WO2019176304A1 - 制御装置、空気調和機、制御方法及びプログラム - Google Patents

制御装置、空気調和機、制御方法及びプログラム Download PDF

Info

Publication number
WO2019176304A1
WO2019176304A1 PCT/JP2019/002032 JP2019002032W WO2019176304A1 WO 2019176304 A1 WO2019176304 A1 WO 2019176304A1 JP 2019002032 W JP2019002032 W JP 2019002032W WO 2019176304 A1 WO2019176304 A1 WO 2019176304A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
power
control
converter
switching element
Prior art date
Application number
PCT/JP2019/002032
Other languages
English (en)
French (fr)
Inventor
一允 川島
雄 佐藤
謙一 相場
貴政 渡辺
清水 健志
角藤 清隆
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Publication of WO2019176304A1 publication Critical patent/WO2019176304A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a control device, an air conditioner, a control method, and a program.
  • Patent Document 1 discloses a power conversion device including a converter that converts the voltage of an AC power source into DC and an inverter that converts the output voltage of the converter into AC voltage. A control method is described in which the output voltage of the converter is controlled in accordance with the limit value of the harmonic current to reduce the harmonic current.
  • a reactor may be provided at the output part or input part of the converter for the purpose of power factor improvement or harmonic countermeasures.
  • a DC voltage supplied to the inverter may be controlled by providing a switching element on the output side of the reactor and executing switching control for switching the switching element on and off.
  • Patent Document 1 does not describe a technique for reducing power loss and noise in the reactor.
  • the present invention provides a control device, an air conditioner, a control method, and a program that can solve the above-described problems.
  • a control device includes a rectifier circuit, a reactor, and a switching element, converts a converter from AC power to DC power, and converts DC power converted by the converter into AC power.
  • a power conversion device including an inverter, and a control unit that executes switching control for switching on and off the switching element, wherein the control unit switches the switching element on and off during the switching control. Sets the switching pause period during which no operation is performed.
  • control unit generates a switching control signal instructing switching of the switching element on and off based on a predetermined modulation wave and a predetermined carrier, and the modulation wave
  • the switching pause period is set by increasing the modulation rate.
  • control unit sets the modulation rate such that a distortion rate of the input current of the converter during the switching pause period is equal to or less than a predetermined threshold.
  • control unit sets the modulation rate such that the harmonic value of each order included in the input current of the converter during the switching pause period is equal to or less than a predetermined threshold value.
  • control unit monitors the input current of the converter during the switching pause period, and the distortion rate of the input current or the harmonic value of each order included in the input current is The modulation rate is feedback-controlled so as to be below a predetermined threshold.
  • control unit performs control to set the switching pause period during execution of the switching control when the load size of the power conversion device is within a predetermined range.
  • an air conditioner includes a rectifier circuit, a reactor, and a switching element, converts a converter from AC power to DC power, and converts DC power converted by the converter into AC power.
  • a power conversion device including an inverter that performs the above operation, one of the control devices described above, and a compressor driven by a motor controlled by the power conversion device.
  • a control method includes a rectifier circuit, a reactor, and a switching element, and converts a converter that converts AC power into DC power, and converts the DC power converted by the converter into AC power.
  • a power conversion device including an inverter includes a step of setting a switching pause period during which switching of the switching element is not switched on and off during execution of switching control for switching the switching element on and off.
  • a program includes a rectifier circuit, a reactor, and a switching element, a converter that converts AC power into DC power, and an inverter that converts DC power converted by the converter into AC power.
  • control device the air conditioner, the control method, and the program described above, it is possible to reduce power loss and noise in the reactor due to switching control in the converter provided with the reactor and the switching element.
  • FIG. 1 is a diagram illustrating an example of a power converter according to an embodiment of the present invention.
  • FIG. 1 shows a compressor 2 mounted on the air conditioner 1 and a power converter 3 that supplies power to the compressor 2.
  • the compressor 2 includes a power conversion device 3, a motor 4, and a compression mechanism 5.
  • the power conversion device 3 converts the AC power received from the AC power source 6 into three-phase AC power and outputs it to the motor 4.
  • the control device 10 controls the power conversion device 3 and drives the motor 4 at a rotational speed corresponding to the load of the air conditioner 1.
  • the compression mechanism 5 compresses the refrigerant and supplies the refrigerant to a refrigerant circuit (not shown) provided in the air conditioner 1.
  • the power conversion device 3 includes a converter 31, an inverter 37, a control device 10, an input current detection unit 20, and a zero cross detection unit 21.
  • the converter 31 is a device that converts AC power from the AC power source 6 into DC power and outputs the DC power to the inverter 37.
  • Converter 31 includes rectifier circuit 320, switching circuit 330, and smoothing capacitor 36.
  • the rectifier circuit 320 includes diodes 32a to 32d. The rectifier circuit 320 converts AC power input from the AC power supply 6 into DC power and outputs the DC power to the switching circuit 330.
  • the switching circuit 330 supplies a current to the smoothing capacitor 36 and generates a voltage input to the inverter 37.
  • the switching circuit 330 includes a reactor 33, a diode 34, and a switching element 35.
  • the reactor 33 includes a first terminal and a second terminal.
  • the diode 34 includes an anode terminal and a cathode terminal.
  • the switching element 35 includes a first terminal, a second terminal, and a third terminal.
  • the switching element 35 controls a current flowing from the second terminal to the third terminal by switching between a period in which the switching element 35 is turned on and a period in which the switching element 35 is turned off in accordance with a signal received by the first terminal. Change the value of the flowing current.
  • the switching element 35 examples include a field effect transistor (FET: Field Effect Transistor), an IGBT (Insulated Gate Bipolar Transistor), and the like.
  • FET Field Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the switching element 35 is, for example, a MOSFET
  • the first terminal of the switching element 35 is a gate terminal
  • the second terminal is a source terminal
  • the third terminal is a drain terminal.
  • the smoothing capacitor 36 includes a first terminal and a second terminal.
  • the smoothing capacitor 36 acquires current from the switching circuit 330.
  • the input current detection unit 20 includes an input terminal and an output terminal.
  • the input current detection unit 20 is an ammeter that detects a return current to the AC power supply 6 (hereinafter referred to as “input current”).
  • the input current detection unit 20 outputs information on the detected input current to the control device 10.
  • the control device 10 includes a plurality of input terminals and a plurality of output terminals. For example, the control device 10 acquires information on the input current from the input current detection unit 20 via the first input terminal, and observes the input current waveform.
  • the control device 10 controls the switching circuit 330 through the first output terminal.
  • the AC power source 6 includes an output terminal and a reference terminal. AC power supply 6 supplies AC power to converter 31.
  • the zero cross detection unit 21 includes a first input terminal, a second input terminal, and an output terminal.
  • the zero cross detection unit 21 detects the zero cross point of the voltage output from the AC power supply 6 via the first input terminal and the second input terminal.
  • the zero cross point indicates the time when the voltage output from the AC power supply 6 crosses zero volts.
  • the zero cross detection unit 21 generates a zero cross signal including information on the cell cross points.
  • the zero cross detection unit 21 outputs a zero cross signal to the control device 10 via the output terminal.
  • the control device 10 generates modulated waves P2 and P2 ′ described later so as to be synchronized with the cycle of the AC power supply 6, with the time as a reference time.
  • the inverter 37 is a device that converts the DC power output from the converter 31 into three-phase AC power and outputs it to the motor 4 of the compressor 2.
  • the inverter 37 includes a plurality of switching elements 37a and the like (not shown), and the plurality of switching elements 37a and the like constitute a bridge circuit.
  • the control device 10 generates three-phase AC power by switching on and off the switching element 37 a of the bridge circuit provided in the inverter 37, and outputs the generated three-phase AC power to the motor 4.
  • Specific examples of the inverter control include vector control, sensorless vector control, V / F (Variable Frequency) control, overmodulation control, and the like.
  • the input terminal of the rectifier circuit 320 (the anode terminal of the diode 32a) is connected to the output terminal of the AC power supply 6 and the first input terminal of the zero-cross detector 21.
  • the reference terminal on the input side of the rectifier circuit 320 (the anode terminal of the diode 32 b) is connected to the reference terminal of the AC power supply 6, the second input terminal of the zero cross detector 21, and the input terminal of the input current detector 20. .
  • the output terminal of the rectifier circuit 320 (the cathode terminals of the diodes 32 a and 32 b) is connected to the first terminal of the reactor 33.
  • the output-side reference terminal of the rectifier circuit 320 (the anode terminals of the diodes 32 c and 32 d) is connected to the third terminal of the switching element 35, the second terminal of the smoothing capacitor 36, and the reference terminal of the inverter 37.
  • the second terminal of the reactor 33 is connected to the anode terminal of the diode 34 and the second terminal of the switching element 35.
  • the cathode terminal of the diode 34 is connected to the first terminal of the smoothing capacitor 36 and the input terminal of the inverter 37.
  • the first terminal of the switching element 35 is connected to the first output terminal of the control device 10.
  • the first input terminal of the control device 10 is connected to the output terminal of the input current detection unit 20.
  • the second input terminal of the control device 10 is connected to the output terminal of the zero cross detection unit 21.
  • a first terminal such as the switching element 37 a of the inverter 37 is connected to the second output terminal of the control device 10.
  • the second terminal such as the switching element 37 a is connected to another switching element included in the inverter 37, and the third terminal is connected to the input terminal of the motor 4.
  • FIG. 2 is a block diagram illustrating an example of a control device according to an embodiment of the present invention.
  • the control device 10 is a computer including a CPU (Central Processing Unit) such as a microcomputer and an MPU (Micro Processing Unit). As illustrated, the control device 10 includes a control unit 11 and a storage unit 16.
  • CPU Central Processing Unit
  • MPU Micro Processing Unit
  • the control unit 11 controls the converter 31 by switching the switching element 35 on and off (switching control) and the like, and controls the inverter 37 by switching control and the like of the switching element 37a of the inverter 37 and the like.
  • the control unit 11 includes a waveform observation unit 12, a control signal generation unit 13, a determination unit 14, and a control method determination unit 15.
  • the waveform observing unit 12 acquires a zero cross signal indicating the zero cross point of the AC power supply 6 detected by the zero cross detecting unit 21 from the zero cross detecting unit 21.
  • the waveform observation unit 12 acquires an input current waveform from the input current detection unit 20.
  • the waveform observation unit 12 observes the input current waveform with the zero cross point as a reference.
  • the control signal generation unit 13 generates a switching signal S1 for controlling the switching circuit 330.
  • generation of the switching signal S1 will be described with reference to FIGS.
  • FIG. 3 is a first diagram illustrating switching control according to an embodiment of the present invention.
  • FIG. 4 is a second diagram illustrating switching control according to an embodiment of the present invention.
  • FIG. 3A shows a general method for generating the switching signal S1.
  • the control signal generation unit 13 generates a predetermined carrier P1 (triangular wave) and a modulated wave P2.
  • the predetermined carrier P1 is a signal having a reference waveform.
  • the modulated wave P2 is a signal indicating a sine wave corresponding to the fundamental wave included in the current supplied from the AC power supply 6, for example.
  • the control signal generator 13 compares the carrier P1 and the modulated wave P2, and generates a switching signal S1 for controlling the switching element 35 as shown in FIG.
  • a switching signal S1 is generated that is in an on state during a period when the value of the carrier P1 exceeds the value of the modulated wave P2, and is in an off state during a period when the value of the carrier P1 is equal to or less than the value of the modulated wave P2.
  • the switching element 35 By switching the switching element 35 on and off in accordance with the switching signal S1 shown in FIG. 3B, the waveform of the input current can be controlled to the same waveform as the modulation wave P2.
  • FIG. 4A shows an example of the waveform of the input current obtained as a result of switching control by the switching signal S1. A similar waveform is applied to the current flowing through the reactor 33.
  • the current flowing through the reactor 33 includes a high frequency component.
  • a high frequency component is included, the noise of the reactor 33 and the power loss (iron loss) generated in the reactor 33 increase. Therefore, in the present embodiment, a period in which a high-frequency component is not included in the current flowing through the reactor 33 is provided by reducing the number of times the switching of the switching element 35 is performed. More specifically, during the execution of the switching control for generating the switching signal S1 illustrated in FIG. 3B, the switching pause period in which switching is not performed is set by the method described above. Since the high-frequency component is not included in the current flowing through the reactor 33 during the switching pause period, the generation of reactor loss and noise during this period can be reduced.
  • FIG. 3C shows a method for generating the switching signal S1 unique to this embodiment.
  • the control signal generation unit 13 generates a predetermined carrier P1 and a modulated wave P2 ′.
  • the modulation factor of the modulated wave P2 ′ is set to a value larger than 100%.
  • the modulation rate indicates the magnitude of the amplitude of the modulated wave P2 ′ when the amplitude of the modulated wave P2 ′ set to the same magnitude as the carrier P1 is 100%. That is, the amplitude of the modulated wave P2 ′ is larger than the amplitude of the carrier P1.
  • the control signal generator 13 compares the carrier P1 with the modulated wave P2 ′, and generates a switching signal S1 for controlling the switching element 35 as shown in FIG. 3D based on the comparison result. That is, the switching signal S1 is generated that is in the on state during the period when the value of the carrier P1 exceeds the value of the modulated wave P2 ′, and is in the off state during the period when the value of the carrier P1 is equal to or less than the value of the modulated wave P2 ′. Then, in the period T1 in which the amplitude of the modulated wave P2 ′ increases, the value of the modulated wave P2 ′ exceeds the value of the carrier P1, and thus the value of the switching signal S1 is continuously turned off.
  • the period T1 is a switching pause period in which switching does not occur. Without switching, the power loss in the reactor 33 is reduced. Further, noise due to the vibration of the reactor 33 can be suppressed.
  • FIG. 4B shows an example of the waveform of the input current obtained as a result of the switching control by the switching signal S1 generated based on the modulation wave P2 ′ set with a modulation rate exceeding 100% and the carrier P1.
  • the waveform of the input current in the switching pause period T1 is distorted as compared with the waveform of the input current shown in FIG. This indicates that the harmonic component included in the input current has increased.
  • the harmonic component of the input current is regulated by standards. If the modulation rate is increased too much for the purpose of improving efficiency, harmonic components increase, and this regulation may not be observed. Therefore, in the present embodiment, the value of the harmonic component included in the input current is monitored to adjust the modulation factor of the modulated wave P2 ′.
  • the determining unit 14 determines whether the modulation rate is appropriate according to the magnitude of the harmonic component included in the input current. For example, the determination unit 14 analyzes the input current waveform acquired by the waveform observation unit 12 by using FFT (fast Fourier transform) or the like, and extracts the harmonic components from the second to the 40th order in addition to the fundamental wave. Then, the determination unit 14 compares the extraction value with the regulation value determined by the standard or the like for each order harmonic, and if the magnitude of any order harmonic exceeds the regulation value, the modulation is performed. It is determined that the rate is excessive. Alternatively, if the harmonics of all the orders are smaller than a predetermined threshold value set lower than the regulation value for each regulation value, the modulation rate is too small (there is room to the harmonic regulation value). May be determined.
  • FFT fast Fourier transform
  • the determination of the harmonic component included in the input current may be performed by a distortion rate (THD: total harmonic distortion).
  • THD total harmonic distortion
  • the determination unit 14 calculates THD for the input current waveform acquired by the waveform observation unit 12. Then, the determination unit 14 compares the calculated THD with a predetermined threshold A, and determines that the modulation rate is excessive if the THD exceeds the threshold A. Alternatively, if it is smaller than a predetermined threshold B set lower than the threshold A, it may be determined that the modulation rate is too small (there is room to the harmonic regulation value).
  • the THD calculation method is known, but, for example, as a simpler method, the fundamental wave (first harmonic) is extracted from the input current waveform, and the difference obtained by subtracting the effective value of the fundamental wave from the effective value of the input current. May be calculated by dividing the difference by the effective value of the fundamental wave.
  • the calculation burden on the control device 10 can be reduced, and for example, real-time calculation is possible even with a microcomputer or the like.
  • the control signal generation unit 13 decreases the modulation rate and generates the switching signal S1. If the determination unit 14 determines that the modulation rate is too small, the control signal generation unit 13 may generate the switching signal S1 by increasing the modulation rate in order to reduce the reactor loss and increase the efficiency. If the determination unit 14 does not determine that the modulation rate is excessive or low, the control signal generation unit 13 generates the switching signal S1 while keeping the modulation rate of the modulated wave P2 ′ at the current value. In this way, the control signal generation unit 13 feedback-controls the modulation rate of the modulated wave P2 ′ based on the determination result of the determination unit 14.
  • the control method determination unit 15 includes (1) general switching control in which switching control is performed without providing a switching pause period, and (2) switching control in the present embodiment in which a switching pause period is provided during execution of the switching control. Any control method is selected. For example, if the load of the motor 4 corresponding to the load of the air conditioner 1 (for example, the command value of the rotational speed) is equal to or greater than a predetermined first threshold value, the control method determination unit 15 performs “general switching control”. select. For example, if the load of the motor 4 is greater than the second threshold and less than the first threshold, the control method determination unit 15 selects “switching control of the present embodiment”.
  • the control method determination unit 15 may select the switching control from the above (1) and (2) according to the operation region of the air conditioner 1. For example, the control device 10 acquires information indicating the current operation region from a controller (not shown) of the air conditioner 1 and selects a control method according to the acquired operation region. For example, when the control device 10 acquires “high load operation region” as information indicating the current operation region, the control method determination unit 15 selects “general switching control”.
  • the control method determination unit 15 selects “switching control of the present embodiment”.
  • (3) control that does not execute switching is added, and the control method determination unit 15 performs the following operations (1) to (3)
  • a control method may be selected from among them. For example, if the load of the motor 4 is equal to or less than the second threshold, the control method determination unit 15 may select “control not to perform switching”.
  • FIG. 5 is a first flowchart illustrating an example of switching control according to an embodiment of the present invention. It is assumed that the air conditioner 1 is in operation.
  • the control method determination unit 15 acquires information (for example, a command value of the rotation speed) indicating the load of the motor 4 from the function unit that controls the inverter 37 of the control unit 11, and determines the magnitude of the load (step S11). . For example, if the load is greater than the second threshold value and less than the first threshold value (step S11; Yes), the control method determination unit 15 selects “switching control of the present embodiment”.
  • the control method determination unit 15 instructs the control signal generation unit 13 to execute the switching control of the present embodiment.
  • the control signal generator 13 increases the modulation rate of the modulated wave P2 ′ and executes switching control (step S12). For example, the initial value of the modulation rate is registered in the storage unit 16, and the control signal generation unit 13 sets this initial value for the modulation rate.
  • the initial value of the modulation rate is, for example, a value between 110% and 120%.
  • control method determination unit 15 selects “general switching control”.
  • the control method determination unit 15 instructs the control signal generation unit 13 to perform general switching control.
  • the control signal generator 13 performs general switching control (step S13).
  • the control signal generator 13 sets the modulation factor of the modulated wave P2 to 100% and executes switching control.
  • switching control of the present embodiment is executed even when the load of the motor 4 is equal to or higher than the first threshold.
  • the “switching control of this embodiment” may be executed in the entire operation region regardless of the magnitude of the load. In this case, for example, an initial value of the modulation rate is registered in advance in the storage unit 16 according to the size of the load, and the control signal generation unit 13 may switch the modulation rate based on the load of the motor 4. Good.
  • FIG. 6 is a second flowchart illustrating an example of switching control according to an embodiment of the present invention.
  • the control method determination unit 15 instructs the control signal generation unit 13 to execute “switching control of this embodiment”.
  • the control signal generation unit 13 increases the modulation rate of the modulated wave P2 ′ to a predetermined initial value registered in advance (step S21).
  • the control signal generator 13 generates the switching control signal S1 by the method described in FIG. 3C (step S22).
  • the control unit 11 outputs the switching control signal S1 generated by the control signal generation unit 13 to the switching element 35. Thereby, the ON state and the OFF state of the switching element 35 are switched.
  • the switching element 35 is turned off.
  • the waveform of the input current observed by the waveform observing unit 12 is a waveform including distortion as shown in FIG.
  • the determination unit 14 calculates the THD or harmonic value of each order in the switching pause period T1, and monitors the calculated THD or harmonic value of each order (Step S23). Specifically, for example, the determination unit 14 compares a calculated value such as THD with a predetermined threshold value (for example, a predetermined upper limit value and lower limit value based on high frequency regulation). The determination unit 14 determines that the modulation rate is within the allowable range if the THD value falls within the range defined by the predetermined upper limit value and lower limit value.
  • a predetermined threshold value for example, a predetermined upper limit value and lower limit value based on high frequency regulation
  • the determination unit 14 determines that the modulation rate is excessive. When the value of THD is less than the predetermined lower limit value, the determination unit 14 determines that the modulation rate is too small. The same applies to the determination based on the high-frequency value of each order. That is, if the high-frequency values of all orders are within a predetermined range, the determination unit 14 determines that the modulation rate is within an allowable range. When the high frequency value exceeds a predetermined upper limit value even with one order, the determination unit 14 determines that the modulation rate is excessive. When the high frequency value is below a predetermined lower limit value even with one order, the determination unit 14 determines that the modulation rate is too small. The determination unit 14 outputs the determination result to the control signal generation unit 13.
  • step S24 the control signal generation unit 13 repeats the processing from step S22. That is, the control signal generation unit 13 generates the switching control signal S1 with the current modulation rate.
  • the control unit 11 outputs the switching control signal S1 to the switching element 35.
  • step S26 the control signal generator 13 reduces the modulation rate of the modulated wave P2 ′ (step S26). ). For example, if the current modulation rate is 120%, the control signal generator 13 may reduce the modulation rate by 5% and set it to 115%. The degree to which the modulation rate is reduced is determined in advance, and the control signal generator 13 reduces the modulation rate accordingly. The modulation factor when the maximum is lowered is 100%. When the modulation rate is decreased, the control signal generator 13 repeats the processing from step S22.
  • control signal generation unit 13 generates the switching control signal S1 based on the modulated wave P2 ′ and the carrier P1 after the modulation rate reduction.
  • the controller 11 outputs the switching control signal S1 to the switching element 35.
  • the switching pause period T1 is shortened. Thereby, the harmonic component contained in the input current is reduced.
  • the control signal generator 13 increases the modulation rate of the modulated wave P2 ′ (step S27). For example, if the current modulation rate is 110%, the control signal generator 13 may increase the modulation rate by 5% and set it to 115%. The degree to which the modulation rate is increased is determined in advance, and the control signal generation unit 13 increases the modulation rate accordingly. An upper limit value of the modulation rate may be determined so that the modulation rate does not exceed the upper limit value.
  • the control signal generator 13 repeats the processing from step S22. That is, the control signal generator 13 generates the switching control signal S1 based on the modulated wave P2 ′ and the carrier P1 after increasing the modulation factor.
  • the control signal generation unit 13 continuously performs feedback control that adjusts the modulation rate setting according to the state of the input current based on the determination of the determination unit 14.
  • switching control for switching on and off the switching element 35 is performed for the converter 31 including the rectifier circuit 320, the reactor 33, the switching circuit 330 including the switching element 35, and the smoothing capacitor 36.
  • a switching pause period is provided in which the switching element 35 is not switched on and off (set to the off state).
  • power loss and noise in the reactor 33 caused by switching can be reduced as compared with general switching control in which switching between ON and OFF is continuously performed. Therefore, the operating efficiency of the compressor 2 and the air conditioner 1 can be improved.
  • the length of the switching pause period is adjusted by adjusting the modulation factor by monitoring the harmonics included in the input current during the switching pause period and the distortion rate of the input current.
  • Perform feedback control Thereby, switching loss can be reduced within the range of harmonic regulation.
  • feedback control it is possible to dynamically cope with load fluctuations of the power conversion device 3 due to changes in the operating condition and operating state of the air conditioner 1 and to improve the operating efficiency of the air conditioner 1.
  • FIG. 7 is a diagram illustrating an example of a hardware configuration of the control device according to the embodiment of the present invention.
  • the computer 900 is, for example, a microcomputer, a PC, or a server terminal device including a CPU 901, a main storage device 902, an auxiliary storage device 903, an input / output interface 904, and a communication interface 905.
  • the computer 900 may include a processor such as an MPU (Micro Processing Unit) or a GPU (Graphics Processing Unit) instead of the CPU 901.
  • the control device 10 described above is mounted on a computer 900.
  • the operation of each processing unit described above is stored in the auxiliary storage device 903 in the form of a program.
  • the CPU 901 reads a program from the auxiliary storage device 903, develops it in the main storage device 902, and executes the above processing according to the program.
  • the CPU 901 ensures a storage area corresponding to the storage unit 16 in the main storage device 902 according to the program.
  • the CPU 901 secures a storage area for storing data being processed in the auxiliary storage device 903 according to the program.
  • the auxiliary storage device 903 is an example of a tangible medium that is not temporary.
  • Other examples of the tangible medium that is not temporary include a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, and a semiconductor memory connected via the input / output interface 904.
  • this program is distributed to the computer 900 via a communication line, the computer 900 that has received the distribution may develop the program in the main storage device 902 and execute the above processing.
  • the program may be for realizing a part of the functions described above. Further, the program may be a so-called difference file (difference program) that realizes the above-described function in combination with another program already stored in the auxiliary storage device 903.
  • the waveform observation unit 12, the control signal generation unit 13, the determination unit 14, the control method determination unit 15, and the storage unit 16 are all or part of a microcomputer, an LSI (Large Scale Integration), an ASIC (Application It may be realized by using hardware such as Specific (Integrated (Circuit)), PLD (Programmable Logic (Device), and FPGA (Field-Programmable Gate (Gate Array)).
  • THD is an example of a distortion rate.
  • control device the air conditioner, the control method, and the program described above, it is possible to reduce power loss and noise in the reactor due to switching control in the converter provided with the reactor and the switching element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

制御装置は、整流回路と、リアクタと、スイッチング素子とを備え、交流電力を直流電力に変換するコンバータと、コンバータが変換した直流電力を交流電力に変換するインバータとを備える電力変換装置について、スイッチング素子のオンとオフを切り替えるスイッチング制御を実行する制御部、を備え、前記制御部は、スイッチング制御の実行中に前記スイッチング素子のオンとオフの切り替えを行わないスイッチング休止期間を設定する。

Description

制御装置、空気調和機、制御方法及びプログラム
 本発明は、制御装置、空気調和機、制御方法及びプログラムに関する。
 本願は、2018年3月14日に、日本に出願された特願2018-46996号に基づき優先権を主張し、その内容をここに援用する。
 空気調和機などに接続された受電設備には、高調波電流の規制値が設定される。この規制値を超えないようにするため、例えば、特許文献1には、交流電源の電圧を直流に変換するコンバータと、コンバータの出力電圧を交流電圧に変換するインバータとを備える電力変換装置において、高調波電流の制限値に応じてコンバータの出力電圧を制御し、高調波電流を低減する制御方法が記載されている。
 空気調和機などに搭載される圧縮機駆動用の電力変換装置では、力率改善や高調波対策等を目的にコンバータの出力部または入力部にリアクタが設けられることがある。このような電力変換装置では、リアクタの出力側にスイッチング素子を設け、このスイッチング素子のオンとオフを切り替えるスイッチング制御を実行することによって、インバータに供給する直流電圧を制御することがある。
特開2017-163839号公報
 上記のスイッチング制御を実行すると、リアクタでは、電力損失や騒音が生じる可能性がある。特許文献1には、リアクタでの電力損失や騒音を低減する技術の記載がない。
 本発明は、上述の課題を解決することのできる制御装置、空気調和機、制御方法及びプログラムを提供する。
 本発明の一態様によれば、制御装置は、整流回路と、リアクタと、スイッチング素子とを備え、交流電力を直流電力に変換するコンバータと、前記コンバータが変換した直流電力を交流電力に変換するインバータとを備える電力変換装置について、前記スイッチング素子のオンとオフを切り替えるスイッチング制御を実行する制御部、を備え、前記制御部が、前記スイッチング制御の実行中に前記スイッチング素子のオンとオフの切り替えを行わないスイッチング休止期間を設定する。
 本発明の一態様によれば、前記制御部は、所定の変調波と、所定のキャリアとに基づいて前記スイッチング素子のオンとオフの切り替えを指示するスイッチング制御信号を生成し、前記変調波の変調率を上昇させることにより前記スイッチング休止期間を設定する。
 本発明の一態様によれば、前記制御部は、前記スイッチング休止期間における前記コンバータの入力電流の歪み率が所定の閾値以下となるよう前記変調率を設定する。
 本発明の一態様によれば、前記制御部は、前記スイッチング休止期間における前記コンバータの入力電流に含まれる各次数の高調波の値が所定の閾値以下となるよう前記変調率を設定する。
 本発明の一態様によれば、前記制御部は、前記スイッチング休止期間における前記コンバータの入力電流を監視し、前記入力電流の歪み率または前記入力電流に含まれる各次数の高調波の値が、所定の閾値以下となるよう前記変調率をフィードバック制御する。
 本発明の一態様によれば、前記制御部が、前記電力変換装置の負荷の大きさが所定の範囲内の場合に、前記スイッチング制御の実行中に前記スイッチング休止期間を設定する制御を行う。
 本発明の一態様によれば、空気調和機は、整流回路と、リアクタと、スイッチング素子とを備え、交流電力を直流電力に変換するコンバータと、前記コンバータが変換した直流電力を交流電力に変換するインバータとを備える電力変換装置と、上記の何れかの制御装置と、前記電力変換装置が制御するモータによって駆動する圧縮機とを備える。
 本発明の一態様によれば、制御方法は、整流回路と、リアクタと、スイッチング素子とを備え、交流電力を直流電力に変換するコンバータと、前記コンバータが変換した直流電力を交流電力に変換するインバータとを備える電力変換装置について、前記スイッチング素子のオンとオフを切り替えるスイッチング制御の実行中に前記スイッチング素子のオンとオフの切り替えを行わないスイッチング休止期間を設定するステップを有する。
 本発明の一態様によれば、プログラムは、整流回路と、リアクタと、スイッチング素子とを備え、交流電力を直流電力に変換するコンバータと、前記コンバータが変換した直流電力を交流電力に変換するインバータとを備える電力変換装置を制御するコンピュータを、前記スイッチング素子のオンとオフを切り替えるスイッチング制御を実行する手段、前記スイッチング制御の実行中に前記スイッチング素子のオンとオフの切り替えを行わないスイッチング休止期間を設定する手段、として機能させる。
 上記した制御装置、空気調和機、制御方法及びプログラムによれば、リアクタとスイッチング素子が設けられたコンバータにおけるスイッチング制御によるリアクタでの電力損失、騒音を低減することができる。
本発明の一実施形態における電力変換装置の一例を示す図である。 本発明の一実施形態における制御装置の一例を示すブロック図である。 本発明の一実施形態におけるスイッチング制御を説明する第1の図である。 本発明の一実施形態におけるスイッチング制御を説明する第2の図である。 本発明の一実施形態におけるスイッチング制御の一例を示す第1のフローチャートである。 本発明の一実施形態におけるスイッチング制御の一例を示す第2のフローチャートである。 本発明の実施形態における制御装置のハードウェア構成の一例を示す図である。
<実施形態>
 以下、本発明の一実施形態によるコンバータのスイッチング制御について図1~図7を参照して説明する。
 図1は、本発明の一実施形態における電力変換装置の一例を示す図である。
 図1に空気調和機1に搭載された圧縮機2と、圧縮機2に電力を供給する電力変換装置3とを示す。図示するように圧縮機2は、電力変換装置3と、モータ4と、圧縮機構5と、を備える。電力変換装置3は、交流電源6から受電した交流電力を、三相交流電力に変換してモータ4に出力する。制御装置10は、電力変換装置3を制御し、モータ4を空気調和機1の負荷に応じた回転数で駆動する。モータ4が電力変換装置3からの印加によって回転駆動することにより、圧縮機構5が冷媒を圧縮し、空気調和機1が備える冷媒回路(図示せず)へ冷媒を供給する。
 電力変換装置3は、図1に示すように、コンバータ31と、インバータ37と、制御装置10と、入力電流検出部20と、ゼロクロス検出部21と、を備える。コンバータ31は、交流電源6からの交流電力を直流電力に変換してインバータ37に出力する装置である。コンバータ31は、整流回路320と、スイッチング回路330と、平滑コンデンサ36と、を備える。
 整流回路320は、ダイオード32a~32dによって構成される。 整流回路320は、交流電源6より入力された交流電力を直流電力に変換し、スイッチング回路330へ出力する。
 スイッチング回路330は、平滑コンデンサ36へ電流を流し、インバータ37に入力される電圧を生成する。スイッチング回路330は、リアクタ33と、ダイオード34と、スイッチング素子35と、を備える。リアクタ33は、第1端子と、第2端子と、を備える。ダイオード34は、アノード端子と、カソード端子と、を備える。スイッチング素子35は、第1端子と、第2端子と、第3端子と、を備える。スイッチング素子35は、第1端子が受ける信号に応じて、オン状態となる期間とオフ状態となる期間とが切り替わることにより、第2端子から第3端子に流れる電流を制御し、スイッチング回路330に流れる電流の値を変化させる。スイッチング素子35としては、電界効果トランジスタ(FET:Field Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)等が挙げられる。スイッチング素子35が例えばMOSFETである場合、スイッチング素子35の第1端子はゲート端子であり、第2端子はソース端子であり、第3端子はドレイン端子である。
 平滑コンデンサ36は、第1端子と、第2端子と、を備える。平滑コンデンサ36は、スイッチング回路330から電流を取得する。
 入力電流検出部20は、入力端子と、出力端子と、を備える。入力電流検出部20は、交流電源6へのリターン電流(以下、「入力電流」と記載)を検出する電流計である。入力電流検出部20は、検出した入力電流の情報を制御装置10へ出力する。
 制御装置10は、複数の入力端子と、複数の出力端子とを備える。制御装置10は、例えば、第1入力端子を介して、入力電流検出部20から入力電流の情報を取得し、入力電流波形を観測する。制御装置10は、第1出力端子を介してスイッチング回路330の制御などを行う。
 交流電源6は、出力端子と、基準端子と、を備える。交流電源6は、コンバータ31に交流電力を供給する。
 ゼロクロス検出部21は、第1入力端子と、第2入力端子と、出力端子と、を備える。ゼロクロス検出部21は、第1入力端子と、第2入力端子とを介して、交流電源6が出力する電圧のゼロクロス点を検出する。ゼロクロス点は、交流電源6が出力する電圧がゼロボルトを交差する時刻を示す。ゼロクロス検出部21は、セロクロス点の情報を含むゼロクロス信号を生成する。ゼロクロス検出部21は、出力端子を介してゼロクロス信号を制御装置10に出力する。制御装置10は、その時刻を基準の時刻として、例えば、交流電源6の周期と同期するように後述する変調波P2,P2´を生成する。
 インバータ37は、コンバータ31から出力された直流電力を三相交流電力に変換して圧縮機2のモータ4に出力する装置である。インバータ37は、スイッチング素子37a等を複数備え(図示せず)、複数のスイッチング素子37a等はブリッジ回路を構成する。制御装置10は、インバータ37が備えるブリッジ回路のスイッチング素子37a等のオンとオフを切り替えることにより、三相交流電力を生成し、生成した三相交流電力をモータ4に出力する。インバータ制御の具体的な手法の例としては、ベクトル制御、センサレスベクトル制御、V/F(Variable Frequency)制御、過変調制御などが挙げられる。
 整流回路320の入力端子(ダイオード32aのアノード端子)は、交流電源6の出力端子と、ゼロクロス検出部21の第1入力端子とに接続される。整流回路320の入力側の基準端子(ダイオード32bのアノード端子)は、交流電源6の基準端子と、ゼロクロス検出部21の第2入力端子と、入力電流検出部20の入力端子とに接続される。整流回路320の出力端子(ダイオード32a,32bのカソード端子)は、リアクタ33の第1端子に接続される。整流回路320の出力側の基準端子(ダイオード32c,32dのアノード端子)は、スイッチング素子35の第3端子と、平滑コンデンサ36の第2端子と、インバータ37の基準端子とに接続される。リアクタ33の第2端子は、ダイオード34のアノード端子と、スイッチング素子35の第2端子とに接続される。ダイオード34のカソード端子は、平滑コンデンサ36の第1端子と、インバータ37の入力端子とに接続される。
 スイッチング素子35の第1端子は、制御装置10の第1出力端子に接続される。制御装置10の第1入力端子は、入力電流検出部20の出力端子に接続される。制御装置10の第2入力端子は、ゼロクロス検出部21の出力端子に接続される。インバータ37のスイッチング素子37a等の第1端子は、制御装置10の第2出力端子に接続される。スイッチング素子37a等の第2端子はインバータ37が備える他のスイッチング素子、第3端子はモータ4の入力端子に接続される。
 図2は、本発明の一実施形態における制御装置の一例を示すブロック図である。
 制御装置10は、例えばマイコン等のCPU(Central Processing Unit)やMPU(Micro Processing Unit)を備えたコンピュータである。図示するように制御装置10は、制御部11と、記憶部16とを備えている。
 制御部11は、スイッチング素子35のオンとオフの切り替え(スイッチング制御)等によるコンバータ31の制御、インバータ37のスイッチング素子37a等のスイッチング制御等によるインバータ37の制御を行う。以下、スイッチング素子35のスイッチング制御に関する機能部を説明し、他の機能部の説明を省略する。制御部11は、波形観測部12と、制御信号生成部13と、判定部14と、制御方法決定部15とを備える。
 波形観測部12は、ゼロクロス検出部21が検出した交流電源6のゼロクロス点を示すゼロクロス信号を、ゼロクロス検出部21から取得する。波形観測部12は、入力電流検出部20から入力電流波形を取得する。波形観測部12は、ゼロクロス点を基準として、入力電流波形を観測する。
 制御信号生成部13は、スイッチング回路330を制御するためのスイッチング信号S1を生成する。ここで、スイッチング信号S1の生成について図3、図4を用いて説明する。
 図3は、本発明の一実施形態におけるスイッチング制御を説明する第1の図である。
 図4は、本発明の一実施形態におけるスイッチング制御を説明する第2の図である。
 図3(a)に一般的なスイッチング信号S1の生成方法を示す。制御信号生成部13は、図3(a)に示すように、所定のキャリアP1(三角波)と変調波P2とを生成する。所定のキャリアP1は、基準となる波形の信号である。変調波P2は、例えば、交流電源6から供給される電流に含まれる基本波に相当する正弦波を示す信号である。そして、制御信号生成部13は、キャリアP1と変調波P2とを比較し、その比較結果に基づいて、図3(b)に示すようなスイッチング素子35を制御するスイッチング信号S1を生成する(三角波比較方式)。具体的には、キャリアP1の値が変調波P2の値を上回る期間はオン状態、キャリアP1の値が変調波P2の値以下となる期間はオフ状態とするスイッチング信号S1を生成する。図3(b)に示すスイッチング信号S1に従って、スイッチング素子35のオン、オフを切り替えることにより、入力電流の波形を、変調波P2と同様の波形に制御することができる。図4(a)に、スイッチング信号S1によってスイッチング制御した結果得られる入力電流の波形の一例を示す。リアクタ33を流れる電流についても同様の波形となる。
 ところで、スイッチング素子35のスイッチング制御を行うと、リアクタ33を流れる電流が高周波成分を含むようになる。高周波成分を含むと、リアクタ33の騒音およびリアクタ33で発生する電力損失(鉄損)が増加する。そこで、本実施形態では、スイッチング素子35のスイッチング回数を減らすことによって、リアクタ33に流れる電流に高周波成分が含まれない期間を設ける。より具体的には、上記で説明した方式によって、図3(b)に例示するスイッチング信号S1を生成するスイッチング制御の実行中に、スイッチングを行わないスイッチング休止期間を設定する。スイッチング休止期間中は、リアクタ33に流れる電流に高周波成分が含まれないため、この間のリアクタ損失や騒音の発生を低減することができる。
 図3(c)に本実施形態に特有のスイッチング信号S1の生成方法を示す。制御信号生成部13は、図3(c)に示すように、所定のキャリアP1と変調波P2´とを生成する。変調波P2´の変調率は、100%より大きな値に設定されている。変調率は、キャリアP1の振幅と同じ大きさに設定された変調波P2´の振幅を100%とした場合の変調波P2´の振幅の大きさを示す。つまり、変調波P2´の振幅は、キャリアP1の振幅より大きな値となる。そして、制御信号生成部13は、キャリアP1と変調波P2´とを比較し、その比較結果に基づいて、図3(d)に示すようなスイッチング素子35を制御するスイッチング信号S1を生成する。つまり、キャリアP1の値が変調波P2´の値を上回る期間はオン状態、キャリアP1の値が変調波P2´の値以下となる期間はオフ状態とするスイッチング信号S1を生成する。すると、変調波P2´の振幅が大きくなる期間T1では、変調波P2´の値がキャリアP1の値を上回るため、スイッチング信号S1の値は、連続してオフとなる。換言すれば、期間T1は、スイッチングが生じないスイッチング休止期間となる。スイッチングを行わなければ、リアクタ33での電力損失が低減する。また、リアクタ33の振動による騒音を抑制することができる。図4(b)に、100%を超える変調率を設定した変調波P2´とキャリアP1に基づいて生成されたスイッチング信号S1によるスイッチング制御の結果得られる入力電流の波形の一例を示す。
 図4(b)に示すようにスイッチング休止期間T1における入力電流の波形は、図4(a)に示す入力電流の波形と比較して歪んでいる。これは、入力電流に含まれる高調波成分が増加したことを示している。入力電流の高調波成分には、規格等による規制がある。効率の向上を目的として変調率を上昇させすぎると高調波成分が増加し、この規制を守れなくなる可能性がある。そこで本実施形態では、入力電流に含まれる高調波成分の値を監視して、変調波P2´の変調率を調整する。
 判定部14は、入力電流に含まれる高調波成分の大きさに応じて、変調率が適切かどうかを判定する。例えば、判定部14は、波形観測部12が取得した入力電流波形をFFT(fast Fourier transform)等により解析し、基本波の他、2次~40次までの高調波成分をそれぞれ抽出する。そして、判定部14は、各次数の高調波について規格等により定められた規制値と抽出結果とを比較し、何れかの次数の高調波の大きさが、規制値を超えていれば、変調率が過大であると判定する。あるいは、全ての次数の高調波の大きさが、各々の次数の規制値について当該規制値よりも低く設定された所定の閾値よりも小さければ変調率が過小(高調波規制値まで余裕がある)と判定してもよい。
 入力電流に含まれる高調波成分の判定は、歪み率(THD:total harmonic distortion)によって行ってもよい。判定部14は、波形観測部12が取得した入力電流波形についてTHDを算出する。そして、判定部14は、算出したTHDと所定の閾値Aとを比較し、THDが閾値Aを超えていれば、変調率が過大であると判定する。あるいは、閾値Aより低く設定された所定の閾値Bよりも小さければ変調率が過小(高調波規制値まで余裕がある)と判定してもよい。THDの算出方法は公知であるが、例えば、より簡略化した方法として、入力電流波形から基本波(1次高調波)を抽出し、入力電流の実効値から基本波の実効値を減算した差を計算し、この差を基本波の実効値で除算することによって算出してもよい。このように簡略化した方法であれば、制御装置10の計算負担を抑えることができ、例えば、マイコン等でもリアルタイムな算出が可能である。
 判定部14が、変調率が過大であると判定すると、制御信号生成部13は、変調率を低下させ、スイッチング信号S1を生成する。判定部14が、変調率が過小と判定すると、制御信号生成部13は、リアクタ損失を低減し効率を上げるために変調率を上昇させ、スイッチング信号S1を生成してもよい。判定部14が、変調率を過大とも過小とも判定しなかった場合には、制御信号生成部13は、変調波P2´の変調率を現在の値としたままスイッチング信号S1を生成する。このように制御信号生成部13は、判定部14の判定結果に基づいて、変調波P2´の変調率をフィードバック制御する。
 制御方法決定部15は、(1)スイッチング休止期間を設けることなくスイッチング制御を実行する一般的なスイッチング制御、(2)スイッチング制御の実行中にスイッチング休止期間を設ける本実施形態のスイッチング制御のうち、何れかの制御方法を選択する。例えば、空気調和機1の負荷に相当するモータ4の負荷(例えば、回転数の指令値)が所定の第1閾値以上であれば、制御方法決定部15は、「一般的なスイッチング制御」を選択する。例えば、モータ4の負荷が第2閾値より大きく、第1閾値未満であれば、制御方法決定部15は、「本実施形態のスイッチング制御」を選択する。第2閾値より大きく第1閾値未満とは、例えば、空気調和機1の空調対象となる空間の温度が、目標とする設定温度を達成した後の運転で生じる負荷の大きさである。制御方法決定部15は、空気調和機1の運転領域に応じて、スイッチング制御を上記の(1)、(2)の中から選択してもよい。例えば、制御装置10が、空気調和機1のコントローラ(図示せず)から現在の運転領域を示す情報を取得し、取得した運転領域に応じた制御方法を選択する。例えば、制御装置10が、現在の運転領域を示す情報として「高負荷運転領域」を取得した場合、制御方法決定部15は、「一般的なスイッチング制御」を選択する。例えば、制御装置10が、現在の運転領域を示す情報として「中間負荷運転領域」を取得した場合、制御方法決定部15は、「本実施形態のスイッチング制御」を選択する。
 上記の(1)、(2)の他に、(3)スイッチングを実行しない制御(スイッチング素子35はオフのままとなる)を加え、制御方法決定部15は、(1)~(3)の中から制御方法を選択してもよい。例えばモータ4の負荷が第2閾値以下であれば、制御方法決定部15は、「スイッチングを実行しない制御」を選択してもよい。
 次にスイッチング制御方法の切り替え処理の一例について図5を用いて説明する。
 図5は、本発明の一実施形態におけるスイッチング制御の一例を示す第1のフローチャートである。
 空気調和機1は運転中であるとする。制御方法決定部15は、制御部11のインバータ37を制御する機能部からモータ4の負荷を示す情報(例えば、回転数の指令値)を取得し、負荷の大きさを判定する(ステップS11)。例えば、負荷が第2閾値より大きく第1閾値未満であれば(ステップS11;Yes)、制御方法決定部15は、「本実施形態のスイッチング制御」を選択する。制御方法決定部15は、本実施形態のスイッチング制御の実行を制御信号生成部13へ指示する。制御信号生成部13は、変調波P2´の変調率を上昇してスイッチング制御を実行する(ステップS12)。例えば、変調率の初期値が記憶部16に登録されていて、制御信号生成部13は、変調率にこの初期値を設定する。変調率の初期値は、例えば110~120%の間の値である。スイッチング休止期間T1を設けることにより、APF(通年エネルギー消費効率)への寄与度が高く、効率改善が望まれている中間負荷運転領域でのリアクタ損失を低減することができる。これにより、中間負荷運転領域での空気調和機1の運転効率が向上する。
 一方、負荷が上記の範囲外の場合(ステップS11;No)、制御方法決定部15は、「一般的なスイッチング制御」を選択する。制御方法決定部15は、一般的なスイッチング制御の実行を制御信号生成部13へ指示する。制御信号生成部13は、一般的なスイッチング制御を実行する(ステップS13)。制御信号生成部13は、変調波P2の変調率を100%に設定してスイッチング制御を実行する。
 負荷が高い(入力電流が大きい)高負荷運転領域において変調率を上昇させると、高調波規制内に高調波を制御できなくなる可能性が高い。そのため、図5の例では、高負荷運転領域で一般的なスイッチング制御を実行することとしたが、モータ4の負荷が第1閾値以上であっても「本実施形態のスイッチング制御」を実行するように構成してもよい。負荷の大きさに関係なく全運転領域で「本実施形態のスイッチング制御」を実行するようにしてもよい。この場合、例えば、負荷の大きさに応じて変調率の初期値を予め記憶部16に登録しておき、制御信号生成部13は、モータ4の負荷に基づいて変調率を切り替えるようにしてもよい。
 次に「本実施形態のスイッチング制御」の処理の流れについて図6を用いて説明する。
 図6は、本発明の一実施形態におけるスイッチング制御の一例を示す第2のフローチャートである。
 まず、制御方法決定部15が制御信号生成部13へ「本実施形態のスイッチング制御」の実行を指示する。すると、制御信号生成部13は、予め登録された所定の初期値へ変調波P2´の変調率を上昇させる(ステップS21)。制御信号生成部13は、図3(c)で説明した方法でスイッチング制御信号S1を生成する(ステップS22)。制御部11は、制御信号生成部13が生成したスイッチング制御信号S1をスイッチング素子35に出力する。これによりスイッチング素子35のオン状態とオフ状態が切り替わる。スイッチング休止期間T1には、スイッチング素子35はオフ状態となる。波形観測部12が観測する入力電流の波形は、図3(d)で示すような歪みを含んだ波形になる。判定部14は、波形観測部12が観測する入力電流に基づいて、スイッチング休止期間T1でのTHDまたは各次数の高調波の値を算出し、算出したTHDまたは各次数の高調波の値を監視する(ステップS23)。具体的には、判定部14は、例えば、算出したTHD等の値と所定の閾値(例えば、高周波規制に基づく、所定の上限値および下限値)とを比較する。判定部14は、THDの値が所定の上限値および下限値で規定される範囲内に収まっていれば、変調率は許容範囲内であると判定する。THDの値が所定の上限値を上回る場合、判定部14は、変調率は過大であると判定する。THDの値が所定の下限値に満たない場合、判定部14は、変調率は過小であると判定する。各次数の高周波の値に基づいて判定する場合も同様である。つまり、全次数の高周波の値が所定の範囲内であれば、判定部14は、変調率は許容範囲内であると判定する。一つの次数でも高周波の値が所定の上限値を上回る場合、判定部14は、変調率は過大であると判定する。一つの次数でも高周波の値が所定の下限値を下回る場合、判定部14は、変調率は過小であると判定する。判定部14は、判定結果を制御信号生成部13へ出力する。
 判定部14が、変調率は許容範囲内であると判定した場合(ステップS24;Yes)、制御信号生成部13は、ステップS22からの処理を繰り返す。つまり、制御信号生成部13は、現在の変調率のままスイッチング制御信号S1を生成する。制御部11は、そのスイッチング制御信号S1をスイッチング素子35に出力する。
 変調率が許容範囲内ではない場合(ステップS24;No)、変調率が過大であれば(ステップS25;Yes)、制御信号生成部13は、変調波P2´の変調率を低下させる(ステップS26)。例えば、現在の変調率が120%であれば、制御信号生成部13は変調率を5%低下させ、115%に設定してもよい。変調率をどの程度低下させるかについては予め定められており、制御信号生成部13は、これに従って変調率を低下させる。最大限低下させた場合の変調率は100%である。変調率を低下させると、制御信号生成部13は、ステップS22からの処理を繰り返す。つまり、制御信号生成部13は、変調率低下後の変調波P2´とキャリアP1とに基づいてスイッチング制御信号S1を生成する。制御部11は、スイッチング制御信号S1をスイッチング素子35に出力する。変調率を低下させると、スイッチング休止期間T1は短くなる。これにより、入力電流に含まれる高調波成分は低減する。
 変調率が過小の場合(ステップS25;No)、制御信号生成部13は、変調波P2´の変調率を上昇させる(ステップS27)。例えば、現在の変調率が110%であれば、制御信号生成部13は変調率を5%上昇させ、115%に設定してもよい。変調率をどの程度上昇させるかについては予め定められており、制御信号生成部13は、これに従って変調率を上昇させる。変調率の上限値を定め、変調率がこの上限値以上とならないようにしてもよい。変調率を上昇させると、制御信号生成部13は、ステップS22からの処理を繰り返す。つまり、制御信号生成部13は、変調率上昇後の変調波P2´とキャリアP1とに基づいてスイッチング制御信号S1を生成する。変調率を上昇させると、スイッチング休止期間T1は長くなり、リアクタ損失や騒音を低減することができる。このように、制御信号生成部13は、判定部14の判定に基づいて変調率の設定を入力電流の状態に合わせて調節するフィードバック制御を継続的に行う。
 本実施形態によれば、整流回路320と、リアクタ33と、スイッチング素子35等を備えたスイッチング回路330と、平滑コンデンサ36と、を備えるコンバータ31について、スイッチング素子35のオンとオフを切り替えるスイッチング制御の実行中に、スイッチング素子35のオンとオフの切り替えを行わない(オフ状態とする)スイッチング休止期間を設ける。これにより、オンとオフの切り替えを継続して実行し続ける一般的なスイッチング制御と比較して、スイッチングにより生じるリアクタ33での電力損失や騒音を低減することができる。よって、圧縮機2や空気調和機1の運転効率を向上することができる。本実施形態の制御装置10によれば、スイッチング休止期間中の入力電流に含まれる高調波や、入力電流の歪み率を監視することにより、変調率を調整してスイッチング休止期間の長さを調整するフィードバック制御を行う。これにより、高調波規制の範囲内でスイッチング損失の低減を図ることができる。フィードバック制御により、空気調和機1の運転条件や運転状態の変化による電力変換装置3の負荷変動にも動的に対応し、空気調和機1の運転効率の向上を実現することができる。
 図7は、本発明の実施形態における制御装置のハードウェア構成の一例を示す図である。コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、入出力インタフェース904、通信インタフェース905を備える例えばマイコン、PC、サーバ端末装置である。コンピュータ900は、CPU901に代えて、MPU(Micro Processing Unit)やGPU(Graphics Processing Unit)などのプロセッサを備えていてもよい。上述の制御装置10は、コンピュータ900に実装される。そして、上述した各処理部の動作は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。CPU901は、プログラムに従って、記憶部16に対応する記憶領域を主記憶装置902に確保する。CPU901は、プログラムに従って、処理中のデータを記憶する記憶領域を補助記憶装置903に確保する。
 少なくとも1つの実施形態において、補助記憶装置903は、一時的でない有形の媒体の一例である。一時的でない有形の媒体の他の例としては、入出力インタフェース904を介して接続される磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等が挙げられる。このプログラムが通信回線によってコンピュータ900に配信される場合、配信を受けたコンピュータ900が当該プログラムを主記憶装置902に展開し、上記処理を実行しても良い。当該プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、当該プログラムは、前述した機能を補助記憶装置903に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であっても良い。
 上記の波形観測部12と、制御信号生成部13と、判定部14と、制御方法決定部15と、記憶部16との全て又は一部は、マイコン、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field-Programmable Gate Array)等のハードウェアを用いて実現されてもよい。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。この発明の技術範囲は上記の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 THDは歪み率の一例である。
 上記した制御装置、空気調和機、制御方法及びプログラムによれば、リアクタとスイッチング素子が設けられたコンバータにおけるスイッチング制御によるリアクタでの電力損失、騒音を低減することができる。
 1   空気調和機
 2   圧縮機
 3   電力変換装置
 4   モータ
 5   圧縮機構
 6   交流電源
 10   制御装置
 11   制御部
 12   波形観測部
 13   制御信号生成部
 14   判定部
 15   制御方法決定部
 16   記憶部
 20   入力電流検出部
 21   ゼロクロス検出部
 320   整流回路
 330   スイッチング回路
 31   コンバータ
 32a、32b、32c、32d   ダイオード
 33   リアクタ
 34   ダイオード
 35   スイッチング素子
 36   平滑コンデンサ
 37   インバータ
 37a   スイッチング素子
 S1   スイッチング制御信号
 P2,P2´   変調波

Claims (9)

  1.  整流回路と、リアクタと、スイッチング素子とを備え、交流電力を直流電力に変換するコンバータと、前記コンバータが変換した直流電力を交流電力に変換するインバータとを備える電力変換装置について、前記スイッチング素子のオンとオフを切り替えるスイッチング制御を実行する制御部、を備え、
     前記制御部が、前記スイッチング制御の実行中に、前記スイッチング素子のオンとオフの切り替えを行わないスイッチング休止期間を設定する、
     制御装置。
  2.  前記制御部は、所定の変調波と、所定のキャリアとに基づいて前記スイッチング素子のオンとオフの切り替えを指示するスイッチング制御信号を生成し、前記変調波の変調率を上昇させることにより前記スイッチング休止期間を設定する、
     請求項1に記載の制御装置。
  3.  前記制御部は、前記スイッチング休止期間における前記コンバータの入力電流の歪み率が所定の閾値以下となるよう前記変調率を設定する、
     請求項2に記載の制御装置。
  4.  前記制御部は、前記スイッチング休止期間における前記コンバータの入力電流に含まれる各次数の高調波の値が所定の閾値以下となるよう前記変調率を設定する、
     請求項2に記載の制御装置。
  5.  前記制御部は、前記スイッチング休止期間における前記コンバータの入力電流を監視し、前記入力電流の歪み率または前記入力電流に含まれる各次数の高調波の値が、所定の閾値以下となるよう前記変調率をフィードバック制御する、
     請求項2に記載の制御装置。
  6.  前記制御部が、前記電力変換装置の負荷の大きさが所定の範囲内の場合に、前記スイッチング制御の実行中に前記スイッチング休止期間を設定する制御を行う、
     請求項1から請求項5の何れか1項に記載の制御装置。
  7.  整流回路と、リアクタと、スイッチング素子とを備え、交流電力を直流電力に変換するコンバータと、前記コンバータが変換した直流電力を交流電力に変換するインバータとを備える電力変換装置と、
     請求項1から請求項6の何れか1項に記載の制御装置と、
     前記電力変換装置が制御するモータによって駆動する圧縮機と、
     を備えた空気調和機。
  8.  整流回路と、リアクタと、スイッチング素子とを備え、交流電力を直流電力に変換するコンバータと、前記コンバータが変換した直流電力を交流電力に変換するインバータとを備える電力変換装置について、前記スイッチング素子のオンとオフを切り替えるスイッチング制御の実行中に、前記スイッチング素子のオンとオフの切り替えを行わないスイッチング休止期間を設定する、
     制御方法。
  9.  整流回路と、リアクタと、スイッチング素子とを備え、交流電力を直流電力に変換するコンバータと、前記コンバータが変換した直流電力を交流電力に変換するインバータとを備える電力変換装置を制御するコンピュータを、
     前記スイッチング素子のオンとオフを切り替えるスイッチング制御を実行する手段、
     前記スイッチング制御の実行中に、前記スイッチング素子のオンとオフの切り替えを行わないスイッチング休止期間を設定する手段、
     として機能させるためのプログラム。
PCT/JP2019/002032 2018-03-14 2019-01-23 制御装置、空気調和機、制御方法及びプログラム WO2019176304A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-046996 2018-03-14
JP2018046996A JP2019161902A (ja) 2018-03-14 2018-03-14 制御装置、空気調和機、制御方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2019176304A1 true WO2019176304A1 (ja) 2019-09-19

Family

ID=67907648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002032 WO2019176304A1 (ja) 2018-03-14 2019-01-23 制御装置、空気調和機、制御方法及びプログラム

Country Status (2)

Country Link
JP (1) JP2019161902A (ja)
WO (1) WO2019176304A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308335A (ja) * 1999-04-15 2000-11-02 Matsushita Electric Ind Co Ltd スイッチング電源
JP2007202370A (ja) * 2006-01-30 2007-08-09 Mitsumi Electric Co Ltd 電源装置
JP2014057515A (ja) * 2008-09-01 2014-03-27 Mitsubishi Electric Corp コンバータ回路、並びにそれを備えたモータ駆動制御装置、空気調和機、及び冷蔵庫
JP2015149882A (ja) * 2014-01-10 2015-08-20 住友電気工業株式会社 変換装置
JP2017017767A (ja) * 2015-06-26 2017-01-19 富士電機株式会社 高効率力率改善回路およびスイッチング電源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308335A (ja) * 1999-04-15 2000-11-02 Matsushita Electric Ind Co Ltd スイッチング電源
JP2007202370A (ja) * 2006-01-30 2007-08-09 Mitsumi Electric Co Ltd 電源装置
JP2014057515A (ja) * 2008-09-01 2014-03-27 Mitsubishi Electric Corp コンバータ回路、並びにそれを備えたモータ駆動制御装置、空気調和機、及び冷蔵庫
JP2015149882A (ja) * 2014-01-10 2015-08-20 住友電気工業株式会社 変換装置
JP2017017767A (ja) * 2015-06-26 2017-01-19 富士電機株式会社 高効率力率改善回路およびスイッチング電源装置

Also Published As

Publication number Publication date
JP2019161902A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
JP5304937B2 (ja) 電力変換装置
US9641121B2 (en) Power conversion device and motor drive device including power conversion device
JP4139852B1 (ja) インバータ制御装置
US20120300519A1 (en) Multi-phase active rectifier
US9941834B2 (en) Power conversion apparatus and air-conditioning apparatus including the power conversion apparatus
CN104508967B (zh) 转换器控制装置、方法、程序及空气调节器
JP2014057515A (ja) コンバータ回路、並びにそれを備えたモータ駆動制御装置、空気調和機、及び冷蔵庫
JP2007288971A (ja) 電力変換器及びその制御方法並びに空気調和機
JP6731639B2 (ja) 電力変換装置
JP2009542171A (ja) 3レベルコンバータを制御する方法
WO2013046461A1 (ja) 電動機のベクトル制御装置、電動機、車両駆動システムおよび電動機のベクトル制御方法
WO2019208325A1 (ja) 制御装置、空気調和機、制御方法及びプログラム
WO2019176304A1 (ja) 制御装置、空気調和機、制御方法及びプログラム
WO2019176318A1 (ja) 制御装置、空気調和機、制御方法及びプログラム
JP7063615B2 (ja) 三相倍電圧整流ユニット、インバータ装置、空気調和機、三相倍電圧整流ユニットの制御方法及びプログラム
AU2018263420B2 (en) Converter control device, converter provided with same, air conditioner, and converter control method and converter control program
WO2023095319A1 (ja) 電力変換装置、電力変換システム、及び過電流保護方法
EP3041121B1 (en) Converter control device and control method, and air conditioner
JP5836413B2 (ja) 電動機のベクトル制御装置および車両駆動システム
JP2013135516A (ja) 電力変換装置及び空気調和機
JP2006042579A (ja) スイッチング制御方法、整流装置及び駆動システム
JP7235531B2 (ja) コンバータ装置、処理方法及びプログラム
JP2020184848A (ja) 制御装置、電力変換装置、制御方法及びプログラム
JP2020171183A (ja) コンバータ装置、空気調和機、コンバータ装置の制御方法及びプログラム
JP5925337B2 (ja) モータ駆動装置及び空気調和機並びにコンバータ装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 04/11/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 19766456

Country of ref document: EP

Kind code of ref document: A1