WO2019174638A1 - 一种用于3d打印的塑料及其制备方法 - Google Patents

一种用于3d打印的塑料及其制备方法 Download PDF

Info

Publication number
WO2019174638A1
WO2019174638A1 PCT/CN2019/078317 CN2019078317W WO2019174638A1 WO 2019174638 A1 WO2019174638 A1 WO 2019174638A1 CN 2019078317 W CN2019078317 W CN 2019078317W WO 2019174638 A1 WO2019174638 A1 WO 2019174638A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
powder
plastic
straw powder
antioxidant
Prior art date
Application number
PCT/CN2019/078317
Other languages
English (en)
French (fr)
Inventor
高伟
Original Assignee
淄博名堂教育科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淄博名堂教育科技有限公司 filed Critical 淄博名堂教育科技有限公司
Publication of WO2019174638A1 publication Critical patent/WO2019174638A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/357Recycling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the invention relates to the field of plastics, in particular to a plastic for 3D printing.
  • 3D printing technology also known as additive manufacturing technology, is an emerging technology in the field of rapid prototyping. It is based on digital model files, using adhesive materials such as powdered metal or plastic, by layer-by-layer printing. The technique of constructing objects. With the development and application of 3D printing technology, the development of materials determines whether 3D printing can be used more widely, and materials have become one of the key factors limiting the future direction of 3D printing technology.
  • Existing 3D printing materials mainly include photosensitive resin, rubber-based materials, metal materials and ceramic materials, etc.
  • colored gypsum materials, artificial bone powder, cell biological materials, wood materials, and food materials such as sugar are also in the field of 3D printing. Got the application.
  • Plastic is a polymer compound which is polymerized by addition polymerization or polycondensation reaction. It is commonly known as plastic or resin. It can be freely changed in composition and shape. It is made of synthetic resin and filler, plasticizer, stabilizer and lubricant. And additives such as colorants. People are also developing plastics for 3D printing, especially the use of waste plastics to make 3D printed plastics.
  • the present invention provides the following technical solutions:
  • a plastic for 3D printing comprising the following raw materials by weight: 25-40 parts of waste plastic, 3-5 parts of Radix isatidis, 6-12 parts of peanut protein powder, 2-3 parts of titanium dioxide, diisophthalic acid 1.1-1.9 parts of decyl ester, 15-22 parts of straw powder, 2-5 parts of graphene, 1.5-2.5 parts of talc, 6-8 parts of maleic anhydride grafted polyethylene, 1.5-2 parts of zinc stearate, anti- 1-1.5 parts of oxygen and 15-26 parts of montmorillonite.
  • the straw powder adopts one or a mixture of wheat straw powder, rice straw powder, corn straw powder, rape straw powder and cotton straw powder, and the antioxidant uses antioxidant 1010, and is resistant to oxygen. Any one of the agent 1076, the antioxidant 264, and the antioxidant BHT.
  • the peanut protein powder has a particle diameter of 50 to 130 um, and the talc powder has a particle diameter of 0.08 to 0.36 mm.
  • Step one the Radix is added to the water to be wetted and allowed to stand for 2-5 hours, the quality of the water is 2-4 times the mass of the Radix isatidis, and then the distilled water of 15-20 times the mass of the Radix is added to maintain the temperature for 10-15 hours at 50-80 degrees Celsius. , filtering and lyophilizing the filtrate to obtain Radix Isatidis extract;
  • Step two mixing the straw powder and the peanut protein powder and soaking in a sodium hydroxide solution having a mass fraction of 15-35% for 40-60 minutes, and then washing to neutral with deionized water to obtain modified straw powder and modified peanut.
  • Protein powder, the diisodecyl phthalate, graphene, maleic anhydride grafted polyethylene, modified straw powder and modified peanut protein powder are ball milled in a ball mill and passed through 240-280 mesh to obtain a first mixture;
  • Step three mixing waste plastic, titanium dioxide, talc, zinc stearate and montmorillonite and pulverizing at minus 15 to minus 5 degrees Celsius to obtain a second mixture;
  • step four the Radix isatidis extract, the first mixture, the second mixture and the antioxidant are mixed and heated to 110-120 degrees Celsius, and granulated by extrusion at a rotational speed of 90-150 rpm, and then cooled to room temperature to obtain a finished product.
  • the ratio of the ball to the ball in the second step is 40-50:1.
  • the invention has the beneficial effects that the raw materials of the invention are widely used, and the waste plastic and straw powder are used as raw materials, which can not only greatly reduce the production cost, but also reduce environmental pollution, save resources, and the preparation process is simple.
  • the synergistic effect of various raw materials, the prepared finished product has excellent mechanical properties, is suitable for 3D printing and forming technology, and has broad market prospects.
  • a plastic for 3D printing comprising the following raw materials by weight: 25 parts of waste plastic, 3 parts of Radix, 3 parts of peanut protein powder, 2 parts of titanium dioxide, 1.1 parts of diisononyl phthalate, straw powder 15 Parts, 2 parts of graphene, 1.5 parts of talc, 6 parts of maleic anhydride grafted polyethylene, 1.5 parts of zinc stearate, 1 part of antioxidant, and 15 parts of montmorillonite.
  • the straw powder is a mixture of wheat straw powder and cotton straw powder, and the antioxidant is an antioxidant 1010.
  • Step one the Radix is added to the water to be wetted and allowed to stand for 3 hours, the water quality is twice the mass of the Radix isatidis, and then the distilled water of 18 times the quality of the Radix is added and kept at 75 ° C for 12 hours, filtered and the filtrate is freeze-dried to obtain Radix isatidis extract;
  • Step 2 mixing the straw powder and the peanut protein powder and soaking in a sodium hydroxide solution having a mass fraction of 22% for 50 minutes, and then washing to neutral with deionized water to obtain modified straw powder and modified peanut protein powder, Diisodecyl phthalate, graphene, maleic anhydride grafted polyethylene, modified straw powder and modified peanut protein powder are ball milled in a ball mill and passed through 260 mesh to obtain a first mixture;
  • Step three mixing waste plastic, titanium dioxide, talc, zinc stearate and montmorillonite and pulverizing at minus 10 degrees Celsius to obtain a second mixture;
  • step four the Radix isatidis extract, the first mixture, the second mixture and the antioxidant are mixed and heated to 115 degrees Celsius, granulated by extrusion at a rotation speed of 120 rpm, and then cooled to room temperature to obtain a finished product.
  • a plastic for 3D printing comprising the following raw materials by weight: 32 parts of waste plastic, 3.6 parts of Radix isatidis, 11 parts of peanut protein powder, 2.2 parts of titanium dioxide, 1.4 parts of diisodecyl phthalate, straw powder 18 A portion, 3.2 parts of graphene, 1.9 parts of talc, 6.8 parts of maleic anhydride grafted polyethylene, 1.7 parts of zinc stearate, 1.2 parts of antioxidant, and 20 parts of montmorillonite.
  • the peanut protein powder has a particle size of 80 ⁇ m and the talc powder has a particle diameter of 0.15 mm.
  • Step one the Radix Isatidis was moistened with water and allowed to stand for 3 hours, the quality of the water was 4 times the mass of Radix isatidis, and then the distilled water of 16 times the mass of Radix is added and kept at 66 ° C for 13 hours, filtered and the filtrate was freeze-dried to obtain Radix isatidis extract;
  • Step two the straw powder and the peanut protein powder are mixed and soaked in a sodium hydroxide solution having a mass fraction of 30% for 54 minutes, and then washed with deionized water to neutral to obtain modified straw powder and modified peanut protein powder, which will Diisodecyl phthalate, graphene, maleic anhydride grafted polyethylene, modified straw powder and modified peanut protein powder are ball milled in a ball mill and passed through 280 mesh to obtain a first mixture;
  • Step three mixing waste plastic, titanium dioxide, talc, zinc stearate and montmorillonite and pulverizing at minus 8 degrees Celsius to obtain a second mixture;
  • step four the Radix isatidis extract, the first mixture, the second mixture and the antioxidant are mixed and heated to 116 degrees Celsius, granulated by extrusion at 150 rpm, and then cooled to room temperature to obtain a finished product.
  • a plastic for 3D printing comprising the following raw materials by weight: 38 parts of waste plastic, 4.5 parts of Radix isatidis, 11 parts of peanut protein powder, 2.7 parts of titanium dioxide, 1.8 parts of diisodecyl phthalate, straw powder 20 A portion, 4.6 parts of graphene, 2.3 parts of talc, 7.5 parts of maleic anhydride grafted polyethylene, 1.9 parts of zinc stearate, 1.4 parts of antioxidant, and 24 parts of montmorillonite.
  • the peanut protein powder has a particle size of 100 ⁇ m and the talc powder has a particle diameter of 0.32 mm.
  • Step one the Radix Isatidis was moistened with water and allowed to stand for 4 hours, the quality of the water was twice the mass of Radix isatidis, and then the distilled water of 18 times of the quality of Radix is added and kept at 75 ° C for 13 hours, filtered and the filtrate was freeze-dried to obtain Radix isatidis extract;
  • Step two the straw powder and the peanut protein powder are mixed and soaked in a sodium hydroxide solution having a mass fraction of 18% for 55 minutes, and then washed with deionized water to be neutral to obtain a modified straw powder and a modified peanut protein powder, which will Diisodecyl phthalate, graphene, maleic anhydride grafted polyethylene, modified straw powder and modified peanut protein powder are ball milled in a ball mill and passed through 260 mesh.
  • the ratio of ball to material is 46:1, which is the first. mixture;
  • Step three mixing waste plastic, titanium dioxide, talc, zinc stearate and montmorillonite and pulverizing at minus 12 degrees Celsius to obtain a second mixture;
  • step four the Radix isatidis extract, the first mixture, the second mixture and the antioxidant are mixed and heated to 113 ° C, and granulated by extrusion at 150 rpm, and then cooled to room temperature to obtain a finished product.
  • a plastic for 3D printing comprising the following raw materials by weight: 40 parts of waste plastic, 5 parts of Radix isatidis, 12 parts of peanut protein powder, 3 parts of titanium dioxide, 1.9 parts of diisononyl phthalate, straw powder 22 Parts, 5 parts of graphene, 2.5 parts of talc, 8 parts of maleic anhydride grafted polyethylene, 2 parts of zinc stearate, 1.5 parts of antioxidant, and 26 parts of montmorillonite.
  • the straw powder is a mixture of rice straw powder, corn straw powder and rape straw powder, and the antioxidant is an antioxidant 1010.
  • the peanut protein powder has a particle size of 120 ⁇ m and the talc powder has a particle size of 0.24 mm.
  • Step one the Radix Isatidis was moistened with water and allowed to stand for 4 hours, the quality of the water was 3 times the mass of Radix isatidis, and then the distilled water of 18 times of the quality of Radix is added and kept at 75 ° C for 14 hours, filtered and the filtrate was freeze-dried to obtain Radix isatidis extract;
  • Step 2 mixing straw powder and peanut protein powder and soaking in a sodium hydroxide solution having a mass fraction of 26% for 55 minutes, and then washing with deionized water to neutral to obtain modified straw powder and modified peanut protein powder, Diisodecyl phthalate, graphene, maleic anhydride grafted polyethylene, modified straw powder and modified peanut protein powder are ball milled in a ball mill and passed through 240 mesh.
  • the ratio of ball to material is 50:1, which is the first. mixture;
  • Step three mixing waste plastic, titanium dioxide, talc, zinc stearate and montmorillonite and pulverizing at minus 12 degrees Celsius to obtain a second mixture;
  • step four the Radix isatidis extract, the first mixture, the second mixture and the antioxidant are mixed and heated to 118 degrees Celsius, granulated by extrusion at 130 rpm, and then cooled to room temperature to obtain a finished product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

一种用于3D打印的塑料及其制备方法,包括以下重量份的原料:废弃塑料25-40份、板蓝根3-5份、花生蛋白粉6-12份、钛白粉2-3份、邻苯二甲酸二异癸酯1.1-1.9份、秸秆粉15-22份、石墨烯2-5份、滑石粉1.5-2.5份、马来酸酐接枝聚乙烯6-8份、硬脂酸锌1.5-2份、抗氧剂1-1.5份和蒙脱土15-26份。采用废弃塑料和秸秆粉为原料,不仅可以降低生产成本,同时可减少环境污染,节约资源,制备工艺简单,通过各种原料的协同作用,制备的成品力学性能优异,适用于3D打印成型技术,具有广阔的市场前景。

Description

一种用于3D打印的塑料及其制备方法 技术领域
本发明涉及塑料领域,具体是一种用于3D打印的塑料。
背景技术
3D打印技术又称增材制造技术,是快速成型领域的一种新兴技术,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。随着3D打印技术的发展和应用,材料的发展决定着3D打印能否有更广泛的应用,材料成为限制3D打印技术未来走向的关键因素之一。现有的3D打印材料主要包括光敏树脂、橡胶类材料、金属材料和陶瓷材料等,除此之外,彩色石膏材料、人造骨粉、细胞生物原料、木质材料以及砂糖等食品材料也在3D打印领域得到了应用。
塑料是以单体为原料,通过加聚或缩聚反应聚合而成的高分子化合物,俗称塑料或树脂,可以自由改变成分及形体样式,由合成树脂及填料、增塑剂、稳定剂、润滑剂、色料等添加剂组成。人们也在研制用于3D打印的塑料,尤其是采用废弃塑料制作3D打印塑料成为这方面的热点。
发明内容
本发明的目的在于提供一种用于3D打印的塑料,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种用于3D打印的塑料,包括以下重量份的原料:废弃塑料25-40份、板蓝根3-5份、花生蛋白粉6-12份、钛白粉2-3份、邻苯二甲酸二异癸酯1.1-1.9份、秸秆粉15-22份、石墨烯2-5份、滑石粉1.5-2.5份、马来酸酐接枝聚乙烯6-8份、硬脂酸锌1.5-2份、抗氧剂1-1.5份和蒙脱土15-26份。
作为本发明进一步的方案:秸秆粉采用小麦秸秆粉、水稻秸秆粉、玉米秸秆粉、油菜秸秆粉和棉花秸秆粉中的一种或者几种的混合物,抗氧剂采用抗氧剂1010、抗氧剂1076、抗氧剂264和抗氧剂BHT中的任意一种。
作为本发明进一步的方案:花生蛋白粉的粒径为50-130um,滑石粉的粒径为0.08-0.36mm。
所述用于3D打印的塑料的制备方法,具体步骤如下:
步骤一,将板蓝根加入水润湿并且静置2-5小时,水的质量为板蓝根质量的2-4倍,然后加入板蓝根质量15-20倍的蒸馏水在50-80摄氏度下保持10-15小时,过滤并且将滤液冻干干燥,得到板蓝根提取物;
步骤二,将秸秆粉和花生蛋白粉混合并且在质量分数为15-35%的氢氧化钠溶液中浸泡40-60分钟,然后用去离子水洗至中性,得到改性秸秆粉和改性花生蛋白粉,将邻苯二甲酸二异癸酯、石墨烯、马来酸酐接枝聚乙烯、改性秸秆粉和改性花生蛋白粉在球磨机中球磨并且过240-280目,得到第一混合物;
步骤三,将废弃塑料、钛白粉、滑石粉、硬脂酸锌和蒙脱土混合并且在零下15至零下5摄氏度下粉碎,得到第二混合物;
步骤四,将板蓝根提取物、第一混合物、第二混合物和抗氧剂混合并且升温至110-120摄氏度,在转速为90-150rpm下挤压造粒,然后冷却至室温,即可得到成品。
作为本发明进一步的方案:步骤二中球磨时的球料比为40-50:1。
与现有技术相比,本发明的有益效果是:本发明原料来源广泛,采用废弃塑料和秸秆粉为原料,不仅可以大大降低生产成本,同时可以减少环境污染,节约资源,制备工艺简单,通过各种原料的协同作用,制备的成品力学性能优异,适用于3D打印成型技术,具有广阔的市场前景。
具体实施方式
下面结合具体实施方式对本专利的技术方案作进一步详细地说明。
实施例1
一种用于3D打印的塑料,包括以下重量份的原料:废弃塑料25份、板蓝根3份、花生蛋白粉6份、钛白粉2份、邻苯二甲酸二异癸酯1.1份、秸秆粉15份、石墨烯2份、滑石粉1.5份、马来酸酐接枝聚乙烯6份、硬脂酸锌1.5份、抗氧剂1份和蒙脱土15份。秸秆粉采用小麦秸秆粉和棉花秸秆粉的混合物,抗氧剂采用抗氧剂1010。
所述用于3D打印的塑料的制备方法,具体步骤如下:
步骤一,将板蓝根加入水润湿并且静置3小时,水的质量为板蓝根质量的2倍,然后加入板蓝根质量18倍的蒸馏水在75摄氏度下保持12小时,过滤并且将滤液冻干干燥,得到板蓝根提取物;
步骤二,将秸秆粉和花生蛋白粉混合并且在质量分数为22%的氢氧化钠溶液中浸泡50分钟,然后用去离子水洗至中性,得到改性秸秆粉和改性花生蛋白粉,将邻苯二甲酸二异癸酯、石墨烯、马来酸酐接枝聚乙烯、改性秸秆粉和改性花生蛋白粉在球磨机中球磨并且过260目,得到第一混合物;
步骤三,将废弃塑料、钛白粉、滑石粉、硬脂酸锌和蒙脱土混合并且在零下10摄氏度下粉碎,得到第二混合物;
步骤四,将板蓝根提取物、第一混合物、第二混合物和抗氧剂混合并且升温至115摄氏度,在转速为120rpm下挤压造粒,然后冷却至室温,即可得到成品。
实施例2
一种用于3D打印的塑料,包括以下重量份的原料:废弃塑料32份、板蓝根3.6份、花生蛋白粉11份、钛白粉2.2份、邻苯二甲酸二异癸酯1.4份、秸秆粉18份、石墨烯3.2份、滑石粉1.9份、马来酸酐接枝聚乙烯6.8份、硬脂酸锌1.7份、抗氧剂1.2份和蒙脱土20份。花生蛋白粉的粒径为80um,滑石粉的粒径为0.15mm。
所述用于3D打印的塑料的制备方法,具体步骤如下:
步骤一,将板蓝根加入水润湿并且静置3小时,水的质量为板蓝根质量的4倍,然后加入板蓝根质量16倍的蒸馏水在66摄氏度下保持13小时,过滤并且将滤液冻干干燥,得到板蓝根提取物;
步骤二,将秸秆粉和花生蛋白粉混合并且在质量分数为30%的氢氧化钠溶液中浸泡54分钟,然后用去离子水洗至中性,得到改性秸秆粉和改性花生蛋白粉,将邻苯二甲酸二异癸酯、石墨烯、马来酸酐接枝聚乙烯、改性秸秆粉和改性花生蛋白粉在球磨机中球磨并且过280目,得到第一混合物;
步骤三,将废弃塑料、钛白粉、滑石粉、硬脂酸锌和蒙脱土混合并且在零下8摄氏度下粉碎,得到第二混合物;
步骤四,将板蓝根提取物、第一混合物、第二混合物和抗氧剂混合并且升温至116摄氏度,在转速为150rpm下挤压造粒,然后冷却至室温,即可得到成品。
实施例3
一种用于3D打印的塑料,包括以下重量份的原料:废弃塑料38份、板蓝根4.5份、花生蛋白粉11份、钛白粉2.7份、邻苯二甲酸二异癸酯1.8份、秸秆粉20 份、石墨烯4.6份、滑石粉2.3份、马来酸酐接枝聚乙烯7.5份、硬脂酸锌1.9份、抗氧剂1.4份和蒙脱土24份。花生蛋白粉的粒径为100um,滑石粉的粒径为0.32mm。
所述用于3D打印的塑料的制备方法,具体步骤如下:
步骤一,将板蓝根加入水润湿并且静置4小时,水的质量为板蓝根质量的2倍,然后加入板蓝根质量18倍的蒸馏水在75摄氏度下保持13小时,过滤并且将滤液冻干干燥,得到板蓝根提取物;
步骤二,将秸秆粉和花生蛋白粉混合并且在质量分数为18%的氢氧化钠溶液中浸泡55分钟,然后用去离子水洗至中性,得到改性秸秆粉和改性花生蛋白粉,将邻苯二甲酸二异癸酯、石墨烯、马来酸酐接枝聚乙烯、改性秸秆粉和改性花生蛋白粉在球磨机中球磨并且过260目,球料比为46:1,得到第一混合物;
步骤三,将废弃塑料、钛白粉、滑石粉、硬脂酸锌和蒙脱土混合并且在零下12摄氏度下粉碎,得到第二混合物;
步骤四,将板蓝根提取物、第一混合物、第二混合物和抗氧剂混合并且升温至113摄氏度,在转速为150rpm下挤压造粒,然后冷却至室温,即可得到成品。
实施例4
一种用于3D打印的塑料,包括以下重量份的原料:废弃塑料40份、板蓝根5份、花生蛋白粉12份、钛白粉3份、邻苯二甲酸二异癸酯1.9份、秸秆粉22份、石墨烯5份、滑石粉2.5份、马来酸酐接枝聚乙烯8份、硬脂酸锌2份、抗氧剂1.5份和蒙脱土26份。秸秆粉采用水稻秸秆粉、玉米秸秆粉和油菜秸秆粉的混合物,抗氧剂采用抗氧剂1010。花生蛋白粉的粒径为120um,滑石粉的粒径为0.24mm。
所述用于3D打印的塑料的制备方法,具体步骤如下:
步骤一,将板蓝根加入水润湿并且静置4小时,水的质量为板蓝根质量的3倍,然后加入板蓝根质量18倍的蒸馏水在75摄氏度下保持14小时,过滤并且将滤液冻干干燥,得到板蓝根提取物;
步骤二,将秸秆粉和花生蛋白粉混合并且在质量分数为26%的氢氧化钠溶液中浸泡55分钟,然后用去离子水洗至中性,得到改性秸秆粉和改性花生蛋白粉,将邻苯二甲酸二异癸酯、石墨烯、马来酸酐接枝聚乙烯、改性秸秆粉和改性花生蛋 白粉在球磨机中球磨并且过240目,球料比为50:1,得到第一混合物;
步骤三,将废弃塑料、钛白粉、滑石粉、硬脂酸锌和蒙脱土混合并且在零下12摄氏度下粉碎,得到第二混合物;
步骤四,将板蓝根提取物、第一混合物、第二混合物和抗氧剂混合并且升温至118摄氏度,在转速为130rpm下挤压造粒,然后冷却至室温,即可得到成品。
对实施例1-4的产品进行性能测试,吸水实验采用GB1034-1986的方法,测试结果见表1。
表1
Figure PCTCN2019078317-appb-000001
从表1中可以看出,实施例1-4的产品均具有良好的力学性能,可以满足人们的使用需求。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (5)

  1. 一种用于3D打印的塑料,其特征在于,包括以下重量份的原料:废弃塑料25-40份、板蓝根3-5份、花生蛋白粉6-12份、钛白粉2-3份、邻苯二甲酸二异癸酯1.1-1.9份、秸秆粉15-22份、石墨烯2-5份、滑石粉1.5-2.5份、马来酸酐接枝聚乙烯6-8份、硬脂酸锌1.5-2份、抗氧剂1-1.5份和蒙脱土15-26份。
  2. 根据权利要求1所述的用于3D打印的塑料,其特征在于,所述秸秆粉采用小麦秸秆粉、水稻秸秆粉、玉米秸秆粉、油菜秸秆粉和棉花秸秆粉中的一种或者几种的混合物,抗氧剂采用抗氧剂1010、抗氧剂1076、抗氧剂264和抗氧剂BHT中的任意一种。
  3. 根据权利要求1所述的用于3D打印的塑料,其特征在于,所述花生蛋白粉的粒径为50-130um,滑石粉的粒径为0.08-0.36mm。
  4. 一种如权利要求1-3任一所述的用于3D打印的塑料的制备方法,其特征在于,具体步骤如下:
    步骤一,将板蓝根加入水润湿并且静置2-5小时,水的质量为板蓝根质量的2-4倍,然后加入板蓝根质量15-20倍的蒸馏水在50-80摄氏度下保持10-15小时,过滤并且将滤液冻干干燥,得到板蓝根提取物;
    步骤二,将秸秆粉和花生蛋白粉混合并且在质量分数为15-35%的氢氧化钠溶液中浸泡40-60分钟,然后用去离子水洗至中性,得到改性秸秆粉和改性花生蛋白粉,将邻苯二甲酸二异癸酯、石墨烯、马来酸酐接枝聚乙烯、改性秸秆粉和改性花生蛋白粉在球磨机中球磨并且过240-280目,得到第一混合物;
    步骤三,将废弃塑料、钛白粉、滑石粉、硬脂酸锌和蒙脱土混合并且在零下15至零下5摄氏度下粉碎,得到第二混合物;
    步骤四,将板蓝根提取物、第一混合物、第二混合物和抗氧剂混合并且升温至110-120摄氏度,在转速为90-150rpm下挤压造粒,然后冷却至室温,即可得到成品。
  5. 根据权利要求4所述的用于3D打印的塑料的制备方法,其特征在于,所述步骤二中球磨时的球料比为40-50:1。
PCT/CN2019/078317 2018-03-16 2019-03-15 一种用于3d打印的塑料及其制备方法 WO2019174638A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810215977.3A CN110157209A (zh) 2018-03-16 2018-03-16 一种用于3d打印的塑料及其制备方法
CN201810215977.3 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019174638A1 true WO2019174638A1 (zh) 2019-09-19

Family

ID=67636246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078317 WO2019174638A1 (zh) 2018-03-16 2019-03-15 一种用于3d打印的塑料及其制备方法

Country Status (2)

Country Link
CN (1) CN110157209A (zh)
WO (1) WO2019174638A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112679830A (zh) * 2020-12-26 2021-04-20 云南鑫科新材料工程技术有限公司 一种基于钛改性的耐高温、高强型超高分子量聚乙烯复合板材及其制备方法
CN117071303A (zh) * 2023-10-16 2023-11-17 波司登羽绒服装有限公司 一种复合印花浆料、抗菌抗静电保暖面料及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060267228A1 (en) * 2005-03-21 2006-11-30 Antunes Ronilso J Reuse process of plastic material and paper rejected in recycling and its resultant product
CN103724678A (zh) * 2013-11-28 2014-04-16 青岛科创塑料机械有限公司 一种塑料用抗菌剂
CN106188738A (zh) * 2016-07-07 2016-12-07 安徽国风木塑科技有限公司 一种高强度防腐耐磨复合纤维/pe木塑复合材料及其制备方法
CN107022201A (zh) * 2017-05-25 2017-08-08 合肥龙图腾信息技术有限公司 一种用于3d打印的复合材料及其制备方法
CN107189161A (zh) * 2017-06-26 2017-09-22 苏昭缄 一种用于3d打印的金属复合材料及其制备方法
CN107540881A (zh) * 2017-09-15 2018-01-05 苏州英得福机电科技有限公司 一种环保型塑料材料

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104086963B (zh) * 2014-07-31 2016-01-20 宁国市日格美橡塑制品有限公司 一种可生物降解花生蛋白塑料
CN104430628A (zh) * 2014-11-26 2015-03-25 铜陵市新泰电容电器有限责任公司 基于再生电容器塑壳清洗用杀菌组合物
CN104830082A (zh) * 2015-04-10 2015-08-12 合肥环照高分子材料厂 一种菌糠为原料的生物降解塑料及其制备方法
CN107686627A (zh) * 2016-08-04 2018-02-13 中国石油化工股份有限公司 3d打印用组合物和3d打印用材料及其制备方法和应用
CN106589999A (zh) * 2016-12-15 2017-04-26 广西筑梦三体科技有限公司 一种高断裂伸长率的秸秆3d打印材料
CN107010871A (zh) * 2017-05-05 2017-08-04 合肥图腾龙企业管理事务所(有限合伙) 一种3d打印材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060267228A1 (en) * 2005-03-21 2006-11-30 Antunes Ronilso J Reuse process of plastic material and paper rejected in recycling and its resultant product
CN103724678A (zh) * 2013-11-28 2014-04-16 青岛科创塑料机械有限公司 一种塑料用抗菌剂
CN106188738A (zh) * 2016-07-07 2016-12-07 安徽国风木塑科技有限公司 一种高强度防腐耐磨复合纤维/pe木塑复合材料及其制备方法
CN107022201A (zh) * 2017-05-25 2017-08-08 合肥龙图腾信息技术有限公司 一种用于3d打印的复合材料及其制备方法
CN107189161A (zh) * 2017-06-26 2017-09-22 苏昭缄 一种用于3d打印的金属复合材料及其制备方法
CN107540881A (zh) * 2017-09-15 2018-01-05 苏州英得福机电科技有限公司 一种环保型塑料材料

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112679830A (zh) * 2020-12-26 2021-04-20 云南鑫科新材料工程技术有限公司 一种基于钛改性的耐高温、高强型超高分子量聚乙烯复合板材及其制备方法
CN112679830B (zh) * 2020-12-26 2022-11-01 云南鑫科新材料工程技术有限公司 一种基于钛改性的耐高温、高强型超高分子量聚乙烯复合板材及其制备方法
CN117071303A (zh) * 2023-10-16 2023-11-17 波司登羽绒服装有限公司 一种复合印花浆料、抗菌抗静电保暖面料及其应用
CN117071303B (zh) * 2023-10-16 2024-01-05 波司登羽绒服装有限公司 一种复合印花浆料、抗菌抗静电保暖面料及其应用

Also Published As

Publication number Publication date
CN110157209A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
CN102366131B (zh) 一种无铝湿粉条的加工方法
CN109401225A (zh) 一种生物可降解保鲜膜及其制备方法
CN104877293B (zh) 一种驱蚊型3d打印材料及其应用
CN102634140A (zh) 一种用于制作玩具的搪胶及其制备方法
CN106280339B (zh) 一种phbv基可降解3d打印耗材及其制备方法
WO2012116515A1 (zh) 一种可降解塑料及其生产方法
CN107118398A (zh) 可降解的无毒环保玩具材料及其制备方法
WO2019174638A1 (zh) 一种用于3d打印的塑料及其制备方法
CN106589650A (zh) 一种性能优良的塑料材料及其制备方法
CN103205024B (zh) 以板栗和壳聚糖为基质的可食性食品包装膜及其制备方法
CN112063133A (zh) 一种生物降解透气膜及其制备方法
CN102643523B (zh) 一种改性聚乳酸/聚己内酯复合材料及其制法
CN103183937B (zh) 一种改性聚乳酸复合材料及其制备方法
CN108530854A (zh) 一种秸秆粉-pla木塑复合材料制备方法
CN108676348B (zh) 一种牙髓腔胶3d打印复合材料的制备方法及其应用
KR102166137B1 (ko) 도담쌀 및 곤약을 이용하여 면을 제조하는 방법 및 이를 이용하여 제조된 도담쌀 곤약면
CN100999608A (zh) 可热塑性加工的小麦麸质蛋白材料的制备方法
CN102604344B (zh) 聚己内酯/聚丁二酸丁二醇酯复合材料及其制备方法
CN104479310A (zh) 一种环保型婴儿饮水杯用聚乳酸复合材料的制备方法
CN101735539A (zh) 高分子化合物pvb降解塑料
CN105733217A (zh) 一种具有感光驱蚊效果的3d打印材料的制备方法
CN103554279A (zh) 可替代明胶的复合变性淀粉及应用
CN102952382A (zh) 一种用于纸淋膜的聚乳酸新材料
CN103183938A (zh) 聚己内酯/聚丁二酸丁二醇酯/蛋壳粉复合材料及其制法
CN104927321A (zh) 一种包装材料用phbv复合膜的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767555

Country of ref document: EP

Kind code of ref document: A1