WO2019172212A1 - シフトレンジ制御装置 - Google Patents
シフトレンジ制御装置 Download PDFInfo
- Publication number
- WO2019172212A1 WO2019172212A1 PCT/JP2019/008493 JP2019008493W WO2019172212A1 WO 2019172212 A1 WO2019172212 A1 WO 2019172212A1 JP 2019008493 W JP2019008493 W JP 2019008493W WO 2019172212 A1 WO2019172212 A1 WO 2019172212A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- target
- angle
- output shaft
- motor
- shift range
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/26—Generation or transmission of movements for final actuating mechanisms
- F16H61/28—Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
- F16H61/32—Electric motors actuators or related electrical control means therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/02—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
- F16H61/0202—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
- F16H61/0204—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/24—Providing feel, e.g. to enable selection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/26—Generation or transmission of movements for final actuating mechanisms
- F16H61/28—Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
- F16H61/2807—Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted using electric control signals for shift actuators, e.g. electro-hydraulic control therefor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P23/00—Arrangements or methods for the control of AC motors characterised by a control method other than vector control
- H02P23/16—Controlling the angular speed of one shaft
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/022—Synchronous motors
- H02P25/024—Synchronous motors controlled by supply frequency
- H02P25/026—Synchronous motors controlled by supply frequency thereby detecting the rotor position
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/0016—Control of angular speed of one shaft without controlling the prime mover
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/24—Providing feel, e.g. to enable selection
- F16H2061/247—Detents for range selectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/26—Generation or transmission of movements for final actuating mechanisms
- F16H61/28—Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
- F16H61/32—Electric motors actuators or related electrical control means therefor
- F16H2061/326—Actuators for range selection, i.e. actuators for controlling the range selector or the manual range valve in the transmission
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H63/00—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
- F16H63/02—Final output mechanisms therefor; Actuating means for the final output mechanisms
- F16H63/30—Constructional features of the final output mechanisms
- F16H63/38—Detents
Definitions
- This disclosure relates to a shift range control device.
- a shift range control device of the present disclosure controls a shift range switching system that switches a shift range by controlling driving of a motor, and includes a motor angle calculation unit, an output shaft signal acquisition unit, and a target angle setting unit. And a drive control unit.
- the motor angle calculation unit acquires a motor rotation angle signal corresponding to the rotation position of the motor from a motor rotation angle sensor that detects the rotation of the motor, and calculates the motor angle based on the motor rotation angle signal.
- the output shaft signal acquisition unit acquires an output shaft signal corresponding to the rotational position of the output shaft from an output shaft sensor that detects the rotational position of the output shaft to which the rotation of the motor is transmitted.
- the target angle setting unit sets the target rotation angle based on the target shift range and the output shaft signal.
- the drive control unit controls driving of the motor so that the motor angle becomes the target rotation angle.
- the target angle setting unit when the target rotation angle set based on the output shaft signal is a value to rotate to the far side in the rotation direction from the target limit value set according to the shift range before and after the switching, the target rotation The angle is the target limit value.
- FIG. 1 is a perspective view showing a shift-by-wire system according to a first embodiment.
- FIG. 2 is a schematic configuration diagram showing the shift-by-wire system according to the first embodiment.
- FIG. 3 is a time chart for explaining the setting of the target count value according to the first embodiment.
- FIG. 4 is a schematic diagram for explaining the setting of the target count value according to the first embodiment.
- FIG. 5 is a time chart for explaining erroneous setting of the target count value when the output shaft signal is abnormal
- FIG. 6 is a schematic diagram for explaining erroneous setting of the target count value when the output shaft signal is abnormal.
- FIG. 1 is a perspective view showing a shift-by-wire system according to a first embodiment.
- FIG. 2 is a schematic configuration diagram showing the shift-by-wire system according to the first embodiment.
- FIG. 3 is a time chart for explaining the setting of the target count value according to the first embodiment.
- FIG. 4 is a schematic diagram for explaining the setting of the target count
- FIG. 7 is a time chart for explaining the setting of the target count value according to the first embodiment.
- FIG. 8 is a flowchart for explaining target angle setting processing according to the first embodiment.
- FIG. 9 is a flowchart for explaining target angle setting processing according to the first embodiment.
- FIG. 10 is a schematic diagram illustrating the motor control process according to the first embodiment.
- FIG. 11 is a schematic diagram illustrating motor control processing according to the second embodiment.
- FIGS. 1 and 2 A shift range control apparatus according to the first embodiment is shown in FIGS.
- the shift-by-wire system 1 as a shift range switching system includes a motor 10, a shift range switching mechanism 20, a parking lock mechanism 30, a shift range control device 40, and the like.
- the motor 10 rotates when electric power is supplied from a battery mounted on a vehicle (not shown), and functions as a drive source of the shift range switching mechanism 20.
- the motor 10 of the present embodiment is a switched reluctance motor, but any type of motor such as a DC motor may be used.
- the encoder 13 which is a motor rotation angle sensor detects the rotational position of a rotor (not shown) of the motor 10.
- the encoder 13 is, for example, a magnetic rotary encoder, and includes a magnet that rotates integrally with the rotor, a Hall IC for magnetic detection, and the like.
- the encoder 13 outputs A-phase and B-phase pulse signals at every predetermined angle in synchronization with the rotation of the rotor.
- a signal from the encoder 13 is referred to as a motor rotation angle signal SGN_en.
- the speed reducer 14 is provided between the motor shaft 105 (see FIG. 4 and the like) of the motor 10 and the output shaft 15, and decelerates the rotation of the motor 10 and outputs it to the output shaft 15. Thereby, the rotation of the motor 10 is transmitted to the shift range switching mechanism 20.
- the output shaft sensor 16 has a first sensor unit 161 and a second sensor unit 162, and detects the rotational position of the output shaft 15.
- the output shaft sensor 16 of the present embodiment is a magnetic sensor that detects a change in the magnetic field of a target 215 (see FIG. 1) provided on a detent plate 21 as a rotating member, which will be described later, and can detect the magnetic field of the target 215. Attached to.
- the first sensor unit 161 is referred to as “sensor 1”
- the second sensor unit 162 is referred to as “sensor 2”.
- the sensor units 161 and 162 are so-called MR sensors having a magnetoresistive effect element (MR element) that detects a change in the magnetic field of the target 215.
- the first sensor unit 161 detects a magnetic field corresponding to the rotational position of the target 215, and outputs an output shaft signal Sg1 to the ECU 50 described later.
- the second sensor unit 162 detects a magnetic field corresponding to the rotational position of the target 215, and outputs an output shaft signal Sg2 to the ECU 50.
- the output shaft sensor 16 of the present embodiment includes two sensor units 161 and 162, and independently transmits output shaft signals SGN_s1 and SGN_s22 to the ECU 50. That is, the output shaft sensor 16 is a double system.
- the output shaft signals SGN_s1 and SGN_s2 are collectively referred to as an output shaft signal SGN_s.
- the shift range switching mechanism 20 includes a detent plate 21, a detent spring 25 as an urging member, and the like.
- the rotational driving force output from the speed reducer 14 is supplied to the manual valve 28, and And transmitted to the parking lock mechanism 30.
- the detent plate 21 is fixed to the output shaft 15 and is driven by the motor 10.
- the direction in which the detent plate 21 moves away from the base portion of the detent spring 25 is defined as the forward rotation direction, and the direction approaching the base portion is defined as the reverse rotation direction.
- the detent plate 21 is provided with pins 24 that protrude in parallel with the output shaft 15.
- the pin 24 is connected to the manual valve 28.
- the shift range switching mechanism 20 converts the rotational motion of the motor 10 into a linear motion and transmits it to the manual valve 28.
- the manual valve 28 is provided on the valve body 29.
- a first trough portion 221, a second trough portion 222, 222, and a crest portion 225 formed between the two trough portions 221, 222 are provided (see FIG. 5). ).
- the side close to the base of the detent spring 25 is the second valley 222, and the side far is the first valley 221.
- the valley portion 221 corresponds to the P range
- the valley portion 222 corresponds to a notP range other than the P range.
- the detent plate 21 is provided with walls 226 and 227 that restrict the movement of the detent rollers 26 in the outward direction of the valleys 221 and 222.
- the wall portion on the P range side is referred to as a first wall portion 226, and the wall portion on the notP range side is referred to as a second wall portion 227.
- the detent plate 21 is provided with a target 215 so that the magnetic field changes according to the rotation of the output shaft 15.
- the target 215 is made of a magnetic material.
- the target 215 may be a separate member from the detent plate 21 or may be formed by, for example, pressing the detent plate 21 if the detent plate 21 is a magnetic material.
- the target 215 is formed such that the output voltage that is the output shaft signal SGN_s of the output shaft sensor 16 changes in a step-like manner according to the rotational position of the output shaft 15.
- the output shaft signal SGN_s takes three values: a value V1 corresponding to the P range, a value V3 corresponding to the notP range, and an intermediate value V2.
- the notP range means a range other than the P range.
- the possible values V1, V2, and V3 of the output shaft signal SGN_s are discrete and do not take an intermediate value of each value. Further, the difference between the value V1 and the value V2, and the value V2 and the value V3 is set to be a sufficiently large value as compared with a sensor error or the like. That is, in this embodiment, the value of the output shaft signal SGN_s changes stepwise.
- the output shaft signal SGN_s is switched to a different value to such an extent that the output shaft signal SGN_s cannot be regarded as continuous.
- the difference between the value V1 and the value V2 and the difference between the value V2 and the value V3 may be equal or different.
- the value switching is referred to as “edge” as appropriate.
- the detent spring 25 is an elastically deformable plate-like member, and a detent roller 26 as an engaging member is provided at the tip.
- the detent spring 25 biases the detent roller 26 toward the rotation center side of the detent plate 21.
- the detent spring 25 is elastically deformed, and the detent roller 26 moves between the valley portions 221 and 222.
- the detent roller 26 is fitted into one of the valleys 221 and 222, the swing of the detent plate 21 is restricted, the axial position of the manual valve 28 and the state of the parking lock mechanism 30 are determined, and automatic The shift range of the transmission 5 is fixed.
- the detent roller 26 is fitted into the valley portion 222 when the shift range is the notP range, and is fitted into the valley portion 221 when the shift range is the P range.
- the place where the detent roller 26 is fitted by the urging force of the detent spring 25 according to the shift range is the bottom of the valleys 221 and 222.
- the parking lock mechanism 30 includes a parking rod 31, a cone 32, a parking lock pole 33, a shaft portion 34, and a parking gear 35.
- the parking rod 31 is formed in a substantially L shape, and one end 311 side is fixed to the detent plate 21.
- a conical body 32 is provided on the other end 312 side of the parking rod 31.
- the cone 32 is formed so as to decrease in diameter toward the other end 312 side.
- the parking lock pole 33 is in contact with the conical surface of the cone 32 and is provided so as to be able to swing around the shaft portion 34.
- a convex portion that can mesh with the parking gear 35. 331 is provided on the parking gear 35 side of the parking lock pole 33.
- the parking gear 35 is provided on an axle (not shown) and is provided so as to be able to mesh with the convex portion 331 of the parking lock pole 33.
- rotation of the axle is restricted.
- the shift range is the notP range
- the parking gear 35 is not locked by the parking lock pole 33 and the rotation of the axle is not hindered by the parking lock mechanism 30.
- the shift range is the P range
- the parking gear 35 is locked by the parking lock pole 33 and the rotation of the axle is restricted.
- the shift range control device 40 includes a motor driver 41, an ECU 50, and the like.
- the motor driver 41 outputs a drive signal related to energization of each phase (U phase, V phase, W phase) of the motor 10.
- a motor relay 46 is provided between the motor driver 41 and the battery. The motor relay 46 is turned on when a vehicle start switch such as an ignition switch is turned on, and power is supplied to the motor 10 side. Further, the motor relay 46 is turned off when the start switch is turned off, and the supply of electric power to the motor 10 side is cut off. In addition, by controlling on / off of the motor relay 46, the power supply to the motor 10 or the interruption is switched.
- the ECU 50 is configured mainly with a microcomputer or the like, and includes a CPU, a ROM, a RAM, an I / O (not shown), a bus line for connecting these configurations, and the like.
- Each process in the ECU 50 may be a software process in which a CPU stores a program stored in advance in a substantial memory device such as a ROM (that is, a readable non-temporary tangible recording medium), or a dedicated process. It may be hardware processing by an electronic circuit.
- the ECU 50 controls the shift range switching by controlling the driving of the motor 10 based on the driver requested shift range, the signal from the brake switch, the vehicle speed, and the like. Further, the ECU 50 controls the drive of the shift hydraulic control solenoid 6 based on the vehicle speed, the accelerator opening, the driver request shift range, and the like. The gear position is controlled by controlling the shift hydraulic control solenoid 6.
- the number of shift hydraulic control solenoids 6 is provided according to the number of shift stages. In the present embodiment, one ECU 50 controls the driving of the motor 10 and the solenoid 6, but the motor ECU for controlling the motor 10 and the AT-ECU for solenoid control may be separated.
- the drive control of the motor 10 will be mainly described.
- the ECU50 has the motor angle calculating part 51, the output shaft signal acquisition part 52, the target angle setting part 54, the drive control part 55 grade
- the motor angle calculation unit 51 counts the pulse edges of the A phase signal and the B phase signal based on the motor rotation angle signal SGN_en acquired from the encoder 13, and calculates the encoder count value ⁇ en.
- the encoder count value ⁇ en is a value corresponding to the rotational position of the motor 10 and corresponds to the “motor angle”.
- the output shaft signal acquisition unit 52 acquires the output shaft signal SGN_s from the output shaft sensor 16.
- the target angle setting unit 54 sets a target count value ⁇ cmd that stops the motor 10 based on the target shift range and the output shaft signal SGN_s.
- the target count value ⁇ cmd corresponds to the “target rotation angle”.
- the drive control unit 55 controls the drive of the motor 10 by feedback control or the like so that the encoder count value ⁇ en becomes the target count value ⁇ cmd.
- the details of the drive control of the motor 10 may be any.
- FIG. 3 shows the target range, the output shaft signal SGN_s, and the motor angle from the top, with the common time axis as the horizontal axis.
- the motor angle is the encoder count value ⁇ en.
- the encoder count value ⁇ en at the start of range switching is assumed to be ⁇ en_0.
- the second wall portion 227 is described as “notP wall”. The same applies to FIG.
- FIG. 4 schematically shows the relationship among the motor shaft 105, the output shaft 15, and the detent plate 21, which are the rotation shafts of the motor 10.
- a play is formed between the motor shaft 105 and the output shaft 15.
- the speed reducer 14 and the output shaft 15 are integrated, and “play” is formed between the motor shaft 105 and the speed reducer 14, but the motor shaft 104 and the speed reducer 14 are integrated.
- a “play” may be formed between the speed reducer 14 and the output shaft 15.
- “Play” can be regarded as the sum of play, play, etc. existing between the motor shaft 105 and the output shaft 15.
- a backlash angle ⁇ g an angle corresponding to the total amount of play provided between the motor shaft 105 and the output shaft 15
- backlash angle ⁇ g an angle corresponding to the total amount of play provided between the motor shaft 105 and the output shaft 15
- FIG. 4 shows a state in which the rotation direction of the motor 10 is the left-right direction on the paper surface, and the detent roller 26 moves between the valleys 221 and 222 as the output shaft 15 rotates.
- the detent roller 26 moves between the valleys 221 and 222.
- the detent roller 26 is illustrated as moving together with the output shaft 15 for the sake of explanation. . The same applies to FIG.
- the temporary target value ⁇ t1 is set as the target count value ⁇ cmd, and the driving of the motor 10 is started.
- a value temporarily set when the shift range is switched from the P range to the notP range is a temporary target value ⁇ t1
- a value temporarily set when the shift range is switched from the notP range to the P range is a temporary target value ⁇ t2.
- the temporary target values ⁇ t1 and ⁇ t2 are set to arbitrary values such that the detent roller 26 can exceed the peak portion 225.
- the target count value ⁇ cmd is changed to the target correction value ⁇ a.
- the target correction value ⁇ a is calculated from the encoder count value ⁇ en and the design values K1 and K2 when the output shaft signal SGN_s is switched.
- Expression (1-1) is a value when the shift range is switched from the P range to the notP range
- Expression (1-2) is a value when the shift range is switched from the notP range to the P range.
- ⁇ a ⁇ en_edg + K1 (1-1)
- ⁇ a ⁇ en_edg + K2 (1-2)
- ⁇ en_edg in the equations (1-1) and (1-2) is an encoder count value at the edge detection timing.
- the design value K1 is a value corresponding to the angle from the position where the output shaft signal SGN_s switches from the value V1 to the value V2 to the bottom of the valley 222.
- the design value K2 is a value corresponding to the angle from the position where the output shaft signal SGN_s switches from the value V3 to the value V2 to the bottom of the valley 221.
- the design values K1 and K2 are both values converted into the encoder count value ⁇ en, and positive or negative is set according to the rotation direction. In the present embodiment, K1 is a positive value and K2 is a negative value.
- the detent roller 26 can be stopped at the bottom of the valley 222 by correcting the target count value ⁇ cmd at the time of edge detection.
- the target count value ⁇ cmd is corrected at the timing when the output shaft signal SGN_s switches from the value V1 to the value V2, but for example, the target count value ⁇ cmd is corrected at the timing when the output shaft signal SGN_s switches from the value V2 to the value V3.
- the target count value ⁇ cmd may be corrected a plurality of times in accordance with the output shaft signal SGN_s.
- the expression (1--1) is obtained at time x12 that is the edge detection timing of the output shaft signal SGN_s.
- the target correction value ⁇ a is set on the back side of the second wall portion 227. If the target count value ⁇ cmd is set behind the walls 226 and 227, there is a possibility that normal range switching cannot be performed. Further, when the detent roller 26 collides with the walls 226 and 227 at high speed, the shift range switching mechanism 20 may be damaged.
- the window may become too wide to be established. Even if the detection window is provided, if an edge is detected at the end of the window, the target correction value ⁇ a may be set on the far side from the walls 226 and 227.
- the target correction value ⁇ a when the target correction value ⁇ a is set on the back side of the walls 226 and 227, the target count value ⁇ cmd is changed to the target limit value ⁇ lim calculated in advance. Then, the drive amount is limited.
- the target limit value ⁇ lim is calculated using the encoder count value ⁇ en when the target shift range is switched and the drive limit amount Klim.
- Expression (2-1) is a value when the shift range is switched from the P range to the notP range
- Expression (2-2) is a value when the shift range is switched from the notP range to the P range.
- the drive limit amount Klim can be arbitrarily set, but in the present embodiment, a valley-to-valley angle ⁇ v that is an angle between the bottom portions between the valley portions 221 and 222 and a backlash angle ⁇ g are used, and Expression (3) Set by.
- the valley angle ⁇ v is 20 °, for example, and the backlash angle ⁇ g is 3.5 °, for example, but can be arbitrarily set.
- both the valley-to-valley angle ⁇ v and the backlash angle ⁇ g are values converted into encoder count values.
- the angle of the output shaft 15 and the encoder count value ⁇ en can be converted according to the gear ratio.
- step S101 is omitted, and is simply referred to as “S”. The other steps are the same.
- the target angle setting unit 54 determines whether or not the target shift range has changed from the P range to the notP range.
- an affirmative determination is made only for the first time when the range is switched. The same applies to S201.
- the process proceeds to S104.
- the process proceeds to S102.
- the target angle setting unit 54 sets the target count value ⁇ cmd to the temporary target value ⁇ t1.
- the target angle setting unit 54 calculates the target limit value ⁇ lim by adding the drive limit amount Klim to the current encoder count value ⁇ en (see Expression (1-1)).
- the target angle setting unit 54 determines whether an edge of the output shaft signal SGN_s has been detected.
- the output shaft signal SGN_s is switched from the value V1 to the value V2, a positive determination is made.
- the routine is terminated without performing the processing after S105.
- the process proceeds to S105.
- the target angle setting unit 54 calculates the target correction value ⁇ a (see Expression (1-1)), and changes the target count value ⁇ cmd from the temporary target value ⁇ t1 to the target correction value ⁇ a.
- the target angle setting unit 54 determines whether or not the target correction value ⁇ a is larger than the target limit value ⁇ lim.
- the target correction value ⁇ a is larger than the target limit value ⁇ lim, there is a possibility that the target count value ⁇ cmd is set on the back side of the wall portion 227.
- the process of S107 is not performed. Therefore, the target count value ⁇ cmd is left as the target correction value ⁇ a.
- the process proceeds to S107, and the target count value ⁇ cmd is set as the target limit value ⁇ lim.
- the target angle setting unit 54 determines whether or not the target shift range has changed from the notP range to the P range. When it is determined that the target shift range has not changed to the P range (S201: NO), the process proceeds to S204. When it is determined that the target shift range has changed to the P range (S201: YES), the process proceeds to S202.
- the target angle setting unit 54 sets the target count value ⁇ cmd to the temporary target value ⁇ t2.
- the target angle setting unit 54 calculates the target limit value ⁇ lim by subtracting the drive limit amount Klim from the current encoder count value ⁇ en (see Expression (2-2)).
- the target angle setting unit 54 determines whether an edge of the output shaft signal SGN_s has been detected.
- the output shaft signal SGN_s is switched from the value V3 to the value V2, a positive determination is made.
- the routine is terminated without performing the processing after S205.
- the process proceeds to S205.
- the target angle setting unit 54 calculates the target correction value ⁇ a (see Expression (1-2)), and changes the target count value ⁇ cmd from the temporary target value ⁇ t1 to the target correction value ⁇ a.
- the target angle setting unit 54 determines whether or not the target correction value ⁇ a is smaller than the target limit value ⁇ lim.
- the target correction value ⁇ a is smaller than the target limit value ⁇ lim, there is a possibility that the target count value ⁇ cmd is set on the back side of the wall portion 226.
- the process of S207 is not performed. Therefore, the target count value ⁇ cmd is left as the target correction value ⁇ a.
- the process proceeds to S207, and the target count value ⁇ cmd is set as the target limit value ⁇ lim.
- the drive control unit 55 controls the drive of the motor 10 so that the encoder count value ⁇ en becomes the set target count value ⁇ cmd.
- the motor control process of this embodiment will be described with reference to FIG. In FIG. 10, the description of the first wall portion 226 is omitted.
- the suction range ⁇ d which is the range in which the detent roller 26 can be dropped into the valley portion 222 by the urging force of the detent spring 25, is a range of ⁇ ⁇ g or more from the bottom of the valley portion 222.
- the valley wall angle ⁇ vw which is an angle from the bottom portion to the second wall portion 227, is designed to be equal to or larger than the backlash angle ⁇ g.
- FIG. 10 shows the output shaft signal SGN_s in the upper stage, the left justified start in the middle, and the right justified start in the lower.
- the encoder count value at the start of left justification is ⁇ en_0L
- the encoder count value at the start of right justification is ⁇ en_0R.
- the target correction value ⁇ a based on the encoder count value ⁇ en_edg and the design value K1 at the edge detection timing at which the output shaft signal SGN_s switches from the value V1 to the value V2 Since the value ⁇ cmd is set, the motor 10 stops at the bottom of the valley 222 when the motor shaft 105 starts from any position in the play. Therefore, vibration after the motor 10 is stopped can be suppressed.
- the target limit value ⁇ lim is set to a position where the detent roller 26 stops at the bottom of the valley 222.
- the target limit value ⁇ lim is set at a position where the detent roller 26 rotates to the back side by the backlash angle ⁇ g from the bottom of the valley 222.
- the valley wall angle ⁇ vw is designed to be greater than or equal to the backlash angle ⁇ g, so that the detent roller 26 stops before the wall portion 227 even if the motor 10 is rotated to the target limit value ⁇ lim. Therefore, it is possible to prevent the detent roller 26 from colliding with the second wall portion 227 even when the motor shaft 105 is in any position in the play at the start of driving.
- the suction range ⁇ d is designed to be more than the backlash angle ⁇ g on both sides of the bottom of the valley 222. Therefore, even when the detent roller 26 rotates the motor 10 to the target limit value ⁇ lim which is on the back side of the bottom of the valley 222 at the right-justified start, the biasing force of the detent spring 25 The detent roller 26 is dropped into the bottom of the valley 222. Thereby, even if the output shaft signal SGN_s is abnormal, the shift range can be appropriately switched.
- the shift range control device 40 of the present embodiment controls the shift-by-wire system 1 that switches the shift range by controlling the driving of the motor 10, and includes the motor angle calculation unit 51, the output An axis signal acquisition unit 52, a target angle setting unit 54, and a drive control unit 55 are provided.
- the motor angle calculation unit 51 acquires the motor rotation angle signal SGN_en corresponding to the rotation position of the motor 10 from the encoder 13 that detects the rotation of the motor 10, and calculates the encoder count value ⁇ en based on the motor rotation angle signal SGN_en.
- the output shaft signal acquisition unit 52 acquires an output shaft signal SGN_s corresponding to the rotational position of the output shaft 15 from the output shaft sensor 16 that detects the rotational position of the output shaft 15 to which the rotation of the motor 10 is transmitted.
- the target angle setting unit 54 sets a target count value ⁇ cmd based on the output shaft signal SGN_s.
- the drive control unit 55 controls driving of the motor 10 so that the encoder count value ⁇ en becomes the target count value ⁇ cmd.
- the target angle setting unit 54 rotates the target count value ⁇ cmd set based on the target shift range and the output shaft signal SGN_s farther in the rotation direction than the target limit value ⁇ lim set according to the shift range before and after switching. If it is a value to be set, the target count value ⁇ cmd is set as the target limit value ⁇ lim. Thereby, even if an incorrect target count value ⁇ cmd is set due to an abnormality in the output shaft signal SGN_s, the shift range can be appropriately switched by switching the target count value ⁇ cmd to the target limit value ⁇ lim.
- the shift-by-wire system 1 includes a plurality of valley portions 221 and 222, a detent plate 21 that rotates integrally with the output shaft 15, a detent roller 26 that engages with the valley portions 221 and 222 according to the shift range, and a detent.
- a detent spring 25 that urges the roller 26 in a direction in which it fits into the valleys 221 and 222 is provided.
- a play is formed between the motor shaft 105 which is the rotation shaft of the motor 10 and the output shaft 15. An angle corresponding to the total amount of play is defined as a backlash angle ⁇ g.
- the target limit value is set according to the angle between the valley corresponding to the shift range before switching and the valley corresponding to the target shift range, and the backlash angle ⁇ g. Thereby, the shift range can be appropriately switched without hindering the range switching function.
- the valley portion includes a first valley portion 221 provided on one end side and corresponding to the P range, and a second valley portion 222 provided on the other end side and corresponding to a range other than the P range.
- the detent plate 21 is formed with a first wall portion 226 provided on one end side of the first trough portion 221 and a second wall portion 227 provided on the other end side of the second trough portion 222.
- the angle between the first valley portion 221 and the first wall portion 226 and the angle between the second valley portion 222 and the second wall portion 227 are larger than the backlash angle ⁇ g.
- the target limit value ⁇ lim corresponds to a position corresponding to the target shift range at a position where the detent roller 26 is closer to the front than the first wall portion 226 or the second wall portion 227 and by the urging force of the detent spring 25. It is set within a suction range that can be fitted into the portions 221 and 222. Thereby, the shift range can be appropriately switched without the detent roller 26 colliding with the walls 226 and 227.
- FIG. 11 is a diagram corresponding to FIG. Since the setting of the target count value ⁇ cmd when the output shaft signal SGN_s is normal is the same as that in the above embodiment, the description thereof is omitted. In the present embodiment, the target limit value ⁇ lim is different from that in the above embodiment.
- FIG. 11 illustrates switching from the P range to the notP range.
- the backlash angle ⁇ g is 3.5 degrees as the angle of the output shaft 15 as in the above embodiment.
- the driving of the motor 10 is controlled so that the detent roller 26 is within the control range ⁇ c centered on the bottom of the valley portion 222.
- the control range ⁇ c is an angle of the output shaft 15 and is, for example, ⁇ 1.5 ° from the bottom of the valley 222.
- the control range ⁇ c is 3 °, which is smaller than the backlash angle ⁇ g.
- the drive limit amount Klim is set by Expression (4) based on the valley angle ⁇ v, the backlash angle ⁇ g, and the control range ⁇ c. The details of the target angle setting process are the same as in the above embodiment.
- the target limit value ⁇ lim is set closest to the detent roller 26 within the control range ⁇ c.
- the target limit value ⁇ lim is set to the farthest side in the control range ⁇ c by the detent roller 26.
- the detent roller 26 is not rotated from the center of the valley portion 222 to the back side of ⁇ g ⁇ (1/2) ⁇ ⁇ c ⁇ .
- ⁇ g ⁇ (1 ⁇ 2) ⁇ ⁇ c ⁇ is 2 °. Therefore, the valley wall angle ⁇ vw may be set to ⁇ g ⁇ (1 ⁇ 2) ⁇ ⁇ c ⁇ or more.
- the suction range ⁇ d may be ⁇ ⁇ g ⁇ (1/2) ⁇ ⁇ c ⁇ or more from the bottom of the valley 222. Thereby, the valley wall angle ⁇ vw can be reduced, and the shift range switching mechanism 20 can be downsized.
- the target limit value ⁇ lim is set according to the control range ⁇ c in which the detent roller 26 is stopped at the valley portions 221 and 222. Thereby, even if an abnormality occurs in the output shaft signal SGN_s, the motor 10 can be accurately controlled. Further, since the angle between the valley walls, which is the angle between the valley portions 221, 222 and the wall portions 226, 227, can be reduced, the shift range switching mechanism 20 can be reduced in size.
- two valleys are formed in the detent plate.
- the number of valleys formed in the detent plate may be three or more.
- the trough corresponding to the P range corresponds to the first trough
- the trough corresponding to the D range corresponds to the second trough
- wall portions are formed on both sides. Therefore, at the time of switching to the P range and at the time of switching to the D range, there is a possibility that the detent roller may collide with the wall due to erroneous correction by the output shaft signal.
- the target limit value when switching to the R range or the N range, the target limit value may be similarly limited, and since the valley corresponding to the range is not adjacent to the wall, the limit based on the target limit value is set. May be omitted. Further, the shift range switching mechanism, the parking lock mechanism, and the like may be different from those in the above embodiment.
- the target limit value is determined based on the valley angle and the backlash angle.
- the target limit value is determined based on the limit range in addition to the valley angle and the backlash angle.
- the target limit value can be arbitrarily set as long as the shift range can be switched and the detent roller does not collide with the wall.
- the number of stages of the output shaft signal is 3. In other embodiments, the number of stages of the output shaft signal may be two, or four or more.
- the output shaft signal is not limited to a signal that changes in a step-like manner, for example, any value that changes in value according to the rotation of the output shaft, such as a value that changes linearly. Also good.
- the output shaft sensor is not limited to the magnetic sensor, and any sensor capable of detecting the rotation of the output shaft, such as a potentiometer, may be used.
- the motor is an SR motor. In other embodiments, the motor may be any motor, such as a DC brushless motor. In the above embodiment, the number of winding sets of the motor is not mentioned, but the winding set may be one set or a plurality of sets.
- the motor rotation angle sensor is an encoder. In other embodiments, the motor rotation angle sensor is not limited to an encoder, and any other device such as a resolver may be used.
- a speed reducer is provided between the motor shaft and the output shaft.
- the reduction gear for example, a cycloid gear, a planetary gear, a gear using a spur gear that transmits torque from a speed reduction mechanism substantially coaxial with the motor shaft to the drive shaft, and these Any configuration such as a combination of the above may be used.
- the speed reducer between the motor shaft and the output shaft may be omitted, or a mechanism other than the speed reducer may be provided. As mentioned above, this indication is not limited to the said embodiment at all, and can be implemented with a various form in the range which does not deviate from the meaning.
- control unit and the method thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and a memory programmed to execute one or more functions embodied by a computer program. May be.
- control unit and the method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits.
- control unit and the method thereof described in the present disclosure may include a combination of a processor and a memory programmed to execute one or more functions and a processor configured by one or more hardware logic circuits. It may be realized by one or more configured dedicated computers.
- the computer program may be stored in a computer-readable non-transition tangible recording medium as instructions executed by the computer.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Gear-Shifting Mechanisms (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
シフトレンジ制御装置(40)は、モータ(10)の駆動を制御することでシフトレンジを切り替えるシフトレンジ切替システム(1)を制御するものである。モータ角度演算部(51)は、モータ回転角信号に基づいてモータ角度を演算する。出力軸信号取得部(52)は、出力軸センサ(16)から出力軸(15)の回転位置に応じた出力軸信号を取得する。目標角度設定部(54)は、目標シフトレンジおよび出力軸信号に基づいて目標回転角度を設定する。駆動制御部(55)は、モータ角度が目標回転角度となるように、モータ(10)の駆動を制御する。目標角度設定部(54)は、出力軸信号に基づいて設定された目標回転角度が、切替前後のシフトレンジに応じて設定される目標制限値よりも回転方向奥側まで回転させる値である場合、目標回転角度を目標制限値とする。
Description
本出願は、2018年3月7日に出願された特許出願番号2018-040650号に基づくものであり、ここにその記載内容を援用する。
本開示は、シフトレンジ制御装置に関する。
従来、モータを駆動することでシフトレンジを切り替えるレンジ切換機構が知られている。例えば特許文献1では、出力軸センサの角度を用いて目標モータ回転角を設定している。
特許文献1のように、モータの目標角度の設定に出力軸センサを用いる場合、出力軸センサのセンサ信号にノイズが生じたり、センサに異常が生じたりすると、モータの目標角度が誤った位置に設定される虞がある。本開示は、上述の課題に鑑みてなされたものであり、その目的は、シフトレンジを適切に切替可能であるシフトレンジ制御装置を提供することにある。
本開示のシフトレンジ制御装置は、モータの駆動を制御することでシフトレンジを切り替えるシフトレンジ切替システムを制御するものであって、モータ角度演算部と、出力軸信号取得部と、目標角度設定部と、駆動制御部と、を備える。
モータ角度演算部は、モータの回転を検出するモータ回転角センサからモータの回転位置に応じたモータ回転角信号を取得し、モータ回転角信号に基づいてモータ角度を演算する。出力軸信号取得部は、モータの回転が伝達される出力軸の回転位置を検出する出力軸センサから、出力軸の回転位置に応じた出力軸信号を取得する。目標角度設定部は、目標シフトレンジおよび出力軸信号に基づいて目標回転角度を設定する。駆動制御部は、モータ角度が目標回転角度となるように、モータの駆動を制御する。
目標角度設定部は、出力軸信号に基づいて設定された目標回転角度が、切替前後のシフトレンジに応じた設定される目標制限値よりも回転方向奥側まで回転させる値である場合、目標回転角度を目標制限値とする。これにより、例えば出力軸信号の異常により、誤った目標回転角度が設定されたとしても、目標回転角度を目標制限値に持ち替えることで、シフトレンジを適切に切り替えることができる。
本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態によるシフトバイワイヤシステムを示す斜視図であり、
図2は、第1実施形態によるシフトバイワイヤシステムを示す概略構成図であり、
図3は、第1実施形態による目標カウント値の設定を説明するタイムチャートであり、
図4は、第1実施形態による目標カウント値の設定を説明する模式図であり、
図5は、出力軸信号の異常時における目標カウント値の誤設定を説明するタイムチャートであり、
図6は、出力軸信号の異常時における目標カウント値の誤設定を説明する模式図であり、
図7は、第1実施形態による目標カウント値の設定を説明するタイムチャートであり、
図8は、第1実施形態による目標角度設定処理を説明するフローチャートであり、
図9は、第1実施形態による目標角度設定処理を説明するフローチャートであり、
図10は、第1実施形態によるモータ制御処理を説明する模式図であり、
図11は、第2実施形態によるモータ制御処理を説明する模式図である。
(第1実施形態)
シフトレンジ制御装置を図面に基づいて説明する。以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。第1実施形態によるシフトレンジ制御装置を図1~図10に示す。図1および図2に示すように、シフトレンジ切替システムとしてのシフトバイワイヤシステム1は、モータ10、シフトレンジ切替機構20、パーキングロック機構30、および、シフトレンジ制御装置40等を備える。
シフトレンジ制御装置を図面に基づいて説明する。以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。第1実施形態によるシフトレンジ制御装置を図1~図10に示す。図1および図2に示すように、シフトレンジ切替システムとしてのシフトバイワイヤシステム1は、モータ10、シフトレンジ切替機構20、パーキングロック機構30、および、シフトレンジ制御装置40等を備える。
モータ10は、図示しない車両に搭載されるバッテリから電力が供給されることで回転し、シフトレンジ切替機構20の駆動源として機能する。本実施形態のモータ10は、スイッチトリラクタンスモータであるが、DCモータ等、どのような種類のものを用いてもよい。
図2に示すように、モータ回転角センサであるエンコーダ13は、モータ10の図示しないロータの回転位置を検出する。エンコーダ13は、例えば磁気式のロータリーエンコーダであって、ロータと一体に回転する磁石と、磁気検出用のホールIC等により構成される。エンコーダ13は、ロータの回転に同期して、所定角度ごとにA相およびB相のパルス信号を出力する。以下、エンコーダ13からの信号をモータ回転角信号SGN_enとする。減速機14は、モータ10のモータ軸105(図4等参照)と出力軸15との間に設けられ、モータ10の回転を減速して出力軸15に出力する。これにより、モータ10の回転がシフトレンジ切替機構20に伝達される。
出力軸センサ16は、第1センサ部161、および、第2センサ部162を有し、出力軸15の回転位置を検出する。本実施形態の出力軸センサ16は、後述する回転部材としてのディテントプレート21に設けられるターゲット215(図1参照)の磁界の変化を検出する磁気センサであり、ターゲット215の磁界を検出可能な箇所に取り付けられる。図中、第1センサ部161を「センサ1」、第2センサ部162を「センサ2」と記載する。
センサ部161、162は、ターゲット215の磁界の変化を検出する磁気抵抗効果素子(MR素子)を有する、いわゆるMRセンサである。第1センサ部161は、ターゲット215の回転位置に応じた磁界を検出し、出力軸信号Sg1を後述のECU50に出力する。第2センサ部162は、ターゲット215の回転位置に応じた磁界を検出し、出力軸信号Sg2をECU50に出力する。本実施形態の出力軸センサ16は、2つのセンサ部161、162を有しており、それぞれ独立に出力軸信号SGN_s1、SGN_s22をECU50に送信している。すなわち、出力軸センサ16は、2重系となっている。以下、出力軸信号SGN_s1、SGN_s2をまとめて単に出力軸信号SGN_sとする。
図1に示すように、シフトレンジ切替機構20は、ディテントプレート21、および、付勢部材としてのディテントスプリング25等を有し、減速機14から出力された回転駆動力を、マニュアルバルブ28、および、パーキングロック機構30へ伝達する。ディテントプレート21は、出力軸15に固定され、モータ10により駆動される。本実施形態では、ディテントプレート21がディテントスプリング25の基部から離れる方向を正回転方向、基部に近づく方向を逆回転方向とする。
ディテントプレート21には、出力軸15と平行に突出するピン24が設けられる。ピン24は、マニュアルバルブ28と接続される。ディテントプレート21がモータ10によって駆動されることで、マニュアルバルブ28は軸方向に往復移動する。すなわち、シフトレンジ切替機構20は、モータ10の回転運動を直線運動に変換してマニュアルバルブ28に伝達する。マニュアルバルブ28は、バルブボディ29に設けられる。マニュアルバルブ28が軸方向に往復移動することで、図示しない油圧クラッチへの油圧供給路が切り替えられ、油圧クラッチの係合状態が切り替わることでシフトレンジが変更される。
ディテントプレート21のディテントスプリング25側には、第1谷部221、第2谷部222、222、および、2つの谷部221、222の間に形成される山部225が設けられる(図5参照)。本実施形態では、ディテントスプリング25の基部に近い側を第2谷部222、遠い側を第1谷部221とする。本実施形態では、谷部221がPレンジに対応し、谷部222がPレンジ以外のnotPレンジに対応する。また、ディテントプレート21には、ディテントローラ26の谷部221、222の外側方向への移動を制限する壁部226、227が設けられる。以下適宜、Pレンジ側の壁部を第1壁部226、notPレンジ側の壁部を第2壁部227とする。
ディテントプレート21には、出力軸15の回転に応じて磁界が変化するように、ターゲット215が設けられる。ターゲット215は、磁性体にて形成される。ターゲット215は、ディテントプレート21と別部材であってもよいし、ディテントプレート21が磁性体であれば、例えばディテントプレート21にプレス加工等を施すことで形成してもよい。ターゲット215は、出力軸15の回転位置に応じて、出力軸センサ16の出力軸信号SGN_sである出力電圧が、ステップ状に変化するように形成される。
図4等に示すように、出力軸信号SGN_sは、Pレンジに対応する値V1、notPレンジに対応する値V3、および、中間値V2の3段階の値を取る。notPレンジは、Pレンジ以外のレンジを意味する。出力軸信号SGN_sの取り得る値V1、値V2、値V3は、離散しており、各値の中間値は取らない。また、値V1と値V2、値V2と値V3との差は、センサ誤差等と比較して、十分に大きい値となるように設定される。すなわち本実施形態では出力軸信号SGN_sは、値がステップ的に変化する。補足として、本実施形態では、出力軸15の回転に伴い、出力軸信号SGN_sが、連続とみなせない程度に異なる値に切り替わっており、これを「値がステップ的に変化する」ものとする。なお、値V1と値V2との差、および、値V2と値V3との差は、等しくてもよいし、異なっていてもよい。以下適宜、値の切り替わりを「エッジ」とする。
図1に示すように、ディテントスプリング25は、弾性変形可能な板状部材であり、先端に係合部材としてのディテントローラ26が設けられる。ディテントスプリング25は、ディテントローラ26をディテントプレート21の回動中心側に付勢する。ディテントプレート21に所定以上の回転力が加わると、ディテントスプリング25が弾性変形し、ディテントローラ26が谷部221、222間を移動する。ディテントローラ26が谷部221、222のいずれかに嵌まり込むことで、ディテントプレート21の揺動が規制され、マニュアルバルブ28の軸方向位置、および、パーキングロック機構30の状態が決定され、自動変速機5のシフトレンジが固定される。ディテントローラ26は、シフトレンジがnotPレンジのとき、谷部222に嵌まり込み、Pレンジのとき、谷部221に嵌まり込む。本実施形態では、シフトレンジに応じ、ディテントスプリング25の付勢力にてディテントローラ26が嵌まり込む箇所を、谷部221、222の最底部とする。
パーキングロック機構30は、パーキングロッド31、円錐体32、パーキングロックポール33、軸部34、および、パーキングギア35を有する。パーキングロッド31は、略L字形状に形成され、一端311側がディテントプレート21に固定される。パーキングロッド31の他端312側には、円錐体32が設けられる。円錐体32は、他端312側にいくほど縮径するように形成される。ディテントプレート21が逆回転方向に揺動すると、円錐体32がP方向に移動する。
パーキングロックポール33は、円錐体32の円錐面と当接し、軸部34を中心に揺動可能に設けられる、パーキングロックポール33のパーキングギア35側には、パーキングギア35と噛み合い可能な凸部331が設けられる。ディテントプレート21が逆回転方向に回転し、円錐体32がP方向に移動すると、パーキングロックポール33が押し上げられ、凸部331とパーキングギア35とが噛み合う。一方、ディテントプレート21が正回転方向に回転し、円錐体32がnotP方向に移動すると、凸部331とパーキングギア35との噛み合いが解除される。
パーキングギア35は、図示しない車軸に設けられ、パーキングロックポール33の凸部331と噛み合い可能に設けられる。パーキングギア35と凸部331とが噛み合うと、車軸の回転が規制される。シフトレンジがnotPレンジのとき、パーキングギア35はパーキングロックポール33によりロックされず、車軸の回転は、パーキングロック機構30により妨げられない。また、シフトレンジがPレンジのとき、パーキングギア35はパーキングロックポール33によってロックされ、車軸の回転が規制される。
図2に示すように、シフトレンジ制御装置40は、モータドライバ41、および、ECU50等を有する。モータドライバ41は、モータ10の各相(U相、V相、W相)への通電に係る駆動信号を出力する。モータドライバ41とバッテリとの間には、モータリレー46が設けられる。モータリレー46は、イグニッションスイッチ等である車両の始動スイッチがオンされているときにオンされ、モータ10側へ電力が供給される。また、モータリレー46は、始動スイッチがオフされているときにオフされ、モータ10側への電力の供給が遮断される。また、モータリレー46のオンオフを制御することで、モータ10への給電または遮断を切り替える。
ECU50は、マイコン等を主体として構成され、内部にはいずれも図示しないCPU、ROM、RAM、I/O、及び、これらの構成を接続するバスライン等を備えている。ECU50における各処理は、ROM等の実体的なメモリ装置(すなわち、読み出し可能非一時的有形記録媒体)に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。
ECU50は、ドライバ要求シフトレンジ、ブレーキスイッチからの信号および車速等に基づいてモータ10の駆動を制御することで、シフトレンジの切り替えを制御する。また、ECU50は、車速、アクセル開度、および、ドライバ要求シフトレンジ等に基づき、変速用油圧制御ソレノイド6の駆動を制御する。変速用油圧制御ソレノイド6を制御することで、変速段が制御される。変速用油圧制御ソレノイド6は、変速段数等に応じた本数が設けられる。本実施形態では、1つのECU50がモータ10およびソレノイド6の駆動を制御するが、モータ10を制御するモータ制御用のモータECUと、ソレノイド制御用のAT-ECUとを分けてもよい。以下、モータ10の駆動制御を中心に説明する。
ECU50は、モータ角度演算部51、出力軸信号取得部52、目標角度設定部54、および、駆動制御部55等を有する。モータ角度演算部51は、エンコーダ13から取得されるモータ回転角信号SGN_enに基づき、A相信号およびB相信号のパルスエッジをカウントし、エンコーダカウント値θenを演算する。エンコーダカウント値θenは、モータ10の回転位置に応じた値であって、「モータ角度」に対応する。出力軸信号取得部52は、出力軸センサ16から出力軸信号SGN_sを取得する。
目標角度設定部54は、目標シフトレンジおよび出力軸信号SGN_sに基づき、モータ10を停止させる目標カウント値θcmdを設定する。本実施形態では、目標カウント値θcmdが「目標回転角度」に対応する。駆動制御部55は、エンコーダカウント値θenが目標カウント値θcmdとなるように、フィードバック制御等によりモータ10の駆動を制御する。モータ10の駆動制御の詳細は、どのようであってもよい。
目標カウント値θcmdの設定について、図3および図4に基づいて説明する。図3は、共通時間軸を横軸とし、上段から、目標レンジ、出力軸信号SGN_s、モータ角度を示している。モータ角度はエンコーダカウント値θenとする。以下、レンジ切替開始時におけるエンコーダカウント値θenをθen_0とする。また、第2壁部227を「notP壁」と記載した。後述の図5等についても同様である。
図4では、モータ10の回転軸であるモータ軸105、出力軸15、および、ディテントプレート21の関係を模式的に示している。図4に示すように、モータ軸105と出力軸15との間には、遊びが形成されている。図4では、減速機14と出力軸15とが一体となっており、モータ軸105と減速機14との間に「遊び」が形成されているが、モータ軸104と減速機14とが一体となっており、減速機14と出力軸15との間に「遊び」が形成されていてもよい。「遊び」とはモータ軸105と出力軸15との間に存在する遊びやガタ等の合計と捉えることができる。以下適宜、モータ軸105と出力軸15との間に設けられる遊びの合計に相当する角度をガタ角度θgとする。また、遊びの合計のことを、単に「ガタ」という。
図4では、モータ10の回転方向を紙面左右方向とし、出力軸15の回転に伴って、ディテントローラ26が谷部221、222間を移動していく状態を示している。実際には、ディテントプレート21が回転することで、ディテントローラ26が谷部221、222間を移動するが、図4では、説明のため、ディテントローラ26が出力軸15とともに移動するものとして図示した。後述の図6等についても同様である。
以下、シフトレンジをPレンジからnotPレンジに切り替える場合を例に説明する。時刻x10にて目標シフトレンジがPレンジからnotPレンジに切り替わると、目標カウント値θcmdとして仮目標値θt1が設定され、モータ10の駆動が開始される。本実施形態では、シフトレンジをPレンジからnotPレンジに切り替える場合に仮設定される値を仮目標値θt1、notPレンジからPレンジに切り替える場合に仮設定される値を仮目標値θt2とする。仮目標値θt1、θt2は、ディテントローラ26が山部225を超えられる程度の任意の値に設定される。
時刻x11にて、出力軸信号SGN_sが値V1から値V2に切り替わると、目標カウント値θcmdを目標補正値θaに変更する。目標補正値θaは、出力軸信号SGN_sが切り替わったときのエンコーダカウント値θenと設計値K1、K2とから演算される。式(1-1)は、シフトレンジをPレンジからnotPレンジに切り替える場合の値であり、式(1-2)は、シフトレンジをnotPレンジからPレンジに切り替える場合の値である。
θa=θen_edg+K1 ・・・(1-1)
θa=θen_edg+K2 ・・・(1-2)
θa=θen_edg+K2 ・・・(1-2)
式(1-1)、(1-2)中のθen_edgは、エッジ検出タイミングのエンコーダカウント値である。設計値K1は、出力軸信号SGN_sが値V1から値V2に切り替わる位置から谷部222の最底部までの角度に応じた値である。設計値K2は、出力軸信号SGN_sが値V3から値V2に切り替わる位置から谷部221の最底部までの角度に応じた値である。設計値K1、K2は、いずれもエンコーダカウント値θenに換算した値であり、回転方向に応じて正負が設定される。本実施形態では、K1が正の値であり、K2が負の値である。
出力軸信号SGN_sが正常であれば、エッジ検出時に目標カウント値θcmdを補正することで、ディテントローラ26を谷部222の最底部にて停止させることができる。なお、ここでは、出力軸信号SGN_sが値V1から値V2に切り替わるタイミングにて目標カウント値θcmdを補正しているが、例えば値V2から値V3に切り替わるタイミングにて目標カウント値θcmdを補正してもよいし、出力軸信号SGN_sに応じ、目標カウント値θcmdを複数回の補正を行うようにしてもよい。
出力軸信号SGN_sが異常である場合を図5および図6に基づいて説明する。出力軸信号SGN_sの異常には、電気的なノイズ等により生じる異常、および、出力軸センサ16の組み付け異常等が含まれる。
図5および図6に示すように、出力軸信号SGN_sが値V1から値V2に切り替わるタイミングが遅れる異常が生じた場合、出力軸信号SGN_sのエッジ検出タイミングである時刻x12にて、式(1-1)の補正を行うと、目標補正値θaが第2壁部227よりも奥側に設定される虞がある。目標カウント値θcmdが、壁部226、227よりも奥側に設定されると、正常なレンジ切替ができない虞がある。また、ディテントローラ26が壁部226、227に高速で衝突すると、シフトレンジ切替機構20が破損する虞がある。また、出力軸信号SGN_sのエッジを検出するエッジ検出ウィンドウを設ける場合、実際の公差を積み上げていくと、ウィンドウが広くなりすぎて成立しない虞がある。また、検出ウィンドウを設けたとしても、ウィンドウの端部でエッジを検出した場合、目標補正値θaが壁部226、227より奥側に設定される虞がある。
そこで本実施形態では、図7に示すように、目標補正値θaが壁部226、227よりも奥側に設定された場合、目標カウント値θcmdを、予め計算された目標制限値θlimに持ち替えることで、駆動量を制限する。目標制限値θlimは、目標シフトレンジが切り替わったときのエンコーダカウント値θen、および、駆動制限量Klimを用いて演算される。式(2-1)は、シフトレンジをPレンジからnotPレンジに切り替える場合の値であり、式(2-2)は、シフトレンジをnotPレンジからPレンジに切り替える場合の値である。
θlim=θen_0+Klim ・・・(2-1)
θlim=θen_0-Klim ・・・(2-2)
θlim=θen_0-Klim ・・・(2-2)
駆動制限量Klimは、任意に設定可能であるが、本実施形態では、谷部221、222間の最底部間の角度である谷谷間角度θv、および、ガタ角度θgを用い、式(3)にて設定される。出力軸15の角度でいうと、谷谷間角度θvは例えば20°であり、ガタ角度θgは例えば3.5°であるが、任意に設定可能である。また、目標カウント値θcmdの設定に用いるとき、谷谷間角度θvおよびガタ角度θgは、いずれもエンコーダカウント値に換算した値とする。出力軸15の角度とエンコーダカウント値θenとは、ギア比に応じて換算可能である。
Klim=θv+θg ・・・(3)
本実施形態の目標角度設定処理を図8および図9のフローチャートに基づいて説明する。図8は、シフトレンジをPレンジからnotPレンジに切り替える場合であり、図9は、シフトレンジをnotPレンジからPレンジに切り替える場合である。この処理は、目標角度設定部54にて所定の周期で実行される。以下、ステップS101の「ステップ」を省略し、単に記号「S」と記す。他のステップも同様である。
図8に示すように、S101では、目標角度設定部54は、目標シフトレンジがPレンジからnotPレンジへ変化したか否かを判断する。ここでは、レンジが切り替わった初回のみ肯定判断される。S201も同様である。目標シフトレンジがnotPレンジへ変化していないと判断された場合(S101:NO)、S104へ移行する。目標シフトレンジがnotPレンジへ変化したと判断された場合(S101:YES)、S102へ移行する。
S102では、目標角度設定部54は、目標カウント値θcmdを仮目標値θt1に設定する。S103では、目標角度設定部54は、現在のエンコーダカウント値θenに駆動制限量Klimを加算し、目標制限値θlimを演算する(式(1-1)参照)。
S104では、目標角度設定部54は、出力軸信号SGN_sのエッジを検出したか否かを判断する。ここでは、出力軸信号SGN_sが値V1から値V2に切り替わったとき、肯定判断する。出力軸信号SGN_sのエッジを検出していないと判断された場合(S104:NO)、S105以降の処理を行わず、本ルーチンを終了する。出力軸信号SGN_sのエッジを検出したと判断された場合(S104:YES)、S105へ移行する。
S105では、目標角度設定部54は、目標補正値θaを演算し(式(1-1)参照)、目標カウント値θcmdを仮目標値θt1から目標補正値θaに変更する。
S106では、目標角度設定部54は、目標補正値θaが目標制限値θlimより大きいか否かを判断する。目標補正値θaが目標制限値θlimより大きい場合、目標カウント値θcmdが壁部227よりも奥側に設定されている虞がある。目標補正値θaが目標制限値θlim以下であると判断された場合(S106:NO)、S107の処理を行わない。したがって、目標カウント値θcmdを目標補正値θaのままとする。目標補正値θaが目標制限値θlimより大きいと判断された場合(S106:YES)、S107へ移行し、目標カウント値θcmdを目標制限値θlimとする。
図9に示すように、S201では、目標角度設定部54は、目標シフトレンジがnotPレンジからPレンジへ変化したか否かを判断する。目標シフトレンジがPレンジへ変化していないと判断された場合(S201:NO)、S204へ移行する。目標シフトレンジがPレンジに変化したと判断された場合(S201:YES)、S202へ移行する。
S202では、目標角度設定部54は、目標カウント値θcmdを仮目標値θt2に設定する。S203では、目標角度設定部54は、現在のエンコーダカウント値θenから駆動制限量Klimを減算し、目標制限値θlimを演算する(式(2-2)参照)。
S204では、目標角度設定部54は、出力軸信号SGN_sのエッジを検出したか否かを判断する。ここでは、出力軸信号SGN_sが値V3から値V2に切り替わったとき、肯定判断する。出力軸信号SGN_sのエッジを検出していないと判断された場合(S204:NO)、S205以降の処理を行わず、本ルーチンを終了する。出力軸信号SGN_sのエッジを検出したと判断された場合(S204:YES)、S205へ移行する。
S205では、目標角度設定部54は、目標補正値θaを演算し(式(1-2)参照)、目標カウント値θcmdを仮目標値θt1から目標補正値θaに変更する。
S206では、目標角度設定部54は、目標補正値θaが目標制限値θlimより小さいか否かを判断する。目標補正値θaが目標制限値θlimより小さい場合、目標カウント値θcmdが壁部226よりも奥側に設定されている虞がある。目標補正値θaが目標制限値θlim以上であると判断された場合(S206:NO)、S207の処理を行わない。したがって、目標カウント値θcmdを目標補正値θaのままとする。目標補正値θaが目標制限値θlimより小さいと判断された場合(S206:YES)、S207へ移行し、目標カウント値θcmdを目標制限値θlimとする。駆動制御部55は、エンコーダカウント値θenが設定された目標カウント値θcmdとなるように、モータ10の駆動を制御する。
本実施形態のモータ制御処理を図10に基づいて説明する。図10では、第1壁部226の記載を省略した。ディテントスプリング25の付勢力にて、ディテントローラ26を谷部222に落とし込むことが可能な範囲である吸い込み範囲θdは、谷部222の最底部から±θg以上の範囲であり、谷部222の最底部から第2壁部227までの角度である谷壁間角度θvwはガタ角度θg以上に設計される。
ディテントローラ26が谷部221にあって、モータ軸105がガタ内の最もPレンジ側にある状態から駆動される場合を「左詰めスタート」、最もnotPレンジ側にある状態から駆動される場合を「右詰めスタート」とする。図10では、上段に出力軸信号SGN_s、中段に左詰めスタートの場合、下段に右詰スタートの場合を示す。図中、左詰めスタート時のエンコーダカウント値をθen_0L、右詰めスタート時のエンコーダカウント値をθen_0Rとする。
図10に示すように、出力軸信号SGN_sが正常である場合、出力軸信号SGN_sが値V1から値V2に切り替わるエッジ検出タイミングのエンコーダカウント値θen_edgおよび設計値K1に基づく目標補正値θaを目標カウント値θcmdとするので、モータ軸105がガタ内のいずれの位置からスタートした場合であっても、ディテントローラ26が谷部222の最底部にてモータ10が停止する。そのため、モータ10の停止後の振動を抑制することができる。
左詰めスタートの場合、目標制限値θlimは、ディテントローラ26が谷部222の最底部にて停止する位置に設定される。右詰めスタートの場合、目標制限値θlimは、ディテントローラ26が谷部222の最底部よりもガタ角度θgの分、奥側まで回転する位置に設定されている。本実施形態では、谷壁間角度θvwがガタ角度θg以上に設計されているので、目標制限値θlimまでモータ10を回転したとしても、ディテントローラ26は壁部227の手前にて停止する。したがって、駆動開始時において、モータ軸105がガタ内のいずれの箇所にある場合であっても、ディテントローラ26が第2壁部227に衝突するのを防ぐことができる。
また、吸い込み範囲θdは、谷部222の最底部の両側にガタ角度θg以上となるように設計されている。そのため、右詰めスタートにて、ディテントローラ26が谷部222の最底部よりも奥側となる目標制限値θlimまでモータ10を回転させた場合であっても、ディテントスプリング25の付勢力にて、ディテントローラ26が谷部222の最底部に落とし込まれる。これにより、出力軸信号SGN_sが異常の場合であっても、シフトレンジを適切に切り替えることができる。
以上説明したように、本実施形態のシフトレンジ制御装置40は、モータ10の駆動を制御することでシフトレンジを切り替えるシフトバイワイヤシステム1を制御するものであって、モータ角度演算部51と、出力軸信号取得部52と、目標角度設定部54と、駆動制御部55と、を備える。
モータ角度演算部51は、モータ10の回転を検出するエンコーダ13からモータ10の回転位置に応じたモータ回転角信号SGN_enを取得し、モータ回転角信号SGN_enに基づいてエンコーダカウント値θenを演算する。出力軸信号取得部52は、モータ10の回転が伝達される出力軸15の回転位置を検出する出力軸センサ16から、出力軸15の回転位置に応じた出力軸信号SGN_sを取得する。目標角度設定部54は、出力軸信号SGN_sに基づいて目標カウント値θcmdを設定する。駆動制御部55は、エンコーダカウント値θenが目標カウント値θcmdとなるように、モータ10の駆動を制御する。
目標角度設定部54は、目標シフトレンジおよび出力軸信号SGN_sに基づいて設定された目標カウント値θcmdが、切替前後のシフトレンジに応じて設定される目標制限値θlimよりも回転方向奥側まで回転させる値である場合、目標カウント値θcmdを目標制限値θlimとする。これにより、出力軸信号SGN_sの異常により、誤った目標カウント値θcmdが設定されたとしても、目標カウント値θcmdを目標制限値θlimに持ち替えることでシフトレンジを適切に切り替えることができる。
シフトバイワイヤシステム1は、複数の谷部221、222が形成され、出力軸15と一体に回転するディテントプレート21、シフトレンジに応じた谷部221、222に係合するディテントローラ26、および、ディテントローラ26を谷部221、222に嵌まり合う方向に付勢するディテントスプリング25を有する。モータ10の回転軸であるモータ軸105と出力軸15との間には、遊びが形成される。遊びの合計に相当する角度をガタ角度θgとする。
目標制限値は、切替前のシフトレンジに対応する谷部と目標シフトレンジに対応する谷部との間の角度、および、ガタ角度θgに応じて設定される。これにより、レンジ切替機能を阻害することなく、シフトレンジを適切に切り替えることができる。
谷部には、一端側に設けられPレンジに対応する第1谷部221、および、他端側に設けられPレンジ以外のレンジに対応する第2谷部222が含まれる。ディテントプレート21には、第1谷部221の一端側に設けられる第1壁部226、および、第2谷部222の他端側に設けられる第2壁部227が形成される。第1谷部221と第1壁部226との間の角度、および、第2谷部222と第2壁部227との間の角度は、ガタ角度θgより大きい。
目標制限値θlimは、第1壁部226または第2壁部227よりもディテントローラ26が手前側となる位置、かつ、ディテントスプリング25の付勢力にてディテントローラ26を目標シフトレンジに応じた谷部221、222に嵌め込み可能である吸い込み範囲内に設定される。これにより、ディテントローラ26が壁部226、227に衝突することなく、シフトレンジを適切に切り替えることができる。
(第2実施形態)
第2実施形態を図11に示す。図11は、図10と対応する図である。出力軸信号SGN_sが正常である場合の目標カウント値θcmdの設定については、上記実施形態と同様であるので、省略する。本実施形態では、目標制限値θlimが上記実施形態と異なる。図11では、PレンジからnotPレンジへの切り替えについて説明する。ガタ角度θgは、上記実施形態と同様、出力軸15の角度で3.5°とする。
第2実施形態を図11に示す。図11は、図10と対応する図である。出力軸信号SGN_sが正常である場合の目標カウント値θcmdの設定については、上記実施形態と同様であるので、省略する。本実施形態では、目標制限値θlimが上記実施形態と異なる。図11では、PレンジからnotPレンジへの切り替えについて説明する。ガタ角度θgは、上記実施形態と同様、出力軸15の角度で3.5°とする。
本実施形態では、シフトレンジをPレンジからnotPレンジに切り替える場合、ディテントローラ26が谷部222の最底部を中心とする制御範囲θc内となるように、モータ10の駆動を制御する。制御範囲θcは、出力軸15の角度で、例えば谷部222の最底部から±1.5°とすると、制御範囲θcは3°であり、ガタ角度θgより小さい。制御範囲θcについても、目標カウント値θcmdの設定に用いられる場合は、エンコーダカウント値θenに換算した値を用いる。本実施形態では、駆動制限量Klimは、谷谷間角度θv、ガタ角度θg、および、制御範囲θcに基づいて、式(4)にて設定される。目標角度設定処理の詳細は、上記実施形態と同様である。
Klim=θv+θg-(1/2)×θc ・・・(4)
図11に示すように、左詰めスタートにてシフトレンジをPレンジからnotPレンジに切り替える場合、目標制限値θlimは、ディテントローラ26が制御範囲θc内の最も手前側に設定される。右詰めスタートの場合、目標制限値θlimは、ディテントローラ26が制御範囲θc内の最も奥側に設定される。これにより、駆動開始時において、モータ軸105がガタ内のいずれの箇所にある場合であっても、ディテントローラ26が第2壁部227に衝突するのを防ぐことができる。
また、本実施形態では、右詰めスタートの場合であっても、谷部222中心から{θg-(1/2)×θc}よりも奥側までディテントローラ26が回転されることがない。本実施形態の例では、{θg-(1/2)×θc}は、2°である。したがって、谷壁間角度θvwを{θg-(1/2)×θc}以上とすればよい。また、吸い込み範囲θdを、谷部222の最底部から±{θg-(1/2)×θc}以上とすればよい。これにより、谷壁間角度θvwを小さくでき、シフトレンジ切替機構20を小型化することができる。
目標制限値θlimは、谷部221、222にてディテントローラ26を停止させる制御範囲θcに応じて設定される。これにより、出力軸信号SGN_sに異常が生じた場合であっても、精度よくモータ10を制御することができる。また、谷部221、222と壁部226、227との間の角度である谷壁間角度を小さくできるので、シフトレンジ切替機構20を小型化することができる。
(他の実施形態)
上記実施形態では、ディテントプレートには2つの谷部が形成される。他の実施形態では、ディテントプレートに形成される谷部の数は、3以上であってもよい。例えば、ディテントプレートの谷部が4つであって、P(パーキング)、R(リバース)、N(ニュートラル)、D(ドライブ)の各レンジに対応するようにしてもよい。この場合、Pレンジに対応する谷部が第1谷部、Dレンジに対応する谷部が第2谷部に対応し、両側に壁部が形成される。そのため、Pレンジへの切替時、および、Dレンジへの切替時において、出力軸信号による誤補正により、ディテントローラが壁部に衝突する虞があるので、目標制限値による制限を行う。また、RレンジまたはNレンジへの切替時においても、同様に目標制限値による制限を行ってもよいし、当該レンジに対応する谷部は壁部に隣接していないため、目標制限値による制限を省略してもよい。また、シフトレンジ切替機構やパーキングロック機構等は、上記実施形態と異なっていてもよい。
上記実施形態では、ディテントプレートには2つの谷部が形成される。他の実施形態では、ディテントプレートに形成される谷部の数は、3以上であってもよい。例えば、ディテントプレートの谷部が4つであって、P(パーキング)、R(リバース)、N(ニュートラル)、D(ドライブ)の各レンジに対応するようにしてもよい。この場合、Pレンジに対応する谷部が第1谷部、Dレンジに対応する谷部が第2谷部に対応し、両側に壁部が形成される。そのため、Pレンジへの切替時、および、Dレンジへの切替時において、出力軸信号による誤補正により、ディテントローラが壁部に衝突する虞があるので、目標制限値による制限を行う。また、RレンジまたはNレンジへの切替時においても、同様に目標制限値による制限を行ってもよいし、当該レンジに対応する谷部は壁部に隣接していないため、目標制限値による制限を省略してもよい。また、シフトレンジ切替機構やパーキングロック機構等は、上記実施形態と異なっていてもよい。
第1実施形態では、目標制限値は、谷谷間角度およびガタ角度に基づいて決定される。第2実施形態では、目標制限値は、谷谷間角度およびガタ角度に加え、制限範囲に基づいて決定される。他の実施形態では、目標制限値は、シフトレンジを切替可能であって、ディテントローラが壁部に衝突しない範囲で任意に設定可能である。
上記実施形態では、出力軸信号の段階数は3である。他の実施形態では、出力軸信号の段階数は2でもよいし、4以上でもよい。また、出力軸信号は、ステップ状に変化する信号に限らず、例えば値がリニアに変化するもの等、出力軸の回転に応じて値が変化するものであれば、どのようなものであってもよい。また、出力軸センサは、磁気センサに限らず、例えばポテンショメータ等、出力軸の回転を検出可能などのようなものを用いてもよい。
上記実施形態では、モータは、SRモータである。他の実施形態では、モータは、例えばDCブラシレスモータ等、どのようなモータであってもよい。上記実施形態では、モータの巻線組数については言及していないが、巻線組は1組でもよいし、複数組でもよい。上記実施形態では、モータ回転角センサは、エンコーダである。他の実施形態では、モータ回転角センサは、エンコーダに限らず、レゾルバ等、どのようなものを用いてもよい。
上記実施形態では、モータ軸と出力軸との間に減速機が設けられる。減速機の詳細について、上記実施形態では言及していないが、例えば、サイクロイド歯車、遊星歯車、モータ軸と略同軸の減速機構から駆動軸へトルクを伝達する平歯歯車を用いたものや、これらを組み合わせて用いたもの等、どのような構成であってもよい。また、他の実施形態では、モータ軸と出力軸との間の減速機を省略してもよいし、減速機以外の機構を設けてもよい。以上、本開示は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。
本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
本開示は、実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。
Claims (4)
- モータ(10)の駆動を制御することでシフトレンジを切り替えるシフトレンジ切替システム(1)を制御するシフトレンジ制御装置であって、
前記モータの回転を検出するモータ回転角センサ(13)から前記モータの回転位置に応じたモータ回転角信号を取得し、前記モータ回転角信号に基づいてモータ角度を演算するモータ角度演算部(51)と、
前記モータの回転が伝達される出力軸(15)の回転位置を検出する出力軸センサ(16)から、前記出力軸の回転位置に応じた出力軸信号を取得する出力軸信号取得部(52)と、
目標シフトレンジおよび前記出力軸信号に基づいて目標回転角度を設定する目標角度設定部(54)と、
前記モータ角度が前記目標回転角度となるように前記モータの駆動を制御する駆動制御部(55)と、
を備え、
前記目標角度設定部は、前記出力軸信号に基づいて設定された前記目標回転角度が、切替前後のシフトレンジに応じて設定される目標制限値よりも回転方向奥側まで回転させる値である場合、前記目標回転角度を前記目標制限値とするシフトレンジ制御装置。 - 前記シフトレンジ切替システムは、複数の谷部(221、222)が形成され前記出力軸と一体に回転する回転部材(21)、シフトレンジに応じた前記谷部に係合する係合部材(26)、および、前記係合部材を前記谷部に嵌まり合う方向に付勢する付勢部材(25)を有し、前記モータの回転軸であるモータ軸(105)と前記出力軸との間には遊びが形成されており、前記遊びの合計に相当する角度をガタ角度とすると、
前記目標制限値は、切替前のシフトレンジに対応する前記谷部と前記目標シフトレンジに対応する前記谷部との間の角度、および、前記ガタ角度に応じて設定される請求項1に記載のシフトレンジ制御装置。 - 前記目標制限値は、前記谷部にて前記係合部材を停止させる制御範囲に応じて設定される請求項2に記載のシフトレンジ制御装置。
- 前記谷部には、一端側に設けられPレンジに対応する第1谷部(221)、および、他端側に設けられPレンジ以外のレンジに対応する第2谷部(222)が含まれ、
前記回転部材には、前記第1谷部の一端側に設けられる第1壁部(226)、および、前記第2谷部の他端側に設けられる第2壁部(227)が形成され、
前記第1谷部と前記第1壁部との間の角度、および、前記第2谷部と前記第2壁部との間の角度は、前記ガタ角度より大きく、
前記目標制限値は、前記第1壁部または前記第2壁部よりも前記係合部材が手前側となる位置、かつ、前記付勢部材の付勢力にて前記係合部材を前記目標シフトレンジに応じた前記谷部に嵌め込み可能である吸い込み範囲内に設定される請求項2または3に記載のシフトレンジ制御装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980017114.8A CN112088265B (zh) | 2018-03-07 | 2019-03-05 | 换挡挡位控制装置 |
US17/012,575 US11603927B2 (en) | 2018-03-07 | 2020-09-04 | Shift range control apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018040650A JP6933594B2 (ja) | 2018-03-07 | 2018-03-07 | シフトレンジ制御装置 |
JP2018-040650 | 2018-03-07 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/012,575 Continuation US11603927B2 (en) | 2018-03-07 | 2020-09-04 | Shift range control apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019172212A1 true WO2019172212A1 (ja) | 2019-09-12 |
Family
ID=67846133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/008493 WO2019172212A1 (ja) | 2018-03-07 | 2019-03-05 | シフトレンジ制御装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11603927B2 (ja) |
JP (1) | JP6933594B2 (ja) |
CN (1) | CN112088265B (ja) |
WO (1) | WO2019172212A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022164284A (ja) * | 2021-04-16 | 2022-10-27 | 株式会社アイシン | シフト装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004308846A (ja) * | 2003-04-09 | 2004-11-04 | Denso Corp | シフト制御システムおよびシフト制御方法 |
JP2006132634A (ja) * | 2004-11-04 | 2006-05-25 | Calsonic Kansei Corp | 自動変速機のセレクトアシスト装置 |
WO2011128938A1 (ja) * | 2010-04-15 | 2011-10-20 | トヨタ自動車株式会社 | 自動変速機のシフトレンジ切替装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4385768B2 (ja) | 2004-01-09 | 2009-12-16 | 株式会社デンソー | モータ制御装置 |
JP2012110083A (ja) * | 2010-11-15 | 2012-06-07 | Denso Corp | モータ制御装置 |
JP6569584B2 (ja) * | 2016-04-15 | 2019-09-04 | 株式会社デンソー | シフトレンジ制御装置 |
WO2017179337A1 (ja) * | 2016-04-15 | 2017-10-19 | 株式会社デンソー | シフトレンジ制御装置 |
-
2018
- 2018-03-07 JP JP2018040650A patent/JP6933594B2/ja active Active
-
2019
- 2019-03-05 WO PCT/JP2019/008493 patent/WO2019172212A1/ja active Application Filing
- 2019-03-05 CN CN201980017114.8A patent/CN112088265B/zh active Active
-
2020
- 2020-09-04 US US17/012,575 patent/US11603927B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004308846A (ja) * | 2003-04-09 | 2004-11-04 | Denso Corp | シフト制御システムおよびシフト制御方法 |
JP2006132634A (ja) * | 2004-11-04 | 2006-05-25 | Calsonic Kansei Corp | 自動変速機のセレクトアシスト装置 |
WO2011128938A1 (ja) * | 2010-04-15 | 2011-10-20 | トヨタ自動車株式会社 | 自動変速機のシフトレンジ切替装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2019157881A (ja) | 2019-09-19 |
JP6933594B2 (ja) | 2021-09-08 |
US20200400232A1 (en) | 2020-12-24 |
CN112088265A (zh) | 2020-12-15 |
CN112088265B (zh) | 2021-12-21 |
US11603927B2 (en) | 2023-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10794479B2 (en) | Shift range control device | |
US10781918B2 (en) | Shift range control device | |
US11624438B2 (en) | Shift range control device | |
WO2019181886A1 (ja) | シフトレンジ制御装置 | |
US11084493B2 (en) | Shift range control device | |
CN110382927B (zh) | 换挡挡位控制装置 | |
US11162580B2 (en) | Shift range control device | |
WO2019172212A1 (ja) | シフトレンジ制御装置 | |
US20200412293A1 (en) | Shift range control device | |
CN111819376B (zh) | 换挡挡位控制装置 | |
US11894792B2 (en) | Motor control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19765059 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19765059 Country of ref document: EP Kind code of ref document: A1 |