WO2019176261A1 - 流路切換弁及び自動車用熱媒体システム - Google Patents

流路切換弁及び自動車用熱媒体システム Download PDF

Info

Publication number
WO2019176261A1
WO2019176261A1 PCT/JP2019/000988 JP2019000988W WO2019176261A1 WO 2019176261 A1 WO2019176261 A1 WO 2019176261A1 JP 2019000988 W JP2019000988 W JP 2019000988W WO 2019176261 A1 WO2019176261 A1 WO 2019176261A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
passage
bypass chamber
cooling water
flow path
Prior art date
Application number
PCT/JP2019/000988
Other languages
English (en)
French (fr)
Inventor
振宇 申
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019176261A1 publication Critical patent/WO2019176261A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/16Indicating devices; Other safety devices concerning coolant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/20Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members
    • F16K11/24Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members with an electromagnetically-operated valve, e.g. for washing machines

Definitions

  • the present invention relates to a flow path switching valve and an automotive heat medium system using the flow path switching valve.
  • cooling water for cooling a heat source such as an internal combustion engine or a battery for driving an electric motor is used as various heat auxiliary machines.
  • BACKGROUND OF THE INVENTION 1 Field of the Invention The present invention relates to a flow path switching valve that is used for distribution to a vehicle, and an automobile heat medium system that uses the flow path switching valve.
  • an internal combustion engine and a heat exchanger (hereinafter referred to as a radiator) are used for the purpose of improving the warm-up performance of the internal combustion engine and improving fuel consumption by operating the internal combustion engine at an optimal temperature.
  • a circulation passage that bypasses the radiator and returns the cooling water as it is to the internal combustion engine is provided, and a flow switching valve is provided in the main communication passage to provide various heat accessories. Cooling water is distributed to each other. Since the cooling water for cooling a heat source such as a battery for driving an electric motor has a similar configuration, the case of an internal combustion engine will be described below as a representative.
  • the flow path switching valve circulates the cooling water to the radiator in order to dissipate the heat of the cooling water for cooling the internal combustion engine to the outside, or circulates the high-temperature cooling water to the heating device to heat the vehicle interior. It is used for the purpose.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-238138
  • the cooling water is always supplied to the suction side of the cooling water pump via the throttle chamber, separately from the distribution passage for distributing the cooling water to various heat auxiliaries.
  • a heat protection passage is provided for flowing cooling water to the radiator side.
  • the temperature rise of the cooling water circulating in the circulation passage is detected by the thermo element valve.
  • the heat protection passage is opened by the thermo element valve.
  • the cooling water is caused to flow to the radiator through the heat protection passage so as to lower the temperature of the cooling water. Therefore, even if the flow path switching valve fails, overheating of the internal combustion engine can be prevented.
  • the cooling water always circulates in the cross-sectional area (passage area of the narrowest region) of the heat protection path through which the cooling water flows when the flow path switching valve fails. It is configured to be smaller than the passage cross-sectional area (passage area of the narrowest region) of the circulation passage.
  • thermo element valve when the thermo element valve is operated, the flow rate of the cooling water led to the radiator through the heat protection passage is smaller than the flow rate of the cooling water led to the circulation passage, so that the cooling water is sufficiently cooled by the radiator. There is a problem that it is not done. For this reason, in some cases, there is a possibility that overheating cannot be eliminated.
  • An object of the present invention is to generate overheating as much as possible by adopting a configuration in which a sufficient amount of cooling water is sent to a radiator through a heat protection passage when there is a risk of overheating due to failure of a flow path switching valve. It is an object of the present invention to provide a novel flow path switching valve that can be suppressed and a heat medium system for an automobile using the flow path switching valve.
  • the present invention is not limited to cooling water for an internal combustion engine, but can be applied to cooling water for cooling a heat source such as a lithium battery and a fuel cell. Therefore, the cooling water is a heat medium, and the internal combustion engine, the lithium battery, and the fuel cell can be rephrased as a heat source.
  • the feature of the present invention is that the flow rate of the cooling water flowing through the heat protection passage through which the cooling water flows when the flow path switching valve fails is set to be larger than the flow rate of the cooling water flowing through the circulation passage.
  • the passage cross-sectional area of the heat protection passage (the cross-sectional area of the narrowest region) is formed larger than the passage cross-sectional area of the circulation passage through which cooling water always circulates (the cross-sectional area of the narrowest region). It is in.
  • the passage cross-sectional area of the heat protection passage is set larger than the passage step area of the circulation passage through which the cooling water circulates.
  • the flow rate of the cooling water led to the radiator through the air increases. For this reason, the cooling water is sufficiently cooled by the radiator, and overheating can be suppressed as much as possible.
  • FIG. 4 is a cross-sectional view showing a state in which the thermoelement valve is not operating, in which the circulation passage and the heat protection passage according to the embodiment of the present invention are cross-sectioned.
  • FIG. 3 is a cross-sectional view showing a state in which a thermo element valve is in operation, in which a circulation passage and a heat protection passage according to an embodiment of the present invention are sectioned.
  • FIG. 6 is a cross-sectional view showing a state in which a thermo element valve is not operating, in which a circulation passage and a heat protection passage according to a modified example of the present invention are sectioned.
  • FIG. 6 is a cross-sectional view showing a state in which a thermo element valve is operating, with a cross-section of a circulation passage and a heat protection passage according to a modification of the present invention.
  • FIG. 6 is a cross-sectional view showing a state in which a thermo element valve is not operating, in which a circulation passage and a heat protection passage according to a further modification of the present invention are sectioned.
  • thermo element valve 6 is a cross-sectional view showing a state in which a thermo element valve is operating, in which a circulation passage and a heat protection passage of a further modification of the present invention are cross-sectioned. It is a lineblock diagram showing the modification of the thermo element valve of the present invention.
  • the cooling water of the internal combustion engine is used as the heat medium.
  • the present invention is not limited to cooling water for an internal combustion engine, and can also be applied to a system for cooling a heat source such as a lithium battery and a fuel cell.
  • cooling water is supplied from the cooling water pump 02 to the cylinder jacket of the internal combustion engine 01, and the cooling water that has cooled the cylinder jacket is sent to the flow path switching valve MCV via the cooling water inflow passage 09A.
  • a part is sent to the radiator 04 through the main communication path 9B, and a part passes through the thermo element part 08 which is a “thermal protection part”, and the cooling water pump 02 through the circulation path 09C for continuous circulation. It is returned to the suction side of the engine and circulated to the internal combustion engine again.
  • the circulation passage 09 ⁇ / b> C is connected to the throttle chamber 10 and is returned to the suction side of the cooling water pump 02 after heat exchange with the throttle chamber 10.
  • the reason why the cooling water is circulated in the throttle chamber 10 is to heat the throttle chamber 10 to suppress the occurrence of icing and the like.
  • thermo-element portion 08 is provided with a thermo-element valve as will be described later.
  • the cooling water flowing through the circulation passage 09C exceeds a predetermined temperature
  • the cooling water is supplied via the heat protection passage 09D.
  • the cooling water is supplied to the radiator 04 and cooled by the radiator 04.
  • the remaining cooling water is sent to the heating auxiliary equipment such as the heating device 03 and the oil cooler 05 through the distribution passage.
  • these heat auxiliaries are exemplarily shown as representative ones, and other heat auxiliaries may be used.
  • the distribution of the cooling water to these heat auxiliaries is controlled by the electronic channel switching means 06.
  • the electronic flow path switching unit 06 receives water temperature information from a water temperature sensor 07 provided on the flow path switching valve MCV, operating state information of the internal combustion engine 01, and operating state information of various operating devices in the passenger compartment.
  • the flow path from the flow path switching valve MCV to each of the heat auxiliary machines is switched according to the control signal calculated by the electronic flow path switching means 06.
  • a predetermined amount of cooling water always flows through the circulation passage 09C.
  • thermo element portion 08 is activated when, for example, the flow path switching valve MCV fails and the cooling water does not flow to the radiator 04. In this case, the circulation passage flowing through the thermo element portion 08 The temperature of the cooling water of 09C is detected by the thermo element valve in the thermo element portion 08, and the cooling water is supplied to the radiator 04 via the heat protection passage 09D to cool the cooling water.
  • an electric motor is built in the flow path switching valve MCV, and the rotation of the electric motor is controlled by a control signal from the electronic flow path switching means 06.
  • the electric motor is connected to the valve main body via a transmission mechanism, and by rotating the valve main body, the cooling water is caused to flow through the distribution passages connected to the respective heat auxiliary machines formed in the flow path switching valve MCV.
  • the cooling water from is distributed to each heat auxiliary machine.
  • FIG. 2 shows the external appearance of the flow path switching valve MCV as viewed obliquely from above
  • FIG. 3 shows the top surface thereof.
  • the housing body 11 includes a throttle chamber connection communication path 12 ⁇ / b> A connected to the throttle chamber 10 (see FIG. 1), a heating device connection communication path 12 ⁇ / b> B connected to the heating device 03, and a radiator connection communication path connected to the radiator 04. 12C and an oil cooler connection communication path 12D connected to the oil cooler 05 are integrally provided. Further, cooling water flows from the internal combustion engine 01 into the flow path switching valve MCV, and the cooling water is distributed to the respective connection communication paths 12A to 12D by the valve main body provided inside the housing main body 11. .
  • the flow path switching valve MCV is provided with a cover 17 that covers the thermo-element valve filled with wax, and the thermo-element valve is operated by sensing the temperature of the cooling water flowing through the throttle chamber connection communication path 12A.
  • An electronic channel switching means 06 is fixed to the top of the housing body 11 of the channel switching valve MCV, and controls an electric motor housed in the housing body 11.
  • FIG. 4 shows a configuration in which the flow path switching valve MCV shown in FIG. 2 is disassembled and viewed from an oblique direction.
  • the housing body 11 is formed with a valve housing portion (not shown) for housing the hollow cylindrical valve body 14 and a motor housing portion 16 for housing the electric motor 15.
  • an electronic flow path switching unit 06 is fixed to the housing body 11 from the outside by a fixing bolt, and is configured as a so-called electromechanical integrated type.
  • a throttle chamber connection communication path 12 A connected to the throttle chamber
  • a heating device connection communication path 12 B connected to the heating apparatus 03
  • a radiator connection communication path 12 C connected to the radiator 04
  • an oil connected to the oil cooler 05 there are a throttle chamber connection communication path 12 A connected to the throttle chamber
  • a heating device connection communication path 12 B connected to the heating apparatus 03
  • a radiator connection communication path 12 C connected to the radiator 04
  • an oil connected to the oil cooler 05 there are a throttle chamber connection communication path 12 A connected to the throttle chamber
  • a radiator connection communication path 12 C connected to the radiator 04
  • an oil connected to the oil cooler 05 connected to the oil cooler 05.
  • the cooler connection communication path 12D is integrally attached.
  • the throttle chamber connection communication path 12A connected to the throttle chamber 10 is configured such that the cooling water is constantly circulated, and is connected to the suction side of the cooling water pump via the throttle chamber 10. Therefore, the throttle chamber connection communication path 12A constitutes a part of the circulation path 09C.
  • the radiator connection communication path 12C constitutes a part of the main communication path 09B, and a cover 17 that covers the thermo element valve 13 is integrally formed in the radiator connection communication path 12C.
  • a seal member 18 and a compression spring 19 are disposed between the housing body 11 and the respective connection communication passages 12B to 12D.
  • the seal member 18 is formed in a circular cylindrical shape with both ends open, and the front end surface of the seal member 18 is pressed and brought into contact with the outer peripheral portion 20 of the valve body 14 by a compression spring 19. On the other hand, since the cooling water always flows through the throttle chamber connection communication path 12A, the seal member 18 and the compression spring 19 are not necessary.
  • the valve body 14 is formed in a bottomed cylindrical shape, and an opening 21 connected to each of the connection communication paths 12B to 12D described above is formed in the outer peripheral portion 20 thereof. Therefore, the cooling water indicated by the arrow CA, which is pumped from the cooling water pump 02 and flows through the cooling water inflow passage 09A from the internal combustion engine, flows into the valve body 14 and is connected to the respective connecting communication passages via the openings 21. It flows out to 12B to 12D.
  • a closing wall 22 is provided on one side of the valve body 14, and the closing wall 22 is fixed to the rotating shaft 23, and is rotated in the valve housing portion of the housing body 11 in synchronization with the rotation of the rotating shaft 23. Is.
  • valve body 14 selects the connection relationship with each of the connection communication paths 12B to 12D (switches the flow path).
  • the opening part 21 can control the overlap degree with the opening of the sealing member 18 by the rotation state of the valve main body 14, it may be operated to control the flow rate.
  • the electric motor 15 and the valve body 14 are connected by a worm gear mechanism. That is, a worm wheel 24 is fixed to the opposite end of the rotary shaft 23 to which the valve body 14 is fixed, and this worm wheel 24 is engaged with a worm 25 formed on one side of the worm shaft. . A worm wheel 26 formed on the other side of the worm shaft is engaged with a worm 27 fixed to the electric motor 15. Therefore, when the electric motor 15 rotates, this rotation is transmitted to the rotary shaft 23 via the worm 27 ⁇ worm wheel 26 ⁇ worm 25 ⁇ worm wheel 24, and finally rotates the valve body 14.
  • a cover provided with the electronic flow path switching means 06 is fixed to the housing body 11 so as to cover the electric motor 15 and the worm gear mechanism.
  • a control signal from the electronic flow path switching unit 06 is given to the electric motor 15 so as to perform a predetermined rotation operation.
  • the flow path switching valve MCV having the above-described configuration is a well-known configuration and its operation is well-known.
  • the configuration of the circulation passage 09C, the thermo element portion 08, and the heat protection passage 09D, which are features of the present embodiment, will be described.
  • FIG. 5 shows an obliquely cut surface passing through the throttle chamber connection communication path 12A and the radiator connection communication path 12C, and therefore the cut surface of the valve body 14 is elliptical.
  • a valve main body 14 is built in the housing main body 11 of the flow path switching valve MCV, and the cooling water flowing into the valve main body 14 is distributed to the respective connection communication paths 12B to 12D through the openings 21. It is what is done.
  • a plurality of openings 21 of the valve body 14 are provided, and each of the openings 21 is selectively connected to the connection communication paths 12B to 12D corresponding to the rotation of the valve body 14. .
  • a radiator connecting communication path 12 ⁇ / b> C in which a cover 17 that covers the thermo element valve 13 is integrally formed is attached to the housing body 11.
  • a compression spring 19 and a seal member 18 urged by the compression spring 19 so as to be in sliding contact with the outer peripheral portion 20 of the valve body 14 are interposed. . Therefore, when the valve body 14 rotates and the opening 21 and the opening of the seal member 18 are aligned in position, the cooling water in the valve body 14 flows out through the opening 21 to the radiator connection passage 12C. ing.
  • a first bypass chamber 28 is formed on the outer peripheral surface of the housing body 11 adjacent to the arrangement region of the seal member 18, in other words, adjacent to the radiator connection communication path 12 ⁇ / b> C. Is sealed by a cover 17.
  • the first bypass chamber 28 is always supplied with cooling water from the valve body storage portion formed in the housing body 11.
  • a second bypass chamber 29 is also formed inside the cover 17, and the second bypass chamber 29 and the first bypass chamber 28 are in communication.
  • the second bypass chamber 29 is connected to the radiator connection communication path 12 ⁇ / b> C by the bypass connection path 30.
  • the first bypass chamber 28 is connected to the radiator 04 (see FIG. 1) via the second bypass chamber 29, the bypass connection passage 30, and the radiator connection communication passage 12C. It is also possible to connect directly to the radiator 04 (see FIG. 1) without going through the radiator connection communication path 12C.
  • the first bypass chamber 28, the second bypass chamber 29, the bypass connection passage 30, and the radiator connection communication passage 12C are collectively formed as a part of the heat protection passage 09D. .
  • thermo element valve 13 An annular valve seat 31 is provided between the first bypass chamber 28 and the second bypass chamber 29, and the valve seat 31 is configured to be opened and closed by the thermo element valve 13. Since the structure of the thermo element valve 13 is generally well known, it will be briefly described here.
  • the thermo element valve 13 includes a thermo wax portion 32, an output rod (output member) 33 driven by the thermo wax portion 32, a flat valve body 34 opened and closed by the output rod 33, and a valve seat 34.
  • the valve closing spring 35 is biased toward the 31 side, and a spring holding plate 36 that holds the valve closing spring 35.
  • thermowax 32 and the spring holding plate 36 are integrated by a holding member (not shown). Furthermore, the thermo wax part 32 is fixed to the wall surface of the first bypass chamber 28 by a claw part (not shown). Therefore, in a state where the thermowax in the thermowax portion 32 does not expand, the output rod 33 and the valve body 34 are urged to the right side in the drawing by the valve closing spring 35, so that the valve body 34 is in close contact with the valve seat 31. Thus, communication between the first bypass chamber 28 and the second bypass chamber 29 is blocked.
  • the throttle chamber connection communication path 12A is connected to the first bypass chamber 28, and the cooling water flowing into the first bypass chamber 28 is supplied to the throttle chamber 10 via the throttle chamber connection communication path 12A. It is the composition which becomes. Cooling water always flows from the valve body storage portion into the first bypass chamber 28 from the gap between the valve main body 14 and the housing main body 11 or a separately formed passage. As described above, this cooling water is the throttle chamber. It is supplied to the throttle chamber 10 via the connection communication path 12A and is further returned to the suction side of the cooling water pump 02.
  • the cooling water flowing through the throttle chamber connection communication path 12A is cooling water that has flowed through the cylinder jacket of the internal combustion engine. Therefore, if the temperature of this cooling water is sensed, it is possible to estimate a sign that overheating of the internal combustion engine will occur. it can.
  • thermo element valve 13 is not operating. That is, since the flow path switching valve MCV is operating normally, the cooling water from the flow path switching valve MCV is supplied to the radiator 04 via the radiator connection communication path 12C. The heat is dissipated at the normal temperature. At this time, since the temperature of the cooling water flowing through the first bypass chamber 28 is also normal, the thermowax incorporated in the thermowax portion 32 of the thermoelement valve 13 does not expand and is in the state shown in FIG.
  • thermo element valve 13 a state may occur in which the flow path switching valve MCV fails and the cooling water cannot flow from the radiator connection communication path 12C to the radiator 04.
  • the first bypass chamber 28 and the second bypass chamber 29 are in communication with each other by the thermo element valve 13.
  • thermo wax built in the wax section 32 expands and operates to push the output rod 33 to the left in the drawing.
  • valve body 34 changes to the open state by compressing the valve closing spring 35. Accordingly, the cooling water flows through the first bypass chamber 28, the valve seat 31, the second bypass chamber 29, and the bypass connection passage 30 to the radiator connection communication passage 12C. In this manner, the valve body 34 is in contact with the valve seat 31 so as to be able to contact and separate. Therefore, even when the flow path switching valve MCV is out of order, a part of the cooling water flows to the radiator 04 and is cooled, so that overheating of the internal combustion engine can be prevented.
  • the cross-sectional area of the heat protection passage 09D including the first bypass chamber 28, the second bypass chamber 29, the bypass connection passage 30, and the radiator connection communication passage 12C.
  • the cross-sectional area of the narrowest region is configured to be smaller than the cross-sectional area of the circulation passage 09C (the cross-sectional area of the narrowest region) composed of the throttle chamber connection communication passage 12A through which the cooling water circulates.
  • the flow rate of the cooling water flowing through the heat protection passage 09D through which the cooling water flows when the flow path switching valve MCV fails is set larger than the flow rate of the cooling water flowing through the circulation passage 09C.
  • the passage cross-sectional area of the heat protection passage 09D (passage cross-sectional area of the narrowest region) is larger than the passage cross-sectional area of the circulation passage 09C through which the cooling water always circulates (passage cross-sectional area of the narrowest region). Is formed.
  • the cross-sectional area of the circulation passage 09C (the cross-sectional area of the narrowest region) is the narrowest-portion cross-sectional area (Sn) of the communication passage formed in the throttle chamber connection communication passage 12A. It is set as the passage cross-sectional area of the passage 09C.
  • the cross-sectional area larger than the narrowest-portion cross-sectional area (Sn) is set in the heat protection path 09D.
  • the passage cross-sectional area (passage cross-sectional area of the narrowest region) of the heat protection passage 09D can be typically set by the following two configurations.
  • the substantially annular passage cross-sectional area (Sc) obtained by reducing the cross-sectional area of the thermo-element valve 13 orthogonal to the line can be set as the passage cross-sectional area (passage cross-sectional area of the narrowest region) of the heat protection passage 09D.
  • the substantially annular passage sectional area (Sc) and the narrowest passage sectional area (Sn) have a relationship of “Sc> Sn”.
  • the passage cross-sectional area (Sv) set by the length (Lv) between the opposing surfaces of the valve seat 31 and the valve body 34 facing the valve seat 31 is expressed as a heat protection passage.
  • the cross-sectional area of 09D (the cross-sectional area of the narrowest region) can be set.
  • the passage sectional area (Sv) and the narrowest passage sectional area (Sn) have a relationship of Sv> Sn.
  • the passage cross-sectional area of the heat protection passage 09D is formed so that the passage cross-sectional area of the heat protection passage 09D is larger than the passage cross-sectional area of the circulation passage 09C by adopting any of the above-described configurations. Can do. As a result, when the thermo element valve 13 is operated, the flow rate of the cooling water guided to the radiator 04 through the heat protection passage 09D can be increased, and the cooling water is sufficiently cooled by the radiator 04, thereby allowing overheating. Can be suppressed.
  • the ratio of the flow rate of the cooling water passing through the circulation passage 09C and the flow rate of the cooling water passing through the heat protection passage 09D is set to “1: 1.5-2”. Yes.
  • the passage sectional area of the heat protection passage 09D is set to about 1.5 to 2 times the passage sectional area of the circulation passage 09C.
  • the ratio of the flow rate of the cooling water passing through the circulation passage 09C and the flow rate of the cooling water passing through the heat protection passage 09D is set to “1: 1.5-2”. Therefore, when the thermo element valve 13 is operated, the flow rate of the cooling water guided to the radiator 04 through the heat protection passage 09D increases. For this reason, the cooling water is sufficiently cooled by the radiator, and overheating can be suppressed as much as possible.
  • the first bypass chamber 28 and the second bypass chamber 29 are disposed between the radiator connection communication path 12C and the throttle chamber connection communication path 12A. There is an effect that the passage configuration is simplified.
  • first bypass chamber 28 and the second bypass chamber 29 are arranged in the same direction as the movement direction of the output rod 33 of the thermo element valve 13, and the first bypass chamber 28, the second bypass chamber 28 C are connected to the radiator connection communication path 12 ⁇ / b> C.
  • a bypass chamber 29 is disposed adjacent to the throttle chamber connection passage 12 ⁇ / b> A, and the throttle chamber connection communication path 12 ⁇ / b> A is disposed adjacent to the first bypass chamber 28 and the second bypass chamber 29. Therefore, the throttle chamber connection communication path 12A is disposed farthest away from the radiator connection communication path 12C.
  • thermo element valve 13 when the thermo element valve 13 is operated, the cooling water that has passed through the first bypass chamber 28 and the second bypass chamber 29 can be quickly sent out to the radiator connection communication path 12C.
  • FIGS. 7 and 8 The modification shown in FIGS. 7 and 8 is characterized in that the communication state of the throttle chamber connection communication path 12 ⁇ / b> A is changed in conjunction with the movement of the valve body 34.
  • the valve element 34 of the thermo element valve 13 is provided with an opening / closing valve 38 for opening and closing the communication passage 37 of the throttle chamber connection communication passage 12A.
  • the on-off valve 38 is fixed to the valve body 34 by welding or the like. When the thermo-element valve 13 is not operating, the on-off valve 38 is connected to the throttle chamber connection as shown in FIG. The opening of the communication passage 37 of the passage 12A is not overlapped. For this reason, the first bypass chamber 28 and the communication passage 37 of the throttle chamber connection communication passage 12A are maintained in a communication state. Therefore, in this state, the same operation as that of the embodiment shown in FIG. 5 is performed.
  • thermowax incorporated in the thermowax portion 32 of the thermoelement valve 13 Expands and pushes the output rod 33 to the left in the figure.
  • valve body 34 changes to the open state by compressing the valve closing spring 35. Accordingly, the cooling water flows through the first bypass chamber 28, the valve seat 31, the second bypass chamber 29, and the bypass connection passage 30 to the radiator connection communication passage 12C.
  • the on-off valve 38 fixed to the valve body 34 moves together with the valve body 34 so as to close the opening of the communication path 37 of the throttle chamber connection communication path 12A. Accordingly, the water pressure of the cooling water flowing into the first bypass chamber 28 is increased, and the flow rate of the cooling water flowing through the valve element 34 of the thermo element valve 13 is increased and supplied to the radiator 04. As a result, it is possible to further dissipate the cooling water and further prevent overheating of the internal combustion engine.
  • thermo-wax portion side of the thermo-element valve 13 is a valve body.
  • the output rod 39 of the thermo element valve 13 is fixed to the cover 17, and the thermo wax unit 40 moves.
  • the thermo wax unit 40 is disposed in the first bypass chamber 41, and the output rod 39 is disposed in the second bypass chamber 42.
  • a communication path 43 connected to the throttle chamber connection communication path is connected to the first bypass chamber 41. Therefore, like the above-described embodiment, the cooling water always flows into the throttle chamber.
  • the second bypass chamber 42 is connected to a communication path 44 connected to the radiator connection communication path.
  • the flow rate of the cooling water passing through the communication passage 44 is set to be larger than the flow rate of the cooling water passing through the communication passage 43.
  • FIG. 9 shows a state where the thermo element valve is not operating, and the cooling water in the first bypass chamber 41 is supplied to the throttle chamber via the communication path 43. In this state, the same operation as that of the embodiment shown in FIG. 5 is performed.
  • thermo wax of the thermo element valve 13 expands, and the output rod 33 As a starting point, the thermowax unit 40 moves downward in the figure.
  • the valve part 46 formed in the thermowax part 40 changes to the state opened by compressing the valve closing spring 47.
  • the cooling water flows through the first bypass chamber 41, the valve seat 45, and the second bypass chamber 42 to the radiator connection communication path 12C.
  • the flow rate of the cooling water is configured to be determined by the passage cross-sectional area formed by the valve seat 45 and the valve portion 46.
  • the flow rate of the cooling water led to the radiator through the heat protection passage increases when the thermo element valve is operated. For this reason, the cooling water is sufficiently cooled by the radiator, and overheating can be suppressed as much as possible.
  • the output rod 33 is formed in a forked shape.
  • One output rod 33A includes a flat valve body 34A that is opened and closed by the output rod 33A, a valve closing spring 35A that biases the valve body 34A toward the valve seat 31A, and a spring holder that holds the valve closing spring 35A. It is comprised from the board 36A.
  • the other output rod 33B holds a flat valve body 34B that is opened and closed by the output rod 33B, a valve closing spring 35B that biases the valve body 34B toward the valve seat 31B, and a valve closing spring 35B. It consists of a spring holding plate 36B.
  • the cross-sectional area of the passage with the valve seat 31 shown in FIGS. 5 and 6 is the same as in the conventional case, the passage of the narrowest portion of the throttle chamber connection communication passage 12A serving as a circulation passage. It is set smaller than the area (Sn). However, the total of the two systems is larger than the narrowest-portion cross-sectional area (Sn) of the throttle chamber connection communication path 12A, which is a circulation path.
  • the flow rate of the cooling water flowing through the heat protection passage through which the cooling water flows when the flow path switching valve fails is set larger than the flow rate of the cooling water flowing through the circulation passage. More specifically, the passage cross-sectional area of the heat protection passage (the cross-sectional area of the narrowest region) is formed larger than the passage cross-sectional area of the circulation passage through which the cooling water always circulates (passage cross-sectional area of the narrowest region). It was set as the structure.
  • the passage cross-sectional area of the heat protection passage is set to be larger than the passage step area of the circulation passage through which the cooling water circulates.
  • this invention is not limited to above-described embodiment, Various modifications are included.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Temperature-Responsive Valves (AREA)
  • Multiple-Way Valves (AREA)

Abstract

熱保護用通路(09D)の通路面積が、常に冷却水が循環する循環用通路(09C)の通路面積よりも大きく設定されている。熱保護用通路(09D)の通路面積が、冷却水が循環する循環用通路(09C)の通路面積よりも大きく設定されているため、サーモエレメントバルブ(13)の作動時において、熱保護用通路(09D)を介してラジエータ(04)へ導かれる冷却水の流量が多くなる。このため、ラジエータ(04)による冷却水の冷却が充分に行われ、オーバーヒートを可及的に抑制することができるようになる。

Description

流路切換弁及び自動車用熱媒体システム
 本発明は流路切換弁、及びこの流路切換弁を使用した自動車用熱媒体システムに係り、例えば、内燃機関や電動モータの駆動用電池等の熱源を冷却する冷却水を種々の熱補機類に分配するために用いられる流路切換弁、及びこの流路切換弁を使用した自動車用熱媒体システムに関するものである。
 一般的な自動車においては、内燃機関の暖機性能の向上や内燃機関を最適な温度で動作させることによる燃費向上等を目的として、内燃機関と熱交換器(以下、ラジエータと表記する)との間で冷却水を循環させる主連通路とは別に、ラジエータを迂回して冷却水をそのまま内燃機関に戻す循環用通路を設けると共に、主連通路に流路切換弁を設けて各種熱補機類に冷却水を分配するようにしている。尚、電動モータの駆動用電池等の熱源を冷却する冷却水についても類似の構成となっているので、以下では代表して内燃機関の場合について説明する。
 例えば、流路切換弁は、内燃機関を冷却する冷却水の熱を外部に放熱するために冷却水をラジエータに循環させる、或いは車室内を暖房するために温度の高い冷却水を暖房装置に循環させるといった目的で使用されている。
 このような内燃機関を冷却する冷却水を各種熱補機類に分配する流路切換弁としては、例えば特開2013-238138号公報(特許文献1)に記載されている構成が知られている。
 そして、この特許文献1に記載された流路切換弁においては、各種熱補機類に冷却水を分配する分配通路とは別に、冷却水を常にスロットルチャンバを介して冷却水ポンプの吸入側に循環するように流す循環用通路と、流路切換弁が故障して冷却水が主連通路を介してラジエータに循環されない故障時に、内燃機関にオーバーヒートのおそれが生じるのを防ぐために、主連通路とは別に冷却水をラジエータ側に流す熱保護用通路とを設けている。
 つまり、流路切換弁が故障して冷却水をラジエータに流すことができなくなり、オーバーヒートを生じるおそれがある時は、循環用通路を循環している冷却水の温度上昇をサーモエレメントバルブで検出し、所定温度以上に冷却水の温度が上昇すると、サーモエレメントバルブによって熱保護用通路を開くように構成されている。これによって、冷却水が熱保護用通路を介してラジエータに流され、冷却水の温度を低下させるようにしている。したがって、流路切換弁が故障した場合であっても、内燃機関のオーバーヒートを防止することができるようになる。
特開2013-238138号公報
 ところで、特許文献1に記載の流路切換弁においては、流路切換弁の故障時に冷却水が流れる熱保護用通路の通路断面積(最も狭い領域の通路面積)が、常に冷却水が循環する循環用通路の通路断面積(最も狭い領域の通路面積)よりも小さい構成とされている。
 このため、サーモエレメントバルブの作動時において、熱保護用通路を介してラジエータへ導かれる冷却水の流量が、循環用通路に導かれる冷却水の流量より少ないので、ラジエータによる冷却水の冷却が充分に行われないという課題がある。このため、場合によってはオーバーヒートを解消できないというおそれも生じるようになる。
 本発明の目的は、流路切換弁が故障してオーバーヒートを生じるおそれがある時に、充分な量の冷却水が熱保護用通路を介してラジエータに送られる構成として、オーバーヒートの発生を可及的に抑制することができる新規な流路切換弁、及びこの流路切換弁を使用した自動車用熱媒体システムを提供することにある。
 ここで、本発明は内燃機関の冷却水に限定されず、例えばリチウム電池及び燃料電池のような熱源を冷却する冷却水にも適用可能なものである。よって、冷却水は熱媒体であり、内燃機関やリチウム電池及び燃料電池は熱源と言い換えることができる。
 本発明の特徴は、流路切換弁の故障時に冷却水が流れる熱保護用通路を流れる冷却水の流量が、循環用通路を流れる冷却水の流量よりも大きく設定されている、更に詳しくは、熱保護用通路の通路断面積(最も狭い領域の通路断面積)が、常に冷却水が循環する循環用通路の通路断面積(最も狭い領域の通路断面積)よりも大きく形成されている、ところにある。
 本発明によれば、熱保護用通路の通路断面積が、冷却水が循環する循環用通路の通路段面積よりも大きく設定されているため、サーモエレメントバルブの作動時において、熱保護用通路を介してラジエータへ導かれる冷却水の流量が多くなる。このため、ラジエータによる冷却水の冷却が充分に行われ、オーバーヒートを可及的に抑制することができるようになる。
本発明の流路切換弁が適用される一例としての内燃燃関の冷却システムの構成図である。 本発明の実施形態になる流路切換弁の斜視図である。 図2に示す流路切換弁の平面図である。 図2に示す流路切換弁の分解斜視図である。 本発明の実施形態に係る循環用通路と熱保護用通路を断面したもので、サーモエレメントバルブが動作していない状態を示す断面図である。 本発明の実施形態に係る循環用通路と熱保護用通路を断面したもので、サーモエレメントバルブが動作している状態を示す断面図である。 本発明の変形例に係る循環用通路と熱保護用通路を断面したもので、サーモエレメントバルブが動作していない状態を示す断面図である。 本発明の変形例に係る循環用通路と熱保護用通路を断面したもので、サーモエレメントバルブが動作している状態を示す断面図である。 本発明の更なる変形例の循環用通路と熱保護用通路を断面したもので、サーモエレメントバルブが動作していない状態を示す断面図である。 本発明の更なる変形例の循環用通路と熱保護用通路を断面したもので、サーモエレメントバルブが動作している状態を示す断面図である。 本発明のサーモエレメントバルブの変形例を示す構成図である。
 以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。
 本発明の実施形態を説明する前に、本発明が適用される流路切換弁の構成について簡単に説明するが、上述した様に以下の説明では熱媒体として内燃機関の冷却水を使用する場合を例示的に示している。しかしながら、本発明は内燃機関の冷却水に限定されず、リチウム電池および燃料電池のような熱源を冷却するシステムにも適用可能なものである。
 図1において、内燃機関01のシリンダジャケットには冷却水ポンプ02から冷却水が供給されており、シリンダジャケットを冷却した冷却水は、冷却水流入通路09Aを介して流路切換弁MCVに送られ、一部は主連通路9Bを介してラジエータ04に送られ、一部は「熱保護部」であるサーモエレメント部08を通り、常時循環用としての循環用通路09Cを介して冷却水ポンプ02の吸入側に戻されて、再び内燃機関に循環されるようになっている。
 尚、本実施形態では、循環用通路09Cはスロットルチャンバ10に接続されており、スロットルチャンバ10と熱交換された後に冷却水ポンプ02の吸入側に戻されている。スロットルチャンバ10に冷却水を循環させる理由は、スロットルチャンバ10を加熱して、アイシング等が発生するのを抑制するためである。
 また、サーモエレメント部08には、後述するようなサーモエレメントバルブが設けられており、循環用通路09Cを流れる冷却水の温度が、所定温度を超えると熱保護用通路09Dを介して冷却水をラジエータ04に供給して、冷却水をラジエータ04で冷却する構成とされている。
 残りの冷却水は暖房装置03やオイルクーラ05等の熱補機類に分配通路を介して送られている。尚、これらの熱補機類は代表的なものを例示的に示しているものであり、これ以外の熱補機類を使用しても差し支えないものである。
 これらの熱補機類への冷却水の分配は、電子流路切換手段06によって制御されている。例えば、この電子流路切換手段06には、流路切換弁MCVに設けた水温センサ07からの水温情報、内燃機関01の運転状態情報、車室内の各種操作機器の操作状態情報が入力されており、電子流路切換手段06によって演算された制御信号に応じて、流路切換弁MCVから各熱補機類への流路を切り換えるものである。ただ、上述したように、循環用通路09Cには常に所定量の冷却水が流れる構成とされている。
 そして、サーモエレメント部08が作動するのは、例えば、流路切換弁MCVが故障して、ラジエータ04に冷却水が流れなくなったときであり、この場合は、サーモエレメント部08を流れる循環用通路09Cの冷却水の温度をサーモエレメント部08内のサーモエレメントバルブで検出して、熱保護用通路09Dを介して冷却水をラジエータ04に供給して、冷却水を冷却するようになっている。
 流路切換弁MCVには後述するように電動モータが内蔵されており、この電動モータは電子流路切換手段06からの制御信号によって、その回転が制御されるものである。電動モータは伝動機構を介して弁本体と連結されており、弁本体を回転させることで流路切換弁MCVに形成した各熱補機類に接続される分配通路に冷却水を流し、内燃機関からの冷却水を各熱補機類に分配するものである。
 図2は流路切換弁MCVを斜め上方から見た外観を示し、図3はその上面を示している。図2、図3において、ハウジング本体11には、スロットルチャンバ10(図1参照)に繋がるスロットルチャンバ接続連通路12A、暖房装置03に繋がる暖房装置接続連通路12B、ラジエータ04に繋がるラジエータ接続連通路12C、オイルクーラ05に繋がるオイルクーラ接続連通路12Dが、一体的に設けられている。また、流路切換弁MCVには内燃機関01から冷却水が流入しており、ハウジング本体11の内部に設けられた弁本体によって、夫々の接続連通路12A~12Dに冷却水が分配されている。
 流路切換弁MCVには、ワックスが封入されたサーモエレメントバルブを覆うカバー17が設けられており、サーモエレメントバルブは、スロットルチャンバ接続連通路12Aに流れる冷却水の温度を感知して動作される。また、流路切換弁MCVのハウジング本体11の頂部には電子流路切換手段06が固定されており、ハウジング本体11の内部に収納された電動モータを制御している。
 図4は、図2に示す流路切換弁MCVを分解して斜め方向から眺めた構成を示している。ハウジング本体11には、中空円筒状の弁本体14を収納する弁収納部(図示せず)と、電動モータ15が収納されるモータ収納部16が形成されている。また、ハウジング本体11には、外側から電子流路切換手段06が固定ボルトによって固定され、いわゆる機電一体型に構成されている。
 更に、ハウジング本体11の外周囲には、スロットルチャンバに繋がるスロットルチャンバ接続連通路12A、暖房装置03に繋がる暖房装置接続連通路12B、ラジエータ04に繋がるラジエータ接続連通路12C、オイルクーラ05に繋がるオイルクーラ接続連通路12Dが、一体的に取り付けられている。
 ここで、スロットルチャンバ10に繋がるスロットルチャンバ接続連通路12Aは、冷却水が常に循環される構成となっており、スロットルチャンバ10を経由して冷却水ポンプの吸入側に接続されている。したがって、スロットルチャンバ接続連通路12Aは循環用通路09Cの一部を構成している。
 尚、ラジエータ接続連通路12Cは主連通路09Bの一部を構成しており、ラジエータ接続連通路12Cにはサーモエレメントバルブ13を覆うカバー17が一体的に形成されている。ここで、ハウジング本体11と夫々の接続連通路12B~12Dの間には、シール部材18と圧縮ばね19が配置されている。
 シール部材18は、両端が開口した円形筒状に形成されており、圧縮ばね19によって、その先端面は弁本体14の外側周部20に押圧、接触されている。一方、スロットルチャンバ接続連通路12Aは常に冷却水が流れるので、このようなシール部材18や圧縮ばね19は不要である。
 弁本体14は有底円筒状に形成されており、その外側周部20に、上述した夫々の接続連通路12B~12Dに接続される開口部21が形成されている。したがって、冷却水ポンプ02から圧送されて内燃機関から冷却水流入通路09Aを流れてきた矢印CAで示す冷却水は、弁本体14の内部に流入して開口部21を介して夫々の接続連通路12B~12Dに流れ出るものである。
 弁本体14の一方には閉塞壁22が設けられており、この閉塞壁22は回転軸23に固定されており、回転軸23の回転に同期してハウジング本体11の弁収納部内で回転されるものである。
 この回転に同期して弁本体14は、各接続連通路12B~12Dとの接続関係を選択(流路の切り換え)するものである。尚、弁本体14の回転状態によって開口部21はシール部材18の開口との重なり度合いを制御できるので、流量を制御するように動作される場合もある。
 電動モータ15と弁本体14とはウォームギア機構で連結されている。すなわち、弁本体14が固定された回転軸23の反対側の端部には、ウォームホイール24が固定されており、このウォームホイール24はウォーム軸の一方に形成されたウォーム25と噛み合わされている。また、ウォーム軸の他方に形成されたウォームホイール26は電動モータ15に固定されたウォーム27と噛み合わされている。したがって、電動モータ15が回転すると、この回転はウォーム27⇒ウォームホイール26⇒ウォーム25⇒ウォームホイール24を経て回転軸23に伝えられ、最終的に弁本体14を回転させるものである。
 また、電動モータ15やウォームギア機構を覆うようにして、電子流路切換手段06を備えたカバーがハウジング本体11に固定されている。電子流路切換手段06からの制御信号は、電動モータ15に与えられて所定の回転動作を行うように動作される。
 以上のような構成の流路切換弁MCVは、良く知られた構成であり、またその動作も良く知られているので、これ以上の説明は省略する。次に、本実施形態の特徴である循環用通路09Cと、サーモエレメント部08、及び熱保護用通路09Dの構成について説明する。
 図5においては、スロットルチャンバ接続連通路12A、ラジエータ接続連通路12Cを通る斜めに切断した切断面を示しており、このため弁本体14の切断面は楕円形となっている。
 流路切換弁MCVのハウジング本体11内には、弁本体14が内蔵されており、弁本体14内に流入してきた冷却水は、開口部21を介して夫々の接続連通路12B~12Dに分配されるものである。ここで、弁本体14の開口部21は複数個設けられており、夫々の開口部21が、弁本体14の回転に対応して接続連通路12B~12Dに選択的に接続されるものである。
 ハウジング本体11には、サーモエレメントバルブ13を覆うカバー17が一体的に形成されたラジエータ接続連通路12Cが取り付けられている。ラジエータ接続連通路12Cとハウジング本体11の間には、圧縮ばね19と、この圧縮ばね19によって弁本体14の外側周部20に摺接するように付勢されたシール部材18が介装されている。したがって、弁本体14が回転して開口部21とシール部材18の開口が位置的に整合すると、弁本体14内の冷却水が開口部21を通ってラジエータ接続連通路12Cに流出するようになっている。
 また、ハウジング本体11の外周面には、シール部材18の配置領域に隣接、言い換えれば、ラジエータ接続連通路12Cに隣接して、第1迂回室28が形成されており、この第1迂回室28はカバー17によって密閉されている。第1迂回室28は、ハウジング本体11に形成した弁体収納部からの冷却水が常に供給されている。更に、カバー17の内側にも第2迂回室29が形成されており、この第2迂回室29と第1迂回室28は連通状態となっている。第2迂回室29は迂回接続通路30によってラジエータ接続連通路12Cと接続されている。
 したがって、第1迂回室28は、第2迂回室29、迂回接続通路30、及びラジエータ接続連通路12Cを介してラジエータ04(図1参照)に接続されている。尚、ラジエータ接続連通路12Cを介さずに、直接的にラジエータ04(図1参照)に接続することも可能である。このように、本実施形態では、第1迂回室28、第2迂回室29、迂回接続通路30、及びラジエータ接続連通路12Cの全体をまとめて熱保護用通路09Dの一部を形成している。
 第1迂回室28と第2迂回室29の間には、環状の弁座31が設けられており、この弁座31がサーモエレメントバルブ13によって開閉される構成とされている。サーモエレメントバルブ13の構成は一般的に良く知られているので、ここでは簡単に説明する。サーモエレメントバルブ13は、サーモワックス部32、及びサーモワックス部32によって駆動される出力ロッド(出力部材)33、及び出力ロッド33によって開閉される平板状の弁体34、及び弁体34を弁座31側に付勢する閉弁ばね35、及び閉弁ばね35を保持するばね保持板36から構成されている。
 そして、サーモワックス部32とばね保持板36は、図示しない保持部材によって一体化されている。更に、サーモワックス部32は、図示しない爪部によって第1迂回室28の壁面に固定されている。したがって、サーモワックス部32内のサーモワックスが膨張しない状態では、出力ロッド33と弁体34は、閉弁ばね35によって図中右側に付勢されているので、弁体34は弁座31に密着して第1迂回室28と第2迂回室29との連通を遮断している。
 また、第1迂回室28にはスロットルチャンバ接続連通路12Aが接続されており、第1迂回室28に流入している冷却水が、スロットルチャンバ接続連通路12Aを介してスロットルチャンバ10に供給される構成となっている。第1迂回室28には弁本体14とハウジング本体11の間の隙間、或いは別に形成した通路から、弁体収納部から冷却水が常時流入しており、この冷却水は上述した通り、スロットルチャンバ接続連通路12Aを介してスロットルチャンバ10に供給され、更に冷却水ポンプ02の吸入側に戻されている。
 スロットルチャンバ接続連通路12Aを流れる冷却水は、内燃機関のシリンダジャケットを流れてきた冷却水であるので、この冷却水の温度を感知すれば、内燃機関のオーバーヒートが発生する予兆を推測することができる。
 そして、図5に示す状態は流路切換弁MCVが正常に動作している場合を示し、この場合はサーモエレメントバルブ13が動作していないものである。つまり、流路切換弁MCVが正常に動作しているので、流路切換弁MCVからの冷却水はラジエータ接続連通路12Cを介してラジエータ04に供給されるので、この冷却水の熱はラジエータ04で放熱されて正常な温度に保たれている。この時、第1迂回室28を流れる冷却水の温度も正常であるため、サーモエレメントバルブ13のサーモワックス部32に内蔵されたサーモワックスは膨張せず、図5に示す状態となっている。
 一方、流路切換弁MCVが故障してラジエータ接続連通路12Cから冷却水をラジエータ04に流すことができなくなる状態が発生する場合がある。このような状態においては、図6に示すようにサーモエレメントバルブ13によって、第1迂回室28と第2迂回室29とが連通される状態となる。
 つまり、流路切換弁MCVの故障によって、内燃機関のシリンダジャケットを流れてきた冷却水の温度が高くなるが、この冷却水は第1迂回室28を流れているため、サーモエレメントバルブ13のサーモワックス部32に内蔵されたサーモワックスが膨張して出力ロッド33を図中左側に押し出すように動作する。
 このため、弁体34は閉弁ばね35を圧縮して開かれた状態に遷移する。これによって、冷却水が第1迂回室28、弁座31、第2迂回室29、迂回接続通路30を通ってラジエータ接続連通路12Cに流れるようになる。このように、弁体34は、弁座31と接離可能に当接している。したがって、流路切換弁MCVが故障した場合であっても、冷却水の一部がラジエータ04に流れて冷却されるので、内燃機関のオーバーヒートを防止することができるようになる。
 ところが、上述したように、従来の流路切換弁においては、第1迂回室28、第2迂回室29、迂回接続通路30、及びラジエータ接続連通路12Cからなる熱保護用通路09Dの通路断面積(最も狭い領域の通路断面積)が、常に冷却水が循環するスロットルチャンバ接続連通路12Aからなる循環用通路09Cの通路断面積(最も狭い領域の通路断面積)よりも小さい構成とされている。
 最近の内燃機関においては、希薄混合気を採用する傾向にあり、このため燃焼温度が高くなって内燃機関を構成するシリンダブロック等の構成部材の温度も高くなる傾向にあるので、サーモエレメントバルブ13の作動時において、熱保護用通路09Dを介してラジエータへ導かれる冷却水の流量が、循環用通路09Cに導かれる冷却水の流量より少ないと、ラジエータによる冷却水の冷却が充分に行われないという課題が生じる。
 そこで、本実施形態では、流路切換弁MCVの故障時に冷却水が流れる熱保護用通路09Dを流れる冷却水の流量が、循環用通路09Cを流れる冷却水の流量よりも大きく設定されている。更に詳しくは、熱保護用通路09Dの通路断面積(最も狭い領域の通路断面積)が、常に冷却水が循環する循環用通路09Cの通路断面積(最も狭い領域の通路断面積)よりも大きく形成されている。これによって、サーモエレメントバルブ13の作動時において、熱保護用通路09Dを介してラジエータへ導かれる冷却水の流量を多くでき、その結果、ラジエータによる冷却水の冷却が充分に行われ、オーバーヒートを可及的に抑制することができるようになる。以下、図6を用いて本実施形態の構成を詳細に説明する。
 図6において、まず、循環用通路09Cの通路断面積(最も狭い領域の通路断面積)は、スロットルチャンバ接続連通路12Aに形成された連通路の最狭部通路断面積(Sn)を循環用通路09Cの通路断面積として設定している。
 したがって、本実施形態では、この最狭部通路断面積(Sn)より大きい断面積を熱保護用通路09Dに設定する構成としている。そして、熱保護用通路09Dの通路断面積(最も狭い領域の通路断面積)は、代表的には以下の2つの構成によって設定することができる。
 第1の構成は、弁座31の冷却水が流れる流線方向Afにおいて、弁座31の形成領域(Ls)で、流線方向Afに直交する弁座31の通路断面積から、これも流線に直交するサーモエレメントバルブ13の断面積を減じた略環状の通路断面積(Sc)を、熱保護用通路09Dの通路断面積(最も狭い領域の通路断面積)として設定することができる。そして、略環状の通路断面積(Sc)と最狭部通路断面積(Sn)とは、「Sc>Sn」の関係を有している。
 また、第2の構成は、弁座31とこれに対向している弁体34のそれぞれの対向表面の間の長さ(Lv)によって設定される通路断面積(Sv)を、熱保護用通路09Dの通路断面積(最も狭い領域の通路断面積)として設定することができる。そして、通路断面積(Sv)と最狭部通路断面積(Sn)とは、Sv>Snの関係を有している。
 したがって、熱保護用通路09Dの通路断面積は、上述したいずれかの構成を採用することによって、熱保護用通路09Dの通路断面積を、循環用通路09Cの通路断面積よりも大きく形成することができる。これによって、サーモエレメントバルブ13の作動時において、熱保護用通路09Dを介してラジエータ04へ導かれる冷却水の流量を多くでき、ラジエータ04による冷却水の冷却が充分に行われ、オーバーヒートを可及的に抑制することができるようになる。
 ここで、本実施形態では、循環用通路09Cを通過する冷却水の流量と、熱保護用通路09Dを通過する冷却水の流量との割合を「1:1.5~2」に設定している。言い換えれば、流量は概ね「Q=A・V」(Q:流量、A:面積、V:流速)で表されるので、流速を一定と仮定すると、流量Qと面積Aは比例関係となる。したがって、熱保護用通路09Dの通路断面積は、循環用通路09Cの通路断面積の1.5倍~2倍程度に設定される。
 このように、本実施形態では、循環用通路09Cを通過する冷却水の流量と、熱保護用通路09Dを通過する冷却水の流量との割合を「1:1.5~2」に設定しているので、サーモエレメントバルブ13の作動時において、熱保護用通路09Dを介してラジエータ04へ導かれる冷却水の流量が多くなる。このため、ラジエータによる冷却水の冷却が充分に行われ、オーバーヒートを可及的に抑制することができるようになる。
 また、本実施形態では図5にある通り、ラジエータ接続連通路12Cとスロットルチャンバ接続連通路12Aとの間に、第1迂回室28と第2迂回室29を配置しているため、ハウジング本体11における通路構成が簡単となる効果を奏する。
 更に、第1迂回室28と第2迂回室29は、サーモエレメントバルブ13の出力ロッド33の移動方向と同じ方向に配置され、ラジエータ接続連通路12Cに対して、第1迂回室28、第2迂回室29が隣接して配置され、更にスロットルチャンバ接続連通路12Aが、第1迂回室28、第2迂回室29に隣接して配置されている。したがって、ラジエータ接続連通路12Cに対して、スロットルチャンバ接続連通路12Aが最も遠い位置に離れて配置されていることになる。
 これによって、サーモエレメントバルブ13が動作した時に、第1迂回室28、第2迂回室29を通過した冷却水を素早くラジエータ接続連通路12Cに送り出すことができるという効果を奏する。
 次に、本実施形態の変形例を図7、及び図8に基づき説明する。図7、図8にある変形例は、弁体34の動きに連動してスロットルチャンバ接続連通路12Aの連通状態を変更することを特徴としている。
 図7、図8において、サーモエレメントバルブ13の弁体34には、スロットルチャンバ接続連通路12Aの連通路37を開閉する開閉弁38が設けられている。この開閉弁38は、弁体34に溶着等の方法で弁体34と固定されており、サーモエレメントバルブ13が動作していない状態では、図7にある通り、開閉弁38はスロットルチャンバ接続連通路12Aの連通路37の開口と重なっていない状態とされている。このため、第1迂回室28とスロットルチャンバ接続連通路12Aの連通路37とは、連通状態に維持されている。したがって、この状態では図5に示す実施形態と全く同じ動作を行うことになる。
 一方、図8に示すように、流路切換弁MCVが故障して第1迂回室28に流れてくる冷却水の温度が高くなると、サーモエレメントバルブ13のサーモワックス部32に内蔵されたサーモワックスが膨張して出力ロッド33を図中左側に押し出すように動作する。
 このため、弁体34は閉弁ばね35を圧縮して開かれた状態に遷移する。これによって、冷却水が第1迂回室28、弁座31、第2迂回室29、迂回接続通路30を通ってラジエータ接続連通路12Cに流れるようになる。この時、弁体34に固定された開閉弁38は弁体34と共に、スロットルチャンバ接続連通路12Aの連通路37の開口を閉じるように移動する。したがって、第1迂回室28に流入してくる冷却水の水圧が上昇して、サーモエレメントバルブ13の弁体34を流れる冷却水の流量が増加してラジエータ04に供給される。これによって、更に冷却水の放熱を行なうことができ、内燃機関のオーバーヒートを更に防止することができるようになる。
 次に、本実施形態の他の変形例を図9、及び図10に基づき説明する。図9、図10にある変形例は、サーモエレメントバルブ13のサーモワックス部側を弁体としたことを特徴としている。
 図9、図10において、サーモエレメントバルブ13の出力ロッド39は、カバー17に固定され、サーモワックス部40が移動する構成となっている。サーモワックス部40は、第1迂回室41に配置され、出力ロッド39は第2迂回室42に配置されている。第1迂回室41には、スロットルチャンバ接続連通路に繋がる連通路43が接続されている。したがって、上述した実施例と同様に冷却水は常時スロットルチャンバに流れている。一方、第2迂回室42はラジエータ接続連通路に繋がる連通路44が接続されている。当然のことながら、連通路44を通過する冷却水の流量は、連通路43を通過する冷却水の流量より多くなるように設定されている。
 第1迂回室41と第2迂回室42の間には弁座45が形成されており、この弁座45にサーモワックス部40に形成された弁部46が開閉自在に接離可能に当接している。そして、図9は、サーモエレメントバルブが作動していない状態を示しており、第1迂回室41の冷却水は連通路43を介してスロットルチャンバに供給されている。この状態では図5に示す実施形態と全く同じ動作を行うことになる。
 一方、図10に示すように、流路切換弁MCVが故障して第1迂回室41に流れてくる冷却水の温度が高くなると、サーモエレメントバルブ13のサーモワックスが膨張して、出力ロッド33を起点としてサーモワックス部40が図中下側に向けて移動する動作を行う。
 このため、サーモワックス部40に形成した弁部46は閉弁ばね47を圧縮して開かれた状態に遷移する。これによって、冷却水が第1迂回室41、弁座45、第2迂回室42を通ってラジエータ接続連通路12Cに流れるようになる。この場合、冷却水の流量は弁座45と弁部46で形成される通路断面積によって決まるように構成されている。
 この変形例においても、サーモエレメントバルブの作動時において、熱保護用通路を介してラジエータへ導かれる冷却水の流量が多くなる。このため、ラジエータによる冷却水の冷却が充分に行われ、オーバーヒートを可及的に抑制することができるようになる。
 次に、本実施形態の他の変形例を図11に基づき説明する。図11にある変形例は、サーモエレメントバルブ13の弁体34、閉弁ばね35、ばね保持板36を2系統としたものである。出力ロッド33は二又形状に形成されている。一方の出力ロッド33Aには、出力ロッド33Aによって開閉される平板状の弁体34A、及び弁体34Aを弁座31A側に付勢する閉弁ばね35A、及び閉弁ばね35Aを保持するばね保持板36Aから構成されている。また、他方の出力ロッド33Bには、出力ロッド33Bによって開閉される平板状の弁体34B、及び弁体34Bを弁座31B側に付勢する閉弁ばね35B、及び閉弁ばね35Bを保持するばね保持板36Bから構成されている。
 これらの動作は、基本的には図5、図6に示したものと同様である。ただ、この場合、図5、図6に示す弁座31との通路断面積は、1系統の場合においては、従来と同様に循環用通路であるスロットルチャンバ接続連通路12Aの最狭部通路断面積(Sn)より小さく設定されている。ただ、2系統を合計すると、循環用通路であるスロットルチャンバ接続連通路12Aの最狭部通路断面積(Sn)より大きくなるものである。
 以上述べた通り、本発明によれば、流路切換弁の故障時に冷却水が流れる熱保護用通路を流れる冷却水の流量が、循環用通路を流れる冷却水の流量よりも大きく設定されている、更に詳しくは、熱保護用通路の通路断面積(最も狭い領域の通路断面積)が、常に冷却水が循環する循環用通路の通路断面積(最も狭い領域の通路断面積)よりも大きく形成されている構成とした。
 これによれば、熱保護用通路の通路断面積が、冷却水が循環する循環用通路の通路段面積よりも大きく設定されているため、サーモエレメントバルブの作動時において、熱保護用通路を介してラジエータへ導かれる冷却水の流量が多くなる。このため、ラジエータによる冷却水の冷却が充分に行われ、オーバーヒートを可及的に抑制することができるようになる。
 尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。

Claims (14)

  1.  弁体収納部を有したハウジング本体と、
     前記弁体収納部の内部に回転可能に収納された弁本体と、
     前記弁体収納部に接続され、内燃機関からの冷却水を前記弁体収納部に導入する冷却水流入通路と、
     前記弁体収納部に開口し、前記弁本体の回転に応じて前記弁体収納部に導入された冷却水を内燃機関の熱交換器へ流す熱交換器接続通路と、
     前記弁体収納部に連通され、前記弁体収納部に導入された冷却水を内燃機関へ常に循環するように流す循環用通路と、
     前記弁体収納部に導入された冷却水の温度を感知して動作するサーモエレメントバルブによって、前記弁体収納部に導入された冷却水の温度が所定温度を超えると、前記弁体収納部から前記熱交換器に冷却水を流す熱保護用通路を備え、
     前記熱保護用通路を流れる冷却水の流量が、前記循環用通路を流れる冷却水の流量よりも大きく設定されていることを特徴とする流路切換弁。
  2.  請求項1に記載の流路切換弁であって、
     前記熱保護用通路の通路断面積(最も狭い領域の通路断面積)が、前記循環用通路の通路断面積(最も狭い領域の通路断面積)よりも大きく形成されていることを特徴とする流路切換弁。
  3.  請求項2に記載の流路切換弁であって、
     前記サーモエレメントバルブは、冷却水の温度が所定温度になったときに膨張するサーモワックスが内蔵されたサーモワックス部と、前記サーモワックス部の前記サーモワックスが膨張すると駆動される出力部材と、前記出力部材によって前記熱保護用通路と前記弁体収納部を連通するように開く弁体とを備えていることを特徴とする流路切換弁。
  4.  請求項3に記載の流路切換弁であって、
     前記熱保護用通路は、前記ハウジング本体の外周に形成され前記弁体収納部と連通された第1迂回室と、前記第1迂回室に接続された第2迂回室と、前記第2迂回室に接続され、しかも前記熱交換器に接続された迂回接続通路からなり、
     前記第1迂回室と前記第2迂回室の間には弁座が配置され、前記弁座に前記サーモエレメントバルブの前記弁体が接離可能に当接していると共に、
     前記熱保護用通路の前記通路断面積(最も狭い領域の通路断面積)は、前記弁体と前記弁座によって形成される通路断面積であることを特徴とする流路切換弁。
  5.  請求項3に記載の流路切換弁であって、
     前記熱保護用通路は、前記ハウジング本体の外周に形成され前記弁体収納部と連通された第1迂回室と、前記第1迂回室に接続された第2迂回室と、前記第2迂回室に接続され、しかも前記熱交換器に接続された迂回接続通路からなり、
     前記第1迂回室と前記第2迂回室の間には弁座が配置され、前記弁座に前記サーモエレメントバルブの前記弁体が接離可能に当接していると共に、
     前記熱保護用通路の前記通路断面積(最も狭い領域の通路断面積)は、前記弁座と前記サーモエレメントバルブによって形成される通路断面積であることを特徴とする流路切換弁。
  6.  請求項3に記載の流路切換弁であって、
     前記熱保護用通路は、前記ハウジング本体の外周に形成され前記弁体収納部と連通された第1迂回室と、前記第1迂回室に接続された第2迂回室と、前記第2迂回室に接続され、しかも前記熱交換器に接続された迂回接続通路からなり、
     前記第1迂回室には、前記サーモエレメントバルブが配置され、更に前記第1迂回室と前記第2迂回室の間には弁座が配置され、前記弁座に前記サーモエレメントバルブの前記弁体が接離可能に当接していると共に、
     前記第1迂回室には前記循環用通路が開口されており、前記サーモエレメントバルブが動作した時に前記循環用通路を遮断する開閉弁が前記サーモエレメントバルブに設けられていることを特徴とする流路切換弁。
  7.  請求項2に記載の流路切換弁であって、
     前記サーモエレメントバルブは、冷却水の温度が所定温度になったときに膨張するサーモワックスが内蔵されたサーモワックス部と、前記サーモワックス部の前記サーモワックスが膨張すると駆動される出力部材と、前記出力部材を起点として前記熱保護用通路と前記弁体収納部を連通するように開く前記サーモワックス部に形成された弁部とを備え、
     前記熱保護用通路は、前記ハウジング本体の外周に形成され前記弁体収納部と連通された第1迂回室と、前記第1迂回室に接続された第2迂回室と、前記第2迂回室に接続され、しかも前記熱交換器に接続された迂回接続通路からなり、
     前記第1迂回室と前記第2迂回室の間には弁座が配置され、前記弁座に前記サーモワックス部に形成された前記弁部が接離可能に当接していると共に、
     前記熱保護用通路の前記通路断面積(最も狭い領域の通路断面積)は、前記弁部と前記弁座によって形成される通路断面積であることを特徴とする流路切換弁。
  8.  請求項3に記載の流路切換弁であって、
     前記熱保護用通路は、前記ハウジング本体の外周に形成され前記弁体収納部と連通された第1迂回室と、前記第1迂回室に接続された第2迂回室と、前記第2迂回室に接続され、しかも前記熱交換器に接続された迂回接続通路からなり、
     前記第1迂回室には、前記サーモエレメントバルブが配置され、更に前記第1迂回室と前記第2迂回室の間には弁座が配置され、前記弁座に前記サーモエレメントバルブの前記弁体が接離可能に当接していると共に、
     前記第1迂回室には前記循環用通路が開口されており、前記循環用通路の前記通路断面積(最も狭い領域の通路断面積)は、前記第1迂回室に開口した前記循環用通路の前記通路断面積である、ことを特徴とする流路切換弁。
  9.  請求項4~8のいずれか1項に記載の流路切換弁であって、
     前記迂回接続通路は前記熱交換器接続通路に接続され、前記循環用通路はスロットルチャンバに接続されたスロットルチャンバ接続通路であって、前記スロットルチャンバ接続通路は前記第1迂回室に接続されると共に、
     前記第1迂回室及び前記第2迂回室は、前記熱交換器接続通路と前記スロットルチャンバ接続通路の間に配置されていることを特徴とする流路切換弁。
  10.  請求項9に記載の流路切換弁であって、
     前記熱交換器接続通路に隣接して前記第1迂回室及び前記第2迂回室が配置され、前記熱交換器接続通路に対して前記第1迂回室及び前記第2迂回室より離れた位置に前記スロットルチャンバ接続通路が配置されていることを特徴とする流路切換弁。
  11.  請求項4又は5に記載の流路切換弁であって、
     前記第1迂回室と前記第2迂回室の間には少なくとも2個の前記弁座が配置され、
     前記サーモエレメントバルブは、前記出力部材によって2個の前記弁座を開閉する少なくとも2つの前記弁体を備えていることを特徴とする流路切換弁。
  12.  請求項1~11のいずれか1項に記載の流路切換弁であって、
     前記熱保護用通路を流れる冷却水の流量は、前記循環用通路を流れる冷却水の流量の1.5~2倍の範囲に設定されていることを特徴とする流路切換弁。
  13.  内燃機関を冷却する冷却水を加圧して圧送する流体ポンプと、前記流体ポンプからの冷却水を複数の補機類に送る流路切換弁を備える自動車用熱媒体システムであって、
     前記流路切換弁として、請求項1~10のいずれか1項に記載の流路切換弁を使用したことを特徴とする自動車用熱媒体システム。
  14.  請求項13に記載の自動車用熱媒体システムにおいて、
     前記補機類は少なくともラジエータ、暖房装置、及びオイルクーラであり、
     前記流路切換弁は、前記内燃機関の冷却水を前記ラジエータ、前記暖房装置、及び前記オイルクーラに選択的に分配することを特徴とする自動車用熱媒体システム。
PCT/JP2019/000988 2018-03-16 2019-01-16 流路切換弁及び自動車用熱媒体システム WO2019176261A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-049789 2018-03-16
JP2018049789A JP7174524B2 (ja) 2018-03-16 2018-03-16 流路切換弁及び自動車用熱媒体システム

Publications (1)

Publication Number Publication Date
WO2019176261A1 true WO2019176261A1 (ja) 2019-09-19

Family

ID=67908351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000988 WO2019176261A1 (ja) 2018-03-16 2019-01-16 流路切換弁及び自動車用熱媒体システム

Country Status (2)

Country Link
JP (1) JP7174524B2 (ja)
WO (1) WO2019176261A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115053055A (zh) * 2020-02-12 2022-09-13 日本恒温器株式会社 阀单元
US20220364494A1 (en) * 2021-05-13 2022-11-17 Mazda Motor Corporation Engine cooling system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021035416A (ja) * 2019-08-30 2021-03-04 株式会社三洋物産 遊技機

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028033A (ja) * 1998-07-09 2000-01-25 Toto Ltd 温度応動弁
JP2013068162A (ja) * 2011-09-22 2013-04-18 Mikuni Corp 冷却水制御バルブ装置
JP2013238138A (ja) * 2012-05-14 2013-11-28 Nissan Motor Co Ltd 内燃機関の冷却制御装置及びその冷却制御方法
JP2016128652A (ja) * 2015-01-09 2016-07-14 マツダ株式会社 エンジンの冷却装置
DE102015201243A1 (de) * 2015-01-26 2016-07-28 Ford Global Technologies, Llc Regelmittel zur Steuerung der Kühlmittelströme eines Split-Kühlsystems
JP2017003064A (ja) * 2015-06-15 2017-01-05 日立オートモティブシステムズ株式会社 流量制御弁
JP2018071622A (ja) * 2016-10-27 2018-05-10 株式会社山田製作所 制御バルブ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028033A (ja) * 1998-07-09 2000-01-25 Toto Ltd 温度応動弁
JP2013068162A (ja) * 2011-09-22 2013-04-18 Mikuni Corp 冷却水制御バルブ装置
JP2013238138A (ja) * 2012-05-14 2013-11-28 Nissan Motor Co Ltd 内燃機関の冷却制御装置及びその冷却制御方法
JP2016128652A (ja) * 2015-01-09 2016-07-14 マツダ株式会社 エンジンの冷却装置
DE102015201243A1 (de) * 2015-01-26 2016-07-28 Ford Global Technologies, Llc Regelmittel zur Steuerung der Kühlmittelströme eines Split-Kühlsystems
JP2017003064A (ja) * 2015-06-15 2017-01-05 日立オートモティブシステムズ株式会社 流量制御弁
JP2018071622A (ja) * 2016-10-27 2018-05-10 株式会社山田製作所 制御バルブ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115053055A (zh) * 2020-02-12 2022-09-13 日本恒温器株式会社 阀单元
US20220364494A1 (en) * 2021-05-13 2022-11-17 Mazda Motor Corporation Engine cooling system
US11624311B2 (en) * 2021-05-13 2023-04-11 Mazda Motor Corporation Engine cooling system

Also Published As

Publication number Publication date
JP2019157838A (ja) 2019-09-19
JP7174524B2 (ja) 2022-11-17

Similar Documents

Publication Publication Date Title
US9518503B2 (en) Cooling water control valve apparatus
WO2019176261A1 (ja) 流路切換弁及び自動車用熱媒体システム
US5617815A (en) Regulating valve
US7665513B2 (en) Heat exchanger structure of automatic transmission
US10738730B2 (en) Cooling device for engine
GB2401167A (en) Engine cooling system
WO2003095810A1 (fr) Thermostat a commande electronique
EP3358161B1 (en) Cooling structure for internal combustion engine
US11248712B2 (en) Rotary control valve
US10253679B2 (en) Vehicle thermal management system, and methods of use and manufacture thereof
WO2017217112A1 (ja) 切替流調弁
GB2444271A (en) Thermostat for an engine cooling system
US7172135B2 (en) Thermostat for two-system cooling device
JP4770816B2 (ja) エンジンの2系統式冷却装置
WO1997017219A1 (fr) Systeme de chauffage pour vehicules
JP5924300B2 (ja) エンジンの冷却水流路制御装置
JP2006090226A (ja) 制御弁
EP3444461A1 (en) Thermostat for cooling system of an internal combustion engine for vehicles
JP6634739B2 (ja) エンジンの冷却装置
JP5708042B2 (ja) V型エンジンの冷却装置
US10641157B2 (en) Thermostat and cooling system having the same
JP5724596B2 (ja) エンジンの冷却装置
JP4417644B2 (ja) 車両冷却装置
JP2017122409A (ja) 冷却システム
JP2005330825A (ja) 完全密封式リザーブタンク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767144

Country of ref document: EP

Kind code of ref document: A1