WO2019174108A1 - Uhv设备互联的原位反应池与内置质谱电四极杆的联用结构 - Google Patents

Uhv设备互联的原位反应池与内置质谱电四极杆的联用结构 Download PDF

Info

Publication number
WO2019174108A1
WO2019174108A1 PCT/CN2018/084398 CN2018084398W WO2019174108A1 WO 2019174108 A1 WO2019174108 A1 WO 2019174108A1 CN 2018084398 W CN2018084398 W CN 2018084398W WO 2019174108 A1 WO2019174108 A1 WO 2019174108A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction cell
flange
situ reaction
mass spectrometer
vacuum
Prior art date
Application number
PCT/CN2018/084398
Other languages
English (en)
French (fr)
Inventor
杨永
Original Assignee
上海科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海科技大学 filed Critical 上海科技大学
Priority to EP18909449.3A priority Critical patent/EP3767287B1/en
Priority to US16/966,017 priority patent/US10830741B1/en
Publication of WO2019174108A1 publication Critical patent/WO2019174108A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/006Processes utilising sub-atmospheric pressure; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0073Sealings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/04Pressure vessels, e.g. autoclaves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0422Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for gaseous samples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/24Vacuum systems, e.g. maintaining desired pressures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/421Mass filters, i.e. deviating unwanted ions without trapping
    • H01J49/4215Quadrupole mass filters

Definitions

  • the invention relates to the reaction control, the kinetic characterization, the component detection and the combined characterization of the ultra-high vacuum characterization device (abbreviated as UHV) on the basis of the basic chemical reaction kinetics research, and particularly focuses on: having more than one vacuum molecule
  • UHV ultra-high vacuum characterization device
  • the ultra-high vacuum characterization device of the pump in combination with the in-situ pool sample preparation process, realizes the on-line component analysis and characterization by the mass spectrometer electric quadrupole extension and extension function built in the ultra-high vacuum characterization device.
  • the present invention satisfies the simultaneous real-time continuous recording of the reactive gas components in the environment in which the industrial preparation is prepared, thereby providing detailed information for the precise observation of the spectral or microstructure imaging of the research object, and establishing mutual interaction between the two. contact.
  • the invention is also suitable for real-time continuous detection of gas components in other similar environments, or as an application scheme for direct interconnection of high-voltage vacuum characterization devices other than mass spectrometry quadrupoles with a high-voltage environment.
  • the function of the in-situ reaction cell interconnected with the ultra-high vacuum device is to introduce the chemical reaction into the in-situ cell, pre-process the sample, and simulate the growth or reaction environment of the material by changing the temperature, gas pressure and gas composition conditions of the reaction environment. Then, through vacuum interconnection, spectral or microscopic imaging analysis is directly performed by ultra-high vacuum instruments to provide data related to the reaction conditions and sample behavior.
  • the main purpose of this process design is also its advantage: during the entire preparation to the analysis process, the sample is operated under custom atmosphere and vacuum protection, free from air pollution, thus ensuring the direct correlation between vacuum equipment analysis results and sample pretreatment. .
  • vacuum connection between ultra-high vacuum equipment and in-situ pool is an important upgrade option for large-scale instruments and equipment, generally reaching 10bar (1MPa) and 900°C.
  • Ultra-high vacuum characterization spectroscopy or imaging equipment such as XPS (X-ray photoelectron spectroscopy), TEM (transmission electron microscopy), STM (scanning tunneling microscope), HREELS (low energy electron energy loss spectrum), LEED (low energy electron diffraction), AES ( Auger electron spectroscopy) has the advantages of high resolution and high sensitivity in characterization.
  • XPS X-ray photoelectron spectroscopy
  • TEM transmission electron microscopy
  • STM scanning tunneling microscope
  • HREELS low energy electron energy loss spectrum
  • LEED low energy electron diffraction
  • AES Auger electron spectroscopy
  • the preparation of the above high temperature and high pressure conditions can be interrupted in the in situ pool by a separate in-situ cell that can be interconnected with the vacuum.
  • the gas pressure in the in-situ cell is communicated with the vacuum transfer chamber, and the vacuum device such as the molecular pump mechanical pump pump group is stepped down to a vacuum level equivalent to the ultra-high vacuum characterizing portion, and then the sample vacuum communication is transferred to the vacuum transfer.
  • the test was completed under an ultra-high vacuum characterization device. This is an important means of understanding and improving the representative chemical reaction process.
  • the manufacturer that provides the interconnection scheme does not have the gas component analysis function interconnected with the in-situ pool, that is, it cannot provide corresponding tracking verification for the atmosphere and vacuum protection during the preparation to the characterization process.
  • the reactant components entering the in-situ reaction cell can be precisely controlled by the gas flow ratio, that is, the intake air mixture device installed outside the device, but the gas composition must change with the actual reaction process. For example, if the characteristics of the catalyst during the oxidation of carbon monoxide are observed, the reaction components in the in-situ cell preparation are a precise mixture of carbon monoxide and oxygen before the input, but carbon dioxide is generated in the in-situ reaction cell. If the sample produces a carbonate-related signal in the characterization, the in-situ data of the carbon dioxide gas composition in the corresponding preparation is critical to both discussion and argumentation.
  • the preparation process of high temperature and high pressure conditions can be cut off by the independent in-situ reaction cell 1 which can be interconnected with vacuum.
  • the bit pool is completed.
  • the gas pressure in the independent in-situ reaction cell 1 is communicated with the vacuum transfer chamber 2, and the molecular pump mechanical pump unit 3 configured through the cavity is depressurized to a vacuum level equivalent to that of the ultra-high vacuum characterization portion.
  • the sample is then transferred to the sample chamber 5 of the ultra-high vacuum characterization device via the vacuum communication transfer device 4, ready for further transfer to the host analysis chamber of the ultra-high vacuum characterization device to complete the characterization test.
  • the sample compartment 5 is in communication with the mass spectrometer quadrupole 7 and is equipped with a molecular pump mechanical pumping unit 2-8.
  • connection method of the mass spectrometer quadrupole built into the ultra-high vacuum device is only suitable for detecting the micro-leakage of the ultra-high vacuum device or the atomic level of the sample.
  • the corresponding gas pressure is in the range of 10 -10 to 10 -5 mbar; and the environmental parameters required for on-line pool on-line detection need to be 1 to 10 bar. Therefore, the modified mass spectrometer quadrupole should take into account these two different gas pressure ranges, that is, further expansion from the original range of 10 -10 to 10 -5 mbar, including the working range of 1 to 10 bar.
  • the extension of the working range of the mass spectrometer quadrupole for ultra-high vacuum equipment needs to preserve the original working structure of the ultra-high vacuum equipment, that is, the ultra-high vacuum equipment when the mass spectrometer quadrupole is monitored online for the in-situ pool. All remaining work sections are still in normal working condition.
  • the main problem of the above component analysis is attributed to the in-situ interconnection of the device by extending the working test range of the mass spectrometer quadrupole extension without changing the premise of the working structure of the ultra-high vacuum characterization device.
  • the reaction cell is subjected to online real-time gas composition analysis at a working pressure ranging from 1 to 10 bar and a temperature ranging from room temperature to 900 °C.
  • the in-situ reaction cell for the X-ray device generally has a gas pressure range of between 1 bar and 10 bar, which belongs to the range of atmospheric pressure to medium-high pressure, and has exceeded the commercially available gas composition analysis.
  • the object of the present invention is to specifically customize the mass spectrometer sampling module scheme for the in-situ reaction cell of the vacuum interconnection of the ultra-high vacuum characterization apparatus, and provide accurate control of the gas input of the reaction cell and online analysis of the product components in the reaction.
  • the technical solution of the present invention provides a combination structure of an in-situ reaction cell interconnected by a UHV device and a built-in mass spectrometer quadrupole, including an independent in-situ reaction cell, and an independent in-situ reaction cell is connected to the original
  • the reaction tank exhaust pipe, the independent in-situ reaction tank is connected with the vacuum transfer chamber, the sample is transferred to the sample chamber of the ultra-high vacuum characterization device through the vacuum communication device, and the vacuum transfer chamber and the sample chamber are connected by the brake
  • the plate valve is separated, the sample chamber is connected with the mass spectrometer electric quadrupole, and the molecular pump mechanical pump pump set 2 is arranged, wherein one end of the stainless steel capillary channel is connected to the in-situ reaction cell exhaust pipe, and the other end is the sampling port.
  • the sampling gas outlet port is divided into two paths, one through the low flow control ratio valve into the vacuum transfer chamber, and the other through the high flow control ratio valve into the mass spectr
  • a flange with a sample transfer observation window is connected between the vacuum transfer chamber and the independent in-situ reaction cell;
  • the idle flange When the vacuum transfer chamber has an idle flange, the idle flange is changed to a tube transfer flange; when the vacuum transfer chamber has no idle flange, the flange adopts three Through flange 2, the sample transfer observation window is set in the straight-through direction of the three-way flange 2, and the flange opening of the three-way flange 2 in the non-straight direction is an idle flange port, and the idle flange port is changed into a ferrule Pipe adapter flange;
  • a sample gas is introduced into the vacuum transfer chamber via a tube transfer flange through a low flow control ratio valve.
  • the low flow control ratio valve employs a bonnet needle valve.
  • the high flow control ratio valve employs a metering needle valve.
  • the sampling port of the stainless steel capillary channel is connected to the protective ball valve.
  • a three-way flange 1 is further included, and three flange ports of the three-way flange one are respectively connected to the sample chamber, the mass spectrometer quadrupole and the high flow control ratio valve.
  • a flange of the three-way flange 1 is separated from the high-flow control ratio valve by a gate valve.
  • the tube adapter flange, the stainless steel capillary channel, the protection ball valve, the low flow control ratio valve, the high flow control ratio valve, and the gate valve 2 are all connected to each other to form a mounting module.
  • the stainless steel capillary tube is sampled from the in-situ reaction cell exhaust line and directly passed through a stainless steel line that is enlarged to a 1/4 inch or larger outer diameter.
  • Mass spectrometry is characterized by rapid response and high sensitivity to changes in gas composition and is an ideal means of monitoring the gas composition of the in-situ cell.
  • ultra-high vacuum instruments are equipped with mass spectrometer quadrupoles connected to the sample chamber; in addition, a plurality of molecular pump mechanical pump sets, such as vacuum transfer chambers, sample chambers, etc., must be equipped with independent molecular pump mechanical pump sets. .
  • These devices are also the main hardware components for realizing on-line detection of mass spectrometers, meeting the basic hardware requirements of the inventor's patented ZL 2016 1 0140435.5 (hereinafter referred to as the "prior patent scheme").
  • the invention combines the patent design with the specific conditions of the ultra-high vacuum equipment to directly utilize and refit and modify these resources to perform online gas composition detection on the in-situ pool preparation process, thereby maximally saving the solution cost.
  • the present invention refers to a solution for performing on-line high time resolution gas composition analysis using a mass spectrometer under a pressure environment of 0.1 to 2 MPa as proposed by the inventors' prior patent scheme.
  • the mass spectrometer assembly and measurement scheme is adjusted according to the special case of the ultra-high vacuum characterization equipment to ensure that the mass spectrometer is in the in-situ pool without changing the safety structure of the ultra-high vacuum characterization equipment.
  • the gas composition is continuously measured in real time online under working conditions of 1 bar to 10 bar.
  • the solution proposed by the invention is also suitable as a reference for the application scheme of the ultra-high vacuum characterization device other than the mass spectrometer electric quadrupole and the high-voltage environment.
  • the scheme adopts the prior patent scheme and is directly applicable to the pressure range of 0.1 to 2 MPa, and fully meets the working requirements of the in-situ reaction tank interconnected with the ultra-high vacuum characterization equipment in the pressure range.
  • this scheme compares the commercial atmospheric pressure mass spectrometer with the following advantages: 1) Because the metal capillary is compatible with the universal ferrule installation, it is suitable to use a vacuum tube with a larger inner diameter between the capillary and the mass spectrometer, such as 1/4 inch or larger stainless steel pipe connection. This part of the pipeline is in a vacuum state during the mass spectrometer test work, and the pipe diameter ensures a large conductance, and there is no time delay due to the transport after the capillary.
  • the capillary position can be adjusted relative to the mass spectrometer quadrupole, and the distance from the exhaust pipe interface is less than 7.5 cm, and the corresponding pipe volume is only 0.1 cm 3 .
  • the in-situ reaction cell of the ultra-high vacuum device is not a micro-reaction cell, and its internal dead volume generally reaches more than 100 mL. Therefore, the above pipe volume is much smaller than the dead volume of the in-situ reaction cell itself, and the resulting time delay is negligible.
  • Comprehensive optimization of the design advantages of the above parts is compared to the commercial atmospheric pressure mass spectrometer to achieve the purpose of minimizing the time delay. Therefore, this solution has the flexibility and accuracy of measurement measures in terms of time delay and sampling zone pressure range, which are closely related to the in-situ reaction cell interconnected by the ultra-high vacuum characterization device.
  • the in-situ reaction cell interconnected with it is equipped with a separate molecular pump mechanical pump pump set through the interconnecting transfer chamber (vacuum limit is 10 -9 mbar, generally maintaining a background pressure of 10 - 8 mbar), used to maintain the vacuum of the corresponding chamber, while ensuring the pre-vacuum before the preparation of the in-situ tank, that is, the reaction gas is not affected by the residual gas in the reactor, and the experimental ratio is quickly reached.
  • vacuum limit is 10 -9 mbar, generally maintaining a background pressure of 10 - 8 mbar
  • a mass spectrometer quadrupole is generally disposed at a location in communication with the sample chamber, or at least a flange position reserved for the hardware.
  • the sample compartment must have a separate molecular pump mechanical pump set (vacuum limit of 10 -9 mbar, generally maintaining a background pressure of 10 -8 mbar).
  • the mass spectrometer electric quadrupole and the molecular pump mechanical pump pump set are required to perform gas component sampling analysis of about 10 -6 mbar. Therefore, when this method requires in-situ gas mass spectrometry, the pair of mass spectrometer electric quadrupole and molecular pump mechanical pump set are used to realize the online gas component analysis function necessary for the prior patent scheme.
  • the above design directly utilizes the mass spectrometer quadrupole and molecular pump mechanical pump pump set of the ultra-high vacuum characterization device, eliminating the need for repeated purchases (accounting for more than 90% of the overall hardware cost of the prior patent scheme), and saving control and sampling equipment. Space and further optimize the piping design required for gas sampling.
  • the in-situ reaction tank itself has an inlet and an exhaust port connection outside the pipeline and the equipment to ensure the normal progress of the reaction in the in-situ pool.
  • the mass spectrometer and the exhaust pipe leading to the in-situ reaction cell outside the device are sampled through the special stainless steel capillary channel to analyze the gas composition inside the reaction cell.
  • the molecular pump of the differential pump is used as the transfer chamber of the mechanical pump pump unit.
  • the maximum pressure of the body is 10 -5 mbar
  • the maximum pressure of the sample chamber of another group of molecular pump mechanical pump units is 10 -6 mbar.
  • Both chambers are isolated from the rest of the ultra-high vacuum characterization equipment and are pressure transition chambers that allow direct contact with 1 bar or higher of the gas pressure, so that the mass spectrometer sampling does not affect the overall equipment. run.
  • the scope of the modification is small, and the modification does not cause the overall equipment shutdown and vacuum damage.
  • third-party manufacturers currently design in-situ reaction cells for many ultra-high vacuum spectroscopic characterization instruments, but there is generally no matching reaction gas composition control scheme and online gas composition analysis.
  • the solution of the invention utilizes the original hardware configuration of the ultra-high vacuum device, that is, the mass spectrometer electric quadrupole and the molecular pump mechanical pump pump group connected to the sample chamber, and another set of molecules matched with the inversion chamber of the in-situ reaction cell. Pump mechanical pump unit to achieve the above functions. This is a third-party upgrade on the already-characterized ultra-high vacuum characterization device.
  • this scheme proposes a pipeline connection design solution that extends the sampling range of the mass spectrometer quadrupole, and accordingly obtains an installation scheme that does not affect the original working state of the equipment.
  • this solution it is only necessary to change the connection flange of the mass spectrometer electric quadrupole and the sample chamber to the three-way flange of the same diameter, the open end is closed by the gate valve, and one idle flange of the transfer cavity is changed to The same diameter specification flange is connected to the stainless steel tube of 1/4" or more and is closed with a needle valve. Except for the two flange modifications, all the other pipelines can be completed outside the cavity of the ultra-high vacuum characterization device.
  • the above-mentioned gate valve and needle valve can be closed, so that the transfer chamber and the sample chamber are in an optimal vacuum state.
  • the solution of the present invention is directed to the hardware and safety features of the in-situ reaction cell of the ultra-high vacuum characterization apparatus, and has the following special designs:
  • the advantage of using a special stainless steel capillary tube in the pipeline connection in the prior patent scheme is realized to realize the medium and high pressure in situ.
  • the reaction cell directly transitions to the pressure of the ultra-high vacuum equipment, and the distance between the capillary and the ultra-high vacuum characterization device is minimized by vacuum connection;
  • the main component of the invention that is, the transitional gas path from the reaction cell to the mass spectrometer quadrupole, is independently installed outside the ultra-high vacuum characterization device, only at two allowable gas pressures up to 1 bar. Change one flange interface on each vacuum chamber. The ultra-high vacuum characterization equipment does not need to be shut down during installation, and the host has no vacuum damage;
  • sampling time delay of the mass spectrometer quadrupole in the gas sampling component analysis of the interconnected in-situ reaction cell is negligible, and the sampling analysis requirements of in-situ analysis for continuous, real-time and high time resolution are achieved.
  • the electric quadrupole's original 10 -10 to 10 -5 mbar measuring range is further extended to include a working range of 1 to 10 bar, which expands the function of the device;
  • Real-time mass spectrometry provides the in-situ reaction cell with the stability, accurate measurement and control of composition and partial pressure ratio, and high-time resolution real-time mass spectrometry to ensure that the experimental upstream gas source is controlled during rapid switching. accuracy;
  • FIG. 1 is a schematic view showing a layout structure of an existing ultra-high vacuum characterization device and an in-situ interconnected reaction cell;
  • FIG. 2 is a schematic diagram showing the layout of a combined structure of an in-situ reaction cell and a built-in mass spectrometer quadrupole connected by a UHV device according to the present invention
  • Figure 3 is an example of a mass spectrometer quadrupole sampling signal.
  • the present invention provides a UHV device interconnected in-situ reaction cell and a built-in mass spectrometer quadrupole.
  • the mass spectrometer quadrupole 7 pairs need to be completed. Sampling of the reaction cell exhaust line 9.
  • the first flange modification the straight-through flange 10 connecting the mass spectrometer quadrupole 7 to the ultra-high vacuum characterization device was changed to a three-way flange-12.
  • the second flange modification change one of the idle flange ports on the vacuum transfer chamber 2 to the tube adapter flange 13 (or a tube with a larger diameter).
  • the remaining pipe connections can be made outside of the ultra-high vacuum characterization equipment.
  • the stainless steel capillary 14 is connected to the in-situ reaction tank exhaust pipe 9 as a sampling port and protected by a 1/16" ball valve 15.
  • the sampling gas is divided into two paths, one of which is connected through a bonnet needle valve 16 (low flow control ratio).
  • the tube adapter flange 13 enters the vacuum transfer chamber 2 as a differential gas path in the prior patent scheme; the other path passes through the metering needle valve 17 (high flow control ratio) to communicate the three-way flange 12 into the mass spectrometer
  • the pole 7 is used for analysis sampling.
  • the shutter valve 2 is closed, and the sample chamber 5 and the ultra-high vacuum characterization device connected thereto are completely unaffected by the sampling portion of the extended extension. .
  • the 1/16" ball valve 15 is closed, and the vacuum of the newly expanded extended sampling portion is maintained by the vacuum transfer chamber 2. The vacuum of the vacuum transfer chamber 2 itself is not affected.
  • the pipeline design of the solution of the present invention makes the existing main hardware, namely the mass spectrometer electric quadrupole 7, the molecular pump mechanical pump pump group 3, the molecular pump mechanical pump pump group 2 and the prior patent.
  • the scheme obtained a completely consistent topological relationship, and the on-line analysis of the gas composition of the independent in-situ reaction cell 1 preparation process was completed by the hardware devices through the in-situ reaction cell exhaust pipe 9.
  • the molecular pump mechanical pump unit 3 actually plays the role of the differential pump set in the prior patent scheme.
  • the pulverized needle valve 16 can be used to increase the flow of the pumping gas pump of the molecular pump pump group, and the metering needle valve 17 can be adjusted, even if the independent in-situ reaction cell 1 is At the highest pressure of 10 bar, the gas pressure near the mass spectropole 7 will be stably controlled below 10 -6 mbar. This ensures that any ultra-high vacuum characterization device quickly recovers a background pressure of 10 -10 mbar after the end of the characterization.
  • the flange 11 with the sample transfer observation window can be changed to the same diameter three-way flange 2, and the sample transfer observation window is retained in the straight-through direction, and the three-way method is artificially added.
  • Lan II's non-straight direction adds an idle flange to complete the modification of the second flange.
  • a plurality of observation windows are necessarily provided, so that the position of the tube adapter flange 13 is ensured.
  • the above tube adapter flange 13 requires a stainless steel tube that is 1/4 inch or larger in outer diameter.
  • XPS was purchased from ThermoFisher, model ESCA 250Xi; vacuum interconnected and in-situ reaction cell 1 were purchased from Fermi Instruments, in-situ reaction cell type 1 HPGC 300; mass spectrometer quadrupole 7 model SRS300; two sets of molecular pump mechanical pump unit All are Edward.
  • the molecular pump is a super high vacuum characterization device configuration, and the pumping speed is greater than 200L, which is much higher than the pumping speed required by the prior patent scheme. This is the normal state of the configuration of the ultra-high vacuum characterization apparatus, so the sampling control results obtained by the present invention in practical applications are better than the embodiments of the prior patent scheme.
  • Fig. 3 is a sampling signal of a very short xenon pulse near the exhaust pipe 9 of the in-situ reaction cell obtained by the mass spectrometer electric quadrupole 7, and the corresponding time has no significant time delay with the occurrence time of the helium pulse (far less than the mass spectrometer quadrupole) Rod sampling interval).
  • the mass spectrometer electric quadrupole 7 is in the in-situ reaction cell 1 at a pressure of 0.01 bar vacuum to a high pressure of 10 bar. Sensitive signal response exceeds the design requirements of 1 to 10 bar of air pressure in the sampling area.
  • the 1/16" ball valve 15 and the gate valve 2 18 are respectively closed, and the vacuum transfer chamber 2 and the sample chamber 5 are restored in a few minutes. Good vacuum background.
  • connection of all the hardware and the ultra-high vacuum characterization device in this embodiment conforms to the structure of FIG.
  • the 1/16" ball valve 15, the bonnet needle valve 16, the metering needle valve 17 and the pipe fittings connected thereto use domestic valve parts, mainly purchased from Shanghai. Analysis of Titanium Fluid Technology Co., Ltd. The addition of the gate valve to purchase the VAT brand.
  • the installation minimizes the distance between the capillary and the X-ray characterization device, and reduces the gas delay time in the pipeline, and the dead volume delay time of the in-situ reaction cell itself is negligible;
  • the stainless steel capillary 14 is sampled from the in-situ reaction cell exhaust conduit 9 and directly passed through a stainless steel tubing that is enlarged to a 1/4 inch or larger outer diameter to achieve maximum vacuum conductance, ie, with mass spectrometer equipment. The connection is reached without time delay.
  • the cap needle valve 16, the metering needle valve 17, and the gate valve two 18 are all connected to each other to form a mounting module, which is convenient for disassembly and experimental operation, and the entire installation process does not affect the operation of the ultra-high vacuum characterization device, nor does it cause vacuum damage of the host. .
  • the newly added mass spectrometer quadrupole 7 sampling extension function module communicates with the original ultra-high vacuum characterization device cavity only through the three-way flange 12 and the tube adapter flange 13. .
  • the mass spectrometer electric quadrupole 7 does not use the sampling extension function of the in-situ reaction cell 1, simply close the 1/16" ball valve 15 and the gate valve 2 18 respectively to completely restore the vacuum transfer chamber 2 and the sample chamber 5.
  • the former working structure, and the new sampling extension function module is also under the ultra-high vacuum protection;
  • the shunt valve 16 and the metering needle valve 17 regulate the shunting of the sampling airflow, and the molecular pumping speed of the ultra-high vacuum characterization device configuration is large, and the vacuum background is good.
  • the sample chamber 5 gas pressure is stable at a set value below 10 -6 mabr. And until 10 -8 mbar there is still a stable and clear signal for the gas content of 1 ppm;
  • a direct vacuum transition from the in-situ reaction cell 1 (1 to 10 bar) to the mass spectropole 7 (10 -8 to 10 -6 mbar) is achieved by the inventive piping design.
  • the vacuum transfer chamber 2 and the sample chamber 5 recover the optimal vacuum background within a few minutes;
  • the important hardware of the original ultra-high vacuum characterization device is fully utilized, including the mass spectrometer electric quadrupole 7, the molecular pump mechanical pump pump group 2, and the molecular pump mechanical pump pump group 3, which are used in
  • the cost of the first patented solution is over 90%, which greatly saves equipment costs.
  • the present invention provides on-line mass spectrometry sampling analysis function for the in-situ reaction cell of the ultra-high vacuum characterization device based on the characteristics of the device, and expands the mass spectrometer quadrupole pair built in the ultra-high vacuum characterization device.
  • the gas reaction environment analysis capability of 1 ⁇ 10bar completely covers the pressure and gas composition accuracy requirements of the in-situ reaction cell of ultra-high vacuum characterization equipment; the sampling part satisfies 1) real-time sampling requirements, no time delay, and the collection reaction of micro-pulse Sensitive, 2) Ultra-high vacuum characterization equipment in-situ reaction tank pressure range, that is, upper and lower pressure upper limit requirements, 3) to achieve the extension and expansion function to meet the original work requirements of ultra-high vacuum characterization equipment, without changing its basic structure.
  • the installation is simple, the volume is small, the module is clear, and the use of other functions of the original equipment and the activities of the staff are not affected. Basic research on monitoring or chemical reaction in other similar related environments can also help.

Abstract

本发明涉及一种UHV设备互联的原位反应池与内置质谱电四极杆的联用结构,其特征在于,不锈钢毛细管道的一端与原位反应池排气管道相连,另一端为采样口,采样气体出采样口分为两路,一路通过低流量控制比阀进入真空中转腔体,另一路通过高流量控制比阀进入质谱电四极杆。本发明做到了质谱电四极杆在对互联的原位反应池进行气体采样成分分析时其采样时间延迟可忽略,达到了原位分析连续、实时和高时间分辨率的采样分析要求。

Description

UHV设备互联的原位反应池与内置质谱电四极杆的联用结构 技术领域
本发明涉及基础化学反应动力学研究在线制备的反应控制、动力学表征、成分检测及与超高真空表征设备(英文简称为UHV)的联用表征,特别专注于:已具备一台以上真空分子泵的超高真空表征设备,对其联用的原位池样品制备过程,通过超高真空表征设备内置的质谱电四极杆延伸扩展功能,实现其在线成分分析表征。应用上,本发明满足在工业制备中同步实时连续记录其所处的环境中反应气体成分,从而为精准观察研究对象光谱或显微结构成像提供制备过程的详细信息,建立两者之间的相互联系。本发明也适合应用于其它类似环境的气体成分实时连续检测,或作为质谱电四极杆以外的其它超高真空表征设备与高压环境直接互联的应用方案参考。
背景技术
与超高真空设备互联的原位反应池功能是将化学反应引入原位池,对样品进行原位预处理,通过改变反应环境的温度,气压和气体组分条件,模拟材料的生长或反应环境,再经过真空互联,直接由超高真空仪器设备进行光谱或显微成像分析,从而提供反应条件与样品行为的关联数据信息。这个处理设计的主要目的、也是其优点在于:在整个制备到分析过程中,样品都在定制气氛和真空保护下运行,不受空气污染,从而保证了真空设备分析结果和样品预处理的直接关联。目前超高真空设备与原位池真空互联是大型仪器设备重要升级选项,一般可以达到10bar(1MPa)和900℃。
超高真空表征谱学或成像设备如XPS(X射线光电子能谱),TEM(透射电镜),STM(扫描隧道显微镜),HREELS(低能电子能量损失谱),LEED(低能电子衍射),AES(俄歇电子能谱)在表征上具有高分辨率和高灵敏度的优势。但是超高真空的压力范围限制了此类设备的适用范围,一般工作环境要求在10 - 6mbar以下甚至更低。而在很大一部分表征工作中,需要通过制备过程模拟不同条件研究相应的反应或生长环境可能影响测量对象的性质,并反映在谱学或成像的测量结果中,从而在测量中建立制备环境与测量对象相关性质的变化的直接因果关系,进一步深入对重要化学反应的认识。上述的制备条件往往在1bar以上, 大大超过了超高真空表征谱学或成像设备的工作条件。
通过能够与真空互联的独立原位池,可以把上述高温高压条件的制备过程隔断在原位池内完成。在制备结束后,将原位池内气压与真空中转腔体联通,并通过分子泵机械泵泵组等真空设备降压到与超高真空表征部分相当的真空水平,再将样品真空联通传递转移到超高真空表征设备下完成测试。这是目前理解和改进代表性化工反应工艺的重要手段。
由于制备条件和测量结果的因果关系,以上测量中在制备环节中实时精准定量原位池生长或反应环境气体成分组成及其对时间变化显然是至关重要的。但是提供互联方案的厂商并不配套与原位池互联的气体成分分析功能,也就是说,不能为制备到表征过程中的气氛和真空保护提供相应的跟踪验证。
从成分控制上分析,进入原位反应池的反应物成分能够通过气体流量配比即安装在设备外的进气混气装置实现精确控制,但是气体成分必然随着实际反应进程而改变。举例说明,如果观察的是一氧化碳氧化过程中催化剂的特性,原位池制备中反应成分在输入前是一氧化碳和氧气的精确混气,但是在原位反应池内就会产生二氧化碳。如果在表征中样品产生碳酸盐相关信号,相应的制备中二氧化碳气体成分原位数据对讨论和立论都是至关重要的。此外,如果原位池在样品制备过程的气氛控制中由于误操作混入杂质,没有配套气体成分分析功能的设备是无法监测到的。因此要类似案例中真正建立反应环境和测量对象性质间的因果关系,就必须对超高真空表征谱学或成像设备互联的原位反应池进行实时连续的在线成分分析。
如图1所示,为现有的超高真空表征设备与原位为反应池互联的布局结构,通过能够与真空互联的独立原位反应池1,可以把高温高压条件的制备过程隔断在原位池内完成。在制备结束后,将独立原位反应池1内气压与真空中转腔体2联通,并通过该腔体配置的分子泵机械泵泵组一3降压到与超高真空表征部分相当的真空水平,再将样品通过真空联通传递装置4转移到超高真空表征设备的样品舱5,准备进一步转移到超高真空表征设备的主机分析舱完成表征测试。真空中转腔体2和样品舱5中间有闸板一6阀隔断。这样制备过程完全在独立原位反应池1内完成,与超高真空表征设备隔断。样品舱5与质谱电四极杆7联通,并配置有分子泵机械泵泵组二8。
对图1所示的布局的改装存在的主要技术问题在于,超高真空设备内置的质谱电四极杆的连接方式仅适用于检测超高真空设备可能存在的微漏或对样品的原子层级的微量气体处理,其对应的气压在10 -10~10 -5mbar范围内;而原位池在线检测所需要连接的环境参数需要达到1~10bar。因此在改装后的质谱电四极杆应兼顾这两个不同的气压范围,即在原有的10 -10~10 -5mbar范围基础上进一步扩展包括1~10bar的工作范围。
此外,对超高真空设备进行质谱电四极杆工作范围的延伸扩展,需要保留超高真空设备原有的工作结构,即质谱电四极杆在对原位池在线监控时,超高真空设备所有其余工作部分仍处于正常工作状态下。
因此,上述成分分析的主要问题归结于,在不改变超高真空表征设备工作结构这一先决规则的前提下,通过对质谱电四极杆延伸扩展工作测试范围,实现对与设备互联的原位反应池在工作气压范围为1~10bar,温度在室温到900℃状态下进行在线实时气体成分分析。
除此之外,还应注意到,为X射线装置配套的原位反应池,其气压范围一般在1bar到10bar之间,属于常压到中高压范围,已经超过了市售一般的气体成分分析装置如气象色谱仪(GC)和质谱仪(MS)允许的压力上限。
发明内容
本发明的目的是针对超高真空表征设备真空互联的原位反应池特别定制质谱仪采样模块方案,提供反应池气体输入的精确控制和反应中产物成分的在线分析。
为了达到上述目的,本发明的技术方案是提供了一种UHV设备互联的原位反应池与内置质谱电四极杆的联用结构,包括独立原位反应池,独立原位反应池上连接有原位反应池排气管道,独立原位反应池与配置有真空中转腔体相联通,样品通过真空联通传递装置转移到超高真空表征设备的样品舱,真空中转腔体与样品舱之间由闸板阀一隔断,样品舱与质谱电四极杆联通,并配置有分子泵机械泵泵组二,其特征在于,不锈钢毛细管道的一端与原位反应池排气管道相连,另一端为采样口,采样气体出采样口分为两路,一路通过低流量控制比阀进入真空中转腔体,另一路通过高流量控制比阀进入质谱电四极杆。
优选地,所述真空中转腔体与所述独立原位反应池之间连接有带样品转移观察窗的法兰;
当所述真空中转腔体有闲置法兰口时,将该闲置法兰口改为卡套管转接法兰;当所述真空中转腔体无闲置法兰口时,所述法兰采用三通法兰二,样品转移观察窗设于该三通法兰二的直通方向,三通法兰二的非直通方向的法兰口为闲置法兰口,将该闲置法兰口改为卡套管转接法兰;
一路采样气体通过低流量控制比阀经由卡套管转接法兰进入所述真空中转腔体。
优选地,所述低流量控制比阀采用阀帽针阀。
优选地,所述高流量控制比阀采用计量针阀。
优选地,所述不锈钢毛细管道的采样口与保护球阀相连。
优选地,还包括三通法兰一,三通法兰一的三个法兰口分别与所述样品舱、所述质谱电四极杆及所述高流量控制比阀相连。
优选地,所述三通法兰一的一个法兰口与所述高流量控制比阀相连之间由闸板阀二隔断。
优选地,所述卡套管转接法兰、不锈钢毛细管道、保护球阀、低流量控制比阀、高流量控制比阀、闸板阀二全部互相联通形成一个安装模块。
优选地,所述不锈钢毛细管从原位反应池排气管道采样后直接通过转接放大为1/4英寸或更大外径的不锈钢管路。
质谱分析具有对气体成分变化快速响应和高度敏感的特点,是用来监控原位池的气体成分的理想手段。通常超高真空仪器设备都配置与样品舱联通的质谱电四极杆;此外也配备多个分子泵机械泵泵组,如真空中转腔、样品舱等都必须配备独立的分子泵机械泵泵组。这些设备也是实现质谱仪在线检测的主要硬件组成,满足发明人在已授权的ZL 2016 1 0140435.5号专利方案(以下简称“在先专利方案”)的基本硬件要求。本发明结合该专利设计与超高真空设备具体条件直接利用并重组改装这些资源对原位池制备过程做在线气体成分检测,最大限度地节约了方案成本。
本发明参考了发明人在先专利方案中提出的0.1~2MPa压力环境下的使用质谱仪进行在线高时间分辨率气体成分分析的解决方案。在此的基础上,将该质 谱仪组装和测量方案按照超高真空表征设备的特殊案例进行针对性结构调整,保证质谱仪在不改变超高真空表征设备的安全结构的前提下在原位池1bar到10bar的工作条件下在线实时连续测量其中的气体成分。
本发明提出的方案也适合作为质谱电四极杆以外的其它超高真空表征设备与高压环境直接互联的应用方案参考。
本发明提供的技术方案解决了以下技术问题:
技术问题一:扩展超高真空表征设备所配置的质谱电四极杆在线测试的压力范围,使其采样的气压范围进一步包括原位反应池的参数范围(1~10bar)。与超高真空表征设备互联的原位反应池,工作时达到1MPa的上限气压,属于中高压范围。
一般的商用常压质谱仪都要求采样区气压仅为1bar,即0.1MPa,只能部分满足采样需要。即使限定只在原位反应池气压为0.1MPa左右进行质谱分析,采用商用常压质谱仪还会造成其他使用限制和局限性。1)由于商用常压质谱仪毛细管和质谱仪本身是直接连接在一起的,与原位反应池排气口连接会有一定的空间限制,需要进一步增加原位池排气管在设备外的长度才能方便连接。这样会造成一定的采样时间延迟;2)另外商用常压质谱仪一般使用较长的玻璃纤维毛细管,其色谱效应本身也会进一步增加上述的时间延迟;3)商用常压质谱仪体积较大,在管道和电线排布密集的超高真空设备附近安装容易造成布局和操作的困难。因此使用商用常压质谱仪在时间延迟和气压适应性上都有缺点。
本方案采用了在先专利方案,直接适用于0.1~2MPa气压范围,在压力范围上完全符合与超高真空表征设备互联的原位反应池的工作要求。在采样时间延迟方面,本方案比较商用常压质谱仪具有以下几方面的优势:1)由于金属毛细管兼容通用的卡套安装,适合在毛细管和质谱仪之间用内径较大的真空管线,如1/4英寸或更大的的不锈钢管道连接。这一部分管道在质谱仪测试工作时由于已处在真空状态,且管道口径保证了较大的流导,不会由于毛细管后的输运造成时间延迟。同时也可以保证毛细管可以安装到离原位反应池最近的排气管道接口处。2)此外,在先专利方案中使用的缩口设计的金属毛细管本身的延迟时间相对于较长的玻璃纤维毛细管也可以忽略不计。3)最后,如上所述,本方案保证了直径和体积都非常细小的金属毛细管在原位反应池排气管道在设备外最短的距离位置 上直接连接采样口,尾气输运传递的时间延迟也已被最小化。如使用商用常压质谱仪,由于设备体积和毛细管位置相对质谱仪设备固定,需增加原位反应池排气管道长度约1.5m,如使用3mm金属管线,内径约1.5mm,推算总共管道内部体积1.5m×π×(1.5mm) 2/4,约2cm 3。而使用本方案设计,毛细管位置相对于质谱电四极杆可以调整,与排气管道接口距离原位反应池小于7.5cm,相应的管道体积仅为0.1cm 3。一般来说,超高真空设备的原位反应池都不是微型反应池,其内部死体积一般达到100mL以上。因此,以上管道体积远远小于原位反应池自身的死体积,产生的时间延迟忽略不计。综合优化以上几部分的设计优势相对于商用常压质谱仪达到时间延迟最小化的目的。因此本方案相对于目前商用设备在时间延迟和采样区气压范围这两个与超高真空表征设备互联的原位反应池密切相关的测量指标上都具有灵活性和精确性的测量优势。
技术问题二:最大限度共享和利用原设备的已有硬件,包括质谱电四极杆和分子泵机械泵泵组。商用常压质谱仪的另一个问题是质谱电四极杆和分子泵机械泵泵组都独立于超高真空设备原有的自身配置,相当于全部重买。而且作为整机方案商用常压质谱仪还有较高的设备附加值,一般需要30~40万元,总体花费很高。
在超高真空表征设备上,与之互联的原位反应池通过相联通的中转腔体都配有一套独立的分子泵机械泵泵组(真空极限为10 -9mbar,一般保持背景气压为10 - 8mbar),用于保持相应腔体真空度,同时保证原位池制备前的预真空,即反应气体不受反应器内残气影响,快速达到实验预定配比。在原位反应池工作时,气体按实验要求输入,分子泵机械泵泵组与原位池隔断,仅用于保持中转腔体真空度。在本方案采用的在先专利方案中,需要独立微分泵组调节质谱仪在不同采样环境气压下达到稳定的进样量。因此这个分子泵机械泵泵组不但符合独立微分泵的要求,而且恰好在原位池带压工作时不需要对原位池进行任何操作。因此本方案在需要进行原位气体质谱分析时,采用这个分子泵机械泵泵组作为在先专利方案必需的独立微分泵。
在超高真空表征设备上,在与样品舱联通的位置,一般配置有质谱电四极杆,或至少有为该硬件预留的法兰位。同时样品舱一定有独立的分子泵机械泵泵组(真空极限为10 -9mbar,一般保持背景气压为10 -8mbar)。在本方案采用的在先 专利方案中,需要质谱电四极杆和分子泵机械泵泵组完成10 -6mbar左右的气体成分采样分析。因此本方案在需要进行原位气体质谱分析时,采用这一对质谱电四极杆和分子泵机械泵泵组实现在先专利方案必需的在线气体成分分析功能。
上述设计,直接利用超高真空表征设备的质谱电四极杆和分子泵机械泵泵组,省却了重复购买(占在先专利方案总体硬件成本90%以上),又节省了控制和采样设备的空间,并进一步优化了气体采样所需的管路设计。
技术问题三:不改变超高真空表征设备的原有工作结构。超高真空表征设备原有的设计是基于其表征功能的实现来进行的。这些结构在本发明新增测试功能后必须保持完整,不得有任何改变。综合考虑仪器的限制要求和气体成分分析信号的采集技术特点,质谱电四极杆与原位池的连接能够兼容这个限制。当反应池处在工作状态并被质谱在线表征的过程中,虽然处在常压或中高压环境下,但反应气体并不会因此影响超高真空设备的正常运行。在本发明方案中,原位反应池本身具有管道和设备外部的进气、排气口连接,以保证反应在原位池的正常进行。质谱仪与通到设备外部的原位反应池的排气管道通过特质不锈钢毛细管道进行采样,就能够分析反应池内部气体成分,此时用作差分泵的分子泵机械泵泵组联通的中转腔体最高气压为10 -5mbar,另一组分子泵机械泵泵组联通的样品舱最高气压为10 -6mbar。这两个腔体都与超高真空表征设备其余部分隔断,而且都是压力过渡腔体,允许直接与1bar甚至更高的气压接触,因此在质谱采样达到上述气压范围时不会影响整体设备的运行。
技术问题四:改动范围小,改装不造成设备整体停机和真空破坏。如上所述,目前第三方厂商为不少超高真空谱学表征仪器设计了原位反应池,但是普遍没有配套的反应气体成分控制方案和在线气体成分分析。本发明方案利用超高真空设备原有的硬件配置,即与样品舱联通的质谱电四极杆和分子泵机械泵泵组,以及另一套与原位反应池联通的中转腔体配套的分子泵机械泵泵组,实现以上功能。这属于在已经定性的超高真空表征设备上进行第三方的升级改造,出现主机真空破坏或停机都会对设备本身运行产生一定影响。本方案中由于最大限度利用超高真空表征设备上的原有硬件,牵涉的原有超高真空设备硬件配置较多,在设备上分布也较为分散,因此在改装方案上要求除过渡腔体(即样品舱和中转腔体)在正常气压允许范围内外,安装过程不造成设备整体停机和真空破坏。
本方案针对这一问题,提出质谱电四极杆采样范围延伸扩展的管道连接设计解决方案,相应得到一种不影响设备原有工作状态的安装方案。完成本方案的安装,只需要将质谱仪电四级杆与样品舱的连接法兰改为同口径的三通法兰,开放端用闸板阀封闭,中转腔体的一个闲置法兰改为同口径规格法兰转接1/4”以上的不锈钢卡套管并用针阀封闭。除了这两个法兰改装,其余所有的管路都可以在超高真空表征设备的腔体以外完成。在质谱电四极杆不进行对原位反应池的在线实时检测时,可以关闭上述闸板阀和针阀,使中转腔体和样品仓都处于最佳真空状态。
总上所述,本发明方案针对超高真空表征设备原位反应池的硬件以及安全特点,具有以下几点特殊设计:
1、在在先专利方案公开的质谱气体成分采样分析方案的基础上,针对本发明中的设备特殊要求,利用在先专利方案中使用特制不锈钢毛细管在管道连接上的优势,实现中高压原位反应池与超高真空设备的压力直接过渡,并通过真空连接最大限度缩短毛细管与超高真空表征设备距离;
2、充分利用了原设备的硬件,与超高真空表征设备共享两分子泵机械泵泵组及质谱电四极杆,占所采用的在先专利方案公开的质谱气体成分采样分析方案所需的硬件成本90%以上;
3、模块化设计,完成质谱电四极杆扩展延伸对互联的原位反应池在线采样检测功能后,仍保持超高真空表征设备原有的工作结构,不影响任何出厂功能的使用;
4、同样是模块化设计,将本发明的主要组成部分即原为反应池到质谱点四极杆的过渡气路部分独立到超高真空表征设备以外安装,仅在两个允许气压达到1bar的真空腔体上各更改一个法兰接口。安装时超高真空表征设备整机不需要停机,主机无真空破坏;
通过上述几点特殊设计,本发明做到了
1、质谱电四极杆在对互联的原位反应池进行气体采样成分分析时其采样时间延迟可忽略,达到了原位分析连续、实时和高时间分辨率的采样分析要求。
2、在超高真空表征设备的工作条件下,不但保持原有的谱学/成像功能,增加了在原位反应池同步制备过程中获得反应/生长模拟环境气体成分的精确信息, 在内置质谱电四极杆原有的10 -10~10 -5mbar测量范围基础上进一步扩展包括1~10bar的工作范围,扩展了设备功能;
3、通过实时质谱分析为原位反应池提供工作需要的稳定,成分和分压比例的精确检验和控制,同时有高时间分辨率的实时质谱分析保证实验用上游气源在迅速切换时控制的准确性;
4、节省成本,不但在测试技术指标上全面超过商用常压质谱仪,所需费用不到其10%;
5、安装空间最小化;
6、设备功能扩展延伸后不影响原超高真空表征设备任何功能实现,且安装不需要主机停机。
附图说明
图1为现有的超高真空表征设备与原位为反应池互联的布局结构示意图;
图2为本发明提供的一种UHV设备互联的原位反应池与内置质谱电四极杆的联用结构的布局示意图;
图3为质谱电四极杆采样信号举例。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
如图2所示,为本发明提供的一种UHV设备互联的原位反应池与内置质谱电四极杆的联用结构,按照在先专利方案,需要完成质谱电四极杆7对原位反应池排气管道9的采样。为利用超高真空表征设备原有配置硬件达到这一装配方案,首先需要将超高真空表征设备原有的两个真空法兰件改为法兰接口,这是在先专利方案实时采样所需要的两个真空接口。第一个法兰改装:将质谱电四极杆7与超高真空表征设备连接的直通法兰10改为三通法兰一12。第二个法兰改装:将真空中转腔体2上的一个闲置法兰口改为卡套管转接法兰13(也可以转口径更大的卡套管)。剩余的管道连接都可以在超高真空表征设备以外完成。将14、不锈钢毛细管14与原位反应池排气管道9连接作为采样口并用1/16”球阀15保护。采样气体分为两路,其中一路通过阀帽针阀16(低流量控制比)联通卡套管 转接法兰13进入真空中转腔体2,作为在先专利方案中的微分气路;另一路通过计量针阀17(高流量控制比)联通三通法兰一12进入质谱电四极杆7作为分析采样用。
在质谱电四极杆7不用对独立原位反应池1采样时,关闭闸板阀二18,样品舱5及与之相联通的超高真空表征装置主机就完全不受扩展延伸的采样部分影响。同时关闭1/16”球阀15,新增的扩展延伸的采样部分的真空由真空中转腔体2维持。而真空中转腔体2本身的真空度也不会受到影响。
在图2的方案中,通过本发明方案的管道设计,使得已有的主要硬件即质谱电四极杆7、分子泵机械泵泵组一3、分子泵机械泵泵组二8与在先专利方案获得了完全一致的拓扑结构关系,实现了由这些硬件设备通过原位反应池排气管道9完成对独立原位反应池1制备过程气体成分的在线分析。其中分子泵机械泵泵组一3实际起到了在先专利方案中微分泵组的作用。在独立原位反应池1气压较高的时候,可以通过调节阀帽针阀16增加分子泵机械泵泵组一3对采样气流的分流,配合调节计量针阀17,即使独立原位反应池1处在10bar的最高压力下,质谱电四极杆7附近气压将稳定控制在10 -6mbar以下。这保证了任何超高真空表征设备在表征结束后迅速恢复10 -10mbar背景气压。
如果真空中转腔体2没有闲置法兰,可以将带有样品转移观察窗的法兰11改为同口径的三通法兰二,在直通方向保留样品转移观察窗,人为在新增三通法兰二的非直通方向增加一个闲置法兰口,完成上述第二个法兰口的改装。在真空中转腔体2为配合真空联通传递装置4转移样品,必定配备多个观察窗,因此卡套管转接法兰13的位置是有保证的。
以上卡套管转接法兰13要求转接1/4英寸或更大外径的不锈钢管。
以下以对一台配有真空互联原位反应池的XPS分析设备进行升级改装为例,进一步说明本发明。
XPS购买自ThermoFisher,型号为ESCA 250Xi;真空互联及原位反应池1均购买自Fermi Instruments,原位反应池1型号HPGC 300;质谱电四极杆7型号SRS300;两套分子泵机械泵泵组均为Edward。其中分子泵因为是超高真空表征设备配置,抽速大于200L,远高于在先专利方案要求的抽速。这是超高真空表征设备配置的常态,因此本发明专利在实际应用中得到的采样控制结果好于在 先专利方案的实施例。在质谱信号采集的实施中,样品舱5气压一直稳定在10 - 6mabr以下的设定值,直到10 -8mbar对含量1ppm的气体成分仍有稳定清晰的信号。图3为质谱电四极杆7获得的在原位反应池排气管道9附近极短氦气脉冲的采样信号,其相应时间与氦气脉冲发生时间无明显时间延迟(远小于质谱电四极杆采样时间间隔)。实际操作中,通过调整采样信号经过阀帽针阀16及计量针阀17的流量配比,质谱电四极杆7对原位反应池1处在0.01bar真空条件到10bar中高压条件下都有灵敏的信号响应,超过了采样区气压1~10bar的设计要求。在,质谱电四极杆7对原位反应池1采样结束后,分别关闭1/16”球阀15及闸板阀二18,真空中转腔体2及样品舱5在几分钟内就恢复了最佳真空背景。
本实施例中所有硬件与超高真空表征设备的联接都符合图一的结构。
在对质谱电四极杆7采样扩展延伸的管道连接中,1/16”球阀15、阀帽针阀16、计量针阀17以及与之相连的管道配件均使用国产阀件,主要购买自上海析钛流体科技有限公司。增加的闸板阀购买VAT品牌。
优选地,安装上最大限度缩短毛细管与X射线表征设备距离,减少管道中气体延迟时间,相对原位反应池自身的死体积延迟时间忽略不计;
优选地,不锈钢毛细管14从原位反应池排气管道9采样后直接通过转接放大为1/4英寸或更大外径的不锈钢管路,以实现最大的真空流导,即与质谱仪设备的连接达到无时间延迟。
优选地,图2中作为质谱电四极杆7向原位反应池1直接采样的所有管路配件即卡套管转接法兰13、特制不锈钢毛细管道14、1/16”球阀15、阀帽针阀16、计量针阀17、闸板阀二18全部互相联通形成一个安装模块,便于拆卸和实验操作,整个安装过程不影响超高真空表征设备整机运行,也不造成主机的真空破坏。
优选地,通过模块化安装设计,新增的质谱电四极杆7采样延伸扩展功能模块仅通过三通法兰一12和卡套管转接法兰13与原超高真空表征设备腔体联通。在质谱电四极杆7对原位反应池1采样延伸扩展功能不使用时,简单分别关闭1/16”球阀15及闸板阀二18就使真空中转腔体2及样品舱5完全恢复改装前的工作结构,而且新增的采样延伸扩展功能模块也处在超高真空保护之下;
优选地,在在先专利方案的基础上,通过阀帽针阀16及计量针阀17对采样气流的分流调控,并发挥超高真空表征设备配置的分子泵抽速大,真空背景好的 优势,实现在质谱电四极杆7向原位反应池1(1~10bar)直接采样过程中,样品舱5气压一直稳定在10 -6mabr以下的设定值。并直到10 -8mbar对含量1ppm的气体成分仍有稳定清晰的信号;
优选地,通过本发明方案管道设计,实现了从原位反应池1(1~10bar)向质谱电四极杆7(10 -8~10 -6mbar)的直接真空过渡。在质谱电四极杆7向原位反应池1直接采样结束后,真空中转腔体2及样品舱5在几分钟内就恢复最佳真空背景;
优选地,通过管道设计,充分利用了原超高真空表征设备的重要硬件,包括质谱电四极杆7、分子泵机械泵泵组二8及分子泵机械泵泵组一3,占所采用在先专利方案硬件成本90%以上,极大节省了设备成本。
综上所述,本发明基于设备特点以极低的成本,为超高真空表征设备的原位反应池提供了在线质谱采样分析功能,扩展了超高真空表征设备内置的质谱电四极杆对1~10bar气体反应环境分析能力,完全覆盖了超高真空表征设备原位反应池需要的气压和气体成分精度要求;采样部分满足1)实时采样的要求,无时间延迟,对微量脉冲的采集反应灵敏,2)超高真空表征设备原位反应池气压范围,即中高压的上限要求,3)实现延伸扩展功能时满足超高真空表征设备原定工作要求,不改变其基本结构。同时安装简便,体积小,模块清晰,不影响原设备其他功能的使用和工作人员活动。对其他类似相关环境下的监测或化工反应基础研究也都能起到帮助作用。

Claims (9)

  1. 一种UHV设备互联的原位反应池与内置质谱电四极杆的联用结构,包括独立原位反应池(1),独立原位反应池(1)上连接有原位反应池排气管道(9),独立原位反应池(1)与配置有真空中转腔体(2)相联通,样品通过真空联通传递装置转移到超高真空表征设备的样品舱(5),真空中转腔体(2)与样品舱(5)之间由闸板阀一(6)隔断,样品舱(5)与质谱电四极杆(7)联通,并配置有分子泵机械泵泵组二(8),其特征在于,不锈钢毛细管道(14)的一端与原位反应池排气管道(9)相连,另一端为采样口,采样气体出采样口分为两路,一路通过低流量控制比阀进入真空中转腔体(2),另一路通过高流量控制比阀进入质谱电四极杆(7)。
  2. 如权利要求1所述的一种UHV设备互联的原位反应池与内置质谱电四极杆的联用结构,其特征在于,所述真空中转腔体(2)与所述独立原位反应池(1)之间连接有带样品转移观察窗的法兰(13);
    当所述真空中转腔体(2)有闲置法兰口时,将该闲置法兰口改为卡套管转接法兰(13);当所述真空中转腔体(2)无闲置法兰口时,所述法兰(13)采用三通法兰二,样品转移观察窗设于该三通法兰二的直通方向,三通法兰二的非直通方向的法兰口为闲置法兰口,将该闲置法兰口改为卡套管转接法兰(13);
    一路采样气体通过低流量控制比阀经由卡套管转接法兰(13)进入所述真空中转腔体(2)。
  3. 如权利要求1所述的一种UHV设备互联的原位反应池与内置质谱电四极杆的联用结构,其特征在于,所述低流量控制比阀采用阀帽针阀(16)。
  4. 如权利要求1所述的一种UHV设备互联的原位反应池与内置质谱电四极杆的联用结构,其特征在于,所述高流量控制比阀采用计量针阀(17)。
  5. 如权利要求2所述的一种UHV设备互联的原位反应池与内置质谱电四极杆的联用结构,其特征在于,所述不锈钢毛细管道(14)的采样口与保护球阀(15)相连。
  6. 如权利要求5所述的一种UHV设备互联的原位反应池与内置质谱电四极杆的联用结构,其特征在于,还包括三通法兰一(12),三通法兰一(12)的三个法兰口分别与所述样品舱(5)、所述质谱电四极杆(7)及所述高流量控制比阀相连。
  7. 如权利要求6所述的一种UHV设备互联的原位反应池与内置质谱电四极杆的联用结构,其特征在于,所述三通法兰一(12)的一个法兰口与所述高流量控制比阀相连之间由闸板阀二(18)隔断。
  8. 如权利要求7所述的一种UHV设备互联的原位反应池与内置质谱电四极杆的联用结构,其特征在于,所述卡套管转接法兰(13)、不锈钢毛细管道(14)、保护球阀(15)、低流量控制比阀、高流量控制比阀、闸板阀二(18)全部互相联通形成一个安装模块。
  9. 如权利要求1所述的一种UHV设备互联的原位反应池与内置质谱电四极杆的联用结构,其特征在于,所述不锈钢毛细管(14)从原位反应池排气管道(9)采样后直接通过转接放大为1/4英寸或更大外径的不锈钢管路。
PCT/CN2018/084398 2018-03-13 2018-04-25 Uhv设备互联的原位反应池与内置质谱电四极杆的联用结构 WO2019174108A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18909449.3A EP3767287B1 (en) 2018-03-13 2018-04-25 Combination structure of uhv device interconnected in-situ reaction cell and built-in mass spectrum electric quadrupole rod
US16/966,017 US10830741B1 (en) 2018-03-13 2018-04-25 Combined structure of UHV characterization instrument-interconnected in-situ reaction cell and built-in mass spectrometer electric quadrupole

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810206985.1 2018-03-13
CN201810206985.1A CN108760867B (zh) 2018-03-13 2018-03-13 Uhv设备互联的原位反应池与内置质谱电四极杆的联用结构

Publications (1)

Publication Number Publication Date
WO2019174108A1 true WO2019174108A1 (zh) 2019-09-19

Family

ID=63980336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084398 WO2019174108A1 (zh) 2018-03-13 2018-04-25 Uhv设备互联的原位反应池与内置质谱电四极杆的联用结构

Country Status (4)

Country Link
US (1) US10830741B1 (zh)
EP (1) EP3767287B1 (zh)
CN (1) CN108760867B (zh)
WO (1) WO2019174108A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697832A (zh) * 2020-12-18 2021-04-23 兰州大学 一种原位和准原位多相催化电子顺磁共振平台及使用方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113702413B (zh) * 2021-08-30 2023-09-29 兰州大学 一种用于电子顺磁共振研究多相催化剂活化/反应装置及使用方法
CN114384145B (zh) * 2021-12-27 2024-04-12 常熟市虞华真空设备科技有限公司 行星大气成分配比在线检测系统、混合系统和方法
CN115779793A (zh) * 2022-12-05 2023-03-14 中国地质科学院水文地质环境地质研究所 一种高温高压耐酸碱腐蚀反应装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612641A (zh) * 2009-11-09 2012-07-25 布鲁克机械公司 真空质量测量系统
CN104142364A (zh) * 2014-08-11 2014-11-12 中国科学院地质与地球物理研究所兰州油气资源研究中心 一种高真空微量气体自动进样系统及其使用方法
CN105702554A (zh) * 2016-03-11 2016-06-22 上海科技大学 消色谱效应的超高真空腔对高压气体采样装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE58049B1 (en) * 1985-05-21 1993-06-16 Tekscan Ltd Surface analysis microscopy apparatus
KR900005250B1 (ko) * 1986-10-28 1990-07-21 몬산토 캄파니 촉매화 화학반응을 수행하고, 촉매작용을 연구하기 위한 방법과 장치
JPH05290778A (ja) * 1992-04-03 1993-11-05 Jeol Ltd 超高真空対応分析装置
CN105510264B (zh) * 2015-12-28 2018-03-27 上海科技大学 全温域快速控温高压微体积催化在线表征反应器
CN107024363B (zh) * 2017-02-21 2019-09-17 上海科技大学 质谱仪对二十兆帕高压内范围实时线性采样装置
CN107238618B (zh) * 2017-05-17 2020-06-30 上海科技大学 X射线表征设备原位池联用的反应控制和质谱分析装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612641A (zh) * 2009-11-09 2012-07-25 布鲁克机械公司 真空质量测量系统
CN104142364A (zh) * 2014-08-11 2014-11-12 中国科学院地质与地球物理研究所兰州油气资源研究中心 一种高真空微量气体自动进样系统及其使用方法
CN105702554A (zh) * 2016-03-11 2016-06-22 上海科技大学 消色谱效应的超高真空腔对高压气体采样装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697832A (zh) * 2020-12-18 2021-04-23 兰州大学 一种原位和准原位多相催化电子顺磁共振平台及使用方法
CN112697832B (zh) * 2020-12-18 2023-09-12 兰州大学 一种原位和准原位多相催化电子顺磁共振平台及使用方法

Also Published As

Publication number Publication date
US20200355653A1 (en) 2020-11-12
CN108760867A (zh) 2018-11-06
EP3767287A4 (en) 2021-12-15
EP3767287A1 (en) 2021-01-20
US10830741B1 (en) 2020-11-10
EP3767287B1 (en) 2023-08-30
EP3767287C0 (en) 2023-08-30
CN108760867B (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
WO2019174108A1 (zh) Uhv设备互联的原位反应池与内置质谱电四极杆的联用结构
CN105424882B (zh) Scr脱硝系统多支路烟气取样装置及取样方法
US20210237005A1 (en) Multifunctional c4f7n/co2 mixed gas preparation system and preparation method
WO2018210108A1 (zh) 针对x射线表征设备原位池联用的反应控制和质谱分析站
CN203275293U (zh) 一种集中式红外变电站环境气体监测装置
CN102437005B (zh) 一种气体分析质谱仪上的膜进样装置
CN108717030B (zh) 一种氢同位素气体丰度的快速分析装置及方法
CN103424486A (zh) 一种变压器油色谱在线监测装置性能检测系统及其方法
CN102103046A (zh) 球胆取样装置及取样方法
CN214408245U (zh) 一种多通道自动时序采样系统
CN105702554A (zh) 消色谱效应的超高真空腔对高压气体采样装置
CN210639118U (zh) 一种烟气中氯化氢在线连续监测装置
CN205333371U (zh) 可外排吹扫气体的空分气体分析集中取样柜
CN207851267U (zh) 一种密度继电器在线校验装置
CN207600780U (zh) 密闭液体取样系统
GB996361A (en) Improvements in and relating to the remote monitoring of the composition of air
CN109085280B (zh) 一种定量检测六氟化硫气体成分的系统
WO2021056657A1 (zh) 多点位VOCs在线连续采样监测装置及方法
CN105445066B (zh) 烟气中voc在线监测装置及方法
CN205374418U (zh) 多种传感器融合的sf6分解物在线监测装置
CN202645550U (zh) 高温高压饱和液体防闪蒸密闭取样及计量装置
CN211668877U (zh) 一种gis或hgis设备sf6气体不间断取气装置
CN204461833U (zh) 用于气相色谱仪的自动取样装置和自动气相色谱检测系统
CN220040362U (zh) 一种电站锅炉尾部烟气成分分析系统
CN219830480U (zh) 一种温室气体采样及在线分析系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018909449

Country of ref document: EP

Effective date: 20201013