WO2019174373A1 - 改善燃料电池双极板碳化物涂层导电及耐蚀性的方法 - Google Patents
改善燃料电池双极板碳化物涂层导电及耐蚀性的方法 Download PDFInfo
- Publication number
- WO2019174373A1 WO2019174373A1 PCT/CN2019/070161 CN2019070161W WO2019174373A1 WO 2019174373 A1 WO2019174373 A1 WO 2019174373A1 CN 2019070161 W CN2019070161 W CN 2019070161W WO 2019174373 A1 WO2019174373 A1 WO 2019174373A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- coating
- bipolar plate
- carbide coating
- corrosion resistance
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
- H01M8/0208—Alloys
- H01M8/021—Alloys based on iron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0213—Gas-impermeable carbon-containing materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0215—Glass; Ceramic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0228—Composites in the form of layered or coated products
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention belongs to the technical field of fuel cells, and in particular relates to a method for improving the electrical conductivity and corrosion resistance of a fuel cell bipolar plate carbide coating.
- Proton Exchange Membrane Fuel Cell has been widely used in transportation, defense, and electronic products due to its high conversion efficiency, no pollution to the environment, low operating temperature, and long working life.
- the traditional metal material has good electrical conductivity, thermal conductivity, excellent mechanical properties, and is suitable for mass production. It is the first choice for fuel cell bipolar plate materials, but the metal plate will be seriously corroded in the fuel cell working environment, resulting in metal poles. Precipitation of metal ions such as Cr + and Ni + in the plate leads to proton exchange membrane fouling and catalyst degradation, thereby reducing the service life of the fuel cell, and in the acidic environment, the metal surface is easily formed into a passivation film to increase the contact between the plate and the gas diffusion layer. Resistance, resulting in a drop in battery output. Therefore, the preparation of corrosion-resistant and highly conductive coatings on the surface of metal plates is an effective way to improve the performance of metal plates.
- Coatings currently applied to metal bipolar plates mainly include graphite coatings, precious metal coatings, conductive polymer coatings, and cermet coatings.
- graphite coatings and precious metal coatings have good chemical stability and electrical conductivity, the former deposition rate is too slow and the time cost is too high, and the latter is not suitable for mass production due to its excessive material cost; conductive polymer
- the chemical properties of the coating are not very stable and the degree of bonding to the substrate is not sufficient.
- the cermet coating, especially the metal carbide coating has been widely used in practical production due to its excellent corrosion resistance and electrical conductivity, as well as high deposition rate and low deposition cost. Therefore, the coating is further improved on this basis. Layer performance is also a current research hotspot.
- metal carbide coatings In the optimization of corrosion resistance and electrical conductivity of metal carbide coatings, it can be achieved mainly through the following three ways: (1) changing metal materials (such as Cr, Ti, Zr, Nb, etc.) and process parameters to determine ownership The ratio of the composition of the metal carbide in the best performance; (2) doping other elements (such as N or other metals) in the carbide coating; (3) changing the surface structure of the coating by physical or chemical means and Composition.
- the first two methods require re-commissioning of the parameters to prepare a new carbide coating, while the last method can directly improve the performance of existing carbide coatings, saving a lot of time and material costs.
- the etching process is an effective method to improve the coating performance by changing the surface structure of the coating, including wet etching and dry etching.
- the etching process mainly includes the following three steps: diffusion of the reactants to the reaction surface, progress of the chemical reaction, and peeling of the reaction product.
- the surface structure and composition of the metal carbide coating are changed by etching to remove some metal elements in the coating, thereby reducing the escape of metal ions during service, and making more conductive particles. Exposure to the surface effectively improves the conductivity and corrosion resistance of the coating.
- Patent Publication No. CN102800871A discloses a method for preparing a carbon chromium step coating by using an unbalanced magnetron sputtering technique, which further improves the corrosion resistance of the metal bipolar plate by adjusting a series of process parameters to change the composition of the coating. And conductive properties.
- Patent Publication No. CN101626082B proposes to remove the passivation film by chemical etching and deposit a conductive ceramic layer after the surface modification of the thin plate, and then apply a silver plating layer on the surface thereof and apply a silver plating protective film.
- CN101918619A discloses a method of manufacturing a highly conductive surface comprising depositing corrosion resistant particles, conductive particles or the like on a corrosion resistant metal substrate or coating surface using techniques such as thermal spraying, selective plating, selective etching, or the like. The metal containing these particles is then exposed to enhance the conductivity of the metal surface.
- Patent Publication No. CN103050712A discloses a method for improving the corrosion resistance of a chromium-plated stainless steel bipolar plate by deoiling, degreasing and depositing a rare earth passivation solution KMnO 4 + .
- Patent Publication No. CN106929856A uses hydrofluoric acid to perform water bath etching on the surface of nickel to improve the surface roughness and thereby improve the hydrophobic properties of the surface.
- Patent Publication No. CN102051598A discloses an ultrasonic soaking etching method of a mixture of hydrofluoric acid and nitric acid to improve the bonding force between titanium and a titanium nitride film.
- the improved method for the performance of the metal carbide coating in the above patents is complicated, which increases the cost of coating preparation, and does not directly use the etching process to resist corrosion and conductivity of the metal carbide coating. Make improvements.
- the object of the present invention is to provide a simple and effective method for improving the corrosion resistance and electrical conductivity of a fuel cell bipolar plate metal carbide coating by an etching method in order to overcome the above-mentioned drawbacks of the prior art.
- a method for improving the electrical conductivity and corrosion resistance of a fuel cell bipolar plate carbide coating comprises sequentially depositing a metal transition layer and a metal carbide coating on the surface of the metal bipolar plate, and then engraving the coated bipolar plate The etch treatment changes the surface structure and composition of the carbide coating, and finally, after cleaning and drying, the carbide coating with improved corrosion resistance and conductivity is obtained, and the following steps are specifically adopted:
- Metal bipolar plate pretreatment the metal bipolar plates are sequentially placed in ethanol, acetone, ultrasonically washed and dried;
- Coating preparation depositing a metal transition layer and a metal carbide coating on the surface of the metal bipolar plate;
- the bipolar plate is completely immersed in a previously configured chemical etching solution for wet etching or placed in an etching device for dry etching;
- the material of the metal bipolar plate comprises one of stainless steel, aluminum alloy or magnesium alloy, and has a thickness of 0.1-2 mm.
- the metal transition layer is composed of one of chromium (Cr), titanium (Ti), zirconium (Zr), niobium (Nb) and molybdenum (Mo), and has a thickness of 5 to 100 nm.
- the metal carbide coating is a stepped coating or a continuous coating having a thickness of 10-300 nm.
- the metal carbide coating coated metal carbide includes one of chromium carbide (Cr 3 C 2 ), titanium carbide (TiC), zirconium carbide (ZrC), niobium carbide (NbC) or molybdenum carbide (MoC). Or a variety.
- the metal carbide coating is prepared by magnetron sputtering, chemical vapor deposition, multi-arc ion plating or electron beam evaporation.
- the wet etching uses a hydrofluoric acid solution or a mixture of hydrofluoric acid and nitric acid, the etching temperature is 10-70 ° C, and the etching time is 5 s-20 min.
- the chemical reaction between the etching solution and the coating exposes the conductive metal particles in the coating to the surface of the coating, reduces the metal content inside the coating, and effectively improves the corrosion resistance and electrical conductivity of the coating.
- the concentration of the etching solution is too large or the etching time is too long, the coating may be seriously damaged to expose the substrate. If the temperature is too high, the evaporation of the etching liquid may occur, and the etching speed is not easily controlled. If the concentration of the etching solution is too low, the temperature is too low or the etching time is too short, the etching rate is too low, and the influence on the composition of the coating is small, and the improvement effect cannot be achieved.
- the mass concentration of the hydrofluoric acid solution is 0.5%-10%
- the mass concentration of hydrofluoric acid in the mixture of hydrofluoric acid and nitric acid is 0.5%-10%
- the mass concentration of nitric acid is 0.1%-20%.
- the process gas used in the dry etching includes one or more of chlorine, carbon tetrafluoride, carbon tetrachloride, hydrogen or oxygen.
- the gas flow rate is 10-500 sccm
- the gas pressure is 10-1000 Pa
- the etching time is 5 min-1 h.
- the reaction gas is activated into active particles under the action of high-energy discharge reaction. These particles diffuse to the surface of the coating to react to form volatile substances and remove the metal. If the etching time is too long, the coating will be damaged. Performance improvement.
- the invention changes the surface structure and composition of the coating by wet etching or dry etching on the basis of one or more layers of carbide coating which has been plated, and increases the coating.
- the surface roughness of the layer further improves the corrosion resistance of the carbide coating and its electrical conductivity.
- the present invention greatly improves the process execution complexity and reduces the coating preparation while improving the corrosion resistance and electrical conductivity of the carbide coating. Cost and almost no effect on the mechanical properties of the metal plates.
- the invention optimizes the performance of the coating by etching on the metal plate, so as to avoid the coupling effect when adjusting the size of the coating during the preparation of the coating, so it can be applied to the fuel cell bipolar.
- the performance of the board carbide coating is further improved to meet the working requirements of the fuel cell.
- Figure 1 is a schematic view of an untreated metal plate
- FIG. 2 is a schematic view of an etched metal plate
- 3 is a contact resistance of a metal bipolar plate after etching in different lengths of time according to the present invention
- a 1-metal plate a 2-metal transition layer, a 3-metal carbide layer, a 4-metal carbide particle, a 5-metal particle, and a 6-etched metal ion.
- a stainless steel bipolar plate is used as a base to prepare a titanium carbide coating on the surface thereof.
- the process is as follows:
- the pretreated stainless steel bipolar plate is suspended on the planetary rotating table in the cavity of the unbalanced magnetron sputtering ion plating furnace, and the rotating speed of the rotating frame is kept at 4r/min, and the vacuum is evacuated to the background vacuum 3*10 -5 After Torr, argon gas is charged and the working pressure is 4*10 -4 Torr, and the stainless steel substrate is biased to -500 V, so that the ions continue to bombard the surface of the substrate, and the passivation layer on the surface is clear, and the cleaning time is 30 min;
- a stainless steel bipolar plate is used as a base to prepare a titanium carbide coating on the surface thereof, and the corrosion resistance and electrical conductivity of the titanium carbide coating are improved by wet etching.
- the process is as follows:
- the pretreated stainless steel bipolar plate is suspended on a planetary rotating table in the cavity of the unbalanced magnetron sputtering ion plating furnace, vacuum is applied to the background vacuum, argon gas is charged, and a bias is applied to the stainless steel substrate. Pressing, so that the ions continue to bombard the surface of the substrate, the cleaning time is 30min;
- the initial contact resistance of the metal bipolar plate was 2.33 m ⁇ cm 2 .
- a stainless steel bipolar plate is used as a base to prepare a titanium carbide coating on the surface thereof, and the corrosion resistance and electrical conductivity of the titanium carbide coating are improved by wet etching.
- the process is as follows:
- the pretreated stainless steel bipolar plate is suspended on a planetary rotating table in the cavity of the unbalanced magnetron sputtering ion plating furnace, vacuum is applied to the background vacuum, argon gas is charged, and a bias is applied to the stainless steel substrate. Pressing, so that the ions continue to bombard the surface of the substrate, the cleaning time is 30min;
- the initial contact resistance of the metal bipolar plate was 2.51 m ⁇ cm 2 .
- a stainless steel bipolar plate is used as a base to prepare a titanium carbide coating on the surface thereof, and the corrosion resistance and electrical conductivity of the titanium carbide coating are improved by wet etching.
- the process is as follows:
- the pretreated stainless steel bipolar plate is suspended on a planetary rotating table in the cavity of the unbalanced magnetron sputtering ion plating furnace, vacuum is applied to the background vacuum, argon gas is charged, and a bias is applied to the stainless steel substrate. Pressing, so that the ions continue to bombard the surface of the substrate, the cleaning time is 30min;
- the metal bipolar plate coated with titanium carbide coating is placed in hydrofluoric acid with a mass fraction of 6% for 20s, and then the plate is taken out for cleaning and dried to obtain a titanium carbide coating with improved performance.
- the initial contact resistance of the metal bipolar plate was 2.72 m ⁇ cm 2 .
- a stainless steel bipolar plate is used as a base to prepare a titanium carbide coating on the surface thereof, and the corrosion resistance and electrical conductivity of the titanium carbide coating are improved by wet etching.
- the process is as follows:
- the pretreated stainless steel bipolar plate is suspended on a planetary rotating table in the cavity of the unbalanced magnetron sputtering ion plating furnace, vacuum is applied to the background vacuum, argon gas is charged, and a bias is applied to the stainless steel substrate. Pressing, so that the ions continue to bombard the surface of the substrate, the cleaning time is 30min;
- the metal bipolar plate has an initial contact resistance of 2.73 m ⁇ cm 2 .
- a stainless steel bipolar plate is used as a base to prepare a titanium carbide coating on the surface thereof, and the corrosion resistance and electrical conductivity of the titanium carbide coating are improved by wet etching.
- the process is as follows:
- the pretreated stainless steel bipolar plate is suspended on a planetary rotating table in the cavity of the unbalanced magnetron sputtering ion plating furnace, vacuum is applied to the background vacuum, argon gas is charged, and a bias is applied to the stainless steel substrate. Pressing, so that the ions continue to bombard the surface of the substrate, the cleaning time is 30min;
- the metal bipolar plate coated with the titanium carbide coating is immersed in hydrofluoric acid with a mass fraction of 2% for 10 s, and then the plate is taken out for cleaning and dried to obtain a titanium carbide coating with improved performance.
- a stainless steel bipolar plate is used as a base to prepare a titanium carbide coating on the surface thereof, and the corrosion resistance and electrical conductivity of the titanium carbide coating are improved by wet etching.
- the process is as follows:
- the pretreated stainless steel bipolar plate is suspended on a planetary rotating table in the cavity of the unbalanced magnetron sputtering ion plating furnace, vacuum is applied to the background vacuum, argon gas is charged, and a bias is applied to the stainless steel substrate. Pressing, so that the ions continue to bombard the surface of the substrate, the cleaning time is 30min;
- the metal bipolar plate coated with titanium carbide coating is placed in hydrofluoric acid with a mass fraction of 4% for 10s, and then the plate is taken out for cleaning and dried to obtain a titanium carbide coating with improved performance.
- the structure of the metal plate which has not been subjected to wet etching or dry etching is as shown in FIG. 1 , and includes a metal plate 1 , a metal transition layer 2 coated on the metal plate 1 , and a metal carbide layer 3 .
- the metal carbide layer 3 contains metal carbide particles 4 and metal particles 5.
- the structure of the metal plate by wet etching or dry etching is as shown in FIG. 2.
- etching most of the metal particles 5 in the metal carbide layer 3 form metal ions 6 and It is removed by entering the etching solution or forming a volatile substance, causing the conductive metal particles to be exposed on the surface of the coating layer to improve conductivity.
- the metal carbide particles 4 are less affected by the etching, resulting in an increase in the metal carbide content in the coating, further improving the corrosion resistance of the coating.
- a method for improving the electrical conductivity and corrosion resistance of a fuel cell bipolar plate carbide coating comprises sequentially depositing a metal transition layer and a metal carbide coating on the surface of the metal bipolar plate, and then engraving the coated bipolar plate The etch treatment changes the surface structure and composition of the carbide coating, and finally, after cleaning and drying, the carbide coating with improved corrosion resistance and conductivity is obtained, and the following steps are specifically adopted:
- Metal bipolar plate pretreatment the metal bipolar plates are sequentially placed in ethanol, acetone, ultrasonically washed and dried;
- Coating preparation a metal transition layer and a metal carbide coating are deposited on the surface of the metal bipolar plate, wherein the metal carbide coating is a stepped coating with a thickness of 10 nm, and the coated metal carbide includes chromium carbide (Cr 3 ) C 2 ), titanium carbide (TiC), prepared by magnetron sputtering;
- the bipolar plate is completely immersed in a previously prepared mass concentration of 0.5% hydrofluoric acid solution for wet etching, the etching temperature is 10 ° C, and the etching time is 20 min;
- a method for improving the electrical conductivity and corrosion resistance of a fuel cell bipolar plate carbide coating comprises sequentially depositing a metal transition layer and a metal carbide coating on the surface of the metal bipolar plate, and then engraving the coated bipolar plate The etch treatment changes the surface structure and composition of the carbide coating, and finally, after cleaning and drying, the carbide coating with improved corrosion resistance and conductivity is obtained, and the following steps are specifically adopted:
- Metal bipolar plate pretreatment the metal bipolar plates are sequentially placed in ethanol, acetone, ultrasonically washed and dried;
- Coating preparation a metal transition layer and a metal carbide coating are deposited on the surface of the metal bipolar plate, wherein the metal carbide coating is a stepped coating with a thickness of 80 nm, and the coated metal carbide is zirconium carbide (ZrC).
- ZrC zirconium carbide
- the bipolar plate is completely immersed in a chemical etching solution composed of hydrofluoric acid having a mass concentration of 10% and 0.1% nitric acid for wet etching;
- a method for improving the electrical conductivity and corrosion resistance of a fuel cell bipolar plate carbide coating comprises sequentially depositing a metal transition layer and a metal carbide coating on the surface of the metal bipolar plate, and then engraving the coated bipolar plate The etch treatment changes the surface structure and composition of the carbide coating, and finally, after cleaning and drying, the carbide coating with improved corrosion resistance and conductivity is obtained, and the following steps are specifically adopted:
- Metal bipolar plate pretreatment the metal bipolar plates are sequentially placed in ethanol, acetone, ultrasonically washed and dried;
- Coating preparation a metal transition layer and a metal carbide coating are deposited on the surface of the metal bipolar plate, wherein the metal carbide coating is a continuous coating with a thickness of 200 nm, and the coated metal carbide is tantalum carbide. Prepared by arc ion plating;
- the bipolar plate is placed in an etching device for dry etching, the process gas used is chlorine gas, the gas flow rate is 10 sccm, the gas pressure is 10 Pa, and the etching time is 1 h;
- a method for improving the electrical conductivity and corrosion resistance of a fuel cell bipolar plate carbide coating comprises sequentially depositing a metal transition layer and a metal carbide coating on the surface of the metal bipolar plate, and then engraving the coated bipolar plate The etch treatment changes the surface structure and composition of the carbide coating, and finally, after cleaning and drying, the carbide coating with improved corrosion resistance and conductivity is obtained, and the following steps are specifically adopted:
- Metal bipolar plate pretreatment the metal bipolar plates are sequentially placed in ethanol, acetone, ultrasonically washed and dried;
- Coating preparation a metal transition layer and a metal carbide coating are deposited on the surface of the metal bipolar plate, wherein the metal carbide coating is a continuous coating with a thickness of 300 nm, and the coated metal carbide is molybdenum carbide (MoC).
- MoC molybdenum carbide
- Coating etching The bipolar plate is placed in an etching apparatus for dry etching, and the process gas used is carbon tetrafluoride and carbon tetrachloride, the gas flow rate is 500 sccm, the gas pressure is 1000 Pa, and the etching time is 5 min;
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Ceramic Engineering (AREA)
- Fuel Cell (AREA)
- Physical Vapour Deposition (AREA)
- ing And Chemical Polishing (AREA)
Abstract
本发明涉及改善燃料电池双极板碳化物涂层导电及耐蚀性的方法,包括在金属双极板表面依次沉积金属过渡层和金属碳化物涂层,然后对涂覆有涂层的双极板进行刻蚀处理,改变碳化物涂层的表面结构及组成成分,最后经过清洗,烘干得到耐腐蚀性能和导电性改善的碳化物涂层。与现有技术相比,本发明在金属极板上镀有涂层的基础上采用刻蚀技术对涂层性能的优化,避免了涂层制备时调整各参数大小时的耦合影响,因此可应用于燃料电池双极板碳化物涂层性能的进一步完善以达到燃料电池的工作要求。
Description
本发明属于燃料电池技术领域,尤其是涉及一种改善燃料电池双极板碳化物涂层导电及耐蚀性的方法。
质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)由于其转换效率高、对环境无污染、工作温度低、工作寿命长等特点,在交通、国防、电子产品等领域得到了广泛的应用。在质子交换膜燃料电池组成结构中双极板占去了大部分的空间与成本,同时燃料电池的服役环境是一种含SO
4
2-,Cl
-,F
-等离子的高温(60~90℃)、强酸性(pH=1~3)环境,因此对双极板的物理性能及化学性能提出了更高的要求:理想的双极板材料必须是电和热的良导体,具有良好的阻气性,在一定工作温度和电位范围内具有良好的耐腐蚀性,密度低,强度高,并且易于加工成型和大批量生产。传统的金属材料具有良好的导电性、导热性,机械性能优异,适合大批量生产,是燃料电池双极板材料的首选,但金属极板在燃料电池工作环境中会发生严重腐蚀,造成金属极板中Cr
+,Ni
+等金属离子析出,导致质子交换膜污染及催化剂降解,从而降低燃料电池使用寿命,而且在酸性环境中金属表面极易形成钝化膜增大极板和气体扩散层接触电阻,导致电池输出功率的下降。因此在金属极板表面制备耐腐蚀和高导电性的涂层是改善金属极板性能的有效途径。
目前应用于金属双极板的涂层主要包括石墨涂层、贵金属涂层、导电聚合物涂层以及金属陶瓷涂层。石墨涂层和贵金属涂层虽然具有良好的化学稳定性以及导电性,但前者沉积速率过慢导致时间成本过高,后者也由于其过高的材料成本而不适于大批量生产;导电聚合物涂层的化学性能并不十分稳定,而且与基体的结合程度无法满足要求。而金属陶瓷涂层,尤其是金属碳化物涂层由于其优异的耐腐蚀性能和导电性能、以及沉积速率快,制备成本低在实际生产中得到了广泛的应用,因此在此基础上进一步提高涂层的性能也是目前研究热点。在金属碳化物涂层耐腐蚀性和导电性能的优化方面,目前主要可以通过以 下三个途径来实现:(1)改变金属材料(如Cr,Ti,Zr,Nb等)及工艺参数从而确定拥有最佳性能的金属碳化物中各组成成分的比例;(2)在碳化物涂层中掺杂其它元素(如N或者其它金属);(3)通过物理或化学方法改变涂层的表面结构及组成成分。前两种方法需要重新调试参数制备新的碳化物涂层,而最后一种方法则可以直接在现有的碳化物涂层基础上对其性能进行改善,可以节约大量的时间及材料成本。其中刻蚀工艺是一种通过改变涂层表面结构从而改善涂层性能的有效方法,包括湿法刻蚀及干法刻蚀。刻蚀过程主要包括以下三个步骤:反应物扩散到反应表面,化学反应的进行以及反应产物的剥离。如图1和图2所示,通过刻蚀改变金属碳化物涂层的表面结构及组成成分,除去涂层中部分金属元素,降低服役过程中金属离子的逸出,使更多的导电性颗粒暴露在表面,从而有效地提高涂层的导电性及耐腐蚀性。
专利公开号CN102800871A公开了一种采用非平衡磁控溅射技术制备碳铬阶梯镀层的方法,通过调整一系列的工艺参数从而改变涂层中的组成成分,进一步改善金属双极板的耐腐蚀性能和导电性能。专利公开号CN101626082B提出在薄板表面改性之前采用化学腐蚀去除钝化膜以及沉积导电陶瓷层之后在其表面加镀银层并且涂覆一层镀银保护膜。专利公开号CN101918619A公开了一种制造高导电性表面的方法,包括在耐腐蚀金属衬底或涂层表面利用热喷射、选择性镀层、选择性蚀刻等技术沉积耐腐蚀性颗粒,导电性颗粒或者包含这些颗粒的金属,而后使这些颗粒暴露出来从而提高金属表面导电性。专利公开号CN103050712A公开了一种改善镀有碳化铬不锈钢双极板耐腐蚀性能的方法,即对覆有涂层的不锈钢双极板进行脱油、脱脂处理并置于稀土钝化液KMnO
4+Ce(NO
3)
3·6H
2+Mg(NO
3)
2中处理一段时间,可以显著降低双极板的腐蚀电流密度。专利公开号CN106929856A采用氢氟酸对镍表面进行水浴刻蚀,提高其表面粗糙度从而提高表面的疏水性能。专利公开号CN102051598A公开了一种通过氢氟酸和硝酸的混合液的超声浸泡刻蚀方法提高了钛和氮化钛薄膜之间的结合力。然而上述公开专利中针对金属碳化物涂层性能的改进方法工艺都较为复杂,增大了涂层制备的成本,而且并没有直接采用刻蚀工艺对金属碳化物涂层的耐腐蚀性及导电性进行改善。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种通过刻蚀方法改善燃料电池双极板金属碳化物涂层耐腐蚀性及导电性能简单有效的方法。
本发明的目的可以通过以下技术方案来实现:
改善燃料电池双极板碳化物涂层导电及耐蚀性的方法,包括在金属双极板表面依次沉积金属过渡层和金属碳化物涂层,然后对涂覆有涂层的双极板进行刻蚀处理,改变碳化物涂层的表面结构及组成成分,最后经过清洗,烘干得到耐腐蚀性能和导电性改善的碳化物涂层,具体采用以下步骤:
1)金属双极板预处理:将金属双极板依次置于乙醇,丙酮中,采用超声清洗并烘干;
2)涂层制备:在金属双极板表面沉积金属过渡层及金属碳化物涂层;
3)涂层刻蚀:将双极板完全浸入事先配置好的化学刻蚀溶液中进行湿法刻蚀或者置于刻蚀设备中干法刻蚀;
4)取出刻蚀后的金属双极板并清洗烘干得到耐腐蚀性和导电性改善的碳化物涂层。
所述的金属双极板的材质包括不锈钢、铝合金或镁合金中的一种,厚度为0.1-2mm。
所述的金属过渡层由铬(Cr),钛(Ti),锆(Zr),铌(Nb)和钼(Mo)中的一种金属组成,厚度为5-100nm。
所述金属碳化物涂层为阶梯性涂层或连续性涂层,厚度10-300nm。
所述金属碳化物涂层涂覆的金属碳化物包括碳化铬(Cr
3C
2)、碳化钛(TiC)、碳化锆(ZrC)、碳化铌(NbC)或碳化钼(MoC)中的一种或多种。
所述金属碳化物涂层通过磁控溅射法、化学气相沉积、多弧离子镀或电子束蒸发制备得到。
湿法刻蚀采用氢氟酸溶液或者氢氟酸和硝酸的混合液,刻蚀温度为10-70℃,刻蚀时间为5s-20min。通过刻蚀液与涂层之间的化学反应,使涂层中的导电性金属颗粒暴露在涂层表面,降低涂层内部的金属含量,有效地提高涂层的耐腐蚀性和导电性。当刻蚀液浓度过大或者刻蚀时间过长时,会造成涂层 的严重损伤而暴露出基底,温度过高则会导致刻蚀液的挥发,而且不易控制刻蚀速度。如果刻蚀液浓度过低,温度过低或者刻蚀时间过短,刻蚀速率过低,对涂层成分的影响很小而无法达到改善效果。
所述氢氟酸溶液的质量浓度为0.5%-10%,所述氢氟酸和硝酸的混合液中氢氟酸的质量浓度为0.5%-10%,硝酸的质量浓度为0.1%-20%
干法刻蚀采用的工艺气体包括氯气、四氟化碳、四氯化碳、氢气或氧气中的一种或几种。气体流量为10-500sccm,气压为10-1000Pa,刻蚀时间为5min-1h。反应气体在高能放电反应作用下被激活成活性粒子,这些粒子扩散到涂层表面进行反应,形成挥发性物质而去除金属,刻蚀时间过长的话会对涂层造成损伤,过短则无法达到性能改善的效果。
与现有技术相比,本发明在已镀的一层或多层碳化物涂层的基础之上,采用湿法刻蚀或者干法刻蚀改变涂层的表面结构及成分组成,增大涂层的表面粗糙度,从而进一步改善碳化物涂层的耐腐蚀性及其导电性能。相比于现有的一些金属碳化物涂层的制备和性能改善方法,本发明在提升碳化物涂层的耐腐蚀性和导电性能的同时,大大减少了工艺的执行复杂度,降低涂层制备成本,并且对金属极板的机械性能几乎无影响。本发明是在金属极板上镀有涂层的基础上采用刻蚀技术对涂层性能的优化,从而避免了涂层制备时调整各参数大小时的耦合影响,因此可应用于燃料电池双极板碳化物涂层性能的进一步完善以达到燃料电池的工作要求。
图1为未经处理的金属极板的示意图;
图2为刻蚀后的金属极板的示意图;
图3为本发明在不同时间长度下刻蚀后金属双极板的接触电阻;
图4为本发明在不同浓度下刻蚀后金属双极板腐蚀前后的接触电阻。
图中,1-金属极板、2-金属过渡层、3-金属碳化物层、4-金属碳化物颗粒、5-金属颗粒、6-刻蚀产生的金属离子。
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1:
以不锈钢双极板为基体,在其表面制备碳化钛涂层,工艺过程如下:
1)极板预处理:依次使用去离子水、丙酮、无水乙醇对不锈钢双极板表面超声清洗并将其烘干;
2)将预处理过的不锈钢双极板悬挂于非平衡磁控溅射离子镀炉腔内的行星转架台上,保持转架转速为4r/min,抽真空至本底真空3*10
-5Torr后,充入氩气并保持工作气压为4*10
-4Torr,不锈钢基体施加偏压-500V,使离子对基体表面持续轰击,清楚表面上的钝化层,清洗时间30min;
3)通入20sccm氩气作为保护气体,并通入20sccm反应气体乙炔30min,保持基体偏压在-100V,开启钛靶电流,在不锈钢极板表面反应溅射沉积碳化钛涂层;
4)关闭靶电流和通气口,冷却20min,得到所需的碳化钛涂层。
如图3所示,所述的金属双极板初始接触电阻为7.84mΩ·cm
2,在pH=3的硫酸中经过恒电位1.6V(vs.SHE)腐蚀1h后接触电阻增大到31.07mΩ·cm
2。
实施例2:
以不锈钢双极板为基体,在其表面制备碳化钛涂层,并通过湿法刻蚀提升碳化钛涂层的耐腐蚀性和导电性,工艺过程如下:
1)极板预处理:依次使用去离子水、丙酮、无水乙醇对不锈钢双极板表面超声清洗并将其烘干;
2)将预处理过的不锈钢双极板悬挂于非平衡磁控溅射离子镀炉腔内的行星转架台上,抽真空至本底真空后,充入氩气,并在不锈钢基体上施加偏压,使离子对基体表面持续轰击,清洗时间30min;
3)向真空容器中同时通入工作气体和反应气体,通过溅射金属靶在不锈钢极板表面反应溅射沉积碳化钛涂层,溅射时间30min;
4)将镀有碳化钛涂层的金属双极板置于质量分数6%的氢氟酸中浸泡5s后, 取出极板清洗并烘干,得到性能改善的碳化钛涂层。
如图3所示,所述的金属双极板初始接触电阻为2.33mΩ·cm
2。
实施例3:
以不锈钢双极板为基体,在其表面制备碳化钛涂层,并通过湿法刻蚀提升碳化钛涂层的耐腐蚀性和导电性,工艺过程如下:
1)极板预处理:依次使用去离子水、丙酮、无水乙醇对不锈钢双极板表面超声清洗并将其烘干;
2)将预处理过的不锈钢双极板悬挂于非平衡磁控溅射离子镀炉腔内的行星转架台上,抽真空至本底真空后,充入氩气,并在不锈钢基体上施加偏压,使离子对基体表面持续轰击,清洗时间30min;
3)向真空容器中同时通入工作气体和反应气体,通过溅射金属靶在不锈钢极板表面反应溅射沉积碳化钛涂层,溅射时间30min;
4)将镀有碳化钛涂层的金属双极板置于质量分数6%的氢氟酸中浸泡10s后,取出极板清洗并烘干,得到性能改善的碳化钛涂层。
如图3所示,所述的金属双极板初始接触电阻为2.51mΩ·cm
2。
实施例4:
以不锈钢双极板为基体,在其表面制备碳化钛涂层,并通过湿法刻蚀提升碳化钛涂层的耐腐蚀性和导电性,工艺过程如下:
1)极板预处理:依次使用去离子水、丙酮、无水乙醇对不锈钢双极板表面超声清洗并将其烘干;
2)将预处理过的不锈钢双极板悬挂于非平衡磁控溅射离子镀炉腔内的行星转架台上,抽真空至本底真空后,充入氩气,并在不锈钢基体上施加偏压,使离子对基体表面持续轰击,清洗时间30min;
3)向真空容器中同时通入工作气体和反应气体,通过溅射金属靶在不锈钢极板表面反应溅射沉积碳化钛涂层,溅射时间30min;
4)将镀有碳化钛涂层的金属双极板置于质量分数6%的氢氟酸中浸泡20s后,取出极板清洗并烘干,得到性能改善的碳化钛涂层。
如图3所示,所述的金属双极板初始接触电阻为2.72mΩ·cm
2。
实施例5:
以不锈钢双极板为基体,在其表面制备碳化钛涂层,并通过湿法刻蚀提升碳化钛涂层的耐腐蚀性和导电性,工艺过程如下:
1)极板预处理:依次使用去离子水、丙酮、无水乙醇对不锈钢双极板表面超声清洗并将其烘干;
2)将预处理过的不锈钢双极板悬挂于非平衡磁控溅射离子镀炉腔内的行星转架台上,抽真空至本底真空后,充入氩气,并在不锈钢基体上施加偏压,使离子对基体表面持续轰击,清洗时间30min;
3)向真空容器中同时通入工作气体和反应气体,通过溅射金属靶在不锈钢极板表面反应溅射沉积碳化钛涂层,溅射时间30min;
4)将镀有碳化钛涂层的金属双极板置于质量分数6%的氢氟酸中浸泡30s后,取出极板清洗并烘干,得到性能改善的碳化钛涂层。
如图3所示,所述的金属双极板初始接触电阻为2.73mΩ·cm
2。
实施例6:
以不锈钢双极板为基体,在其表面制备碳化钛涂层,并通过湿法刻蚀提升碳化钛涂层的耐腐蚀性和导电性,工艺过程如下:
1)极板预处理:依次使用去离子水、丙酮、无水乙醇对不锈钢双极板表面超声清洗并将其烘干;
2)将预处理过的不锈钢双极板悬挂于非平衡磁控溅射离子镀炉腔内的行星转架台上,抽真空至本底真空后,充入氩气,并在不锈钢基体上施加偏压,使离子对基体表面持续轰击,清洗时间30min;
3)向真空容器中同时通入工作气体和反应气体,通过溅射金属靶在不锈钢极板表面反应溅射沉积碳化钛涂层,溅射时间30min;
4)将镀有碳化钛涂层的金属双极板置于质量分数2%的氢氟酸中浸泡10s后,取出极板清洗并烘干,得到性能改善的碳化钛涂层。
如图4所示,所述的金属双极板初始接触电阻为2.77mΩ·cm
2,在pH=3的硫酸中经过恒电位1.6V(vs.SHE)腐蚀1h后接触电阻增大到15.82mΩ·cm
2。
实施例7:
以不锈钢双极板为基体,在其表面制备碳化钛涂层,并通过湿法刻蚀提升碳化钛涂层的耐腐蚀性和导电性,工艺过程如下:
1)极板预处理:依次使用去离子水、丙酮、无水乙醇对不锈钢双极板表面超声清洗并将其烘干;
2)将预处理过的不锈钢双极板悬挂于非平衡磁控溅射离子镀炉腔内的行星转架台上,抽真空至本底真空后,充入氩气,并在不锈钢基体上施加偏压,使离子对基体表面持续轰击,清洗时间30min;
3)向真空容器中同时通入工作气体和反应气体,通过溅射金属靶在不锈钢极板表面反应溅射沉积碳化钛涂层,溅射时间30min;
4)将镀有碳化钛涂层的金属双极板置于质量分数4%的氢氟酸中浸泡10s后,取出极板清洗并烘干,得到性能改善的碳化钛涂层。
如图4所示,金属双极板初始接触电阻为2.32mΩ·cm
2,在pH=3的硫酸中经过恒电位1.6V(vs.SHE)腐蚀1h后接触电阻增大到17.16mΩ·cm
2。
上述实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,其中在实施例3的条件下——6%氢氟酸刻蚀10s后,金属碳化物涂层具有最佳的耐腐蚀性和导电性,腐蚀前的接触电阻为2.51mΩ·cm
2,腐蚀后接触电阻为6.72mΩ·cm
2,均满足燃料电池双极板接触电阻小于10mΩ·cm
2的要求。
实施例8:
未经过湿法刻蚀或者干法刻蚀的金属极板的结构如图1所示,包括金属极板1,涂覆在金属极板1上的金属过渡层2以及金属碳化物层3,在金属碳化物层3内含有金属碳化物颗粒4以及金属颗粒5。
通过湿法刻蚀或者干法刻蚀的金属极板的结构如图2所示,与图1相比,经过刻蚀后,金属碳化物层3中的大部分金属颗粒5形成金属离子6而进入刻蚀液或者形成挥发性物质而被去除,造成导电性金属颗粒暴露在涂层表面从而导电性得到提高。而金属碳化物颗粒4所受刻蚀影响较小,造成涂层中金属碳化物含量的增加,进一步提高涂层的耐腐蚀性能。
实施例9:
改善燃料电池双极板碳化物涂层导电及耐蚀性的方法,包括在金属双极板表面依次沉积金属过渡层和金属碳化物涂层,然后对涂覆有涂层的双极板进行刻蚀处理,改变碳化物涂层的表面结构及组成成分,最后经过清洗,烘干得到 耐腐蚀性能和导电性改善的碳化物涂层,具体采用以下步骤:
1)金属双极板预处理:将金属双极板依次置于乙醇,丙酮中,采用超声清洗并烘干;
2)涂层制备:在金属双极板表面沉积金属过渡层及金属碳化物涂层,其中金属碳化物涂层为阶梯性涂层,厚度10nm,涂覆的金属碳化物包括碳化铬(Cr
3C
2)、碳化钛(TiC),通过磁控溅射法制备得到;
3)涂层刻蚀:将双极板完全浸入事先配置好的质量浓度为0.5%氢氟酸溶液中进行湿法刻蚀,刻蚀温度为10℃,刻蚀时间为20min;
4)取出刻蚀后的金属双极板并清洗烘干得到耐腐蚀性和导电性改善的碳化物涂层。
实施例10:
改善燃料电池双极板碳化物涂层导电及耐蚀性的方法,包括在金属双极板表面依次沉积金属过渡层和金属碳化物涂层,然后对涂覆有涂层的双极板进行刻蚀处理,改变碳化物涂层的表面结构及组成成分,最后经过清洗,烘干得到耐腐蚀性能和导电性改善的碳化物涂层,具体采用以下步骤:
1)金属双极板预处理:将金属双极板依次置于乙醇,丙酮中,采用超声清洗并烘干;
2)涂层制备:在金属双极板表面沉积金属过渡层及金属碳化物涂层,其中金属碳化物涂层为阶梯性涂层,厚度80nm,涂覆的金属碳化物为碳化锆(ZrC),通过化学气相沉积制备得到;
3)涂层刻蚀:将双极板完全浸入质量浓度为10%的氢氟酸以及0.1%硝酸所构成的化学刻蚀溶液中进行湿法刻蚀;
4)取出刻蚀后的金属双极板并清洗烘干得到耐腐蚀性和导电性改善的碳化物涂层。
实施例11:
改善燃料电池双极板碳化物涂层导电及耐蚀性的方法,包括在金属双极板表面依次沉积金属过渡层和金属碳化物涂层,然后对涂覆有涂层的双极板进行刻蚀处理,改变碳化物涂层的表面结构及组成成分,最后经过清洗,烘干得到耐腐蚀性能和导电性改善的碳化物涂层,具体采用以下步骤:
1)金属双极板预处理:将金属双极板依次置于乙醇,丙酮中,采用超声清洗并烘干;
2)涂层制备:在金属双极板表面沉积金属过渡层及金属碳化物涂层,其中金属碳化物涂层为连续性涂层,厚度200nm,涂覆的金属碳化物为碳化铌,通过多弧离子镀制备得到;
3)涂层刻蚀:将双极板置于刻蚀设备中进行干法刻蚀,采用的工艺气体为氯气,气体流量为10sccm,气压为10Pa,刻蚀时间为1h;
4)取出刻蚀后的金属双极板并清洗烘干得到耐腐蚀性和导电性改善的碳化物涂层。
实施例12:
改善燃料电池双极板碳化物涂层导电及耐蚀性的方法,包括在金属双极板表面依次沉积金属过渡层和金属碳化物涂层,然后对涂覆有涂层的双极板进行刻蚀处理,改变碳化物涂层的表面结构及组成成分,最后经过清洗,烘干得到耐腐蚀性能和导电性改善的碳化物涂层,具体采用以下步骤:
1)金属双极板预处理:将金属双极板依次置于乙醇,丙酮中,采用超声清洗并烘干;
2)涂层制备:在金属双极板表面沉积金属过渡层及金属碳化物涂层,其中金属碳化物涂层为连续性涂层,厚度300nm,涂覆的金属碳化物为碳化钼(MoC),通过电子束蒸发制备得到;
3)涂层刻蚀:将双极板置于刻蚀设备中进行干法刻蚀,采用的工艺气体为四氟化碳及四氯化碳,气体流量为500sccm,气压为1000Pa,刻蚀时间为5min;
4)取出刻蚀后的金属双极板并清洗烘干得到耐腐蚀性和导电性改善的碳化物涂层。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。
Claims (2)
- 方法,其特征在于,所述氢氟酸溶液的质量浓度为0.5%-10%,所述氢氟酸和硝酸的混合液中氢氟酸的质量浓度为0.5%-10%,硝酸的质量浓度为0.1%-20%。
- 根据权利要求2所述的改善燃料电池双极板碳化物涂层导电及耐蚀性的方法,其特征在于,干法刻蚀采用的工艺气体包括氯气、四氟化碳、四氯化碳、氢气或氧气中的一种或几种,气体流量为10-500sccm,气压为10-1000Pa,刻蚀时间为5min-1h。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810219089.9 | 2018-03-16 | ||
CN201810219089.9A CN108574107A (zh) | 2018-03-16 | 2018-03-16 | 改善燃料电池双极板碳化物涂层导电及耐蚀性的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019174373A1 true WO2019174373A1 (zh) | 2019-09-19 |
Family
ID=63574269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/070161 WO2019174373A1 (zh) | 2018-03-16 | 2019-01-03 | 改善燃料电池双极板碳化物涂层导电及耐蚀性的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108574107A (zh) |
WO (1) | WO2019174373A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114976089A (zh) * | 2022-05-27 | 2022-08-30 | 上海电气集团股份有限公司 | 一种含涂层的金属双极板及其制备方法 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108574107A (zh) * | 2018-03-16 | 2018-09-25 | 上海交通大学 | 改善燃料电池双极板碳化物涂层导电及耐蚀性的方法 |
CN109449457A (zh) * | 2018-10-31 | 2019-03-08 | 上海汉行科技有限公司 | 聚合物质子交换膜燃料电池的金属双极板材料的制备方法 |
CN110284102B (zh) * | 2019-06-13 | 2022-08-30 | 上海治臻新能源股份有限公司 | 一种金属碳化物晶体复合涂层及其制备方法 |
CN110265668B (zh) * | 2019-06-19 | 2022-12-23 | 上海大学 | 氢燃料电池金属双极板及其制备方法 |
CN110247065B (zh) * | 2019-07-09 | 2020-10-09 | 吴同舜 | 一种燃料电池气体扩散层低成本连续工业化生产工艺 |
CN110541155A (zh) * | 2019-09-30 | 2019-12-06 | 上海治臻新能源装备有限公司 | 一种燃料电池极板金属碳化物涂层的四腔体沉积系统 |
CN112993293A (zh) * | 2019-12-14 | 2021-06-18 | 中国科学院大连化学物理研究所 | 一种燃料电池金属双极板及其制备方法 |
CN112993298A (zh) * | 2019-12-14 | 2021-06-18 | 中国科学院大连化学物理研究所 | 一种燃料电池金属双极板双功能涂层 |
CN111029606B (zh) * | 2019-12-20 | 2022-02-25 | 佛山国防科技工业技术成果产业化应用推广中心 | 用于燃料电池双极板的金属硼化物基复合涂层及其制备方法 |
CN110983283B (zh) * | 2019-12-20 | 2021-12-24 | 欧伊翔 | 氢燃料电池金属双极板用Ti/TiCN纳米涂层的制备方法及设备 |
CN111092242B (zh) * | 2020-02-27 | 2021-11-09 | 江苏微导纳米科技股份有限公司 | 一种质子交换膜燃料电池金属双极板多纳米涂层结构的制备方法 |
CN111446461B (zh) * | 2020-03-13 | 2021-05-28 | 浙江华熔科技有限公司 | 一种抗燃料电池中酸性介质腐蚀的石墨烯涂层制备方法 |
CN112582634B (zh) * | 2020-11-18 | 2022-03-15 | 上海治臻新能源股份有限公司 | 一种高耐蚀的燃料电池双极板的多层复合碳涂层 |
CN113097522B (zh) * | 2021-03-29 | 2023-05-26 | 纳狮新材料有限公司 | 双极板和其制备方法 |
CN113445014A (zh) * | 2021-07-02 | 2021-09-28 | 扬州市普锐泰新材料有限公司 | 氢燃料电池钛双极板表面功能涂层工艺 |
CN113921828A (zh) * | 2021-10-09 | 2022-01-11 | 贲道梅 | 一种燃料电池双极板及制备方法 |
CN113953165A (zh) * | 2021-11-10 | 2022-01-21 | 中国航发南方工业有限公司 | 压气机叶片盘修理件的无机铝防腐涂层的喷涂工艺和压气机叶片盘 |
CN114843542B (zh) * | 2022-05-16 | 2024-01-02 | 上海交通大学内蒙古研究院 | 一种燃料电池金属极板陶瓷相低温形核纳米涂层制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020058385A (ko) * | 2000-12-29 | 2002-07-12 | 남기석 | 반도체 재료를 이용한 소형 연료전지의 bipolar plate의제작 |
CN1971991A (zh) * | 2005-11-23 | 2007-05-30 | 通用汽车环球科技运作公司 | 具有高电化学稳定性和改善水管理的金属双极板 |
CN104508885A (zh) * | 2012-07-31 | 2015-04-08 | 新日铁住金株式会社 | 提高了对碳的接触导电性和耐久性的燃料电池分隔件用钛或者钛合金材料以及使用其的燃料电池分隔件以及它们的制造方法 |
CN108574107A (zh) * | 2018-03-16 | 2018-09-25 | 上海交通大学 | 改善燃料电池双极板碳化物涂层导电及耐蚀性的方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10058337A1 (de) * | 2000-11-24 | 2002-05-29 | Gen Motors Corp | Blechprodukt, Platte für eine Brennstoffzelle und Verfahren zur Herstellung derselben |
EP1612851B1 (en) * | 2004-06-30 | 2010-03-03 | Xycarb Ceramics B.V. | A method for the treatment of a surface of a metal-carbide substrate for use in semiconductor manufacturing processes as well as such a metal-carbide substrate |
JP2008021614A (ja) * | 2006-07-14 | 2008-01-31 | Nissan Motor Co Ltd | 電池用電極 |
CN104716339B (zh) * | 2015-02-03 | 2018-06-22 | 上海交通大学 | 燃料电池金属极板用碳化物和金属氧化物复合涂层及制备 |
CN106935880B (zh) * | 2017-03-08 | 2019-08-30 | 上海电力学院 | 一种质子交换膜燃料电池用铝合金双极板的表面改性方法 |
-
2018
- 2018-03-16 CN CN201810219089.9A patent/CN108574107A/zh active Pending
-
2019
- 2019-01-03 WO PCT/CN2019/070161 patent/WO2019174373A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020058385A (ko) * | 2000-12-29 | 2002-07-12 | 남기석 | 반도체 재료를 이용한 소형 연료전지의 bipolar plate의제작 |
CN1971991A (zh) * | 2005-11-23 | 2007-05-30 | 通用汽车环球科技运作公司 | 具有高电化学稳定性和改善水管理的金属双极板 |
CN104508885A (zh) * | 2012-07-31 | 2015-04-08 | 新日铁住金株式会社 | 提高了对碳的接触导电性和耐久性的燃料电池分隔件用钛或者钛合金材料以及使用其的燃料电池分隔件以及它们的制造方法 |
CN108574107A (zh) * | 2018-03-16 | 2018-09-25 | 上海交通大学 | 改善燃料电池双极板碳化物涂层导电及耐蚀性的方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114976089A (zh) * | 2022-05-27 | 2022-08-30 | 上海电气集团股份有限公司 | 一种含涂层的金属双极板及其制备方法 |
CN114976089B (zh) * | 2022-05-27 | 2024-04-12 | 上海电气集团股份有限公司 | 一种含涂层的金属双极板及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108574107A (zh) | 2018-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019174373A1 (zh) | 改善燃料电池双极板碳化物涂层导电及耐蚀性的方法 | |
CN110684946B (zh) | 一种金属双极板高导电耐蚀防护涂层及其制备方法与应用 | |
CN105047958B (zh) | 用于燃料电池金属极板的石墨烯复合涂层及其制备方法 | |
WO2020042535A1 (zh) | 一种燃料电池金属双极板用导电耐蚀涂层 | |
CN104716339B (zh) | 燃料电池金属极板用碳化物和金属氧化物复合涂层及制备 | |
EP2157645B1 (en) | Metallic separator for fuel cell and process for producing the metallic separator | |
CN110137525A (zh) | 一种燃料电池金属双极板涂层及制备技术 | |
CN113265638B (zh) | 高导电耐蚀类石墨碳防护多层复合涂层及其制法与应用 | |
CN113584441B (zh) | 一种金属双极板涂层及其制备方法 | |
CN106129422B (zh) | 提高燃料电池金属双极板表面镀层致密和耐腐蚀的方法 | |
CN115312798A (zh) | 金属极板表面防护涂层及其制备方法、应用、金属极板 | |
CN108060398A (zh) | 一种燃料电池复合纳米涂层及其镀制方法 | |
CN112993298A (zh) | 一种燃料电池金属双极板双功能涂层 | |
CN106654315A (zh) | 一种石墨烯增强表面的燃料电池用高性能双极板及其制备方法 | |
CN114481048B (zh) | 高导电耐蚀非晶/纳米晶复合共存的涂层及其制法与应用 | |
CN107937871A (zh) | 一种燃料电池双极板复合涂层及其制备方法 | |
CN115928017A (zh) | 一种高导电耐蚀防护复合涂层及其制备方法与应用 | |
CN112820890B (zh) | 一种防腐导电涂层制备方法、结构以及燃料电池极板 | |
CN111477899B (zh) | 一种用于燃料电池的导电耐蚀金属双极板及其制备方法 | |
CN108598497A (zh) | 一种用于燃料电池金属极板的纳米金属层及制备方法 | |
CN102306804B (zh) | 用于质子交换膜燃料电池双极板的高sp2杂化致密碳镀层及其制备方法 | |
CN111600043A (zh) | 一种燃料电池金属双极板及其表面涂层方法 | |
CN110880608A (zh) | 一种用于氢燃料电池金属双极板复合膜层及制备方法 | |
CN114843542B (zh) | 一种燃料电池金属极板陶瓷相低温形核纳米涂层制备方法 | |
CN112993299B (zh) | 燃料电池金属双极板硅掺杂的碳化铌涂层及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19768515 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/01/2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19768515 Country of ref document: EP Kind code of ref document: A1 |