WO2018210108A1 - 针对x射线表征设备原位池联用的反应控制和质谱分析站 - Google Patents

针对x射线表征设备原位池联用的反应控制和质谱分析站 Download PDF

Info

Publication number
WO2018210108A1
WO2018210108A1 PCT/CN2018/084392 CN2018084392W WO2018210108A1 WO 2018210108 A1 WO2018210108 A1 WO 2018210108A1 CN 2018084392 W CN2018084392 W CN 2018084392W WO 2018210108 A1 WO2018210108 A1 WO 2018210108A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
situ
ray
mass spectrometry
situ reaction
Prior art date
Application number
PCT/CN2018/084392
Other languages
English (en)
French (fr)
Inventor
杨永
刘泽邦
李沛豪
沃夫克⋅叶甫根尼
Original Assignee
上海科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海科技大学 filed Critical 上海科技大学
Priority to US16/613,801 priority Critical patent/US11435301B2/en
Publication of WO2018210108A1 publication Critical patent/WO2018210108A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • G01N23/2076Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions for spectrometry, i.e. using an analysing crystal, e.g. for measuring X-ray fluorescence spectrum of a sample with wavelength-dispersion, i.e. WDXFS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0422Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for gaseous samples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/24Vacuum systems, e.g. maintaining desired pressures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/638Specific applications or type of materials gas

Definitions

  • the invention belongs to the field of reaction control, component detection and kinetic characterization of the basic chemical reaction kinetics research.
  • the invention is particularly focused on: the combined characterization of the X-ray spectroscopy method and the mass spectrometer on the reaction process, and the precise observation of the research object Simultaneous expansion of the crystal or electronic structure, simultaneous real-time continuous recording of the reactive gas components in the environment in which it is located, establishing a relationship between the two.
  • the invention is also suitable for real-time continuous detection of gas components in other radiation-like environments.
  • X-ray spectroscopy equipment has special measurement conditions, that is, a radioactive environment, and provides basic characteristics such as X-ray diffraction device (XRD) and small-angle X-ray scattering, respectively, according to the structure of the observation setting.
  • XRD X-ray diffraction device
  • SXAS X-ray absorption spectrum
  • XAS X-ray absorption spectrum
  • EXAFS EXAFS
  • the X-ray in-situ reaction cell is an accessory that introduces a chemical reaction into an X-ray spectroscopy device to achieve X-ray spectroscopy measurements in a reaction environment.
  • different reaction environments may affect the nature of the measured object and be reflected in the measurement results of the X-ray spectrum, thereby establishing a direct change in the relationship between the reaction environment and the measured object in dynamic or steady state measurements.
  • Causal relationship further understanding of important chemical reactions, which is an important means to understand and improve representative chemical reactions (such as denitration process, methane oxidative coupling process, etc.).
  • the precise quantification of the composition of the reaction environment and its quantitative variation in time in such measurements is clearly critical.
  • the control and measurement of the components of the reaction environment during the characterization of the X-ray equipment must take into account the effects of the above-mentioned radioactive environmental limitations. Obviously, any control or measurement method originating from a third party must strictly prohibit the change of the original security protection settings of the X-ray characterization equipment, and can only be customized installation outside the safety enclosure of the equipment. From the composition control analysis, the reactant components entering the in-situ reaction cell can be precisely controlled by the gas or liquid flow ratio, that is, the intake air mixture device installed outside the device, but the gas composition must change with the actual reaction process.
  • the reaction components are a precise mixture of carbon monoxide and oxygen before the input, but carbon dioxide is generated in the in-situ reaction cell. If a carbonate crystal phase is produced in the bulk phase of the object to be measured, the corresponding in-situ data of the new carbon dioxide gas composition is critical to both discussion and argumentation. Therefore, in order to establish a causal relationship between the reaction environment and the nature of the measured object in a similar case, real-time continuous online component analysis of the in-situ reaction cell inside the X-ray characterization device is required.
  • the main problem of the above component analysis is attributed to the gas component analysis of the in-situ reaction cell inside the device under the premise of strictly observing the rule that does not change into the interior of the X-ray characterization device.
  • the in-situ reaction cell for the X-ray device generally has a gas pressure range of 0.1 to 1 MPa, which belongs to the range of atmospheric pressure to medium-high pressure, which also exceeds the general gas composition of the market.
  • the upper limit of the sampling pressure of analytical devices such as gas chromatograph (GC) and mass spectrometer (MS).
  • the technical problem to be solved by the present invention is to carry out gas component analysis on the in-situ reaction cell inside the device under the premise of strictly observing the premise that the inside of the X-ray characterization device is not changed.
  • the technical solution of the present invention provides a reaction control and mass spectrometry analysis station for in-situ pooling of an X-ray characterization apparatus, the reaction control and mass spectrometry station including a reaction gas composition control module and an online
  • the gas component analysis module further includes a modification based on the original vacuum pipeline section, and the original vacuum pipeline part after the modification passes through the total exhaust port, the in-situ reaction cell exhaust port and the in-situ reaction cell aeration inlet, and its characteristics are characterized.
  • the vacuum line section also adds a mass spectrometer sampling port and sampling capillary and control valve, wherein:
  • the online gas composition analysis module performs micro-sampling of the gas in the in-situ reaction cell outlet through the capillary through the sampling port of the mass spectrometer.
  • the online gas composition analysis module includes a mass spectrometer electric quadrupole, a molecular pump set, a needle valve or a high-precision metering valve.
  • the original mechanical pump and the molecular pump set of the reaction tank draw the sampling gas from the capillary through the respective suction passages, and a part of the gas extracted from the capillary flows to the electric energy meter four-stage rod, and the other part flows into the original mechanical pump, and the needle valve or high precision
  • the metering valve modulates the ratio of the flow rate of the gas to the mass spectrometer and the flow rate of the gas flowing into the original mechanical pump;
  • the reaction gas component control module is a mixed gas supply gas path, a single gas supply gas path, a gas path switching unit, and a pressure holding unit.
  • the two gas paths provided by the mixed gas supply gas path and the single gas supply gas path are switched by the gas circuit switching unit, one is connected to the in-situ reaction pool mixed gas inlet, and the other is connected with the in-situ reaction pool exhaust port.
  • the exhaust port, the gas path terminal connected to the in-situ reaction tank mixed gas inlet and the gas path terminal connected to the total exhaust port are held by the respective pressure maintaining units.
  • the pipeline connected to the exhaust port of the in-situ reaction tank adopts a pipeline having a smaller inner diameter such that the total internal volume of the pipeline between the exhaust port of the in-situ reaction vessel and the capillary is much smaller than the dead volume of the in-situ reaction vessel itself.
  • the capillary employs a crimped metal capillary.
  • the online gas component analysis module and the reactive gas component control module are respectively disposed on upper and lower layers of the double-layer tool cart;
  • the online gas component analysis module communicates with the mass spectrometer sampling port through one of four ferrule interfaces or a quick connector interface on the same panel, and the reactive gas component control module passes through four ferrules on the same panel
  • the other three interfaces of the interface or the quick connect interface are in communication with the total exhaust port, the in-situ reaction cell exhaust port, and the in-situ reaction cell aeration inlet.
  • both ends of the capillary are respectively connected to the original mechanical pump and the mass spectrometer sampling port through respective control ball valve sets.
  • the mixed gas supply gas path comprises mass flow meters respectively connected to three gases, and the outputs of the three mass flow meters are mixed to form a mixed gas having a maximum of three precise flow rates and component ratios;
  • the single gas supply gas path includes a mass flow meter that precisely controls the flow rate of a single gas through a mass flow meter.
  • the X-ray characterization device has a certain spatial distance from the in-situ reaction cell and the in-situ reaction cell. With this solution, the delay of mass spectrometry signal acquisition must be considered.
  • the in-situ reaction cell of the X-ray device is not a micro-reaction cell, and its internal dead volume generally reaches more than 100 mL. Therefore, in the in-situ reaction tank piping connection, the supplier is required to use a pipeline with a smaller inner diameter to minimize the volume increase caused by the pipeline.
  • the inner diameter is about 1.5mm
  • the total connection length is about 1.5m
  • the total internal volume of the pipeline is estimated to be 1.5m ⁇ (1.5mm) 2/4, about 2mL, which is much smaller than the dead volume of the in-situ reaction tank itself. The resulting time delay is ignored.
  • the ambient pressure of the sampling part conforms to the parameter range of the in-situ reaction cell of the X-ray characterization device.
  • the in-situ reaction cell of the X-ray characterization device such as the XRK900, reaches an upper pressure of 1 MPa during operation and belongs to the medium and high pressure range.
  • a typical commercial mass spectrometer requires that the sampling zone pressure be one atmosphere, or 0.1 MPa. Even if the mass spectrometry is limited only in the in-situ reaction cell pressure of about 0.1 MPa, the commercial mass spectrometer is directly connected to the capillary and the mass spectrometer itself, and is affected by the overall volume, and is connected to the exhaust port of the in-situ reaction cell.
  • the invention adopts the comprehensive scheme of the mass spectrometer electric quadrupole and the shrink metal capillary and the independent differential pump disclosed by the applicant's patent application No. 201610140435.5 (hereinafter referred to as the prior patent), which is suitable for the pressure of 0.1-2 MPa. range.
  • the metal capillary is compatible with the universal ferrule installation, it is suitable to connect the capillary tube and the mass spectrometer with a pipe with a larger inner diameter, such as a 1/4 inch or larger stainless steel pipe. This part of the pipeline is in a vacuum state during the mass spectrometer test work and does not cause a time delay.
  • the present invention has the measurement advantages of flexibility and precision in terms of time delay and sampling zone pressure range, which are closely related to the in-situ reaction cell of the X-ray characterization apparatus, compared to current commercial equipment.
  • in-situ XRD in-situ XAS or no on-line mass spectrometers are only used for low-conversion/non-conversion or complete conversion reactions, which are easy to infer from the composition, at the expense of more general-purpose partial conversion reactions; or because of expansion
  • the installation of the in-situ reaction cell function is complicated and difficult to disassemble. In practice, it can only be used as a single-function device, thus ultimately sacrificing other functions of the X-ray device.
  • the present invention addresses this problem by proposing an easy-to-disassemble solution that includes a gas mixture input with precise composition control, gas switching with a certain degree of freedom, air pressure control in the range of 0.1-1.0 MPa, and accuracy to ppm or higher.
  • Level of mass spectrometry gas composition analysis includes 4-6 mass flow meters, which are divided into two channels of gas, one four-way switching valve, two sets of back pressure valves and pressure sensors; the mass spectrometry component analysis part includes mass spectrometer electric quadrupole and matched molecular pump group. It also includes a complete set of computer equipment to provide the necessary equipment monitoring procedures and data records.
  • All the equipment is installed on a small double-layer plastic tool cart with a bottom plate area of 70 ⁇ 50cm, and is connected to the X-ray characterization device through four ferrule interfaces or quick-connect interfaces on one panel. After the use is stopped, the upstream gas is cut off, and it takes only a few minutes to remove the interface and push away all the additional devices to restore the external installation state of the X-ray characterization device.
  • the general X-ray characterization method is limited to the shell electron and bulk crystal phase structure, and is not sensitive to the isotope composition. Therefore, the upstream mixing device is switched from the three-way aeration and the one-way pure gas to meet the basic requirements of the X-ray characterization equipment.
  • the space of this design can accommodate up to two sets of three-way aeration switching as the upstream air supply.
  • the exhaust gas generated by the in-situ reaction cell of the X-ray characterization device does not carry radioactivity due to radiation exposure, so the sampling pipe and the analytical instrument and the analyzed exhaust gas do not require special radiation protection.
  • the equipment of the invention has the same material as that originally installed by the manufacturer in the selection of the material of the gas pipeline, that is, the pipe is cleaned by the ferrule interface of metal stainless steel or copper.
  • the X-ray equipment in-situ reaction tank is generally equipped with a mechanical pump (vacuum limit of 10 -2 torr), which is used to pre - vacuate the reaction tank to ensure that the reaction gas is not affected by the residual gas in the reactor, and the experimental schedule is quickly reached. ratio.
  • a mechanical pump vacuum limit of 10 -2 torr
  • the gas is input as required by the experiment, and the mechanical pump is turned off idle.
  • an independent differential pump set is required to adjust the mass spectrometer to achieve a stable injection volume at different sampling ambient pressures.
  • the maximum gas pressure range to be satisfied in the present invention is lower than the pressure range of the prior patent, and the maximum pumping speed and vacuum degree of the independent differential pump group are not high.
  • This mechanical pump therefore meets the requirements of an independent differential pump and remains idle during the in-situ reaction cell operation.
  • the invention adopts the mechanical pump as an independent differential pump necessary for the prior patent sampling scheme when in-situ gas mass spectrometry is required, which not only increases the utilization rate of the mechanical pump, but also saves space for the control and sampling equipment, and further optimizes.
  • the present invention has the following special design:
  • the distance between the capillary and the X-ray characterization device is minimized by optimizing the vacuum connection;
  • the components of the invention are divided into two modules: mass spectrometer/gas path control device and sampling port/differential pump group, which are connected by a simple gas path port. At the same time, the original settings of the X-ray characterization device itself are not altered;
  • the present invention has the following advantages:
  • the additional equipment is easy to handle and unload, and does not affect the realization of any function of the original equipment
  • Figure 1 is a schematic layout of a mass spectrometer and an X-ray characterization device
  • Figure 2a shows the original air path outside the X-ray characterization device
  • 2b is a schematic view showing the modification of the original air path outside the X-ray characterization device according to the present invention
  • Figure 3 is the upper layer layout of the X-ray equipment in-situ cell reaction control and gas composition characterization workstation
  • Figure 4 shows the underlying layout of the X-ray equipment in-situ cell reaction control and gas composition characterization workstation.
  • the basic design layout of the inventive solution is shown in Figure 1.
  • the X-ray characterization equipment cabinet 1 is connected to the vacuum line portion 2 of the in-situ reaction cell in the original design.
  • only the vacuum line section 2 of the in-situ reaction cell was slightly modified to provide mass spectrometer sampling, and the radiation protection design of the X-ray characterization equipment cabinet 1 was not modified.
  • the original equipment area passes the XRD and the gas path centralized interface 3 (four in total) with the X-ray equipment in-situ cell reaction control and the gas composition characterization station's upper layer 4 (reactor aeration switching and air pressure control panel, operator interface display) and X
  • the in-situ cell reaction control of the ray equipment and the lower layer 5 (mass spectrometer, computer controlled area) of the gas composition characterization workstation are connected.
  • the entire X-ray equipment in-situ cell reaction control and gas composition characterization workstation is integrated into a small double-layer plastic tool cart with a floor area of 70 x 50 cm.
  • Figure 2a is a schematic view of the partial connection of the vacuum line of the unmodified in-situ reaction cell.
  • the X-ray characterization equipment cabinet 1 has three pipeline interfaces with the external gas path, namely the total exhaust port 6, the in-situ reaction cell exhaust port 7 and the in-situ reaction. Pool aeration inlet 8.
  • the original mechanical pump 10 is switched to the in-situ reaction cell 13 by a three-way valve in the original design of the manufacturer to provide the pre-vacuum required before the in-situ reaction cell 13 begins to operate. After the in-situ reaction cell 13 begins to react and measure, the three-way valve is switched to the in-situ reaction cell exhaust port 7 to vent the reaction gas. As shown in Fig.
  • a fourth pipeline interface i.e., the mass spectrometer sampling port 9 is added to cooperate with the gas component sampling analysis function of the apparatus of the present invention.
  • This is a branch for gas microsampling of the in-situ reaction cell outlet port 7 through the capillary 11.
  • the capillary 11 is positioned at zero distance from the X-ray characterization equipment cabinet 1 to reduce the pipe distance from the in-situ reaction cell 13, and the resulting time delay is negligible.
  • the capillary 11 On the branch of the mass spectrometer sampling port 9, the capillary 11 is simultaneously connected to the in-situ reaction cell exhaust port 7 and the original mechanical pump 10 by changing the control ball valve group 12, and supplies a small amount of gas sampling to the mass spectrometer sampling port 9 continuously and in real time.
  • the X-ray equipment in-situ cell reaction control and gas composition characterization workstation is integrated on a small double-layer plastic tool cart with a floor area of 70X50cm, which is the core part of the equipment.
  • Figure 3 shows the upper 4 sections of the workstation (where the computer display is not shown), i.e., a control panel that provides gas flow and aeration components and downstream termination pressure upstream of the in-situ reaction cell 13, a 50 x 50 cm stainless steel panel.
  • the intake air is divided into two channels of gas.
  • All of the way is a mixed gas, and the three mass flow meters 14 form a mixed gas having a maximum of three precise flow rates and a group distribution ratio, and the other is a single gas, and the flow rate is precisely controlled by a mass flow meter 14.
  • the two gases are switched by the four-way valve 20, and one way is selected to be connected to the in-situ reaction tank mixed gas inlet 8, and one way is connected to merge the in-situ reaction tank exhaust port 7 and then to the total exhaust port 6.
  • the ends of the two gases are held by the back pressure valve 15 to reach the set gas composition and gas pressure requirements of the in-situ reaction cell.
  • the characterization device obtains the crystal structure/electronic structure of the observed object under different temperature, pressure and environmental components, and simultaneously observes the corresponding reaction activity and the characteristic changes of various reaction energy barriers.
  • the front end of the mass spectrometer electric quadrupole 17 is connected to the mass spectrometer sampling port 9 through a needle valve/high precision metering valve 16 and a 1/4 inch stainless steel vacuum line. 4 and 2b, together, realize the structure of the prior patented mass spectrometry gas component sampling analysis scheme, and optimize the design structure according to the special needs of the present invention while achieving the prior patent design parameters.
  • the imported SRS200 electric quadrupole is matched with a PfeifferHiCube80KF interface molecular pump set in the mass spectrometer configuration as a mass spectrometer platform for testing the device of the invention, and the background pressure is 5 ⁇ 10 -8 torr when closed.
  • the X-ray characterization device used is an X-ray diffractometer (Bruker D8) with an in-situ reaction cell of XRK900, a gas pressure range of 0.1-1.0 MPa, a temperature range of room temperature to 900 degrees Celsius, and an original mechanical pump of the Edward brand.
  • Other domestic equipment includes the mass flowmeter used for the Qixing Huachuang CS200A precision flowmeter series.
  • the upper flow limits are 10, 20, 50 sccm (mixed gas) and 200 sccm (single gas).
  • the main valve of the back pressure valve (upstream to the in-situ reaction tank mixed gas inlet 8) is Xiongchuan 250 psi, and the auxiliary valve (the downstream merged in-situ reaction tank tail port 7 leads to the total exhaust port 6) is X-Tec250Psi.
  • the computer is a domestic industrial control unit, IPC-610L, and the control and data acquisition software for the mass spectrometer electric quadrupole and pressure sensor and mass flow meter are installed.
  • the mass spectrometer software is the original, and other software is written by force control software.
  • Capillary 11 is connected to the mass spectrometer sampling port 9 and the original mechanical pump 10 line and directly transferred to a stainless steel pipe 1/4 inch or larger to achieve maximum vacuum conductance, ie with mass spectrometer equipment The connection is reached without time delay.
  • the total exhaust port 6, the in-situ reaction cell exhaust port 7, the in-situ cell mixture inlet port 8, the mass spectrometer sampling port 9 and the control ball valve group 12 in Fig. 2b are uniformly installed in the vicinity of the X-ray characterization equipment cabinet 1 One operation panel for easy disassembly and experimental operation.
  • the components of the invention are divided into two modules: mass spectrometer/pneumatic control device and sampling port/differential pump group, without changing any original settings of the X-ray characterization device itself, while adding functions. Completely retain its radiation protection structure and meet safe use requirements;
  • connection to the X-ray characterization device is completed within a few minutes, ie, the characterization device status from the in-situ reaction cell is restored to the original unmodified state, or the characterization device is transferred from the original unmodified state to the in-situ reaction cell access. status.
  • the present invention provides a complete supply, pressure and real-time in-situ gas component mass spectrometry sampling analysis device for the in-situ reaction cell of the X-ray characterization device based on the characteristics of the device, and expands the analysis thereof. ability.
  • the gas supply and pressure control parts cover the pressure and gas composition accuracy requirements of the in-situ reaction cell of the X-ray characterization equipment; the sampling part satisfies 1) the requirements of real-time sampling, no time delay, and sensitive to the collection of micro-pulses, 2) X-ray characterization equipment in-situ reaction tank pressure range, that is, the upper limit of medium and high pressure, 3) meet the safety requirements of X-ray characterization equipment.
  • the installation is simple, the volume is small, the module is clear, and the use of other functions of the original equipment and the activities of the staff are not affected. Basic research on monitoring or chemical reaction in other similar related environments can also help.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明涉及一种针对X射线表征设备原位池联用的反应控制和质谱分析站,所述反应控制和质谱分析站包括反应气体成分控制模块及在线气体成分分析模块,发明内容还包括基于原有真空管线部分的改装,改装后的原有真空管线部分通过总排气口、原位反应池尾气口及原位反应池混气进样口与分析站连接,其改装特征在于,所述真空管线部分增加了质谱仪采样口和采样毛细管和控制阀。本发明具有如下优点:在质谱气体采样成分分析时可忽略的采样时间延迟,并达到了原位分析连续、实时和高时间分辨率的采样分析要求;在X射线表征设备的工作条件下,获得电子结构/晶体结构的同时,同步获得环境气体成分的精确信息,扩展了设备功能,实现了原位多维度表征。

Description

针对X射线表征设备原位池联用的反应控制和质谱分析站 技术领域
本发明属于基础化学反应动力学研究在线的反应控制、成分检测与动力学表征领域,本发明特别专注于:X射线谱学方法与质谱仪对反应过程的联用表征,在精确的观察研究对象晶体或电子结构的同时拓展功能,同步实时连续记录其所处的环境中反应气体成分,建立两者之间的相互联系。本发明也适合应用于其它类似放射环境的气体成分实时连续检测。
背景技术
X射线谱学设备具有特殊测量条件,即放射性环境,按照其观察设置的结构分别提供对测量对象的晶体结构和电子结构等基本性质进行表征,如X射线衍射装置(XRD),小角X射线散射(SXAS),X射线吸收谱(XAS,XANES,EXAFS)。但是由于使用X射线为探测光源,其工作的区域具有对人体有害的放射性,必须通过铅板和防辐射玻璃等与人员严格隔离,这对其实验范围的扩展有很大的限制。X射线原位反应池是将化学反应引入X射线谱学设备的附件,实现在反应环境下的X射线谱学测量。在此类表征过程中,不同的反应环境可能影响测量对象的性质,并反映在X射线谱图的测量结果中,从而在动态或稳态测量中建立反应环境与测量对象相关性质的变化的直接因果关系,进一步深入对重要化学反应的认识,这是目前理解和改进代表性化工反应(涉及如脱硝过程、甲烷氧化偶联过程等)的重要手段。在此类测量中对反应环境成分组成及其对时间变化的精确定量显然是至关重要的。
对X射线设备表征工作进行中的反应环境成分的控制和测量,必然要考虑上述放射性环境限制的影响。显然,任何来源于第三方的控制或测量手段,必须严禁改变X射线表征设备原有的安全防护设置,只能在设备安全外壳外进行定制安装。从成分控制上分析,进入原位反应池的反应物成分能够通过气体或液体流量配比即安装在设备外的进气混气装置实现精确控制,但是气体成分必然随着实际反应进程而改变。举例说明,如果观察的是一氧化碳氧化过程中催化剂的特性,反应成分在输入前是一氧化碳和氧气的精确混气,但是在原位反应池内就会 产生二氧化碳。如果在被测对象体相中产生碳酸盐晶相,相应的二氧化碳气体新成分原位数据对讨论和立论都是至关重要的。因此要类似案例中真正建立反应环境和测量对象性质间的因果关系,就必须对X射线表征设备内部的原位反应池进行实时连续的在线成分分析。
因此,上述成分分析的主要问题归结于,在严格遵守不改变不进入X射线表征设备内部这一先决规则的前提下,对设备内部的原位反应池进行气体成分分析。除此之外,还应注意到,为X射线装置配套的原位反应池,其气压范围一般在0.1到1MPa之间,属于常压到中高压范围,这也超过了市售一般的气体成分分析装置如气象色谱仪(GC)和质谱仪(MS)的采样压力上限。
目前第三方厂商为不少X射线谱学表征仪器设计了原位反应池,但是基本上没有配套的反应气体成分控制方案和在线气体成分分析。
发明内容
本发明要解决的技术问题是:严格遵守不改变不进入X射线表征设备内部这一先决规则的前提下,对设备内部的原位反应池进行气体成分分析。
为了解决上述技术问题,本发明的技术方案是提供了一种针对X射线表征设备原位池联用的反应控制和质谱分析站,所述反应控制和质谱分析站包括反应气体成分控制模块及在线气体成分分析模块,发明内容还包括基于原有真空管线部分的改装,改装后的原有真空管线部分通过总排气口、原位反应池尾气口及原位反应池混气进样口,其特征在于,所述真空管线部分还增加了质谱仪采样口和采样毛细管和控制阀,其中:
在线气体成分分析模块经由质谱仪采样口通过毛细管对原位反应池尾气口进行气体微量采样,在线气体成分分析模块包括质谱仪电四级杆、分子泵组、针阀或高精度计量阀,原位反应池的原配机械泵及分子泵组通过各自的抽气通道将采样气体自毛细管抽出,被抽出毛细管的气体一部分流向质谱仪电四级杆,另一部分流入原配机械泵,由针阀或高精度计量阀调制流向质谱仪电四级杆与流入原配机械泵的气体流量的配比;
反应气体成分控制模块混合气体供气气路、单一气体供气气路、气路切换单元及保压单元。混合气体供气气路及单一气体供气气路提供的两路气路通过气路 切换单元切换,一路连接原位反应池混气进样口,另一路与原位反应池尾气口汇合后连接总排气口,连接原位反应池混气进样口的气路终端及连接总排气口的气路终端通过各自的保压单元保压。
优选地,与所述原位反应池尾气口相连的管线采用内径较小的管线,使得所述原位反应池尾气口与所述毛细管之间的总共管道内部体积远小于原位反应池自身的死体积。
优选地,所述毛细管采用缩口金属毛细管。
优选地,所述在线气体成分分析模块及所述反应气体成分控制模块分别设于双层工具车的上下两层;
所述在线气体成分分析模块通过同一面板上的四个卡套接口或快接接口中的一个接口与所述质谱仪采样口相通,所述反应气体成分控制模块通过同一面板上的四个卡套接口或快接接口中的另外三个接口与所述总排气口、所述原位反应池尾气口及所述原位反应池混气进样口相通。
优选地,所述毛细管的两端分别通过各自的控制球阀组与所述原配机械泵及所述质谱仪采样口相连通。
优选地,所述混合气体供气气路包括分别与三种气体相连的质量流量计,三个质量流量计的输出混合后形成具有最多三个精确流量和组份配比的混合气体;
所述单一气体供气气路包括一个质量流量计,通过质量流量计精确控制单一气体的流量。
本发明解决了如下技术问题:
技术问题一:不改变原设备的防辐射结构。X射线表征设备在测试环境下有放射性,因此整机有针对使用者安全的完整防辐射结构。以上结构在新增测试功能是必须保持完整,不得有任何改变。综合考虑仪器的限制要求和气体成分分析信号的采集技术特点,质谱仪与设备的连接能够兼容这个限制。原位反应池处在工作状态并被X射线表征的过程中,虽然处在放射环境下,但反应气体并不会因此携带放射性。原位反应池本身也有管道和设备外部的进气、排气口连接,以保证反应在原位池的正常进行。因此质谱仪应当在通到设备外部的原位反应池的排气管道进行采样,就能够分析反应池内部气体成分,同时不会改变X射线表征设备的防辐射结构。
X射线表征设备外排气管道与原位反应池必然有一定的空间距离,采用这一解决方法,就必须考虑质谱信号采集的延迟量。一般来说,X射线设备的原位反应池都不是微型反应池,其内部死体积一般达到100mL以上。因此,在原位反应池管道连接上,要求供方采用内径较小的管线,尽量减少管线造成的体积增加。如使用3mm金属管线,内径约1.5mm,总连接长度约1.5m,推算总共管道内部体积1.5m×π×(1.5mm)2/4,约2mL,远远小于原位反应池自身的死体积,产生的时间延迟忽略不计。
技术问题二:采样部分的环境气压符合X射线表征设备原位反应池的参数范围。X射线表征设备的原位反应池,如XRK900,工作时达到1MPa的上限气压,属于中高压范围。一般的商用质谱仪都要求采样区气压为一个大气压,即0.1MPa。即使限定只在原位反应池气压为0.1MPa左右进行质谱分析,商用质谱仪由于毛细管和质谱仪本身是直接连接在一起的,受总体的体积影响,与原位反应池排气口连接会有一定的空间限制,需要进一步增加排气管在设备外的长度才能方便连接。这样会进一步增加上述的时间延迟。另外商用质谱仪一般使用较长的玻璃纤维毛细管,其色谱效应也会造成一定的时间延迟。因此使用商用质谱仪在时间延迟和气压适应性上都有缺点。
本发明采用申请人之前提出的申请号为201610140435.5的发明专利申请(以下简称在先专利)所公开的质谱仪电四级杆与缩口金属毛细管及独立微分泵综合方案,适用于0.1-2MPa气压范围。同时由于金属毛细管兼容通用的卡套安装,适合在毛细管和质谱仪之间用内径较大的管线,如1/4英寸或更大的不锈钢管道连接。这一部分管道在质谱仪测试工作时由于已处在真空状态,不会造成时间延迟。这样直径和体积都非常细小的金属毛细管就在原位反应池排气管道在设备外最短的距离位置上直接连接采样口,达到时间延迟最小化的目的。因此本发明相对于目前商用设备在时间延迟和采样区气压范围这两个与X射线表征设备原位反应池密切相关的测量指标上都具有灵活性和精确性的测量优势。
技术问题三:体积小,原位反应池不工作时要求迅速拆卸移动。目前第三方厂商为不少X射线谱学表征仪器设计了原位反应池,但是基本上没有配套的反应气体成分控制方案和在线气体成分分析。实验室如果按照化学化工的常用设计来建立以上方案,控制设备和质谱仪会占用很大的固定空间,和原设备使用界面 不清晰,因此拆装连接都不方便,从而限制X射线谱学设备其他功能的发挥,使设备成为原位反应池附件的专机。目前一些实验室的原位XRD、原位XAS或者不安装在线质谱仪,只做成分易于推断的低转化/无转化反应或完全转化反应,牺牲更具有普遍应用性的部分转化反应;或者因为扩展原位反应池功能的安装比较复杂,不易拆卸,实际操作中只能作为单一功能设备使用,因此最终牺牲了X射线设备的其他功能。
本发明针对这一问题,提出一种易于拆卸的解决方案,包括提供有精确成分控制的混气输入,一定自由度的气体切换,0.1-1.0MPa范围的气压控制,以及精确到ppm或更高级别的质谱气体成分分析。其中气体输入控制部分包括4-6个质量流量计,分为两路气体,一个四通切换阀门,两套背压阀和压力传感器;质谱成分分析部分包括质谱仪电四级杆和配套分子泵组。另外还包括一套完整的计算机设备提供必须的设备监控程序和数据记录。全部设备安装在底板面积为70×50cm的小型双层塑料工具车上,通过一个面板上四个卡套接口或快接接口与X射线表征设备连接。停止使用后切断上游气体,只要花几分钟时间即可拆除接口并推走所有附加装置,使X射线表征设备外部恢复原始安装状态。
一般X射线表征方法限于壳层电子和块材晶相体结构,对同位素成分等不敏感,因此上游混气装置由三路混气和一路纯气切换已经满足X射线表征设备的基本要求。本设计的空间最多能够容纳两组三路混气的切换作为上游供气。
如前所述,X射线表征设备的原位反应池产生的尾气并不因为经过射线照射而携带放射性,因此采样管道和分析仪器及分析后的尾气不需要特殊的防辐射处理。本发明设备在气路管道材质的选用上和厂家原始安装的管道材料一致,即使用金属不锈钢或紫铜的卡套接口清洁管道。
技术问题四:最大限度共享和利用原设备的已有硬件。X射线设备原位反应池一般都配有一个机械泵(真空极限为10 -2torr),用于对反应池预抽真空,保证反应气体不受反应器内残气影响,快速达到实验预定配比。在原位反应池工作时,气体按实验要求输入,机械泵关闭闲置。在本发明采用的在先专利中,需要独立微分泵组调节质谱仪在不同采样环境气压下达到稳定的进样量。另外本发明中需要满足的最高气压范围低于在先专利的气压范围,对独立微分泵组的最高抽速和真空度要求不高。因此这个机械泵符合独立微分泵的要求,而且在原位反应池工 作时一直处于闲置状态。本发明在需要进行原位气体质谱分析时,采用这个机械泵作为在先专利采样方案必需的独立微分泵,既增加了机械泵的利用率,又节省了控制和采样设备的空间,并进一步优化了气体采样所需的管路设计。
综上所述,本发明具有如下特殊设计:
1、在在先专利的质谱气体成分采样分析方案的基础上,针对本发明中的设备特殊要求,通过优化真空连接最大限度缩短毛细管与X射线表征设备距离;
2、模块化设计,将本发明的诸多组成部分划分为质谱仪/气路控制设备和采样口/微分泵组两大模块,通过简单的气路端口连接。同时不改动X射线表征设备本身任何原始设置;
3、在在先专利质谱气体成分采样分析方案的基础上,做到高度集成化安装以及模块间连接界面的最简化处理,包括:1)4-6个质量流量计和一个四通切换阀门形成的两路可切换混气气源;2)两套背压阀和压力传感器组成的气体压力控制设备;3)包括质谱仪电四级杆和配套分子泵组的质谱气体成分分析仪器以及4)一套位以上设备提供完整监控程序和数据记录的计算机设备。以上全部安装在底板面积为70×50cm的小型双层塑料工具车上,并通过同一个面板四个卡套接口或快接接口与X射线表征设备连接。
4、充分利用了原设备的硬件,与在先专利质谱气体成分采样分析方案共享了一个微分泵。
基于上述特殊设计,使得本发明具有如下优点:
1、在质谱气体采样成分分析时可忽略的采样时间延迟,并达到了原位分析连续、实时和高时间分辨率的采样分析要求。
2、在X射线表征设备的工作条件下,获得电子结构/晶体结构的同时,同步获得环境气体成分的精确信息,扩展了设备功能,实现了原位多维度表征;
3、为原位反应池提供工作需要的稳定,成份和气压精确控制的、有迅速切换功能的实验用上游气源;
4、安全,无辐射安全问题;
5、附加设备易装卸操作,不影响原设备任何功能实现;
6、节省成本,空间使用最小化;
7、采样分析满足X射线表征设备原位反应池的压力条件。
附图说明
图1为质谱仪与X射线表征设备的布局示意图;
图2a为X射线表征设备外部原有气路;
图2b为本发明对X射线表征设备外部原有气路进行改动后的示意图;
图3为本方案中X射线设备原位池反应控制及气体成分表征工作站上层布局;
图4为本方案中X射线设备原位池反应控制及气体成分表征工作站下层布局。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
本发明方案的基本设计布局如图1所示,X射线表征设备柜1与原位反应池的真空管线部分2按照原始设计相连。原始设备中仅原位反应池的真空管线部分2为提供质谱仪采样稍作修改,而X射线表征设备柜1的防辐射设计未经任何改装。原始设备区域通过XRD与气路集中接口3(共四个)与X射线设备原位池反应控制及气体成分表征工作站的上层4(反应器混气切换和气压控制面板,操作界面显示器)和X射线设备原位池反应控制及气体成分表征工作站的下层5(质谱仪,电脑控制区)连接。整个X射线设备原位池反应控制及气体成分表征工作站集成在一辆底板面积为70×50cm的小型双层塑料工具车上。
图2a为未改装的原位反应池的真空管线部分连接示意图,X射线表征设备柜1与外部气路有三个管道接口连接,即总排气口6,原位反应池尾气口7和原位反应池混气进样口8。原配机械泵10在厂家原始设计中通过一个三通阀切换连接到原位反应池13,提供原位反应池13开始工作前所需要的预真空。在原位反应池13开始反应和测量后,三通阀切换到原位反应池尾气口7对反应气体排空。如图2b所示,针对图2a所示连接关系,为配合本发明设备的气体成分采样分析功能增加第四条管路接口,即质谱仪采样口9。这是一条通过毛细管11对原位反应池尾气口7进行气体微量采样的支路。毛细管11与X射线表征设备柜1做到零距离靠近,减少与原位反应池13间的管道距离,由此产生的时间延迟从而忽略不计。在质谱仪采样口9的支路上,毛细管11通过改变控制球阀组12 与原位反应池尾气口7和原配机械泵10同时连通,向质谱仪采样口9连续、实时提供微量的气体采样。
X射线设备原位池反应控制及气体成分表征工作站集成安装在底板面积为70X50cm的小型双层塑料工具车上,是本设备的核心部分。图3为工作站的上层4部分(其中计算机显示器未标出),即提供原位反应池13上游气体流量和混气成份和下游终端压力的控制面板,为50X50cm不锈钢面板。进气分为两路气体。一路为混和气,通过三个质量流量计14形成具有最多三个精确流量和组分配比的混合气体,另一路为单一气体,通过一个质量流量计14精确控制流量。两路气体通过四通阀20切换,一路选择连接原位反应池混气进样口8,一路选择连接汇合原位反应池尾气口7进而通向总排气口6。两路气体的终端均通过背压阀15保压,达到设定的原位反应池实验气体成分和气压要求。结合原位反应池原有的温度控制实现多种稳态和暂态化学过程,如稳态反应、等温吸附/脱附、程控升温脱附/氧化/还原(TPD/TPO/TPR),在X射线表征设备获得观测对象在不同温度、压力、环境成分下的晶体结构/电子结构的同时,同步观测其相应反应活性及各种反应能垒的特性变化。
图4为工作站的下层5部分(其中计算机主机未标出),即提供质谱气体成分分析的质谱仪电四级杆17和分子泵组,分子泵组包括分子泵18及初级泵19。质谱仪电四级杆17的前端通过针阀/高精度计量阀16和1/4英寸不锈钢真空管道与质谱仪采样口9连接。图4和图2b结合,就共同实现了在先专利质谱气体成分采样分析方案的结构,在达到在先专利设计参数的同时按照本发明的特殊需要相应优化了设计结构。
以下结合具体数据来进一步说明本发明:
本发明在实验室实施中在质谱仪配置上采用进口SRS200电四级杆配套一台PfeifferHiCube80KF接口分子泵组,作为测试本发明装置的质谱仪平台,封闭时背景气压为5×10 -8torr。使用的X射线表征设备为X射线衍射仪(BrukerD8),配套原位反应池为XRK900,气压范围为0.1-1.0MPa,气温范围为室温到900摄氏度,原配机械泵为Edward品牌。其他国产设备包括使用的质量流量计为七星华创CS200A精密流量计系列,流量上限分别为10、20、50sccm(混合气体)和200sccm(单一气体)。背压阀主阀(上游通向原位反应池混气进样口8)为熊川 250psi,副阀(上游汇合原位反应池尾气口7下游通向总排气口6)为X-Tec250Psi。电脑为国产工控机组,IPC-610L,安装质谱仪电四级杆和压力传感器及质量流量计的控制及数据采集软件。其中质谱仪软件为原配,其他软件由力控软件编写。
安装上最大限度缩短毛细管与X射线表征设备距离,减少管道中气体延迟时间,相对原位反应池自身的死体积延迟时间忽略不计。毛细管11连接到质谱仪采样口9和原配机械泵10管路后直接通过转接放大为1/4英寸或更大外径的不锈钢管路,以实现最大的真空流导,即与质谱仪设备的连接达到无时间延迟。
图2b中的总排气口6、原位反应池尾气口7、原位池混气进样口8、质谱仪采样口9以及控制球阀组12都统一安装在X射线表征设备柜1近处同一块操作面板上,便于拆卸和实验操作。
通过模块化安装设计,将本发明的诸多组成部分划分为质谱仪/气路控制设备和采样口/微分泵组两大模块,同时不改动X射线表征设备本身任何原始设置,在功能添加的同时完整保留其防辐射结构并达到安全使用要求;
在在先专利质谱气体成分采样分析方案的基础上,做到高度集成化安装以及模块间连接界面的最简化处理。包括1)4-6个质量流量计和一个四通切换阀门形成的两路可切换混气气源;2)两套背压阀和压力传感器组成的气体压力控制设备;3)包括质谱仪电四级杆和配套分子泵组的质谱气体成分分析仪器以及4)一套位以上设备提供完整监控程序和数据记录的计算机设备。全部安装在底板面积为70×50cm的小型双层塑料工具车上,并通过同一个面板四个卡套接口或快接接口与X射线表征设备连接。与X射线表征设备的连接在几分钟内完成装卸,即从原位反应池接入的表征设备状态恢复到原始无改装状态,或从原始无改装状态转入原位反应池接入的表征设备状态。
充分利用了原设备的硬件,与在先专利质谱气体成分采样分析方案共享了一个微分泵,节省了使用空间和设备成本。
综上所述,本发明基于设备特点以较低的成本,为X射线表征设备的原位反应池提供了完整的供气、控压和实时原位气体成分质谱采样分析设备,扩展了其分析能力。其中供气、控压部分覆盖了X射线表征设备原位反应池需要的气压和气体成分精度要求;采样部分满足1)实时采样的要求,无时间延迟,对微量脉冲的采集反应灵敏,2)X射线表征设备原位反应池气压范围,即中高压的 上限要求,3)满足X射线表征设备安全要求。同时安装简便,体积小,模块清晰,不影响原设备其他功能的使用和工作人员活动。对其他类似相关环境下的监测或化工反应基础研究也都能起到帮助作用。

Claims (6)

  1. 一种针对X射线表征设备原位池联用的反应控制和质谱分析站,包括真空管线部分(2),真空管线部分(2)包括总排气口(6)、原位反应池尾气口(7)及原位反应池混气进样口(8),其特征在于,所述真空管线部分(2)还包括质谱仪采样口(9),所述反应控制和质谱分析站还包括反应气体成分控制模块及在线气体成分分析模块,其中:
    在线气体成分分析模块经由质谱仪采样口(9)通过毛细管(11)对原位反应池尾气口(7)进行气体微量采样,在线气体成分分析模块包括质谱仪电四级杆(17)、分子泵组、针阀或高精度计量阀(16),原位反应池(13)的原配机械泵(10)及分子泵组通过各自的抽气通道将采样气体自毛细管(11)抽出,被抽出毛细管(11)的气体一部分流向质谱仪电四级杆(17),另一部分流入原配机械泵(10),由针阀或高精度计量阀(16)调制流向质谱仪电四级杆(17)与流入原配机械泵(10)的气体流量的配比;
    反应气体成分控制模块混合气体供气气路、单一气体供气气路、气路切换单元及保压单元,混合气体供气气路及单一气体供气气路提供的两路气路通过气路切换单元切换,一路连接原位反应池混气进样口(8),另一路与原位反应池尾气口(7)汇合后连接总排气口(6),连接原位反应池混气进样口(8)的气路终端及连接总排气口(6)的气路终端通过各自的保压单元保压。
  2. 如权利要求1所述的一种针对X射线表征设备原位池联用的反应控制和质谱分析站,其特征在于,与所述原位反应池尾气口(7)相连的管线采用内径较小的管线,使得所述原位反应池尾气口(7)与所述毛细管(11)之间的总共管道内部体积远小于原位反应池(13)自身的死体积。
  3. 如权利要求1所述的一种针对X射线表征设备原位池联用的反应控制和质谱分析站,其特征在于,所述毛细管(11)采用缩口金属毛细管。
  4. 如权利要求1所述的一种针对X射线表征设备原位池联用的反应控制和质谱分析站,其特征在于,所述在线气体成分分析模块及所述反应气体成分控制模块分别设于双层工具车的上下两层;
    所述在线气体成分分析模块通过同一面板上的四个卡套接口或快接接口中的一个接口与所述质谱仪采样口(9)相通,所述反应气体成分控制模块通过同一面板上的四个卡套接口或快接接口中的另外三个接口与所述总排气口(6)、所 述原位反应池尾气口(7)及所述原位反应池混气进样口(8)相通。
  5. 如权利要求1所述的一种针对X射线表征设备原位池联用的反应控制和质谱分析站,其特征在于,所述毛细管(11)的两端分别通过各自的控制球阀组(12)与所述原配机械泵(10)及所述质谱仪采样口(9)相连通。
  6. 如权利要求1所述的一种针对X射线表征设备原位池联用的反应控制和质谱分析站,其特征在于,所述混合气体供气气路包括分别与三种气体相连的质量流量计(14),三个质量流量计(14)的输出混合后形成具有最多三个精确流量和组份配比的混合气体;
    所述单一气体供气气路包括一个质量流量计(14),通过质量流量计(14)精确控制单一气体的流量。
PCT/CN2018/084392 2017-05-17 2018-04-25 针对x射线表征设备原位池联用的反应控制和质谱分析站 WO2018210108A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/613,801 US11435301B2 (en) 2017-05-17 2018-05-25 Reaction control and mass spectrometry workstation for coupling an X-ray spectroscopic characterization instrument with an in-situ reaction cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710347554.2A CN107238618B (zh) 2017-05-17 2017-05-17 X射线表征设备原位池联用的反应控制和质谱分析装置
CN201710347554.2 2017-05-17

Publications (1)

Publication Number Publication Date
WO2018210108A1 true WO2018210108A1 (zh) 2018-11-22

Family

ID=59985569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084392 WO2018210108A1 (zh) 2017-05-17 2018-04-25 针对x射线表征设备原位池联用的反应控制和质谱分析站

Country Status (3)

Country Link
US (1) US11435301B2 (zh)
CN (1) CN107238618B (zh)
WO (1) WO2018210108A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107238618B (zh) * 2017-05-17 2020-06-30 上海科技大学 X射线表征设备原位池联用的反应控制和质谱分析装置
CN108760867B (zh) * 2018-03-13 2020-10-09 上海科技大学 Uhv设备互联的原位反应池与内置质谱电四极杆的联用结构
CN112485275B (zh) * 2020-11-25 2022-05-17 中山大学 一种同步辐射x射线吸收光谱和质谱联用的电池装置与测试方法
CN113125479A (zh) * 2021-04-15 2021-07-16 中国科学技术大学 用于原位变温x射线散射表征的反应装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105510264A (zh) * 2015-12-28 2016-04-20 上海科技大学 全温域快速控温高压微体积催化在线表征反应器
CN105702554A (zh) * 2016-03-11 2016-06-22 上海科技大学 消色谱效应的超高真空腔对高压气体采样装置
CN106449348A (zh) * 2016-10-27 2017-02-22 中国科学院合肥物质科学研究院 一种用于纳米颗粒物气溶胶质谱仪的毛细管进样接口装置
CN107238618A (zh) * 2017-05-17 2017-10-10 上海科技大学 针对x射线表征设备原位池联用的反应控制和质谱分析站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105510264A (zh) * 2015-12-28 2016-04-20 上海科技大学 全温域快速控温高压微体积催化在线表征反应器
CN105702554A (zh) * 2016-03-11 2016-06-22 上海科技大学 消色谱效应的超高真空腔对高压气体采样装置
CN106449348A (zh) * 2016-10-27 2017-02-22 中国科学院合肥物质科学研究院 一种用于纳米颗粒物气溶胶质谱仪的毛细管进样接口装置
CN107238618A (zh) * 2017-05-17 2017-10-10 上海科技大学 针对x射线表征设备原位池联用的反应控制和质谱分析站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAN KEHRES ET AL.: "Novel Micro-reactor Flow Cell for Investigation of Model Catalysts Using in Situ Grazing-incidence X-ray Scattering", JOURNAL OF SYNCHROTRON RADIATION, vol. 23, no. 2, 31 March 2016 (2016-03-31), pages 455 - 463, XP055545961, ISSN: 1600-5775 *

Also Published As

Publication number Publication date
CN107238618B (zh) 2020-06-30
CN107238618A (zh) 2017-10-10
US11435301B2 (en) 2022-09-06
US20200173939A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
WO2018210108A1 (zh) 针对x射线表征设备原位池联用的反应控制和质谱分析站
CN110308216B (zh) 一种气体中微量永久性杂质气体和水的一体化分析系统及其使用方法
CN201318980Y (zh) 用于检测产品总漏率的氦质谱检漏仪
EP3767287B1 (en) Combination structure of uhv device interconnected in-situ reaction cell and built-in mass spectrum electric quadrupole rod
CN108827821B (zh) 一种用于核电站安全壳内氢气浓度的快速分析装置及方法
CN105823820B (zh) 催化剂评价装置
CN108717030B (zh) 一种氢同位素气体丰度的快速分析装置及方法
CN110687249A (zh) 一种测氢仪检测装置及其检测方法
CN211179676U (zh) 一种简便实现气体稀释功能的气相进样装置
CN102004130B (zh) 全自动多用吸附仪
CN211263289U (zh) 一种微量氧分析仪检定装置
CN205679577U (zh) 一种色谱仪气样稳定进样器
CN112526042A (zh) 全自动多通道针式气体进样装置及自动在线气体稀释方法
CN208239380U (zh) 一种光催化分解水活性评价装置
CN103529152A (zh) 一种基于质谱仪的自反馈气体定量装置及其使用方法
CN202599961U (zh) 三室一体化在线分析系统
CN113155797B (zh) Oh自由基测量干扰判定和无干扰测量的实现方法及装置
CN214122131U (zh) 全自动多通道针式气体进样装置
CN112986447A (zh) 气相色谱分析装置
CN209589929U (zh) 一种残余气体微型质谱分析系统
US4838098A (en) Contained radiological analytical chemistry module
CN207067059U (zh) 一种VOCs气体检测系统
CN111610285A (zh) 一种气体真空进样仪及应用
CN221007444U (zh) 一种非甲烷总烃的直测法检测装置
CN219417353U (zh) 用于测定二氧化碳中碳氧稳定同位素比值的进样装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18801437

Country of ref document: EP

Kind code of ref document: A1