WO2019176325A1 - 非接触通信媒体、記録媒体カートリッジ、非接触通信媒体の駆動方法及びプログラム - Google Patents

非接触通信媒体、記録媒体カートリッジ、非接触通信媒体の駆動方法及びプログラム Download PDF

Info

Publication number
WO2019176325A1
WO2019176325A1 PCT/JP2019/002525 JP2019002525W WO2019176325A1 WO 2019176325 A1 WO2019176325 A1 WO 2019176325A1 JP 2019002525 W JP2019002525 W JP 2019002525W WO 2019176325 A1 WO2019176325 A1 WO 2019176325A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock signal
frequency
communication medium
voltage
unit
Prior art date
Application number
PCT/JP2019/002525
Other languages
English (en)
French (fr)
Inventor
裕章 中野
藤田 浩章
栄治 中塩
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社, ソニー株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN201980016303.3A priority Critical patent/CN112119401A/zh
Priority to EP19768202.4A priority patent/EP3767540B1/en
Priority to US16/978,960 priority patent/US20210375317A1/en
Priority to JP2020505640A priority patent/JPWO2019176325A1/ja
Publication of WO2019176325A1 publication Critical patent/WO2019176325A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • G06K19/0712Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management the arrangement being capable of triggering distinct operating modes or functions dependent on the strength of an energy or interrogation field in the proximity of the record carrier
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/02Containers; Storing means both adapted to cooperate with the recording or reproducing means
    • G11B23/04Magazines; Cassettes for webs or filaments
    • G11B23/08Magazines; Cassettes for webs or filaments for housing webs or filaments having two distinct ends
    • G11B23/087Magazines; Cassettes for webs or filaments for housing webs or filaments having two distinct ends using two different reels or cores
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/48Transceivers

Definitions

  • the present technology relates to, for example, a non-contact communication medium stored in a magnetic tape cartridge, a recording medium cartridge including the non-contact communication medium, and a non-contact communication medium driving method and program.
  • magnetic recording media have been widely used for applications such as electronic data backup.
  • a magnetic tape cartridge is attracting more and more attention as a storage medium for big data because it can be stored in a large capacity and for a long time.
  • an LTO (Linear Tape Open) standard magnetic tape cartridge is equipped with an RFID (Radio Frequency Identification) tag called a cartridge memory (see, for example, Patent Document 1).
  • the cartridge memory includes an antenna and an IC chip for communication and recording, and is configured to be able to read and write magnetic tape production management information, an outline of recorded contents, and the like. Since the cartridge memory receives the signal magnetic field transmitted from the tape drive (reader / writer) and generates electric power, it operates with no power supply.
  • an object of the present technology is to provide a non-contact communication medium capable of ensuring stable communication with power that can be extracted from an antenna without depending on a memory size, a recording medium cartridge including the same, and Another object is to provide a non-contact communication medium driving method and program.
  • a non-contact communication medium includes a voltage generation unit, a memory unit, a clock signal generation unit, and a control unit.
  • the voltage generator includes an antenna coil for transmission and reception, and generates a voltage by receiving a signal magnetic field from an external device.
  • the memory unit stores one or more circuit parameters set in the voltage generation unit and predetermined management information.
  • the clock signal generator is configured to be able to selectively generate clock signals having two or more different frequencies.
  • the control unit is configured to select a frequency of a clock signal supplied from the clock signal generation unit to the memory unit.
  • the controller selects a first clock signal having a first frequency when reading the circuit parameter, and a second having a second frequency higher than the first frequency when reading the management information.
  • the clock signal may be selected.
  • the voltage generation unit includes a resonance circuit including the antenna coil and a resonance capacitance adjustment unit that adjusts a resonance frequency of the resonance circuit, and the memory unit has a resonance capacitance value set in the resonance capacitance adjustment unit. May be stored as the circuit parameter.
  • the voltage generation unit further includes a power supply circuit that generates a voltage from the resonance circuit, and the memory unit stores a reference voltage adjustment value for setting a reference voltage of the power supply circuit as the circuit parameter. It may be configured.
  • the control unit may be configured to select the first clock signal when writing information to the memory unit.
  • the control unit may be configured to select a frequency of the clock signal based on an operation request from the external device.
  • the non-contact communication medium further includes a monitoring unit that monitors a voltage generated by the voltage generation unit, and the control unit selects a frequency of the two or more clock signals based on an output of the monitoring unit. May be configured.
  • the clock signal generation unit may be configured to generate a clock signal having a frequency multiplied by the frequency of the signal magnetic field.
  • a recording medium cartridge includes an information recording medium, a cartridge body that accommodates the information recording medium, and a non-contact communication medium.
  • the non-contact communication medium has an antenna coil for transmission and reception, receives a signal magnetic field from an external device, generates a voltage, one or more circuit parameters set in the voltage generation unit, and a predetermined value
  • a memory unit for storing management information, a clock signal generator capable of selectively generating clock signals of two or more different frequencies, and a clock signal supplied from the clock signal generator to the memory unit. And a controller configured to select a frequency.
  • the non-contact communication medium is accommodated in the cartridge body.
  • a non-contact communication medium driving method is a circuit of a voltage generation unit that generates a voltage based on a signal magnetic field from an external device received through an antenna coil with a clock signal having a first frequency. Includes reading parameters. Predetermined management information is read from the memory unit with a clock signal having a second frequency higher than the first frequency, and transmitted to the external device.
  • the circuit parameter may be a resonance capacitance value of a resonance circuit including the antenna coil.
  • the circuit parameter may be a reference voltage adjustment value for setting a reference voltage of the voltage generator.
  • a program according to an embodiment of the present technology is provided in a control unit of a non-contact communication medium. Reading out circuit parameters of a voltage generator that generates a voltage based on a signal magnetic field from an external device received via an antenna coil with a clock signal of a first frequency; The predetermined management information is read from the memory unit with a clock signal having a second frequency higher than the first frequency, and is transmitted to the external device.
  • FIG. 6 is a simplified illustration of still another example of the time change of the input end waveform of the antenna coil of the non-contact communication medium.
  • FIG. It is a block diagram showing the composition of the non-contact communication medium concerning a 2nd embodiment of this art. It is a flowchart which shows an example of the drive method of the said non-contact communication medium.
  • FIG. 12 is a flowchart illustrating an example of a method for driving a non-contact communication medium according to a third embodiment of the present technology.
  • 10 is a flowchart illustrating an example of a method for driving a non-contact communication medium according to a fourth embodiment of the present technology.
  • FIG. 1 is an exploded perspective view showing a magnetic tape cartridge according to an embodiment of the present technology
  • FIG. 2 is a schematic perspective view of a tape drive device.
  • a tape cartridge 100 an LTO standard magnetic tape cartridge (hereinafter referred to as a tape cartridge 100) shown in FIG. 1 will be described.
  • the configuration of the tape cartridge 100 and the tape drive device 200 shown in FIG. 2 will be schematically described.
  • the tape cartridge 100 includes a cartridge case 11 configured by connecting an upper shell 11 a and a lower shell 11 b with a plurality of screw members. Inside the cartridge case 11, a single tape reel 13 around which a magnetic tape 12 is wound is accommodated rotatably.
  • a chucking gear (not shown) that engages with the spindle 201 (see FIG. 2) of the tape drive device 200 is formed in an annular shape, and the chucking gear is formed on the lower shell 11b. It is exposed to the outside through the opening 14 formed in the center.
  • An annular metal plate 15 that is magnetically attracted to the spindle 201 is fixed to the inner peripheral side of the chucking gear.
  • a reel lock mechanism that prevents rotation of the tape reel 13 when the tape cartridge 100 is not used is configured.
  • a tape drawer port 19 for pulling out one end of the magnetic tape 12 to the outside is provided on one side wall portion of the cartridge case 11.
  • a slide door 20 that opens and closes the tape drawing port 19 is disposed inside the side wall.
  • the sliding door 20 is configured to slide in a direction to open the tape outlet 19 against the urging force of the torsion spring 21 by engagement with a tape loading mechanism (not shown) of the tape drive device 200.
  • a leader pin 22 is fixed to one end of the magnetic tape 12.
  • the leader pin 22 is configured to be detachable from the pin holding portion 23 provided on the inner side of the tape drawing port 19.
  • the pin holding portion 23 is an elastic member that elastically holds the upper end portion and the lower end portion of the leader pin 22 on the inner surface of the upper wall of the cartridge case 11 (the inner surface of the upper shell 11a) and the inner surface of the bottom wall (the inner surface of the lower shell 11b).
  • a holding tool 24 is provided.
  • a cartridge memory CM is arranged.
  • the cartridge memory CM is configured by a non-contact communication medium in which an antenna coil, an IC chip, etc. are mounted on a substrate.
  • the tape drive device 200 is configured to be loaded with a tape cartridge 100.
  • the tape drive device 200 is configured to be able to load one tape cartridge 100, but may be configured to be able to load a plurality of tape cartridges 100 simultaneously.
  • the tape drive device 200 includes a spindle 201, a take-up reel 202, a spindle drive device 203, a reel drive device 204, a plurality of guide rollers 205, a head unit 206, a reader / writer 207, a control device 208, and the like.
  • the spindle 201 has a head portion that engages with the chucking gear of the tape reel 13 through the opening 14 formed in the lower shell 11b of the tape cartridge 100.
  • the spindle 201 raises the tape reel 13 by a predetermined distance against the urging force of the reel spring 16 and releases the reel lock function by the reel lock member 17.
  • the tape reel 13 is rotatably supported by the spindle 201 inside the cartridge case 11.
  • the spindle driving device 203 rotates the spindle 201 in response to a command from the control device 208.
  • the take-up reel 202 is configured to be able to fix the tip (leader pin 22) of the magnetic tape 12 drawn from the tape cartridge 100 via a tape loading mechanism (not shown).
  • the plurality of guide rollers 205 guide the travel of the magnetic tape 12 so that a tape path formed between the tape cartridge 100 and the take-up reel 202 has a predetermined relative positional relationship with respect to the head unit 206.
  • the reel driving device 204 rotates the take-up reel 202 in response to a command from the control device 208. When a data signal is recorded / reproduced with respect to the magnetic tape 12, the spindle 201 and the reel driving device 204 rotate the spindle 201 and the take-up reel 202, and the magnetic tape 12 travels.
  • the head unit 206 is configured to record a data signal on the magnetic tape 12 or to reproduce a data signal written on the magnetic tape 12 in accordance with a command from the control device 208.
  • the reader / writer 207 may read predetermined management information from the cartridge memory CM mounted on the tape cartridge 100 or record predetermined management information in the cartridge memory CM in response to a command from the control device 208. Configured to be possible. As a communication method between the reader / writer 207 and the cartridge memory CM, for example, the ISO 14443 method is adopted.
  • the control device 208 is composed of, for example, a computer including a CPU (Central Processing Unit), a storage unit, a communication unit, and the like, and comprehensively controls each unit of the tape drive device 200.
  • a computer including a CPU (Central Processing Unit), a storage unit, a communication unit, and the like, and comprehensively controls each unit of the tape drive device 200.
  • CPU Central Processing Unit
  • FIG. 3 is a schematic plan view showing the cartridge memory CM.
  • the cartridge memory CM includes an RFID tag that includes a support substrate 31, an antenna coil 32, and an IC chip 33.
  • the support substrate 31 is composed of a relatively rigid wiring substrate such as a glass epoxy substrate.
  • the antenna coil 32 is a planar loop coil formed on the support substrate 31 and is made of copper foil, aluminum foil or the like having a predetermined thickness.
  • the IC chip 33 is mounted on the support substrate 31 and is electrically connected to the antenna coil 32.
  • the IC chip 33 includes a voltage generation unit that generates a starting voltage based on a signal magnetic field from the reader / writer 207 received via the antenna coil 32, a memory unit that stores predetermined management information regarding the tape cartridge 100, and information from the memory unit. Built-in control unit for reading out.
  • the cartridge memory CM operates with no power supply because the antenna coil 32 receives the signal magnetic field transmitted from the reader / writer 207 and generates electric power.
  • the power supply / communication frequency from the reader / writer 207 is 13.56 MHz, which is the same as NFC (Near Field Communication).
  • a non-volatile memory (NVM: Non-Volatile Memory) is used as the memory built in the IC chip 33.
  • the memory size of the LTO cartridge memory is increasing in proportion to the increase in the data size recorded on the magnetic tape.
  • LTO 1 to 3 is 4 kB, but LTO 4 and 5 are 8 kB, and LTO 6 and 7 are 16 kB.
  • the memory size of the cartridge memory is expected to increase.
  • the power consumption of the IC also tends to increase.
  • the increase in power consumption accompanying the increase in memory size such as an increase in the idle current of the power supply block due to the need to increase the stability of the power supply voltage supplied to the memory, and an increase in digital power due to the complexity of processing.
  • the resonance frequency of this type of cartridge memory is adjusted by the capacity built into the IC from the viewpoint of cost and reliability.
  • the capacitance element of the IC has a variation in capacitance value for each product due to variations in manufacturing. If the resonance frequency shifts due to such individual variations, the power that can be extracted from the antenna is reduced.
  • FIG. 4 is an experimental result showing an example of the relationship between the resonance capacitance value and the acquired current value.
  • the horizontal axis represents the rate of change of the resonance capacitance value, and the resonance capacitance is assumed to be an expected value (capacity value when the acquired current value is the highest) is 1.0. Therefore, when the resonance capacitance value is 1.1, the resonance capacitance is 10% larger than the expected value. When the resonance capacitance value is 0.9, the resonance capacitance is 10% smaller than the expected value. The state that became.
  • the vertical axis represents the value of current flowing through a constant load, and corresponds to power. As shown in the figure, when the resonance capacitance value deviates from the expected value, the current (power) that can be acquired decreases rapidly. For example, when the resonance capacitance value varies by about 15%, the acquired current drops to 3/4 of the expected value.
  • the resonance capacitance can be adjusted without the In this case, the capacitance value inside the IC is measured in advance, and the capacitance value (expected value) that is the correct value or the setting value (hereinafter referred to as the resonance capacitance setting value) related to the difference between the measured value and the correct value is stored in the memory. Is done. Then, the resonance capacitance setting value is read out at the time of startup, and the resonance capacitance value is adjusted using this as a correction parameter.
  • FIG. 5 shows an example of a flow for adjusting the resonance capacitance value.
  • the cartridge memory when a magnetic field is input from the outside, the cartridge memory generates a starting voltage (step 101).
  • the control unit reads the resonance capacitance setting value from the memory, and adjusts the resonance capacitance based on the value (steps 102 and 103).
  • Communication with the reader / writer is started with the resonance capacitance value adjusted, and then information is read from the designated address in the memory or written to the designated address in the memory according to the operation requested by the reader / writer (step 104). , 105).
  • the step of reading the resonance capacitance setting value from the memory (step 102).
  • the power that can be acquired with the capacitance value shifted is lower than the correct value (expected value) of the resonance capacitance, and the power for driving the memory tends to increase as the memory size increases. is there.
  • the process of reading the resonance capacitance setting value (step 102) may stop due to insufficient power, and communication failure with the reader / writer may occur. is there.
  • the cartridge memory CM of the present embodiment is configured as follows in order to eliminate the above-described concerns.
  • FIG. 6 is a block diagram showing the configuration of the cartridge memory CM of the present embodiment.
  • the cartridge memory CM includes a voltage generation unit 41, a memory unit 42, a clock signal generation unit 43, and a control unit 44.
  • the voltage generation unit 41 includes an antenna coil 32, a power supply unit 47, and a signal processing unit 45.
  • the voltage generation unit 41 includes an antenna coil 32, a resonance capacity adjustment unit 46, and a power supply unit 47.
  • the voltage generator 41 is configured to receive a signal magnetic field transmitted from a reader / writer 207 (see FIG. 2), which is an external device, and generate a voltage.
  • the resonance capacitance adjusting unit 46 can connect or disconnect any of the plurality of capacitive elements electrically in accordance with a parallel circuit or series circuit of the plurality of capacitive elements and a command from the control unit 44.
  • Switch elements such as transistors).
  • the power supply unit 47 is a power supply circuit that generates a voltage from a resonance circuit constituted by the antenna coil 32 and the resonance capacitance adjustment unit 46.
  • the power supply unit 47 converts the alternating current into a direct current, a rectifier circuit, a regulator, and an analog signal into a digital signal.
  • An AD converter for conversion is included.
  • the memory unit 42 includes a nonvolatile memory.
  • the memory unit 42 stores one or more circuit parameters set in the voltage generation unit 41 and predetermined management information.
  • the circuit parameters include a resonance capacitance setting value input to the resonance capacitance adjustment unit 46, various adjustment values for adjusting circuit characteristics of the power supply unit 47, and the like.
  • the predetermined management information is information related to the tape cartridge 100 in which the cartridge memory CM is mounted. For example, identification information (ID) of the tape cartridge 100 or the cartridge memory CM, management information of data recorded on the magnetic tape 12 Etc.
  • the memory unit 42 may further include a memory control unit that controls the nonvolatile memory.
  • FIG. 7 is a block diagram illustrating a configuration example of the memory unit 42.
  • the memory unit 42 includes a memory control unit 421, an address detection unit 422, a data register 423, a memory array 424, a voltage detection unit 425, and a high voltage generation unit 426.
  • the memory control unit 421 generates a voltage necessary for driving the memory array 424 according to the frequency of the clock signal. The larger the size of the memory array 424, the higher the voltage generated.
  • the size of the memory array 424 is not particularly limited, and is, for example, 8 kB or 16 kB, and may be 32 kB or more.
  • the clock signal generator 43 is configured to be able to selectively generate clock signals having two or more different frequencies.
  • the clock signal generator 43 is configured to receive a command from the controller 44 and to supply a clock signal having a predetermined frequency to the memory unit 42.
  • the clock signal generator 43 typically includes one or a plurality of frequency dividers.
  • the plurality of frequency dividers may be connected in series or in parallel.
  • the clock signal generation unit 43 supplies a frequency obtained by dividing the frequency of the reference clock to the memory unit 42 as a clock signal.
  • the communication frequency (13.56 MHz) of the reader / writer 207 is used as the reference clock.
  • two or more different frequency clock signals can be generated relatively easily.
  • FIG. 8 is a block diagram illustrating a configuration example of the clock signal generation unit 43.
  • three frequency dividers 431, 432, and 433 are connected in series.
  • the number of frequency dividers may be one, two, or four or more.
  • the first to third frequency dividers 431 to 433 divide the frequency of the input signal by 1/2.
  • the first frequency divider 431 outputs a clock signal having a frequency half that of the reference clock (13.56 MHz) to the second frequency divider 432 and the selector circuit 434.
  • the second frequency divider 432 outputs a clock signal having a frequency of 1/4 of the reference clock to the third frequency divider 433 and the selector circuit 434.
  • the third frequency divider 433 outputs a clock signal having a frequency 1/8 of the reference clock to the selector circuit 434.
  • the selector circuit 434 receives a control command (select signal) from the control unit 44, selects one of the three different frequency clock signals, and outputs the selected clock signal to the memory unit 42.
  • the clock signal generator 43 generates a first clock signal (CLK1) having a first frequency and a second clock signal (CLK2) having a second frequency higher than the first frequency.
  • CLK1 first clock signal
  • CLK2 second clock signal
  • the first frequency and the second frequency are not particularly limited, and can be set arbitrarily.
  • the first frequency is 848 kHz which is 1/16 of 13.56 MHz
  • the second frequency is 3.39 MHz which is 1/4 of 13.56 MHz.
  • the signal processing unit 45 is a block that processes a signal from the reader / writer 207 received via the antenna coil 32 or generates a signal to be transmitted to the reader / writer 207 via the antenna coil 32. It is composed of transmission / reception circuits including circuits.
  • the signal processing unit 45 also includes a circuit that extracts a clock frequency from the received signal and transmits the clock frequency to the control unit 44.
  • the control unit 44 is configured by a computer including a CPU, an internal memory, and the like.
  • the control unit 44 executes various programs stored in the internal memory, thereby comprehensively controlling each unit of the cartridge memory CM.
  • the internal memory includes a nonvolatile memory and a volatile memory used as a work area.
  • Various programs may be read from a portable storage medium or downloaded from a server device on a network.
  • the control unit 44 is configured to select the frequency of the clock signal supplied from the clock signal generation unit 43 to the memory unit 42. Specifically, the control unit 44 reads circuit parameters such as a resonance capacitance setting value from the memory unit 42 when starting the cartridge memory CM, and reads management information from the memory unit 42 in response to a request from the reader / writer 207. When the management information is written to the memory unit 42 in response to a request from the reader / writer 207, a clock signal supplied to the memory unit 42 is selected.
  • the control unit 44 when reading the circuit parameters from the memory unit 42, the control unit 44 selects the first clock signal having the first frequency, and when reading the management information from the memory unit 42, the control unit 44 is higher than the first frequency.
  • the second frequency clock signal is configured to be selected.
  • the frequency of the clock signal supplied to the memory unit 42 corresponds to the access speed for reading and writing information to the memory unit 42.
  • the power consumption is determined by the access speed, and the power consumption tends to increase as the access speed increases. That is, changing the access speed is equivalent to changing the frequency of the clock signal supplied to the memory unit 42.
  • the power consumption can be reduced by supplying the first clock signal (CLK1) to the memory unit 42 (lowering the access speed).
  • CLK1 the first clock signal
  • the second clock signal (CLK2) is supplied to the memory unit 42 (the access speed is increased).
  • the cartridge memory CM driving method of the present embodiment is based on the signal magnetic field from the reader / writer 207 (external device) received via the antenna coil 32 by the first frequency clock signal (first clock signal CLK1).
  • the circuit parameter (resonance capacitance set value in this example) of the voltage generator 41 that generates the voltage is read, and a predetermined management is performed with a clock signal (second clock signal CLK2) having a second frequency higher than the first frequency.
  • Information is read from the memory unit 42 and transmitted to the reader / writer 207.
  • FIG. 9 is a flowchart showing an example of a method for driving the cartridge memory CM.
  • the cartridge memory CM When the magnetic field (polling signal) is input from the reader / writer 207, the cartridge memory CM generates an activation voltage (step 201), reads the resonance capacitance setting value from the memory unit 42, and sends the value to the resonance capacitance adjustment unit 46.
  • the resonance capacity is set and adjusted (steps 203 and 204).
  • the control unit 44 selects the first clock signal (CLK1) as a clock signal for reading the resonance capacitance set value from the memory unit 42.
  • CLK1 the first clock signal
  • the power consumption required for the reading operation of the circuit parameters from the memory unit 42 can be reduced, and the resonance capacitance setting value can be read from the memory unit 42 even with the starting voltage before adjusting the resonance capacitance.
  • sufficient time is allocated to the initial response to the reader / writer 207 when the cartridge memory CM is started up, even if the time required to read circuit parameters is long (even if the access speed is low), the reader / writer 207 There is no risk of communication interruption.
  • the control unit 44 selects a second clock signal (CLK2) having a higher frequency than the first clock signal (CLK1) as a clock signal for reading management information from the memory unit 42. Since the power generated by the voltage generation unit 41 after the resonance capacitance adjustment is larger than that before the adjustment, the power necessary for driving the memory unit 42 can be obtained even if the frequency of the clock signal supplied to the memory unit 42 is increased. It can be secured sufficiently. As a result, the management information can be quickly read or written from the memory unit 42, so that a reply can be made to the reader / writer 207 within a predetermined response time, and communication can be prevented from being interrupted.
  • the timing of communication between the cartridge memory CM and the reader / writer 207 is not particularly limited. When the tape cartridge 100 is loaded into the tape drive device 200, when the tape cartridge 100 is removed from the tape drive device 200, or when the tape drive is used. It may be any time when the tape cartridge 100 is driven by the apparatus 200.
  • FIGS. 10 to 12 simply show changes over time in the input end waveform of the antenna coil 32 of the cartridge memory CM.
  • FIG. 10 shows a state where the read clock signal supplied to the memory unit 42 is continuously fixed by the second clock signal (CLK2)
  • FIG. 11 shows the read clock signal supplied to the memory unit 42.
  • FIG. 12 shows a state when the signal is continuously fixed with the first clock signal (CLK1).
  • FIG. 12 shows the first clock signal (CLK1) and the second clock signal (CLK1) as the read clock signal supplied to the memory unit 42. The state when CLK2) is combined is shown.
  • the resonance capacitance setting value can be read even when the startup voltage before the resonance capacitance adjustment is low (period T2). ).
  • the information read speed from the memory unit 42 is too slow, so that the information cannot be returned within the prescribed response period, and the reader / writer 207 receives a request from the reader / writer 207.
  • the transmission stops (periods T5 and T6).
  • the frequency of the clock signal supplied to the memory unit 42 is variably set before and after the resonance capacitance adjustment, and therefore, as shown in FIG. Data can be read, and an information read request from the reader / writer 207 can be appropriately handled within the response period (periods T2 to T6).
  • the resonance capacity is appropriately adjusted while reducing the power consumption of the memory unit 42. be able to.
  • the response to the information read request from the reader / writer 207 can be realized within a predetermined response period by increasing the access speed to the memory unit 42. Appropriate communication operations can be ensured. Thereby, it is possible to ensure stable communication with the electric power that can be extracted from the antenna coil 32 without depending on the memory size of the memory unit 42.
  • FIG. 13 is a block diagram showing the configuration of the cartridge memory CM1 of the present embodiment.
  • the configuration different from the first embodiment will be mainly described, and the same configuration as the first embodiment will be denoted by the same reference numeral, and the description thereof will be omitted or simplified.
  • the cartridge memory CM1 of this embodiment is different from that of the first embodiment in that it includes a reference voltage adjustment unit 48 that can adjust the reference voltage of the power supply unit 47.
  • the reference voltage adjustment unit 48 is for adjusting a characteristic value of a reference voltage generation circuit (BGR: Band Gap Reference) constituting the power supply unit 47.
  • BGR Band Gap Reference
  • the reference voltage generation circuit serves as a reference for the voltage value supplied to each unit including the memory unit 42, but is likely to vary due to individual differences such as circuit characteristics. Therefore, in this embodiment, the reference voltage adjustment value for setting the reference voltage of the power supply unit 47 is stored in the memory unit 42 as a circuit parameter, and the control unit 44 reads out the reference voltage adjustment value at the time of start-up, and this is read as the reference voltage.
  • the adjustment unit 48 is configured to be set. As a result, a high-precision control voltage can be supplied to each part of the cartridge memory CM1, so that stable operation of the memory part 42 and the like can be ensured and reliability can be improved.
  • FIG. 14 is a flowchart showing an example of a method for driving the cartridge memory CM1.
  • the cartridge memory CM1 When the cartridge memory CM1 is started, when a magnetic field (polling signal) is input from the reader / writer 207, a starting voltage is generated (step 301), and the reference voltage adjustment value is read from the memory unit 42 by the first clock signal (CLK1). Then, the value is set in the reference voltage adjustment unit 48 (steps 302 to 304).
  • the setting of the reference voltage adjustment value may be performed simultaneously with the adjustment of the resonance capacity described in the first embodiment, or the adjustment of the resonance capacity may be omitted as necessary.
  • management information is read from the designated address of the memory unit 42 with the second clock signal (CLK2) according to the operation requested by the reader / writer 207, Alternatively, management information is written to a designated address in the memory unit 42 (steps 305 to 307).
  • the power shortage at startup is compensated by limiting the access speed to the memory unit 42, thereby appropriately adjusting the reference voltage of the power supply unit 47 while reducing the power consumption of the memory unit 42. be able to.
  • a response to the information read request from the reader / writer 207 can be realized within a predetermined response period. An appropriate communication operation can be ensured between the two. Thereby, it is possible to ensure stable communication with the electric power that can be extracted from the antenna coil 32 without depending on the memory size of the memory unit 42.
  • FIG. 15 is a flowchart illustrating an example of a driving method of the cartridge memory according to the third embodiment of the present technology.
  • the configuration different from the first embodiment will be mainly described, and the same configuration as the first embodiment will be denoted by the same reference numeral, and the description thereof will be omitted or simplified.
  • control unit 44 is configured to select the frequency of the clock signal supplied to the memory unit 42 based on an operation request from the reader / writer 207 (external device).
  • the time required for the information writing operation to the memory unit is the information reading operation. It may be set longer than the required time. In this case, the following flow is applicable as an example of the operation of the cartridge memory mounted on these recording medium cartridges.
  • the control unit 44 reads the resonance capacitance setting value from the memory unit 42 with the first clock signal (CLK1), and the value Is set in the resonance capacity adjusting unit 46 (steps 401 to 404). After adjusting the resonance capacity, communication with the reader / writer 207 is started, and management information is read from the designated address of the memory unit 42 or managed to the designated address of the memory unit 42 according to the operation requested by the reader / writer 207. Write information.
  • the clock signal supplied to the memory unit 42 is changed from the first clock signal (CLK1) to the second clock signal (CLK2) as in the first embodiment.
  • the information is changed and information is read at high speed (steps 406 to 408).
  • the operation request of the reader / writer 207 is a write command
  • the clock signal supplied to the memory unit 42 is not changed, and the information write operation is executed with the first clock signal (CLK1).
  • the power consumption of the memory unit 42 can be reduced.
  • information write operations often consume more power than read operations.
  • the power consumption for writing accompanying an increase in memory size can be reduced.
  • FIG. 16 is a flowchart illustrating an example of a driving method of the cartridge memory according to the fourth embodiment of the present technology.
  • the configuration different from the first embodiment will be mainly described, and the same configuration as the first embodiment will be denoted by the same reference numeral, and the description thereof will be omitted or simplified.
  • the cartridge memory of this embodiment has a monitoring unit that monitors the voltage generated by the voltage generating unit 41, and the control unit 44 selects two or more clock signal frequencies based on the output of the monitoring unit. Composed. Accordingly, it is possible to variably control the clock signal (access speed) supplied to the memory unit 42 by looking at the power margin of the voltage generation unit 41.
  • the configuration of the monitoring unit is not particularly limited, and the voltage generated by the voltage generation unit 41 can be monitored based on the current value of the voltage adjustment circuit (regulator), the current value of the protection circuit, and the like.
  • the control unit 44 reads the resonance capacitance setting value from the memory unit 42 with the first clock signal (CLK1), and the value Is set in the resonance capacity adjustment unit 46 (steps 501 to 504).
  • CLK1 first clock signal
  • Is set in the resonance capacity adjustment unit 46 steps 501 to 504.
  • communication with the reader / writer 207 is started, and management information is read from the designated address of the memory unit 42 or managed to the designated address of the memory unit 42 according to the operation requested by the reader / writer 207. Information is written (step 505).
  • the control unit 44 detects a voltage generated by the voltage generation unit 41 (generated voltage after adjusting the resonance capacitance), and a clock frequency at the time of reading and writing information to the memory unit 42 according to the magnitude of the voltage. Is selected (steps 507 to 509).
  • the clock signal generator 43 is configured to be able to select the third clock signal (CLK3) in addition to the first clock signal (CLK1, 848 kHz) and the second clock signal (CLK2, 3.39 MHz).
  • the frequency of the third clock signal (third frequency) is an appropriate value (1 in this example) that is higher than the first clock signal (first frequency) and lower than the second clock signal (second frequency). .69 MHz).
  • the control unit 44 determines whether or not the magnitude of the detected voltage is equal to or greater than a threshold value. If the detected voltage is equal to or greater than the threshold value, the control unit 44 supplies the second clock signal (CLK2) to the memory unit 42 and executes an information read or write operation. (Steps 507 and 508). On the other hand, when the magnitude of the detected voltage is less than the threshold value, the control unit 44 supplies the third clock signal (CLK3) to the memory unit 42 and executes an information read or write operation (steps 507 and 509). .
  • the cartridge memory mounted on the LTO standard magnetic tape cartridge has been described as an example.
  • the present invention is not limited to this, and the present invention is also applicable to a cartridge memory for magnetic tape cartridges of other standards other than LTO. Is possible.
  • the present technology can also be applied to information recording media other than magnetic tape, for example, optical discs, magneto-optical discs, semiconductor memories, and cartridge memories for portable hard disk drives.
  • the present technology is not limited to the cartridge memory mounted on the information recording cartridge.
  • ID tags attached to electronic devices, vehicles, robots, logistics products, collections, etc., such as traffic commuter passes, expressways, buildings, etc.
  • This technology can also be applied to entrance / exit management cards.
  • this technique can also take the following structures.
  • a voltage generator having an antenna coil for transmission and reception and generating a voltage by receiving a signal magnetic field from an external device;
  • a memory unit for storing one or more circuit parameters set in the voltage generation unit and predetermined management information;
  • a clock signal generator capable of selectively generating two or more different frequency clock signals;
  • a non-contact communication medium comprising: a control unit configured to select a frequency of a clock signal supplied from the clock signal generation unit to the memory unit.
  • the non-contact communication medium according to (1) above, The controller is When reading the circuit parameters, select the first clock signal of the first frequency, A non-contact communication medium that selects a second clock signal having a second frequency higher than the first frequency when reading the management information.
  • the voltage generation unit includes a resonance circuit including the antenna coil, and a resonance capacitance adjustment unit that adjusts a resonance frequency of the resonance circuit
  • the memory unit is a non-contact communication medium that stores a resonance capacitance value set in the resonance capacitance adjustment unit as the circuit parameter.
  • the voltage generator further includes a power supply circuit that generates a voltage from the resonant circuit, The non-contact communication medium, wherein the memory unit stores a reference voltage adjustment value for setting a reference voltage of the power supply circuit as the circuit parameter.
  • the control unit selects the first clock signal when writing information into the memory unit.
  • the control unit is a non-contact communication medium that selects a frequency of the clock signal based on an operation request from the external device.
  • an information recording medium A cartridge body containing the information recording medium; A memory having an antenna coil for transmission and reception and receiving a signal magnetic field from an external device to generate a voltage, and a memory for storing one or more circuit parameters set in the voltage generator and predetermined management information And a clock signal generator capable of selectively generating clock signals having two or more different frequencies, and a frequency of the clock signal supplied from the clock signal generator to the memory unit. And a non-contact communication medium housed in the cartridge body.
  • circuit parameters of a voltage generation unit that generates a voltage based on a signal magnetic field from an external device received via an antenna coil with a clock signal of a first frequency; A method of driving a non-contact communication medium, wherein predetermined management information is read from the memory unit and transmitted to the external device using a clock signal having a second frequency higher than the first frequency.
  • the circuit parameter is a resonance capacitance value of a resonance circuit including the antenna coil.
  • the circuit parameter is a reference voltage adjustment value for setting a reference voltage of the voltage generation unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Near-Field Transmission Systems (AREA)
  • Memory System (AREA)

Abstract

本技術の一形態に係る非接触通信媒体は、電圧発生部と、メモリ部と、クロック信号発生部と、制御部とを具備する。前記電圧発生部は、送受信用のアンテナコイルを有し、外部機器からの信号磁界を受信して電圧を生成する。前記メモリ部は、前記電圧発生部に設定される1以上の回路パラメータと、所定の管理情報とを記憶する。前記クロック信号発生部は、2以上の異なる周波数のクロック信号を選択的に生成することが可能に構成される。前記制御部は、前記クロック信号発生部から前記メモリ部へ供給されるクロック信号の周波数を選択するように構成される。

Description

非接触通信媒体、記録媒体カートリッジ、非接触通信媒体の駆動方法及びプログラム
 本技術は、例えば、磁気テープカートリッジに格納される非接触通信媒体及びこれを備えた記録媒体カートリッジ、並びに、非接触通信媒体の駆動方法及びプログラムに関する。
 近年、電子データのバックアップなどの用途で磁気記録媒体が広く利用されている。磁気記録媒体の一つとして、例えば磁気テープカートリッジは、大容量・長期保存が可能なことから、ビッグデータ等の蓄積媒体としてますます注目が集まっている。
 例えば、LTO(Linear Tape Open)規格の磁気テープカートリッジは、カートリッジメモリと呼ばれるRFID(Radio Frequency Identification)タグを搭載している(例えば特許文献1参照)。カートリッジメモリは、アンテナと通信・記録用のICチップを含み、磁気テープの生産管理情報や記録内容の概要などを読み書きすることが可能に構成されている。カートリッジメモリは、テープドライブ(リーダライタ)から送信される信号磁界を受信して電力を生成するため、無電源で動作する。
特開2009-211743号公報
 近年、カートリッジメモリのメモリサイズは、磁気テープの記録データサイズの増加に比例して大型化してきている。カートリッジメモリのメモリサイズが大型化すると、カートリッジメモリの消費電力も増加する。一方、この種のカートリッジメモリは、一定の磁界強度で動作することが要求されているため、アンテナから取り出せる電力には制限がある。したがって、メモリサイズに依存することなく、アンテナから取り出せる電力でカートリッジメモリを駆動し、リーダライタとの安定した通信を確保する技術が要求される。
 以上のような事情に鑑み、本技術の目的は、メモリサイズに依存することなく、アンテナから取り出せる電力で安定した通信を確保することができる非接触通信媒体及びこれを備えた記録媒体カートリッジ、並びに、非接触通信媒体の駆動方法及びプログラムを提供することにある。
 本技術の一形態に係る非接触通信媒体は、電圧発生部と、メモリ部と、クロック信号発生部と、制御部とを具備する。
 前記電圧発生部は、送受信用のアンテナコイルを有し、外部機器からの信号磁界を受信して電圧を生成する。
 前記メモリ部は、前記電圧発生部に設定される1以上の回路パラメータと、所定の管理情報とを記憶する。
 前記クロック信号発生部は、2以上の異なる周波数のクロック信号を選択的に生成することが可能に構成される。
 前記制御部は、前記クロック信号発生部から前記メモリ部へ供給されるクロック信号の周波数を選択するように構成される。
 これにより、メモリサイズに依存することなく、アンテナから取り出せる電力で安定した通信を確保することができる。
 前記制御部は、前記回路パラメータを読み出すときは、第1の周波数の第1のクロック信号を選択し、前記管理情報を読み出すときは、前記第1の周波数よりも高い第2の周波数の第2のクロック信号を選択するように構成されてもよい。
 前記電圧発生部は、前記アンテナコイルを含む共振回路と、前記共振回路の共振周波数を調整する共振容量調整部とを有し、前記メモリ部は、前記共振容量調整部に設定される共振容量値を前記回路パラメータとして記憶するように構成されてもよい。
 前記電圧発生部は、前記共振回路から電圧を生成する電源回路をさらに有し、前記メモリ部は、前記電源回路の基準電圧を設定するための基準電圧調整値を前記回路パラメータとして記憶するように構成されてもよい。
 前記制御部は、前記メモリ部へ情報を書き込むときは、前記第1のクロック信号を選択するように構成されてもよい。
 前記制御部は、前記外部機器からの動作要求に基づいて、前記クロック信号の周波数を選択するように構成されてもよい。
 前記非接触通信媒体は、前記電圧発生部の発生電圧を監視する監視部をさらに具備し、前記制御部は、前記監視部の出力に基づいて、前記2以上のクロック信号の周波数を選択するように構成されてもよい。
 前記クロック信号発生部は、前記信号磁界の周波数の逓倍の周波数のクロック信号を生成するように構成されてもよい。
 本技術の一形態に係る記録媒体カートリッジは、情報記録媒体と、前記情報記録媒体を収容するカートリッジ本体と、非接触通信媒体とを具備する。
 前記非接触通信媒体は、送受信用のアンテナコイルを有し外部機器からの信号磁界を受信して電圧を生成する電圧発生部と、前記電圧発生部に設定される1以上の回路パラメータと所定の管理情報とを記憶するメモリ部と、2以上の異なる周波数のクロック信号を選択的に生成することが可能なクロック信号発生部と、前記クロック信号発生部から前記メモリ部へ供給されるクロック信号の周波数を選択するように構成された制御部とを有する。前記非接触通信媒体は、前記カートリッジ本体に収容される。
 本技術の一形態に係る非接触通信媒体の駆動方法は、第1の周波数のクロック信号で、アンテナコイルを介して受信した外部機器からの信号磁界を基に電圧を生成する電圧発生部の回路パラメータを読み出すことを含む。
 前記第1の周波数よりも高い第2の周波数のクロック信号で、所定の管理情報が前記メモリ部から読み出され、前記外部機器へ送信される。
 前記回路パラメータは、前記アンテナコイルを含む共振回路の共振容量値であってもよい。
 前記回路パラメータは、前記電圧発生部の基準電圧を設定するための基準電圧調整値であってもよい。
 本技術の一形態に係るプログラムは、非接触通信媒体の制御部に、
第1の周波数のクロック信号で、アンテナコイルを介して受信した外部機器からの信号磁界を基に電圧を生成する電圧発生部の回路パラメータを読み出すステップと、
 前記第1の周波数よりも高い第2の周波数のクロック信号で、所定の管理情報を前記メモリ部から読み出し、前記外部機器へ送信するステップと
 を実行させる。
 以上のように、本技術によれば、メモリサイズに依存することなく、アンテナから取り出せる電力で安定した通信を確保することができる
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の一実施形態に係る磁気テープカートリッジを示す分解斜視図である。 テープドライブ装置の概略斜視図である。 上記磁気テープカートリッジに搭載される非接触通信媒体を示す概略平面図である。 上記非接触通信媒体における共振容量値と取得電流値の関係の一例を示す実験結果である。 共振容量値の調整フローの一例を示す図である。 本技術の一実施形態に係る非接触通信媒体の構成を示すブロック図である。 上記非接触通信媒体におけるメモリ部の一構成例を示すブロック図である。 上記非接触通信媒体におけるクロック信号発生部の一構成例を示すブロック図である。 上記非接触通信媒体の駆動方法の一例を示すフローチャートである。 上記非接触通信媒体のアンテナコイルの入力端波形の時間変化の一例を簡易的に示したものである。 上記非接触通信媒体のアンテナコイルの入力端波形の時間変化の他の一例を簡易的に示したものである。 上記非接触通信媒体のアンテナコイルの入力端波形の時間変化の更に他の一例を簡易的に示したものである。 本技術の第2の実施形態に係る非接触通信媒体の構成を示すブロック図である。 上記非接触通信媒体の駆動方法の一例を示すフローチャートである。 本技術の第3の実施形態に係る非接触通信媒体の駆動方法の一例を示すフローチャートである。 本技術の第4の実施形態に係る非接触通信媒体の駆動方法の一例を示すフローチャートである。
 以下、本技術に係る実施形態を、図面を参照しながら説明する。
<第1の実施形態>
 図1は本技術の一実施形態に係る磁気テープカートリッジを示す分解斜視図、図2はテープドライブ装置の概略斜視図である。本実施形態では、記録媒体カートリッジとして、図1に示すLTO規格の磁気テープカートリッジ(以下、テープカートリッジ100という)を例に挙げて説明する。以下、テープカートリッジ100及び図2に示すテープドライブ装置200の構成について概略的に説明する。
[テープカートリッジ]
 図1に示すように、テープカートリッジ100は、上シェル11aと下シェル11bとを複数本のネジ部材により結合することで構成されたカートリッジケース11を有する。カートリッジケース11の内部には、磁気テープ12を巻装した単一のテープリール13が回転可能に収容されている。
 テープリール13の底部中央には、テープドライブ装置200のスピンドル201(図2参照)と係合するチャッキングギヤ(図示略)が環状に形成されており、当該チャッキングギヤは、下シェル11bの中央に形成された開口部14を介して外部へ露出している。このチャッキングギヤの内周側には、スピンドル201と磁気的に吸着される環状の金属プレート15が固定されている。
 上シェル11aの内面とテープリール13との間には、リールスプリング16、リールロック部材17及びスパイダ18が配置されている。これらにより、テープカートリッジ100の非使用時におけるテープリール13の回転を抑止するリールロック機構が構成される。
 カートリッジケース11の一側壁部には、磁気テープ12の一端を外部へ引き出すためのテープ引出し口19が設けられている。当該側壁部の内方には、テープ引出し口19を開閉するスライドドア20が配置されている。スライドドア20は、テープドライブ装置200のテープローディング機構(図示略)との係合によりトーションバネ21の付勢力に抗してテープ引出し口19を開放する方向にスライドするように構成される。
 磁気テープ12の一端部には、リーダーピン22が固着されている。リーダーピン22は、テープ引出し口19の内方側に設けられたピン保持部23に対して着脱可能に構成される。ピン保持部23は、カートリッジケース11の上壁内面(上シェル11aの内面)及び底壁内面(下シェル11bの内面)において、リーダーピン22の上端部及び下端部をそれぞれ弾性的に保持する弾性保持具24を備えている。
 そして、カートリッジケース21の他の側壁内方には、磁気テープ12に記録された情報の誤消去防止用のセイフティタブ25のほか、磁気テープ12に記録された情報に関する内容を非接触で読み書き可能なカートリッジメモリCMが配置されている。カートリッジメモリCMは、基板上にアンテナコイル、ICチップ等が搭載された非接触通信媒体で構成される。
[テープドライブ装置]
 図2に示すように、テープドライブ装置200は、テープカートリッジ100を装填可能に構成されている。テープドライブ装置200は、1つのテープカートリッジ100を装填可能に構成されるが、複数のテープカートリッジ100を同時に装填可能に構成されてもよい。
 テープドライブ装置200は、スピンドル201、巻取りリール202、スピンドル駆動装置203、リール駆動装置204、複数のガイドローラ205、ヘッドユニット206、リーダライタ(Reader/Writer)207、制御装置208等を含む。
 スピンドル201は、テープカートリッジ100の下シェル11bに形成された開口部14を介してテープリール13のチャッキングギヤに係合するヘッド部を有する。スピンドル201は、リールスプリング16の付勢力に抗してテープリール13を所定距離上昇させ、リールロック部材17によるリールロック機能を解除する。これによりテープリール13は、スピンドル201によりカートリッジケース11の内部において回転可能に支持される。
 スピンドル駆動装置203は、制御装置208からの指令に応じて、スピンドル201を回転させる。巻取りリール202は、図示しないテープローディング機構を介してテープカートリッジ100から引き出された磁気テープ12の先端(リーダーピン22)を固定可能に構成される。複数のガイドローラ205は、テープカートリッジ100と巻取りリール202との間に形成されるテープパスがヘッドユニット206に対して所定の相対位置関係となるように磁気テープ12の走行をガイドする。リール駆動装置204は、制御装置208からの指令に応じて、巻取りリール202を回転させる。磁気テープ12に対してデータ信号の記録/再生が行われるとき、スピンドル駆動装置203及びリール駆動装置204により、スピンドル201及び巻取りリール202が回転し、磁気テープ12が走行する。
 ヘッドユニット206は、制御装置208からの指令に応じて、磁気テープ12に対してデータ信号を記録し、あるいは、磁気テープ12に書き込まれたデータ信号を再生することが可能に構成される。
 リーダライタ207は、制御装置208からの指令に応じて、テープカートリッジ100に搭載されたカートリッジメモリCMから所定の管理情報を読み出し、あるいは、カートリッジメモリCMに対して所定の管理情報を記録することが可能に構成される。リーダライタ207とカートリッジメモリCMとの間の通信方式としては、例えば、ISO14443方式が採用される。
 制御装置208は、例えば、CPU(Central Processing Unit)、記憶部、通信部等を含むコンピュータで構成され、テープドライブ装置200の各部を統括的に制御する。
[カートリッジメモリ]
 続いて、カートリッジメモリCMの詳細について説明する。
(基本構成)
 図3は、カートリッジメモリCMを示す概略平面図である。カートリッジメモリCMは、支持基板31と、アンテナコイル32と、ICチップ33とを含むRFIDタグで構成される。
 支持基板31は、ガラスエポキシ基板等の比較的リジッドな配線基板で構成される。アンテナコイル32は、支持基板31に形成された平面ループコイルであり、所定厚みの銅箔、アルミニウム箔等で構成される。ICチップ33は、支持基板31上に実装され、アンテナコイル32と電気的に接続される。ICチップ33は、アンテナコイル32を介して受信したリーダライタ207からの信号磁界を基に起動電圧を生成する電圧発生部、テープカートリッジ100に関する所定の管理情報を記憶するメモリ部、メモリ部から情報を読み出す制御部などを内蔵する。
 カートリッジメモリCMは、リーダライタ207から送信される信号磁界をアンテナコイル32で受けて電力を生成するため、無電源で動作する。リーダライタ207からの給電・通信周波数はNFC(Near Field Communication)と同じ13.56MHzである。ICチップ33に内蔵されるメモリには不揮発性メモリ(NVM:Non-Volatile Memory)が使用される。
 ここで、LTO規格のカートリッジメモリのメモリサイズは、磁気テープに記録されるデータサイズの増加に比例して大きくなってきている。一例を挙げると、LTO1~3では4kBであったが、LTO4,5では8kB、LTO6,7では16kBとなっている。LTOの磁気記録データサイズ増がさらに進むと、カートリッジメモリのメモリサイズも増えていくことが予想される。
 ところが、カートリッジメモリのメモリサイズが大きくなると、ICの消費電力も増加する傾向にある。また、メモリへ供給する電源電圧の安定性を高くする必要があることによる電源ブロックのアイドル電流の増加、更には、処理の複雑化に伴うデジタル電力の増加など、メモリサイズ増に付随した電力増も想定される。規格では、一定の磁界強度で動作することが要件として規定されていることから、メモリサイズ増に伴う電力増に対応可能なICの工夫(消費電力の削減)やアンテナの工夫(リーダライタからの取り出し電力の増加)が今後さらに要求され得る。
 一方、この種のカートリッジメモリは、コストや信頼性の観点から、ICに内蔵した容量で共振周波数が調整されている。しかしながら、ICの容量素子は製造時のばらつきにより製品ごとに容量値のばらつきを持つ。このような個体ばらつきによって共振周波数がずれてしまうと、アンテナから取り出せる電力が小さくなる。
 図4は、共振容量値と取得電流値の関係の一例を示す実験結果である。横軸は、共振容量値の変化率であって、共振容量が期待値(取得電流値が最も高いときの容量値)を1.0としている。したがって、共振容量値が1.1の場合は、共振容量が期待値よりも10%大きくなった状態をいい、共振容量値が0.9の場合は、共振容量が期待値よりも10%小さくなった状態をいう。縦軸は、一定負荷に流れる電流値であり、電力に相当する。同図に示すように、共振容量値が期待値からずれると、取得できる電流(電力)が急激に減少する。例えば、共振容量値が約15%ばらつくと、取得電流は、期待値のときの3/4まで落ち込む。
 IC内部の共振容量を調整する方法はいくつか考えられるが、LTOのカートリッジメモリでは、不揮発性メモリの一部領域を共振容量調整用のパラメータを格納する領域として使用しており、追加ハードを必要とすることなく共振容量の調整を可能としている。この場合、事前にIC内部の容量値を測定し、正解値である容量値(期待値)あるいは測定値と正解値との差分等に関する設定値(以下、共振容量設定値という)がメモリに保存される。そして、起動時に共振容量設定値が読み出され、それを補正パラメータとして共振容量値が調整される。図5にこの共振容量値の調整フローの一例を示す。
 図5に示すように、まず、カートリッジメモリは、外部から磁界が入力されると、起動電圧を生成する(ステップ101)。ICが起動すると、制御部はメモリから共振容量設定値を読み出し、その値を基に共振容量を調整する(ステップ102,103)。共振容量値を調整した状態でリーダライタとの通信を開始し、その後、リーダライタが要求する動作に応じてメモリの指定アドレスから情報を読み出し、あるいは、メモリの指定アドレスに情報を書き込む(ステップ104,105)。
 ところが、図5に示すフローで電力的にボトルネックとなり得るのが、メモリから共振容量設定値を読み込むステップである(ステップ102)。前述のとおり、容量値がずれた状態で取得できる電力は、共振容量の正解値(期待値)のときよりも低下し、しかも、メモリサイズが増加するほどメモリを駆動する電力は増加する傾向にある。このため、共振容量調整前の容量値のずれ量やメモリサイズによっては、共振容量設定値を読み込む処理(ステップ102)が電力不足で停止し、リーダライタとの間での通信不良が生ずるおそれがある。
 そこで、本実施形態のカートリッジメモリCMは、上述のような懸念を解消するため、以下のように構成される。
(本実施形態に係るカートリッジメモリの構成)
 図6は、本実施形態のカートリッジメモリCMの構成を示すブロック図である。カートリッジメモリCMは、電圧発生部41と、メモリ部42と、クロック信号発生部43と、制御部44とを有する。電圧発生部41は、アンテナコイル32と、電源部47と、信号処理部45とを有する。
 電圧発生部41は、アンテナコイル32と、共振容量調整部46と、電源部47とを含む。電圧発生部41は、外部機器であるリーダライタ207(図2参照)から送信される信号磁界を受信して電圧を生成することが可能に構成される。
 共振容量調整部46は、例えば、複数の容量素子の並列回路あるいは直列回路と、制御部44の指令に応じて、複数の容量素子のうち任意の容量素子を電気的に接続あるいは遮断可能な複数のスイッチ素子(トランジスタなど)を含む。
 電源部47は、アンテナコイル32と共振容量調整部46とにより構成される共振回路から電圧を生成する電源回路であり、交流電流を直流電流に変換する整流回路やレギュレータ、アナログ信号をデジタル信号に変換するAD変換器などを含む。
 メモリ部42は、不揮発性メモリを含む。メモリ部42は、電圧発生部41に設定される1以上の回路パラメータと、所定の管理情報とを記憶する。
 回路パラメータとしては、例えば、共振容量調整部46に入力される共振容量設定値、電源部47の回路特性を調整する各種調整値などが挙げられる。所定の管理情報としては、カートリッジメモリCMが搭載されるテープカートリッジ100に関する情報であって、例えば、テープカートリッジ100あるいはカートリッジメモリCMの識別情報(ID)、磁気テープ12に記録されたデータの管理情報などが挙げられる。
 メモリ部42は、不揮発性メモリを制御するメモリ制御部をさらに含んでもよい。図7は、メモリ部42の一構成例を示すブロック図である。メモリ部42は、メモリ制御部421と、アドレス検出部422と、データレジスタ423と、メモリアレイ424と、電圧検出部425と、高電圧発生部426とを有する。メモリ制御部421は、クロック信号の周波数に応じてメモリアレイ424の駆動に必要な電圧を生成する。メモリアレイ424のサイズが大きいほど、高い電圧を生成する。メモリアレイ424のサイズは特に限定されず、例えば、8kB又は16kBであり、32kB以上であってもよい。
 クロック信号発生部43は、2以上の異なる周波数のクロック信号を選択的に生成することが可能に構成される。クロック信号発生部43は、制御部44からの指令を受けて、所定周波数のクロック信号をメモリ部42に供給することが可能に構成される。
 クロック信号発生部43は、典型的には、単数又は複数の分周器を含む。複数の分周器は、直列接続されてもよいし、並列接続されてもよい。クロック信号発生部43は、基準クロックの周波数を分周して得られる周波数をクロック信号としてメモリ部42へ供給する。基準クロックには、例えば、リーダライタ207の通信周波数(13.56MHz)が用いられる。これにより、比較的容易に2以上の異なる周波数のクロック信号を生成することができる。
 図8は、クロック信号発生部43の一構成例を示すブロック図である。この例では、3つの分周器431,432、433が直列に接続された例を示す。分周器の数は1つでもよいし、2つ又は4つ以上であってもよい。
 図8において、第1~第3の分周器431~433は、入力信号の周波数を1/2に分周する。第1の分周器431は、基準クロック(13.56MHz)の1/2の周波数のクロック信号を第2の分周器432及びセレクタ回路434へ出力する。第2の分周器432は、基準クロックの1/4の周波数のクロック信号を第3の分周器433及びセレクタ回路434へ出力する。第3の分周器433は、基準クロックの1/8の周波数のクロック信号をセレクタ回路434へ出力する。セレクタ回路434は、制御部44からの制御指令(セレクト信号)を受けて、上記3つの異なる周波数のクロック信号のうちいずれか1つを選択してメモリ部42へ出力する。
 本実施形態において、クロック信号発生部43は、第1の周波数の第1クロック信号(CLK1)と、第1の周波数よりも高い第2の周波数の第2クロック信号(CLK2)とを発生することが可能に構成される。第1の周波数及び第2の周波数は特に限定されず、任意に設定することができる。例えば、第1の周波数は、13.56MHzの1/16である848kHz、第2の周波数は、13.56MHzの1/4である3.39MHzである。
 信号処理部45は、アンテナコイル32を介して受信したリーダライタ207からの信号を処理し、あるいは、アンテナコイル32を介してリーダライタ207へ送信する信号を生成するブロックであり、変調回路や復調回路を含む送受信回路で構成される。信号処理部45は、受信信号からクロック周波数を抽出して制御部44へ送信する回路も含まれる。
 制御部44は、CPU、内部メモリ等を含むコンピュータで構成される。制御部44は、内部メモリに格納された各種のプログラムを実行することで、カートリッジメモリCMの各部を統括的に制御する。内部メモリは不揮発性のメモリと、作業領域として用いられる揮発性のメモリとを含む。各種のプログラムは、可搬性の記憶媒体から読み取られてもよいし、ネットワーク上のサーバ装置からダウンロードされてもよい。
 制御部44は、クロック信号発生部43からメモリ部42へ供給されるクロック信号の周波数を選択するように構成される。具体的に、制御部44は、カートリッジメモリCMの起動時に共振容量設定値等の回路パラメータをメモリ部42から読み出すとき、リーダライタ207からの要求に応じてメモリ部42から管理情報を読み出すとき、リーダライタ207の要求に応じてメモリ部42へ管理情報を書き込むとき等において、メモリ部42に供給されるクロック信号を選択するように構成される。
 例えば、制御部44は、メモリ部42から回路パラメータを読み出すときは、第1の周波数の第1のクロック信号を選択し、メモリ部42から管理情報を読み出すときは、第1の周波数よりも高い第2の周波数のクロック信号を選択するように構成される。
 メモリ部42へ供給されるクロック信号の周波数は、メモリ部42に対する情報の読み込み及び書き込みのアクセス速度に相当する。多くの不揮発性メモリは、アクセス速度で消費電力が決まり、アクセス速度が速いほど消費電力は高くなる傾向にある。つまり、アクセス速度を変更することとメモリ部42に供給するクロック信号の周波数を変化させることは等価である。
 そこで、例えば共振容量設定値などの回路パラメータの読み込み動作では、第1クロック信号(CLK1)をメモリ部42へ供給する(アクセス速度を遅く)することで、消費電力を削減することができる。一方、リーダライタ207からの読み込み要求に対しては規定された時間内で応答することが要求されており、低いクロック周波数での読み込み動作では応答時間に間に合わないおそれがある。このため、リーダライタ207からの情報の読み取り要求に対しては、第2クロック信号(CLK2)をメモリ部42へ供給する(アクセス速度を速くする)。共振容量の調整後は、調整前に比べてアンテナコイル32から取り出される電力が大きいため、より高い周波数のクロック信号をメモリ部42へ供給しても、必要とされる電力量を確保することができる。
(カートリッジメモリの駆動方法)
 続いて、制御部44の処理手順と併せて、制御部44の詳細について説明する。
 本実施形態のカートリッジメモリCMの駆動方法は、第1の周波数のクロック信号(第1クロック信号CLK1)で、アンテナコイル32を介して受信したリーダライタ207(外部機器)からの信号磁界を基に電圧を生成する電圧発生部41の回路パラメータ(本例では共振容量設定値)を読み出し、上記第1の周波数よりも高い第2の周波数のクロック信号(第2クロック信号CLK2)で、所定の管理情報をメモリ部42から読み出し、リーダライタ207へ送信する。
 図9は、カートリッジメモリCMの駆動方法の一例を示すフローチャートである。
 カートリッジメモリCMは、リーダライタ207から磁界(ポーリング信号)が入力されると起動電圧を生成し(ステップ201)、メモリ部42から共振容量設定値を読み出して、その値を共振容量調整部46へ設定し、共振容量を調整する(ステップ203,204)。
 この際、制御部44は、メモリ部42からの共振容量設定値の読み出しためのクロック信号として、第1クロック信号(CLK1)を選択する。これにより、メモリ部42からの回路パラメータの読み込み動作に必要な消費電力を低減して、共振容量調整前の起動電圧でもメモリ部42から共振容量設定値を読み出すことができる。また、カートリッジメモリCMの起動時はリーダライタ207に対する最初のレスポンスに十分な時間が割り当てられているため、回路パラメータの読み出しに要する時間が長くても(アクセス速度が遅くとも)、リーダライタ207との通信が途絶えるおそれもない。
 そして、共振容量の調整後は、リーダライタ207との通信を開始し、リーダライタ207が要求する動作に応じてメモリ部42の指定アドレスから管理情報を読み出し、あるいは、メモリ部42の指定アドレスに管理情報を書き込む(ステップ205,207)。
 この際、制御部44は、メモリ部42からの管理情報の読み出しのためのクロック信号として、第1クロック信号(CLK1)よりも周波数が高い第2クロック信号(CLK2)を選択する。共振容量調整後において電圧発生部41で生成される電力は調整前と比較して大きいため、メモリ部42へ供給されるクロック信号の周波数を高くしてもメモリ部42の駆動に必要な電力を十分に確保することができる。これにより、メモリ部42から管理情報の読み出し又は書き込みを速やかに行うことができるので、リーダライタ207に対して所定の応答時間内での返信が可能となり、通信が途絶えることを防ぐことができる。
 なお、カートリッジメモリCMとリーダライタ207との通信のタイミングは特に限定されず、テープドライブ装置200へのテープカートリッジ100の装填時、テープドライブ装置200からのテープカートリッジ100の取り出し時、あるいは、テープドライブ装置200によるテープカートリッジ100の駆動時のいずれであってもよい。
 図10~図12は、カートリッジメモリCMのアンテナコイル32の入力端波形の時間変化を簡易的に示したものである。図10は、メモリ部42へ供給される読み出し用のクロック信号を第2クロック信号(CLK2)で固定し続けたときの様子を示し、図11は、メモリ部42へ供給される読み出し用のクロック信号を第1クロック信号(CLK1)で固定し続けたときの様子を示し、図12は、メモリ部42へ供給される読み出し用のクロック信号に第1クロック信号(CLK1)及び第2クロック信号(CLK2)を組み合わせたときの様子を示している。
 リーダライタ207からのポーリング信号が入力されると、アンテナコイル32の入力端に電圧が発生し、期間T2においてメモリ部42から共振容量設定値の読み込みが行われる。メモリ部42へ供給されるクロック信号の周波数が比較的高い場合、図10に示すように、共振容量調整前の起動電圧が低すぎて共振容量設定値の読み出しが失敗するおそれがある(期間T2)。そうなると、カートリッジメモリCMの動作が停止し(期間T3)、リーダライタ207からの再度の呼びかけにも応答できず、通信が途絶えることになる(期間T4~T6)。
 一方、メモリ部42へ供給されるクロック信号の周波数が比較的低い場合、図11に示すように、共振容量調整前の起動電圧が低くても共振容量設定値の読み出しが可能となる(期間T2)。しかし、その後のリーダライタ207から情報の読み出し要求に対しては、メモリ部42からの情報の読み出し速度が遅すぎるため、規定の応答期間内に情報の返信ができずに、リーダライタ207からの送信が停止するおそれがある(期間T5,T6)。
 これに対して本実施形態によれば、共振容量調整前と調整後においてメモリ部42に供給されるクロック信号の周波数が可変に設定されるため、図12に示すように、共振容量設定値の読み出しが可能であり、リーダライタ207からの情報の読み出し要求に対しても応答期間内に適切に対応することができる(期間T2~T6)。
 以上のように本実施形態によれば、起動時の電力不足をメモリ部42へのアクセス速度の制限により補うことで、メモリ部42の消費電力を削減しつつ、共振容量の調整を適切に行うことができる。また、共振容量調整後は、メモリ部42へのアクセス速度を速めることで、リーダライタ207からの情報の読み出し要求に対する返信を所定の応答期間内に実現することができるため、リーダライタ207との間で適切な通信動作を確保することができる。これにより、メモリ部42のメモリサイズに依存することなく、アンテナコイル32から取り出せる電力で安定した通信を確保することができる。
<第2の実施形態>
 続いて、本技術の第2の実施形態について説明する。本実施形態は、共振容量設定値だけでなく、これ以外の電圧発生部41の他の回路パラメータの調整にも適用可能である。
 例えば、メモリ部42の大容量化・信頼性の向上のためには、電源部47(図6参照)の基準電圧の高精度化が要求される。基準電圧以外にも、整流後の目標電圧の設定精度が要求される。そこで本実施形態では、一例として、電源部47の基準電圧を調整可能なカートリッジメモリについて説明する。
 図13は、本実施形態のカートリッジメモリCM1の構成を示すブロック図である。以下、第1の実施形態と異なる構成について主に説明し、第1の実施形態と同様の構成については同様の符号を付しその説明を省略または簡略化する。
 本実施形態のカートリッジメモリCM1は、電源部47の基準電圧を調整可能な基準電圧調整部48を有する点で、第1の実施形態と異なる。基準電圧調整部48は、電源部47を構成する基準電圧発生回路(BGR:Band Gap Reference)の特性値を調整するためのものである。
 基準電圧発生回路は、メモリ部42を含む各部へ供給される電圧値の基準となるものであるが、回路特性等の個体差によってばらつきが発生しやすい。そこで本実施形態では、電源部47の基準電圧を設定するための基準電圧調整値を回路パラメータとしてメモリ部42に記憶し、起動時に制御部44が上記基準電圧調整値を読み出し、これを基準電圧調整部48へ設定するように構成される。これにより、カートリッジメモリCM1の各部に精度の高い制御電圧を供給することができるため、メモリ部42などの安定した動作を確保し、信頼性を高めることができる。
 図14は、カートリッジメモリCM1の駆動方法の一例を示すフローチャートである。
 カートリッジメモリCM1の起動時は、リーダライタ207から磁界(ポーリング信号)が入力されると起動電圧を生成し(ステップ301)、第1クロック信号(CLK1)でメモリ部42から基準電圧調整値を読み出して、その値を基準電圧調整部48へ設定する(ステップ302~304)。基準電圧調整値の設定は、第1の実施形態で説明した共振容量の調整と同時に行ってもよいし、共振容量の調整は必要に応じて省略してもよい。
 そして、基準電圧の調整後は、リーダライタ207との通信を開始し、リーダライタ207が要求する動作に応じて、第2クロック信号(CLK2)でメモリ部42の指定アドレスから管理情報を読み出し、あるいは、メモリ部42の指定アドレスに管理情報を書き込む(ステップ305~307)。
 本実施形態においても上述の第1の実施形態と同様の作用効果を得ることができる。本実施形態によれば、起動時の電力不足をメモリ部42へのアクセス速度の制限により補うことで、メモリ部42の消費電力を削減しつつ、電源部47の基準電圧の調整を適切に行うことができる。また、基準電圧の調整後は、メモリ部42へのアクセス速度を速めることで、リーダライタ207からの情報の読み出し要求に対する返信を所定の応答期間内に実現することができるため、リーダライタ207との間で適切な通信動作を確保することができる。これにより、メモリ部42のメモリサイズに依存することなく、アンテナコイル32から取り出せる電力で安定した通信を確保することができる。
<第3の実施形態>
 図15は、本技術の第3の実施形態に係るカートリッジメモリの駆動方法の一例を示すフローチャートである。以下、第1の実施形態と異なる構成について主に説明し、第1の実施形態と同様の構成については同様の符号を付しその説明を省略または簡略化する。
 本実施形態のカートリッジメモリにおいて、制御部44は、リーダライタ207(外部機器)からの動作要求に基づいて、メモリ部42に供給されるクロック信号の周波数を選択するように構成される。
 例えば、LTO以外の他の規格のテープカートリッジあるいは磁気テープ以外の情報記録カートリッジ(光ディスク、可搬型ハードディスクドライブなど)においては、メモリ部への情報の書き込み動作に要求される時間が情報の読み出し動作に要求される時間よりも長く設定される場合がある。この場合、これらの記録媒体カートリッジに搭載されるカートリッジメモリの動作例として、以下のようなフローが適用可能である。
 図15に示すように、アンテナコイル32への磁界の入力により起動電圧が生成されると、制御部44は第1クロック信号(CLK1)でメモリ部42から共振容量設定値を読み出して、その値を共振容量調整部46へ設定する(ステップ401~404)。共振容量の調整後は、リーダライタ207との通信を開始し、リーダライタ207が要求する動作に応じて、メモリ部42の指定アドレスから管理情報を読み出し、あるいは、メモリ部42の指定アドレスに管理情報を書き込む。
 この際、リーダライタ207の動作要求が読み出し指令の場合、第1の実施形態と同様に、メモリ部42へ供給されるクロック信号を第1クロック信号(CLK1)から第2クロック信号(CLK2)へ変更し、高速で情報を読み出す(ステップ406~408)。一方、リーダライタ207の動作要求が書き込み指令の場合、メモリ部42へ供給されるクロック信号を変更せず、第1クロック信号(CLK1)で情報の書き込み動作を実行する。
 本実施形態によれば、メモリ部42への情報の書き込み動作を第1クロック信号(CLK1)で実行するため、メモリ部42の消費電力の低減を図ることができる。一般に、情報の書き込み動作は読み出し動作よりも消費電力が大きい場合が多い。情報の書き込み時の消費電力を抑えることで、例えばメモリサイズ増に伴う書き込みのための消費電力の低減を図ることができる。
<第4の実施形態>
 図16は、本技術の第4の実施形態に係るカートリッジメモリの駆動方法の一例を示すフローチャートである。以下、第1の実施形態と異なる構成について主に説明し、第1の実施形態と同様の構成については同様の符号を付しその説明を省略または簡略化する。
 本実施形態のカートリッジメモリは、電圧発生部41の発生電圧を監視する監視部を有し、制御部44は、上記監視部の出力に基づいて、2以上のクロック信号の周波数を選択するように構成される。これにより、電圧発生部41の電力余裕を見て、メモリ部42へ供給されるクロック信号(アクセス速度)を可変に制御することが可能となる。上記監視部の構成は特に限定されず、電圧調整回路(レギュレータ)の電流値、保護回路の電流値等に基づいて、電圧発生部41の発生電圧を監視することができる。
 図16に示すように、アンテナコイル32への磁界の入力により起動電圧が生成されると、制御部44は第1クロック信号(CLK1)でメモリ部42から共振容量設定値を読み出して、その値を共振容量調整部46へ設定する(ステップ501~504)。共振容量の調整後は、リーダライタ207との通信を開始し、リーダライタ207が要求する動作に応じて、メモリ部42の指定アドレスから管理情報を読み出し、あるいは、メモリ部42の指定アドレスに管理情報を書き込む(ステップ505)。
 この際、制御部44は、電圧発生部41の発生電圧(共振容量調整後の発生電圧)を検出し、その電圧の大きさに応じて、メモリ部42に対する情報の読み出し及び書き込み時のクロック周波数を選択する(ステップ507~509)。本例では、第1クロック信号(CLK1、848kHz)、第2クロック信号(CLK2、3.39MHz)のほか、第3クロック信号(CLK3)を選択可能にクロック信号発生部43が構成される。
 第3クロック信号の周波数(第3の周波数)は、第1クロック信号(第1の周波数)よりも高く、第2クロック信号(第2の周波数)よりも低い適宜の値(本例では、1.69MHz)に設定可能である。
 制御部44は、検出電圧の大きさが閾値以上か否かを判定し、閾値以上の場合は、第2クロック信号(CLK2)をメモリ部42へ供給して、情報の読み出し又は書き込み動作を実行する(ステップ507,508)。一方、制御部44は、検出電圧の大きさが閾値未満の場合は、第3クロック信号(CLK3)をメモリ部42へ供給して、情報の読み出し又は書き込み動作を実行する(ステップ507,509)。
 以上、本技術の実施形態について説明したが、本技術は上述の実施形態にのみ限定されるものではなく、種々変更を加え得ることは勿論である。
 例えば以上の実施形態では、LTO規格の磁気テープカートリッジに搭載されるカートリッジメモリを例に挙げて説明したが、これに限られず、LTO以外の他の規格の磁気テープカートリッジ用のカートリッジメモリにも適用可能である。
 また本技術は、磁気テープ以外の他の情報記録媒体、例えば、光ディスクや光磁気ディスク、半導体メモリ、可搬型ハードディスクドライブ用のカートリッジメモリにも適用可能である。
 さらに本技術は、情報記録カートリッジに搭載されるカートリッジメモリに限られず、電子機器、車両、ロボット、物流製品、蔵書などに付されるIDタグのほか、交通用定期券、高速道路や建物等の入退場管理カードにも、本技術は適用可能である。
 なお、本技術は以下のような構成もとることができる。
(1) 送受信用のアンテナコイルを有し、外部機器からの信号磁界を受信して電圧を生成する電圧発生部と、
 前記電圧発生部に設定される1以上の回路パラメータと、所定の管理情報とを記憶するメモリ部と、
 2以上の異なる周波数のクロック信号を選択的に生成することが可能なクロック信号発生部と、
 前記クロック信号発生部から前記メモリ部へ供給されるクロック信号の周波数を選択するように構成された制御部と
 を具備する非接触通信媒体。
(2)上記(1)に記載の非接触通信媒体であって、
 前記制御部は、
 前記回路パラメータを読み出すときは、第1の周波数の第1のクロック信号を選択し、
 前記管理情報を読み出すときは、前記第1の周波数よりも高い第2の周波数の第2のクロック信号を選択する
 非接触通信媒体。
(3)上記(2)に記載の非接触通信媒体であって、
 前記電圧発生部は、前記アンテナコイルを含む共振回路と、前記共振回路の共振周波数を調整する共振容量調整部とを有し、
 前記メモリ部は、前記共振容量調整部に設定される共振容量値を前記回路パラメータとして記憶する
 非接触通信媒体。
(4)上記(2)又は(3)に記載の非接触通信媒体であって、
 前記電圧発生部は、前記共振回路から電圧を生成する電源回路をさらに有し、
 前記メモリ部は、前記電源回路の基準電圧を設定するための基準電圧調整値を前記回路パラメータとして記憶する
 非接触通信媒体。
(5)上記(2)~(4)のいずれか1つに記載の非接触通信媒体であって、
 前記制御部は、前記メモリ部へ情報を書き込むときは、前記第1のクロック信号を選択する
 非接触通信媒体。
(6)上記(1)~(5)のいずれか1つに記載の非接触通信媒体であって、
 前記制御部は、前記外部機器からの動作要求に基づいて、前記クロック信号の周波数を選択する
 非接触通信媒体。
(7)上記(1)~(6)のいずれか1つに記載の非接触通信媒体であって、
 前記電圧発生部の発生電圧を監視する監視部をさらに具備し、
 前記制御部は、前記監視部の出力に基づいて、前記2以上のクロック信号の周波数を選択する
 非接触通信媒体。
(8)上記(1)~(7)のいずれか1つに記載の非接触通信媒体であって、
 前記クロック信号発生部は、前記信号磁界の周波数の逓倍の周波数のクロック信号を生成する
 非接触通信媒体。
(9) 情報記録媒体と、
 前記情報記録媒体を収容するカートリッジ本体と、
 送受信用のアンテナコイルを有し外部機器からの信号磁界を受信して電圧を生成する電圧発生部と、前記電圧発生部に設定される1以上の回路パラメータと所定の管理情報とを記憶するメモリ部と、2以上の異なる周波数のクロック信号を選択的に生成することが可能なクロック信号発生部と、前記クロック信号発生部から前記メモリ部へ供給されるクロック信号の周波数を選択するように構成された制御部とを有し、前記カートリッジ本体に収容された非接触通信媒体と
 を具備する記録媒体カートリッジ。
(10) 第1の周波数のクロック信号で、アンテナコイルを介して受信した外部機器からの信号磁界を基に電圧を生成する電圧発生部の回路パラメータを読み出し、
 前記第1の周波数よりも高い第2の周波数のクロック信号で、所定の管理情報を前記メモリ部から読み出し、前記外部機器へ送信する
 非接触通信媒体の駆動方法。
(11)上記(10)に記載の非接触通信媒体の駆動方法であって、
 前記回路パラメータは、前記アンテナコイルを含む共振回路の共振容量値である
 非接触通信媒体の駆動方法。
(12)上記(10)に記載の非接触通信媒体の駆動方法であって、
 前記回路パラメータは、前記電圧発生部の基準電圧を設定するための基準電圧調整値である
 非接触通信媒体の駆動方法。
(13) 非接触通信媒体の制御部に、
第1の周波数のクロック信号で、アンテナコイルを介して受信した外部機器からの信号磁界を基に電圧を生成する電圧発生部の回路パラメータを読み出すステップと、
 前記第1の周波数よりも高い第2の周波数のクロック信号で、所定の管理情報を前記メモリ部から読み出し、前記外部機器へ送信するステップと
 を実行させるプログラム。
 11…カートリッジケース
 12…磁気テープ
 32…アンテナコイル
 33…ICチップ
 41…電圧発生部
 42…メモリ部
 43…クロック信号発生部
 44…制御部
 46…共振容量調整部
 47…電源部
 48…基準電圧調整部
 100…テープカートリッジ
 200…テープドライブ装置
 CM,CM1…カートリッジメモリ

Claims (13)

  1.  送受信用のアンテナコイルを有し、外部機器からの信号磁界を受信して電圧を生成する電圧発生部と、
     前記電圧発生部に設定される1以上の回路パラメータと、所定の管理情報とを記憶するメモリ部と、
     2以上の異なる周波数のクロック信号を選択的に生成することが可能なクロック信号発生部と、
     前記クロック信号発生部から前記メモリ部へ供給されるクロック信号の周波数を選択するように構成された制御部と
     を具備する非接触通信媒体。
  2.  請求項1に記載の非接触通信媒体であって、
     前記制御部は、
     前記回路パラメータを読み出すときは、第1の周波数の第1のクロック信号を選択し、
     前記管理情報を読み出すときは、前記第1の周波数よりも高い第2の周波数の第2のクロック信号を選択する
     非接触通信媒体。
  3.  請求項2に記載の非接触通信媒体であって、
     前記電圧発生部は、前記アンテナコイルを含む共振回路と、前記共振回路の共振周波数を調整する共振容量調整部とを有し、
     前記メモリ部は、前記共振容量調整部に設定される共振容量値を前記回路パラメータとして記憶する
     非接触通信媒体。
  4.  請求項2に記載の非接触通信媒体であって、
     前記電圧発生部は、前記共振回路から電圧を生成する電源回路をさらに有し、
     前記メモリ部は、前記電源回路の基準電圧を設定するための基準電圧調整値を前記回路パラメータとして記憶する
     非接触通信媒体。
  5.  請求項2に記載の非接触通信媒体であって、
     前記制御部は、前記メモリ部へ情報を書き込むときは、前記第1のクロック信号を選択する
     非接触通信媒体。
  6.  請求項1に記載の非接触通信媒体であって、
     前記制御部は、前記外部機器からの動作要求に基づいて、前記クロック信号の周波数を選択する
     非接触通信媒体。
  7.  請求項1に記載の非接触通信媒体であって、
     前記電圧発生部の発生電圧を監視する監視部をさらに具備し、
     前記制御部は、前記監視部の出力に基づいて、前記2以上のクロック信号の周波数を選択する
     非接触通信媒体。
  8.  請求項1に記載の非接触通信媒体であって、
     前記クロック信号発生部は、前記信号磁界の周波数の逓倍の周波数のクロック信号を生成する
     非接触通信媒体。
  9.  情報記録媒体と、
     前記情報記録媒体を収容するカートリッジ本体と、
     送受信用のアンテナコイルを有し外部機器からの信号磁界を受信して電圧を生成する電圧発生部と、前記電圧発生部に設定される1以上の回路パラメータと所定の管理情報とを記憶するメモリ部と、2以上の異なる周波数のクロック信号を選択的に生成することが可能なクロック信号発生部と、前記クロック信号発生部から前記メモリ部へ供給されるクロック信号の周波数を選択するように構成された制御部とを有し、前記カートリッジ本体に収容された非接触通信媒体と
     を具備する記録媒体カートリッジ。
  10.  第1の周波数のクロック信号で、アンテナコイルを介して受信した外部機器からの信号磁界を基に電圧を生成する電圧発生部の回路パラメータを読み出し、
     前記第1の周波数よりも高い第2の周波数のクロック信号で、所定の管理情報を前記メモリ部から読み出し、前記外部機器へ送信する
     非接触通信媒体の駆動方法。
  11.  請求項10に記載の非接触通信媒体の駆動方法であって、
     前記回路パラメータは、前記アンテナコイルを含む共振回路の共振容量値である
     非接触通信媒体の駆動方法。
  12.  請求項10に記載の非接触通信媒体の駆動方法であって、
     前記回路パラメータは、前記電圧発生部の基準電圧を設定するための基準電圧調整値である
     非接触通信媒体の駆動方法。
  13.  非接触通信媒体の制御部に、
    第1の周波数のクロック信号で、アンテナコイルを介して受信した外部機器からの信号磁界を基に電圧を生成する電圧発生部の回路パラメータを読み出すステップと、
     前記第1の周波数よりも高い第2の周波数のクロック信号で、所定の管理情報を前記メモリ部から読み出し、前記外部機器へ送信するステップと
     を実行させるプログラム。
PCT/JP2019/002525 2018-03-15 2019-01-25 非接触通信媒体、記録媒体カートリッジ、非接触通信媒体の駆動方法及びプログラム WO2019176325A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980016303.3A CN112119401A (zh) 2018-03-15 2019-01-25 非接触式通信介质、记录介质盒、驱动非接触式通信介质的方法以及程序
EP19768202.4A EP3767540B1 (en) 2018-03-15 2019-01-25 Non-contact communication medium, recording medium cartridge, driving method for non-contact communication medium and program
US16/978,960 US20210375317A1 (en) 2018-03-15 2019-01-25 Non-contact communication medium, recording medium cartridge, method of driving non-contact communication medium, and program
JP2020505640A JPWO2019176325A1 (ja) 2018-03-15 2019-01-25 非接触通信媒体、記録媒体カートリッジ、非接触通信媒体の駆動方法及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-047480 2018-03-15
JP2018047480 2018-03-15

Publications (1)

Publication Number Publication Date
WO2019176325A1 true WO2019176325A1 (ja) 2019-09-19

Family

ID=67907715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002525 WO2019176325A1 (ja) 2018-03-15 2019-01-25 非接触通信媒体、記録媒体カートリッジ、非接触通信媒体の駆動方法及びプログラム

Country Status (5)

Country Link
US (1) US20210375317A1 (ja)
EP (1) EP3767540B1 (ja)
JP (1) JPWO2019176325A1 (ja)
CN (1) CN112119401A (ja)
WO (1) WO2019176325A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6861865B1 (ja) * 2020-02-04 2021-04-21 富士フイルム株式会社 非接触式通信媒体、磁気テープカートリッジ、非接触式通信媒体の動作方法、及びプログラム
JP2021125233A (ja) * 2020-02-04 2021-08-30 富士フイルム株式会社 非接触式通信媒体、磁気テープカートリッジ、及び非接触式通信媒体の製造方法
JP2021125232A (ja) * 2020-02-04 2021-08-30 富士フイルム株式会社 非接触式通信媒体、磁気テープカートリッジ、非接触式通信媒体の動作方法、及びプログラム
WO2021241235A1 (ja) * 2020-05-25 2021-12-02 富士フイルム株式会社 非接触式通信媒体、磁気テープカートリッジ、非接触式通信媒体の動作方法、及びプログラム
WO2021241236A1 (ja) * 2020-05-25 2021-12-02 富士フイルム株式会社 非接触式通信媒体、磁気テープカートリッジ、非接触式通信媒体の動作方法、及びプログラム
JP2021190068A (ja) * 2020-05-25 2021-12-13 富士フイルム株式会社 非接触式通信媒体、磁気テープカートリッジ、非接触式通信媒体の動作方法、及びプログラム
JP2021190069A (ja) * 2020-05-25 2021-12-13 富士フイルム株式会社 非接触式通信媒体、磁気テープカートリッジ、非接触式通信媒体の動作方法、及びプログラム
US11223389B2 (en) 2020-02-04 2022-01-11 Fujifilm Corporation Noncontact communication medium, magnetic tape cartridge, operation method of noncontact communication medium, and program
US11222666B2 (en) 2020-02-04 2022-01-11 Fujifilm Corporation Communication device, magnetic tape cartridge unit and manufacturing method thereof, and noncontact management method of magnetic tape cartridge
US11334781B2 (en) 2020-02-04 2022-05-17 Fujifilm Corporation Noncontact communication medium, magnetic tape cartridge, operation method of noncontact communication medium, and program
US11398249B2 (en) 2020-02-04 2022-07-26 Fujifilm Corporation Noncontact communication medium, magnetic tape cartridge, operation method of noncontact communication medium, and storage medium
US11809926B2 (en) 2020-02-04 2023-11-07 Fujifilm Corporation Noncontact communication medium, magnetic tape cartridge, and manufacturing method of noncontact communication medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154080A (ja) * 1982-03-05 1983-09-13 Arimura Giken Kk 識別信号発生装置
JP2004206409A (ja) * 2002-12-25 2004-07-22 Toshiba Corp 非接触式icカード
JP2005078181A (ja) * 2003-08-28 2005-03-24 Denso Wave Inc 非接触icカード
JP2005191961A (ja) * 2003-12-25 2005-07-14 Sharp Corp 非接触型icカード、電子情報機器、携帯型電子情報機器、開放型システム、消費電力制御方法、制御プログラムおよび可読記録媒体
JP2008225535A (ja) * 2007-03-08 2008-09-25 Nec Tokin Corp 非接触icカード
JP2009211743A (ja) 2008-03-03 2009-09-17 Sony Corp テープリール、テープカートリッジ及びテープドライブシステム
JP2010087846A (ja) * 2008-09-30 2010-04-15 Yoshikawa Rf System Kk 自動同調回路及びそれを用いたデータキャリア装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6317027B1 (en) * 1999-01-12 2001-11-13 Randy Watkins Auto-tunning scanning proximity reader
WO2006117866A1 (ja) * 2005-04-28 2006-11-09 Hitachi Ulsi Systems Co., Ltd. Icタグ
JP2006318516A (ja) * 2005-05-10 2006-11-24 Fuji Photo Film Co Ltd 3次元光記録媒体および光ディスクカートリッジ
KR100853189B1 (ko) * 2006-12-08 2008-08-20 한국전자통신연구원 태그 수명 연장을 위한 저전력 무선 인식 태그 및 그 방법
KR101149680B1 (ko) * 2010-12-28 2012-05-30 엘에스산전 주식회사 태그의 인식 거리 조절이 가능한 rfid 시스템

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154080A (ja) * 1982-03-05 1983-09-13 Arimura Giken Kk 識別信号発生装置
JP2004206409A (ja) * 2002-12-25 2004-07-22 Toshiba Corp 非接触式icカード
JP2005078181A (ja) * 2003-08-28 2005-03-24 Denso Wave Inc 非接触icカード
JP2005191961A (ja) * 2003-12-25 2005-07-14 Sharp Corp 非接触型icカード、電子情報機器、携帯型電子情報機器、開放型システム、消費電力制御方法、制御プログラムおよび可読記録媒体
JP2008225535A (ja) * 2007-03-08 2008-09-25 Nec Tokin Corp 非接触icカード
JP2009211743A (ja) 2008-03-03 2009-09-17 Sony Corp テープリール、テープカートリッジ及びテープドライブシステム
JP2010087846A (ja) * 2008-09-30 2010-04-15 Yoshikawa Rf System Kk 自動同調回路及びそれを用いたデータキャリア装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3767540A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11398249B2 (en) 2020-02-04 2022-07-26 Fujifilm Corporation Noncontact communication medium, magnetic tape cartridge, operation method of noncontact communication medium, and storage medium
JP6861865B1 (ja) * 2020-02-04 2021-04-21 富士フイルム株式会社 非接触式通信媒体、磁気テープカートリッジ、非接触式通信媒体の動作方法、及びプログラム
US11222666B2 (en) 2020-02-04 2022-01-11 Fujifilm Corporation Communication device, magnetic tape cartridge unit and manufacturing method thereof, and noncontact management method of magnetic tape cartridge
US11277171B2 (en) 2020-02-04 2022-03-15 Fujifilm Corporation Noncontact communication medium, magnetic tape cartridge, operation method of noncontact communication medium, and program
US11223389B2 (en) 2020-02-04 2022-01-11 Fujifilm Corporation Noncontact communication medium, magnetic tape cartridge, operation method of noncontact communication medium, and program
JP2021124916A (ja) * 2020-02-04 2021-08-30 富士フイルム株式会社 非接触式通信媒体、磁気テープカートリッジ、非接触式通信媒体の動作方法、及びプログラム
JP7376463B2 (ja) 2020-02-04 2023-11-08 富士フイルム株式会社 非接触式通信媒体、磁気テープカートリッジ、及び非接触式通信媒体の製造方法
JP7376462B2 (ja) 2020-02-04 2023-11-08 富士フイルム株式会社 非接触式通信媒体及び磁気テープカートリッジ
US11809926B2 (en) 2020-02-04 2023-11-07 Fujifilm Corporation Noncontact communication medium, magnetic tape cartridge, and manufacturing method of noncontact communication medium
JP2021125233A (ja) * 2020-02-04 2021-08-30 富士フイルム株式会社 非接触式通信媒体、磁気テープカートリッジ、及び非接触式通信媒体の製造方法
JP2021125232A (ja) * 2020-02-04 2021-08-30 富士フイルム株式会社 非接触式通信媒体、磁気テープカートリッジ、非接触式通信媒体の動作方法、及びプログラム
US11334781B2 (en) 2020-02-04 2022-05-17 Fujifilm Corporation Noncontact communication medium, magnetic tape cartridge, operation method of noncontact communication medium, and program
WO2021241236A1 (ja) * 2020-05-25 2021-12-02 富士フイルム株式会社 非接触式通信媒体、磁気テープカートリッジ、非接触式通信媒体の動作方法、及びプログラム
US11783859B2 (en) 2020-05-25 2023-10-10 Fujifilm Corporation Noncontact communication medium, magnetic tape cartridge, method for operating noncontact communication medium, and program
US11948032B2 (en) 2020-05-25 2024-04-02 Fujifilm Corporation Noncontact communication medium, magnetic tape cartridge, method for operating noncontact communication medium, and program
JP2021190069A (ja) * 2020-05-25 2021-12-13 富士フイルム株式会社 非接触式通信媒体、磁気テープカートリッジ、非接触式通信媒体の動作方法、及びプログラム
JP2021190068A (ja) * 2020-05-25 2021-12-13 富士フイルム株式会社 非接触式通信媒体、磁気テープカートリッジ、非接触式通信媒体の動作方法、及びプログラム
WO2021241235A1 (ja) * 2020-05-25 2021-12-02 富士フイルム株式会社 非接触式通信媒体、磁気テープカートリッジ、非接触式通信媒体の動作方法、及びプログラム

Also Published As

Publication number Publication date
JPWO2019176325A1 (ja) 2021-03-25
EP3767540A4 (en) 2021-04-14
US20210375317A1 (en) 2021-12-02
CN112119401A (zh) 2020-12-22
EP3767540B1 (en) 2023-03-22
EP3767540A1 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
WO2019176325A1 (ja) 非接触通信媒体、記録媒体カートリッジ、非接触通信媒体の駆動方法及びプログラム
US11393506B2 (en) Cartridge memory
JP7108024B2 (ja) 非接触通信媒体及びその駆動方法、並びに記録媒体カートリッジ
JP7215479B2 (ja) 記録媒体カートリッジ
US11562197B2 (en) Non-contact communication medium and recording medium cartridge
JP2024063252A (ja) カートリッジメモリ、記録媒体カートリッジおよび記録再生システム
JPWO2020085328A1 (ja) カートリッジメモリおよびその制御方法、カートリッジならびに記録再生システム
JP5323765B2 (ja) 非接触ic媒体制御プログラム、非接触ic媒体、および非接触ic媒体制御方法
JPH07271941A (ja) 半導体記憶媒体、半導体記憶媒体への非接触電源供給方法および供給装置
KR20120056591A (ko) 자동 주파수 조절 기능을 갖는 무선 주파수 인식 태그

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19768202

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505640

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019768202

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019768202

Country of ref document: EP

Effective date: 20201015