platelet-derived neurotrophic factor (PDNF), transforming growth factor, nerve growth Factor (NGF), TNF growth factor and the like are included.
  • BDNF brain-derived neurotrophic factor
  • PDNF platelet-derived neurotrophic factor
  • NNF nerve growth Factor
  • Blood coagulation / lysis factors include, for example, Factor VII, Factor VIII, Factor X, t-PA and the like.
  • Hematopoietic factors include, for example, erythropoietin, (granulocyte) colony-stimulating factor, thrombopoietin and the like.
  • G protein-coupled receptors include adrenergic receptors, muscarinic acetylcholine receptors, adenosine receptors, GABA receptors (type B), angiotensin receptors, cholecystokinin receptors, dopamine receptors, glucagon receptors, Histamine receptors, olfactory receptors, opioid receptors, secretin receptors, somatostatin receptors, gastrin receptors, P2Y receptors and the like are included.
  • Enzymes include, for example, asparaginase, superoxide dismutase, uricase, streptokinase, dopamine synthase, adenosine deaminase and the like.
  • therapeutic genes related to various diseases including tumors, muscular dystrophy, neurodegenerative diseases (for example, Alzheimer's disease, Huntington's disease, Parkinson's disease, etc.), autoimmune diseases, allergic diseases, genetic diseases, etc. , IL-12 gene, TNF- ⁇ gene, tumor suppressor gene, dopamine synthase gene, genetic defect gene (eg, adrenal enzyme (eg, cytochrome enzyme (P450), 3 ⁇ -hydroxysteroid dehydrogenase, 21 hydroxylase) P450 c21), etc.), etc.).
  • neurodegenerative diseases for example, Alzheimer's disease, Huntington's disease, Parkinson's disease, etc.
  • autoimmune diseases for example, Alzheimer's disease, Huntington's disease, Parkinson's disease, etc.
  • allergic diseases genetic diseases, etc.
  • IL-12 gene e.g, TNF- ⁇ gene, tumor suppressor gene
  • dopamine synthase gene eg, adrenal enzyme (eg, cytochrome enzyme (P450), 3 ⁇ -hydroxysteroid dehydrogen
  • the immune system gene includes T cell receptor (TCR), human leukocyte antigen (HLA), Fc ⁇ receptor (FCGR), killer cell Ig-like receptor (Killer cell Ig-like receptor (KIR)), leukocyte Ig-like receptor.
  • TCR T cell receptor
  • HLA human leukocyte antigen
  • FCGR Fc ⁇ receptor
  • KIR killer cell Ig-like receptor
  • leukocyte Ig-like receptor LIR
  • leukocyte Ig-like receptor LLR
  • Drug metabolizing enzymes are enzymes involved in metabolic reactions for decomposing and discharging foreign substances such as drugs and poisons, and are used for enzymes involved in first-phase reactions (oxidation, reduction, hydrolysis) and second-phase reactions (conjugation). Contains the enzymes involved. Enzymes involved in the first phase reaction include known enzymes such as cytochrome P450 (“CYP”), specifically CYP1A, CYP1B, CYP2A, CYP2B, CYP2C, CYP2D, CYP2E, CYP2J, CYP3A, CYP4B, and CYP4B. These subfamilies, as well as CES, etc. are included.
  • CYP cytochrome P450
  • CYP subfamily for example, CYP3A subfamily includes CYP3A4, CYP3A43, CYP3A5, CYP3A7 and the like, and CYP2C subfamily includes CYP2C8, CYP2C9, CYP2C18, CYP2C19 and the like.
  • enzymes involved in the second phase reaction include, for example, UGT1 and UGT2.
  • Drug metabolism-related genes include, for example, genes encoding transporters and genes encoding nuclear receptors.
  • genes encoding transporters are MDR1, MDR2, MRP2, OAT, OATP, OCT, BCRP and the like, and examples of genes encoding nuclear receptors are PXR, AhR, CAR, PPAR ⁇ and the like.
  • the foreign DNA sequence related to drug metabolism that can be introduced into the vector of the present invention includes a gene encoding an enzyme related to the first phase reaction, a gene encoding an enzyme related to the second phase, and a transporter. And a sequence of at least one gene selected from the group consisting of a gene encoding and a gene encoding a nuclear receptor, or a sequence of at least two genes.
  • the gene or DNA encoding immunoglobulins is preferably a human antibody gene or locus, specifically a human immunoglobulin heavy chain gene or locus, a human immunoglobulin light chain gene or locus, or a heavy chain thereof And DNA of both light chain genes or loci.
  • the light chain gene or locus is a ⁇ light chain gene or locus and / or a ⁇ light chain gene or locus.
  • human antibody gene or locus means human antibody heavy chain gene or locus derived from human chromosome 14, human antibody light chain ⁇ gene derived from human chromosome 2, unless otherwise specified. It refers to the locus and / or human antibody light chain ⁇ gene or locus derived from human chromosome 22.
  • the human antibody gene or gene locus is, for example, human chromosome 14 immunoglobulin heavy locus (human) NC — 0000142.9 ((base number 10558643.7.1068743844) or (base number 105264221..1074343718)), human 2 Chromosome immunglobulin kappa locus (human) NC — 000002.12 ((Base No.
  • the human antibody heavy chain gene or locus has a base length of about 1.3 Mb, the human antibody light chain ⁇ gene or locus has a base length of about 1.4 Mb, and the human antibody light chain ⁇ gene or locus Is a base length of about 0.9 Mb.
  • the mouse antibody heavy chain gene or locus is on mouse chromosome 12
  • the mouse antibody light chain ⁇ gene or locus is on mouse chromosome 6,
  • the mouse antibody light chain ⁇ gene or locus The locus is on mouse chromosome 16.
  • the mouse antibody heavy chain gene or locus is, for example, Chromosome 12, NC — 0000787.6 (113258768.116009954, complement)
  • the mouse antibody light chain ⁇ gene or locus is Chromosome 6, NC — 0000726.6 (675556636). , 70726754)
  • the mouse antibody light chain ⁇ gene or locus is represented by the nucleotide sequence described in Chromosome 16, NC — 0000822.6 (19026858. 19260844, complement).
  • the rat antibody heavy chain gene or locus is on rat chromosome 6, the rat antibody light chain ⁇ gene or locus is on rat chromosome 4, and the rat antibody light chain ⁇ gene or locus The locus is on rat chromosome 11.
  • the base sequences of these genes or gene loci can be obtained from US NCBI (GenBank, etc.), publicly known literatures and the like.
  • the above-mentioned mouse artificial chromosome vector containing the above human antibody gene comprises a human antibody heavy chain gene or locus derived from human chromosome 14 and a human antibody light chain ⁇ gene or locus derived from human chromosome 2.
  • These vectors can be made by using the chromosome engineering techniques described herein.
  • the non-human animal of the present invention comprises a mouse artificial chromosome vector containing human antibody heavy chain gene or locus derived from human chromosome 14 and human antibody light chain ⁇ gene or locus derived from human chromosome 2 and human chromosome 14 Animal containing mouse artificial chromosome vector containing human antibody heavy chain gene or locus derived from chromosome and human antibody light chain ⁇ gene or locus derived from human chromosome 22, or human antibody heavy chain gene derived from human chromosome 14 Alternatively, an animal comprising a mouse artificial chromosome vector comprising a locus, a human antibody light chain ⁇ gene or locus derived from human chromosome 2, and a human antibody light chain ⁇ gene or locus derived from human chromosome 22. This allows the non-human animal described above to produce human antibodies against the substance when administered with the antigen substance.
  • the human antibody in this specification may be any class and subclass of human immunoglobulin (Ig).
  • Ig human immunoglobulin
  • classes include IgG, IgA, IgM, IgD and IgE, and subclasses include IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2.
  • IgG chain is called ⁇ chain
  • corresponding to IgG1 to IgG4 is called ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4 chain
  • IgA, IgM, IgD and IgE are referred to as ⁇ chain ( ⁇ 1 and ⁇ 2), ⁇ chain, ⁇ chain, and ⁇ chain, respectively.
  • Each antibody light chain has a ⁇ chain and a ⁇ chain, and it is known that rearrangement of the ⁇ chain gene occurs if the rearrangement of the ⁇ chain gene is unsuccessful during the rearrangement of the immunoglobulin gene. Yes.
  • the human antibody heavy chain gene locus is V (variable) including VH1, VH2,..., VHm (where m is, for example, 38 to 46) from 5 ′ to 3 ′.
  • D (diversity) region genes including DHn (where n is 23, for example), JH1, JH2. .
  • J (joining) region genes including JHr (where r is 6), and C (constant) region genes including C ⁇ , C ⁇ , C ⁇ 3, C ⁇ 1, C ⁇ 1, C ⁇ 2, C ⁇ 4, C ⁇ , and C ⁇ 2.
  • An antibody produced through rearrangement of the above-mentioned human immunoglobulin gene in the immune system is a human antibody.
  • a human antibody molecule consists of two human antibody heavy chains and two human antibody light chains, each heavy chain and each light chain being linked by two disulfide bonds, and the two heavy chains are stationary.
  • C It has a structure connected by two disulfide bonds in the region.
  • V variable region of an antibody molecule has three particularly large portions, which are called complementarity-determining regions (CDRs), and CDR1, CDR2 from the N-terminal side. And CDR3.
  • CDRs complementarity-determining regions
  • the binding characteristics of the antibody to the antigen vary depending on the sequence difference of the CDR region. It is known that antibody diversity is caused by rearrangement of immunoglobulin genes.
  • At least one insulator sequence can be present in the vicinity of the foreign gene or foreign DNA insertion site or on both sides of the insertion site.
  • the insulator sequence has an enhancer blocking effect (that is, adjacent genes are not affected by each other) or a chromosomal boundary effect (distinguish between a region that guarantees gene expression and a region where gene expression is suppressed).
  • Such sequences include, for example, human ⁇ globin HS1 to HS5, chicken ⁇ globin HS4, and the like.
  • a foreign gene or DNA can be performed using a site-specific recombinase system as exemplified above, which is inserted as the above DNA sequence insertion site.
  • a targeting vector containing a loxP sequence that is a recognition site of Cre enzyme and a foreign gene or DNA or a chromosome fragment containing a foreign gene or DNA into which a loxP sequence that is a recognition site of Cre enzyme is inserted is constructed, and the mouse of the present invention
  • Cre enzyme By expressing the Cre enzyme in a cell containing an artificial chromosome vector, a foreign gene or DNA can be introduced by site-specific recombination with the targeting vector or the chromosome fragment in the loxP sequence.
  • a circular DNA containing a site-specific recombination enzyme recognition site (for example, loxP sequence, FRT sequence, etc.) can also be inserted.
  • DNA cloned by an existing vector such as circular YAC can also be inserted.
  • the preferred loxP sequence is a wild sequence derived from the P1 phage, and the insertion reaction of the circular insert into the loxP sequence on the artificial chromosome vector by Cre enzyme is reversible. Once the circular insert is inserted, two loxP sequences remain on the artificial chromosome vector.
  • a reverse reaction of cutting out the circular insert may occur, and it becomes difficult to further modify the artificial chromosome vector to insert the insert secondarily.
  • a system can be constructed in which a plurality of cyclic inserts are inserted sequentially without causing a reverse reaction.
  • mouse artificial chromosome vector of the present invention or the mouse artificial chromosome vector of the present invention containing a foreign gene or DNA is transferred or introduced into any cell. can do.
  • Techniques for this include, for example, the micronucleus cell fusion method, lipofection, calcium phosphate method, microinjection, electroporation, and the like, but the preferred technique is the micronucleus cell fusion method.
  • the micronucleus cell fusion method comprises micronucleus fusion between a cell having the ability to form a micronucleus (for example, mouse A9 cell) containing the mouse artificial chromosome vector of the present invention and other desired cells, and then transferring the vector to the other cell. It is a method to transfer to.
  • Cells having the ability to form micronuclei are treated with a polyploid inducer (for example, colcemid, colchicine, etc.) to form micronucleated multinucleated cells, and after processing to form micronucleated bodies by cytochalasin treatment, the desired Cell fusion with other cells.
  • a polyploid inducer for example, colcemid, colchicine, etc.
  • the cell into which the vector can be introduced is an animal cell, preferably a mammalian cell including a human cell, such as an oocyte, a germ line cell such as a sperm cell, an embryonic stem (ES) cell, a sperm stem (GS) cell, It includes stem cells such as somatic stem cells, somatic cells, fetal cells, adult cells, normal cells, disease cells, primary cultured cells, passaged cells or established cells.
  • a mammalian cell including a human cell, such as an oocyte, a germ line cell such as a sperm cell, an embryonic stem (ES) cell, a sperm stem (GS) cell, It includes stem cells such as somatic stem cells, somatic cells, fetal cells, adult cells, normal cells, disease cells, primary cultured cells, passaged cells or established cells.
  • Stem cells include, for example, ES cells, embryonic germ (EG) cells, embryonal carcinoma (EC) cells, mGS cells, pluripotent stem cells such as human mesenchymal stem cells, induced pluripotent stem (iPS) cells, nuclei Examples include transplanted cloned embryo-derived embryonic stem (ntES) cells.
  • Preferred cells are selected from the group consisting of somatic cells from mammals (preferably rodents including mice), non-human germline cells, stem cells and progenitor cells.
  • the vector When the cell is a cell derived from a mammal such as a rodent, the vector is more stably maintained in the cell or tissue of a mammal (for example, a rodent such as a mouse) into which the vector of the present invention has been introduced.
  • the dropout of the vector from is significantly reduced or no dropout occurs.
  • the cells are, for example, hepatocytes, intestinal cells, kidney cells, spleen cells, lung cells, heart cells, skeletal muscle cells, brain cells, bone marrow cells, lymphocyte cells, megakaryocyte cells, sperm, eggs and the like.
  • the tissues are tissues such as liver, intestine, kidney, thymus, spleen, lung, heart, muscle (for example, skeletal muscle), brain, bone marrow, testis, ovary and the like.
  • ES cells can be established and maintained by removing the inner cell mass from the blastocyst of the fertilized egg of the subject animal and using mitomycin C-treated mouse fetal fibroblasts as a feeder (MJ Evans and MH). Kaufman (1981) Nature 292: 154-156).
  • iPS cells can be obtained in about 3 to 5 weeks by introducing a specific reprogramming factor (DNA or protein) into somatic cells (including somatic stem cells), culturing them in an appropriate medium, and subculturing them. Generate colonies.
  • the reprogramming factor is, for example, a combination consisting of Oct3 / 4, Sox2, Klf4 and c-Myc; a combination consisting of Oct3 / 4, Sox2 and Klf4; a combination consisting of Oct4, Sox2, Nanog and Lin28; or Oct3 / 4, Combinations of Sox2, Klf4, c-Myc, Nanog and Lin28 are known (K. Takahashi and S.
  • a mouse fetal fibroblast cell line for example, STO
  • a vector-transfected somatic cell about 10 4 to 10 5 cells / percent is used on this feeder cell layer using an ES cell medium.
  • the basic medium is, for example, Dulbecco's modified Eagle medium (DMEM), Ham F-12 medium, a mixed medium thereof, and the ES cell medium is a mouse ES cell medium, a primate ES cell medium (Reprocell), etc. Can be used.
  • DMEM Dulbecco's modified Eagle medium
  • Ham F-12 Ham F-12 medium
  • Reprocell primate ES cell medium
  • Non-human animals can be created by techniques including injection into blastocysts of animal embryos, transplanting the embryos into the womb of a surrogate parent and giving birth . Furthermore, homozygous animals and their progeny animals can be produced by mating the resulting male and female transgenic animals.
  • the pluripotent cells such as ES cells and iPS cells via the mouse artificial chromosome vector of the present invention, as well as other genes such as human antibody genes, disease treatment genes, drug metabolism-related genes, etc.
  • Disease model non-human animals such as related diseases can be produced.
  • the endogenous gene corresponding to the foreign gene contained in the mouse artificial chromosome vector is destroyed or the expression of the endogenous gene is reduced.
  • the gene targeting method can be used as the destruction method.
  • RNAi method, miRNA method or the like can be used as a method for reducing the expression of an endogenous gene.
  • foreign genes include drug metabolism-related genes and human antibody genes.
  • a non-human animal in which an endogenous gene is destroyed is crossed with a chimeric non-human animal containing a mouse artificial chromosome vector containing a foreign gene or a progeny thereof and a chimeric animal or progeny in which the corresponding endogenous gene has been deleted for each cluster. It can be produced by further crossing animals obtained by heterozygously deleting the endogenous gene.
  • a cell containing a mouse artificial chromosome vector or a transgenic non-human animal can be produced.
  • a specific example of a non-human animal is a rodent such as a mouse or a rat containing a mouse artificial chromosome vector.
  • the present invention provides a cell or non-human animal comprising a mouse artificial chromosome vector.
  • the cells, tissues, or organs obtained from the non-human animal of the present invention can be used to produce a cell line that produces a protein expressed by a foreign gene.
  • the non-human animal of the present invention is a human antibody heavy chain gene or locus derived from human chromosome 14 and a human antibody light chain ⁇ gene or gene derived from human chromosome 2.
  • a mouse artificial chromosome vector comprising a locus, an animal comprising a mouse artificial chromosome vector comprising a human antibody heavy chain gene or locus derived from human chromosome 14 and a human antibody light chain ⁇ gene or locus derived from human chromosome 22, or A mouse comprising a human antibody heavy chain gene or locus derived from human chromosome 14, a human antibody light chain ⁇ gene or locus derived from human chromosome 2, and a human antibody light chain ⁇ gene or locus derived from human chromosome 22 It is an animal containing an artificial chromosome vector.
  • non-human animals (mouse and rat) of the present invention capable of producing human antibodies can be produced by, for example, the procedures shown in FIGS.
  • a production example of a non-human animal using a mouse artificial chromosome will be described.
  • Animal cells containing human antibody light chain ⁇ gene or locus derived from human chromosome 2 modified by introducing a site-specific recombinase recognition site (eg, loxP and FRT), and human 22
  • a site-specific recombinase recognition site eg, loxP and FRT
  • human 22 After transferring each of animal cells (for example, DT40) containing human antibody light chain ⁇ gene or gene locus derived from number chromosome into rodent cells (for example, CHO) containing mouse artificial chromosome (MAC) by cell fusion method,
  • rodent cells for example, CHO
  • MAC mouse artificial chromosome
  • a rodent cell comprising a MAC comprising a human antibody light chain ⁇ gene or locus, and a MAC comprising a human antibody light chain ⁇ gene or locus by inducing site-specific recombinase (eg Cre) expression. Containing rodent cells.
  • the modified human anti-antibody After introducing the site-specific recombinase recognition site (eg, FRT) in the vicinity of the human antibody heavy chain gene or locus on human chromosome 14 held in animal cells (eg, DT40), the modified human anti-antibody An animal cell containing a weight chain gene or locus is transferred to a rodent cell containing MAC (eg, CHO) by a cell fusion method to obtain a rodent cell containing a MAC containing a human antibody heavy chain gene or locus. Make it.
  • a site-specific recombinase recognition site eg, FRT
  • MAC eg, CHO
  • Each of a rodent cell comprising a MAC comprising the above human antibody light chain ⁇ gene or locus, and a rodent cell comprising a MAC comprising the human antibody light chain ⁇ gene or locus, and the above human antibody heavy chain A MAC containing a human antibody light chain ⁇ gene or locus in a rodent cell containing a human antibody heavy chain gene or locus, or a human antibody by fusing with a rodent cell containing the gene or locus After transferring the MAC containing the light chain ⁇ gene or locus, by inducing the expression of site-specific recombinase (eg FLP), the human antibody heavy chain gene or locus derived from human chromosome 14 and human 2 A human antibody light chain kappa gene derived from a chromosome or a rodent cell containing a MAC containing a locus, and a human antibody heavy chain gene derived from human chromosome 14 Produces each of the rodent cells containing the locus and the human antibody
  • a rodent cell comprising a MAC comprising the human antibody heavy chain gene or locus derived from human chromosome 14 and a human antibody light chain ⁇ gene or locus derived from human chromosome 2, and a human derived from human chromosome 14
  • Each of the rodent cells containing the MAC containing the antibody heavy chain gene or locus and the human antibody light chain ⁇ gene or locus derived from human chromosome 22 can be transformed into a non-human animal (eg, mouse or Rat) human antibody heavy chain gene or locus derived from human chromosome 14 and human antibody light chain ⁇ gene or locus derived from human chromosome 2 fused with differentiating pluripotent stem cells (for example, ES cells or iPS cells)
  • Non-human animal differentiation pluripotent stem cells containing MAC, and human antibody heavy chain gene or locus derived from human chromosome 14 and human 22 Preparing a non-human animal pluripotent stem cells, including MAC containing the human antibody light chain
  • Nonhuman animal differentiation pluripotent stem cells each containing a human antibody heavy chain gene or locus derived from a chromosome and a MAC containing a human antibody light chain ⁇ gene or locus derived from human chromosome 22 are transferred to an early embryo of the nonhuman animal.
  • a chimeric animal containing each of the above-mentioned MACs is produced by transplanting into (for example, an 8-cell stage embryo or a blastocyst stage embryo), and further a progeny animal is produced. Further, offspring animals containing each of the MACs are produced by mating of the offspring animals.
  • a non-human animal comprising a mouse artificial chromosome vector comprising the above human antibody heavy chain gene or locus, human antibody light chain ⁇ gene or locus, and human antibody light chain ⁇ gene or locuscan be produced.
  • Non-human animal containing MAC containing human antibody heavy chain gene or locus derived from human chromosome 14 and human antibody light chain kappa gene or locus derived from human chromosome 2, or human derived from human chromosome 14 A non-human animal comprising a MAC comprising the antibody heavy chain gene or locus and human antibody light chain ⁇ gene or locus derived from human chromosome 22, and the human antibody heavy chain gene or locus and human antibody light chain ⁇ and ⁇ genes
  • the human antibody heavy chain gene or locus derived from human chromosome 14 and human chromosome 2 are derived by crossing with an endogenous antibody gene corresponding to the locus or the same kind of non-human animal in which the locus is knocked out.
  • a human antibody light chain ⁇ gene or locus-containing MAC, and human antibody heavy chain gene or locus and human antibody light A non-human animal in which the endogenous antibody gene or locus corresponding to the chain ⁇ and ⁇ gene or locus is knocked out, or a human antibody heavy chain gene or locus derived from human chromosome 14 and a human antibody derived from human chromosome 22
  • a non-human animal comprising a MAC containing a light chain ⁇ gene or locus and knocking out an endogenous antibody gene or locus corresponding to a human antibody heavy chain gene or locus and a human antibody light chain ⁇ and ⁇ gene or locus Is made.
  • a human antibody heavy chain gene or locus derived from human chromosome 14 and a human antibody light chain kappa gene or locus derived from human chromosome 2 and a non-human animal containing MAC and human chromosome 14 derived
  • a non-human animal comprising a MAC comprising a human antibody heavy chain gene or locus and a human antibody light chain ⁇ gene or locus derived from human chromosome 22, a human antibody heavy chain gene or locus and a human antibody light chain ⁇ and Human antibody heavy chain gene or locus derived from human chromosome 14 and human No.
  • Human antibody heavy chain derived from human chromosome 14 containing MAC containing human antibody light chain ⁇ gene or locus derived from chromosome A human antibody light chain ⁇ gene or locus derived from human chromosome 22 and a corresponding human antibody heavy chain gene or locus and human antibody light chain ⁇ and ⁇ gene or locus A non-human animal in which the endogenous antibody gene or locus is knocked out is produced.
  • non-human animal comprising a mouse artificial chromosome vector comprising the above human antibody heavy chain gene or locus, human antibody light chain ⁇ gene or locus, and human antibody light chain ⁇ gene or locus; and human antibody heavy chain Gene or locus and human antibody light chain ⁇ and ⁇
  • a non-human animal in which the endogenous antibody gene or locus corresponding to the gene or locus is knocked out, including MAC, and the endogenous antibody gene of the animal
  • a non-human animal in which the locus is knocked out is produced.
  • the present invention further comprises culturing a cell containing a mouse artificial chromosome vector containing an exogenous DNA sequence in an expressible manner, and recovering the protein encoded by the produced DNA.
  • a method for producing a protein is provided.
  • proteins examples include proteins and polypeptides useful in the above-mentioned industries such as medical treatment, diagnosis, and agriculture.
  • DNA encoding these proteins or polypeptides is inserted into a mouse artificial chromosome vector so that it can be expressed in the presence of a promoter (and enhancer, if necessary), and appropriate cells are transformed or transfected. To do. The resulting cells are cultured and the DNA is expressed to produce the protein or polypeptide, which is recovered from the cells or medium.
  • insect cells such as Sf cells, avian cells, yeast cells, and eukaryotic cells such as plant cells can be used as the cells.
  • the culture conditions including the medium are selected according to the cell type, and known conditions can be used as the culture conditions.
  • the medium for animal cells includes MEM medium, DMEM medium, Ham's F12 medium, Eagle's MEM medium, Iskov EME medium, RPMI 1640 medium, and mixed media thereof.
  • the recovery (or isolation) of proteins or polypeptides is gel filtration chromatography, ion exchange chromatography, affinity chromatography, HPLC, chromatography methods such as FPLC, salting-out method, ammonium sulfate precipitation method, organic solvent precipitation Known methods such as a method, an ultrafiltration method, and crystallization may be carried out singly or in combination.
  • the present invention further includes producing a human antibody using the non-human animal of (4) above containing a mouse artificial chromosome vector containing a human antibody gene and recovering the human antibody.
  • a method for producing a human antibody is provided.
  • the human antibody gene is a gene encoding any class of human IgG, IgM, IgA, IgD, and IgE, or any subclass of human IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2.
  • Preferred human antibody genes are the IgG class and its subclasses.
  • a human antibody is composed of two identical heavy chains (H) and two identical light chains (L). Both H and L chains are composed of a variable region and a constant region. Yes.
  • the human H chain and L chain variable regions are composed of three hypervariable regions (in order of CDR1, CDR2, CDR3 from the N-terminal side to the C-terminal side) and four framework regions (FR1 from the N-terminal side to the C-terminal side). , FR2, FR3, FR4), and the specificity of the antibody is determined by three CDR sequences each of human H chain and L chain.
  • human IgG antibody In the case of a human IgG antibody, it is composed of a heavy chain ⁇ chain and a light chain ⁇ chain or ⁇ chain, and these antibody chain genes are human chromosome 14, chromosome 22, chromosome 2, respectively. Exists on.
  • human antibody genes used in the present invention human chromosome fragments containing each antibody locus are used, and these are integrated into different or identical mouse artificial chromosomes.
  • Antibody gene sequences can be obtained from NCBI (USA) databases and the like. This series of techniques is an improvement of the technique described in, for example, Japanese Patent Application Laid-Open No. 2005-230020.
  • Non-human animals capable of producing fully human antibodies include non-human animals including mouse artificial chromosome vectors containing human ⁇ chain loci and mouse artificial chromosome vectors containing human ⁇ chain loci and / or human ⁇ chain loci. It is possible to obtain chimeric non-human animals and their progeny animals carrying both the H chain and L chain loci by mating with the same non-human animals.
  • the thus prepared non-human animal capable of producing a fully human antibody eg, rodents such as mice and rats
  • a fully human antibody eg, rodents such as mice and rats
  • Human antibodies can be produced by methods that include separating.
  • a hybridoma that produces a monoclonal antibody by extracting the spleen of a non-human animal immunized with a specific antigen and fusing it with myeloma cells.
  • Method for screening therapeutic substance is further effective for treating the disease, comprising administering a candidate drug to the non-human animal, which is a disease model animal, and evaluating the therapeutic effect of the drug.
  • a method for screening a substance is provided.
  • a disease model non-human animal is an artificially produced animal having a disease caused by an abnormality such as a biological function abnormality, drug metabolism abnormality, or chromosomal abnormality due to a defect or mutation of a certain protein.
  • an abnormality such as a biological function abnormality, drug metabolism abnormality, or chromosomal abnormality due to a defect or mutation of a certain protein.
  • model non-human animals having chromosomal abnormalities include, but are not limited to, animals with human chromosome 18 or 21 trisomy.
  • Such a non-human animal prepares a gene or chromosome fragment containing the above-mentioned abnormality in the gene or chromosome, incorporates it into the mouse artificial chromosome vector of the present invention, introduces it into an ES cell or iPS cell, and fertilizes an egg.
  • a substance effective for treating the disease can be screened by administering a candidate drug to the non-human animal prepared as described above and evaluating the therapeutic effect of the drug.
  • Candidate drugs include, but are not limited to, for example, low molecular compounds, high molecular compounds, (sugar) proteins, peptides, (phosphorus or sugar) lipids, saccharides, nucleic acids, and the like.
  • the present invention also includes the above non-human animal or mouse comprising a mouse artificial chromosome vector containing a human drug metabolism related gene Pharmacological action and / or metabolism and / or metabolism of a drug or food comprising administering the drug or food to a cell, organ or tissue of origin, and measuring the pharmacological action and / or metabolism and / or toxicity of the drug or food Alternatively, a test method for toxicity is provided.
  • the present invention also cultivates a microsome or microsomal fraction S9 obtained from the above-mentioned non-human animal containing a mouse artificial chromosome vector containing a human drug metabolism-related gene together with cultured cells or bacteria and a drug or / and food, Provided is a method for testing the toxicity of a drug or food, comprising measuring the (bad) effect (eg, mutation, etc.) that the food has on the cells or bacteria.
  • Human drug metabolism-related genes are those exemplified above.
  • the method for producing a non-human animal is also the same as described above.
  • the pharmacological action of the drug or food for example, by observing the state of the animal, testing the effect on the organ or chromosome, etc. Metabolism or toxicity can be determined.
  • the microsome or microsomal fraction S9 obtained from the non-human animal (9000 g fraction containing a large number of enzymes that catalyze hydrolysis, reduction, oxidation, binding, etc.) is obtained. Cultivated together with cultured cells (especially animal cells, preferably mammalian cells) or bacteria (preferably Salmonella) in the presence of drugs and / or foods. Detection of toxicity of a drug or food to cells can be performed by an Ames test or a micronucleus test. In the Ames test, toxicity is determined based on Salmonella mutations. In micronucleus tests, toxicity is determined based on abnormalities in the chromosomes of cell nuclei. These test methods are well known and can be used in the methods of the present invention.
  • Example 1 Preparation of mouse chromosome-retaining DT40 cells for chromosome modification for the purpose of constructing a mouse artificial chromosome vector
  • a mouse artificial chromosome vector For the construction of a mouse artificial chromosome vector, homologous recombination via mouse A9 cells having a high micronucleation rate Transfer mouse chromosomes to frequent chicken DT40 cells.
  • mouse chromosomes labeled with drug resistance genes are introduced into chicken DT40 cells with high homologous recombination frequency by the micronucleus cell fusion method.
  • drug resistance genes are introduced into mouse A9 cells, which are known to have a high micronucleus formation rate.
  • the mouse chromosome labeled with is introduced by cell fusion.
  • mChr10-Neo and mChr16-Neo mouse fibroblasts in which the neo gene which is G418 resistance gene is inserted on the mouse chromosome
  • the PEG solution was aspirated, washed 3 times with serum-free DMEM, and cultured in a normal culture solution (10% FBS, DMEM) for 1 day. After washing the cell surface with PBS ( ⁇ ), the cells are dispersed by adding trypsin, and cells suspended in a double selective culture solution (10% FBS, DMEM) containing G418 and blasticidin S are implanted in a plastic culture dish. Selective culture for 2-3 weeks.
  • mChr10-Neo a total of 9 resistant colonies each obtained by 4 cell fusions were isolated and expanded, and for mChr16-Neo, a total of 10 resistant colonies each obtained by 4 cell fusions were isolated and expanded, Randomly selected clones were used thereafter (clone name: mouse A9xmouse embryonic hybrid hybrid (bsd; mChr10-neo and bsd; mChr16-neo)).
  • mouse A9 xmouse embryonic hybrid hybrid (bsd; mChr10-neo and bsd) which is a mouse A9 hybrid cell containing mouse chromosome labeled with drug resistance gene;
  • a mouse chromosome labeled with a drug resistance gene from mChr16-neo is introduced into DT40 cells derived from chicken (FIG. 2).
  • telomere truncation which is a chromosome site-specific cleavage by insertion of an artificial telomere (TTAGGG) n sequence (size: about 1 kb)
  • mouse chromosomes labeled with drug resistance genes are introduced into DT40 cells with high homologous recombination frequency by the micronucleus cell fusion method.
  • mouse chromosomes were obtained from A9 hybrid mouse clone A9 xmouse embryonic hybrid hybrid (bsd; mChr10-neo and bsd; mChr16-neo) The cells were transferred to DT40, a chicken-derived cell having a high frequency of homologous recombination.
  • A9xmouse embryonic hybrid hybrid (bsd; mChr10-neo and bsd; mChr16-neo), which had been cultured in flasks ⁇ 24, became 70% confluent in each flask, colcemid treatment (colcemid 0.05 ⁇ g / Ml, 20% FCS, DMEM) at 37 ° C. and 5% CO 2 for 48 hours.
  • colcemid treatment was completed, the medium in the flask was aspirated, and the ninth minute of the flask was filled with cytochalasin B.
  • the flask was inserted into a container for exclusive use of a large high-speed centrifuge (BECKMAN), hot water (34 ° C.) was added to such an extent that the flask was not hidden, and centrifuged (Rotor ID 10.500, 8,000 rpm, 1 h, 34 ° C.). After the centrifugation, cytochalasin B was recovered, and the pellets in each flask were recovered in 15 ml tubes with 2 ml of serum-free medium DMEM. After slow filtration in the order of 8 ⁇ m ⁇ 5 ⁇ m ⁇ 3 ⁇ m filter, each tube was centrifuged (2000 rpm, 5 minutes, RT), and the supernatant was aspirated. It collect
  • DT40 cells which are recipient cells, are floating cells, they need to be once attached. Coated by incubating one well at 37 ° C overnight with 1.5 ml poly-L-lysine (SIGMA) adjusted to 50 ⁇ g / ml to attach DT40 to one well of a 6-well plate (Nunc) did. Poly-L-lysine was collected, the plate was washed with PBS ( ⁇ ), and approximately 1 ⁇ 10 7 DT40 cells were gently seeded on the plate with 2 ml of serum-free medium (DMEM). The whole plate was set in a centrifuge (Beckman), and centrifuged at 37 ° C., 1200 rpm for 3 minutes to obtain attached DT40.
  • SIGMA poly-L-lysine
  • the purified micronucleated cells were resuspended in 2 ml of serum-free medium containing PHA-P (SIGMA), and gently seeded on the adherent DT40 from which the serum-free medium (DMEM) was removed. The plate was centrifuged at 37 ° C., 1200 rpm, 3 minutes. The supernatant was removed, and PEG1000 (Wako) [5 g of PEG1000 was completely dissolved in serum-free DMEM medium and 1 ml of dimethyl sulfoxide was added and sterilized by filtration] was fused with 1 ml for exactly 1 minute.
  • Serum-free culture medium (DMEM) is washed 4 times with 4 ml, pipetted with 3 ml of normal DT40 culture medium, adhering DT40 is returned to a floating state, and seeded on two 24-well plates at 37 ° C. overnight. Incubated with. G418 was added to 1500 ⁇ g / ml and selective culture was performed for 3 to 4 weeks. A9xmouse embryonic fibroblast hybrid (bsd; mChr10-neo) # 4, and A9xmouse embroidic fibroblast (bsd; mChr16-neo) # 2 micronucleus fusions were obtained, and a total of 10 micronucleus fusions were obtained. The following analysis was performed (clone names: DT40 (mChr10-neo) and DT40 (mChr16-neo)).
  • mouse artificial chromosome (10MAC) by modification of mouse chromosome 10
  • a mouse artificial chromosome vector it is necessary to delete as many endogenous genes as possible.
  • telomere truncation most of the long arm of mouse chromosome 10 containing the endogenous gene is deleted by a method called telomere truncation.
  • telomere truncation vector The pBS-TEL / puro construct (Kuroiwa et al. Nature Biotech 2002) was used as the basic vector for short-site proximal site-specific cleavage. A self-annealed synthetic oligo (Sigma) was inserted into the EcoRI site of pBS-TEL / puro. The sequence of the synthetic oligo is shown below. EcoRI-AscI-EcoRI: 5'-AATTCGGCGCGCCG-3 '(SEQ ID NO: 1) A homologous recombination target sequence was designed from the base sequence of the long arm of mouse chromosome 10 obtained from the GenBank database (NC — 0000766.6).
  • PCR Genekin 9600 manufactured by Perkin-Elmer was used as a thermal cycler, KOD FX (TOYOBO) was used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, dGTP, dTTP) were used according to the recommended conditions. .
  • the temperature and cycle conditions were heat denaturation at 98 ° C. for 1 minute, then digested with 35 cycles of 98 ° C. for 15 seconds and 68 ° C.
  • FIG. 1 A targeting vector, a target sequence, and a chromosomal allele resulting from homologous recombination are shown in FIG.
  • m10 F6 5'-AACTACCCAGTTCTGCATTTGGTGTGAG-3 '(SEQ ID NO: 4)
  • m10 R6 5'- ATCAGTCATCAGTACCCCCAACCTCTCT-3 '(SEQ ID NO: 5)
  • m10 F6 (above) PuroI 5'-GAGCTGCAAGAACTCTTCCTCACG-3 '(SEQ ID NO: 6)
  • PCR Genekin 9600 manufactured by Perkin-Elmer was used as a thermal cycler, KOD FX (TOYOBO) was used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, dGTP, dTTP) were used according to the recommended conditions. .
  • the temperature and cycle conditions were such that after heat denaturation at 98 ° C for 1 minute, 35 cycles of 98 ° C for 15 seconds and 68 ° C for 8 minutes were performed.
  • Plekhg1 F 5'-TGGATGGGTTTCAATGCCACT-3 '(SEQ ID NO: 7)
  • Plekhg1 R 5'- GGCATTCTCCCCTGTTGTGG-3 '(SEQ ID NO: 8)
  • Gm8155 F 5'-ACCCCTCGAACCCCTATTGC-3 '(SEQ ID NO: 9)
  • Gm8155 R 5'-CACGCCATCGGTGATGGATA-3 '(SEQ ID NO: 10)
  • Iyd F 5'- TGGGATGACCCCCACTTCTTT-3 '(SEQ ID NO: 11)
  • Iyd R 5'-TTTTTGGCCTCTTGCCCCATA-3 '(SEQ ID NO: 12)
  • PCR uses Perkin-Elmer's GeneAmp9600 as thermal cycler
  • Taq polymerase uses Ampli Taq Gold (Applied Biosystems)
  • buffers and dNTPs dATP, dCTP, dGTP, dTTP
  • the temperature and cycle conditions were 95 ° C for 10 minutes after heat denaturation and 35 cycles of 94 ° C for 30 seconds, 60 ° C for 30 seconds, and 72 ° C for 30 seconds.
  • FIG. 1 A targeting vector, a target sequence, and a chromosomal allele resulting from homologous recombination are shown in FIG.
  • mouse artificial chromosome vector 10MAC1 was constructed by inserting a GFP-PGKneo-loxP-3′HPRT type loxP sequence as a DNA insertion sequence into mouse artificial chromosome 10MAC. For introduction into an hprt-deficient CHO cell line.
  • loxP targeting vector of GFP-PGKneo-loxP-3′HPRT type V913 (Lexicon genetics) was used as a basic plasmid for inserting the loxP sequence into DT40 (10MAC).
  • the DNA sequence of mouse chromosome 10 as the loxP insertion site was obtained from the GenBank database (NC — 0000766.6).
  • the sequences of the primers used for the amplification of two target sequences for homologous recombination are shown below, from which genomic DNA is extracted from the drug resistant clones and used as a template.
  • KpnI_m10 LA F 5'-TCGAGGTACCTCTAAGTCAGGGAAAGATCCCCTTCTTG-3 '(SEQ ID NO: 13)
  • XhoI_m10 LA R 5'-TCGACTCGAGGACCATGAAGATGGTCCAACTAAAGCAA-3 '(SEQ ID NO: 14)
  • SalI_m10 RA F 5'-TCGAGTCGACCACTGCTCTTTCTTTAGTTACATGCAGCCC-3 '(SEQ ID NO: 15)
  • PCR Genekin 9600 manufactured by Perkin-Elmer was used as a thermal cycler, KOD FX (TOYOBO) was used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, dGTP, dTTP) were used according to the recommended conditions. .
  • the temperature and cycle conditions were such that after heat denaturation at 98 ° C for 1 minute, 35 cycles of 98 ° C for 15 seconds, 68 ° C for 3 minutes and 5 minutes were performed.
  • Each PCR product was digested with KpnI (NEB), XhoI (NEB), SalI (NEB) and NotI (NEB), separated by agarose gel and purified, and then cloned into the V913 KpnI / XhoI or SalI / NotI sites.
  • Vector name V913-m10LARA
  • the loxP sequence oligo-synthesized at the XbaI site of V820 was cloned.
  • 3'HPRT-loxP which is the third to ninth exons of the HPRT gene, was cloned into EcoRI and AscI of V907 (Lexicon genetics) (vector name: X3.1). Furthermore, the PGKneo sequence excised with KpnI and NotI was cloned into the KpnI site and EcoRI site of X3.1 (vector name: X4.1). PGKneo-loxP-3'HPRT excised from K4.1 with KpnI and AscI was cloned into the KpnI site and AscI site of V913 (vector name: pVNLH). HS4-CAG-EGFP-HS4 (distributed by Dr.
  • FIG. 6 shows a targeting vector, a target sequence, and a chromosomal allele resulting from homologous recombination.
  • 25 ⁇ g of the converted targeting vector p10MAC1 was added, transferred to an electroporation cuvette (BioRad), and allowed to stand at room temperature for 10 minutes.
  • the cuvette was set on Gene Pulser (Bio-Rad), and voltage was applied under the conditions of 550 V and 25 ⁇ F.
  • the cells were cultured for 24 hours.
  • the medium was replaced with a medium containing G418 (1.5 mg / ml), dispensed into two 96-well culture plates, and selective culture was performed for about 2 weeks. 24 and 20 resistant colonies obtained by two transfections each of T5-26 and T6-37 were isolated and expanded, and the subsequent analysis was performed (clone name: DT40 (10MAC1)).
  • m10 F1 5'- TGAGAAATACCGAATGGCAGAGAAACAC-3 '(SEQ ID NO: 17)
  • EGFP-F L
  • kj neo 5'- CATCGCCTTCTATCGCCTTCTTGACG-3 '(SEQ ID NO: 19)
  • m10 R2 5'-GAGAGGAGGGAAGCTTGATGAGAAAATG-3 '(SEQ ID NO: 20) KpnI m10 LA F (supra)
  • XhoI m10 LA R Previous
  • PCR GeneAmp9600 manufactured by Perkin-Elmer was used as a thermal cycler, KOD FX (TOYOBO) was used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, dGTP, dTTP) were used according to the recommended conditions. .
  • the temperature and cycle conditions were such that after heat denaturation at 98 ° C for 1 minute, 35 cycles of 98 ° C for 15 seconds, 68 ° C for 5 minutes, 8 minutes, and 2.5 minutes were performed.
  • DT40 (10MAC) T5-26 and T6-37 it was suggested that the desired recombination was performed for each of 8 and 3 clones.
  • mouse artificial chromosome vector 10MAC1-containing DT40 cells into 10MAC1 into CHO cells
  • DNA of mouse artificial chromosome vector 10MAC1 In order to stably insert a target gene (group), for example, a CYP3A cluster, a human antibody gene, or the like through loxP, which is a sequence insertion site, it is introduced into CHO cells.
  • group for example, a CYP3A cluster, a human antibody gene, or the like
  • loxP which is a sequence insertion site
  • PCR Genekin 9600 manufactured by Perkin-Elmer was used as a thermal cycler, KOD FX (TOYOBO) was used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, dGTP, dTTP) were used according to the recommended conditions. .
  • the temperature and cycle conditions are such that after heat denaturation at 98 ° C for 1 minute, 35 cycles of 98 ° C for 15 seconds, 68 ° C for 8 minutes and 2.5 minutes are performed. As a result, the following analysis was performed on PCR positive clones.
  • TRANS L1 5'-TGGAGGCCATAAACAAGAAGAC-3 '(SEQ ID NO: 21)
  • TRANS R1 5'-CCCCTTGACCCAGAAATTCCA-3 '(SEQ ID NO: 22)
  • LA taq Takara
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • Temperature and cycle conditions were heat denaturation at 98 ° C. for 1 minute, followed by 30 cycles of 94 ° C. for 10 seconds, 60 ° C. for 30 seconds and 72 ° C. for 3 minutes.
  • circular DNA insertion by high-efficiency site-specific recombination occurred in the obtained drug resistant clones from the time when all 24 drug resistant clones were PCR positive.
  • mouse artificial chromosome (16MAC) by modifying mouse chromosome 16
  • the long arm of mouse chromosome 16 containing the endogenous gene is deleted by a method called telomere truncation.
  • telomere truncation vector The pBS-TEL / puro construct (Kuroiwa et al. Nature Biotech 2002) was used as the basic vector for short-site proximal site-specific cleavage.
  • a homologous recombination target sequence was designed from the base sequence of the long arm of mouse chromosome 16 obtained from the GenBank database. The sequence of the primer for PCR amplification of the homologous recombination target sequence is shown below by extracting genomic DNA from DT40 (mChr16-neo) 3 as a template.
  • BamHI_m16T F2 5'-TCGAGGATCCGGGAGTAATTTTCAATCCTTGAGGCAGA-3 '(SEQ ID NO: 23)
  • BglII_m16T R2 5'-TCGAAGATCTCATCAGTGTACACCACAATCCCATCTGT-3 '(SEQ ID NO: 24)
  • PCR Genekin 9600 manufactured by Perkin-Elmer was used as a thermal cycler, KOD FX (TOYOBO) was used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, dGTP, dTTP) were used according to the recommended conditions. .
  • the temperature and cycle conditions were heat denaturation at 98 ° C. for 1 minute, digested with BamHI and BglII (NEB) after 35 cycles of 98 ° C. for 15 seconds and 68 ° C.
  • FIG. 1 A targeting vector, a target sequence, and a chromosomal allele resulting from homologous recombination are shown in FIG.
  • PCR GeneAmp9600 manufactured by Perkin-Elmer was used as a thermal cycler, KOD FX (TOYOBO) was used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, dGTP, dTTP) were used according to the recommended conditions. .
  • the temperature and cycle conditions were such that after heat denaturation at 98 ° C for 1 minute, 35 cycles of 98 ° C for 15 seconds and 68 ° C for 9 minutes were performed.
  • Vmn1r-ps137 F 5'-TGAATTGGTCCCTCCTGCTCA-3 '(SEQ ID NO: 26)
  • Vmn1r-ps137 R 5'-CAGGCCATGAGACCCAGACA-3 '(SEQ ID NO: 27)
  • Mefv F 5'-TCCTCGGAGAATGGCTCCTG-3 '(SEQ ID NO: 28)
  • Mefv R 5'- GGCAGGTTGATGGGAACTGG-3 '(SEQ ID NO: 29)
  • Slx4 F 5'- AACCAGGGTCCCCATCCTGT-3 '(SEQ ID NO: 30)
  • Gm4106 F 5'-GTGTGGCCATGGCTGGAGTA-3 '(SEQ ID NO: 32)
  • Gm4106 R 5'- TGTTCCTCTGCTGCCACTCG-3 '(SEQ ID NO: 33
  • PCR uses Perkin-Elmer's GeneAmp9600 as thermal cycler
  • Taq polymerase uses Ampli Taq Gold (Applied Biosystems)
  • buffers and dNTPs dATP, dCTP, dGTP, dTTP
  • the temperature and cycle conditions were 95 ° C for 10 minutes after heat denaturation and 35 cycles of 94 ° C for 30 seconds, 60 ° C for 30 seconds, and 72 ° C for 30 seconds.
  • mouse artificial chromosome vector 16MAC1 was constructed by inserting a GFP-PGKneo-loxP-3'HPRT type loxP sequence as a DNA insertion sequence into mouse artificial chromosome 16MAC. For introduction into an hprt-deficient CHO cell line.
  • a targeting vector targeting the homologous sequence used for telomere truncation was constructed.
  • V913 (Lexicon genetics) was used as the basic plasmid for inserting the loxP sequence into DT40 (16MAC).
  • the DNA sequence of mouse chromosome 16 as the loxP insertion site was obtained from the GenBank database (NC — 0000822.6).
  • the sequences of the primers used for the amplification of two target sequences for homologous recombination are shown below, from which genomic DNA is extracted from the drug resistant clones and used as a template.
  • KpnI_m16 HAtLA F 5'-TCGAGGTACCGGGAGTAATTTTCAATCCTTGAGGCAGA-3 '(SEQ ID NO: 36)
  • XhoI_m16 HAtLA R 5'-TCGACTCGAGTGGCACTGACCCCTTAATTACGTACAGA-3 '(SEQ ID NO: 37)
  • SalI_m16 HAtRA F 5'-TCGAGTCGACAAAGATTTGCATCCTTGGCCATGACTC-3 '(SEQ ID NO: 38)
  • NotI_m16 HAtRA R 5'-TCGAGCGGCCGCCATCAGTGTACACCACAATCCCATCTGT-3 '(SEQ ID NO: 39)
  • PCR Genekin 9600 manufactured by Perkin-Elmer was used as a thermal cycler, KOD FX (TOYOBO) was used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, dGTP, dTTP) were used according to the recommended conditions. .
  • the temperature and cycle conditions were such that after heat denaturation at 98 ° C for 1 minute, 35 cycles of 98 ° C for 15 seconds and 68 ° C for 4 minutes were performed.
  • Each PCR product was digested with KpnI (NEB), XhoI (NEB), SalI (NEB) and NotI (NEB), separated by agarose gel and purified, and then cloned into the V913 KpnI / XhoI or SalI / NotI sites.
  • Vector name V913-m16HA
  • the loxP sequence oligo-synthesized at the XbaI site of V820 was cloned.
  • 3'HPRT-loxP which is the third to ninth exons of the HPRT gene, was cloned into EcoRI and AscI of V907 (Lexicon genetics) (vector name: X3.1). Furthermore, the PGKneo sequence excised with KpnI and NotI was cloned into the KpnI site and EcoRI site of X3.1 (vector name: X4.1). PGKneo-loxP-3'HPRT excised from K4.1 with KpnI and AscI was cloned into the KpnI site and AscI site of V913 (vector name: pVNLH). HS4-CAG-EGFP-HS4 (distributed by Osaka University, Dr.
  • FIG. 12 shows a targeting vector, a target sequence, and a chromosomal allele resulting from homologous recombination.
  • V913 (Lexicon genetics) was used as the basic plasmid for inserting the loxP sequence into DT40 (16MAC).
  • the DNA sequence of mouse chromosome 16 as the loxP insertion site was obtained from the GenBank database (NC — 0000822.6).
  • the sequences of the primers used for the amplification of two target sequences for homologous recombination are shown below, from which genomic DNA is extracted from the drug resistant clones and used as a template.
  • KpnI_m16 GmLA F 5'-TCGAGGTACCAAGAACAAGCTTCAGAACACAGCCAGAC-3 '(SEQ ID NO: 40)
  • XhoI_m16 GmLA R 5'-TCGACTCGAGAACTTGTCACACAGATCCTACTGGAGGTG-3 '(SEQ ID NO: 41)
  • SalI_m16 GmRA F 5'-TCGAGTCGACCCACAGACTGAAGCAATTGACCTCAAAAG-3 '(SEQ ID NO: 42)
  • PCR Genekin 9600 manufactured by Perkin-Elmer was used as a thermal cycler, KOD FX (TOYOBO) was used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, dGTP, dTTP) were used according to the recommended conditions. .
  • the temperature and cycle conditions were such that after heat denaturation at 98 ° C for 1 minute, 35 cycles of 98 ° C for 15 seconds and 68 ° C for 4 minutes were performed.
  • Each PCR product was digested with KpnI (NEB), XhoI (NEB), SalI (NEB) and NotI (NEB), separated by agarose gel and purified, and then cloned into the V913 KpnI / XhoI or SalI / NotI sites.
  • Vector name V913-m16Gm
  • the loxP sequence oligo-synthesized at the XbaI site of V820 was cloned.
  • 3'HPRT-loxP which is the third to ninth exons of the HPRT gene, was cloned into EcoRI and AscI of V907 (Lexicon genetics) (vector name: X3.1). Furthermore, the PGKneo sequence excised with KpnI and NotI was cloned into the KpnI site and EcoRI site of X3.1 (vector name: X4.1). PGKneo-loxP-3'HPRT excised from K4.1 with KpnI and AscI was cloned into the KpnI site and AscI site of V913 (vector name: pVNLH). HS4-CAG-EGFP-HS4 (distributed by Dr.
  • FIG. 13 shows a targeting vector, a target sequence, and a chromosomal allele resulting from homologous recombination.
  • 25 ⁇ g of the linearized targeting vector p10MAC1 was transferred to a cuvette (Bio-Rad) for electroporation and allowed to stand at room temperature for 10 minutes.
  • the cuvette was set on Gene Pulser (Bio-Rad), and voltage was applied under the conditions of 550 V and 25 ⁇ F.
  • the cells were cultured for 24 hours.
  • the medium was replaced with a medium containing G418 (1.5 mg / ml), dispensed into two 96-well culture plates, and selective culture was performed for about 2 weeks. Twelve resistant colonies obtained by one transfection of each of the p16HAMAC1 and p16GmMAC1 vectors were isolated and expanded, and the subsequent analysis was performed (clone names: DT40 (16MAC1HA and 16MAC1Gm)).
  • PCR Genekin 9600 manufactured by Perkin-Elmer was used as a thermal cycler, KOD FX (TOYOBO) was used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, dGTP, dTTP) were used according to the recommended conditions. .
  • the temperature and cycle conditions were such that after heat denaturation at 98 ° C for 1 minute, 35 cycles of 98 ° C for 15 seconds and 68 ° C for 7.5 minutes were performed.
  • PCR Genekin 9600 manufactured by Perkin-Elmer was used as a thermal cycler, KOD FX (TOYOBO) was used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, dGTP, dTTP) were used according to the recommended conditions. .
  • the temperature and cycle conditions were such that after heat denaturation at 98 ° C for 1 minute, 35 cycles of 98 ° C for 15 seconds and 68 ° C for 7.5 minutes were performed.
  • mouse artificial chromosome vectors 16MAC1HA and 16MAC1Gm-containing DT40 cells into 16MAC1HA and 16MAC1Gm into CHO cells
  • mouse artificial chromosome vectors 16MAC1HA and 16MAC1Gm into mouse ES cells via CHO cells, or mice within CHO cells
  • a target gene such as a CYP3A cluster, a human antibody gene, etc.
  • loxP which is the DNA sequence insertion site of the artificial chromosome vectors 16MAC1HA and 16MAC1Gm
  • PCR Genekin 9600 manufactured by Perkin-Elmer was used as a thermal cycler, KOD FX (TOYOBO) was used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, dGTP, dTTP) were used according to the recommended conditions. . Temperature and cycle conditions are: heat denaturation at 98 ° C. for 1 minute, followed by 35 cycles of 98 ° C. for 15 seconds and 68 ° C. for 7.5 minutes. The following analysis is performed on PCR positive clones.
  • Example 6 Stability evaluation of mouse artificial chromosome vector in mouse individuals By verifying the stability of 10MAC1, 10MAC1HA, 10MAC1Gm in mouse ES cells, and further producing progeny transmission mice into which each mouse artificial chromosome vector was introduced. , Verify the stability in individual tissues.
  • mouse artificial chromosome vectors 10MAC1, 16MAC1HA, 16MAC1Gm from mouse artificial chromosome vector-containing CHO cells to mouse ES cells Verification of stability of mouse artificial chromosome vectors 10MAC1, 16MAC1HA, 16MAC1Gm in mouse ES cells and mice
  • each mouse artificial chromosome 10MAC1, 16MAC1HA, 16MAC1Gm is introduced into mouse ES cells, and each mouse artificial chromosome vector 10MAC1, 16MAC1HA, 16MAC1Gm-containing chimeric mouse and offspring transmission mouse are prepared.
  • the culture solution was removed, and a cytochalasin B (10 ⁇ g / ml, sigma) solution that had been preliminarily kept at 37 ° C. was filled into a centrifuge flask, followed by centrifugation at 34 ° C., 8000 rpm for 1 hour.
  • the microcell was suspended in serum-free DMEM medium and purified with 8 ⁇ m, 5 ⁇ m, and 3 ⁇ m filters. After purification, it was centrifuged at 2000 rpm for 10 minutes and suspended in 5 ml of serum-free DMEM medium.
  • the microcell is suspended in 5 ml of serum-free DMEM medium and purified with 8 ⁇ m, 5 ⁇ m, and 3 ⁇ m filters. After purification, centrifuge at 2000 rpm for 10 minutes.
  • Donor cells include B6-ES, which is an ES cell of a C57B6 strain mouse, B6 (HPRT ⁇ ), an HPRT-deficient strain obtained by performing 6TG treatment on a B6-ES cell, and TT2F, an ES cell of a C57B6 ⁇ CBA strain F1 mouse, KO56 (HPRT ⁇ ), which is a HPRT-deficient strain in which TT2F cells are treated with 6TG, is used.
  • DMEM Dulbecco's Modified Eagle's Medium-high glucose: SIGMA
  • 10% FCS 10% FCS
  • LIF Meerin Leukemia Inhibitory Factor
  • 1 ⁇ 10 -5 M 2-ME L-glutamine
  • sodium pyruvate solution 3.5 g / ml: GIBCO
  • MEM Nonesential amino acid (0.125 mM: GIBCO)
  • 5% CO 2 37 ° C.
  • the cells were collected with a culture solution in which 10% FBS was added to DMEM medium, centrifuged at 1500 rpm, and the supernatant was removed. It is resuspended in 5 ml of serum-free medium, gently added to serum-free medium containing the pellet after microcell centrifugation, and further centrifuged at 1200 rpm. The supernatant was removed, and PEG1000 (Wako) solution [5 g of PEG1000 was completely dissolved in serum-free DMEM medium and 1 ml of dimethyl sulfoxide was added and sterilized by filtration] was fused with 0.5 ml for exactly 1 minute and 30 seconds. .
  • DMEM serum free medium
  • G418 is added to 250 ⁇ g / ml, and selective culture is performed for 3 to 4 weeks (clone names: B6-ES (10MAC1, 16MAC1HA, 16MAC1Gm) and B6 (HPRT ⁇ ; 10MAC1, 16MAC1HA, 16MAC1Gm) and TT2F (10MAC1, 16MAC1HA) , 16MAC1Gm) and KO56 (HPRT ⁇ ; 10MAC1, 16MAC1HA, 16MAC1Gm)).
  • B6-ES 10MAC1, 16MAC1HA, 16MAC1Gm
  • B6 HPRT ⁇ ; 10MAC1, 16MAC1HA, 16MAC1Gm
  • TT2F 10MAC1, 16MAC1HA
  • 16MAC1Gm KO56
  • PCR GeneAmp9600 manufactured by Perkin-Elmer was used as a thermal cycler, KOD FX (TOYOBO) was used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, dGTP, dTTP) were used according to the recommended conditions. .
  • the temperature and cycle conditions were such that after heat denaturation at 98 ° C for 1 minute, 35 cycles of 98 ° C for 15 seconds, 68 ° C for 8 minutes and 2.5 minutes were performed. The subsequent analysis is performed on the PCR positive 9 clones obtained as a result.
  • PCR Genekin 9600 manufactured by Perkin-Elmer was used as a thermal cycler, KOD FX (TOYOBO) was used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, dGTP, dTTP) were used according to the recommended conditions. . Temperature and cycle conditions are: heat denaturation at 98 ° C. for 1 minute, followed by 35 cycles of 98 ° C. for 15 seconds and 68 ° C. for 7.5 minutes. The following analysis is performed on PCR positive clones.
  • mouse artificial chromosome vectors 10MAC1, 16MAC1HA, 16MAC1Gm could be introduced into mouse ES cells.
  • 9 TT2F-ES (10MAC1) PCR positive clones it was confirmed that 2 clones were clones of normal karyotype with high MAC1 retention (FIG. 15).
  • mice artificial chromosome vectors 10MAC1, 16MAC1HA, 16MAC1Gm in mouse ES cells
  • the mouse ES clones obtained above for example, KO56 (10MAC1) and TT2F (10MAC1) can be obtained in Example 6 [A] above) 0
  • the proportion of 10MAC1-retaining cells is measured by FISH analysis after long-term culture in non-selective culture of ⁇ 100 PDL.
  • Embryos injected with 10MAC1-retaining ES clone TT2F (10MAC1) were transplanted into temporary parents.
  • the chimera rate of the chimeric mice born was determined by hair color (a dark brown part was recognized in the hair color). This confirmed that the ES cell lines (KO56 and TT2F) carrying the mouse artificial chromosome vector 10MAC1 have the ability to form chimeras, that is, the ability to differentiate into normal tissues of mouse individuals.
  • FISH Fluorescence in situ hybridization
  • Example 7 Production of human antibody-producing (IGHK-NAC) mice and rats using a novel mouse artificial chromosome vector From the functional evaluation of 10MAC1, 16MAC1HA, and 16MAC1Gm mouse artificial chromosome vectors, the vectors to be used were selected (selected) A mouse artificial chromosome is referred to as “NAC”) and human antibody genes (IGH, IGK) are mounted, and human antibody-producing mice and rats are produced (FIG. 17). 10MAC1 was selected and the following experiment was conducted as NAC.
  • NAC mouse artificial chromosome
  • the modified human chromosome 2 is introduced from the modified human chromosome 2 retaining CHO cell into the NAC retaining CHO cell.
  • Modified human chromosome 2 CHO cells (CHO hChr2LF), which are donor cells, were cultured in a cell culture dish and became confluent. At that time, the medium was replaced with F12 medium supplemented with 20% FBS and 0.1 ⁇ g / ml colcemid. After 48 hours of culture, the medium was replaced with F12 medium supplemented with 20% FBS and 0.1 ⁇ g / ml colcemid. Incubate to form microcells.
  • cytochalasin B (10 ⁇ g / ml, sigma) solution previously kept at 37 ° C. is filled into a centrifuge flask, followed by centrifugation at 34 ° C., 8000 rpm for 1 hour.
  • Micronuclei also referred to as “microcell” are suspended in serum-free DMEM medium and purified with 8 ⁇ m, 5 ⁇ m, and 3 ⁇ m filters.
  • the microcell was suspended in 2 mL of 0.05 mg / ml PHA-P (Sigma) solution prepared with DMEM, and the NAC-retaining Hprt-deficient CHO cell line, which was confluent in a 6 cm cell culture dish, was added to the culture solution. Is added after removal. Incubate for 15 minutes to attach micronuclei to CHO cells. Thereafter, the PEG1000 (Wako) solution [5 g of PEG1000 is completely dissolved in 6 mL of serum-free DMEM medium, and 1 ml of dimethylsulfoxide is added and sterilized by filtration] is fused exactly 1 minute with 1 ml.
  • PHA-P Sigma
  • Modified human chromosome 2 loxP sequence confirmation primer cos138 sp L: 5'-CTGAGAAGAGTCATTGTTTATGGTAGACT-3 '(SEQ ID NO: 46) cos138 sp R: 5'- ATCCCCATGTGTATCACTGGCAAACTGT-3 '(SEQ ID NO: 47) x6.1cosRa L: 5'-GGGGAATAAACACCCTTTCCAAATCCTC-3 '(SEQ ID NO: 48) x6.1cosRa R: 5'-ACCAAGTAACCGATCAAACCAACCCTTG-3 '(SEQ ID NO: 49)
  • cos138 sp L and cos138 sp R primers As for cos138 sp L and cos138 sp R primers, Accuprime Taq DNA polymerase (Thermo Fisher Scientific) is used, and the attached buffer and dNTPs (dATP, dCTP, DGTP, dTTP) are recommended.
  • the temperature and cycle conditions are 94 ° C for 2 minutes, followed by 35 cycles of 94 ° C for 15 seconds, 60 ° C for 15 seconds, and 68 ° C for 5 minutes.
  • KOD FX TOYOBO
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • the temperature and cycle conditions were 98 ° C for 1 minute after heat denaturation, followed by 30 cycles of 98 ° C for 15 seconds and 68 ° C for 12 minutes.
  • KOD FX (TOYOBO) is used, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions. Temperature and cycle conditions are: heat denaturation at 98 ° C. for 1 minute, then 35 cycles of 98 ° C. for 15 seconds and 68 ° C. for 5 minutes.
  • D2S177 F 5'-AGCTCAGAGACACCTCTCCA-3 '(SEQ ID NO: 54)
  • FABP1-F 5'-TATCAAGGGGGTGTCGGAAATCGTG-3 '(SEQ ID NO: 56)
  • EIF2AK3-F 5'-AGGTGCTGCTGGGTGGTCAAGT-3 '(SEQ ID NO: 58)
  • RPIA-F 5'-CTTACCCAGGCTCCAGGCTCTATT-3 '(SEQ ID NO: 59)
  • Temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation, and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds, 72 ° C for 1 minute are performed.
  • the following analysis was performed on clones that were PCR positive. As a result, a clone was obtained in which the modified human chromosome 2 and NAC (new artificial chromosome vector) were maintained.
  • LA taq (Takara) is used, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions.
  • the temperature and cycle conditions are such that after heat denaturation at 98 ° C for 1 minute, 30 cycles of 94 ° C for 10 seconds, 60 ° C for 30 seconds and 72 ° C for 3 minutes are performed.
  • PCR is performed to check whether the human chromosome 2 region and the FRT sequence are maintained. Primers are shown below.
  • Human chromosome 2 region confirmation primer D2S177 F (Previous) D2S177 R (Previous) FABP1-F (above) FABP1-R (supra) EIF2AK3-F (supra) EIF2AK3-R (supra) RPIA-F (supra) RPIA-R (supra) IGKC-F (supra) IGKC-R (supra) IGKV-F (above) IGKV-R (supra) Vk3-2 F (Previous) Vk3-2 R (supra) D2S159_1 F (Previous) D2S159_1 R (Previous) Taq polymerase uses Ampli Taq Gold (Applied Biosystems), and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions. Temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation, and 35 cycles of 95 ° C for 30 seconds, 60
  • FRT sequence confirmation primer on human chromosome 2 kD9 tcLa L (above) kD9 tcLa R (above) kD9 tcRa L (above) kD9 tcRa R (above)
  • KOD FX TOYOBO
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • Temperature and cycle conditions are: heat denaturation at 98 ° C. for 1 minute, then 35 cycles of 98 ° C. for 15 seconds and 68 ° C. for 5 minutes. The following analysis is performed for PCR positive clones.
  • Micronuclei also referred to as “microcell” are suspended in serum-free DMEM medium and purified with 8 ⁇ m, 5 ⁇ m, and 3 ⁇ m filters. After purification, the microcell was suspended in 2 mL of 0.05 mg / ml PHA-P (Sigma) solution prepared in DMEM, and CHO hprt-/-14FRT, a recipient confluent in a 6 cm cell culture dish, was added to the culture solution. Add after removal. Incubate for 15 minutes to attach micronuclei to CHO cells.
  • the PEG1000 (Wako) solution [5 g of PEG1000 is completely dissolved in 6 mL of serum-free DMEM medium, and 1 ml of dimethylsulfoxide is added and sterilized by filtration] is fused exactly 1 minute with 1 ml. After 4 washes to remove PEG with 5 mL serum-free DMEM, add CHO broth. 24 hours later, cells are seeded on 10 10 cm cell culture dishes, 600 ⁇ g / mL G418 and 6 ⁇ g / mL Blasticidin are added, and selective culture is performed for 10 days. The subsequent analysis is performed on the obtained drug resistant strain.
  • IGK-NAC confirmation primer KJneo (Previous) PGKr-2 (above)
  • LA taq Takara
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • the temperature and cycle conditions are such that after heat denaturation at 98 ° C for 1 minute, 30 cycles of 94 ° C for 10 seconds, 60 ° C for 30 seconds and 72 ° C for 3 minutes are performed.
  • FRT insertion site confirmation primer on IGK-NAC kD9 tcLa L (above) kD9 tcLa R (above) kD9 tcRa L (above) kD9 tcRa R (above)
  • KOD FX TOYOBO
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • Temperature and cycle conditions are: heat denaturation at 98 ° C. for 1 minute, then 35 cycles of 98 ° C. for 15 seconds and 68 ° C. for 5 minutes.
  • Human chromosome 2 region confirmation primer D2S177 F (Previous) D2S177 R (Previous) EIF2AK3-F (supra) EIF2AK3-R (supra) RPIA-F (supra) RPIA-R (supra) IGKC-F (supra) IGKC-R (supra) IGKV-F (above) IGKV-R (supra) Vk3-2 F (Previous) Vk3-2 R (supra) Taq polymerase uses Ampli Taq Gold (Applied Biosystems), and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions. Temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation, and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds, 72 ° C for 1 minute are performed.
  • KOD FX TOYOBO
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • the temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds or 56 ° C for 30 seconds, 72 ° C for 1 minute.
  • PCR positive clones were used for further analysis.
  • the culture medium is changed. After 24 hours, 10 cm cell culture dishes are seeded, and drug selection is performed with 1 ⁇ HAT, 6 ⁇ g / mL Blasticidin. The subsequent analysis is performed on the obtained HAT resistant clones.
  • Human chromosome 2 region confirmation primer D2S177 F (Previous) D2S177 R (Previous) EIF2AK3-F (supra) EIF2AK3-R (supra) RPIA-F (supra) RPIA-R (supra) IGKC-F (supra) IGKC-R (supra) IGKV-F (above) IGKV-R (supra) Vk3-2 F (Previous) Vk3-2 R (supra) Taq polymerase uses Ampli Taq Gold (Applied Biosystems), and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions. Temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation, and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds, 72 ° C for 1 minute are performed.
  • Human chromosome 14 region confirmation primer MTA1-F3 (above) MTA1-R3 (above) ELK2P2-F (supra) ELK2P2-R (supra) g1 (g2) -F (above) g1 (g2) -R (above) VH3-F (above) VH3-R (above) CH3F3 (Previous) CH4R2 (Previous)
  • Taq polymerase uses Ampli Taq Gold (Applied Biosystems), and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions.
  • the temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds or 56 ° C for 30 seconds, 72 ° C for 1 minute.
  • the following analysis is performed on PCR positive clones.
  • a cell line retaining only IGHK-NAC is prepared by chromosome transfer.
  • Donor cells CHO IGHK-NAC were cultured in a cell culture dish.
  • the CHO IGHK-NAC was replaced with F12 medium supplemented with 20% FBS and 0.1 ⁇ g / ml colcemid.
  • 20% FBS After further culturing for 48 hours, 20% FBS, The medium is replaced with F12 medium supplemented with 0.1 ⁇ g / ml colcemid, and further incubated overnight to form microcells.
  • cytochalasin B (10 ⁇ g / ml, sigma) solution that had been preliminarily kept at 37 ° C. was filled into a centrifuge flask, followed by centrifugation at 34 ° C., 8000 rpm for 1 hour.
  • Micronuclei also referred to as “microcell” are suspended in serum-free DMEM medium and purified with 8 ⁇ m, 5 ⁇ m, and 3 ⁇ m filters.
  • the microcell was suspended in 2 mL of 0.05 mg / ml PHA-P (Sigma) solution prepared in DMEM, and the culture solution was removed from the recipient CHO K1 cell line that became confluent in a 6 cm cell culture dish. Add after. Incubate for 15 minutes to attach micronuclei to CHO cells. Thereafter, the PEG1000 (Wako) solution [5 g of PEG1000 is completely dissolved in 6 mL of serum-free DMEM medium, and 1 ml of dimethylsulfoxide is added and sterilized by filtration] is fused exactly 1 minute with 1 ml. After 4 washes to remove PEG with 5 mL serum-free DMEM, add CHO broth.
  • PHA-P Sigma
  • Human chromosome 2 region confirmation primer EIF2AK3-F (supra) EIF2AK3-R (supra) RPIA-F (supra) RPIA-R (supra) IGKC-F (supra) IGKC-R (supra) IGKV-F (above) IGKV-R (supra) Vk3-2 F (Previous) Vk3-2 R (supra) Taq polymerase uses Ampli Taq Gold (Applied Biosystems), and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions. Temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation, and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds, 72 ° C for 1 minute are performed.
  • Human chromosome 14 region confirmation primer MTA1-F3 (above) MTA1-R3 (above) ELK2P2-F (supra) ELK2P2-R (supra) g1 (g2) -F (above) g1 (g2) -R (above) VH3-F (above) VH3-R (above) CH3F3 (Previous) CH4R2 (Previous)
  • Taq polymerase uses Ampli Taq Gold (Applied Biosystems), and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions.
  • the temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds or 56 ° C for 30 seconds, 72 ° C for 1 minute.
  • the following analysis is performed for clones that suggest that only IGHK-NAC is retained from the PCR results.
  • IGHK-NAC Transfer of IGHK-NAC to mouse ES cells
  • IGHK-NAC is transferred to mouse ES cells and injected into the 8-cell stage of fertilized eggs to produce chimeric mice, and IGHK -It is necessary to transmit NAC to offspring.
  • Mouse ES cells retaining IGHK-NAC are prepared.
  • Donor cells use CHO K1 IGHK-NAC.
  • Donor cells were cultured in a cell culture dish. When confluent, the donor cells were replaced with F12 medium supplemented with 20% FBS and 0.1 ⁇ g / ml colcemid. After further culturing for 48 hours, 20% FBS and 0.1 ⁇ g / ml colcemid were replaced. The medium is changed with the F12 medium supplemented with, and further incubated overnight to form microcells. The culture solution is removed, and a cytochalasin B (10 ⁇ g / ml, sigma) solution previously kept at 37 ° C.
  • Micronuclei also referred to as “microcell” are suspended in serum-free DMEM medium and purified with 8 ⁇ m, 5 ⁇ m, and 3 ⁇ m filters. After purification, it was centrifuged at 2000 rpm for 10 minutes. Centrifuge at 2000 rpm for 10 minutes and suspend in 5 ml of serum-free DMEM medium. Furthermore, it centrifuged at 2000 rpm for 10 minutes.
  • recipient cells mouse ES cells HKD31 6TG-9 (mouse Igh and Igk genes are disrupted; described in International Publication No.
  • DMEM Dulbecco's Modified Eagle's Medium-high glucose: SIGMA
  • 10% FCS 10% FCS
  • LIF Manine Leukemia Inhibitory Factor
  • 1 ⁇ 10 -5 M 2-ME L-glutamine
  • GIBCO L-glutamine
  • sodium pyruvate solution 3.5 g / ml: GIBCO
  • MEM non-essential amino acid 0.125 mM: GIBCO
  • PEG1000 (Wako) solution [5 g of PEG1000 is completely dissolved in serum-free DMEM medium, and 1 ml of dimethyl sulfoxide is added and sterilized by filtration] is fused with 0.5 ml for exactly 1 minute and 30 seconds. . 13 ml of serum-free medium (DMEM) was gently added and centrifuged at 1200 rpm. Supernatant was removed, normal mouse ES cell culture medium was added, mitomycin-treated G418-resistant mouse embryonic fibroblasts were used as feeder cells, seeded in two 10 cm diameter cell culture dishes, and incubated overnight To do. G418 is added to 250 ⁇ g / mL, and selective culture is performed for 3 to 4 weeks. The following analysis is performed on drug-resistant and EGFP-positive strains.
  • Human chromosome 2 region confirmation primer EIF2AK3-F (supra) EIF2AK3-R (supra) RPIA-F (supra) RPIA-R (supra) IGKC-F (supra) IGKC-R (supra) IGKV-F (above) IGKV-R (supra) Vk3-2 F (Previous) Vk3-2 R (supra) Taq polymerase uses Ampli Taq Gold (Applied Biosystems), and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions. Temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation, and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds, 72 ° C for 1 minute are performed.
  • Human chromosome 14 region confirmation primer MTA1-F3 (above) MTA1-R3 (above) ELK2P2-F (supra) ELK2P2-R (supra) g1 (g2) -F (above) g1 (g2) -R (above) VH3-F (above) VH3-R (above) CH3F3 (Previous) CH4R2 (Previous)
  • Taq polymerase uses Ampli Taq Gold (Applied Biosystems), and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions.
  • the temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds or 56 ° C for 30 seconds, 72 ° C for 1 minute.
  • the following analysis is performed on the clones that suggest that IGHK-NAC is retained from the PCR results.
  • FISH analysis is performed using Human cot-1 DNA and Mouse cot-1 DNA as probes to confirm that IGHK-NAC is independently maintained and that the karyotype of the host is normal. Clones with the expected results are used for the production of chimeric mice.
  • FIG. 1 Micronucleus cell fusion and isolation of drug-resistant clones CHO K1 IGHK-NAC was used as a donor. As described in 1, the introduction of IGHK-NAC into rat ES cells is carried out using the same technique as the micronucleus cell fusion method to mouse ES cells. After the fusion, incubate overnight, add G418 to 150 ⁇ g / mL, and selectively culture for 3 to 4 weeks. Strains showing drug resistance and GFP positivity are selected for subsequent analysis.
  • Human chromosome 2 region confirmation primer EIF2AK3-F (supra) EIF2AK3-R (supra) RPIA-F (supra) RPIA-R (supra) IGKC-F (supra) IGKC-R (supra) IGKV-F (above) IGKV-R (supra) Vk3-2 F (Previous) Vk3-2 R (supra) Taq polymerase uses Ampli Taq Gold (Applied Biosystems), and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions. Temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation, and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds, 72 ° C for 1 minute are performed.
  • Human chromosome 14 region confirmation primer MTA1-F3 (above) MTA1-R3 (above) ELK2P2-F (supra) ELK2P2-R (supra) g1 (g2) -F (above) g1 (g2) -R (above) VH3-F (above) VH3-R (above) CH3F3 (Previous) CH4R2 (Previous)
  • Taq polymerase uses Ampli Taq Gold (Applied Biosystems), and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions.
  • the temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds or 56 ° C for 30 seconds, 72 ° C for 1 minute.
  • the following analysis is performed on the clones that suggest that IGHK-NAC is retained from the PCR results.
  • IGHK-NAC retention analysis of chimera mice Tail was obtained from chimera mice more than 3 weeks after birth according to the method described in Motoya Katsuki, Developmental Engineering Experiment Manual, Kodansha Scientific, 1987), and Puregene DNA Genomic DNA is extracted using an Isolation Kit (Qiagen). G. PCR analysis is performed using the primers and PCR conditions described in 2, and IGHK-NAC retention is confirmed. Furthermore, after collecting blood from a chimeric mouse, the cells were fixed to prepare a specimen, and FISH analysis was performed using Human cot-1 and Mouse minor satellite DNA as probes, thereby confirming cells retaining IGHK-NAC at the chromosome level. To do.
  • IGHK-NAC functional expression of the IGM gene on IGHK-NAC
  • Blood is collected from the chimeric mouse, and mouse B cells are detected by a flow cytometer using antibody staining against mouse CD45R (B220).
  • the functional expression of IGHK-NAC-derived IGM can be confirmed by analyzing whether CD45R and GFP co-positive cells exist.
  • Blood cells are stained using antibodies against human IGM and mouse CD45R (B220) to confirm human IGM, CD45R, and GFP positive cells.
  • Peripheral blood is collected, transferred to a tube containing heparin PBS, mixed by inversion and ice-cooled.
  • a hemolytic agent (0.17 M NH 4 Cl) at room temperature is added to the pellet, and the mixture is allowed to stand for 5 minutes.
  • the sample is centrifuged at 2000 rpm for 3 minutes at 4 ° C., washed with 5% FBS / PBS and then suspended in 500 ⁇ l of 5% FBS / PBS, and analyzed with a flow cytometer.
  • the sample and incubate After washing the plate, add the sample and incubate for 30 minutes or more After washing the plate, add diluted enzyme-labeled anti-human and mouse immunoglobulin antibodies and incubate for 1 hour or more, then wash the plate and add substrate solution to develop color
  • the biotin-labeled antibody is used in the same procedure, and after washing the plate, the avidin-enzyme complex is added thereto, incubated, washed, and the substrate solution is added.
  • Measure absorbance with a microplate reader For the measurement of serum concentration, the standard can be serially diluted, ELISA is performed simultaneously with the sample, and the concentration can be identified by drawing a calibration curve and analyzing.
  • Example 8 Production of human antibody producing (IGHL-NAC) mouse and rat using novel mouse artificial chromosome vector IGHL-NAC was constructed by loading human antibody genes (IGH, IGL) into NAC, and IGHL- Human antibody-producing mice and rats that retain NAC are prepared (FIG. 21).
  • Modified human chromosome 22 CHO cells (CHO hChr22LF) as donor cells were cultured in a cell culture dish and became confluent. At the time point, the medium was replaced with F12 medium supplemented with 20% FBS and 0.1 ⁇ g / ml colcemid, and the medium was replaced with F12 medium supplemented with 20% FBS and 0.1 ⁇ g / ml colcemid after 48 hours. Incubate to form microcells.
  • cytochalasin B (10 ⁇ g / ml, sigma) solution previously kept at 37 ° C. is filled into a centrifuge flask, followed by centrifugation at 34 ° C., 8000 rpm for 1 hour.
  • Micronuclei also referred to as “microcell” are suspended in serum-free DMEM medium and purified with 8 ⁇ m, 5 ⁇ m, and 3 ⁇ m filters.
  • the microcell was suspended in 2 mL of 0.05 mg / ml PHA-P (Sigma) solution prepared with DMEM, and the NAC-retaining Hprt-deficient CHO cell line, which was confluent in a 6 cm cell culture dish, was added to the culture solution. Is added after removal. Incubate for 15 minutes to attach micronuclei to CHO cells. Thereafter, the PEG1000 (Wako) solution [5 g of PEG1000 is completely dissolved in 6 mL of serum-free DMEM medium, and 1 ml of dimethylsulfoxide is added and sterilized by filtration] is fused exactly 1 minute with 1 ml.
  • PHA-P Sigma
  • TP600 manufactured by Takara is used as a thermal cycler
  • KOD FX (TOYOBO) is used as a PCR enzyme
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • a primer on human chromosome 2 is used to check whether the region is retained.
  • the primer sequences are shown below.
  • 553P-F 5'-AGATCTCTTGAGCCCAGCAGTTTGA-3 '(SEQ ID NO: 95)
  • 553P-R 5'-TGAAGTTAGCCGGGGATACAGACG-3 '(SEQ ID NO: 96)
  • PPM1F L 5'-AACGGCAGCCAAACCAAAGA-3 '(SEQ ID NO: 97)
  • PPM1F R 5'-ACCAGGACTGGCTGGGCATA-3 '(SEQ ID NO: 98) IGLVI-70 L: 5'-AGTCTGCGCTGACCCAGGAA-3 '(SEQ ID NO: 99) IGLVI-70 R: 5'-TTGAGCCAGAGAAGCGGTCA-3 '(SEQ ID NO: 100)
  • GNAZ L 5'-TCCACTTGGGGGTCTGCATT-3 '(SEQ ID NO: 101)
  • the temperature and cycle conditions were 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 63, 62, 60, 56, 55, and 50 ° C for 30 seconds and 72 ° C for 1 minute.
  • the following analysis is performed for PCR positive clones.
  • a Cre expression plasmid (vector name: pBS185) is obtained from the manufacturer using Lipofectamine 2000 (Thermo Fisher Scientific). Add by referring to the procedure. When 6 hours have elapsed after the addition, the culture medium is changed, and 24 hours later, 10 cm cell culture dishes are seeded, and drug selection is performed with 1 ⁇ HAT (Sigma) and 4 ⁇ g / mL Blasticidin. The obtained drug resistant strain is used for the subsequent analysis.
  • Micronuclei also referred to as “microcell” are suspended in serum-free DMEM medium and purified with 8 ⁇ m, 5 ⁇ m, and 3 ⁇ m filters. After purification, the microcell was suspended in 2 mL of 0.05 mg / ml PHA-P (Sigma) solution prepared with DMEM, and CHO hprt ⁇ / ⁇ 14 FRT (PCT / JP2017 / 039441), added after removing the culture medium. Incubate for 15 minutes to attach micronuclei to CHO cells.
  • the PEG1000 (Wako) solution [5 g of PEG1000 is completely dissolved in 6 mL of serum-free DMEM medium, and 1 ml of dimethylsulfoxide is added and sterilized by filtration] is fused exactly 1 minute with 1 ml. After 4 washes to remove PEG with 5 mL serum-free DMEM, add CHO broth. After 24 hours, the cells are seeded on 10 10 cm cell culture dishes, 600 ⁇ g / mL G418 and 6 ⁇ g / mL Blasticidin are added, and selective culture is performed for 10 days. The subsequent analysis is performed on the obtained drug resistant strain.
  • IGL-NAC confirmation primer KJneo (Previous) PGKr-2 (above)
  • LA taq Takara
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • the temperature and cycle conditions are such that after heat denaturation at 98 ° C for 1 minute, 30 cycles of 94 ° C for 10 seconds, 60 ° C for 30 seconds and 72 ° C for 3 minutes are performed.
  • Confirmation primer for human chromosome 14 region MTA1-F3 (above) MTA1-R3 (above) ELK2P2-F (supra) ELK2P2-R (supra) g1 (g2) -F (above) g1 (g2) -R (above) VH3-F (above) VH3-R (above) CH3F3 (Previous) CH4R2 (Previous)
  • Taq polymerase uses Ampli Taq Gold (Applied Biosystems), and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions.
  • the temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds or 56 ° C for 30 seconds, 72 ° C for 1 minute.
  • Primer for confirmation of FRT insertion site on modified human chromosome 14 14TarC_La F (above) 14TarC_La R (above) 14TarC_Ra F (Previous) 14TarC_Ra R (above)
  • KOD FX TOYOBO
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • the temperature and cycle conditions are 98 ° C. for 1 minute after heat denaturation, and 35 cycles of 98 ° C. for 15 seconds and 68 ° C. for 6 minutes are performed. Based on this result, clones are selected and the subsequent experiments proceed.
  • [D. 1] Obtaining a HAT-resistant chromosomal recombinant by FLP expression Using the FRT site on IGL-NAC and the FRT site on the modified human chromosome 14, reciprocal translocation occurs in the presence of FLPo recombinase. In addition, when recombination occurs, 5′HPRT and 3′HPRT are linked on IGHL-NAC to cause rearrangement of the HPRT gene and acquire HAT resistance.
  • CHO # 14 IGL-NAC when confluent in a 10 cm cell culture dish, add 18 ⁇ g of FLP expression plasmid using Lipofectamine 2000 (Thermo Fisher Scientific) with reference to the manufacturer's procedure.
  • the culture medium is changed. After 24 hours, 10 cm cell culture dishes are seeded, and drug selection is performed with 1 ⁇ HAT, 8 ⁇ g / mL Blasticidin. The obtained HAT resistant clone is used for the subsequent analysis.
  • Confirmation primer for human chromosome 14 region MTA1-F3 (above) MTA1-R3 (above) ELK2P2-F (supra) ELK2P2-R (supra) g1 (g2) -F (above) g1 (g2) -R (above) VH3-F (above) VH3-R (above) CH3F3 (Previous) CH4R2 (Previous)
  • Taq polymerase uses Ampli Taq Gold (Applied Biosystems), and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions.
  • the temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds or 56 ° C for 30 seconds, 72 ° C for 1 minute. Clones are selected based on the PCR results and used in subsequent experiments.
  • [D. 3] two-color FISH analysis Two-color using a combination of BAC clones CH17-424L4 (IGL region), CH17-262H11 (IGH region) and CH17-95F2 (IGL region) and CH17-212P11 (IGH region) as probes Perform FISH analysis and analyze in detail whether IGHL-NAC is actually constructed. On each NAC, a signal indicating the presence of the IGL region and the IGH region was observed as positive, confirming that IGHL-NAC was constructed (named CHO IGHL-NAC), selecting clones, and so on Perform the experiment.
  • Micronuclei also referred to as “microcell” are suspended in serum-free DMEM medium and purified with 8 ⁇ m, 5 ⁇ m, and 3 ⁇ m filters. After purification, the microcell was suspended in 2 mL of 0.05 mg / ml PHA-P (Sigma) solution prepared in DMEM, and the culture solution was removed from the recipient CHO K1 cell line that became confluent in a 6 cm cell culture dish. Add after. Incubate for 15 minutes to attach micronuclei to CHO cells.
  • the PEG1000 (Wako) solution [5 g of PEG1000 is completely dissolved in 6 mL of serum-free DMEM medium, and 1 ml of dimethylsulfoxide is added and sterilized by filtration] is fused exactly 1 minute with 1 ml. After 4 washes to remove PEG with 5 mL serum-free DMEM, add CHO broth. After 24 hours, cells are seeded on 10 10 cm cell culture dishes, 800 ⁇ g / mL G418 is added, and selective culture is performed for 10 days. The subsequent analysis is performed on the obtained drug-resistant strain.
  • Confirmation primer for human chromosome 14 region MTA1-F3 (above) MTA1-R3 (above) ELK2P2-F (supra) ELK2P2-R (supra) g1 (g2) -F (above) g1 (g2) -R (above) VH3-F (above) VH3-R (above) CH3F3 (Previous) CH4R2 (Previous)
  • Taq polymerase uses Ampli Taq Gold (Applied Biosystems), and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions.
  • the temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds or 56 ° C for 30 seconds, 72 ° C for 1 minute.
  • the subsequent analysis is performed on the PCR analysis positive cell line.
  • two-color FISH analysis FISH analysis is performed using Human cot-1 DNA and Mouse cot-1 DNA as probes to confirm that one copy of IGHL-NAC is retained independently. Furthermore, two-color FISH analysis was performed using a combination of BAC clones CH17-424L4 (IGL region) and CH17-262H11 (IGH region) and CH17-95F2 (IGL region) and CH17-212P11 (IGH region) as probes, The structure of IGHL-NAC is analyzed in detail. Those in which signals indicating the presence of the IGL region and the IGH region are observed on NAC, respectively, are positive (named as CHO K1 IGHL-NAC) and used in the subsequent experiments.
  • IGHL-NAC Transfer of IGHL-NAC to mouse ES cells
  • IGHL-NAC is transferred to mouse ES cells and injected into the 8-cell stage of fertilized eggs to produce chimeric mice, and IGHL -It is necessary to transmit NAC to offspring.
  • Confirmation primer for human chromosome 14 region MTA1-F3 (above) MTA1-R3 (above) ELK2P2-F (supra) ELK2P2-R (supra) g1 (g2) -F (above) g1 (g2) -R (above) VH3-F (above) VH3-R (above) CH3F3 (Previous) CH4R2 (Previous)
  • Taq polymerase uses Ampli Taq Gold (Applied Biosystems), and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions.
  • the temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds or 56 ° C for 30 seconds, 72 ° C for 1 minute.
  • the subsequent analysis is performed on the PCR analysis positive cell line.
  • Example 7 Micronucleus cell fusion and isolation of drug resistant clones
  • Example 7 [F. 1], IGHL-NAC is introduced into rat ES cells using a technique similar to the micronucleus cell fusion method to mouse ES cells. Donor cells use CHO K1 IGHL-NAC. After the fusion, incubate overnight, add G418 to 150 ⁇ g / mL, and selectively culture for 3 to 4 weeks. Results GFP positive and drug resistant clones are used for further analysis.
  • Human chromosome 14 region confirmation primer MTA1-F3 (above) MTA1-R3 (above) ELK2P2-F (supra) ELK2P2-R (supra) g1 (g2) -F (above) g1 (g2) -R (above) VH3-F (above) VH3-R (above) CH3F3 (Previous) CH4R2 (Previous)
  • Taq polymerase uses Ampli Taq Gold (Applied Biosystems), and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions.
  • the temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds or 56 ° C for 30 seconds, 72 ° C for 1 minute.
  • the subsequent analysis is performed on the PCR analysis positive cell line.
  • Example 9 Production of fully human antibody-producing mouse Mouse having IGHK-NAC and IGHL-NAC, mouse Igh and Igk genes are disrupted and have an Igl mutation (mutation that lowers the expression of Igl) Mice) are bred to produce human antibody-producing mice.
  • mice that lack or low-express mouse antibody genes are prepared.
  • [A. 1] Generation of Igh and Igk gene-deficient, Igl low-expressing mice Mouse strain obtained from HKD31 (mouse Igh, Igk gene disruption disrupted) mouse ES, and CD-1 having a mouse Igl low-expressing mutation (ICR, purchased from Charles River) are bred to produce Igh and Igk gene-deficient, Igl low-expressing mice. Mouse Iglc mutation from CD-1 is confirmed by PCR-RFLP analysis.
  • PCR is performed using the following primers: mIglc1VnC L: 5'-CCTCAGGTTGGGCAGGAAGA-3 '(SEQ ID NO: 119) J3C1: 5'-GACCTAGGAACAGTCAGCACGGG-3 '(SEQ ID NO: 120)
  • Taq polymerase uses Ampli Taq Gold (Applied Biosystems), and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions. Temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation, and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds, 72 ° C for 1 minute are performed.
  • a PCR product is treated with KpnI-HF (NEB), and after electrophoresis, a product in which no cleavage of the PCR product is observed is determined to be a mutant allele.
  • Mice with Ig ⁇ mutations found in both alleles are obtained by crossing.
  • Example 7 [H. 3], the Igh gene is destroyed, and when the expression of Ig ⁇ is lost, B cells cannot be formed. By determining the presence or absence of B cells, the Igh gene deficiency can be evaluated.
  • the FCM analysis is performed in the same manner as in the previous report (Proc Natl Acad Sci USA A. 2000 Jan 18; 97 (2): 722-7.), And individuals with B cell deletion are determined to be mouse Igh deficient.
  • mice that are considered to have destroyed mouse Igh and Ig ⁇ (referred to as HKD strains) and Ig ⁇ mutant mice are crossed, and mice that have Igh and Ig ⁇ disrupted and have Ig ⁇ mutations in both alleles (referred to as HKLD strains) .)
  • the obtained mice were also subjected to ELISA in the same manner as in previous reports (Proc Natl Acad Sci USA 2000 Jan 18; 97 (2): 722-7). And confirm that the expression disappeared and the expression was low.
  • Example 7 [H. 4] including mouse antibody (m ⁇ , m ⁇ , m ⁇ , m ⁇ ), human antibody (h ⁇ , h ⁇ , h ⁇ , h ⁇ , h ⁇ 1, h ⁇ 2, h ⁇ 3, h ⁇ 4, h ⁇ , including confirmation of the presence or absence of mouse antibody expression. , H ⁇ , h ⁇ ) and serum concentrations are measured.
  • Example 7 [H. 6] is immunized with human serum albumin as in the method described in [6], and the increase in antibody titer is analyzed.
  • Example 10 Production of fully human antibody-producing rats A rat carrying IGHK-NAC and IGHL-NAC is crossed with a KO rat in which rats Igh, Igk, and Igl are disrupted to produce a human antibody-producing rat.
  • a human antibody-producing rat can be produced by crossing a rat strain carrying IGHK-NAC or IGHL-NAC with a rat strain in which the rat Igh, Ig ⁇ , and Ig ⁇ genes have been disrupted.
  • Example 14 FACS analysis B cells retaining IGHK-NAC or IGHL-NAC are confirmed.
  • the antibody is an anti-rat CD45R (B220) antibody, and the hemolytic agent is 0.15M NH 4 Cl.
  • mouse artificial chromosome vectors 10MAC2 and 10MAC3 By inserting loxP sequences of PGKneo-5'HPRT-loxP and GFP-PGKneo-5'HPRT-loxP types as DNA insertion sequences into mouse artificial chromosome 10MAC Artificial chromosome vectors 10MAC2 and 10MAC3 are constructed and introduced into an hprt-deficient CHO cell line for carrying genes via circular DNA, and their operation is confirmed.
  • the DNA sequence of mouse chromosome 10 as the loxP insertion site was obtained from the GenBank database (NC — 0000766.6).
  • the sequences of the primers used for the amplification of two target sequences for homologous recombination are shown below, from which genomic DNA is extracted from the drug resistant clones and used as a template.
  • NotI_m10 LA F 5'-TCGAGCGGCCGCTCTAAGTCAGGGAAAGATCCCCTTCTTG -3 '(SEQ ID NO: 121)
  • SalI_m10 LA R 5'-TCGAGTCGACGACCATGAAGATGGTCCAACTAAAGCAA-3 '(SEQ ID NO: 122)
  • ClaI_m10 RA F 5'-TCGAATCGATCACTGCTCTTTCTTTAGTTACATGCAGCCC-3 '(SEQ ID NO: 123)
  • ClaI_m10 RA R 5'-TCGAATCGATATTCTTGCCAAGCTACTCTTCCGAGCTA-3 '(SEQ ID NO: 124)
  • GeneAmp9600 manufactured by Perkin-Elmer was used as a thermal cycler
  • KOD FX was used for Taq polymerase
  • buffers and dNTPs dATP, dCTP, dGTP, dTTP
  • PGKneo-5′HPRT-loxP Production of targeting vector of PGKneo-5′HPRT-loxP. PGKneo was cloned into the EcoRI site of V907. 5′HPRT-loxP was inserted into the AscI site and the ClaI site.
  • the PCR products of ClaI m10 RA F and ClaI m10 RAR were digested with ClaI (NEB), separated by agarose gel, purified, and then cloned into the C907 site of V907 (vector name: V907-PGKneo-5′HPRT-loxP -M10RA).
  • the NotI_m10 LA F and SalI_m10 LAR PCR products were digested with NotI (NEB) and SalI (NEB), separated by agarose gel and purified, and then transferred to the NotI / SalI site of V907-PGKneo-5′HPRT-loxP-m10RA. Cloned (vector name: p10MAC2).
  • CAG-EGFP was cloned into the NotI / SalI site of V907-PGKneo-5′HPRT-loxP-m10RA.
  • the NotI_m10 LA F and SalI_m10 LAR PCR products were digested with NotI (NEB) and PspOMI (NEB), separated by agarose gel and purified, and then transferred to the NotI site of V907-EGFP-PGKneo-5′HPRT-loxP-m10RA.
  • Cloned vector name: p10MAC3
  • a targeting vector, a target sequence and a chromosomal allele resulting from homologous recombination are shown in FIGS.
  • the medium was replaced with a medium containing G418 (1.5 mg / ml), dispensed into two 96-well culture plates, and selective culture was performed for about 2 weeks. 24 and 20 resistant colonies obtained by two transfections each of T5-26 and T6-37 were isolated and expanded for subsequent analysis (clone names: DT40 (10MAC2) and DT40 (10MAC3)) .
  • DT40 (10MAC2) m10 F1 (above) NAC R1: 5'-CTCTTCAGCAATATCACGGGTAGCCAAC-3 '(SEQ ID NO: 125) NAC F1: 5'-TGCTTGCATTGTATGTCTGGCTATTCTG-3 '(SEQ ID NO: 126) m10 R2 (above) m10 F6 (above) Puro I (supra) DT40 (10 MAC3) m10 F1 (above) EGFP-R: 5'-TGCTCAGGTAGTGGTTGTCG-3 '(SEQ ID NO: 127) NAC F1 (above) m10 R2 (above) m10 F6 (above) Puro I (supra) For PCR, GeneAmp9600 manufactured by Perkin-Elmer was used as a thermal cycler, KOD FX (TOYOBO) was used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, dGTP
  • the temperature and cycle conditions were such that after heat denaturation at 98 ° C. for 1 minute, 35 cycles of 98 ° C. for 15 seconds, 68 ° C. for 5 minutes or 6 minutes were performed. As a result, it was suggested that 14 and 11 clones of DT40 (10MAC2) and DT40 (10MAC3) were subjected to the desired recombination.
  • mouse artificial chromosome vectors 10MAC2 and 10MAC3-containing DT40 cells into 10MAC2 and 10MAC3 CHO cells
  • the target gene (group) via the loxP sequence which is the DNA sequence insertion site of mouse artificial chromosome vector 10MAC2 or 10MAC3 in CHO cells
  • the mouse artificial chromosome vector 10MAC2 or 10MAC3 loaded with the gene of interest via CHO cells is introduced into CHO cells.
  • PCR analysis In order to select the recombinant DNA as a template by extracting genomic DNA of G418 resistant strain, PCR can be performed using the following primers, and mouse artificial chromosome vectors 10MAC2 and 10MAC3 can be introduced into CHO cells. I checked. The primer sequences are shown below.
  • the temperature and cycle conditions were such that after heat denaturation at 98 ° C for 1 minute, 35 cycles of 98 ° C for 15 seconds, 68 ° C for 5 minutes or 6 minutes were performed. Since 12 and 10 PCR positive clones were obtained, the subsequent analysis was performed.
  • the CHO HPRT ⁇ ; 10MAC2
  • a Cre expression plasmid vector name: pBS185
  • a LoxP-3′HPRT-EGFP plasmid vector name: X3.1-I-EGFP-I.
  • plasmids of pBS185 and LoxP-3′HPRT-tdtomato vector name: X3.1-I-tdtomato-I
  • CHO HPRT ⁇ ; 10MAC3
  • the temperature and cycle conditions are such that after heat denaturation at 98 ° C for 1 minute, 30 cycles of 94 ° C for 10 seconds, 60 ° C for 30 seconds and 72 ° C for 3 minutes are performed. As a result, the insertion efficiency of circular DNA by site-specific recombination is evaluated.
  • the mouse artificial chromosome vector of the present invention can be used for various uses and purposes such as production of cells expressing foreign genes, production of useful non-human animals, production of proteins such as human antibodies, and the like.
  • mouse artificial chromosomes derived from mouse chromosome 10 and mouse chromosome 16 were introduced into chicken B precursor cell line DT40 by electroporation, respectively. These two animal cell lines are both internationally deposited on February 28, 2018, the National Institute for Product Evaluation Technology (NPMD) (zip code 292-0818). 2-10, Kazusa-Kamashita, Kisarazu City, Chiba Prefecture, Japan, Room 122) was deposited internationally in accordance with the provisions of the Budapest Treaty.

Abstract

この出願は、齧歯類細胞もしくは組織内又は齧歯類個体内で安定な新規マウス人工染色体ベクター、具体的にはマウス10番染色体及びマウス16番染色体からなる群から選択されるマウス染色体由来のマウス人工染色体ベクター、このベクターを含む細胞又は非ヒト動物、並びに、タンパク質生産及びヒト抗体作製のためのベクターの使用を提供する。

Description

マウス人工染色体ベクター及びその使用
 本発明は、齧歯類細胞、組織又は個体内で安定に保持され、かつ、子孫伝達可能な新規マウス人工染色体ベクター、具体的にはマウス10番染色体及びマウス16番染色体の各々に由来するマウス人工染色体に関する。
 本発明はまた、上記マウス人工染色体ベクターを含む哺乳動物由来細胞に関する。
 本発明はさらに、上記マウス人工染色体ベクターを含む、齧歯類などの非ヒト動物に関する。
 本発明はさらに、上記細胞又は上記非ヒト動物を用いる有用タンパク質又はヒト抗体の製造方法に関する。
 人工染色体ベクターは、約200kbを超える大きなサイズのDNA(例えば、メガベースサイズの染色体断片)を導入可能であるため、例えばヒト抗体産生、薬物代謝試験、疾患モデルなどに使用可能な非ヒト動物の作製などに使用されている。このようなベクターには、ヒト人工染色体(HAC)ベクター、マウス人工染色体(MAC)ベクターなどが知られている。具体的には、HACベクターは、ヒト14番染色体及びヒト21番染色体由来のベクターに関して特許文献1、2及び3、非特許文献1,2及び3に記載されており、またMACベクターは、マウス11番染色体由来のベクターに関して特許文献4に記載されている。
 しかしながら、HACベクター導入マウスでは、HACベクターの保持率の低下、組織間や個体間にばらつきが生じること、子孫伝達の頻度が不安定であることなどの問題が存在するため、HACベクターの保持率などを常に考慮する必要があり、また、特定の遺伝子領域が持つ機能や疾患との関わりについて研究する場合、目的遺伝子の発現動態や発現産物を組織細胞レベルで詳細かつ正確に解析することが難しい場合もあり、再現性の高い均一的な解析の障害となる。また、マウス細胞とヒト細胞を細胞融合するとき、マウス細胞内ではヒト染色体は不安定であることが知られている。このように、HACベクターを含むヒト染色体はマウス細胞内では保持率が一定しないことから、HACベクターをマウス細胞に導入する場合、及び遺伝子導入マウスを作製する場合において、人工染色体ベクターとしての利点を十分に発揮できていない。
 一方、MACベクター導入マウスでは、HACベクターの保持率の低下などの問題は実質的に解決される。しかし、MACベクターはマウス11番染色体由来のベクターが知られているだけであり、他の染色体を使用する場合の問題点として、染色体の構造に関する情報が少ないためMACベクターの作製には試行錯誤が必要であるし、また、公知のMACベクター以外のベクターがいかなる特性を有するかも不明である。
 このような状況のなかで本発明者らは、マウス10番染色体及びマウス16番染色体ベクター由来の2種類のMACベクターの作製を今回試みた。
国際公開2009/063722号 国際公開2004/031385号 特開2007-295860号公報 日本国特許第5557217号公報
Kuroiwa et al,Nat Biotech,18:1086-1090,2000 Katoh et al,BBRC,321:280-290,2000 Hoshiya et al,Mol Ther,17:309-17,2009
 従来公知のMACベクターではない他のMACベクターを作製するときの課題として、例えばマウス染色体の配列と構造に関係する情報が少なく、場合によっては未知であること、或いは、そのような情報は特定のマウス系統・個体の配列情報であるため系統が異なると配列が一致しないことがよくあり、したがって、ベクター内に余分なマウス遺伝子を持ち込まないようにするための遺伝子操作にはかなりの試行錯誤を要すること、天然セントロメアを含む染色体構造に違いがあることで、染色体の由来によってMACベクターの核内配置が異なり、宿主遺伝子の発現制御に影響を与える可能性があること、マウス11番染色体由来のMAC導入精巣由来幹細胞では幹細胞培養条件下において異常増殖を示すことなどの課題があるため、それらの課題を解決する必要がある。さらに、染色体番号が異なるマウス染色体から作製されたMACベクターが、ベクター上に残存するマウス遺伝子による影響と同様に、安定性、子孫伝達能などの性質にどのように影響するかは、知見がほとんどないためはっきりしていない。
 MACベクターは、理想的には、MACベクター導入そのものが意図しない宿主の遺伝子発現変動を引き起こさず、齧歯類細胞もしくは組織内又は齧歯類個体内で安定に維持されるとともに、子孫伝達されるベクターであるべきであるが、上記のとおり、そのようなベクターの作製には試行錯誤が必要である。
 本発明は、上記の課題を解決する新規のMACベクターを提供することを目的とする。
 本発明は、要約すると、以下の特徴を包含する。
 (1)マウス10番染色体及びマウス16番染色体からなる群から選択されるマウス染色体由来の天然型セントロメア、セントロメア近傍のマウス10番染色体長腕の染色体部位である遺伝子Gm8155から長腕遠位を削除したマウス10番染色体由来の長腕断片、又はセントロメア近傍のマウス16番染色体長腕の染色体部位である遺伝子Gm35974から長腕遠位を削除したマウス16番染色体由来の長腕断片、及びテロメア配列を含むこと、並びに、齧歯類の細胞、組織又は個体において安定に保持される、かつ子孫伝達可能であることを特徴とする、マウス人工染色体ベクター。
 (2)寄託細胞株DT40(10MAC)T5-26(NITE BP-02656)に含まれるマウス人工染色体を含む、上記(1)に記載のマウス人工染色体ベクター。
 (3)寄託細胞株DT40(16MAC)T1-14(NITE BP-02657)に含まれるマウス人工染色体を含む、上記(1)に記載のマウス人工染色体ベクター。
 (4)齧歯類がマウス又はラットである、上記(1)~(3)のいずれかに記載のマウス人工染色体ベクター。
 (5)1つ又は複数のDNA配列挿入部位をさらに含む、上記(1)~(4)のいずれか1項に記載のマウス人工染色体ベクター。
 (6)DNA配列挿入部位が、loxP配列、FRT配列、φC31attB及びφC31attP配列、R4attB及びR4attP配列、TP901-1attB及びTP901-1attP配列、並びに、Bxb1attB及びBxb1attP配列からなる群から選択される少なくとも1つの配列を含む、上記(5)に記載のマウス人工染色体ベクター。
 (7)レポーター遺伝子、選択マーカー遺伝子又はその両方をさらに含む、上記(1)~(6)のいずれかに記載のマウス人工染色体ベクター。
 (8)外来DNA配列をさらに含む、上記(1)~(7)のいずれかに記載のマウス人工染色体ベクター。
 (9)外来DNA配列がヒトDNA配列である、上記(8)に記載のマウス人工染色体ベクター。
 (10)外来DNA配列が、ヒト染色体長腕又は短腕の遺伝子もしくは遺伝子座のDNA配列である、上記(9)に記載のマウス人工染色体ベクター。
 (11)外来DNA配列が、ヒト免疫グロブリン重鎖遺伝子もしくは遺伝子座、ヒト免疫グロブリン軽鎖遺伝子もしくは遺伝子座、又はその重鎖及び軽鎖遺伝子もしくは遺伝子座の両方のDNA配列である、上記(9)又は(10)に記載のマウス人工染色体ベクター。
 (12)外来DNA配列が、サイトカイン類、ホルモン類、成長因子類、栄養因子類、造血因子類、血液凝固・溶解因子類、G蛋白質共役型受容体類、酵素類などのポリペプチド類をコードする遺伝子又はDNAの配列、或いは、腫瘍、筋ジストロフィー、血友病、神経変性疾患、自己免疫疾患、アレルギー性疾患、遺伝性疾患などの疾患に関連する治療用遺伝子又はDNAの配列、並びに、T細胞受容体(TCR)、ヒト白血球抗原(HLA)などの免疫系遺伝子又はDNAの配列からなる群から選択される遺伝子又はDNAの配列である、上記(8)~(10)のいずれかに記載のマウス人工染色体ベクター。
 (13)上記(1)~(12)のいずれかに記載のマウス人工染色体ベクターを含む哺乳動物由来細胞。
 (14)哺乳動物由来細胞が、体細胞、幹細胞及び前駆細胞からなる群から選択される、上記(13)に記載の細胞。
 (15)哺乳動物由来細胞が、齧歯類由来細胞である、上記(13)又は(14)に記載の細胞。
 (16)上記(1)~(12)のいずれかに記載のマウス人工染色体ベクターを含む非ヒト動物。
 (17)非ヒト動物が、齧歯類動物である、上記(16)に記載の非ヒト動物。
 (18)齧歯類動物が、マウス又はラットである、上記(17)に記載の非ヒト動物。
 (19)ヒト抗体を産生可能にする動物である、上記(16)~(18)のいずれかに記載の非ヒト動物。
 (20)マウス人工染色体ベクターに含まれる外来DNAに対応する内在遺伝子が破壊されている又は内在遺伝子の発現が低下している、上記(16)~(19)のいずれかに記載の非ヒト動物。
 (21)外来DNA配列を含むマウス人工染色体ベクターを含む上記(13)~(15)のいずれかに記載の細胞を培養し、産生された該DNAによってコードされるタンパク質を回収することを含む、タンパク質の製造方法。
 (22)ヒト抗体重鎖及び軽鎖遺伝子もしくは遺伝子座を含むマウス人工染色体ベクターを含む上記(19)に記載の非ヒト動物を用いてヒト抗体を産生し、該ヒト抗体を回収することを含む、ヒト抗体の製造方法。
 (23)ヒト抗体軽鎖遺伝子もしくは遺伝子座が、ヒト抗体λ及びκ軽鎖遺伝子もしくは遺伝子座である、上記(22)に記載の方法。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2018-050178号の開示内容を包含する。
 本発明により、マウス10番染色体及び16番染色体の各々のマウス染色体由来の齧歯類組織内で安定な新規マウス人工染色体ベクターが提供され、これらのベクターを利用したヒト抗体を産生可能なマウス、ラットなどの齧歯類動物の作製、並びに該動物によるヒト抗体の製造を可能にする。
この図は、薬剤耐性遺伝子でマークされたマウス10番染色体又は16番染色体を保持するマウス胎仔線維芽細胞とマウスA9細胞とを細胞融合することによって各マウス染色体を保持したA9様細胞を作製することを示した図である。 この図は、薬剤耐性遺伝子でマークされたマウス10番染色体又は16番染色体を含有するA9様細胞から微小核細胞融合法によって各マウス染色体をニワトリDT40細胞へ移すことを示した図である。 この図は、天然マウス10番及び16番染色体の各々からテロメアトランケーションによってマウス人工染色体(MAC)を構築するステップ、並びに該MACにloxP、EGFP遺伝子などを含むカセットを挿入するステップの概略図である。図中、Cen.はセントロメアを表し、Tel.はテロメアを表す。また、HS4はインスレーター、CAG及びPGKはそれぞれプロモーター、EGFPは蛍光タンパク質をコードする遺伝子、NeoR、Puro、Neoはそれぞれ薬剤耐性遺伝子、HPRTはヒポキサンチングアニンホスホリボシルトランスフェラーゼ遺伝子を表す。 この図は、マウス10番染色体のテロメアトランケーションの概略図である。 この図は、長腕部分が削除される前のマウス10番染色体と長腕部分が削除されたマウス10番染色体(10MAC;T5-26、T6-37、T7-34)を示すFISH解析画像である。 この図は、マウス10番染色体(10MAC)へloxP及びEGFP発現ユニットを搭載する概略図である。 この図は、マウス10番染色体(10MAC)にloxP及びEGFP発現ユニットを搭載する前と後(10MAC1)のFISH解析画像である。図中、搭載前が、T5-26とT6-37であり、搭載後が、T5-26L1-2、T5-26L2-3、T6-37L1-5である。矢印は10MAC、10MAC1を示す。 この図は、10MAC1を保持するCHO細胞のFISH解析画像である。図中、矢印は10MAC1を示す。 この図は、マウス16番染色体のテロメアトランケーションの概略図である。 この図は、マウス16番染色体のテロメアトランケーションで得られた長腕の大部分が削除された2パターンのアレルの図である。図中、一方のパターンがT1-14であり、他方のパターンがT2-64、T2-65である。 この図は、長腕部分が削除される前のマウス16番染色体と長腕部分が削除されたマウス16番染色体(16MAC;T1-14、T2-64、T2-65)を示すFISH解析画像である。矢印は、マウス16番染色体、それぞれの16MACを示す。 この図は、長腕部分の削除を行ったマウス16番染色体へloxP及びEGFP発現ユニットを搭載する概略図(パターン1)である。 この図は、長腕部分の削除を行ったマウス16番染色体へloxP及びEGFP発現ユニットを搭載する概略図(パターン2)である。 この図は、マウス16番染色体(16MAC)にloxP及びEGFP発現ユニットを搭載する前(16MAC;T1-14、T2-64、T2-65)と後(16MAC1HA;T1-14 L1-4、16MAC1Gm;T2-64 L1-4、T2-65 L1-4)の各FISH解析画像である。矢印は16MAC、16MAC1HA、16MAC1Gmを示す。 この図は、10MAC1を保持するマウスES細胞TT2FのFISH解析画像である。矢印は、10MAC1を示す。 この図は、10MAC1が子孫伝達したマウスの明視野(上)とGFP蛍光(下)を示す図である。10MAC1にGFP発現カセットが搭載されているので、10MAC1を保持する細胞はGFP蛍光陽性となる。 この図は、IGHK-NAC構築とIGHK-NACを含むヒト抗体産生マウス又はラットの作製の概略図である。 この図は、改変ヒト2番染色体とNAC(本発明の新規人工染色体ベクター)を保持するCHO細胞のFISH解析画像である。左の矢印がNACを示し、右の矢印が改変ヒト2番染色体を示す。 この図は、Cre/loxPシステムによって生じる相互転座によるIGK-NAC構築の概略図である。図中、HAT耐性について、loxP配列で組換えを起こしたものは5’HPRTと3’ HPRTが連結し、HPRT遺伝子の再構築が起こり、HAT耐性になるので薬剤HATで選択できる。図中、Igκはイムノグロブリン軽鎖κ遺伝子(座)を表す。図中、Cen.はセントロメアを表し、Tel.はテロメアを表す。また、HS4はインスレーター、CAG、CMV、PGKはそれぞれプロモーター、EGFPは蛍光タンパク質をコードする遺伝子、Bsd、hyg、Puro、Neoはそれぞれ薬剤耐性遺伝子、HPRTはヒポキサンチングアニンホスホリボシルトランスフェラーゼ遺伝子を表す。 この図は、Flp/FRTシステムによって生じる相互転座によるIGHK-NAC構築の概略図である。図中、HAT耐性について、FRT配列で組換えを起こしたものは5’HPRTと3’HPRTが連結し、HPRT遺伝子の再構築が起こり、HAT耐性になるので薬剤HATで選択できる。図中、Igκはイムノグロブリン軽鎖κ遺伝子(座)を表す。図中、IgHはイムノグロブリン重鎖遺伝子(座)を表す。図中、Cen.はセントロメアを表し、Tel.はテロメアを表す。また、HS4はインスレーター、CAG、CMV、PGKはそれぞれプロモーター、EGFPは蛍光タンパク質をコードする遺伝子、Bsd、hyg、Neoはそれぞれ薬剤耐性遺伝子、HPRTはヒポキサンチングアニンホスホリボシルトランスフェラーゼ遺伝子を表す。 この図は、IGHL-NAC構築とIGHL-NACを含むヒト抗体産生マウス又はラットの作製の概略図である。 この図は、Cre/loxPシステムによって生じる相互転座によるIGL-NAC構築の概略図である。図中、HAT耐性について、loxP配列で組換えを起こしたものは5’HPRTと3’HPRTが連結し、HPRT遺伝子の再構築が起こり、HAT耐性になるので薬剤HATで選択できる。図中、Igλはイムノグロブリン軽鎖λ遺伝子(座)を表す。図中、Cen.はセントロメアを表し、Tel.はテロメアを表す。また、HS4はインスレーター、CAG、CMV、PGKはそれぞれプロモーター、EGFPは蛍光タンパク質をコードする遺伝子、Bsd、hyg、Puro、Neoはそれぞれ薬剤耐性遺伝子、HPRTはヒポキサンチングアニンホスホリボシルトランスフェラーゼ遺伝子を表す。 この図は、Flp/FRTシステムによって生じる相互転座によるIGHL-NAC構築の概略図である。図中、HAT耐性について、FRT配列で組換えを起こしたものは5’HPRTと3’HPRTが連結し、HPRT遺伝子の再構築が起こり、HAT耐性になるので薬剤HATで選択できる。図中、Cen.はセントロメアを表し、Tel.はテロメアを表す。また、HS4はインスレーター、CAG、CMV、PGKはそれぞれプロモーター、EGFPは蛍光タンパク質をコードする遺伝子、Bsd、hyg、Neoはそれぞれ薬剤耐性遺伝子、HPRTはヒポキサンチングアニンホスホリボシルトランスフェラーゼ遺伝子を表す。 この図は、マウス10番染色体(10MAC)へ環状DNA挿入用のloxP配列及びネオマイシン耐性遺伝子を搭載した10MAC2構築の概略図である。 この図は、マウス10番染色体(10MAC)へGFP蛍光発現ユニット及び環状DNA挿入用のloxP配列及びネオマイシン耐性遺伝子を搭載した10MAC3構築の概略図である。 この図は、10MAC2を保持するDT40細胞のFISH解析画像である。矢印は構築された10MAC2を示す。 この図は、10MAC3を保持するDT40細胞のFISH解析画像である。矢印は構築された10MAC3を示す。 この図は、10MAC2を保持するCHO細胞のFISH解析画像である。矢印は10MAC2を示す。 この図は、10MAC3を保持するCHO細胞のFISH解析画像である。矢印は10MAC3を示す。
 本発明をさらに詳細に説明する。
 上記のとおり、本発明は、マウス10番染色体及びマウス16番染色体からなる群から選択されるマウス染色体由来の天然型セントロメア、セントロメア近傍のマウス10番染色体長腕の染色体部位である遺伝子Gm8155(NCBI;NC_000076.6)から長腕遠位を削除したマウス10番染色体由来の長腕断片、又セントロメア近傍のマウス16番染色体長腕の染色体部位である遺伝子Gm35974(NCBI;NC_000082.6)から長腕遠位を削除したマウス16番染色体由来の長腕断片、及びテロメア配列を含むこと、並びに、齧歯類の細胞、組織又は個体において安定に保持される、かつ子孫伝達可能であることを特徴とする、マウス人工染色体ベクターを提供する。
 本明細書中で使用する「マウス染色体由来の天然型セントロメア」という用語は、マウス10番染色体又はマウス16番染色体のセントロメア全体(完全なセントロメア)を指す。したがって、このようなセントロメアには、マウス染色体のセントロメア配列の一部を用いて偶発的又は人工的に得られたセントロメア機能を有する構造体、及び、他の動物種の染色体のセントロメアは含まれない。
 本明細書中で使用する「マウス人工染色体」又は「マウス人工染色体ベクター」はトップダウンアプローチで構築された人工染色体であり、ボトムアップアプローチで構築された人工染色体ではない。トップダウンアプローチとは、自然染色体から遺伝子領域を染色体改変により削除し天然セントロメアを人工染色体ベクターの一部として構築する方法である。一方、ボトムアップアプローチとは、セントロメア配列の一部をクローン化DNAとして取得し、哺乳類細胞にトランスフェクションすることによりセントロメア機能を有する人工染色体を構築する方法であり、本発明では、この方法は使用されていない。
 本明細書中で使用する「セントロメア近傍のマウス10番(もしくは、16番)染色体長腕の染色体部位である遺伝子Gm8155(もしくは、遺伝子Gm35974)から長腕遠位を削除したマウス10番(もしくは、16番)染色体由来の長腕断片」は、本発明のベクターがマウス、ラットなどの齧歯類の細胞又は個体組織において安定に保持されるように、かつ齧歯類の個体発生と子孫伝達の妨げにならないように、可能な限り内在遺伝子の影響を排除することが望ましく、そのために、上記マウス染色体の長腕中の内在遺伝子を実質的に除去するようにセントロメアに近い長腕部位の遺伝子Gm8155(もしくは、遺伝子Gm35974)の上流領域で長腕遠位を削除して得られるセントロメア側の長腕断片を指す。ここで「実質的に除去する」とは、マウス10番染色体又はマウス16番染色体の全内在遺伝子(数)の少なくとも99.5%、好ましくは少なくとも99.7%、より好ましくは少なくとも99.8%、最も好ましくは99.9~100%が除去されることを意味する。また、「上流領域」とは、上記遺伝子の5'末端領域であり、好ましくは転写開始部位から5'非翻訳領域末端までの領域である。
 本明細書中で使用する、マウス人工染色体がマウス、ラットなどの齧歯類の細胞、組織又は個体において安定に保持されるときの「保持率」とは、培養細胞、又は齧歯類の組織や細胞の中で人工染色体が存在している細胞の割合を指す。
 本発明の染色体ベクターが「安定に保持される」とは、細胞分裂の際に該染色体ベクターの脱落を起こし難く、すなわち、分裂後であっても細胞内で安定に保持されること、それゆえに、該染色体ベクターが娘細胞や子孫マウスに効率よく子孫伝達されることを意味する。
 マウス10番染色体断片由来の人工染色体ベクターの場合には、前記長腕断片は、非限定的に例えば、該10番染色体の長腕のマーカー遺伝子Gm8155よりも遠位の領域が削除された長腕断片からなる。またマウス16番染色体断片由来の人工染色体ベクターの場合には、前記長腕断片は、非限定的に例えば、該16番染色体の長腕のマーカー遺伝子Gm35974よりも遠位の領域が削除された長腕断片からなる。或いは、前記長腕断片は、寄託細胞株DT40(10MAC)T5-26(受託番号:NITE BP-02656)又は寄託細胞株DT40(16MAC)T1-14(受託番号:NITE BP-02657)に含まれるマウス人工染色体を基本構造として含む。これらの基本構造には、外来DNA又は遺伝子もしくは遺伝子座を挿入するためのloxP、FRTなどのDNA配列挿入部位をさらに含むことができる。
 本発明のベクターは、外来DNA又は遺伝子配列を挿入するための部位を含むことができるため、この部位に、目的の外来DNA又は遺伝子もしくは遺伝子座を組み込むことによって、該ベクターが任意の細胞に導入されたときに該目的の外来DNA又は遺伝子もしくは遺伝子座を発現することが可能となり、したがって、タンパク質生産、治療用薬剤のスクリーニング、薬物代謝試験、DNAの機能解析、遺伝子治療、有用な非ヒト動物の作製などへの応用に使用することが可能である。
 本明細書中の「DNA」は、特に断らない限り、遺伝子もしくは遺伝子座、cDNA、化学修飾DNAを含むすべての種類のDNA核酸に対し使用するものとする。
 また、本明細書中の「外来遺伝子」又は「外来DNA」とは、ベクターの遺伝子挿入部位に挿入する、ベクターに搭載する目的の遺伝子又はDNAであり、対象とする細胞内に本来的には存在しない、対象とする細胞内で発現させるべき遺伝子又はDNA、或いはそれらの配列、を意味する。
 本明細書中の「DNA配列挿入部位」とは、人工染色体における、目的DNA(例えば遺伝子、遺伝子座など)配列を挿入できる部位、例えば、部位特異的組換え酵素の認識部位等を意味する。このような認識部位には、非限定的に、例えばloxP(Creリコンビナーゼ認識部位)、FRT(Flpリコンビナーゼ認識部位)、φC31attB及びφC31attP(φC31リコンビナーゼ認識部位)、R4attB及びR4attP(R4リコンビナーゼ認識部位)、TP901-1attB及びTP901-1attP(TP901-1リコンビナーゼ認識部位)、或いはBxb1attB及びBxb1attP(Bxb1リコンビナーゼ認識部位)などが含まれる。
 本明細書中の「部位特異的組換え酵素」とは、これら酵素の認識部位で特異的に目的のDNA配列と組換えを起こすための酵素である。その例は、Creインテグレース(Creリコンビナーゼとも称する。)、Flpリコンビナーゼ、φC31インテグレース、R4インテグレース、TP901-1インテグレース、Bxb1インテグレースなどである。
 本発明のベクターはまた、マウス染色体を改変し、マウス由来の天然型セントロメアをそのままベクターの作製のために利用する。
 本発明のベクターの有用な特性として、マウス、ラット、ハムスターなどの齧歯類の細胞又は個体組織において保持率が向上し、これによって細胞内で安定に保持され、したがって目的遺伝子(群)を長期間安定に含むことができ、齧歯類の個体間又は組織間において導入遺伝子量にバラつきがなく長期間発現させることができ、また、分化多能性細胞(例えばES細胞、iPS細胞、等)を介した齧歯類の個体発生及び子孫伝達の効率を向上させることができる。保持率は、試験した組織(例えば、肝臓、腸、腎臓、脾臓、肺、心臓、骨格筋、脳又は骨髄由来の組織)で約90%以上であるし、また、本発明のマウス人工染色体は、効率よく増殖可能であり、細胞内での複数(多)コピーの保持を可能にする。
 マウスの10番及び16番染色体の配列情報は、DDBJ/EMBL/GenBank、Santa Cruz Biotechnology,Inc.などのChromosome Databasesから入手可能である。
 本明細書中の染色体の「長腕」とは、マウス染色体のセントロメア側から遺伝子領域を含む染色体領域を指す。一方、マウス染色体には、短腕がほとんど存在しない。
 本明細書中の「遠位」とは、セントロメアから遠い領域(すなわち、テロメア側)を意味する。反対に、セントロメアに近い領域(すなわち、セントロメア側)は「近位」と称する。長腕遠位は、長腕の特定切断部位よりもテロメア側に位置する領域を意味し、長腕近位は、長腕の特定切断部位よりもセントロメア側に位置する領域を意味する。この特定切断部位は、マウス10番染色体又はマウス16番染色体の長腕に存在する全内在遺伝子(数)の少なくとも99.5%、好ましくは少なくとも99.7%、より好ましくは少なくとも99.8%、最も好ましくは99.9~100%が削除される部位(位置)である。
 本明細書中の「テロメア配列」は、同種又は異種の天然テロメア配列、或いは、人工テロメア配列である。ここで、同種とは、人工染色体ベクターの染色体断片が由来するマウスと同種の動物を意味し、一方、異種とは、該マウス以外の哺乳動物(これには、ヒトを含む)を意味する。また、人工テロメア配列は、(TTAGGG)n配列(nは、繰り返しを意味する。)などの人工的に作製されたテロメア機能を有する配列を指す。人工染色体へのテロメア配列の導入は、例えば国際公開WO00/10383号に記載されるようなテロメアトランケーション(テロメア配列の置換)によって行うことができる。テロメアトランケーションは、本発明の人工染色体の作製において染色体の短縮のために使用することができる。
 本明細書中の「非ヒト動物」という用語は、ヒトを除く、サル、チンパンジーなどの霊長類、マウス、ラット、ハムスター、モルモットなどの齧歯類、ウシ、ブタ、ヒツジ、ヤギなどの有蹄類などの哺乳動物を含むが、これらに限定されない。
 本明細書中の「胚性幹細胞」又は「ES細胞」は、哺乳動物由来の受精卵の胚盤胞の内部細胞塊から樹立された分化多能性と半永久的増殖能とを備えた幹細胞である(M.J.Evans and M.H.Kaufman(1981)Nature 292:154-156;J.A.Thomson et al.(1999)Science 282:1145-1147;J.A.Thomson et al.(1995)Proc.Natl.Acad.Sci.USA 92:7844-7848;J.A.Thomson et al.(1996)Biol.Reprod.55:254-259;J.A.Thomson and V.S.Marshall(1998)Curr.Top.Dev.Biol.38:133-165)。この細胞と同等の性質をもつ、体細胞の再プログラミングによって人工的に誘導された細胞が「人工多能性幹細胞」又は「iPS細胞」である(K.Takahashi and S.Yamanaka(2006)Cell 126:663-676;K.Takahashi et al.(2007)Cell 131:861-872;J.Yu et al.(2007)Science 318:1917-1920)。
<マウス人工染色体ベクターの作製及び用途>
 以下に、本発明のマウス人工染色体ベクターの作製及びその用途について説明する。具体的には、後述の実施例及び図面にその手順が記載されている。
(1)マウス人工染色体ベクターの作製
 本発明の人工染色体ベクターは、以下の工程(a)~(c):
 (a)マウス染色体を含む細胞を得る工程、
 (b)内在遺伝子(数)の大部分(99.5%以上100%以下)を含まないようにマウス染色体の長腕遠位を削除する工程、及び
 (c)長腕近位に1つ以上のDNA配列挿入部位を挿入する工程
を含む方法によって作製することができる。ここで、工程(b)及び(c)の順序は逆であってもよい。
工程(a):
 本発明の人工染色体ベクターを作製するには、まず、マウス染色体を含む細胞を作製する。例えば、薬剤耐性遺伝子(例えば、G418耐性遺伝子であるneo遺伝子)で標識されたマウス染色体を含むマウス線維芽細胞であるmouse embryonic fibroblast(mChr11-neo)とblasticidin S耐性遺伝子であるBSr遺伝子を導入したマウスA9細胞(ATCC VA20110-2209)であるmouse A9(BSr)と細胞融合し、薬剤耐性遺伝子で標識されたマウス染色体を含むマウスA9雑種細胞であるmouse A9x mouse embryonic fibroblast(BSr;mChr-neo)から、その染色体を相同組換え率の高い細胞に移入することにより作製することができる。マウス繊維芽細胞は、文献記載の方法に基づいて入手することが可能であり、例えば、マウス繊維芽細胞は日本クレアより入手可能なICR系統やC57B6系統のマウスより樹立可能である。相同組換え率の高い細胞としては、例えば、ニワトリDT40細胞(Dieken et al.,Nature Genetics,12:174-182,1996)を利用できる。さらにまた、上記移入は、公知の染色体移入法、例えば、微小核細胞融合法(Koi et al.,Jpn.J.Cancer Res.,80:413-418,1973)によって行うことができる。
工程(b):
 マウス由来の単一の染色体を含む細胞において、該マウス染色体の長腕遠位を削除する。このとき、重要なことは、長腕上に存在する内在遺伝子の大部分を削除(又は、除去もしくは欠失)しマウスセントロメアを含む人工染色体を構築することである。これは長腕上に存在する全内在遺伝子の少なくとも99.5%、好ましくは少なくとも99.7%、より好ましくは少なくとも99.8%、最も好ましくは99.9~100%を削除(又は、除去もしくは欠失)するように切断位置を決定することである。そうすることによって、人工染色体が導入された、齧歯類由来の、好ましくはマウスもしくはラット由来の、細胞、組織又は個体において安定かつ高保持率で保持され、目的遺伝子(群)の正確な解析、物質生産などに用いることができる。上記内在遺伝子の削除は、例えば、WO00/10383号に記載のテロメアトランケーションにより行うことができる。具体的には、マウス染色体を含む細胞において、人工テロメア配列を含むターゲティングベクターを構築し、相同組換えにより染色体上の所望の位置に(人工)テロメア配列が挿入されたクローンを取得し、これによってテロメアトランケーションにより欠失変異体が得られる。すなわち、所望の位置(又は、部位)が削除すべき長腕遠位の切断位置であり、この位置に人工テロメア配列が相同組換えにより置換、挿入されて長腕遠位が削除される。この位置は、ターゲティングベクターを構築する際の標的配列の設計により、適宜設定できる。例えば、後述の実施例では、マウス10番染色体長腕のNC_000076.6(GenBank登録番号)のDNA配列、及びマウス16番染色体長腕のNC_000082.6(GenBank登録番号)のDNA配列に基づいて標的配列を設計し、その標的配列よりもテロメア側でテロメトランケーションが起こるように設定されている。これにより、内在遺伝子の大部分が削除されたマウス10番染色体断片又はマウス16番染色体断片が得られる。
工程(c):
 DNA配列挿入部位として、好ましくは部位特異的組換え酵素の認識部位を挿入することができる。すなわち、ある種の酵素が特定の認識部位を認識して特異的にその認識部位でDNAの組換えを起こす現象が知られており、本発明のマウス人工染色体ベクターでは、このような酵素とその酵素の認識部位からなる系を利用して、目的とする遺伝子又はDNA配列を挿入、搭載できる。このような系として、例えば、バクテリオファージP1由来のCre酵素と、その認識部位であるloxP配列の系(Cre/loxP系;B.Sauer in Methods of Enzymology;1993,225:890-900)や、出芽酵母由来のFlp酵素と、その認識部位であるFRT(Flp Recombination Target)配列の系(Flp/FRT系)や、ストレプトミセスファージ由来のφC31インテグレースと、その認識部位であるφC31attB/attP配列の系、R4インテグレースと、その認識部位であるR4attB/attP配列の系、TP901-1インテグレースと、その認識部位であるTP901-1attB/attP配列の系、Bxb1インテグレースと、その認識部位であるBxb1attB/attP配列の系、などを挙げることができるが、DNA配列挿入部位として機能しうるのであれば、上記の系に限定されないものとする。
 このような部位特異的組換え酵素の認識部位の挿入のためには、公知の方法、例えば、相同組換え法が利用でき、挿入位置及び数は、長腕近位及び短腕近位内に適宜設定することができる。
 本発明においては、1つの種類の認識部位又は異なる種類の認識部位を1つ挿入することも可能である。認識部位の設定により、外来遺伝子又は外来DNAの挿入位置を特定することができるので、挿入位置が一定となり、想定外の位置効果(position effect)を受けることもなくなる。後述の実施例に例示されるマウス人工染色体の場合には、マウス染色体上の部位特異的組換え酵素の認識部位loxP配列において挿入された遺伝子を組織特異的に発現させることを可能にする。
 本発明の、DNA配列挿入部位を有するマウス人工染色体ベクターには、好ましくは、目的とする遺伝子又はDNA配列の挿入部位を残して、レポーター遺伝子をあらかじめ挿入しておいてもよい。レポーター遺伝子としては、特に限定するものではないが、例えば、蛍光タンパク質(例えば、緑色蛍光タンパク質(GFP、EGFP、等)遺伝子、黄色蛍光タンパク質(YFP)、等)、タグタンパク質コードDNA、β-ガラクトシダーゼ遺伝子、発光遺伝子(ルシフェラーゼ遺伝子、等)などが挙げられるが、GFP又はEGFPが好ましい。
 本発明のマウス人工染色体ベクターにはさらに、選択マーカー遺伝子を含んでもよい。選択マーカーは、該ベクターで形質転換された細胞を選別する際に有効である。選択マーカー遺伝子としては、ポジティブ選択マーカー遺伝子及びネガティブ選択マーカー遺伝子のいずれか、又はその両方が例示される。ポジティブ選択マーカー遺伝子には、薬剤耐性遺伝子、例えばネオマイシン耐性遺伝子(NeoもしくはNeoR)、アンピシリン耐性遺伝子、ブラストサイジンS(BS)耐性遺伝子、ピューロマイシン耐性遺伝子(Puro)、ゲネチシン(G418)耐性遺伝子、ハイグロマイシン耐性遺伝子(Hyg)などが含まれる。また、ネガティブ選択マーカー遺伝子には、例えば単純ヘルペスチミジンキナーゼ(HSV-TK)遺伝子、ジフテリアトキシンA断片(DT-A)遺伝子などが包含される。一般に、HSV-TKは、ガンシクロビル又はシクロビルと組み合わせて使用される。
 本発明のマウス人工染色体ベクターに、レポーター遺伝子又は目的の外来遺伝子もしくはDNAを挿入する手法としては、相同組換え法を好ましく使用できる。相同組換えは、マウス染色体上の挿入位置の5’側領域及び3’側領域の塩基配列(各々約1~6kb、好ましくは約2~4kb)と相同な両配列(5’arm及び3’arm)の間に、挿入すべきDNAカセットを連結して得られたターゲティングベクターを用いて行うことができる。この目的で使用されるベクターとしては、例えばプラスミド、ファージ、コスミド、ウイルスなどが挙げられ、好ましくはプラスミドである。ターゲティングベクター構築のための基本プラスミドの例は、V907又はV913(Lexicon Genetics)などであるが、これらに限定されない。基本ベクターには、プロモーター、エンハンサー、選択マーカー遺伝子、複製開始点などの、ベクター構築において一般的に挿入される1つ又は2つ以上の配列又はエレメントが含まれていてもよい。プロモーターの例は、ホスホグリセリン酸キナーゼ(PGK)プロモーター、ニワトリベータアクチン(CAG)プロモーター、サイトメガロウイルス(CMV)プロモーター、エロンゲーションファクター1α(EF1α)プロモーターなどを含むことができる。
 上記の手法で作製されたマウス人工染色体ベクターは、マウス由来の染色体断片(これには、天然型セントロメア、少なくとも99%、好ましくは少なくとも99.5%、の内在遺伝子が削除された長腕断片、及び(存在する場合の)短腕が含まれる。)と、人工テロメア配列とを含む。また、上記セントロメアは、人工染色体の作製のために利用されたマウスの染色体のセントロメア構造の全体である。
 本発明のマウス人工染色体ベクターの例は、後述の実施例で作製されたマウス人工染色体ベクターであり、この人工染色体は、マウス10番染色体において長腕遠位を遺伝子Gm8155の上流領域において削除して得られたベクター、及びマウス16番染色体において長腕遠位を遺伝子Gm35974の上流領域において削除して得られたベクターである。これらのベクターは、寄託細胞株DT40(10MAC)T5-26(受託番号:NITE BP-02656)又は寄託細胞株DT40(16MAC)T1-14(受託番号:NITE BP-02657)に含まれるマウス人工染色体を基本構造として含む。基本構造であることから、このDNA構造中に以下のようなDNA配列挿入部位、選択マーカー遺伝子、外来遺伝子(又は、DNA)などを挿入することができる。 
 上記マウス人工染色体ベクターは、好ましくは、1つ又は複数のDNA配列挿入部位、例えば部位特異的組換え酵素の認識部位(例えばCre酵素認識部位であるloxP配列)を含むことができる。ここで、部位特異的組換え酵素の認識部位は、例えばGFP-PGKneo-loxP-3’HPRTタイプのloxP配列であるか、或いは、5’HPRT-loxP-hygタイプであるか、或いはPGKneo-loxP-3’HPRTタイプのloxP配列或いはGFP-5’HPRT-loxP-PGKhygタイプのloxP配列であるが、これらに限定されない。ここで、GFPは、緑色蛍光タンパク質遺伝子であり、PGKneoは、ホスホグリセリン酸キナーゼプロモーター/ネオマイシン耐性遺伝子カセットであり、HPRTは、ヒポキサンチン-グアニンホスホリボシルトランスフェラーゼ遺伝子であり、hygはハイグロマイシン耐性遺伝子である。
 上記マウス人工染色体ベクターにはさらに、レポーター遺伝子、選択マーカー遺伝子(ポジティブ選択マーカー遺伝子、ネガティブ選択マーカー遺伝子など)を含むことができる。
 上記マウス人工染色体ベクターにはさらに、外来遺伝子又はDNA配列を含んでもよい。
 外来遺伝子又はDNAは、限定されないが、ヒト遺伝子又はDNAなどを含み、このなかには例えばヒト染色体長腕又は短腕の遺伝子もしくは遺伝子座のDNAなどが含まれる(下記(2)参照)。
 本発明のマウス人工染色体ベクターの利点としては従来の人工染色体ベクターの利点である、1)宿主染色体に挿入されず独立して維持されることから、宿主遺伝子を破壊しない、2)一定のコピー数(複数(多)コピー可能)で安定に保持され、宿主細胞の生理的発現制御を受けることから、挿入された遺伝子の過剰発現や発現消失が起きない、3)導入可能なDNAサイズに制約がないことから、発現調節領域を含む遺伝子や複数遺伝子/アイソフォームの導入が可能となることに加え、齧歯類細胞或いは齧歯類個体中における保持率が向上すること、導入遺伝子の長期間における安定発現を実現し、かつ子孫伝達率が向上することで遺伝子導入マウスの作製効率が向上する、4)ベクター導入後の組織間のばらつきが少なく、すなわち保持率は約90%以上である、などの利点が挙げられる。
(2)外来遺伝子又はDNAの導入
 本発明のマウス人工染色体ベクターには、外来遺伝子又はDNAを導入することができる。
 外来遺伝子又はDNA配列のサイズは、特に制限されず、20kb以下であってもよいし、或いは20kbを超えてもよく、例えば50kb以上、100kb以上、200kb以上、500kb以上、700kb以上、1Mb以上、10Mb以上、20Mb以上、30Mb以上、40Mb以上、又は50Mb以上である。本発明のベクターは、BAC、PAC、YACなどの人工染色体ベクターでは困難なサイズ、すなわち1Mb以上の外来DNA(染色体断片)を搭載可能である。そのうえ、本発明のベクターは、そのように200kb以上、例えば1Mb以上、の大サイズの外来遺伝子又はDNAを安定にかつ高い保持率で齧歯類の細胞内、組織内又は個体内、に含むことを可能にする。
 本発明の実施形態の一つとして、本発明は、200kb以上の巨大なサイズの外来遺伝子又はDNAを齧歯類の細胞、組織又は個体で90%以上の保持率で安定に維持させることが可能なベクター、並びに、該ベクターを作製する方法を提供する。
 外来遺伝子又はDNAは、マウス、ラットなどの齧歯類以外の生物種由来の核酸であり、特に限定されるものではなく、任意の生物種由来の或いは任意の組織又は細胞由来の遺伝子又はDNAであり、好ましくは哺乳動物由来の遺伝子又はDNA、より好ましくはヒト由来の遺伝子又はDNAである。そのような遺伝子又はDNAには、サイトカイン類、ホルモン類、成長因子類、栄養因子類、造血因子類、免疫グロブリン類、G蛋白質共役型受容体類、酵素類などのポリペプチド類をコードする遺伝子又はDNA、その他、腫瘍、筋ジストロフィー、血友病、神経変性疾患(例えばアルツハイマー病、ハンチントン病、パーキンソン病、等)、自己免疫疾患、アレルギー性疾患、遺伝性疾患、感染症、閉塞性動脈硬化症、膿疱性線維症、ADA(アデノシン・デアミナーゼ)欠損症などを含む種々の疾患に関連する治療用遺伝子又はDNA、T細胞受容体(TCR)、ヒト白血球抗原(HLA)などの免疫系遺伝子又はDNA、(ヒト)薬物代謝酵素の遺伝子(群)又はDNAや(ヒト)薬物代謝関連遺伝子又はDNA、ヒト染色体の長腕又は短腕のDNA、(ヒト)ゲノムライブラリーなどが含まれるが、これらに限定されない。
 サイトカイン類には、例えば、インターフェロン類(例えばIF-α,IF-β,IF-γ等)、インターロイキン類(例えばIL-1,IL-2,IL-4,IL-6,IL-11,IL-12等)、腫瘍壊死因子(例えばTNF-α,TNF-β)、TGF-βファミリータンパク質(例えば骨形成促進タンパク質(BMP)、等)などが含まれる。
 ホルモン類には、例えば、成長ホルモン、ヒト絨毛性ゴナドトロピン(hCG)、ヒト胎盤性ラクトゲン(hPL)、ヒト下垂体性性腺刺激ホルモン、甲状腺刺激ホルモン(TSH)、黄体形成ホルモン放出因子、インスリン、グルカゴン、ソマトスタチン、プロラクチンなどが含まれる。
 成長因子類又は栄養因子類には、例えば、インスリン様増殖因子、脳由来神経栄養因子(BDNF)、アルブミン融合絨毛様神経栄養因子、血小板由来神経栄養因子(PDNF)、形質転換成長因子、神経成長因子(NGF)、TNF成長因子などが含まれる。
 血液凝固・溶解因子類には、例えば、第VII因子、第VIII因子、第X因子、t-PAなどが含まれる。
 造血因子類には、例えば、エリスロポエチン、(顆粒球)コロニー形成刺激因子、トロンボポエチンなどが含まれる。
 G蛋白質共役型受容体類には、アドレナリン受容体、ムスカリン性アセチルコリン受容体、アデノシン受容体、GABA受容体(B型)、アンギオテンシン受容体、コレシストキニン受容体、ドーパミン受容体、グルカゴン受容体、ヒスタミン受容体、嗅覚受容体、オピオイド受容体、セクレチン受容体、ソマトスタチン受容体、ガストリンの受容体、P2Y受容体などが含まれる。
 酵素類には、例えば、アスパラギナーゼ、スーパーオキシドジスムターゼ、ウリカーゼ、ストレプトキナーゼ、ドーパミン合成酵素、アデノシン・デアミナーゼなどが含まれる。
 腫瘍、筋ジストロフィー、神経変性疾患(例えばアルツハイマー病、ハンチントン病、パーキンソン病、等)、自己免疫疾患、アレルギー性疾患、遺伝性疾患などを含む種々の疾患に関連する治療用遺伝子には、例えばジストロフィン遺伝子、IL-12遺伝子、TNF-α遺伝子、腫瘍抑制遺伝子、ドーパミン合成系酵素遺伝子、遺伝性欠損酵素の遺伝子類(例えば副腎酵素(例えばチトクロム酵素(P450)、3β-ヒドロキシステロイドデヒドロゲナーゼ、21ヒドロキシラーゼ(P450 c21)、等)の遺伝子、等)などが含まれる。
 免疫系遺伝子には、T細胞受容体(TCR)、ヒト白血球抗原(HLA)、Fcγ受容体(FCGR)、キラー細胞Ig様受容体(killer cell Ig-like receptor(KIR))、白血球Ig様受容体(leukocyte Ig-like receptor(LILR))などの免疫系に関与するタンパク質をコードする遺伝子又はDNAなどが含まれる。
 薬物代謝酵素は、薬や毒物などの異物を分解・排出するための代謝反応に関わる酵素であり、第一相反応(酸化、還元、加水分解)に関わる酵素及び第二相反応(抱合)に関わる酵素を含む。第一相反応に関わる酵素には、例えばチトクロムP450(「CYP」)などの公知の酵素、具体的にはCYP1A、CYP1B、CYP2A、CYP2B、CYP2C、CYP2D、CYP2E、CYP2J、CYP3A、CYP4A、CYP4B及びそれらのサブファミリー、並びにCES、などが含まれる。CYPサブファミリーとしては、例えばCYP3AのサブファミリーにはCYP3A4,CYP3A43,CYP3A5,CYP3A7などが含まれるし、また、CYP2CのサブファミリーにはCYP2C8,CYP2C9,CYP2C18,CYP2C19などが含まれる。一方、第二相反応(抱合)に関わる酵素には、例えばUGT1及びUGT2などが含まれる。
 薬物代謝関連遺伝子には、例えばトランスポーターをコードする遺伝子、核内受容体をコードする遺伝子などが含まれる。トランスポーターをコードする遺伝子の例は、MDR1,MDR2,MRP2,OAT,OATP,OCT,BCRPなどであり、核内受容体をコードする遺伝子の例は、PXR,AhR,CAR,PPARαなどである。
 このように、本発明のベクターに導入可能な、薬物代謝に関係する外来DNA配列は、第一相反応に関わる酵素をコードする遺伝子、第二相に関わる酵素をコードする遺伝子、トランスポーターをコードする遺伝子及び核内受容体をコードする遺伝子からなる群より選択される少なくとも1つの遺伝子の配列、或いは、少なくとも2つの遺伝子の配列を含むことができる。
 免疫グロブリン類をコードする遺伝子又はDNAは、好ましくはヒト抗体遺伝子もしくは遺伝子座であり、具体的にはヒト免疫グロブリン重鎖遺伝子もしくは遺伝子座、ヒト免疫グロブリン軽鎖遺伝子もしくは遺伝子座、又はその重鎖及び軽鎖遺伝子もしくは遺伝子座の両方のDNAである。該軽鎖遺伝子もしくは遺伝子座は、λ軽鎖遺伝子もしくは遺伝子座及び/又はκ軽鎖遺伝子もしくは遺伝子座である。
 本明細書中で使用する「ヒト抗体遺伝子もしくは遺伝子座」は、特に断らない限り、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及び/又はヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を指す。具体的には、ヒト抗体遺伝子もしくは遺伝子座は、例えばヒト14番染色体のimmunoglobulin heavy locus(human)NC_000014.9((塩基番号105586437..106879844)あるいは(塩基番号105264221..107043718))、ヒト2番染色体のimmunoglobulin kappa locus(human)NC_000002.12((塩基番号88857361..90235368)あるいは(塩基番号88560086..90265666))、及びヒト22番染色体のimmunoglobulin lambda locus(human)NC_000022.11((塩基番号22026076..22922913)あるいは(塩基番号21620362..23823654))に記載される塩基配列によって表される。ヒト抗体重鎖遺伝子もしくは遺伝子座は、約1.3Mbの塩基長であり、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座は、約1.4Mbの塩基長であり、ヒト抗体軽鎖λ遺伝子もしくは遺伝子座は、約0.9Mbの塩基長である。
 因みに、マウスの抗体重鎖遺伝子もしくは遺伝子座は、マウス第12番染色体上にあり、マウスの抗体軽鎖κ遺伝子もしくは遺伝子座は、マウス第6番染色体上にあり、マウス抗体軽鎖λ遺伝子もしくは遺伝子座は、マウス第16番染色体上にある。具体的には、マウス抗体重鎖遺伝子もしくは遺伝子座は、例えばChromosome 12,NC_000078.6(113258768..116009954,complement)、マウス抗体軽鎖κ遺伝子もしくは遺伝子座は、Chromosome 6,NC_000072.6(67555636..70726754)、マウス抗体軽鎖λ遺伝子もしくは遺伝子座は、Chromosome 16,NC_000082.6(19026858..19260844,complement)に記載される塩基配列によって表される。
 また、ラットの抗体重鎖遺伝子もしくは遺伝子座は、ラット第6番染色体上にあり、ラットの抗体軽鎖κ遺伝子もしくは遺伝子座は、ラット第4番染色体上にあり、ラット抗体軽鎖λ遺伝子もしくは遺伝子座は、ラット第11番染色体上にある。同様に、これらの遺伝子もしくは遺伝子座の塩基配列は、米国NCBI(GenBank等)、公知文献などから入手可能である。
 本発明において上記のヒト抗体遺伝子を含む上記のマウス人工染色体ベクターは、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター、あるいは、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター、あるいは、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座のすべてを含むマウス人工染色体ベクターである。これらのベクターは、本明細書に記載の染色体工学技術を用いることによって作製可能である。
 本発明の非ヒト動物は、上記のヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター及びヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクターを含む動物、あるいは、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクターを含む動物である。これによって上記の非ヒト動物は、抗原物質を投与されたとき、その物質に対するヒト抗体を産生することが可能になる。
 本明細書におけるヒト抗体は、ヒト免疫グロブリン(Ig)のいずれのクラス及びサブクラスでもよい。そのようなクラスには、IgG、IgA、IgM、IgD及びIgEが含まれ、サブクラスには、IgG1、IgG2、IgG3、IgG4、IgA1及びIgA2が含まれる。これらのクラス及びサブクラスは、重鎖の違いによって分けることが可能であり、IgG鎖は、γ鎖と称し、IgG1~IgG4に対応してγ1、γ2、γ3及びγ4鎖と称し、IgA、IgM、IgD、IgEはそれぞれα鎖(α1及びα2)、μ鎖、δ鎖、ε鎖と称する。いずれの抗体の軽鎖にもκ鎖とλ鎖があり、免疫グロブリン遺伝子の再配列の過程でκ鎖遺伝子の再構成が不成功に終わるとλ鎖遺伝子の再構成が起こることが知られている。また、ヒト抗体重鎖遺伝子座は、5'から3'に向けて、VH1,VH2,....,VHm(ここで、mは、例えば38~46である。)を含むV(variable)領域遺伝子、DH1,DH2..DHn(ここで、nは、例えば23である。)を含むD(diversity)領域遺伝子、JH1,JH2..JHr(ここで、rは6である。)を含むJ(joining)領域遺伝子、Cμ,Cδ,Cγ3,Cγ1,Cα1,Cγ2,Cγ4,Cε,Cα2を含むC(constant)領域遺伝子を含む。免疫システムにおいて上記のヒト免疫グロブリン遺伝子の再配列を介して産生される抗体が、ヒト抗体である。
 ヒト抗体分子は、2本のヒト抗体重鎖と2本のヒト抗体軽鎖からなり、各重鎖と各軽鎖は2つのジスルフィド結合によって結合されており、並びに、2本の重鎖は定常(C)領域で2つのジスルフィド結合によって結合された構造を有する。また、抗体分子の可変(V)領域には、とりわけ変異の大きい部分が3か所あり、相補性決定領域(complementarity-determining region(CDR))と呼ばれており、N末端側からCDR1、CDR2及びCDR3という。このCDR領域の配列の違いにより抗体の抗原に対する結合特性が変化する。免疫グロブリン遺伝子の再構成によって抗体の多様性が生じることが知られている。
 本発明のマウス人工染色体ベクターにおける外来遺伝子又は外来DNAの挿入部位の近傍又は挿入部位の両側には、少なくとも1つのインスレーター配列を存在させることができる。インスレーター配列は、エンハンサーブロッキング効果(すなわち、隣り合う遺伝子が互いに影響を受けない)又は染色体バウンダリー効果(遺伝子発現を保証する領域と遺伝子発現が抑制される領域を隔て区別する)を有する。このような配列には、例えばヒトβグロビンHS1~HS5、ニワトリβグロビンHS4などが包含される。
 外来遺伝子又はDNAの導入は、上記のDNA配列挿入部位として挿入されている、上で例示されるような部位特異的組換え酵素の系を利用して行うことができる。例えば、Cre酵素の認識部位であるloxP配列と外来遺伝子又はDNAを含むターゲティングベクター或いは、Cre酵素の認識部位であるloxP配列を挿入した外来遺伝子又はDNAを含む染色体断片を構築し、本発明のマウス人工染色体ベクターを含む細胞内でCre酵素を発現させることにより、loxP配列において該ターゲティングベクター或いは該染色体断片との部位特異的組換えにより、外来遺伝子又はDNAを導入できる。
 本発明のマウス人工染色体ベクターには、部位特異的組換え酵素の認識部位(例えばloxP配列、FRT配列など)を含む環状DNAを挿入することもでき、大腸菌を宿主としたプラスミドや、酵母を宿主とした環状YAC等の既存のベクターによりクローン化されたDNAも挿入できる。好適なloxP配列はP1ファージに由来する野生の配列であり、Cre酵素による人工染色体ベクター上のloxP配列への環状インサートの挿入反応は可逆的である。一旦環状インサートが挿入されると、人工染色体ベクター上に2つのloxP配列が残る。このため再度Cre酵素を発現させると環状インサートを切り出す逆反応が起きる可能性もあり、二次的にインサートを挿入するようなさらなる人工染色体ベクターの改変が困難となる。しかし、塩基置換を行った変異loxP配列やφC31インテグレースの認識部位であるattB/attP配列の組み合わせ等によっては、逆反応を起こさず、複数の環状インサートを逐次挿入する系も構築できる。
(3)マウス人工染色体ベクターの細胞への移入及び非ヒト動物の作出
 本発明のマウス人工染色体ベクター、或いは、外来遺伝子若しくはDNAを含む本発明のマウス人工染色体ベクターは、任意の細胞に移入又は導入することができる。そのための手法には、例えば、微小核細胞融合法、リポフェクション、リン酸カルシウム法、マイクロインジェクション、エレクトロポレーションなどが含まれるが、好ましい手法は微小核細胞融合法である。
 微小核細胞融合法は、本発明のマウス人工染色体ベクターを含有する微小核形成能を有する細胞(例えばマウスA9細胞)と、他の所望の細胞との微小核融合によって該ベクターを該他の細胞に移入する方法である。微小核形成能を有する細胞は、倍数体誘発剤(例えばコルセミド、コルヒチンなど)で処理して微小核多核細胞を形成し、サイトカラシン処理により微小核体を形成する処理を行ったのちに、所望の細胞との細胞融合を行う。
 上記のベクター導入可能な細胞は、動物細胞、好ましくはヒト細胞を含む哺乳動物細胞、例えば卵母細胞、精子細胞などの生殖系列細胞、胚性幹(ES)細胞、精子幹(GS)細胞、体性幹細胞などの幹細胞、体細胞、胎児細胞、成体細胞、正常細胞、疾患細胞、初代培養細胞、継代細胞又は株化細胞など、を包含する。幹細胞には、例えばES細胞、胚性生殖(EG)細胞、胚性癌腫(EC)細胞、mGS細胞、ヒト間葉系幹細胞などの多能性幹細胞、人工多能性幹(iPS)細胞、核移植クローン胚由来胚性幹(ntES)細胞などが含まれる。好ましい細胞は、哺乳動物(好ましくは、マウスを含む齧歯類)由来の体細胞、非ヒト生殖系列細胞、幹細胞及び前駆細胞からなる群から選択される。細胞が齧歯類などの哺乳類由来の細胞である場合、本発明のベクターが導入された哺乳類(例えばマウスなどの齧歯類)の細胞又は組織において、ベクターがより安定に保持される、すなわち細胞からのベクターの脱落が有意に低下する、又は脱落が起こらない。
 細胞は、例えば、肝細胞、腸細胞、腎細胞、脾細胞、肺細胞、心臓細胞、骨格筋細胞、脳細胞、骨髄細胞、リンパ球細胞、巨核球細胞、精子、卵子などである。
 組織は、例えば肝臓、腸、腎臓、胸腺、脾臓、肺、心臓、筋肉(例えば骨格筋)、脳、骨髄、精巣、卵巣などの組織である。
 ES細胞は、対象動物の受精卵の胚盤胞から内部細胞塊を取出し、マイトマイシンC処理マウス胎仔線維芽細胞をフィーダーにして樹立し維持することができる(M.J.EvansとM.H.Kaufman(1981)Nature 292:154-156)。
 iPS細胞は、体細胞(体性幹細胞を含む)に、ある特定の再プログラム化因子(DNA又はタンパク質)を導入し、適当な培地にて培養、継代培養することによって約3~5週間でコロニーを生成する。再プログラム化因子は、例えばOct3/4、Sox2、Klf4及びc-Mycからなる組み合わせ;Oct3/4、Sox2及びKlf4からなる組み合わせ;Oct4、Sox2、Nanog及びLin28からなる組み合わせ;或いは、Oct3/4、Sox2、Klf4、c-Myc、Nanog及びLin28からなる組み合わせなどが知られている(K.Takahashi and S.Yamanaka,Cell 126:663-676(2006);WO 2007/069666;M.Nakagawa et al.,Nat.Biotechnol.26:101-106(2008);K.Takahashi et al.,Cell 131:861-872(2007);J.Yu et al.,Science 318:1917-1920(2007);J.Liao et al.,Cell Res.18,600-603(2008))。培養例は、マイトマイシンC処理したマウス胎仔線維芽細胞株(例えばSTO)をフィーダー細胞とし、このフィーダー細胞層上でES細胞用培地を用いて、ベクター導入体細胞(約10~10細胞/cm)を約37℃の温度で培養することを含む。フィーダー細胞は必ずしも必要ではない(Takahashi,K.et al.,Cell 131:861-872(2007))。基本培地は、例えばダルベッコ改変イーグル培地(DMEM)、ハムF-12培地、それらの混合培地などであり、ES細胞用培地は、マウスES細胞用培地、霊長類ES細胞用培地(リプロセル社)などを使用することができる。
 ES細胞及びiPS細胞は、生殖系列に寄与することが知られているので、目的の遺伝子又はDNAを含む本発明のマウス人工染色体ベクターを導入したこれらの細胞を、該細胞が由来する同種の哺乳動物の胚の胚盤胞に注入し、この胚を仮親の子宮に移植し、出産させることを含む手法によって、非ヒト動物(又は、トランスジェニック動物(ヒトを除く))を作出することができる。さらにまた、得られた雌雄のトランスジェニック動物を交配することによって、ホモ接合性動物、さらにその子孫動物を作出することができる。
 本発明のマウス人工染色体ベクターを介してES細胞やiPS細胞などの分化多能性細胞、その他の上記細胞類に、ヒト抗体遺伝子、疾患治療用遺伝子、薬物代謝関連遺伝子などの外来の遺伝子若しくはDNAを導入することによって、ヒト抗体を産生可能にする細胞や非ヒト動物を作製することができるし、また、治療用タンパク質を産生可能にする細胞を作製することができるし、さらにまた、薬物代謝関連疾患などの疾患モデル非ヒト動物を作製することができる。
 そのような非ヒト動物では、マウス人工染色体ベクターに含まれる外来遺伝子に対応する内在遺伝子が破壊されている又は内在遺伝子の発現が低下していることが好ましい場合もある。破壊の方法には、ジーンターゲティング法を使用することができる。内在遺伝子の発現の低下法には、RNAi法やmiRNA法などを用いることができる。例えば、そのような外来遺伝子の例には、薬物代謝関連遺伝子、ヒト抗体遺伝子などが挙げられる。内在遺伝子が破壊された非ヒト動物は、外来遺伝子を含むマウス人工染色体ベクターを含むキメラ非ヒト動物若しくはその子孫と、対応する内在遺伝子をクラスターごと欠失させたキメラ動物若しくは子孫とを交配させて得られた該内在遺伝子がヘテロに欠失した動物同士をさらに交配させることによって作出することができる。
 上記の手法によって、マウス人工染色体ベクターを含む細胞又はトランスジェニック非ヒト動物を作製することができる。具体的な非ヒト動物の例は、マウス人工染色体ベクターを含む、マウスやラットなどの齧歯類である。
 すなわち、本発明は、マウス人工染色体ベクターを含むことを特徴とする、細胞又は非ヒト動物を提供する。
 さらにまた、本発明の非ヒト動物から得られる細胞、組織又は器官は、それらから、外来遺伝子によって発現されたタンパク質を産生する細胞株を作製するために使用することも可能である。
(4)ヒト抗体産生非ヒト動物
 本発明の非ヒト動物は、上記のとおり、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクターを含む動物、あるいは、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクターを含む動物である。
 具体的には、例えば図17、図21に示された手順によって、ヒト抗体を産生可能な本発明の非ヒト動物(マウス及びラット)を作製することができる。
 以下において、マウス人工染色体を利用する非ヒト動物の作製例について説明する。
 部位特異的組換え酵素の認識部位(例えばloxP及びFRT)を導入して改変された、ヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含む動物細胞(例えばDT40)、及びヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含む動物細胞(例えばDT40)のそれぞれを、細胞融合法によりマウス人工染色体(MAC)を含む齧歯類細胞(例えばCHO)に移入したのち、部位特異的組換え酵素(例えばCre)発現を誘導することにより、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを含む齧歯類細胞、並びにヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを含む齧歯類細胞を作製する。
 動物細胞(例えばDT40)に保持されるヒト14番染色体上のヒト抗体重鎖遺伝子もしくは遺伝子座の近傍に部位特異的組換え酵素の認識部位(例えばFRT)を導入したのち、改変されたヒト抗体重鎖遺伝子もしくは遺伝子座を含む動物細胞を、細胞融合法によりMACを含む齧歯類細胞(例えばCHO)に移入して、ヒト抗体重鎖遺伝子もしくは遺伝子座を含むMACを含む齧歯類細胞を作製する。
 上記のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを含む齧歯類細胞、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを含む齧歯類細胞のそれぞれと、上記のヒト抗体重鎖遺伝子もしくは遺伝子座を含む齧歯類細胞とを融合することによって、ヒト抗体重鎖遺伝子もしくは遺伝子座を含む齧歯類細胞内に、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMAC、又はヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを移入したのち、部位特異的組換え酵素(例えばFLP)発現を誘導することにより、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを含む齧歯類細胞、並びにヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを含む齧歯類細胞のそれぞれを作製する。
 上記のヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを含む齧歯類細胞、並びにヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを含む齧歯類細胞のそれぞれを、微小核細胞融合法により、非ヒト動物(例えばマウス又はラット)分化多能性幹細胞(例えばES細胞又はiPS細胞)と融合して、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを含む非ヒト動物分化多能性幹細胞、並びにヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを含む非ヒト動物分化多能性幹細胞を作製する。
 上記のヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを含む非ヒト動物分化多能性幹細胞、並びにヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを含む非ヒト動物分化多能性幹細胞のそれぞれを、非ヒト動物の初期胚(例えば8細胞期胚又は胚盤胞期胚)に移植して、上記MACのそれぞれを含むキメラ動物を作製し、さらに子孫動物を作製する。さらに子孫動物同士の交配により上記MACのそれぞれを含む子孫動物を作製する。
 同様の手法を用いることによって、上記のヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクターを含む非ヒト動物を作製することができる。
 上記のヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを含む非ヒト動物、又は、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを含む非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物との間での交配を行い、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを含む、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた非ヒト動物、あるいは、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを含む、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた非ヒト動物を作製する。
 或いは、上記のヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを含む非ヒト動物、並びに、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを含む非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物との間での交配を行い、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを含む、並びに、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを含む、かつ対応するヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に内在抗体遺伝子もしくは遺伝子座がノックアウトされた非ヒト動物を作製する。
 或いは、上記のヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクターを含む非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物を交配し、MACを含み、かつ該動物の該内在抗体遺伝子もしくは遺伝子座がノックアウトされた、非ヒト動物を作製する。
(5)有用なタンパク質の生産法
 本発明はさらに、外来DNA配列を発現可能に含むマウス人工染色体ベクターを含む細胞を培養し、産生された該DNAによってコードされるタンパク質を回収することを含む、タンパク質の生産方法を提供する。
 タンパク質として、例えば上記の医療上、診断上、農業上などの産業上有用なタンパク質又はポリペプチド類が挙げられる。これらのタンパク質又はポリペプチド類をコードするDNAを、プロモーター(及び必要であれば、エンハンサー)の存在下で発現可能となるようにマウス人工染色体ベクターに挿入し、適当な細胞を形質転換若しくはトランスフェクションする。得られた細胞を培養し、該DNAを発現させて該タンパク質又はポリペプチドを産生させ、これを、細胞又は培地から回収する。
 細胞は、哺乳動物細胞の他に、Sf細胞などの昆虫細胞、鳥類細胞、酵母細胞、植物細胞などの真核細胞の使用も可能である。
 培地を含む培養条件は、細胞の種類に応じて選択され、培養条件として公知の条件を使用しうる。例えば、動物細胞の培地としては、MEM培地、DMEM培地、Ham’s F12培地、Eagle’s MEM培地、イスコフEME培地、RPMI1640培地、これらの混合培地などが含まれる。
 タンパク質又はポリペプチド類の回収(又は、単離)は、ゲルろ過クロマトグラフィー、イオン交換クロマトグラフィー、親和性クロマトグラフィー、HPLC、FPLCなどのクロマトグラフィー法、塩析法、硫安沈殿法、有機溶媒沈殿法、限外ろ過法、結晶化などの公知の手段を単独で又は組み合わせて実施しうる。
(6)ヒト抗体の製造法
 本発明はさらに、ヒト抗体遺伝子を含むマウス人工染色体ベクターを含む上記(4)の非ヒト動物を用いてヒト抗体を産生し、該ヒト抗体を回収することを含む、ヒト抗体の製造方法を提供する。
 ヒト抗体遺伝子は、ヒトIgG,IgM,IgA,IgD,IgEのいずれかのクラス、或いは、ヒトIgG1,IgG2,IgG3,IgG4,IgA1,IgA2のいずれかのサブクラスをコードする遺伝子である。好ましいヒト抗体遺伝子は、IgGクラス及びそのサブクラスである。
 ヒト抗体は、2本の同一配列の重鎖(H)と2本の同一配列の軽鎖(L)から構成されており、H鎖もL鎖もともに、可変領域と定常領域から構成されている。ヒトH鎖及びL鎖の可変領域はともに、3つの超可変領域(N末端側からC末端側にCDR1,CDR2,CDR3の順番)と4つのフレームワーク領域(N末端側からC末端側にFR1,FR2,FR3,FR4の順番)からなり、ヒトH鎖及びL鎖のそれぞれ3つずつのCDR配列によって抗体の特異性が決まる。
 ヒトIgG抗体の場合、重鎖であるμ鎖と、軽鎖であるλ鎖若しくはκ鎖とによって構成されており、これらの抗体鎖遺伝子はそれぞれ、ヒト14番染色体、22番染色体、2番染色体上に存在する。本発明で使用するヒト抗体遺伝子としては、各抗体遺伝子座を含むヒト染色体断片を使用し、これらを異なる又は同一のマウス人工染色体に組み込む。抗体遺伝子配列は、NCBI(米国)のデータベースなどから入手可能である。この一連の手法は、例えば特開2005-230020号公報に記載される技術の改良である。
 完全ヒト抗体を生産可能な非ヒト動物は、ヒトμ鎖遺伝子座を含むマウス人工染色体ベクターを含む非ヒト動物と、ヒトλ鎖遺伝子座及び/又はヒトκ鎖遺伝子座を含むマウス人工染色体ベクターを含む同種の非ヒト動物とを交配することによって、両方のH鎖及びL鎖遺伝子座を保有するキメラ非ヒト動物及びその子孫動物を得ることが可能である。
 このようにして作製された完全ヒト抗体産生可能な非ヒト動物(例えばマウス、ラットなどの齧歯類)に、ある特定の抗原ペプチド若しくは抗原ポリペプチドを免疫し、該動物の血液からヒト抗体を分離することを含む方法により、ヒト抗体を生産することができる。
 或いは、ある特定の抗原で免疫した非ヒト動物の脾臓を摘出し、ミエローマ細胞と融合させ、モノクローナル抗体を産生するハイブリドーマを得ることも可能である。
(7)治療物質のスクリーニング法
 本発明はさらに、疾患モデル動物である上記非ヒト動物に候補薬剤を投与し、該薬剤の治療効果を評価することを含む、該疾患を治療するのに有効な物質をスクリーニングする方法を提供する。
 疾患モデル非ヒト動物は、ある種のタンパク質の欠損、変異などによる生物機能異常、薬物代謝異常、染色体異常などの異常を原因とする疾患を持つ人工的に作製された動物である。染色体異常をもつモデル非ヒト動物の例は、以下に限定されないが、ヒト18番又は21番染色体トリソミーをもつ動物である。
 このような非ヒト動物は、遺伝子又は染色体に上記のような異常を含む遺伝子又は染色体断片を作製し、これを本発明のマウス人工染色体ベクターに組み込み、ES細胞又はiPS細胞に導入し、受精卵の胚盤胞に注入し、この細胞を非ヒト動物の仮親の子宮に移植し、出産させることを含む方法によって作出することができる。
 上記のようにして作製された非ヒト動物に、候補薬剤を投与し、該薬剤の治療効果を評価することによって、該疾患を治療するのに有効な物質をスクリーニングすることができる。
 候補薬剤は、非限定的に、例えば、低分子化合物、高分子化合物、(糖)タンパク質、ペプチド、(リン又は糖)脂質、糖類、核酸類などである。
(8)薬物又は食品の薬理作用、代謝又は毒性の試験方法
 本発明の実施形態によれば、本発明はまた、ヒト薬物代謝関連遺伝子を含むマウス人工染色体ベクターを含む上記非ヒト動物或いは該動物由来の細胞、器官又は組織に、薬物又は食品を投与し、該薬物又は食品の薬理作用及び/又は代謝及び/又は毒性を測定することを含む、薬物又は食品の薬理作用及び/又は代謝及び/又は毒性の試験方法を提供する。
 本発明はまた、ヒト薬物代謝関連遺伝子を含むマウス人工染色体ベクターを含む上記非ヒト動物から得られたミクロソーム又はミクロソーム画分S9を、培養細胞若しくは細菌及び薬物若しくは/及び食品と共に培養し、薬物又は食品が該細胞又は細菌に及ぼす(悪)影響(例えば変異、等)を測定することを含む、薬物又は食品の毒性の試験方法を提供する。
 ヒト薬物代謝関連遺伝子は、上に例示したものである。また、非ヒト動物の作出方法も上に記載したものと同様である。
 ヒト薬物代謝関連遺伝子を有するマウス人工染色体ベクターを含む上記の非ヒト動物を用いる上記方法では、例えば、該動物の状態の観察、臓器や染色体に及ぼす影響の試験などによって、薬物又は食品の薬理作用、代謝又は毒性を判定することができる。
 本発明のもうひとつの方法では、該非ヒト動物から得られたミクロソーム若しくはミクロソーム画分S9(9000g画分であって加水分解、還元、酸化、結合などを触媒する多数の酵素を含む画分)を、培養細胞(特に、動物細胞、好ましくは哺乳類細胞)又は細菌(好ましくは、サルモネラ菌)と一緒に、薬物及び/又は食品の存在下で培養する。薬物又は食品の、細胞に対する毒性の検出は、エイムス試験又は小核試験によって行うことができる。エイムス試験では、サルモネラ菌の変異に基づいて毒性を判定する。小核試験では、細胞核の染色体の異常に基づいて毒性を判定する。これらの試験法はよく知られており、本発明の方法で使用しうる。
 以下、実施例を挙げて本発明をさらに詳しく説明するが、本発明の範囲はこれらの具体例に限定されるものではない。
[実施例1]マウス人工染色体ベクター構築を目的とした染色体改変のためのマウス染色体保持DT40細胞の作製
 マウス人工染色体ベクター構築のため、微小核形成率の高いマウスA9細胞を介して、相同組換え頻度の高いニワトリDT40細胞へマウス染色体を移入する。
[A]A9細胞とマウス繊維芽細胞(Bsd;mChr-Neo)のハイブリッド細胞樹立
 薬剤耐性遺伝子(neo耐性遺伝子)で標識されたマウス10番染色体及び16番染色体を含有するマウス繊維芽細胞であるmouse embryonic fibroblast(mChr10-Neo、mChr16-Neo)と公知のマウスA9細胞にブラストサイジンS耐性遺伝子であるBsd遺伝子を挿入したmouse A9(Bsd)とを細胞融合し、薬剤耐性遺伝子で標識されたマウス染色体を保持するマウスA9雑種細胞であるmouse A9xmouse embryonic fibroblast hybrid(Bsd;mChr10-Neo及びBsd;mChr16-Neo)を樹立する(図1)。薬剤耐性遺伝子で標識されたマウス染色体を微小核細胞融合法により相同組換頻度の高いニワトリDT40細胞へ導入するために、微小核形成率が高いことが知られているマウスA9細胞に薬剤耐性遺伝子で標識されたマウス染色体を細胞融合によって導入する。
[A.1]細胞融合及び二重薬剤耐性クローンの単離
 G418耐性遺伝子であるneo遺伝子をマウス染色体上に挿入したマウス繊維芽細胞であるmouse embryonic fibroblast(mChr10-Neo及びmChr16-Neo)と、ブラストサイジンS耐性遺伝子であるBsd遺伝子が挿入されているマウスA9細胞であるmouse A9(bsd)をそれぞれPBS(-)で細胞表面を洗浄後、トリプシン添加によって細胞を分散し、培養液(10%FBS、DMEM)に懸濁し、それぞれの細胞1x10個を培養用フラスコ(25cm)に同時に植え込み、一日間培養する。PBS(-)で細胞表面を2回洗浄した後に3mlのPEG(1:1.4)溶液[5g,PEG1000,cat:165-09085,wakoを無血清DMEM6mlに溶解させ、ジメチルスルホキシド1mlを加えて濾過滅菌する]で1分間処理し、さらに3mlのPEG(1:3)溶液[5g,PEG1000,cat:165-09085,wakoを無血清DMEM15mlに溶解させて濾過滅菌する]に換えて1分間処理した。PEG溶液を吸引後、無血清DMEMで3回洗浄し、通常の培養液(10%FBS、DMEM)で一日間培養した。PBS(-)で細胞表面を洗浄後、トリプシン添加によって細胞を分散し、G418及びブラストサイジンSを含む二重選択培養液(10%FBS、DMEM)に懸濁した細胞をプラスチック培養皿に植え込み、2~3週間選択培養した。mChr10-Neoでは4回の細胞融合で得た各合計9個の耐性コロニーを単離し増殖させ、mChr16-Neoでは4回の細胞融合で得た各合計10個の耐性コロニーを単離し増殖させ、ランダムに選択したクローンを以降に用いた(クローン名:mouse A9xmouse embryonic fibroblast hybrid(bsd;mChr10-neo及びbsd;mChr16-neo))。
[B]薬剤耐性遺伝子で標識されたマウス染色体のDT40細胞への導入
 薬剤耐性遺伝子で標識されたマウス染色体を含有するマウスA9雑種細胞であるmouse A9xmouse embryonic fibroblast hybrid(bsd;mChr10-neo及びbsd;mChr16-neo)から薬剤耐性遺伝子で標識されたマウス染色体をニワトリ由来であるDT40細胞へ導入する(図2)。人工テロメア(TTAGGG)n配列(サイズ:約1kb)の挿入による染色体部位特異的切断であるテロメアトランケーション、及び相同組換によりマウス染色体にDNA配列挿入部位であるloxP配列の挿入を効率的に行うために、薬剤耐性遺伝子で標識されたマウス染色体を微小核細胞融合法により相同組換頻度の高いDT40細胞へ導入する。
[B.1]微小核細胞融合及び薬剤耐性クローンの単離
 染色体改変を効率的に行うために、マウス染色体をA9雑種細胞クローンであるA9xmouse embryonic fibroblast hybrid(bsd;mChr10-neo及びbsd;mChr16-neo)から相同組換え頻度の高いニワトリ由来細胞であるDT40へ移入した。フラスコ×24で培養していたドナー細胞であるA9xmouse embryonic fibroblast hybrid(bsd;mChr10-neo及びbsd;mChr16-neo)がそれぞれのフラスコにおいて70%コンフルエントになった時点で、コルセミド処理(コルセミド0.05μg/ml、20%FCS、DMEM)を37℃、5%COの条件下にて48時間行った。コルセミド処理が終了したら、フラスコ内のmediumをアスピレートし、そのフラスコの9分目までをサイトカラシンBで満たした。フラスコを大型高速遠心機(BECKMAN)専用の容器に挿入し、温湯(34℃)をフラスコが隠れない程度に加え、遠心(Rortor ID10.500、8,000rpm、1h、34℃)をした。遠心終了後、サイトカラシンBを回収し、各フラスコ内のペレットを、それぞれ2mlの無血清培地DMEMにて15mlチューブに回収した。8μm→5μm→3μmフィルターの順にゆっくりとフィルトレーションした後、それぞれのチューブを遠心(2000rpm、5分、R.T)し、上清をアスピレートした後、各チューブのペレットをまとめて5mlの無血清培地DMEMに回収、懸濁し、遠心(2000rpm、5分)をした。
 レシピエント細胞であるDT40細胞は浮遊細胞であるため、一度付着状態にする必要がある。DT40を6穴プレート(Nunc)のうちの1穴に付着させるために50μg/mlに調整したポリ-L-リジン(SIGMA)1.5mlで1穴を37℃、オーバーナイトでインキュベートすることでコーティングした。ポリ-L-リジンを回収し、プレートをPBS(-)で洗浄し、約1x10個のDT40細胞を2mlの無血清培養液(DMEM)でプレートに静かに播種した。プレートごと遠心機(Beckman)にセットし、37℃、1200rpm、3分間遠心して付着DT40にした。
 精製した微小核細胞をPHA-P(SIGMA)を含む無血清培養液2mlに再度懸濁し、無血清培養液(DMEM)を除去した付着DT40上に静かに播種した。プレートを37℃、1200rpm、3分間遠心した。上清を除去し、PEG1000(Wako)[5gのPEG1000を無血清DMEM培地に完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]溶液を1mlで正確に1分間融合した。無血清培養液(DMEM)を4mlで4回洗浄し、通常のDT40の培養液3mlでピペッティングして、付着DT40を浮遊状態に戻し、37℃、24穴プレート2枚に播種し、オーバーナイトでインキュベートした。G418を1500μg/mlになるように加え、3~4週間選択培養した。A9xmouse embryonic fibroblast hybrid(bsd;mChr10-neo)#4、A9xmouse embryonic fibroblast hybrid(bsd;mChr16-neo)#2の微小核細胞融合で得た各合計10及び2個の耐性コロニーを単離し増殖させ、以降の解析を行った(クローン名:DT40(mChr10-neo)及びDT40(mChr16-neo))。
[B.2]薬剤耐性クローンの選別
[B.2.1]FISH解析
 上記で得られたDT40(mChr10-neo)及びDT40(mChr16-neo)のクローンについてShinoharaらの報告(Human Molecular Genetics,10:1163-1175,2001)に記された方法でマウスcot-1 DNAをプローブにしたFISH解析を行ったところDT40(mChr10-neo)1及びDT40(mChr16-neo)3において、それぞれ90%、93%で正常核型(2n)あたりのマウス染色体数が1コピーであったため、以降のステップに用いた。
[実施例2]マウス10番染色体改変によるマウス人工染色体(10MAC)の構築
 マウス人工染色体ベクターを構築するにあたり、内在の遺伝子を可能な限り削除することが必要である。相同組換え効率の高いニワトリDT40細胞内においてテロメアトランケーションという方法で内在遺伝子を含むマウス10番染色体長腕の大部分を削除する。
[A]ニワトリDT40細胞内におけるマウス10番染色体領域セントロメア近傍から遠位のテロメアトランケーションによる部位特異的切断
 マウス人工染色体ベクターとして導入目的遺伝子以外の内在遺伝子は少ない方が実験系に及ぼす影響が軽減され、かつ内在遺伝子のうちインプリント遺伝子のようにマウス個体発生に遺伝子発現量の変化による影響を及ぼす遺伝子を極力残さないことが必要であるので、マウス長腕の大部分を削除する(図3)。
[A.1]テロメアトランケーションベクター作製
 短腕近位部位特異的切断用の基本ベクターにはpBS-TEL/puroコンストラクト(Kuroiwa et al.Nature Biotech 2002)を用いた。
 pBS-TEL/puroのEcoRIサイトにセルフアニーリングした合成オリゴ(Sigma)を挿入した。合成オリゴの配列を以下に示す。
EcoRI-AscI-EcoRI:5’-AATTCGGCGCGCCG-3’(配列番号1)
 GenBankデータベースより得た(NC_000076.6)マウス10番染色体長腕近位の塩基配列から相同組換え標的配列を設計した。DT40(mChr10-neo)1からゲノムDNAを抽出して鋳型とし、相同組換え標的配列をPCR増幅するためのプライマーの配列を以下に示す。
AscI_m10T F2:5'-TCGAGGCGCGCCAGCCTTCTAGGGAACAGGAGATGTTCAA-3' (配列番号2)
BamHI_m10T R3:5'-TCGAGGATCCGCCTTGAGTGGGGTTCTAGTCATCTTTC-3' (配列番号3)
 PCRは、サーマルサイクラーとしてPerkin-Elmer社製のGeneAmp9600を、TaqポリメラーゼはKOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,dGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃6分を35サイクル行ったPCR産物をAscIとBamHI(NEB)で消化して、アガロースゲルにより分離し精製後、AscI及びBamHI消化したpBS-TEL/puroにクローニングした(ベクター名:pBS-TEL/puro_10MAC)。ターゲティングベクター、標的配列、及び相同組換えにより生じる染色体アレルを図4に示した。
[A.2]相同組換え体の選別
 マウス10番染色体領域近位から遠位において部位特異的切断を行うベクターは上述のpBS-TEL/puro_10MACを用いてトランスフェクションを行い、ピューロマイシン耐性クローンの単離及び相同組換え体の選別を行った。
 得られたクローンからDNAを抽出しそれを鋳型にPCRを行い、部位特異的切断の確認を行った。プライマー配列を以下に示す。
m10 F6:5'-AACTACCCAGTTCTGCATTTGGTGTGAG-3' (配列番号4)
m10 R6: 5'- ATCAGTCATCAGTACCCCCAACCTCTCT-3' (配列番号5)
m10 F6 (前出)
PuroI:5'-GAGCTGCAAGAACTCTTCCTCACG-3' (配列番号6)
 PCRは、サーマルサイクラーとしてPerkin-Elmer社製のGeneAmp9600を、TaqポリメラーゼはKOD FX (TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,dGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃8分を35サイクル行った。
Plekhg1 F:5'- TGGATGGGTTTCAATGCCACT-3' (配列番号7)
Plekhg1 R:5'- GGCATTCTCCCCTGTTGTGG-3' (配列番号8)
Gm8155 F:5'- ACCCCTCGAACCCCTATTGC-3' (配列番号9)
Gm8155 R:5'- CACGCCATCGGTGATGGATA-3' (配列番号10)
Iyd F:5'- TGGGATGACCCCCACTTCTTT-3' (配列番号11)
Iyd R:5'- TTTTGGCCTCTTGCCCCATA-3' (配列番号12)
 PCRは、サーマルサイクラーとしてPerkin-Elmer社製のGeneAmp9600を、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,dGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、94℃30秒、60℃30秒、72℃30秒を35サイクル行った。
 その結果、マウス10番染色体領域を切断できた3クローンを確認した(クローン名:DT40(10MAC))。ターゲティングベクター、標的配列、及び相同組換えにより生じる染色体アレルを図4に示した。
[A.3]Two-color FISH解析による薬剤耐性クローンの選別
 上記で得られたDT40(10MAC)の3クローンについてShinoharaらの報告(Human Molecular Genetics,10:1163-1175,2001)に記された方法でマウスcot-1 DNA及びPGKPuro plasmidをプローブにしたFISH解析を行ったところ3クローンすべてにおいてマウス10番染色体の長腕部分がセントロメア近傍で切断されていることを確認した(図5)。以降のステップではクローンT5-26,T6-37を用いた。
[実施例3]マウス人工染色体ベクター10MAC1の構築
 マウス人工染色体10MACにDNA挿入配列としてGFP-PGKneo-loxP-3’HPRTタイプのloxP配列を挿入することでマウス人工染色体ベクター10MAC1を構築し、遺伝子搭載を行うためのhprt欠損CHO細胞株へ導入する。
[A]マウス人工染色体10MACへのGFP-PGKneo-loxP-3’HPRTタイプのloxP配列の挿入によるマウス人工染色体ベクター10MAC1構築
 マウス人工染色体10MACへ遺伝子搭載サイトloxP及び、その存在をモニター可能なGFP発現ユニットを搭載する。
[A.1]GFP-PGKneo-loxP-3’HPRTタイプのloxPターゲティングベクター作製
 DT40(10MAC)にloxP配列を挿入するための基本プラスミドにはV913(Lexicon genetics)を用いた。loxP挿入部位であるマウス10番染色体のDNA配列はGenBankデータベースより得た(NC_000076.6)。薬剤耐性クローンからゲノムDNAを抽出して鋳型とし、相同組換えの二つの標的配列の増幅に用いたプライマーの配列を以下に示す。
KpnI_m10 LA F:5'- TCGAGGTACCTCTAAGTCAGGGAAAGATCCCCTTCTTG-3' (配列番号13)
XhoI_m10 LA R:5'- TCGACTCGAGGACCATGAAGATGGTCCAACTAAAGCAA-3' (配列番号14)
SalI_m10 RA F:5'- TCGAGTCGACCACTGCTCTTTCTTTAGTTACATGCAGCCC-3' (配列番号15)
NotI_m10 RA R:5'- TCGAGCGGCCGCATTCTTGCCAAGCTACTCTTCCGAGCTA-3' (配列番号16)
 PCRは、サーマルサイクラーとしてPerkin-Elmer社製のGeneAmp9600を、TaqポリメラーゼはKOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,dGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃3分及び5分を35サイクル行った。
 それぞれのPCR産物をKpnI(NEB)とXhoI(NEB)及びSalI(NEB)とNotI(NEB)で消化して、アガロースゲルにより分離し精製後、V913のKpnI/XhoIあるいはSalI/NotIサイトにクローニングした(ベクター名:V913-m10LARA)。3’HPRT-loxPはV820(Lexicon genetics)のXbaIサイトにオリゴ合成したloxP配列をクローニングした。HPRT遺伝子の3番目から9番目のエクソンである3’HPRT-loxPをV907(Lexicon genetics)のEcoRIとAscIにクローニングした(ベクター名:X3.1)。さらにX3.1のKpnIサイトとEcoRIサイトにKpnIとNotIにより切り出したPGKneo配列をクローニングした(ベクター名:X4.1)。X4.1からKpnIとAscIにより切り出したPGKneo-loxP-3’HPRTをV913のKpnIサイトとAscIサイトにクローニングした(ベクター名:pVNLH)。pVNLHのEcoRVサイトにNotIとSalI消化後に平滑化を行ったHS4-CAG-EGFP-HS4(大阪大学、岡部博士及びNIH、Felsenfeld博士より分与)をクローニングした(ベクター名:pVGNLH)。pVGNLHからSalIとAscIにより切り出したGFP-PGKneo-loxP-3’HPRTカセットをV913-m10LARAのXhoIサイトとAscIサイトにクローニングした(ベクター名:p10MAC1)。ターゲティングベクター、標的配列及び相同組換えにより生じる染色体アレルを図6に示す。
[A.2]トランスフェクション及びG418耐性クローンの単離
 ニワトリDT40細胞の培養は10%ウシ胎仔血清(ギブコ、以下「FBS」で記す)、1%ニワトリ血清(ギブコ)、10-4M 2-メルカプトエタノール(シグマ)を添加したRPMI1640培地(ギブコ)中で行った。DT40(10MAC)T5-26、T6-37の約10個の細胞を無添加RPMI1640培地で一回洗浄し、0.5mlの無添加RPMI1640培地に懸濁し、制限酵素NotI(TAKARA)で線状化したターゲティングベクターp10MAC1を25μg加え、エレクトロポレーション用のキュベット(バイオラッド)に移し、室温で10分間静置した。キュベットをジーンパルサー(バイオラッド)にセットし、550V、25μFの条件で電圧印加した。室温で10分間静置後、24時間培養した。G418(1.5mg/ml)を含む培地に交換し、96穴培養プレート2枚に分注して約2週間の選択培養を行った。T5-26,T6-37各2回のトランスフェクションで得た各24、20個の耐性コロニーを単離し増殖させ、以後の解析を行った(クローン名:DT40(10MAC1))。
[A.3]相同組換体の選別
[A.3.1]PCR解析
 G418耐性株のゲノムDNAを抽出して鋳型として組換え体を選別するため、以下のプライマーを用いてPCRを行い、マウス10番染色体上で部位特異的に組換え起こっているかを確認した。そのプライマー配列を以下に示す。
m10 F1:5'- TGAGAAATACCGAATGGCAGAGAAACAC-3' (配列番号17)
EGFP-F(L):5'- CCTGAAGTTCATCTGCACCA-3' (配列番号18)
kj neo:5'- CATCGCCTTCTATCGCCTTCTTGACG-3' (配列番号19)
m10 R2:5'- GAGAGGAGGGAAGCTTGATGAGAAAATG-3' (配列番号20)
KpnI m10 LA F (前出)
XhoI m10 LA R (前出)
 PCRは、サーマルサイクラーとしてPerkin-Elmer社製のGeneAmp9600を、TaqポリメラーゼはKOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,dGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分、8分、2.5分を35サイクル行った。
 その結果DT40(10MAC)T5-26、T6-37について、各8、3クローンについて目的の組換えが行われていることが示唆された。
[A.3.2]two-color FISH解析
 上記から得られたDT40(10MAC1)において、two-color FISH解析を松原ら(FISH実験プロトコール、秀潤社、1994)に従い行った。マウスcot-1 DNA及びGFP-PGKneo-loxP-3’HPRT(pVGNLH)カセットをプローブにしてFISH解析を行ったところ、loxP配列がターゲティングされたマウス10番染色体断片のセントロメア付近にプローブ由来のFITCシグナルが検出され、かつネガティブコントロールのターゲティングする前のマウス10番染色体断片(DT40(10MAC))では現れなかったシグナルが検出されたことから、部位特異的に組換えが起こったことが視覚的に確かめられた(図7)。これらの結果から、マウス人工染色体ベクター10MAC1を保持するDT40細胞クローンが得られたと結論できた。以降のステップでは、DT40(10MAC1)T5-26 L1-2、T5-26 L2-3、T6-37 L1-5の3クローンを用いることとした。
[B]マウス人工染色体ベクター10MAC1含有DT40細胞から10MAC1のCHO細胞への導入
 CHO細胞を介してマウス人工染色体ベクター10MAC1をマウスES細胞に導入するため、或いはCHO細胞内でマウス人工染色体ベクター10MAC1のDNA配列挿入部位であるloxPを介して安定に目的遺伝子(群)等、例えばCYP3Aクラスター、ヒト抗体遺伝子などを挿入するため、CHO細胞に導入する。
[B.1]微小核細胞融合と薬剤耐性クローンの単離
 ドナー細胞であるDT40(10MAC1)を用いて、上記と同様にCHO hprt欠損細胞(ヒューマンサイエンス研究資源バンクより入手、登録番号JCRB0218)であるCHO(HPRT)に微小核細胞融合法を行う。微小核細胞融合で得たG418耐性コロニーを単離し増殖させ、以降の解析を行う(クローン名:CHO(HPRT;10MAC1))。
[B.2]薬剤耐性クローンの選別
[B.2.1]PCR解析
 G418耐性株のゲノムDNAを抽出して鋳型として組換え体を選別するため、以下のプライマーを用いてPCRを行い、マウス人工番染色体ベクター10MAC1がCHO細胞に導入できているかを確認した。そのプライマー配列を以下に示す。
m10 F6 (前出)
PuroI (前出)
m10 F1 (前出)
EGFP-F(L) (前出)
kj neo (前出)
m10 R2 (前出)
 PCRは、サーマルサイクラーとしてPerkin-Elmer社製のGeneAmp9600を、TaqポリメラーゼはKOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,dGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃8分、2.5分を35サイクル行う。その結果、PCR陽性のクローンについて以降の解析を行った。
[B.2.2]mono-color FISH解析
 上記で得られたCHO(HPRT;10MAC1)クローンについてShinoharaらの報告(Human Molecular Genetics,10:1163-1175,2001)に記された方法でマウスcot-1 DNAをプローブにしたFISH解析を行い、マウス人工染色体ベクター10MAC1がCHO細胞に導入されていることを確認した。結果、1クローンについてCHO内で10MAC1が独立して安定に保持されていることを確認した(図8)。
[C]10MAC1への組換え挿入確認
10MAC1の組換え配列であるLoxP-3’HPRTが機能するか動作確認を行う。
[C.1]MAC1へのCre/loxPシステムによる環状DNAの挿入
CHO(HPRT;10MAC1)を6cm dishでコンフルエントになるように培養を行った。Lipofectamine2000を用いてメーカーのプロトコールに従い、Cre発現プラスミド(ベクター名:pBS185)および5’HPRT-LoxPのプラスミドを共導入した。遺伝子導入24時間後細胞を10cmdish10枚に継代培養し、さらに24時間後からHATで薬剤選択を行った。得られた薬剤耐性クローン24クローンについて以降の解析を行った。
[C.2]薬剤耐性クローンの解析
期待された部位特異的組換えが起こり、5’HPRT-LoxPを保持した環状DNAが挿入されると10MAC1でHPRT遺伝子の再構成が起こり、HAT耐性になる。薬剤耐性クローンからDNAを抽出し、この組換えのつなぎ目を検出するPCRを行った。使用したプライマーを以下に示す。
TRANS L1:5'-TGGAGGCCATAAACAAGAAGAC-3' (配列番号21)
TRANS R1:5'-CCCCTTGACCCAGAAATTCCA-3' (配列番号22)
これらプライマーについては、LA taq(Takara)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行った。その結果、すべての薬剤耐性24クローンについてPCR陽性であったころから、得られた薬剤耐性クローンについて高効率で部位特異的組換えによる環状DNAの挿入が起こっていることが示された。
[実施例4]マウス16番染色体改変によるマウス人工染色体(16MAC)の構築
 マウス人工染色体ベクターを構築するにあたり、内在の遺伝子を可能な限り削除することが必要である。相同組換え効率の高いニワトリDT40細胞内においてテロメアトランケーションという方法で内在遺伝子を含むマウス16番染色体長腕部を削除する。
[A]ニワトリDT40細胞内におけるマウス16番染色体領域セントロメア近傍から遠位のテロメアトランケーションによる部位特異的切断
 マウス人工染色体ベクターとして導入目的遺伝子以外の内在遺伝子は少ない方が実験系に及ぼす影響が軽減され、かつ内在遺伝子のうちインプリント遺伝子のようにマウス個体発生に遺伝子発現量の変化による影響を及ぼす遺伝子を極力残さないことが必要であるので、マウス長腕の大部分を削除する(図3)。
[A.1]テロメアトランケーションベクター作製
 短腕近位部位特異的切断用の基本ベクターにはpBS-TEL/puroコンストラクト(Kuroiwa et al.Nature Biotech 2002)を用いた。
 GenBankデータベースより得たマウス16番染色体長腕近位の塩基配列から相同組換え標的配列を設計した。DT40(mChr16-neo)3からゲノムDNAを抽出して鋳型とし、相同組換え標的配列をPCR増幅するためのプライマーの配列を以下に示す。
BamHI_m16T F2:5'-TCGAGGATCCGGGAGTAATTTTCAATCCTTGAGGCAGA-3' (配列番号23)
BglII_m16T R2:5'-TCGAAGATCTCATCAGTGTACACCACAATCCCATCTGT-3' (配列番号24)
 PCRは、サーマルサイクラーとしてPerkin-Elmer社製のGeneAmp9600を、TaqポリメラーゼはKOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,dGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃7分を35サイクル行ったPCR産物をBamHIとBglII(NEB)で消化して、アガロースゲルにより分離し精製後、BamHI消化したpBS-TEL/puroにクローニングした(ベクター名:pBS-TEL/puro_16MAC)。ターゲティングベクター、標的配列、及び相同組換えにより生じる染色体アレルを図9に示した。
[A.2]相同組換え体の選別
 マウス16番染色体領域近位から遠位において部位特異的切断を行うベクターは上述のpBS-TEL/puro_16MACを用いてトランスフェクションを行い、ピューロマイシン耐性クローンの単離及び相同組換え体の選別を行った。
 得られたクローンからDNAを抽出しそれを鋳型にPCRを行い、部位特異的切断の確認を行った。プライマー配列を以下に示す。
m16 F5: 5'-cctcttcttgacggttaccacattttgc-3' (配列番号25)
PuroI (前出)
 PCRは、サーマルサイクラーとしてPerkin-Elmer社製のGeneAmp9600を、TaqポリメラーゼはKOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,dGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃9分を35サイクル行った。
Vmn1r-ps137 F:5'- TGAATTGGTCCCTCCTGCTCA-3'(配列番号26)
Vmn1r-ps137 R:5'- CAGGCCATGAGACCCAGACA-3'(配列番号27)
Mefv F:5'- TCCTCGGAGAATGGCTCCTG-3'(配列番号28)
Mefv R:5'- GGCAGGTTGATGGGAACTGG-3'(配列番号29)
Slx4 F:5'- AACCAGGGTCCCCATCCTGT-3'(配列番号30)
Slx4 R:5'- TGGGCTGGTTTCAATGCTGA-3'(配列番号31)
Gm4106 F:5'- GTGTGGCCATGGCTGGAGTA-3'(配列番号32)
Gm4106 R:5'- TGTTCCTCTGCTGCCACTCG-3'(配列番号33)
Gm35974 F:5'- ACCCAGCCACTCCCACCATA-3'(配列番号34)
Gm35974 R:5'- AAGGGCATGGCTATCCCACA-3'(配列番号35)
 PCRは、サーマルサイクラーとしてPerkin-Elmer社製のGeneAmp9600を、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,dGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、94℃30秒、60℃30秒、72℃30秒を35サイクル行った。
 その結果、マウス10番染色体領域切断を示唆する3クローンを確認した(クローン名:DT40(16MAC))。これらのクローンについて切断箇所が異なることが確認され、2パターン存在することが示唆された。想定される切断後のアレル2パターンを図10に示した。
[A.3]Mono-color FISH解析による薬剤耐性クローンの選別
 上記で得られたDT40(16MAC)の3クローンについてShinoharaらの報告(Human Molecular Genetics,10:1163-1175,2001)に記された方法でマウスcot-1 DNAをプローブにしたFISH解析を行ったところ3クローンすべてにおいてマウス16番染色体の長腕部分がセントロメア近傍で切断されていることを確認した(図11)。
[実施例5]マウス人工染色体ベクター16MAC1の構築
 マウス人工染色体16MACにDNA挿入配列としてGFP-PGKneo-loxP-3’HPRTタイプのloxP配列を挿入することでマウス人工染色体ベクター16MAC1を構築し、遺伝子搭載を行うためのhprt欠損CHO細胞株へ導入する。
[A]マウス人工染色体ベクター16MACへのGFP-PGKneo-loxP-3’HPRTタイプのloxP配列の挿入
[A.1]GFP-PGKneo-loxP-3’HPRT タイプのloxPターゲティングベクター作製
 切断部位が異なる2種の16MACに対して異なる配列を標的としたターゲティングベクターを構築した。
 タイプ1として、テロメアトランケーションに用いた相同配列を標的としたターゲティングベクターを構築した。
 DT40(16MAC)にloxP配列を挿入するための基本プラスミドにはV913(Lexicon genetics)を用いた。loxP挿入部位であるマウス16番染色体のDNA配列はGenBankデータベースより得た(NC_000082.6)。薬剤耐性クローンからゲノムDNAを抽出して鋳型とし、相同組換えの二つの標的配列の増幅に用いたプライマーの配列を以下に示す。
KpnI_m16 HAtLA F:5'- TCGAGGTACCGGGAGTAATTTTCAATCCTTGAGGCAGA-3' (配列番号36)
XhoI_m16 HAtLA R:5'- TCGACTCGAGTGGCACTGACCCCTTAATTACGTACAGA-3' (配列番号37)
SalI_m16 HAtRA F:5'- TCGAGTCGACAAAGATTTGCATCCTTGGCCATGACTC-3' (配列番号38)
NotI_m16 HAtRA R:5'- TCGAGCGGCCGCCATCAGTGTACACCACAATCCCATCTGT-3' (配列番号39)
 PCRは、サーマルサイクラーとしてPerkin-Elmer社製のGeneAmp9600を、TaqポリメラーゼはKOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,dGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃4分を35サイクル行った。
 それぞれのPCR産物をKpnI(NEB)とXhoI(NEB)及びSalI(NEB)とNotI(NEB)で消化して、アガロースゲルにより分離し精製後、V913のKpnI/XhoIあるいはSalI/NotIサイトにクローニングした(ベクター名:V913-m16HA)。3’HPRT-loxPはV820(Lexicon genetics)のXbaIサイトにオリゴ合成したloxP配列をクローニングした。HPRT遺伝子の3番目から9番目のエクソンである3’HPRT-loxPをV907(Lexicon genetics)のEcoRIとAscIにクローニングした(ベクター名:X3.1)。さらにX3.1のKpnIサイトとEcoRIサイトにKpnIとNotIにより切り出したPGKneo配列をクローニングした(ベクター名:X4.1)。X4.1からKpnIとAscIにより切り出したPGKneo-loxP-3’HPRTをV913のKpnIサイトとAscIサイトにクローニングした(ベクター名:pVNLH)。pVNLHのEcoRVサイトにNotIとSalI消化後に平滑化をおこなったHS4-CAG-EGFP-HS4(大阪大学、岡部博士及びNIH、Felsenfeld博士より分与)をクローニングした(ベクター名:pVGNLH)。pVGNLHからSalIとAscIにより切り出したGFP-PGKneo-loxP-3’HPRTカセットをV913-m10LARAのXhoIサイトとAscIサイトにクローニングした(ベクター名:p16HAMAC1)。ターゲティングベクター、標的配列及び相同組換えにより生じる染色体アレルを図12に示す。
 タイプ2として、残存するマウス16番染色体近位配列を標的としたターゲティングベクターを構築した。
 DT40(16MAC)にloxP配列を挿入するための基本プラスミドにはV913(Lexicon genetics)を用いた。loxP挿入部位であるマウス16番染色体のDNA配列はGenBankデータベースより得た(NC_000082.6)。薬剤耐性クローンからゲノムDNAを抽出して鋳型とし、相同組換えの二つの標的配列の増幅に用いたプライマーの配列を以下に示す。
KpnI_m16 GmLA F:5'- TCGAGGTACCAAGAACAAGCTTCAGAACACAGCCAGAC-3' (配列番号40)
XhoI_m16 GmLA R:5'- TCGACTCGAGAACTTGTCACACAGATCCTACTGGAGGTG-3' (配列番号41)
SalI_m16 GmRA F:5'- TCGAGTCGACCCACAGACTGAAGCAATTGACCTCAAAAG-3' (配列番号42)
NotI_m16 GmRA R:5'- TCGAGCGGCCGCAAAGCAGTTATCCGCTATTTGGGACCTT-3' (配列番号43)
 PCRは、サーマルサイクラーとしてPerkin-Elmer社製のGeneAmp9600を、TaqポリメラーゼはKOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,dGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃4分を35サイクル行った。
 それぞれのPCR産物をKpnI(NEB)とXhoI(NEB)及びSalI(NEB)とNotI(NEB)で消化して、アガロースゲルにより分離し精製後、V913のKpnI/XhoIあるいはSalI/NotIサイトにクローニングした(ベクター名:V913-m16Gm)。3’HPRT-loxPはV820(Lexicon genetics)のXbaIサイトにオリゴ合成したloxP配列をクローニングした。HPRT遺伝子の3番目から9番目のエクソンである3’HPRT-loxPをV907(Lexicon genetics)のEcoRIとAscIにクローニングした(ベクター名:X3.1)。さらにX3.1のKpnIサイトとEcoRIサイトにKpnIとNotIにより切り出したPGKneo配列をクローニングした(ベクター名:X4.1)。X4.1からKpnIとAscIにより切り出したPGKneo-loxP-3’HPRTをV913のKpnIサイトとAscIサイトにクローニングした(ベクター名:pVNLH)。pVNLHのEcoRVサイトにNotIとSalI消化後に平滑化を行ったHS4-CAG-EGFP-HS4(大阪大学、岡部博士及びNIH、Felsenfeld博士より分与)をクローニングした(ベクター名:pVGNLH)。pVGNLHからSalIとAscIにより切り出したGFP-PGKneo-loxP-3’HPRTカセットをV913-m10LARAのXhoIサイトとAscIサイトにクローニングした(ベクター名:p16GmMAC1)。ターゲティングベクター、標的配列及び相同組換えにより生じる染色体アレルを図13に示す。
[A.2]トランスフェクション及びG418耐性クローンの単離
 ニワトリDT40細胞の培養は10%ウシ胎仔血清(ギブコ、以下「FBS」で記す)、1%ニワトリ血清(ギブコ)、10-4M 2-メルカプトエタノール(シグマ)を添加したRPMI1640培地(ギブコ)中で行った。DT40(16MAC)T1-14、T2-64、T2-65の約10個の細胞を無添加RPMI1640培地で一回洗浄し、0.5mlの無添加RPMI1640培地に懸濁し、制限酵素NotI(TAKARA)で線状化したターゲティングベクターp10MAC1を25μg加え、エレクトロポレーション用のキュベット(バイオラッド)に移し、室温で10分間静置した。キュベットをジーンパルサー(バイオラッド)にセットし、550V、25μFの条件で電圧印加した。室温で10分間静置後、24時間培養した。G418(1.5mg/ml)を含む培地に交換し、96穴培養プレート2枚に分注して約2週間の選択培養を行った。p16HAMAC1、p16GmMAC1ベクターそれぞれ1回のトランスフェクションで得た各12個の耐性コロニーを単離し増殖させ、以後の解析を行った(クローン名:DT40(16MAC1HA及び16MAC1Gm))。
[A.3]相同組換体の選別
[A.3.1]PCR解析
 G418耐性株のゲノムDNAを抽出して鋳型として組換え体を選別するため、以下のプライマーを用いてPCRを行い、マウス16番染色体上で部位特異的に組換えが起こっているかを確認した。そのプライマー配列を以下に示す。
パターン1(p16MAC1HA):
m16 F5 (前出)
EGFP-F(L) (前出)
kjneo (前出)
PuroI (前出)
 PCRは、サーマルサイクラーとしてPerkin-Elmer社製のGeneAmp9600を、TaqポリメラーゼはKOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,dGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃7.5分を35サイクル行った。
 その結果DT40(16MAC)T1-14由来、5クローンについて目的の組換えが行われていることが示唆された。(クローン名:DT40(16MAC1HA))
パターン2(p16GmMAC1):
m16 F6:5'- CATGCACATTTGCTTACACACAGAGGTT-3' (配列番号44)
EGFP-F(L) (前出)
kjneo (前出)
m16 R7:5'- ATCTGGGCACTGGGGTACAACTGTTAAT-3' (配列番号45)
 PCRは、サーマルサイクラーとしてPerkin-Elmer社製のGeneAmp9600を、TaqポリメラーゼはKOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,dGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃7.5分を35サイクル行った。
 その結果DT40(16MAC)T2-64、T2-65由来、各11、9クローンについて目的の組換えが行われていることが示唆された(クローン名:DT40(16MAC1Gm))。
[A.3.2]two-color FISH解析
 上記から得られたDT40(16MAC1HA及び16MAC1Gm)において、two-color FISH解析を松原ら(FISH実験プロトコール、秀潤社、1994)に従い行った。マウスcot-1 DNA及びGFP-PGKneo-loxP-3’HPRT(pVGNLH)カセットをプローブにしてFISH解析を行ったところ、loxP配列がターゲティングされたマウス10番染色体断片のセントロメア付近にプローブ由来のFITCシグナルが検出され、かつネガティブコントロールのターゲティングする前のマウス16番染色体断片(DT40(16MAC)T1-14、T2-64、T2-65)では現れなかったシグナルが検出されたことから、部位特異的に組換えが起こったことが視覚的に確かめられた(図14)。これらの結果から、マウス人工染色体ベクター16MAC1HA及び16MAC1Gmを保持するDT40細胞クローンが得られたと結論できた。
[B]マウス人工染色体ベクター16MAC1HA及び16MAC1Gm含有DT40細胞から16MAC1HA及び16MAC1GmのCHO細胞への導入
 CHO細胞を介してマウス人工染色体ベクター16MAC1HA及び16MAC1GmをマウスES細胞に導入するため、或いはCHO細胞内でマウス人工染色体ベクター16MAC1HA及び16MAC1GmのDNA配列挿入部位であるloxPを介して安定に目的遺伝子(群)等、例えばCYP3Aクラスター、ヒト抗体遺伝子などを挿入するため、CHO細胞に導入する。
[B.1]微小核細胞融合と薬剤耐性クローンの単離
 ドナー細胞であるDT40(16MAC1HA)及びDT40(16MAC1Gm)を用いて、上記と同様にCHO hprt欠損細胞(ヒューマンサイエンス研究資源バンクより入手、登録番号JCRB0218)であるCHO(HPRT)に微小核細胞融合法を行う。微小核細胞融合で得たG418耐性コロニーを単離し増殖させ、以降の解析を行う(クローン名:CHO(HPRT;16MAC1HA及び16MAC1Gm))。
[B.2]薬剤耐性クローンの選別
[B.2.1]PCR解析
 G418耐性株のゲノムDNAを抽出して鋳型として組換え体を選別するため、以下のプライマーを用いてPCRを行い、マウス人工番染色体16MAC1HA及び16MAC1GmがCHO細胞に導入できているかを確認する。そのプライマー配列を以下に示す。16MAC1HAの確認:
m16 F5 (前出)
EGFP-F(L) (前出)
kjneo (前出)
PuroI (前出)
16MAC1Gmの確認
m16 F6 (前出)
EGFP-F(L) (前出)
kjneo (前出)
m16 R7 (前出)
 PCRは、サーマルサイクラーとしてPerkin-Elmer社製のGeneAmp9600を、TaqポリメラーゼはKOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,dGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃7.5分を35サイクル行う。PCR陽性のクローンについて以降の解析を行う。
[B.2.2]mono-color FISH解析
 上記で得られたCHO(HPRT;16MAC1HA及び16MAC1Gm)クローンについてShinoharaらの報告(Human Molecular Genetics,10: 1163-1175,2001)に記された方法でマウスcot-1 DNAをプローブにしたFISH解析を行い、マウス人工染色体ベクター16MAC1HA及び16MAC1GmがCHO細胞に導入されていることを確認する。
[実施例6]マウス人工染色体ベクターのマウス個体における安定性評価
 10MAC1、10MAC1HA、10MAC1GmのマウスES細胞での安定性を検証し、さらに各マウス人工染色体ベクターを導入した子孫伝達マウスを作製することで、個体組織での安定性を検証する。
[A]各マウス人工染色体ベクター含有CHO細胞からマウスES細胞へマウス人工染色体ベクター10MAC1、16MAC1HA、16MAC1Gmの導入
 マウスES細胞及びマウス個体内でのマウス人工染色体ベクター10MAC1、16MAC1HA、16MAC1Gmの安定性を検証するために、各マウス人工染色体10MAC1、16MAC1HA、16MAC1GmをマウスES細胞に導入し、各マウス人工染色体ベクター10MAC1、16MAC1HA、16MAC1Gm含有キメラマウスならびに子孫伝達マウスを作製する。
[A.1]微小核細胞融合と薬剤耐性クローンの単離
 レシピエント細胞であるCHO(HPRT;10MAC1)、CHO(HPRT;16MAC1HA)、CHO(HPRT;16MAC1Gm)を細胞培養皿で培養し、コンフルエントになった時点で20%FBS、0.1μg/mlコルセミドを添加したF12培地に交換し、さらに48時間培養後に20%FBS、0.1μg/mlコルセミドを添加したF12培地で培地交換し、さらにオーバーナイトでインキュベートしてミクロセルを形成させる。培養液を除去し、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行った。ミクロセルを無血清DMEM培地に懸濁し、8μm,5μm,3μmフィルターにて精製した。精製後、2000rpm,10分間遠心し、無血清DMEM培地5mlに懸濁した。ミクロセルを5mlの無血清DMEM培地に懸濁し、8μm,5μm,3μmフィルターにて精製する。精製後、2000rpm,10分間遠心する。
 ドナー細胞にはC57B6系統マウスのES細胞であるB6-ES、及びB6-ES細胞に6TG処理を行ったHPRT欠損株であるB6(HPRT)、及びC57B6xCBA系統F1マウスのES細胞であるTT2F、及びTT2F細胞に6TG処理を行ったHPRT欠損株であるKO56(HPRT)を用いる。培養には、DMEM(Dulbecco’s Modified Eagle’s Medium-high glucose:SIGMA)に、10%FCS、LIF(Muerin Leukemia Inhibitory Factor)、1×10‐5M 2-ME(2-メルカプトエタノール:SIGMA)、L-グルタミン(3.5g/ml:GIBCO)、Sodium pyruvate solution(3.5g/ml:GIBCO)、MEM Nonessential amino acid(0.125mM:GIBCO)を添加し、5% CO、37℃にて培養を行う。マウスES細胞をPBS(-)で細胞表面を2回洗浄後にトリプシン処理により細胞を分散させ、DMEM培地に10%FBSを添加した培養液で回収し、1500rpmで遠心し、上清を除去し、無血清培養液5mlに再度懸濁し、ミクロセルの遠心後のペレットを含む無血清培地に静かに添加し、さらに1200rpmで遠心する。上清を除去し、PEG1000(Wako)溶液[5gのPEG1000を無血清DMEM培地に完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を0.5mlで正確に1分30秒間融合した。13mlの無血清培養液(DMEM)を静かに添加し、1200rpmで遠心する。上清を除去し、通常のマウスES細胞の培養液を添加し、マイトマイシン処理したG418耐性マウス胎生線維芽細胞をフィーダー細胞として使用し、直径10cm細胞培養皿2枚に播種し、オーバーナイトでインキュベートする。G418を250μg/mlになるように加え、3~4週間選択培養する(クローン名:B6-ES(10MAC1、16MAC1HA、16MAC1Gm)及びB6(HPRT;10MAC1、16MAC1HA、16MAC1Gm)及びTT2F(10MAC1、16MAC1HA、16MAC1Gm)及びKO56(HPRT;10MAC1、16MAC1HA、16MAC1Gm))。その結果、得られたTT2F(10MAC1)の薬剤耐性コロニー13クローンを単離し増殖させ、以降の解析を行った。
[A.2]薬剤耐性クローンの選別
[A.2.1]PCR解析
 G418耐性株のゲノムDNAを抽出して鋳型として組換え体を選別するため、以下のプライマーを用いてPCRを行い、各マウス人工番染色体ベクターがマウスES細胞に導入できているかを確認する。そのプライマー配列を以下に示す。
10MAC1の確認:
m10 F6 (前出)
PuroI (前出)
m10 F1 (前出)
EGFP-F(L) (前出)
kj neo (前出)
m10 R2 (前出)
 PCRは、サーマルサイクラーとしてPerkin-Elmer社製のGeneAmp9600を、TaqポリメラーゼはKOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,dGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃8分、2.5分を35サイクル行った。その結果得られたPCR陽性9クローンについて以降の解析を行う。
16MAC1HAの確認:
m16 F5 (前出)
EGFP-F(L) (前出)
kjneo (前出)
PuroI (前出)
16MAC1Gmの確認:
m16 F6 (前出)
EGFP-F(L) (前出)
kjneo (前出)
m16 R7 (前出)
 PCRは、サーマルサイクラーとしてPerkin-Elmer社製のGeneAmp9600を、TaqポリメラーゼはKOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,dGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃7.5分を35サイクル行う。PCR陽性のクローンについて以降の解析を行う。
[A.2.2]mono-color FISH解析
 上記で得られたB6-ES(MAC1)及びB6(HPRT;10MAC1、16MAC1HA、16MAC1Gm)及びTT2F(10MAC1、16MAC1HA、16MAC1Gm)及びKO56(HPRT;10MAC1、16MAC1HA、16MAC1Gm)のクローンについてShinoharaらの報告(Human Molecular Genetics,10:1163-1175,2001)に記された方法でマウス minor satellite DNAをプローブにしたFISH解析を行う。各マウス人工染色体ベクターが保持されていることを確認する。また、正常核型である内在マウス染色体の本数がB6-ESの場合40本、またはKO56の場合39本であることを確認する。結果を受けて、マウス人工染色体ベクター10MAC1、16MAC1HA、16MAC1GmがマウスES細胞に導入できたと結論付ける。TT2F-ES(10MAC1)PCR陽性9クローンについてFISH解析を行った結果、2クローンについてMAC1を高保持で正常核型のクローンであることが確認できた(図15)。
[B]各マウス人工染色体ベクター10MAC1、16MAC1HA、16MAC1Gmの安定性
[B.1]マウス人工染色体ベクター10MAC1、16MAC1HA、16MAC1GmのCHO細胞における安定性
 上記で得られたCHOクローン(例えばCHO(HPRT;10MAC1)上記実施例3で取得)について0~25PDLの非選択培養下での長期培養後におけるFISH解析により10MAC1保持細胞の割合を計測する。
[B.2]マウス人工染色体ベクター10MAC1、16MAC1HA、16MAC1GmのマウスES細胞における安定性
 上記で得られたマウスESクローン(例えばKO56(10MAC1)及びTT2F(10MAC1)上記実施例6[A]で取得できる)について0~100PDLの非選択培養下での長期培養後におけるFISH解析により10MAC1保持細胞の割合を計測する。
[B.3]マウス人工染色体ベクター10MAC1、16MAC1HA、16MAC1Gmを保持するキメラマウスの作製
 上記実施例6[A]で得られたES細胞クローンを用いてTomizukaらの方法(Nature Genet.16:133,1997)でキメラマウスを作製した。宿主としてはMCH(ICR)(白色、日本クレア社より購入)の雌雄交配により得られる8細胞期胚を用いる。注入胚を仮親に移植した結果生まれる仔マウスは毛色によりキメラであるかどうかを判定できる。10MAC1保持ESクローンTT2F(10MAC1)(例えば他にKO56 10MAC1、上記実施例6[A]で取得できる)を注入した胚を仮親に移植した。出生したキメラマウスについて毛色により(毛色に濃茶色の部分の認められる)キメラ率を判定した。これにより、マウス人工染色体ベクター10MAC1を保持するES細胞株(KO56及びTT2F)がキメラ形成能を保持しているか、すなわちマウス個体の正常組織に分化する能力を保持していることを確認した。
[B.4]各種マウス人工染色体ベクター10MAC1、16MAC1HA、16MAC1Gmを保持するキメラマウスからの10MAC1、16MAC1HA、16MAC1Gmの子孫伝達
 上記[B.3]で作製された雌キメラマウス(キメラ率約100%)をMCH(ICR)(白色、日本クレア社より購入)雄マウスと交配する。キメラマウスより誕生した仔マウスについてGFP蛍光により各種マウス人工染色体ベクターの保持を検討した。各マウス人工染色体が子孫伝達されたマウス系統をTC(10MAC1、16MAC1HA、16MAC1Gm)と呼ぶ。TT2F(MAC1)由来キメラから得られた子孫伝達個体について全身でGFP蛍光タンパクが発現が確認できる個体を得た(図16)。
[B.5]TC(10MAC1、16MAC1HA、16MAC1Gm)マウス系統の体細胞における10MAC1、16MAC1HA、16MAC1Gmの安定性
[B.5.1]実体蛍光顕微鏡観察
 上記で得られたTC(10MAC1、16MAC1HA、16MAC1Gm)マウスのうち雄及び雌について脳、胸腺、心臓、肺、肝臓、腎臓、脾臓、小腸、筋肉、精巣(または卵巣)を実体蛍光顕微鏡観察下にて観察し、全ての組織にてGFP陽性を観察する。
[B.5.2]血液系細胞のFACS解析
B細胞(CD19)、T細胞(CD4,CD8)、巨核球(CD41)に対する特異的抗体(Becton,Dickinson and Company)を用いて、骨髄ならびに脾臓細胞におけるGFP陽性率を検討する。
[B.5.3]蛍光in situハイブリダイゼーション(FISH)解析
 また上記と同様の個体から調製した尻尾繊維芽細胞を用いて、Shinoharaらの報告(Human Molecular Genetics,10:1163-1175,2001)に記された方法でマウスマイナーサテライト(minor satellite)DNAをプローブにしたFISH解析を行い、視覚的にMACの存在を確認し、宿主染色体とは独立して維持されていることを確認する。
[実施例7]新規マウス人工染色体ベクターを用いたヒト抗体産生(IGHK-NAC)マウス及びラットの作製
 10MAC1、16MAC1HA、16MAC1Gm各マウス人工染色体ベクターの機能性評価から、使用するベクターを絞り(選抜したマウス人工染色体を「NAC」と呼ぶ)、ヒト抗体遺伝子(IGH、IGK)を搭載し、ヒト抗体産生マウス及びラットの作製を行う(図17)。10MAC1を選択し、NACとして以降の実験を行った。
[A]NACを保持するCHO細胞への改変ヒト2番染色体の移入
 改変ヒト2番染色体保持CHO細胞より改変ヒト2番染色体をNAC保持CHO細胞に導入する。
[A.1]微小核細胞融合法による改変ヒト2番染色体のNAC保持Hprt欠損CHO細胞への移入
 ドナー細胞である改変ヒト2番染色体CHO細胞(CHO hChr2LF)を細胞培養皿で培養し、コンフルエントになった時点で20%FBS、0.1μg/mlコルセミドを添加したF12培地に交換し、さらに48時間培養後に20%FBS、0.1μg/mlコルセミドを添加したF12培地で培地交換し、さらにオーバーナイトでインキュベートしてミクロセルを形成させる。培養液を除去し、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行う。微小核(「ミクロセル」ともいう)を無血清DMEM培地に懸濁し、8μm,5μm,3μmフィルターにて精製する。精製後、ミクロセルをDMEMで調製した0.05mg/ml PHA-P(シグマ)溶液2mLに懸濁し、6cm細胞培養皿でコンフルエントになったレシピエントであるNAC保持Hprt欠損CHO細胞株に、培養液を除いた後添加する。15分インキュベートして微小核をCHO細胞に張り付ける。その後、PEG1000(Wako)溶液[5gのPEG1000を無血清DMEM培地6mLに完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を1mlで正確に1分融合する。5mLの無血清DMEMでPEGを除去するために4回ウオッシュ操作を行った後、CHO培養液を添加する。24時間後、10cm細胞培養皿10枚に細胞を播種し、8μg/mLブラストサイジンSを添加し、10日選択培養を行った。得られた薬剤耐性株ついて以降の解析を行った。
[A.2]PCR解析による薬剤耐性クローンの選別
 ブラストサイジンS耐性株のゲノムを抽出し、鋳型としてPCR解析を行い、改変ヒト2番染色体の保持を確認する。そのプライマー配列を以下に示す。
改変ヒト2番染色体loxP配列確認プライマー:
cos138 sp L:5’-CTGAGAAGAGTCATTGTTTATGGTAGACT-3’ (配列番号46)
cos138 sp R:5’- ATCCCCATGTGTATCACTGGCAAACTGT-3’ (配列番号47)
x6.1cosRa L:5’-GGGGAATAAACACCCTTTCCAAATCCTC-3’(配列番号48)
x6.1cosRa R:5’- ACCAAGTAACCGATCAAACCAACCCTTG-3’ (配列番号49)
 cos138 sp L, cos138 sp Rのプライマーについては、Accuprime Taq DNA polymerase(Thermo Fisher Scientific)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は94℃2分の熱変性後、94℃15秒、60℃15秒、68℃5分を35サイクル行う。
 x6.1cosRa L,x6.1cosRa Rのプライマーについては、KOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃12分を30サイクル行う。
改変ヒト2番染色体FRT配列確認プライマー:
kD9 tcLa L:5’-TGAGAACACAGGGGTCTCCATTCTGACT-3’ (配列番号50)
kD9 tcLa R:5’-ACAATCAACAGCATCCCCATCTCTGAAG-3’ (配列番号51)
kD9 tcRa L:5’-GACGTGCTACTTCCATTTGTCACGTCCT-3’ (配列番号52)
kD9 tcRa R:5’-TGGTCACTGAAGCTTTCCATCTGCTCTT-3’ (配列番号53)
 これらプライマーについては、KOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行う。
 加えて、ヒト2番染色体上のプライマーを用い領域が保持されているかを確認する。そのプライマー配列を以下に示す。
D2S177 F:5’-AGCTCAGAGACACCTCTCCA-3’ (配列番号54)
D2S177 R:5’-CTGTATTAGGATACTTGGCTATTGA-3’ (配列番号55)
FABP1-F:5’-TATCAAGGGGGTGTCGGAAATCGTG-3’ (配列番号56)
FABP1-R:5’-ACTGGGCCTGGGAGAACCTGAGACT-3’ (配列番号57)
EIF2AK3-F:5’-AGGTGCTGCTGGGTGGTCAAGT-3’ (配列番号58)
EIF2AK3-R:5’-GCTCCTGCAAATGTCTCCTGTCA-3’ (配列番号59)
RPIA-F:5’-CTTACCCAGGCTCCAGGCTCTATT-3’ (配列番号60)
RPIA-R:5’-CTCTACCTCCCTACCCCATCATCAC-3’ (配列番号61)
IGKC-F:5’-TGGAAGGTGGATAACGCCCT-3’ (配列番号62)
IGKC-R:5’-TCATTCTCCTCCAACATTAGCA-3’ (配列番号63)
IGKV-F:5’-AGTCAGGGCATTAGCAGTGC-3’ (配列番号64)
IGKV-R:5’-GCTGCTGATGGTGAGAGTGA-3’ (配列番号65)
Vk3-2 F:5’-CTCTCCTGCAGGGCCAGTCA-3’ (配列番号66)
Vk3-2 R:5’-TGCTGATGGTGAGAGTGAACTC-3’ (配列番号67)
D2S159_1 F:5’-CTCTAACTGAATCAAGGGAATGAAC-3’ (配列番号68)
D2S159_1 R:5’-AGCAGTTTGAGTTTAGGATGAAGG-3’ (配列番号69)
 TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行う。
 PCR陽性であったクローンについて以降の解析を行った。その結果、改変ヒト2番染色体とNAC(新規人工染色体ベクター)が維持されているクローンを取得した。
[A.3]two-color FISH解析
 上記の結果よりPCR陽性クローンについて、two-color FISH解析を松原ら(FISH実験プロトコール、秀潤社、1994)に従い行う。Human cot-1 DNA及びMouse cot-1 DNAをプローブにしてFISH解析を行い、改変ヒト2番染色体及びNACが宿主染色体と独立して安定に維持されていることを確認した(図18)。
[B]転座クローニングによるヒト2番染色体IGK領域のマウス人工染色体ベクター(NAC)への搭載
 NACを保持するCHO細胞において、ヒト2番染色体上IGK領域をNACへ転座クローニングする。転座クローニングにはCre/loxPシステムを用い、ヒト2番染色体とNACを相互転座させることで、IGK領域をNACに搭載する(図19)。
[B.1]Cre発現によるHAT耐性染色体組換え体の取得
 NACにはloxPサイトが搭載されており、Cre組換え酵素存在下で改変ヒト2番染色体のloxPサイトと組換えが起こるようになっている。また、組換えが起こると副産物となるNACに載らないヒト2番染色体領域の5’HPRTと副産物となるNAC末端の3’HPRTが連結して、HPRT遺伝子の再構成が起こり、CHO(hprt-/-)はHAT耐性を獲得する。
 改変ヒト2番染色体とNACを保持するHprt欠損CHO細胞について、10cm細胞培養皿においてコンフルエントになった時に、18μgのCre発現プラスミド(ベクター名:pBS185)をLipofectamine2000(Thermo Fisher Scientific)を用いてメーカーの手順を参照して加える。添加後6時間経過したら、培養液を交換し、24時間後に、10cm細胞培養皿10枚に播種し、1×HAT(シグマ)、4μg/mL Blasticidinで薬剤選択を行う。得られた薬剤耐性株を以降の解析に用いる。
[B.2]PCR解析による薬剤耐性クローンの選別
 HAT耐性株のゲノムDNAを抽出して鋳型として相互転座クローンを選別するため、以下のプライマーを用いてPCRを行い、ヒト2番染色体断片とNAC上で染色体相互転座が起こっているかを確認する。そのプライマー配列を以下に示す。
TRANS L1 (前出) 
TRANS R1 (前出) 
KJneo:5'-CATCGCCTTCTATCGCCTTCTTGACG-3’(配列番号70)
PGKr-2:5'-ATCTGCACGAGACTAGTGAGACGTGCTA-3’(配列番号71)
 これらプライマーについては、LA taq(Takara)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行う。
 加えて、ヒト2番染色体領域とFRT配列が維持されているかどうかPCRを行う。プライマーを以下に示す。
 ヒト2番染色体領域確認プライマー:
D2S177 F (前出)
D2S177 R (前出)
FABP1-F (前出)
FABP1-R (前出)
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
D2S159_1 F (前出)
D2S159_1 R (前出)
 TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行う。
 ヒト2番染色体上FRT配列確認プライマー:
kD9 tcLa L (前出)
kD9 tcLa R (前出)
kD9 tcRa L (前出)
kD9 tcRa R (前出)
 これらプライマーについては、KOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行う。PCR陽性クローンについて以降の解析を行う。
[B.3]two-color FISH解析
 PCR陽性クローンについてHuman cot-1 DNA及びMouse cot-1 DNAをプローブにしてFISH解析を行う。NACと改変ヒト2番染色体が相互転座をおこしかつ、IGK領域がNACに搭載されたIGK-NAC、副産物が独立して保持されていることを確認する。このクローンをCHO IGK-NACと呼ぶ。
[C]IGK-NACの改変ヒト14番染色体保持CHO(hprt-/-)細胞株への移入
 作製したIGK-NACを、改変ヒト14番染色体を保持するCHO(hprt-/-)細胞株へ移入し、FRT/Flpシステムによる組換えを起こさせIGH領域をIGK-NACに搭載し、IGHK-NACを作製する(図20)。
[C.1]微小核細胞融合と薬剤耐性クローンの単離
 ドナー細胞であるCHO IGK-NACを細胞培養皿で培養し、コンフルエントになった時点で20%FBS、0.1μg/mlコルセミドを添加したF12培地に交換し、さらに48時間培養後に20%FBS、0.1μg/mlコルセミドを添加したF12培地で培地交換し、さらにオーバーナイトでインキュベートしてミクロセルを形成させる。培養液を除去し、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行う。微小核(「ミクロセル」ともいう)を無血清DMEM培地に懸濁し、8μm,5μm,3μmフィルターにて精製する。精製後、ミクロセルをDMEMで調製した0.05mg/ml PHA-P(シグマ)溶液2mLに懸濁し、6cm細胞培養皿でコンフルエントになったレシピエントであるCHO hprt-/- 14FRTを、培養液を除いた後添加する。15分インキュベートして微小核をCHO細胞に張り付ける。その後、PEG1000(Wako)溶液[5gのPEG1000を無血清DMEM培地6mLに完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を1mlで正確に1分融合する。5mLの無血清DMEMでPEGを除去するために4回ウオッシュ操作を行った後、CHO培養液を添加する。24時間後、10cm細胞培養皿10枚に細胞を播種し、600μg/mL G418と6μg/mL Blasticidinを添加し、10日選択培養を行う。得られた薬剤耐性株ついて以降の解析を行う。
[C.2]PCR解析による薬剤耐性クローンの選別
 IGK-NACが改変ヒト14番染色体を保持するCHO(hprt-/-)株に移入されているか、改変ヒト14番染色体は維持されているかを確認するためにPCR解析を行う。以下に用いるプライマーを示す。
IGK-NACの確認プライマー:
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行う。
IGK-NAC上のFRT挿入部位確認プライマー:
kD9 tcLa L (前出)
kD9 tcLa R (前出)
kD9 tcRa L (前出)
kD9 tcRa R (前出)
 これらプライマーについては、KOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行う。
ヒト2番染色体領域確認プライマー:
D2S177 F (前出)
D2S177 R (前出)
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
 TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行う。
改変ヒト14番染色体上FRT配列確認プライマー:
14TarC_La F:5’-AGCAATTAGGGCCTGTGCATCTCACTTT-3’(配列番号72)
14TarC_La R:5’-CCAGCTCATTCCTCCCACTCATGATCTA-3’(配列番号73)
14TarC_Ra F:5’-CATCTGGAGTCCTATTGACATCGCCAGT-3’(配列番号74)
14TarC_Ra R:5’-CTTATTCCTCCTTCTGCCCACCCTTCAT-3’(配列番号75)
 これらプライマーについては、KOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃6分を35サイクル行う。
ヒト14番染色体領域確認プライマー:
MTA1-F3:5’-AGCACTTTACGCATCCCAGCATGT-3’(配列番号76)
MTA1-R3:5’-CCAAGAGAGTAGTCGTGCCCCTCA-3’(配列番号77)
ELK2P2-F:5’-CCCACTTTACCGTGCTCATT-3’(配列番号78)
ELK2P2-R:5’-ATGAAGGTCCGTGACTTTGG-3’(配列番号79)
g1(g2)-F:5’-ACCCCAAAGGCCAAACTCTCCACTC-3’(配列番号80)
g1(g2)-R:5’-CACTTGTACTCCTTGCCATTCAGC-3’(配列番号81)
VH3-F:5’-AGTGAGATAAGCAGTGGATG-3’(配列番号82)
VH3-R:5’-CTTGTGCTACTCCCATCACT-3’(配列番号83)
CH3F3:5’-AGGCCAGCATCTGCGAGGAT-3’(配列番号84)
CH4R2:5’-GTGGCAGCAAGTAGACATCG-3’(配列番号85)
 TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行う。PCR陽性のクローンを以降の解析に用いた。
[C.3]two-color FISH解析
 選別したクローンについて、Human cot-1 DNA及びMouse cot-1 DNAをプローブにしてFISH解析を行い、IGK-NACと改変ヒト14番染色体が独立して、1コピーずつ維持されていることを確認し、以降のステップに用いる。
[D]FRT/Flp組換えシステムを用いたIGHK-NACの構築
 IGK-NACと改変ヒト14番染色体をFRT/Flpシステムで相互転座させることで、IGK-NAC上にヒト14番染色体由来IGH領域を転座クローニングし、IGHK-NACを構築する。
[D.1]FLP発現によるHAT耐性染色体組換え体の取得
 IGK-NAC上のFRTサイトと改変ヒト14番染色体上のFRTサイトを用いて、FLP組換え酵素存在下で相互転座を起こさせる。また、組換えが起こるとIGHK-NAC上では、5’HPRTと3’HPRTが連結して、HPRT遺伝子の再構成が起こり、HAT耐性を獲得する。IGK-NACと改変ヒト14番染色体を保持するCHO(hprt-/-)株が、10cm細胞培養皿においてコンフルエントになった時に18μgのFLP発現プラスミドをLipofectamine2000(Thermo Fisher Scientific)を用いてメーカーの手順を参照して加える。添加後6時間経過したら、培養液を交換し、24時間後に、10cm細胞培養皿10枚に播種し、1×HAT、6μg/mL Blasticidinで薬剤選択を行う。得られたHAT耐性クローンについて以降の解析を行う。
[D.2]PCR解析による薬剤耐性クローンの選別
 FRT/FLPシステムを用いて期待した相互転座が起こり、IGHK-NACが構築されているか確認するため、薬剤耐性クローンのDNAを抽出し、鋳型としてPCR解析を行う。用いるプライマーを以下に示す。
相互転座連結部位の確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
CMVr-1:5’- CCTATTGGCGTTACTATGGGAACATACG-3’(配列番号 86)
PGKr-2 (前出)
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行う。
ヒト2番染色体領域確認プライマー:
D2S177 F (前出)
D2S177 R (前出)
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
 TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行う。
ヒト14番染色体領域確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行う。PCR陽性のクローンについて以降の解析を行う。
[D.3]two-color FISH解析
 選別したクローンについて、Human cot-1 DNA及びMouse cot-1 DNAをプローブにしてFISH解析を行う。副産物であるNACに載らないヒト14番染色体に、余分なヒト2番染色体領域が転座して染色体が長くなっていれば、相互転座が起こったことが示唆される。さらに、プローブとしてBACクローンCH17-405H5(IGK領域:CHORI)とCH17-262H11(IGH領域:CHORI)及びCH17-216K2(IGK領域:CHORI)とCH17-212P11(IGH領域:CHORI)の組み合わせを用いてtwo-color FISH解析を行い、実際IGHK-NACが構築されているか詳細に解析する。IGHK-NACと考えられる染色体が1コピーで独立して存在していることが確認できたクローンを以降用いる。
[E]IGHK-NACのCHO K1細胞株への移入
 IGHK-NAC及びIGHK-NAC構築のための相互転座の際に形成された副産物の両方にNeo耐性遺伝子がのっており、微小核細胞融合法で目的の細胞に移入した際、G418で薬剤選択するとIGHK-NACもしくは副産物がそれぞれあるいは両方移入された細胞を取得することになる。NAC上にはEGFPが搭載されているので、目的の細胞にIGHK-NACが移入されているか確認することが可能であるが、染色体導入が効率的に行えるドナー細胞でかつIGHK-NACのみを保持する細胞を作製するため、IGHK-NACをCHO K1細胞株に移入する。
[E.1]微小核細胞融合と薬剤耐性クローンの単離:染色体移入による、IGHK-NACのみを保持する細胞株を作製する。
 ドナー細胞であるCHO IGHK-NACを細胞培養皿で培養し、コンフルエントになった時点で20%FBS、0.1μg/mlコルセミドを添加したF12培地に交換し、さらに48時間培養後に20%FBS、0.1μg/mlコルセミドを添加したF12培地で培地交換し、さらにオーバーナイトでインキュベートしてミクロセルを形成させる。培養液を除去し、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行った。微小核(「ミクロセル」ともいう)を無血清DMEM培地に懸濁し、8μm,5μm,3μmフィルターにて精製する。精製後、ミクロセルをDMEMで調製した0.05mg/ml PHA-P(シグマ)溶液2mLに懸濁し、6cm細胞培養皿でコンフルエントになったレシピエントであるCHO K1細胞株に、培養液を除いた後添加する。15分インキュベートして微小核をCHO細胞に張り付ける。その後、PEG1000(Wako)溶液[5gのPEG1000を無血清DMEM培地6mLに完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を1mlで正確に1分融合する。5mLの無血清DMEMでPEGを除去するために4回ウオッシュ操作を行った後、CHO培養液を添加する。24時間後、10cm細胞培養皿10枚に細胞を播種し、800μg/mL G418を添加し、10日選択培養を行った。得られた薬剤耐性株については、IGHK-NAC上GFP遺伝子の蛍光タンパク発現を確認し、以降の解析に用いる。
[E.2]PCR解析による薬剤耐性クローンの選別
IGHK-NACがCHO K1細胞株に移入されていることを確認するため、薬剤耐性クローンのDNAを抽出し、それを鋳型としてPCR解析を行う。用いるプライマーを以下に示す。
相互転座連結部位確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
CMVr-1 (前出)
PGKr-2 (前出)
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行う。
ヒト2番染色体領域確認プライマー:
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
 TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行う。
ヒト14番染色体領域確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行う。PCRの結果からIGHK-NACのみ保持していることを示唆したクローンについて以降の解析を行う。
[E.3]two-color FISH解析
 選別したクローンについて、Human cot-1 DNA及びMouse cot-1 DNAをプローブにしてFISH解析を行い、期待通りIGHK-NACのみを保持していることを確認する。加えて、プローブとしてBACクローンCH17-405H5(IGK領域:CHORI)とCH17-262H11(IGH領域:CHORI)及びCH17-216K2(IGK領域:CHORI)とCH17-212P11(IGH領域:CHORI)の組み合わせを用いてtwo-color FISH解析を行い、実際IGHK-NACが構築されているか詳細に解析する。
[F]マウスES細胞へのIGHK-NACの移入
 ヒト抗体産生マウスを作製するためにはIGHK-NACをマウスES細胞に移入し、受精卵8細胞期にインジェクションし、キメラマウスを作製し、IGHK-NACを子孫伝達させることが必要である。IGHK-NACを保持したマウスES細胞の作製を行う。
[F.1]微小核細胞融合と薬剤耐性クローンの単離
 ドナー細胞は、CHO K1 IGHK-NACを用いる。ドナー細胞を細胞培養皿で培養し、コンフルエントになった時点で20%FBS、0.1μg/mlコルセミドを添加したF12培地に交換し、さらに48時間培養後に20%FBS、0.1μg/mlコルセミドを添加したF12培地で培地交換し、さらにオーバーナイトでインキュベートしてミクロセルを形成させる。培養液を除去し、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行う。微小核(「ミクロセル」ともいう)を無血清DMEM培地に懸濁し、8μm,5μm,3μmフィルターにて精製する。精製後、2000rpm,10分間遠心した。2000rpm,10分間遠心し、無血清DMEM培地5mlに懸濁する。さらに2000rpm,10分間遠心した。レシピエント細胞には、マウスES細胞HKD31 6TG-9(マウスのIgh及びIgk遺伝子が破壊されている。国際公開WO98/37757号に記載)及びXO ES9(抗体遺伝子は破壊されていない。)を用いる。培養には、DMEM(Dulbecco’s Modified Eagle’s Medium-high glucose:SIGMA)に、10%FCS、LIF(Murine Leukemia Inhibitory Factor)、1×10‐5M 2-ME(2-メルカプトエタノール:SIGMA)、L-グルタミン(3.5g/ml:GIBCO)、Sodium pyruvate溶液(3.5g/ml:GIBCO)、MEM非必須アミノ酸(0.125mM:GIBCO)を添加し、5%CO、37℃にて培養をおこなう。10cm細胞培養皿でコンフルエントになったマウスES細胞をPBS(-)で細胞表面を2回洗浄後にトリプシン処理により細胞を分散させ、DMEM培地に10%FBSを添加した培養液で回収し、1500rpmで遠心し、上清を除去し、無血清培養液5mlに再度懸濁し、ミクロセルの遠心後のペレットを含む無血清培地に静かに添加し、さらに1200rpmで遠心する。上清を除去し、PEG1000(Wako)溶液[5gのPEG1000を無血清DMEM培地に完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を0.5mlで正確に1分30秒間融合する。13mlの無血清培養液(DMEM)を静かに添加し、1200rpmで遠心した。上清を除去し、通常のマウスES細胞の培養液を添加し、マイトマイシン処理したG418耐性マウス胎生線維芽細胞をフィーダー細胞として使用し、直径10cm細胞培養皿2枚に播種し、オーバーナイトでインキュベートする。G418を250μg/mLになるように加え、3~4週間選択培養する。薬剤耐性かつEGFP陽性株について以降の解析を行う。
[F.2]PCR解析による薬剤耐性クローンの選別
 IGHK-NACが各種マウスES細胞株に移入されていることを確認するため、薬剤耐性クローンのDNAを抽出し、それを鋳型としてPCR解析を行う。用いるプライマーを以下に示す。
相互転座連結部位確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行う。
ヒト2番染色体領域確認プライマー:
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
 TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行う。
ヒト14番染色体領域確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行う。PCRの結果からIGHK-NACを保持していることを示唆したクローンについて以降の解析を行う。
[F.3]two-color FISH解析
 Human cot-1 DNA及びMouse cot-1 DNAをプローブにしてFISH解析を行い、IGHK-NACの独立保持と宿主の核型が正常であることを確認する。期待した結果が得られたクローンについてキメラマウス作製に用いる。
[G]ラットES細胞へのIGHK-NACの移入
 ヒト抗体産生ラットを作製するためにはIGHK-NACをラットES細胞に移入し、8細胞期胚にインジェクションし、キメララットを作製し、IGHK-NACを子孫伝達させることが必要である。
[G.1]微小核細胞融合と薬剤耐性クローンの単離
 CHO K1 IGHK-NACをドナーとして、上記F.1記載のようにマウスES細胞への微小核細胞融合法と同様の手法を用いてラットES細胞へのIGHK-NACの導入を行う。融合後、オーバーナイトでインキュベーションし、G418を150μg/mLになるように加え、3~4週間選択培養する。薬剤耐性及びGFP陽性を示す株を選別し、以降の解析を行う。
[G.2]PCR解析による薬剤耐性クローンの選別
 IGHK-NACがラットES細胞株に移入されていることを確認するため、薬剤耐性クローンのDNAを抽出し、それを鋳型としてPCR解析を行う。用いるプライマーを以下に示す。
相互転座連結部位確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行う。
ヒト2番染色体領域確認プライマー:
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
 TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行う。
ヒト14番染色体領域確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行う。PCRの結果からIGHK-NACを保持していることを示唆したクローンについて以降の解析を行う。
[G.3]two-color FISH解析
 Human cot-1 DNA及びMouse cot-1 DNAをプローブにしてFISH解析を行い、期待通りIGHK-NACを独立保持しており、ラットESの正常核型(42本)を維持していることが確認できた株についてキメララット作製に用いる。
[H]IGHK-NACを保持したマウスの作製
 IGHK-NACを保持したマウスの作製及び、解析を行う。過程で得られたキメラについても解析を行う。
[H.1]キメラマウスの作製
 得られたIGHK-NACを保持するマウスES細胞を用いて(ジーンターゲティング、実験医学、1995)の手法に従い、キメラマウスを作製する。宿主としてはMCH(ICR)(白色、日本クレア社より購入)の雌雄交配により得られる桑実胚及び8細胞期胚を用いる。注入胚を仮親に移植した結果生まれる仔マウスは毛色によりキメラであるかどうかを判定できる。
[H.2]キメラマウスのIGHK-NAC保持解析
 誕生後3週以上を経たキメラマウスから(勝木元也,発生工学実験マニュアル,講談社サイエンティフィク,1987)に記された方法に従い尻尾を取得し、Puregene DNA Isolation Kit(Qiagen)を用いてゲノムDNAを抽出する。上記G.2記載のプライマー及びPCR条件により、PCR解析を行い、IGHK-NAC保持を確認する。
 さらに、キメラマウスから採血を行った後、細胞固定を行い標本作製し、Human cot-1及びMouse minor satellite DNAをプローブとしてFISH解析を行うことで、IGHK-NACを保持した細胞を染色体レベルで確認する。
[H.3]IGHK-NACを保持するES細胞由来キメラマウスにおけるヒトIGM発現評価
 HKD31マウスES細胞はマウスIgh,Igk遺伝子が破壊されている。Bリンパ球の発生に必須な抗体μ鎖遺伝子ノックアウトマウスは体液性免疫を担う成熟Bリンパ球が欠損していることにより抗体を産生することができない。したがって、HKD31マウスES細胞は、キメラマウスにおいて成熟B細胞になれない。キメラマウス作製に用いるIGHK-NAC保持HKD31マウス細胞について、IGHK-NACからヒトIGMが発現すれば、この欠損を救済可能で、GFP陽性のB細胞を検出することができる。これにより、IGHK-NAC上のIGM遺伝子の機能的発現が間接的に検証できる。キメラマウスより血液を採取し、マウスCD45R(B220)に対する抗体染色を用い、マウスB細胞をフローサイトメーターにより検出する。CD45RとGFP共陽性の細胞が存在するか解析を行うことで、IGHK-NAC由来IGMの機能的発現を確認することができる。ヒトIGMとマウスCD45R(B220)に対する抗体を用いて、血液細胞を染色し、ヒトIGM、CD45R、GFP陽性の細胞を確認する。末梢血を採血し、ヘパリンPBSの入ったチューブに血液を移し、転倒混和して氷冷する。遠心(2000rpm、3分、4℃)の後、上清除去後、各種抗体を添加し、4℃で30分反応させ、5%牛胎仔血清を添加したPBS(5%FBS/PBS)により洗浄する。最後の遠心後、ペレットに1.2%Dextran/生理食塩水を加え、タッピング後、室温で45分静置し、赤血球を自然沈降させる。上清を新しいチューブに移し、2000rpm、3分、4℃で遠心後上清除去し、ペレットに室温の溶血剤(0.17M NHCl)を加え、5分静置する。2000rpm、3分、4℃で遠心し、5%FBS/PBSで洗浄した後500μlの5%FBS/PBSで懸濁したものを解析サンプルとし、フローサイトメーターにより解析する。
[H.4]キメラマウス血清中のヒト抗体検出
 キメラマウスにおいて、ヒト抗体遺伝子軽鎖、重鎖、各種アイソタイプ発現確認を目的として、血清中のヒト抗体濃度をエンザイムリンクドイムノソルベントアッセイ(ELISA)を用いて測定する。ELISAは以下に記載されている方法に従う。富山・安東、単クローン抗体実験マニュアル、講談社、1987;安東・千葉、単クローン抗体実験操作入門、講談社、1991;石川、超高感度酵素免疫測定法、学会出版センター、1993:Ed Harlow and David Lane,Antibodies A Laboratory Manual,Cold Spring Harbor Laboratory,1988;A.Doyle and J.B.Griffiths,Cell&Tissue Culture:Laboratory Procedures,John Wiley&Sons Ltd.,1996。これらの文献に記載の方法を参考にして、測定系によっては反応時間や温度を4℃で終夜行うなどの改良を行う。特定の抗体検出については、kitを用いて実施する。ヒト抗体(hγ、hμ、hκ、hγ1、hγ2、hγ3、hγ4、hα、hε、hδ)の発現及び血清中の濃度を測定する。基本的な操作を以下に示す。
 測定しようとするヒト免疫グロブリンに対する抗体を希釈し、ELISAプレートを4℃で一晩コーティングする。血清試料の測定では、ブロッキング、試料及び標識抗体の希釈に5%牛胎仔血清を添加したPBSを用いる。コーティングしたプレートを洗浄した後、ブロッキングを1時間以上行う。プレートを洗浄後、試料を加えて30分以上インキュベートするプレート洗浄後、希釈した酵素標識抗ヒト及びマウス免疫グロブリン抗体を加えて、1時間以上インキュベートした後、プレートを洗浄し基質液を加えて発色させる。また測定系によって、基本的には同じ操作で、ビオチン標識した抗体を用い、プレート洗浄後これにアビジン-酵素複合体を加えてインキュベートした後洗浄し基質液を加える。マイクロプレートリーダーで吸光度を測定する。血清中の濃度の測定には濃度既知の標準を段階希釈してELISAをサンプルと同時に行い、検量線を引いて解析することで濃度を特定できる。
[H.5]ヒト抗体の発現解析及び配列同定
 キメララット脾臓由来RNAからcDNAを合成し、ヒト抗体遺伝子可変領域クローニングと塩基配列決定を行う。方法は国際公開WO98/37757号に記されている方法同様実施することで解析、評価できる。
[H.6]抗原特異的ヒト抗体産生応答の評価
 キメラマウスについて、抗原特異的ヒト抗体価の増加が見られるかを評価する。方法は特許(国際公開WO98/37757号)に記されている方法同様にヒト血清アルブミンで免疫し、抗体力価の上昇を解析する。
[I]IGHK-NACを保持するキメラマウスからのIGHK-NACの子孫伝達
[I.1]IGHK-NAC子孫伝達
上記[H]で作製される雌キメラマウス(キメラ率約100%)をICR雄マウスと交配し、誕生した仔マウスについて、ES細胞由来のIGHK-NACの優性遺伝形質である、GFPの蛍光を観察する。GFPの蛍光が観察されれば、マウス個体においてIGHK-NACが子孫伝達し、安定に保持されていることが確認できる。IGHK-NACが子孫伝達されたマウス系統をmTC(IGHK-NAC)と呼ぶ。
[I.2]IGHK-NACを保持するマウスのIGHK-NAC保持確認
 mTC(IGHK-NAC)について(実施例7)[H.2]同様解析を行うことでIGHK-NACの子孫伝達を詳細に確認できる。
[I.3]IGHK-NACを保持するマウスのヒト抗体産生能評価
 mTC(IGHK-NAC)について(実施例7)[H.4][H.5][H.6]同様に評価する。
[J]IGHK-NACを保持するラットの作製
 IGHK-NACを保持したラットの作製及び、解析を行う。過程で得られたキメラについても解析を行う。
[J.1]キメララットの作製
 上記実施例7[G]で得られたIGHK-NAC保持ラットES細胞クローンを用いてHirabayashiらの方法(Mol Reprod Dev. 2010 Feb;77(2):94.doi:10.1002/mrd.21123.)でキメララットを作製した。宿主としてはCrlj:WIラット(白色、日本チャールスリバー社より購入)の雌雄交配により得られる胚盤胞期胚を用いた。注入胚を仮親に移植した結果生まれる仔ラットは毛色によりキメラであるかどうかを判定できる。ES細胞由来のIGHK-NACの優性遺伝形質である、GFPの蛍光も産まれて間もない時期に観察し、ES細胞の寄与を確認する。
[J.2]IGHK-NACを保持するES細胞由来キメララットのIGHK-NAC保持確認
 上記[H.2]同様に解析を行い、IGHK-NAC保持をより詳細に確認する。血液細胞についてHuman cot-1及びMouse cot-1 DNAをプローブとして用い、FISH解析を実施する。
[J.3]キメララットのヒト抗体産生能評価
 キメララットについて(実施例7) [A.4][A.5][A.6]同様に評価する。
[K]IGHK-NACを保持するキメララットからのIGHK-NACの子孫伝達
[K.1]IGHK-NACを保持するキメララットからのIGHK-NACの子孫伝達
 上記[J]で作製されたキメララット(キメラ率約100%)とCrlj:WIラットを交配し、誕生した仔ラットについてES細胞由来のIGHK-NACの優性遺伝形質である、GFPの蛍光を観察する。GFPの蛍光が観察され、ラット個体においてIGHK-NACが子孫伝達し、安定に保持されていることを確認する。IGHK-NACが子孫伝達されたラット系統をrTC(IGHK-NAC)と呼ぶ。
[K.2]IGHK-NACを保持するラットのIGHK-NAC保持確認
 rTC(IGHK-NAC)について[J.2]同様解析を行うことでIGHK-NACの子孫伝達を詳細に確認できる。
[K.3]IGHK-NACを保持するラットのヒト抗体産生能評価
 rTC(IGHK-NAC)について(実施例7)[H.4][H.5][H.6]同様に評価する。
[実施例8]新規マウス人工染色体ベクターを用いたヒト抗体産生(IGHL-NAC)マウス及びラットの作製
 ヒト抗体遺伝子(IGH、IGL)をNACへ搭載することでIGHL-NACを構築し、IGHL-NACを保持したヒト抗体産生マウス及びラットの作製を行う(図21)。
[A]NACを保持するCHO細胞への改変ヒト22番染色体の移入
 改変ヒト22番染色体保持CHO細胞より改変ヒト22番染色体をNAC保持CHO細胞に導入する。
[A.1]微小核細胞融合法による改変ヒト22番染色体のNAC保持Hprt欠損CHO細胞への移入
 ドナー細胞である改変ヒト22番染色体CHO細胞(CHO hChr22LF)を細胞培養皿で培養し、コンフルエントになった時点で20%FBS、0.1μg/mlコルセミドを添加したF12培地に交換し、さらに48時間培養後に20% FBS、0.1μg/mlコルセミドを添加したF12培地で培地交換し、さらにオーバーナイトでインキュベートしてミクロセルを形成させる。培養液を除去し、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行う。微小核(「ミクロセル」ともいう)を無血清DMEM培地に懸濁し、8μm,5μm,3μmフィルターにて精製する。精製後、ミクロセルをDMEMで調製した0.05mg/ml PHA-P(シグマ)溶液2mLに懸濁し、6cm細胞培養皿でコンフルエントになったレシピエントであるNAC保持Hprt欠損CHO細胞株に、培養液を除いた後添加する。15分インキュベートして微小核をCHO細胞に張り付ける。その後、PEG1000(Wako)溶液[5gのPEG1000を無血清DMEM培地6mLに完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を1mlで正確に1分融合する。5mLの無血清DMEMでPEGを除去するために4回ウオッシュ操作を行った後、CHO培養液を添加する。24時間後、10cm細胞培養皿10枚に細胞を播種し、8μg/mLブラストサイジンSを添加し、10日選択培養を行った。得られた薬剤耐性株ついて以降の解析を行う。
[A.2]PCR解析による薬剤耐性クローンの選別
 ブラストサイジンS耐性株のゲノムを抽出し、鋳型としてPCR解析を行い、改変ヒト2番染色体の保持を確認する。そのプライマー配列を以下に示す。
改変ヒト22番染色体loxP配列確認プライマー:
22CeT La L:5’-CCTGCCTTCTTGTTTCAGCTCTCAACTG-3’(配列番号87)
22CeT La R:5’-GACGTGCTACTTCCATTTGTCACGTCCT-3’(配列番号88)
22CeT Ra L:5’-ATCCCCATGTGTATCACTGGCAAACTGT-3’(配列番号89)
22CeT Ra R:5’-ACACTTTAGTCCCTGTCCCCTCAACGAG-3’(配列番号90)
 PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行う。
改変ヒト22番染色体FRT配列確認プライマー:
22TeT La L:5’-TGCAGGTATCTGTTGGTGTCCCTGTTTT-3’(配列番号91)
22TeT La R:5’-GACGTGCTACTTCCATTTGTCACGTCCT-3’(配列番号92)
22TeT Ra L:5’-AGCAGAGCTCGTTTAGTGAACCGTCAGA-3’(配列番号93)
22TeT Ra R:5’-CTGTCCTATCCTTGCAGCTGTCTTCCAG-3’(配列番号94)
 PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行えば組換えが確認する。
 加えて、ヒト2番染色体上のプライマーを用い領域が保持されているかを確認する。そのプライマー配列を以下に示す。
553P-F:5’-AGATCTCTTGAGCCCAGCAGTTTGA-3’(配列番号95)
553P-R:5’-TGAAGTTAGCCGGGGATACAGACG-3’(配列番号96)
PPM1F L:5’-AACGGCAGCCAAACCAAAGA-3’(配列番号97)
PPM1F R:5’-ACCAGGACTGGCTGGGCATA-3’(配列番号98)
IGLVI-70 L:5’-AGTCTGCGCTGACCCAGGAA-3’(配列番号99)
IGLVI-70 R:5’-TTGAGCCAGAGAAGCGGTCA-3’(配列番号100)
GNAZ L:5’-TCCACTTGGGGGTCTGCATT-3’(配列番号101)
GNAZ R:5’-TGGTGCTGAGCAGCTGTGTG-3’(配列番号102)
LIF L:5’-TGGGACTTAGGTGGGCCAGA-3’(配列番号103)
LIF R:5’-GCCTCCCCAAGAGCCTGAAT-3’(配列番号104)
hVpreB1-F:5’-TGTCCTGGGCTCCTGTCCTGCTCAT-3’(配列番号105)
hVpreB1-Rm:5’-GGCGGCGACTCCACCCTCTT-3’(配列番号106)
hVpreB3-F:5’-CACTGCCTGCCCGCTGCTGGTA-3’(配列番号107)
hVpreB3-R:5’-GGGCGGGGAAGTGGGGGAGAG-3’(配列番号108)
hL5-F:5’-AGCCCCAAGAACCCAGCCGATGTGA-3’(配列番号109)
hL5-R:5’-GGCAGAGGGAGTGTGGGGTGTTGTG-3’(配列番号110)
344-F:5’-ATCATCTGCTCGCTCTCTCC-3’(配列番号111)
344-R:5’-CACATCTGTAGTGGCTGTGG-3’(配列番号112)
350P-F:5’-ACCAGCGCGTCATCATCAAG-3’(配列番号113)
350P-R:5’-ATCGCCAGCCTCACCATTTC-3’(配列番号114)
IgL-F:5’-GGAGACCACCAAACCCTCCAAA-3’(配列番号115)
IgL-Rm:5’-GAGAGTTGGAGAAGGGGTGACT-3’(配列番号116)
SERPIND1 L:5’-ACCTAGAGGGTCTCACCTCC-3’(配列番号117)
SERPIND1 R:5’-CCCTGGACATCAAGAATGG-3’(配列番号118)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれかで30秒、72℃1分を35サイクル行う。
 PCR陽性クローンについて以降の解析を行う。
[A.3]two-color FISH解析
 PCR解析陽性クローンについて、Human cot-1 DNA及びMouse cot-1 DNAをプローブにしてFISH解析を行い、NACと改変ヒト22番染色体が独立して保持されている陽性細胞を選別する。
[B]転座クローニングによるヒト22番染色体IGL領域のマウス人工染色体ベクター(NAC)への搭載
 NACを保持するCHO細胞において、ヒト22番染色体上IGK領域をNACへ転座クローニングする。転座クローニングにはCre/loxPシステムを用い、ヒト2番染色体とNACを相互転座させることで、IGL領域をNACに搭載する(図22)。
[B.1]Cre発現によるHAT耐性染色体組換え体の取得
 NACにはloxPサイトが搭載されており、Cre組換え酵素存在下で改変ヒト2番染色体のloxPサイトと組換えが起こるようになっている。また、組換えが起こると副産物となるNACに載らないヒト2番染色体領域の5’HPRTと副産物となるNAC末端の3’HPRTが連結して、HPRT遺伝子の再構成が起こり、CHO(hprt-/-)はHAT耐性を獲得する。
 改変ヒト2番染色体とNACを保持するHprt欠損CHO細胞について、10cm細胞培養皿においてコンフルエントになった時に、18μgのCre発現プラスミド(ベクター名:pBS185)をLipofectamine2000(Thermo Fisher Scientific)を用いてメーカーの手順を参照して加える。添加後6時間経過したら、培養液を交換し、24時間後に、10cm細胞培養皿10枚に播種し、1×HAT(シグマ)、4μg/mL Blasticidinで薬剤選択を行う。得られた薬剤耐性株を以降の解析に用いる。
[B.2]PCR解析による薬剤耐性クローンの選別
 HAT耐性株のゲノムDNAを抽出して鋳型として相互転座クローンを選別するため、以下のプライマーを用いてPCRを行い、ヒト2番染色体断片とNAC上で染色体相互転座が起こっているかを確認する。そのプライマー配列を以下に示す。
TRANS L1 (前出)
TRANS R1 (前出)
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行う。
 FRT挿入部位が維持されているか確認するためのプライマーを以下に示す。
22TeT La L (前出)
22TeT La R (前出)
22TeT Ra L (前出)
22TeT Ra R (前出)
 PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行う。
 また、ヒト22番染色体領域についてPCR解析を行う。以下に配列を示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
GNAZ L (前出)
GNAZ R (前出)
LIF L (前出)
LIF R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
SERPIND1 L (前出)
SERPIND1 R (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行う。
[B.3]two-color FISH解析
 Human cot-1 DNA及びMouse cot-1 DNAをプローブにしてFISH解析を行い、NACと改変ヒト22番染色体が相互転座をおこしかつ、IGL領域がNACに搭載されたIGL-NAC、副産物が独立して保持されていることを確認する。選別した陽性細胞(CHO IGL-NACと命名する)について、以下の実験を行う。
[C]IGL-NACの改変ヒト14番染色体保持CHO(hprt-/-)細胞株への移入
 作製したIGL-NACを、改変ヒト14番染色体を保持するCHO(hprt-/-)細胞株へ移入し、FRT/Flpシステムによる組換えを起こさせIGH領域をIGL-NACに搭載し、IGHL-NACを作製する。
[C.1]微小核細胞融合と薬剤耐性クローンの単離
 ドナー細胞であるCHO IGL-NACを細胞培養皿で培養し、コンフルエントになった時点で20%FBS、0.1μg/mlコルセミドを添加したF12培地に交換し、さらに48時間培養後に20%FBS、0.1μg/mlコルセミドを添加したF12培地で培地交換し、さらにオーバーナイトでインキュベートしてミクロセルを形成させる。培養液を除去し、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行う。微小核(「ミクロセル」ともいう)を無血清DMEM培地に懸濁し、8μm,5μm,3μmフィルターにて精製する。精製後、ミクロセルをDMEMで調製した0.05mg/ml PHA-P(シグマ)溶液2mLに懸濁し、6cm細胞培養皿でコンフルエントになったレシピエントであるCHO hprt-/-14FRT(PCT/JP2017/039441に記載)、培養液を除いた後添加する。15分インキュベートして微小核をCHO細胞に張り付ける。その後、PEG1000(Wako)溶液[5gのPEG1000を無血清DMEM培地6mLに完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を1mlで正確に1分融合する。5mLの無血清DMEMでPEGを除去するために4回ウオッシュ操作を行った後、CHO培養液を添加する。24時間後、10cm細胞培養皿10枚に細胞を播種し、600μg/mL G418と6μg/mLブラストサイジン(Blasticidin)を添加し、10日選択培養を行う。得られた薬剤耐性株ついて以降の解析を行う。
[C.2]PCR解析による薬剤耐性クローンの選別
 IGL-NACが改変ヒト14番染色体を保持するCHO(hprt-/-)株に移入されているか、改変ヒト14番染色体は維持されているかを確認するためにPCR解析を行う。以下に用いるプライマーを示す。
IGL-NACの確認プライマー:
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行う。
 FRT挿入部位が維持されているか確認するためのプライマーを以下に示す。
22TeT La L (前出)
22TeT La R (前出)
22TeT Ra L (前出)
22TeT Ra R (前出)
 PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行う。
 また、ヒト22番染色体領域についてPCR解析を行う。以下に配列を示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
GNAZ L (前出)
GNAZ R (前出)
LIF L (前出)
LIF R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
SERPIND1 L (前出)
SERPIND1 R (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれかで30秒、72℃1分を35サイクル行う。
ヒト14番染色体領域の確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行う。
改変ヒト14番染色体上FRT挿入部位の確認プライマー:
14TarC_La F (前出)
14TarC_La R (前出)
14TarC_Ra F (前出)
14TarC_Ra R (前出)
 これらプライマーについては、KOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃6分を35サイクル行う。
 この結果を受けて、クローンを選別し、以降の実験を進める。
[C.3]two-color FISH解析
 Human cot-1 DNA及びMouse cot-1 DNAをプローブにしてFISH解析を行い、IGL-NACと改変ヒト14番染色体が独立して、1コピーずつ維持されているクローンを確認する。陽性細胞(CHO #14 IGL-NACと命名)を選択し以降の実験を行う。
[D]FRT/Flp組換えシステムを用いたIGHL-NACの構築
 IGL-NACと改変ヒト14番染色体をFRT/Flpシステムで相互転座させることで、IGL-NAC上にヒト14番染色体由来IGH領域を転座クローニングし、IGHL-NACを構築する(図23)。
[D.1]FLP発現によるHAT耐性染色体組換え体の取得
 IGL-NAC上のFRTサイトと改変ヒト14番染色体上のFRTサイトを用いて、FLPo組換え酵素存在下で相互転座を起こさせる。また、組換えが起こるとIGHL-NAC上では、5’HPRTと3’HPRTが連結して、HPRT遺伝子の再構成が起こり、HAT耐性を獲得する。CHO#14IGL-NACについて、10cm細胞培養皿においてコンフルエントになった時に18μgのFLP発現プラスミドをLipofectamine2000(Thermo Fisher Scientific)を用いてメーカーの手順を参照して加える。添加後6時間経過したら、培養液を交換し、24時間後に、10cm細胞培養皿10枚に播種し、1×HAT、8μg/mL Blasticidinで薬剤選択を行う。
 得られたHAT耐性クローンを以降の解析に用いる。
[D.2]PCR解析による薬剤耐性クローンの選別
 FRT/FLPシステムを用いて期待した相互転座が起こり、IGHK-NACが構築されているか確認するため、薬剤耐性クローンのDNAを抽出し、鋳型としてPCR解析を行う。用いるプライマーを以下に示す。
相互転座連結部位の確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
CMVr-1 (前出)
PGKr-2 (前出)
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行う。
 ヒト22番染色体領域についてPCR解析を行う。以下に配列を示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
GNAZ L (前出)
GNAZ R (前出)
LIF L (前出)
LIF R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれかで30秒、72℃1分を35サイクル行う。
ヒト14番染色体領域の確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行う。
 PCR結果によりクローンを選別し、以降の実験に用いる。
[D.3]two-color FISH解析
 プローブとしてBACクローンCH17-424L4(IGL領域)とCH17-262H11(IGH領域)及びCH17-95F2(IGL領域)とCH17-212P11(IGH領域)の組み合わせを用いてtwo-color FISH解析を行い、実際IGHL-NACが構築されているか詳細に解析する。NAC上にそれぞれ、IGL領域とIGH領域の存在を示すシグナルが観察されたものを陽性とし、IGHL-NACが構築されていることを確認(CHO IGHL-NACと命名)しクローンを選別し、以降の実験を行う。
[E]IGHL-NACのCHO K1細胞株への移入
 IGHL-NAC及びIGHL-NAC構築のための相互転座の際に形成された副産物の両方にNeo耐性遺伝子が載っており、微小核細胞融合法で目的の細胞に移入した際、G418で薬剤選択するとIGHL-NACもしくは副産物がそれぞれあるいは両方移入された細胞を取得することになる。NAC上にはEGFPが搭載されているので、目的の細胞にIGHL-NACが移入されているか確認することが可能であるが、染色体導入が効率的に行えるドナー細胞でかつIGHL-NACのみを保持する細胞を作製するため。IGHL-NACをCHO K1細胞株に移入する。
[E.1]微小核細胞融合と薬剤耐性クローンの単離:IGHL-NACのCHO K1株への移入
 ドナー細胞であるCHO IGHL-NACを細胞培養皿で培養し、コンフルエントになった時点で20%FBS、0.1μg/mlコルセミドを添加したF12培地に交換し、さらに48時間培養後に20%FBS、0.1μg/mlコルセミドを添加したF12培地で培地交換し、さらにオーバーナイトでインキュベートしてミクロセルを形成させる。培養液を除去し、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行った。微小核(「ミクロセル」ともいう)を無血清DMEM培地に懸濁し、8μm,5μm,3μmフィルターにて精製する。精製後、ミクロセルをDMEMで調製した0.05mg/ml PHA-P(シグマ)溶液2mLに懸濁し、6cm細胞培養皿でコンフルエントになったレシピエントであるCHO K1細胞株に、培養液を除いた後添加する。15分インキュベートして微小核をCHO細胞に張り付ける。その後、PEG1000(Wako)溶液[5gのPEG1000を無血清DMEM培地6mLに完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を1mlで正確に1分融合する。5mLの無血清DMEMでPEGを除去するために4回ウオッシュ操作を行った後、CHO培養液を添加する。24時間後、10cm細胞培養皿10枚に細胞を播種し、800μg/mL G418を添加し、10日選択培養を行う。得られた薬剤耐性株について以降の解析を行う。
[E.2]PCR解析による薬剤耐性クローンの選別
 IGHL-NACがCHO K1細胞株に移入されていることを確認するため、薬剤耐性クローンのDNAを抽出し、それを鋳型としてPCR解析を行った。用いたプライマーを以下に示す。
相互転座連結部位確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
CMVr-1 (前出)
PGKr-2 (前出)
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行う。
 ヒト22番染色体領域についてPCR解析を行う。以下に配列を示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれかで30秒、72℃1分を35サイクル行う。
ヒト14番染色体領域の確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行う。PCR解析陽性細胞株について以降の解析を行う。
[E.3]two-color FISH解析
 Human cot-1 DNA及びMouse cot-1 DNAをプローブにしてFISH解析を行い、IGHL-NACを1コピー独立して保持していることを確認する。
 さらに、プローブとしてBACクローンCH17-424L4 (IGL領域)とCH17-262H11(IGH領域)及びCH17-95F2 (IGL領域)とCH17-212P11(IGH領域)の組み合わせを用いてtwo-color FISH解析を行い、IGHL-NACの構造を詳細に解析する。NAC上にそれぞれ、IGL領域とIGH領域の存在を示すシグナルが観察されたものを陽性(CHO K1 IGHL-NACと命名)として、以降の実験に用いる。
[F]マウスES細胞へのIGHL-NACの移入
 ヒト抗体産生マウスを作製するためにはIGHL-NACをマウスES細胞に移入し、受精卵8細胞期にインジェクションし、キメラマウスを作製し、IGHL-NACを子孫伝達させることが必要である。
[F.1]微小核細胞融合と薬剤耐性クローンの単離
 ドナー細胞は、CHO K1 IGHL-NACを用いる。実施例7[F.1]と同様の手法を用いて微小核細胞融合を行い、EGFP陽性かつ薬剤耐性株を取得し、以降の解析を行う。
[F.2]PCR解析による薬剤耐性クローンの選別
IGHL-NACがマウスES細胞株に移入されていることを確認するため、薬剤耐性クローンのDNAを抽出し、それを鋳型としてPCR解析を行う。用いるプライマーを以下に示す。
相互転座連結部位確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行う。
 ヒト22番染色体領域についてPCR解析を行う。以下に配列を示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行う。
ヒト14番染色体領域の確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行う。PCR解析陽性細胞株について以降の解析を行う。
[F.3]two-color FISH解析
 Human cot-1 DNA及びMouse cot-1 DNAをプローブにしてFISH解析を行い、IGHL-NACのみを保持しており、マウスESの正常核型を維持していることを確認する。
 プローブとしてBACクローンCH17-95F2(IGL領域)とCH17-262H11(IGH領域)及びCH17-424L4(IGL領域)とCH17-212P11(IGH領域)の組み合わせを用いてtwo-color FISH解析を行い、実際IGHL-NACが構築されているか詳細に解析する。NAC上にそれぞれ、IGL領域とIGH領域の存在を示すシグナルが期待した位置に観察されたものを陽性細胞株(HKD31 IGHL-NAC)とし、インジェクションに用いる。
[G]ラットES細胞へのIGHL-NACの移入
 ヒト抗体産生ラットを作製するためにはIGHL-NACをラットES細胞に移入し、受精卵8細胞期にインジェクションし、キメラマウスを作製し、IGHL-NACを子孫伝達させることが必要である。
[G.1]微小核細胞融合と薬剤耐性クローンの単離
 実施例7[F.1]に記載のようにマウスES細胞への微小核細胞融合法と同様の手法を用いてラットES細胞へのIGHL-NACの導入を行う。ドナー細胞は、CHO K1 IGHL-NACを用いる。融合後、オーバーナイトでインキュベーションし、G418を150μg/mLになるように加え、3~4週間選択培養する。結果GFP陽性かつ薬剤耐性のクローンを以降の解析に用いる。
[G.2]PCR解析による薬剤耐性クローンの選別
 IGHL-NACがラットES細胞株に移入されていることを確認するため、薬剤耐性クローンのDNAを抽出し、それを鋳型としてPCR解析を行う。用いたプライマーを以下に示す。
相互転座連結部位確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行った。
 ヒト22番染色体領域についてPCR解析を行う。以下に配列を示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行う。
ヒト14番染色体領域確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行う。PCR解析陽性細胞株について以降の解析を行う。
[G.3]two-color FISH解析
 Human cot-1 DNA及びMouse cot-1 DNAをプローブにしてFISH解析を行い、IGHL-NACを1コピー独立して保持しており、ラットESの正常核型(42本)を維持していることを確認する。プローブとしてBACクローンCH17-95F2(IGL領域)とCH17-262H11(IGH領域)及びCH17-424L4(IGL領域)とCH17-212P11(IGH領域)の組み合わせを用いてtwo-color FISH解析を行い、IGHL-NACの構造をさらに詳しく解析する。NAC上にそれぞれ、IGL領域とIGH領域の存在を示すシグナルが期待した位置に観察されたものを陽性細胞株(rESIGHL-NACと命名)とし、インジェクションに用いる。
[H]IGHL-NACを保持するマウス及びラットの作製と子孫伝達個体の作製
 IGHL-NACを保持するマウス及びラットES細胞を用い、(実施例7)[H][I][J][K]同様に操作を行うことで、IGHL-NACを保持した子孫伝達マウス及び、ラットを作製することができる。子孫伝達マウス、ラット及び過程で得られたキメラマウスについても、(実施例7)[H.4][H.5][H.6]同様に解析を行い、IGHL-NAC保持及び抗体発現(hλも含む)を確認する。作製されたIGHL-NAC保持マウス及びラット系統をそれぞれmTC(IGHL-NAC)、rTC(IGHL-NAC)と呼ぶ。
[実施例9]完全ヒト抗体産生マウスの作製
 IGHK-NAC及びIGHL-NACを保持するマウスと、マウスIgh,及びIgk遺伝子が破壊されており、かつIgl変異を持つ(Iglの発現が低くなる変異を持つ)マウスを交配させ、ヒト抗体産生マウスを作製する。
[A]Igh及びIgk遺伝子欠損、Igl低発現マウスの作製
 ヒト抗体産生マウスを作製するため、マウス抗体遺伝子を欠損または低発現しているマウスを作製する。
[A.1]Igh及びIgk遺伝子欠損、Igl低発現マウスの作製
 HKD31(マウスIgh、Igkの遺伝子破壊が破壊されている)マウスESより得られたマウス系統と、マウスIgl低発現の変異を持つCD-1(ICR、チャールズリバーより購入)を交配して、Igh及びIgk遺伝子欠損、Igl低発現マウスを作製する。
 CD-1由来のマウスIglc変異はPCR-RFLP解析により確認する。
 以下のプライマーを用いてPCRを行う。
mIglc1VnC L:5’-CCTCAGGTTGGGCAGGAAGA-3’(配列番号119)
J3C1:5’-GACCTAGGAACAGTCAGCACGGG-3’(配列番号120)
 TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行う。
 PCRプロダクトをKpnI-HF(NEB)で処理し、電気泳動後、PCRプロダクトの切断が認められないものを変異アレル保持として判定する。Igλ変異が両アレルで認められるマウス(「LD系統」と呼ぶ。)を交配にて獲得する。
[A.2]マウス抗体遺伝子の発現評価
 マウス抗体が発現消失及びほぼ発現していないことをフローサイトメトリー(FCM)解析及びELISAによって、評価する。
 実施例7[H.3]で述べたように、Igh遺伝子が破壊されており、Igμの発現がなくなるとB細胞ができず、B細胞の有無を判定することで、Igh遺伝子欠損が評価できる。FCM解析は以前の報告(Proc Natl Acad Sci U S A.2000 Jan 18;97(2):722-7.)同様行い、B細胞欠失が見られた個体について、マウスIgh欠損と判定する。マウスIgh、Igκが破壊されていると考えられるマウス(HKD系統と呼ぶ。)とIgλ変異マウスとの交配を進め、Igh、Igκが破壊されかつIgλ変異を両アレルにもつマウス(HKLD系統と呼ぶ。)を得る。
 また、得られたマウスについて、マウスIghに加え、Igk,Iglの発現も以前の報告(Proc Natl Acad Sci U S A.2000 Jan 18;97(2):722-7)と同様に、ELISAを行い、発現消失及び低発現であることを確認する。
[A.3]ヒト抗体産生マウスの作製
 IGHK-NAC保持マウスもしくはIGHL-NAC保持マウスとマウスIghKO、IgkKO、Igl変異マウスを交配し、完全ヒト抗体産生マウスを作製する。
[B]完全ヒト抗体産生マウスの評価
[B.1]FACS解析
 IGHK-NACもしくはIGHL-NACを保持するB細胞の存在確認を目的としてフローサイトメトリー解析を行う。ヒトIGMとマウスCD45R(B220)に対する抗体を用いて、血液細胞を染色し、ヒトIGM、CD45R、GFP陽性の細胞を確認する。ヘパリンコートキャピラリ―を用いて、眼窩より採血し、ヘパリンPBSの入ったチューブに血液を移し、転倒混和して氷冷。遠心2000rpm、3分、4℃、の後、上清除去後、各種抗体を添加し、4℃で30分反応させ、5%牛胎仔血清を添加したPBS(5%FBS/PBS)により洗浄する。最後の遠心後、ペレットに1.2%Dextran/生理食塩水を加え、タッピング後、室温で45分静置し、赤血球を自然沈降させる。上清を新しいチューブに移し、2000rpm、3分、4℃で遠心後上清除去し、ペレットに室温の溶血剤(0.17M NHCl)を加え、5分静置する。2000rpm、3分、4℃で遠心し、5%FBS/PBSで洗浄した後500μlの5%FBS/PBSで懸濁したものを解析サンプルとし、フローサイトメーターにより解析する。
[B.2]ヒト抗体の発現解析
 ヒト抗体遺伝子軽鎖、重鎖、各種アイソタイプ発現確認を目的として、ELISAにより測定する。(実施例7)[H.4]に記載した方法同様、マウスの抗体発現の有無確認も含め、マウス抗体(mγ、mμ、mκ、mλ)、ヒト抗体(hγ、hμ、hκ、hλ、hγ1、hγ2、hγ3、hγ4、hα、hε、hδ)の発現及び血清中の濃度を測定する。
[B.3]ヒト抗体の発現解析及び配列同定
 ヒト抗体産生マウス脾臓由来RNAからcDNAを合成し、ヒト抗体遺伝子可変領域クローニングと塩基配列決定を行う。(実施例7)[H.5]と同様に実施することで解析、評価できる。
[B.4]抗原特異的ヒト抗体産生応答の評価
 ヒト抗体産生マウスについて、抗原特異的ヒト抗体産生応答が見られるかを評価する。(実施例7)[H.6]に記載した方法同様にヒト血清アルブミンで免疫し、抗体力価の上昇を解析する。
[B.5]ヒト抗体産生マウスからのヒト抗体産生ハイブリドーマの取得
 特許(国際公開WO98/37757号)に記載されている方法同様にヒト抗体産生ハイブリドーマの取得ができる。
[実施例10]完全ヒト抗体産生ラットの作製
 IGHK-NAC及びIGHL-NACを保持するラットと、ラットIgh,Igk,Iglが破壊されたKOラットを交配させ、ヒト抗体産生ラットを作製する。
[A]ヒト抗体産生ラットの作製及び評価
[A.1]ヒト抗体産生ラットの作製
 IGHK-NACもしくはIGHL-NACを保持したラット系統とラットIgh、Igκ、Igλ遺伝子が破壊されたラット系統を交配することで、ヒト抗体産生ラットを作製できる。
[A.2]FACS解析
 IGHK-NACもしくはIGHL-NACを保持するB細胞の確認を行う。(実施例14)[B.1]と同様の方法で実施し、抗体は抗ラットCD45R(B220)抗体を用い、溶血剤は0.15M NHClを用いる。
[A.3]ヒトIgの発現解析
 ELISAによるヒト抗体遺伝子軽鎖、重鎖、各種アイソタイプ発現確認を目的として、(実施例7)[H.4]]と同様に解析を行うことでヒト抗体産生を評価することができる。抗ラット免疫グロブリン抗体を用いてラット抗体(rγ、rμ、rκ、rλ)の発現も評価する。
[A.4]ヒト抗体の発現解析及び遺伝子配列同定
 上記の(実施例7)[H.5]と同様の方法を用いて、抗体遺伝子配列決定、解析、評価を行うことができる。
[A.5]抗原特異的ヒト抗体産生応答の評価
 (実施例7)[H.6]の記載と同様に実施し、評価することができる。
[A.6]ヒト抗体産生ラットからのヒト抗体産生ハイブリドーマの取得
 (実施例9)[B.5]の記載と同様の方法で実施し、ヒト抗体産生ハイブリドーマの取得ができる。
[実施例11]マウス人工染色体ベクター10MAC2、10MAC3の構築
 マウス人工染色体10MACにDNA挿入配列としてPGKneo-5’HPRT-loxPおよびGFP-PGKneo-5’HPRT-loxPタイプのloxP配列を挿入することでマウス人工染色体ベクター10MAC2、10MAC3を各々構築し、環状DNAを介した遺伝子搭載を行うためのhprt欠損CHO細胞株へ導入し、動作確認を行う。
[A]マウス人工染色体10MACへのPGKneo-5’HPRT-loxPおよびGFP-PGKneo-5’HPRT-loxPタイプのloxP配列の挿入によるマウス人工染色体ベクター10MAC2、10MAC3の構築
 マウス人工染色体10MACに遺伝子搭載サイトloxPのみを搭載した10MACおよび遺伝子搭載サイトloxPとその存在をモニター可能なGFP発現ユニットを搭載した10MACを構築する。
[A.1] PGKneo-5’HPRT-loxPおよびGFP-PGKneo-5’HPRT-loxPタイプのloxPターゲティングベクターの作製
 DT40(10MAC)にloxP配列を挿入するための基本プラスミドにはV907(Lexicon genetics)を用いた。loxP挿入部位であるマウス10番染色体のDNA配列はGenBankデータベースより得た(NC_000076.6)。薬剤耐性クローンからゲノムDNAを抽出して鋳型とし、相同組換えの二つの標的配列の増幅に用いたプライマーの配列を以下に示す。
NotI_m10 LA F:5'- TCGAGCGGCCGCTCTAAGTCAGGGAAAGATCCCCTTCTTG -3' (配列番号121)
SalI_m10 LA R:5'- TCGAGTCGACGACCATGAAGATGGTCCAACTAAAGCAA -3' (配列番号122)
ClaI_m10 RA F:5'- TCGAATCGATCACTGCTCTTTCTTTAGTTACATGCAGCCC -3' (配列番号123)
ClaI_m10 RA R:5'- TCGAATCGATATTCTTGCCAAGCTACTCTTCCGAGCTA -3' (配列番号124)
 PCRは、サーマルサイクラーとしてPerkin-Elmer社製のGeneAmp9600を、TaqポリメラーゼはKOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,dGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃3分及び5分を35サイクル行った。
 PGKneo-5’HPRT-loxPのターゲティングベクターの作製。
V907のEcoRIサイトにPGKneoをクローニングした。AscIサイトとClaIサイトに5’HPRT-loxPを挿入した。ClaI m10 RA FとClaI m10 RA RのPCR産物をClaI(NEB)で消化して、アガロースゲルにより分離し精製後、V907のClaIサイトにクローニングした(ベクター名:V907-PGKneo-5’HPRT-loxP-m10RA)。NotI_m10 LA FとSalI_m10 LA RのPCR産物をNotI(NEB)とSalI(NEB)で消化して、アガロースゲルにより分離し精製後、V907-PGKneo-5’HPRT-loxP-m10RAのNotI/SalIサイトにクローニングした(ベクター名:p10MAC2)。
 GFP-PGKneo-5’HPRT-loxPのターゲティングベクターの作製。V907-PGKneo-5’HPRT-loxP―m10RAのNotI/SalIサイトににCAG-EGFPをクローニングした。NotI_m10 LA FとSalI_m10 LA RのPCR産物をNotI(NEB)とPspOMI(NEB)で消化して、アガロースゲルにより分離し精製後、V907-EGFP-PGKneo-5’HPRT-loxP―m10RAのNotIサイトにクローニングした(ベクター名:p10MAC3)。
ターゲティングベクター、標的配列及び相同組換えにより生じる染色体アレルを図24、25に示す。
[A.2]トランスフェクション及びG418耐性クローンの単離
 ニワトリDT40細胞の培養は10%ウシ胎仔血清(ギブコ、以下「FBS」で記す)、1%ニワトリ血清(ギブコ)、10-4M 2-メルカプトエタノール(シグマ)を添加したRPMI1640培地(ギブコ)中で行った。DT40(10MAC)T5-26の約10個の細胞を無添加RPMI1640培地で一回洗浄し、0.5mlの無添加RPMI1640培地に懸濁し、制限酵素NotI(TAKARA)で線状化したターゲティングベクターp10MAC2もしくはp10MAC3を25μg加え、エレクトロポレーション用のキュベット(バイオラッド)に移し、室温で10分間静置した。キュベットをジーンパルサー(バイオラッド)にセットし、550V、25μFの条件で電圧印加した。室温で10分間静置後、24時間培養した。G418(1.5mg/ml)を含む培地に交換し、96穴培養プレート2枚に分注して約2週間の選択培養を行った。T5-26,T6-37各2回のトランスフェクションで得た各24、20個の耐性コロニーを単離し増殖させ、以後の解析を行った(クローン名:DT40(10MAC2)およびDT40(10MAC3))。
[A.3]相同組換体の選別
[A.3.1]PCR解析
 G418耐性株のゲノムDNAを抽出して鋳型として組換え体を選別するため、以下のプライマーを用いてPCRを行い、マウス10番染色体上で部位特異的に組換え起こっているかを確認した。そのプライマー配列を以下に示す。
DT40(10MAC2)
m10 F1 (前出)
NAC R1:5'- CTCTTCAGCAATATCACGGGTAGCCAAC -3' (配列番号125)
NAC F1:5'- TGCTTGCATTGTATGTCTGGCTATTCTG -3' (配列番号126)
m10 R2 (前出)
m10 F6 (前出)
Puro I (前出)
DT40(10MAC3)
m10 F1 (前出)
EGFP-R:5'- TGCTCAGGTAGTGGTTGTCG -3' (配列番号127)
NAC F1 (前出)
m10 R2 (前出)
m10 F6 (前出)
Puro I (前出)
 PCRは、サーマルサイクラーとしてPerkin-Elmer社製のGeneAmp9600を、TaqポリメラーゼはKOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,dGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分もしくは6分を35サイクル行った。
 その結果DT40(10MAC2)およびDT40(10MAC3)について各14、11クローンについて目的の組換えが行われていることが示唆された。
[A.3.2]two-color FISH解析
 上記から得られたDT40(10MAC2)およびDT40(10MAC3)において、two-color FISH解析を松原ら(FISH実験プロトコール、秀潤社、1994)に従い行った。マウスcot-1 DNA及び5’-HPRT-loxP(X6.1)カセットをプローブにしてFISH解析を行ったところ、loxP配列がターゲティングされたマウス10番染色体断片のセントロメア付近にプローブ由来のFITCシグナルが検出されたことから、部位特異的に組換えが起こったことが視覚的に確かめられた(図26、27)。これらの結果から、マウス人工染色体ベクター10MAC2および10MAC3を保持するDT40細胞クローンが得られたと結論できた。以降のステップでは、DT40(10MAC2) #8、DT40(10MAC3)#12の各1クローンを用いることとした。
[B]マウス人工染色体ベクター10MAC2および10MAC3含有DT40細胞から10MAC2および10MAC3のCHO細胞への導入
 CHO細胞内でマウス人工染色体ベクター10MAC2もしくは10MAC3のDNA配列挿入部位であるloxP配列を介して目的遺伝子(群)を保持した環状DNAを挿入するため、或いはCHO細胞を介して目的の遺伝子が搭載されたマウス人工染色体ベクター10MAC2もしくは10MAC3をマウスES細胞等に導入するためにCHO細胞に導入する。
[B.1]微小核細胞融合と薬剤耐性クローンの単離
 ドナー細胞であるDT40(10MAC2)およびDT40(10MAC3)を用いて、上記と同様にCHO hprt欠損細胞(ヒューマンサイエンス研究資源バンクより入手、登録番号JCRB0218)であるCHO(HPRT)に微小核細胞融合法を行った。微小核細胞融合で得たG418耐性コロニーを単離し増殖させ、以降の解析を行った(クローン名:CHO(HPRT;10MAC2)およびCHO(HPRT;10MAC3))。
[B.2]薬剤耐性クローンの選別
[B.2.1]PCR解析
 G418耐性株のゲノムDNAを抽出して鋳型として組換え体を選別するため、以下のプライマーを用いてPCRを行い、マウス人工番染色体ベクター10MAC2および10MAC3がCHO細胞に導入できているかを確認した。そのプライマー配列を以下に示す。
CHO(HPRT;10MAC2)
m10 F1 (前出)
NAC R1 (前出)
NAC F1 (前出)
m10 R2 (前出)
m10 F6 (前出)
Puro I (前出)
CHO(HPRT;10MAC3)
m10 F1 (前出)
EGFP-R (前出)
NAC F1 (前出)
m10 R2 (前出)
m10 F6 (前出)
Puro I (前出)
 PCRは、サーマルサイクラーとしてPerkin-Elmer社製のGeneAmp9600を、TaqポリメラーゼはKOD FX(TOYOBO)を用い、バッファーやdNTPs(dATP,dCTP,dGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分もしくは6分を35サイクル行った。PCR陽性のクローン各12、10クローン得られたため以降の解析を行った。
[B.2.2]mono-color FISH解析
 上記で得られたCHO(HPRT;10MAC2)および(HPRT;10MAC3)に関して選抜した各6クローンについてShinoharaらの報告(Human Molecular Genetics,10: 1163-1175,2001)に記された方法でマウスcot-1 DNAをプローブにしたFISH解析を行い、マウス人工染色体ベクター10MAC2および10MAC3がCHO細胞に導入されていることを確認した。解析結果よりMAC2が安定に独立して保持されている1クローンおよびMAC3が安定かつ独立して保持されている2クローンを確認した(図28、29)。
[C]MAC2およびMAC3への環状DNAの挿入確認
 作製したMAC2およびMAC3への環状DNAの組換え挿入が動作するか検証を行った。
[C.1]MAC2およびMAC3へのCre/loxPシステムによる環状DNAの挿入
 CHO(HPRT;10MAC2)および(HPRT;10MAC3)を6cm dishでコンフルエントになるように培養を行った。Lipofectamine2000を用いてメーカーのプロトコールに従い、CHO(HPRT;10MAC2)にはCre発現プラスミド(ベクター名:pBS185)およびLoxP-3’HPRT-EGFPのプラスミド(ベクター名:X3.1-I-EGFP-I)を共導入し、CHO(HPRT;10MAC3)にはpBS185およびLoxP-3’HPRT-tdtomatoのプラスミド(ベクター名:X3.1-I-tdtomato-I)を共導入した。遺伝子導入24時間後細胞を10cmdish10枚に継代培養し、さらに24時間後からHATで薬剤選択を行った。得られた薬剤耐性クローンについて以降の解析を行う。
[C.2]薬剤耐性クローンの解析
 期待された部位特異的組換えが起こり、LoxP-3’HPRTを保持した環状DNAが挿入されると10MAC2および10MAC3でHPRT遺伝子の再構成が起こり、HAT耐性になる。薬剤耐性クローンからDNAを抽出し、この組換えのつなぎ目を検出するPCRを行う。使用したプライマーを以下に示す。
TRANS L1 (前出)
TRANS R1 (前出)
 これらプライマーについては、LA taq(Takara)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行う。その結果で、部位特異的組換えによる環状DNAの挿入効率を評価する。
 本発明のマウス人工染色体ベクターは、例えば、外来遺伝子を発現する細胞や有用な非ヒト動物の作製、ヒト抗体などのタンパク質の製造などの種々の用途や目的のために利用できる。
 本明細書に記載された下記の(1)及び(2)の細胞株はそれぞれ、マウス10番染色体由来及びマウス16番染色体由来のマウス人工染色体をニワトリB前駆細胞株DT40にエレクトロポレーションによって導入した動物細胞株であり、これら2つの動物細胞株はいずれも、2018年2月28日に国際寄託機関である独立行政法人製品評価技術基盤機構 特許微生物寄託センター(NPMD)(郵便番号292-0818 日本国千葉県木更津市かずさ鎌足2-5-8、122号室)にブダペスト条約の規定に基づき国際寄託された。
(1)DT40(10MAC)T5-26の受託番号:NITE BP-02656
(2)DT40(16MAC)T1-14の受託番号:NITE BP-02657
配列番号1~127:プライマー
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (23)

  1.  マウス10番染色体及びマウス16番染色体からなる群から選択されるマウス染色体由来の天然型セントロメア、セントロメア近傍のマウス10番染色体長腕の染色体部位である遺伝子Gm8155から長腕遠位を削除したマウス10番染色体由来の長腕断片、又はセントロメア近傍のマウス16番染色体長腕の染色体部位である遺伝子Gm35974から長腕遠位を削除したマウス16番染色体由来の長腕断片、及びテロメア配列を含むこと、並びに、齧歯類の細胞、組織又は個体において安定に保持される、かつ子孫伝達可能であることを特徴とする、マウス人工染色体ベクター。
  2.  寄託細胞株DT40(10MAC)T5-26(NITE BP-02656)に含まれるマウス人工染色体を含む、請求項1に記載のマウス人工染色体ベクター。
  3.  寄託細胞株DT40(16MAC)T1-14(NITE BP-02657)に含まれるマウス人工染色体を含む、請求項1に記載のマウス人工染色体ベクター。
  4.  齧歯類がマウス又はラットである、請求項1~3のいずれか1項に記載のマウス人工染色体ベクター。
  5.  1つ又は複数のDNA配列挿入部位をさらに含む、請求項1~4のいずれか1項に記載のマウス人工染色体ベクター。
  6.  DNA配列挿入部位が、loxP配列、FRT配列、φC31attB及びφC31attP配列、R4attB及びR4attP配列、TP901-1attB及びTP901-1attP配列、並びに、Bxb1attB及びBxb1attP配列からなる群から選択される少なくとも1つの配列を含む、請求項5に記載のマウス人工染色体ベクター。
  7.  レポーター遺伝子、選択マーカー遺伝子又はその両方をさらに含む、請求項1~6のいずれか1項に記載のマウス人工染色体ベクター。
  8.  外来DNA配列をさらに含む、請求項1~7のいずれか1項に記載のマウス人工染色体ベクター。
  9.  外来DNA配列がヒトDNA配列である、請求項8に記載のマウス人工染色体ベクター。
  10.  外来DNA配列が、ヒト染色体長腕又は短腕の遺伝子もしくは遺伝子座のDNA配列である、請求項9に記載のマウス人工染色体ベクター。
  11.  外来DNA配列が、ヒト免疫グロブリン重鎖遺伝子もしくは遺伝子座、ヒト免疫グロブリン軽鎖遺伝子もしくは遺伝子座、又はその重鎖及び軽鎖遺伝子もしくは遺伝子座の両方のDNA配列である、請求項9又は10に記載のマウス人工染色体ベクター。
  12.  外来DNA配列が、サイトカイン類、ホルモン類、成長因子類、栄養因子類、造血因子類、血液凝固・溶解因子類、G蛋白質共役型受容体類、酵素類などのポリペプチド類をコードする遺伝子又はDNAの配列、或いは、腫瘍、筋ジストロフィー、血友病、神経変性疾患、自己免疫疾患、アレルギー性疾患、遺伝性疾患などの疾患に関連する治療用遺伝子又はDNAの配列、並びに、T細胞受容体(TCR)、ヒト白血球抗原(HLA)などの免疫系遺伝子又はDNAの配列からなる群から選択される遺伝子又はDNAの配列である、請求項8~10のいずれか1項に記載のマウス人工染色体ベクター。
  13.  請求項1~12のいずれか1項に記載のマウス人工染色体ベクターを含む哺乳動物由来細胞。
  14.  哺乳動物由来細胞が、体細胞、幹細胞及び前駆細胞からなる群から選択される、請求項13に記載の細胞。
  15.  哺乳動物由来細胞が、齧歯類由来細胞である、請求項13又は14に記載の細胞。
  16.  請求項1~12のいずれか1項に記載のマウス人工染色体ベクターを含む非ヒト動物。
  17.  非ヒト動物が、齧歯類動物である、請求項16に記載の非ヒト動物。
  18.  齧歯類動物が、マウス又はラットである、請求項17に記載の非ヒト動物。
  19.  ヒト抗体を産生可能にする動物である、請求項16~18のいずれか1項に記載の非ヒト動物。
  20.  マウス人工染色体ベクターに含まれる外来DNAに対応する内在遺伝子が破壊されている又は内在遺伝子の発現が低下している、請求項16~19のいずれか1項に記載の非ヒト動物。
  21.  外来DNA配列を含むマウス人工染色体ベクターを含む請求項13~15のいずれか1項に記載の細胞を培養し、産生された該DNAによってコードされるタンパク質を回収することを含む、タンパク質の製造方法。
  22.  ヒト抗体重鎖及び軽鎖遺伝子もしくは遺伝子座を含むマウス人工染色体ベクターを含む請求項19に記載の非ヒト動物を用いてヒト抗体を産生し、該ヒト抗体を回収することを含む、ヒト抗体の製造方法。
  23.  ヒト抗体軽鎖遺伝子もしくは遺伝子座が、ヒト抗体λ及びκ軽鎖遺伝子もしくは遺伝子座である、請求項22に記載の方法。
PCT/JP2019/010953 2018-03-16 2019-03-15 マウス人工染色体ベクター及びその使用 WO2019177163A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980032877.XA CN112352054A (zh) 2018-03-16 2019-03-15 小鼠人工染色体载体及其用途
EP19767483.1A EP3766980A4 (en) 2018-03-16 2019-03-15 ARTIFICIAL CHROMOSOME VECTOR FROM THE MOUSE AND ITS USE
JP2020506682A JP6775224B2 (ja) 2018-03-16 2019-03-15 マウス人工染色体ベクター及びその使用
US16/981,164 US20210095311A1 (en) 2018-03-16 2019-03-15 Mouse artificial chromosome vector and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018050178 2018-03-16
JP2018-050178 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019177163A1 true WO2019177163A1 (ja) 2019-09-19

Family

ID=67907802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010953 WO2019177163A1 (ja) 2018-03-16 2019-03-15 マウス人工染色体ベクター及びその使用

Country Status (5)

Country Link
US (1) US20210095311A1 (ja)
EP (1) EP3766980A4 (ja)
JP (1) JP6775224B2 (ja)
CN (1) CN112352054A (ja)
WO (1) WO2019177163A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059801A1 (ja) 2020-09-16 2022-03-24 株式会社Trans Chromosomics コロナウイルスに対する抗体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090361A1 (ja) 2021-11-16 2023-05-25 国立大学法人鳥取大学 改変d領域を含むヒト免疫グロブリン重鎖遺伝子座を有する哺乳動物人工染色体ベクター、及びそのベクターを保持する細胞又は非ヒト動物

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037757A1 (fr) 1997-02-28 1998-09-03 Kirin Beer Kabushiki Kaisha Cellules multipotentes comprenant des genes intrinseques dissocies
WO2000010383A1 (en) 1998-08-21 2000-03-02 Kirin Beer Kabushiki Kaisha Method for modifying chromosomes
WO2004031385A1 (ja) 2002-10-04 2004-04-15 Kirin Beer Kabushiki Kaisha ヒト人工染色体(hac)ベクター
JP2005230020A (ja) 2001-05-11 2005-09-02 Kirin Brewery Co Ltd ヒト抗体λ軽鎖遺伝子を含むヒト人工染色体、および子孫伝達可能な該ヒト人工染色体を含む非ヒト動物
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
JP2007295860A (ja) 2006-05-01 2007-11-15 Tottori Univ 内在遺伝子を含まないヒト人工染色体ベクター
WO2008013067A1 (fr) * 2006-07-07 2008-01-31 Kyowa Hakko Kirin Co., Ltd. Vecteur de chromosome artificiel humain (cah), et substance pharmaceutique à base de cellules humaines contenant un vecteur de chromosome artificiel humain (cah)
WO2009063722A1 (ja) 2007-11-14 2009-05-22 National University Corporation Tottori University ヒトチトクロームp450遺伝子(クラスター)を含む哺乳動物人工染色体ベクター及びそれを保持する非ヒト哺乳動物
WO2011083870A1 (ja) * 2010-01-06 2011-07-14 国立大学法人鳥取大学 マウス人工染色体ベクター
JP2015119643A (ja) * 2013-12-20 2015-07-02 国立研究開発法人産業技術総合研究所 人工染色体ベクター及び形質転換哺乳類細胞
JP2018050178A (ja) 2016-09-21 2018-03-29 富士ゼロックス株式会社 プログラム及び情報処理装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037757A1 (fr) 1997-02-28 1998-09-03 Kirin Beer Kabushiki Kaisha Cellules multipotentes comprenant des genes intrinseques dissocies
WO2000010383A1 (en) 1998-08-21 2000-03-02 Kirin Beer Kabushiki Kaisha Method for modifying chromosomes
JP2005230020A (ja) 2001-05-11 2005-09-02 Kirin Brewery Co Ltd ヒト抗体λ軽鎖遺伝子を含むヒト人工染色体、および子孫伝達可能な該ヒト人工染色体を含む非ヒト動物
WO2004031385A1 (ja) 2002-10-04 2004-04-15 Kirin Beer Kabushiki Kaisha ヒト人工染色体(hac)ベクター
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
JP2007295860A (ja) 2006-05-01 2007-11-15 Tottori Univ 内在遺伝子を含まないヒト人工染色体ベクター
WO2008013067A1 (fr) * 2006-07-07 2008-01-31 Kyowa Hakko Kirin Co., Ltd. Vecteur de chromosome artificiel humain (cah), et substance pharmaceutique à base de cellules humaines contenant un vecteur de chromosome artificiel humain (cah)
WO2009063722A1 (ja) 2007-11-14 2009-05-22 National University Corporation Tottori University ヒトチトクロームp450遺伝子(クラスター)を含む哺乳動物人工染色体ベクター及びそれを保持する非ヒト哺乳動物
WO2011083870A1 (ja) * 2010-01-06 2011-07-14 国立大学法人鳥取大学 マウス人工染色体ベクター
JP5557217B2 (ja) 2010-01-06 2014-07-23 国立大学法人鳥取大学 マウス人工染色体ベクター
JP2015119643A (ja) * 2013-12-20 2015-07-02 国立研究開発法人産業技術総合研究所 人工染色体ベクター及び形質転換哺乳類細胞
JP2018050178A (ja) 2016-09-21 2018-03-29 富士ゼロックス株式会社 プログラム及び情報処理装置

Non-Patent Citations (31)

* Cited by examiner, † Cited by third party
Title
"GenBank", Database accession no. NC_000076.6
"GenBank", Database accession no. NC_000082.6
"Health Science Research Resources Bank", Database accession no. JCRB0218
A. DOYLEJ. B. GRIFFITHS: "Cell & Tissue Culture: Laboratory Procedures", 1996, JOHN WILEY & SONS LTD.
ANDOCHIBA: "Introduction of Experiment for Monoclonal Antibody", 1991, KODANSHA
B. SAUER, METHODS OF ENZYMOLOGY, vol. 225, 1993, pages 890 - 900
DIEKEN ET AL., NATURE GENETICS, vol. 12, no. 1, 1996, pages 74 - 182
ED HARLOWDAVID LANE: "Antibodies: A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY
HIRABAYASHI ET AL., MOL. REPROD. DEV., vol. 77, no. 2, February 2010 (2010-02-01), pages 94
HOSHIYA ET AL., MOL. THER., vol. 17, 2009, pages 309 - 17
ISHIKAWA: "Ultrasensitive Enzyme Immunoassays", 1993, GAKKAI SHUPPAN CENTER
J. A. THOMSON ET AL., BIOL. REPROD., vol. 55, 1996, pages 254 - 259
J. A. THOMSON ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 92, 1995, pages 7844 - 7848
J. A. THOMSON ET AL., SCIENCE, vol. 282, 1999, pages 1145 - 1147
J. A. THOMSONV. S. MARSHALL, CURR. TOP. DEV. BIOL., vol. 38, 1998, pages 133 - 165
J. LIAO ET AL., CELL RES, vol. 18, 2008, pages 600 - 603
J. YU ET AL., SCIENCE, vol. 318, 2007, pages 1917 - 1920
K. TAKAHASHIS. YAMANAKA, CELL, vol. 126, 2006, pages 663 - 676
KATOH ET AL., BBRC, vol. 321, 2000, pages 280 - 290
KOI ET AL., JPN. J. CANCER RES., vol. 80, 1973, pages 413 - 418
KUROIWA ET AL., NAT. BIOTECH., vol. 18, 2000, pages 1086 - 1090
KUROIWA ET AL., NATURE BIOTECH., 2002
M. J. EVANSM. H. KAUFMAN, NATURE, vol. 292, 1981, pages 154 - 156
M. NAKAGAWA ET AL., NAT. BIOTECHNOL., vol. 26, 2008, pages 101 - 106
MATSUBARA ET AL.: "FISH test protocol", 1994, SHUJUNSHA CO., LTD.
MOTOYA KATSUKI: "Developmental Engineering Experimentation Manual", 1987, KODANSHA SCIENTIFIC
PROC. NATL. ACAD. SCI., U.S.A., vol. 97, no. 2, 18 January 2000 (2000-01-18), pages 722 - 7
SHINOHARA ET AL., HUMAN MOLECULAR GENETICS, vol. 10, 2001, pages 1163 - 1175
TAKAHASHI, K. ET AL., CELL, vol. 131, 2007, pages 861 - 872
TAKIGUCHI, M. ET AL.: "A Novel and Stable Mouse Artificial Chromosome Vector", ACS SYNTHETIC BIOLOGY, vol. 3, 9 October 2012 (2012-10-09), pages 903 - 914, XP055472980, DOI: 10.1021/sb3000723 *
TOMIZUKA ET AL., NATURE GENET., vol. 16, 1997, pages 133

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059801A1 (ja) 2020-09-16 2022-03-24 株式会社Trans Chromosomics コロナウイルスに対する抗体

Also Published As

Publication number Publication date
EP3766980A1 (en) 2021-01-20
JPWO2019177163A1 (ja) 2020-08-20
JP6775224B2 (ja) 2020-10-28
US20210095311A1 (en) 2021-04-01
EP3766980A4 (en) 2021-05-05
CN112352054A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
JP5557217B2 (ja) マウス人工染色体ベクター
JP7242611B2 (ja) 抗体産生非ヒト哺乳動物
JP4115281B2 (ja) ヒト抗体λ軽鎖遺伝子を含むヒト人工染色体、および子孫伝達可能な該ヒト人工染色体を含む非ヒト動物
JP6641379B2 (ja) トランスジェニックマウス
JP6868250B2 (ja) ヒト抗体産生非ヒト動物及びそれを用いたヒト抗体作製法
US20020028488A1 (en) Transgenic avian species for making human and chimeric antibodies
US20220369609A1 (en) Transgenic mammals and methods of use thereof
JP6775224B2 (ja) マウス人工染色体ベクター及びその使用
EP3770261A1 (en) Nucleic acid molecule and use thereof in preparing humanized single-domain antibody
WO2023090361A1 (ja) 改変d領域を含むヒト免疫グロブリン重鎖遺伝子座を有する哺乳動物人工染色体ベクター、及びそのベクターを保持する細胞又は非ヒト動物
JP2024516996A (ja) トランスジェニック哺乳動物およびその使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506682

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019767483

Country of ref document: EP

Effective date: 20201016