WO2019171551A1 - 受信装置および受信信号処理方法 - Google Patents

受信装置および受信信号処理方法 Download PDF

Info

Publication number
WO2019171551A1
WO2019171551A1 PCT/JP2018/009062 JP2018009062W WO2019171551A1 WO 2019171551 A1 WO2019171551 A1 WO 2019171551A1 JP 2018009062 W JP2018009062 W JP 2018009062W WO 2019171551 A1 WO2019171551 A1 WO 2019171551A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
filter
linear
equalization
signal
Prior art date
Application number
PCT/JP2018/009062
Other languages
English (en)
French (fr)
Inventor
康義 能田
俊介 上橋
元吉 克幸
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/009062 priority Critical patent/WO2019171551A1/ja
Priority to PCT/JP2018/040872 priority patent/WO2019171655A1/ja
Priority to JP2020504772A priority patent/JP6746030B2/ja
Priority to CA3093079A priority patent/CA3093079C/en
Priority to US16/964,443 priority patent/US11196459B2/en
Priority to EP18909156.4A priority patent/EP3748862A4/en
Publication of WO2019171551A1 publication Critical patent/WO2019171551A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03038Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a non-recursive structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/76Pilot transmitters or receivers for control of transmission or for equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03057Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a recursive structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03439Fixed structures
    • H04L2025/03445Time domain
    • H04L2025/03471Tapped delay lines
    • H04L2025/03477Tapped delay lines not time-recursive
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03598Algorithms
    • H04L2025/03611Iterative algorithms
    • H04L2025/03656Initialisation
    • H04L2025/03668Initialisation to the value at the end of a previous adaptation period

Definitions

  • the present invention relates to a receiving apparatus and a received signal processing method for performing nonlinear equalization processing.
  • a signal received by a receiving apparatus may be distorted due to intersymbol interference or the like.
  • the main cause of distortion is intersymbol interference caused by multipath in the propagation path.
  • the group delay and amplitude characteristics of devices such as bandpass filters cannot be considered uniform in the frequency axis direction. May cause.
  • a signal is often amplified with power including a nonlinear region of the amplifier, and nonlinear distortion may occur.
  • Patent Document 1 discloses an adaptive nonlinear equalizer using a Volterra filter. This adaptive nonlinear equalizer can compensate for both linear distortion and nonlinear distortion.
  • an equalizer using a filter it is necessary to estimate a propagation path using a known signal and calculate a filter coefficient.
  • the number of filter coefficients is a number corresponding to the tap length of the filter.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a receiving apparatus capable of obtaining filter coefficients using a known signal having a smaller number of symbols than the number of filter coefficients to be calculated.
  • a receiving apparatus includes a linear filter unit and a non-linear filter unit, an equalization processing unit that performs equalization processing on a received signal, and a received signal
  • a linear channel estimation unit that performs channel estimation using a known signal included in the signal and calculates a filter coefficient of the linear filter unit, and a synchronization process that corrects a frequency deviation based on a signal output from the equalization processing unit.
  • a synchronization processing unit that performs a first equalization process for outputting the received signal filtered by the linear filter unit to the synchronization processing unit, and then a predetermined condition is satisfied.
  • the second equalization process which is an adaptive equalization process for outputting the addition result of the reception signal filtered by the linear filter unit and the reception signal filtered by the nonlinear filter unit, to the synchronization processing unit Characterized in that it started.
  • the receiving apparatus has an effect that it is possible to obtain a filter coefficient using a known signal having a smaller number of symbols than the number of filter coefficients to be calculated.
  • the figure which shows the function structure of the receiver concerning Embodiment 1 of this invention The figure which shows the frame structure of the signal which the receiver shown in FIG. 1 receives.
  • the figure which shows the detailed functional structure of the linear propagation path estimation part shown in FIG. The flowchart which shows operation
  • movement shown in FIG. The figure which shows the structure of the linear propagation path estimation part concerning Embodiment 2 of this invention.
  • FIG. 1 is a diagram illustrating a functional configuration of the receiving device 100 according to the first embodiment of the present invention.
  • the receiving apparatus 100 includes a receiving antenna 101, an RF (Radio Frequency) circuit unit 102, a timing control unit 103, a frequency control unit 104, a frame detection unit 105, a linear propagation path estimation unit 106, and an equalization processing unit. 107, timing estimation unit 108, frequency estimation unit 109, demapping unit 110, FEC (Forward Error Correction) unit 111, and reference signal generation unit 112.
  • RF Radio Frequency
  • the equalization processing unit 107 includes a linear filter unit 113, a nonlinear filter unit 114, a filter addition unit 115, a linear filter coefficient holding unit 116, a polynomial filter coefficient holding unit 117, and a filter coefficient control unit 118.
  • the timing control unit 103, the frequency control unit 104, the timing estimation unit 108, and the frequency estimation unit 109 constitute a synchronization processing unit 120.
  • the receiving antenna 101 receives a radio signal from a transmitting device (not shown) via a propagation path.
  • the receiving antenna 101 inputs a received signal to the RF circuit unit 102.
  • the RF circuit unit 102 down-converts the received signal input from the receiving antenna 101 and converts it into a baseband signal.
  • the RF circuit unit 102 may include an A / D (Analog / Digital) converter, generates a baseband signal based on various frequency conversion techniques, and sends the generated baseband signal to the timing control unit 103. input.
  • a / D Analog / Digital
  • the timing control unit 103 performs sampling value interpolation processing, resampling processing, and the like so that the output signal has a predetermined oversample ratio, and controls at least one of the symbol timing of the output signal and the sampling clock.
  • the timing control unit 103 can use timing phase information generated by a timing estimation unit 108 to be described later, symbol clock frequency control information, and the like.
  • the timing control unit 103 inputs an output signal to the frequency control unit 104.
  • the frequency control unit 104 performs frequency correction based on the estimation result of the frequency deviation input from the frequency estimation unit 109 described later.
  • the frequency control unit 104 can also remove the frequency deviation based on the frequency estimation result input from the frame detection unit 105 described later.
  • the input of the frequency estimation result from the frame detection unit 105 can be omitted.
  • the frequency control unit 104 inputs the frequency-corrected received signal to the frame detection unit 105 and the linear filter unit 113 and the nonlinear filter unit 114 of the equalization processing unit 107.
  • FIG. 2 is a diagram showing a frame configuration of a signal received by the receiving apparatus 100 shown in FIG.
  • the signal received by the receiving apparatus 100 includes a header part 11, a pilot part 12, and a data part 13 in one frame.
  • the header part 11 includes a known signal.
  • This frame configuration is the same as the single carrier transmission format used in DVB-S2 (Digital Video Broadcasting-Satellite-Second Generation) and DVB-S2X.
  • the header portion 11 corresponds to a PL (Physical Layer) header, and the PL header includes an SOF (Start Of Frame) that is a known signal.
  • PL Physical Layer
  • the frame detection unit 105 detects the frame timing by correlating with the SOF, and inputs the timing estimation result and the received signal at the time corresponding to the SOF to the linear propagation path estimation unit 106. As described above, the frame detection unit 105 may estimate the frequency based on the correlation processing with the known signal, and input the frequency estimation result to the frequency control unit 104. Note that the frame configuration shown in FIG. 2 is an example, and a single carrier transmission frame format including a known signal can be used. Further, the arrangement of known signals in the frame is not particularly limited.
  • the linear propagation path estimation unit 106 performs propagation path estimation based on a known signal included in the received signal input from the frame detection unit 105, and estimates an initial value of the filter coefficient of the linear filter unit 113.
  • the linear propagation path estimation unit 106 inputs the calculated initial value of the filter coefficient to the linear filter coefficient holding unit 116 of the equalization processing unit 107.
  • FIG. 3 is a diagram showing a detailed functional configuration of the linear propagation path estimation unit 106 shown in FIG.
  • the linear propagation path estimation unit 106 includes a known signal extraction unit 201, a known signal holding unit 202, an inverse matrix calculation unit 203, and a filter coefficient calculation unit 204.
  • the known signal extraction unit 201 extracts a known signal from the reception signal input from the frame detection unit 105.
  • the known signal extracted by the known signal extraction unit 201 includes the influence of the distortion component of the propagation path.
  • the known signal extraction unit 201 inputs the extracted known signal to the inverse matrix calculation unit 203.
  • the inverse matrix calculation unit 203 generates an inverse matrix from the known signal input from the known signal extraction unit 201.
  • the inverse matrix calculation unit 203 inputs the generated inverse matrix to the filter coefficient calculation unit 204.
  • the known signal holding unit 202 holds an ideal known signal that does not include the influence of the distortion component, and inputs this known signal to the filter coefficient calculation unit 204.
  • the filter coefficient calculation unit 204 calculates a filter coefficient based on the inverse matrix input from the inverse matrix calculation unit 203 and the ideal known signal input from the known signal holding unit 202.
  • the filter coefficient calculated by the filter coefficient calculation unit 204 is an initial value of the filter coefficient of the linear filter unit 113.
  • the equalization processing unit 107 performs equalization processing using the received signal input from the frequency control unit 104 and the filter coefficient input from the linear propagation path estimation unit 106, and the received signal after the equalization processing is processed. Input to the timing estimation unit 108, the frequency estimation unit 109, and the demapping unit 110.
  • the equalization processing unit 107 first performs a first equalization process of filtering by the linear filter unit 113 in which the initial value of the filter coefficient is set. After that, when a predetermined condition is satisfied, the linear filter unit 113 and A second equalization process which is an adaptive equalization process filtered by the nonlinear filter unit 114 is performed.
  • the equalization processing unit 107 outputs the received signal filtered by the linear filter unit 113 to the synchronization processing unit 120.
  • the equalization processing unit 107 outputs the addition result of the reception signal filtered by the linear filter unit and the reception signal filtered by the nonlinear filter unit to the synchronization processing unit 120.
  • the linear filter unit 113 is a FIR (Finite Impulse Response) type digital filter that performs convolution.
  • the nonlinear filter unit 114 is, for example, a filter component obtained by removing a linear component from the Volterra filter. Further, the nonlinear filter unit 114 may be configured with a third-order component based on a memory polynomial.
  • the sampling value of the nth received signal is y (n)
  • the output pf out (n) of the polynomial filter having the tap length l + 1 is expressed by the following formula (1).
  • pf out (n) w (0)
  • w (k) is the coefficient of the kth polynomial filter.
  • k is an integer from 0 to l.
  • Each of the linear filter unit 113 and the non-linear filter unit 114 converts the oversampled signal into a shift register constituting the FIR filter at a time by the number of oversamples, thereby converting the signal to a 1-time oversample output. be able to. Further, by shifting one sample at a time to the shift register, it is possible to output in an oversampled state.
  • the linear filter unit 113 uses the filter coefficient held in the linear filter coefficient holding unit 116.
  • the nonlinear filter unit 114 uses the filter coefficient held in the polynomial filter coefficient holding unit 117.
  • the filter coefficient held in the linear filter coefficient holding unit 116 is the initial value of the filter coefficient input by the linear propagation path estimation unit 106, and is then updated by the filter coefficient control unit 118.
  • the filter coefficient held in the polynomial filter coefficient holding unit 117 has an initial value of zero, and is then updated by the filter coefficient control unit 118.
  • the filter addition unit 115 adds the output of the linear filter unit 113 and the output of the nonlinear filter unit 114 to generate an equalization result.
  • the filter addition unit 115 inputs the generated equalization result to each of the timing estimation unit 108, the frequency estimation unit 109, and the demapping unit 110.
  • the filter coefficient control unit 118 controls the filter coefficients of the linear filter unit 113 and the nonlinear filter unit 114. Specifically, the filter coefficient control unit 118 uses the linear filter unit 113 and does not use the non-linear filter unit 114 until the predetermined condition is satisfied after the signal is first detected. Thus, the equalization processing unit 107 performs the first equalization process using the filter coefficient of the linear filter unit 113 as the filter coefficient calculated by the linear propagation path estimation unit 106.
  • the first equalization process is an equalization process that uses a fixed filter coefficient.
  • the filter coefficient control unit 118 can set the non-linear filter unit 114 not to be used by fixing the filter coefficient of the non-linear filter unit 114 to zero. Alternatively, the filter adding unit 115 may not use the nonlinear filter unit 114 by outputting only the output of the linear filter unit 113 as an equalization result without adding the outputs of the nonlinear filter unit 114.
  • the filter coefficient control unit 118 can start the second equalization process using both the linear filter unit 113 and the nonlinear filter unit 114 when a predetermined condition is satisfied.
  • the second equalization process is an adaptive equalization process in which filter coefficients are controlled by an adaptive algorithm based on a reference signal generated by a reference signal generation unit 112 described later.
  • LMS Least Mean Square
  • the conditions for starting the second equalization process are, for example, at least the time after the synchronization processing unit 120 starts the synchronization process, the number of processed samples after the synchronization process starts, and the signal quality after the equalization process It may be based on one.
  • the number of processing samples after the start of the synchronization processing can be the number of samples processed by the timing estimation unit 108 or the frequency estimation unit 109 described later. If the number of processing samples exceeds the threshold, the second equalization processing Can start.
  • the signal quality after the equalization processing is expressed based on an error amount between the reference value obtained from the result of the hard decision of the output of the equalization processing unit 107 by the demapping unit 110 and the output of the equalization processing unit 107. Can do.
  • the signal quality after the equalization processing can be expressed based on whether or not an error is detected after the FEC unit 111 performs error correction using an error correction code.
  • the second equalization process may be started when the error amount is equal to or smaller than the threshold value, or the second equalization process may be started when no error is detected.
  • the timing estimation unit 108 estimates the timing of the symbol timing phase, generates timing phase information indicating the estimation result, and inputs the generated timing phase information to the timing control unit 103. While the equalization processing unit 107 fixes the filter coefficient, a phenomenon may occur in which the symbol timing phase gradually shifts due to a sampling clock shift.
  • the timing estimation unit 108 estimates a symbol timing phase shift using a multiplication tank method or the like, and the timing control unit 103 compensates for the timing phase shift by interpolation based on the timing phase information generated by the timing estimation unit 108. By doing so, it is possible to suppress the occurrence of a shift in symbol timing phase.
  • the frequency estimation unit 109 estimates the frequency deviation based on the received signal input from the equalization processing unit 107 and inputs the estimation result to the frequency control unit 104.
  • the frequency estimation unit 109 observes the phase rotation by, for example, using a reference signal obtained by averaging the phase rotation of the received signal or performing a hard decision process once and using an adaptive filter based on a 1-tap LMS.
  • the frequency deviation can be estimated.
  • the frequency estimation unit 109 may estimate the frequency deviation by observing the phase fluctuation between the pilot units 12.
  • reception signal output from the equalization processing unit 107 uses a fractional interval equalization method for handling an oversampled reception signal, a signal obtained by sampling a Nyquist point that is ideally symbol-synchronized. Is output.
  • phase distortion due to nonlinear distortion components and frequency errors is added.
  • the nonlinear distortion component a reception signal that can be demodulated at a bit error rate of about 1% is often obtained depending on the back-off value.
  • the frequency deviation is observed in the received signal as a phase rotation in units smaller than several degrees per symbol excluding fluctuation due to noise. For this reason, the frequency estimation unit 109 estimates the frequency deviation, and the frequency control unit 104 performs frequency correction based on the estimation result, thereby suppressing the influence of the frequency deviation.
  • the demapping unit 110 performs a soft decision process, a hard decision process, a deinterleave process, and the like necessary for the FEC unit 111 to perform error correction.
  • the demapping unit 110 will be described as performing a hard decision, but the demapping unit 110 may perform both a soft decision process and a hard decision process, or among the soft decision process and the hard decision process. You may do one.
  • the demapping unit 110 outputs the result of the hard decision process to each of the FEC unit 111 and the reference signal generation unit 112.
  • the FEC unit 111 performs error correction using an error correction code based on the result of the hard decision process input from the demapping unit 110, and outputs the result as a decoding result. Further, the FEC unit 111 can determine whether or not the data has been correctly decoded using a checksum or the like, and can input a data string obtained by re-encoding a signal determined to be correctly decoded to the reference signal generation unit 112.
  • the reference signal generation unit 112 generates a reference signal used for the equalization processing unit 107 to perform adaptive equalization processing, and inputs the generated reference signal to the filter coefficient control unit 118 of the equalization processing unit 107.
  • the reference signal generation unit 112 performs mapping based on at least one of the hard decision result input from the demapping unit 110 and the re-encoded data sequence input from the FEC unit 111, and converts the result into a reference signal.
  • the reference signal is input to the filter coefficient control unit 118.
  • the reference signal generation unit 112 When the reference signal generation unit 112 generates a reference signal based on the data string input from the FEC unit 111, the time for the FEC unit 111 to perform error correction processing becomes long and the delay amount increases. For this reason, in a state where the processing delay cannot be tolerated, the reference signal generation unit 112 does not use the data string input from the FEC unit 111 and uses the reference signal based on the hard decision result input from the demapping unit 110. Can be generated. Further, in a section where there is data for which the FEC unit 111 has failed in error correction, the reference signal generation unit 112 may generate a reference signal based on the hard decision result input from the demapping unit 110. Further, in a section in which a known signal such as a pilot or SOF is included, the reference signal generation unit 112 can also use the known signal as a reference signal as it is.
  • FIG. 4 is a flowchart showing the operation of the receiving apparatus 100 shown in FIG.
  • the frame detection unit 105 of the receiving apparatus 100 performs a frame timing detection process for detecting a part of a known signal (step S101).
  • the frame detection unit 105 extracts a received signal corresponding to the known signal based on the detection result and inputs the received signal to the linear propagation path estimation unit 106.
  • the linear propagation path estimation unit 106 performs propagation path estimation processing using the input received signal, and calculates the initial value of the filter coefficient of the linear filter unit 113 (step S102).
  • the equalization processing unit 107 uses the calculated initial value to start a first equalization process that is performed using the linear filter unit 113 and not using the nonlinear filter unit 114 (step S103).
  • the signal after the equalization processing output from the equalization processing unit 107 in the first equalization processing is a signal sequence including Nyquist point sample data.
  • the frequency estimation unit 109 performs frequency estimation processing on the sample data string of Nyquist points (step S104). Specifically, the frequency estimation unit 109 performs processing to remove the influence of data bits for each modulation method, for example, if the modulation method is QPSK (Quadrature Phase Shift Keying), performs frequency quadrature processing, and frequency deviation from phase variation Or the frequency deviation can be estimated from the amount of phase fluctuation between a plurality of known signals at different times.
  • QPSK Quadrature Phase Shift Keying
  • timing estimation processing by the timing estimation unit 108 may be executed in parallel with the frequency estimation processing.
  • the equalization processing unit 107 determines whether or not a predetermined condition is satisfied (step S105). When a predetermined condition is satisfied (step S105: Yes), the equalization processing unit 107 starts a second equalization process that is an adaptive equalization process using the linear filter unit 113 and the nonlinear filter unit 114 ( Step S106). If the predetermined condition is not satisfied (step S105: No), the frequency estimation process in step S104 is repeated.
  • FIG. 5 is a flowchart showing a modification of the operation shown in FIG.
  • the receiver 100 is required to have high synchronization accuracy. Therefore, in this modification, after the adaptive control of the filter coefficient of the linear filter unit 113 is started, the synchronization accuracy is further increased, and then the adaptive control of the filter coefficient of the nonlinear filter unit 114 is started.
  • the processing from step S101 to step S103 shown in FIG. 5 is the same as that in FIG.
  • the frequency estimation unit 109 performs the first frequency estimation process based on the received signal that has been equalized only by the linear filter unit 113 using a fixed filter coefficient (step S107). Then, the equalization processing unit 107 determines whether or not a predetermined first condition is satisfied (step S108). When the first condition is satisfied (step S108: Yes), the equalization processing unit 107 starts updating the filter coefficient of the linear filter unit 113 (step S109). When the first condition is not satisfied (step S108: No), the first frequency estimation process in step S107 is repeated.
  • the frequency estimation unit 109 performs a second frequency estimation process (step S110).
  • the second frequency estimation process improves the frequency estimation accuracy using a longer symbol data string than that used in the first frequency estimation process.
  • the equalization processing unit 107 determines whether or not the second condition is satisfied (step S111).
  • step S111: Yes the equalization processing unit 107 starts updating the filter coefficient of the nonlinear filter unit 114 (step S112).
  • step S111: No the second frequency estimation process of step S110 is repeated.
  • the receiving apparatus 100 By performing the operation shown in FIG. 5, the receiving apparatus 100 gradually increases the synchronization accuracy from the state where the synchronization is incomplete, and suppresses adverse effects on the feedback processing by the adaptive algorithm and the operation of the adaptive algorithm itself. However, it is possible to improve reception performance by finally realizing highly accurate equalization processing.
  • the linear filter unit 113 is used without using the nonlinear filter unit 114, such as setting the filter coefficient of the nonlinear filter unit 114 to zero.
  • the first equalization process is performed using the initial value of the filter coefficient obtained by the channel estimation using the known signal, and the received signal after the first equalization process is used for synchronization. Processing is performed. Then, after increasing the synchronization accuracy, the second equalization process, which is an adaptive equalization process, is started. Therefore, even when the number of filter taps is large and the number of filter coefficients to be calculated is larger than the number of symbols of the known signal, the filter coefficients can be calculated.
  • the filter coefficient control unit 118 can individually control the timing at which the adaptive control of the filter coefficient of the linear filter unit 113 is started and the timing at which the adaptive control of the filter coefficient of the nonlinear filter unit 114 is started. As a result, it is possible to suppress adverse effects of the feedback process of the adaptive algorithm on the operation of the synchronization process and the adaptive algorithm itself.
  • FIG. FIG. 6 is a diagram showing a configuration of the linear propagation path estimation unit 106-1 according to the second embodiment of the present invention.
  • the receiving apparatus according to the second embodiment is obtained by replacing the linear propagation path estimation unit 106 of the receiving apparatus 100 shown in FIG. 1 with the linear propagation path estimation unit 106-1 shown in FIG. The description is omitted because it is the same as 100.
  • the linear channel estimation unit 106-1 includes a known signal extraction unit 201, a known signal holding unit 202, a band limiting filter information holding unit 301, a replica generation unit 302, a channel calculation unit 303, and a channel reverse characteristic.
  • a calculation unit 304 and an interpolation unit 305 are included.
  • the functions of the known signal extraction unit 201 and the known signal holding unit 202 are the same as those in the first embodiment.
  • the known signal extraction unit 201 inputs the extracted known signal to the propagation path calculation unit 303.
  • the known signal holding unit 202 outputs the held known signal to the replica generation unit 302.
  • the band limit filter information holding unit 301 holds band limit filter information which is a coefficient of the FIR filter corresponding to the band limit and roll-off filter coefficient on the transmission side.
  • the band limiting filter information holding unit 301 may hold the weight in a state in which the influence of the RF circuit unit 102 and the band limiting filter on the reception side is convolved.
  • the band limit filter information holding unit 301 can input the band limit filter information held in the replica generation unit 302 and the propagation path inverse characteristic calculation unit 304.
  • the replica generation unit 302 generates a replica, which is a received signal sequence that has been waveform-shaped in an oversampled state, using the band-limited filter information and the known signal input from the known signal holding unit 202.
  • the replica generation unit 302 inputs the generated replica to the interpolation unit 305.
  • the interpolation unit 305 can input the propagation path calculation unit 303 by shifting the replica sampling timing input from the replica generation unit 302.
  • the interpolation unit 305 can input a plurality of replicas generated at different timing offsets to the propagation path calculation unit 303 and the propagation path inverse characteristic calculation unit 304.
  • the propagation path calculation unit 303 performs propagation path estimation based on the replica generated by the replica generation unit 302 and the known signal extracted from the received signal. Specifically, the propagation path calculation unit 303 performs propagation path estimation by multiplying the inverse matrix of the matrix composed of replica components by the matrix composed of received signal components. The propagation path calculation unit 303 inputs the propagation path estimation result to the propagation path inverse characteristic calculation unit 304. At this time, the propagation path calculation unit 303 generates a plurality of propagation path estimation results using each of the plurality of replicas input from the interpolation unit 305, and selects one of the plurality of propagation path estimation results. Thus, the selected propagation path estimation result can be input to the propagation path inverse characteristic calculation unit 304. For example, the propagation path calculation unit 303 can select a candidate having the smallest sum of absolute values of filter coefficients from a plurality of propagation path estimation results.
  • Propagation path inverse characteristic calculation section 304 includes band limit filter information input from band limit filter information holding section 301, a replica input from interpolation section 305, and a channel estimation result input from propagation path calculation section 303. Based on the above, a propagation path estimation value that takes into account the influence of waveform shaping, which is the propagation path inverse characteristic, is calculated. The propagation path inverse characteristic calculation unit 304 converts the calculated propagation path estimation value into the filter coefficient of the linear filter unit 113 and outputs it.
  • Bandwidth filter information can be calculated in advance. For this reason, information on the reverse characteristics to be generated can also be generated in advance. By reducing the information amount of the component that fluctuates according to the propagation path and calculating some inverse characteristics in advance, it is possible to reduce the calculation load of the inverse characteristic calculation.
  • the inverse characteristic of the propagation path is not directly calculated, but the inverse characteristic is identified after the propagation path is identified.
  • the filter coefficient of the optimization processor 107 is generated. Thereby, the tap length of the propagation path to be calculated can be reduced, and the configuration of the inverse matrix calculation process is facilitated.
  • the propagation path characteristic can be estimated based on the shape information of the transmission-side band restriction filter, excluding the influence of the band restriction filter.
  • the number of variables to be estimated can be reduced even when the tap length of the filter of the equalization processing unit 107 tends to be long, such as when the roll-off rate is small. Even if the number of symbols of the known signal is small, the filter coefficient of the equalization processing unit 107 can be determined.
  • the interpolation unit 305 generates a plurality of known signal sequences generated at a plurality of different timing offsets. For this reason, the replica generation unit 302 generates a plurality of replicas based on each of the plurality of known signal sequences. If the timing of the replica generated by the replica generation unit 302 and the signal generated by the known signal extraction unit 201 are shifted, the value of the component of the propagation path component excluding the influence of the band limiting filter varies. As described above, by performing propagation path estimation based on each of a plurality of known signal sequences generated at a plurality of different timing offsets, it is possible to reduce the influence of this timing shift.
  • FIG. 7 is a diagram illustrating an example in which the receiving apparatus 100 illustrated in FIG. 1 is configured using dedicated hardware.
  • the function of the receiving device 100 can be realized by using the received data generation circuit 401, the processing circuit 402, and the reception result storage device 403.
  • the reception data generation circuit 401 acquires a reception signal from the antenna.
  • the processing circuit 402 performs baseband processing for compensating for distortion.
  • the processing circuit 402 is, for example, a circuit such as an FPGA (Field Programmable Gate Array) or an LSI (Large Scale Integration).
  • the sharing between the processing executed by the reception data generation circuit 401 and the processing executed by the processing circuit 402 can be changed as necessary.
  • the reception result storage device 403 stores the data demodulated by the processing circuit 402 as a reception result.
  • FIG. 8 is a diagram illustrating an example in which the receiving apparatus 100 illustrated in FIG. 1 is configured using software.
  • the function of the receiving apparatus 100 can be realized using the received data generation circuit 401, the processor 404, the memory 405, and the display 406.
  • the processor 404 implements each function of the receiving device 100 described above by reading a computer program for performing distortion compensation from the memory 405 and executing it.
  • the processor 404 is a CPU (Central Processing Unit) and is also called a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 405 is, for example, a nonvolatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), Magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs (Digital Versatile Disks), etc.
  • the memory 405 is also used as a temporary memory in each process executed by the processor 404, and a waveform, a filter coefficient, a set value, and the like, which are data during the process of the processor 404, are read and written.
  • the display 406 is a display device that displays the processing result. Although the receiving apparatus 100 includes the display 406 here, an apparatus other than the receiving apparatus 100 that operates by obtaining the demodulation result may include the display 406.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • the receiving apparatus 100 may omit the FEC unit 111.
  • the receiving apparatus 100 is provided with a phase compensation function in front of the frequency estimation unit 109 so as to follow the variation in the phase offset of the received signal, and output the filter output or filter input.
  • processing for correcting the amount of deviation from the observed reference phase may be added.
  • a waveform shaping filter having a fixed coefficient such as a roll-off filter may be provided at a later stage than the RF circuit unit 102.
  • reception system with nonlinear distortion compensation it is particularly high in the transmission system with multi-level and high coding rate that operates at a high SNR (Signal-Noise Ratio) with the driving power of the amplifier having large nonlinear distortion.
  • a performance improvement effect can be obtained.
  • the influence of white noise is dominant, and the performance improvement effect is limited.
  • addition processing of a multi-value filter is performed based on modulation method information (MODDCOD) included in a frame or information indicating at least one coding rate May be able to be stopped.
  • MODDCOD modulation method information
  • 11 header section, 12 pilot section, 13 data section 100 receiving device, 101 receiving antenna, 102 RF circuit section, 103 timing control section, 104 frequency control section, 105 frame detection section, 106, 106-1 linear channel estimation section , 107 equalization processing unit, 108 timing estimation unit, 109 frequency estimation unit, 110 demapping unit, 111 FEC unit, 112 reference signal generation unit, 113 linear filter unit, 114 nonlinear filter unit, 115 filter addition unit, 116 linear filter Coefficient holding unit, 117 polynomial filter coefficient holding unit, 118 filter coefficient control unit, 120 synchronization processing unit, 201 known signal extraction unit, 202 known signal holding unit, 203 inverse matrix calculation unit, 204 filter coefficient calculation unit, 301 band limit filter Information holding unit, 302 replica generation unit, 303 propagation path calculation unit, 304 propagation path inverse characteristic calculation unit, 305 interpolation unit, 401 reception data generation circuit, 402 processing circuit, 403 reception result storage device, 404 processor, 405 memory, 406 display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

受信装置(100)は、線形フィルタ部と、非線形フィルタ部とを含み、受信信号の等化処理を行う等化処理部(107)と、受信信号に含まれる既知信号を用いて伝搬路推定を行い、線形フィルタ部のフィルタ係数を算出する線形伝搬路推定部(106)と、等化処理部が出力する信号に基づいて、周波数偏差を補正する同期処理を行う同期処理部(120)と、を備え、等化処理部(107)は、線形フィルタ部によりフィルタリングされた受信信号を同期処理部へ出力する第1等化処理を実行した後、予め定められた条件が満たされると、線形フィルタ部によりフィルタリングされた受信信号と非線形フィルタ部によりフィルタリングされた受信信号との加算結果を同期処理部へ出力する適応等化処理である第2等化処理を開始することを特徴とする。

Description

受信装置および受信信号処理方法
 本発明は、非線形等化処理を行う受信装置および受信信号処理方法に関する。
 無線通信システムにおいて受信装置が受信する信号は、シンボル間干渉などに起因して歪みを受けている場合がある。歪みの主な原因としては、伝搬路におけるマルチパスに起因するシンボル間干渉が挙げられる。また、広帯域でシングルキャリア伝送を行う衛星通信などのシステムでは、バンドパスフィルタなどの装置の群遅延および振幅特性を周波数軸方向に一様とみなすことができず、マルチパスと同様なシンボル間干渉を引き起こすことがある。さらに、一部の無線通信システムでは、電力効率を改善するために増幅器の非線形領域を含む電力で信号を増幅することが多く、非線形歪みが発生することがある。
 特許文献1には、ボルテラフィルタを使用した適応型非線形等化器が開示されている。この適応型非線形等化器によれば、線形歪みおよび非線形歪みの両方を補償することが可能である。フィルタを使用する等化器では、既知信号を使用して伝搬路推定を行い、フィルタ係数を算出する必要がある。フィルタ係数の数は、フィルタのタップ長に応じた数となる。
特開2003-258685号公報
 しかしながら、上記特許文献1に開示された従来の技術によれば、算出するフィルタ係数の数が既知信号のシンボル数よりも多い場合、フィルタ係数を求めることができないという問題があった。
 本発明は、上記に鑑みてなされたものであって、算出するフィルタ係数の数よりも少ないシンボル数の既知信号を用いてフィルタ係数を求めることが可能な受信装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる受信装置は、線形フィルタ部と、非線形フィルタ部とを含み、受信信号の等化処理を行う等化処理部と、受信信号に含まれる既知信号を用いて伝搬路推定を行い、線形フィルタ部のフィルタ係数を算出する線形伝搬路推定部と、等化処理部が出力する信号に基づいて、周波数偏差を補正する同期処理を行う同期処理部と、を備え、等化処理部は、線形フィルタ部によりフィルタリングされた受信信号を同期処理部へ出力する第1等化処理を実行した後、予め定められた条件が満たされると、線形フィルタ部によりフィルタリングされた受信信号と非線形フィルタ部によりフィルタリングされた受信信号との加算結果を同期処理部へ出力する適応等化処理である第2等化処理を開始することを特徴とする。
 本発明にかかる受信装置は、算出するフィルタ係数の数よりも少ないシンボル数の既知信号を用いてフィルタ係数を求めることが可能になるという効果を奏する。
本発明の実施の形態1にかかる受信装置の機能構成を示す図 図1に示す受信装置が受信する信号のフレーム構成を示す図 図1に示す線形伝搬路推定部の詳細な機能構成を示す図 図1に示す受信装置の動作を示すフローチャート 図4に示す動作の変形例を示すフローチャート 本発明の実施の形態2にかかる線形伝搬路推定部の構成を示す図 図1に示す受信装置を専用のハードウェアを用いて構成する例を示す図 図1に示す受信装置をソフトウェアを用いて構成する例を示す図
 以下に、本発明の実施の形態にかかる受信装置および受信信号処理方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる受信装置100の機能構成を示す図である。受信装置100は、受信アンテナ101と、RF(Radio Frequency)回路部102と、タイミング制御部103と、周波数制御部104と、フレーム検出部105と、線形伝搬路推定部106と、等化処理部107と、タイミング推定部108と、周波数推定部109と、デマッピング部110と、FEC(Forward Error Correction)部111と、参照信号生成部112とを有する。
 等化処理部107は、線形フィルタ部113と、非線形フィルタ部114と、フィルタ加算部115と、線形フィルタ係数保持部116と、多項式フィルタ係数保持部117と、フィルタ係数制御部118とを有する。また、タイミング制御部103と、周波数制御部104と、タイミング推定部108と、周波数推定部109とは、同期処理部120を構成する。
 受信アンテナ101は、図示しない送信装置から伝搬路を介して無線信号を受信する。受信アンテナ101は、受信信号をRF回路部102に入力する。RF回路部102は、受信アンテナ101から入力される受信信号をダウンコンバージョンし、ベースバンド信号に変換する。RF回路部102は、A/D(Analog/Digital)変換器を有していてもよく、各種の周波数変換技術に基づいてベースバンド信号を生成し、生成したベースバンド信号をタイミング制御部103に入力する。
 タイミング制御部103は、出力信号が予め定められたオーバサンプル比になるように、サンプリング値の補間処理、リサンプリング処理などを行い、出力信号のシンボルタイミングおよびサンプリングクロックの少なくとも1つを制御する。タイミング制御部103は、後述するタイミング推定部108が生成するタイミング位相情報、シンボルクロック周波数の制御情報などを用いることができる。タイミング制御部103は、出力信号を周波数制御部104に入力する。
 周波数制御部104は、後述する周波数推定部109から入力される周波数偏差の推定結果に基づき、周波数補正を行う。周波数制御部104は、後述するフレーム検出部105から入力される周波数推定結果に基づいて、周波数偏差を除去することもできる。受信信号に含まれる周波数誤差の大きさによっては、フレーム検出部105からの周波数推定結果の入力を省略することもできる。周波数制御部104は、周波数補正後の受信信号を、フレーム検出部105と、等化処理部107の線形フィルタ部113および非線形フィルタ部114とに入力する。
 フレーム検出部105は、周波数補正後の受信信号に対して既知信号との相関処理を行って、フレームタイミングを抽出する。図2は、図1に示す受信装置100が受信する信号のフレーム構成を示す図である。受信装置100が受信する信号は、1フレーム内にヘッダ部11と、パイロット部12と、データ部13とを含む。ヘッダ部11は、既知信号を含む。このフレーム構成は、DVB-S2(Digital Video Broadcasting-Satellite-Second Generation)、DVB-S2Xで使用されるシングルキャリア伝送のフォーマットと同一である。ヘッダ部11は、PL(Physical Layer)ヘッダに相当し、PLヘッダは、既知信号であるSOF(Start Of Frame)を含む。
 図1の説明に戻る。フレーム検出部105は、SOFとの相関をとることで、フレームタイミングを検出し、タイミング推定結果とSOFに相当する時刻の受信信号を線形伝搬路推定部106に入力する。フレーム検出部105は、上述の通り、既知信号との相関処理に基づいて周波数を推定し、周波数推定結果を周波数制御部104に入力してもよい。なお、図2に示すフレーム構成は一例であり、既知信号を含むシングルキャリア伝送のフレームフォーマットを使用することができる。またフレーム内における既知信号の配置は、特に制限されない。
 線形伝搬路推定部106は、フレーム検出部105から入力される受信信号に含まれる既知信号に基づいて、伝搬路推定を行い、線形フィルタ部113のフィルタ係数の初期値を推定する。線形伝搬路推定部106は、算出したフィルタ係数の初期値を、等化処理部107の線形フィルタ係数保持部116に入力する。
 図3は、図1に示す線形伝搬路推定部106の詳細な機能構成を示す図である。線形伝搬路推定部106は、既知信号抽出部201と、既知信号保持部202と、逆行列計算部203と、フィルタ係数算出部204とを有する。
 既知信号抽出部201は、フレーム検出部105から入力される受信信号から既知信号を抽出する。既知信号抽出部201が抽出する既知信号には、伝搬路の歪み成分の影響が含まれている。既知信号抽出部201は、抽出した既知信号を逆行列計算部203に入力する。
 逆行列計算部203は、既知信号抽出部201から入力される既知信号から逆行列を生成する。逆行列計算部203は、生成した逆行列をフィルタ係数算出部204に入力する。既知信号保持部202は、歪み成分の影響が含まれていない理想的な既知信号を保持しており、この既知信号をフィルタ係数算出部204に入力する。
 フィルタ係数算出部204は、逆行列計算部203から入力される逆行列と、既知信号保持部202から入力される理想的な既知信号とに基づいて、フィルタ係数を算出する。フィルタ係数算出部204が算出するフィルタ係数は、線形フィルタ部113のフィルタ係数の初期値になる。
 図1の説明に戻る。等化処理部107は、周波数制御部104から入力される受信信号と、線形伝搬路推定部106から入力されるフィルタ係数とを用いて、等化処理を行い、等化処理後の受信信号をタイミング推定部108と、周波数推定部109と、デマッピング部110とに入力する。等化処理部107は、まず、フィルタ係数の初期値が設定された線形フィルタ部113によりフィルタリングする第1等化処理を行い、その後、予め定められた条件が満たされると、線形フィルタ部113および非線形フィルタ部114によりフィルタリングする適応等化処理である第2等化処理を行う。第1等化処理において、等化処理部107は、線形フィルタ部113によりフィルタリングされた受信信号を同期処理部120に出力する。第2等化処理において、等化処理部107は、線形フィルタ部によりフィルタリングされた受信信号と非線形フィルタ部によりフィルタリングされた受信信号との加算結果を同期処理部120に出力する。
 線形フィルタ部113は、畳み込みを行うFIR(Finite Impulse Response)型のデジタルフィルタである。非線形フィルタ部114は、例えば、ボルテラフィルタのうち、線形成分を除いたフィルタ成分である。また非線形フィルタ部114は、メモリ多項式による3次成分で構成されてもよい。第n番目の受信信号サンプリング値をy(n)とした場合、タップ長l+1の多項式フィルタの出力pfout(n)は、以下の数式(1)で表される。
 pfout(n)=w(0)|y(n)|y(n)+w(1)|y(n-1)|y(n-1)+…+w(l)|y(n-l)|y(n-l) …(1)
 ここでw(k)は第k番目の多項式フィルタの係数である。kは、0からlの整数である。線形フィルタ部113および非線形フィルタ部114のそれぞれは、オーバサンプルされた信号をオーバサンプル数分だけ一度にFIRフィルタを構成するシフトレジスタにシフトしていくことで、1倍オーバサンプルの出力に変換することができる。また1サンプルずつシフトレジスタにシフトしていくことで、オーバサンプルされた状態で出力することも可能である。
 線形フィルタ部113は、線形フィルタ係数保持部116に保持されるフィルタ係数を用いる。非線形フィルタ部114は、多項式フィルタ係数保持部117に保持されるフィルタ係数を用いる。線形フィルタ係数保持部116に保持されるフィルタ係数は、線形伝搬路推定部106が入力するフィルタ係数が初期値となり、その後、フィルタ係数制御部118によって更新される。多項式フィルタ係数保持部117に保持されるフィルタ係数は、例えば、初期値をゼロとし、その後、フィルタ係数制御部118によって更新される。
 フィルタ加算部115は、線形フィルタ部113の出力と、非線形フィルタ部114の出力とを加算して、等化結果を生成する。フィルタ加算部115は、生成した等化結果をタイミング推定部108、周波数推定部109、およびデマッピング部110のそれぞれに入力する。
 フィルタ係数制御部118は、線形フィルタ部113および非線形フィルタ部114のそれぞれのフィルタ係数を制御する。具体的には、フィルタ係数制御部118は、最初に信号を検出してから、予め定められた条件が満たされるまでの間は、線形フィルタ部113を使用して非線形フィルタ部114を使用しない状態で、線形フィルタ部113のフィルタ係数を、線形伝搬路推定部106が算出したフィルタ係数とする第1等化処理を等化処理部107に行わせる。第1等化処理は、固定のフィルタ係数を使用する等化処理である。フィルタ係数制御部118は、非線形フィルタ部114のフィルタ係数をゼロに固定することで、非線形フィルタ部114を使用しない状態とすることができる。或いはフィルタ加算部115が、非線形フィルタ部114の出力を加算しないで線形フィルタ部113の出力のみを等化結果として出力することで、非線形フィルタ部114を使用しない状態としてもよい。
 フィルタ係数制御部118は、予め定められた条件が満たされると、線形フィルタ部113および非線形フィルタ部114の両方を使用する第2等化処理を開始することができる。第2等化処理は、後述する参照信号生成部112が生成する参照信号に基づいて、適応アルゴリズムによってフィルタ係数を制御する適応等化処理である。適応アルゴリズムとしては、LMS(Least Mean Square)などを適用することができる。
 第2等化処理を開始する条件は、例えば、同期処理部120が同期処理を開始してからの時間、同期処理を開始してからの処理サンプル数、および等化処理後の信号品質の少なくとも1つに基づくものであってよい。同期処理を開始してからの処理サンプル数は、後述するタイミング推定部108または周波数推定部109が処理したサンプル数とすることができ、処理サンプル数が閾値を超えた場合、第2等化処理を開始することができる。等化処理後の信号品質は、デマッピング部110が等化処理部107の出力を硬判定した結果から得た参照値と等化処理部107の出力との間の誤差量に基づいて表すことができる。また等化処理後の信号品質は、FEC部111が誤り訂正符号による誤り訂正を行った後、誤りを検出するか否かに基づいて表すことができる。誤差量が閾値以下である場合に第2等化処理を開始することにしてもよいし、誤りを検出しなかった場合に第2等化処理を開始することにしてもよい。
 タイミング推定部108は、シンボルタイミング位相のずれを推定して推定結果を示すタイミング位相情報を生成し、生成したタイミング位相情報をタイミング制御部103に入力する。等化処理部107がフィルタ係数を固定している間、サンプリングクロックのずれにより、シンボルタイミング位相も次第にずれていく現象が発生する場合がある。タイミング推定部108は、逓倍タンク法などを用いてシンボルタイミング位相のずれを推定し、タイミング制御部103が、タイミング推定部108が生成するタイミング位相情報に基づいて、補間によりタイミング位相のずれを補償することで、シンボルタイミング位相のずれの発生を抑制することができる。
 周波数推定部109は、等化処理部107から入力される受信信号に基づいて、周波数偏差を推定し、推定結果を周波数制御部104に入力する。周波数推定部109は、例えば、受信信号の位相回転を平均化したり、一度硬判定処理をして得られる参照信号を用いて、1タップのLMSによる適応フィルタを利用することで位相回転を観測し、周波数偏差の推定を行うことができる。また周波数推定部109は、図2に示すように受信信号がパイロット部12を含む場合、パイロット部12の間の位相変動を観測して、周波数偏差の推定を行ってもよい。等化処理部107が出力する受信信号は、オーバサンプルされた受信信号を扱う分数間隔等化方式を利用していれば、理想的には、シンボルタイミング同期がとれた、ナイキスト点をサンプルした信号が出力される。しかしながら実際には、非線形歪み成分、周波数誤差による位相回転が加わっている。非線形歪み成分は、バックオフ値次第では、1%程度のビット誤り率で復調可能な程度の受信信号が得られることが多い。周波数偏差は、一般的に、雑音による揺らぎを除くと1シンボルあたり数度よりも小さい単位での位相回転として受信信号に観測される。このため、周波数推定部109が周波数偏差の推定を行い、この推定結果に基づいて周波数制御部104が周波数補正を行うことで、周波数偏差の影響を抑制することができる。
 デマッピング部110は、FEC部111が誤り訂正を行うために必要な軟判定処理、硬判定処理、デインタリーブ処理などを行う。以下、デマッピング部110は硬判定を行うこととして説明を行うが、デマッピング部110は、軟判定処理および硬判定処理の両方を行ってもよいし、軟判定処理および硬判定処理のうちの1つを行ってもよい。例えばデマッピング部110は、硬判定処理の結果を、FEC部111および参照信号生成部112のそれぞれに出力する。
 FEC部111は、デマッピング部110から入力される硬判定処理の結果に基づいて、誤り訂正符号を用いた誤り訂正を行い、復号結果として出力する。またFEC部111は、チェックサムなどを用いて正しく復号されたか否かを判定し、正しく復号されたと判定された信号を再符号化したデータ列を参照信号生成部112に入力することもできる。
 参照信号生成部112は、等化処理部107が適応等化処理を行うために用いる参照信号を生成し、生成した参照信号を等化処理部107のフィルタ係数制御部118に入力する。参照信号生成部112は、デマッピング部110から入力される硬判定結果およびFEC部111から入力される再符号化されたデータ列のうち少なくとも1つに基づいてマッピングを行い、参照信号に変換して、参照信号をフィルタ係数制御部118に入力する。
 参照信号生成部112がFEC部111から入力されるデータ列に基づいて参照信号を生成する場合、FEC部111が誤り訂正処理を行う時間が長くなり、遅延量が大きくなる。このため、処理遅延が許容できない状態では、参照信号生成部112は、FEC部111から入力されるデータ列を使用せずに、デマッピング部110から入力される硬判定結果に基づいて参照信号を生成することができる。また、FEC部111が誤り訂正に失敗したデータが存在する区間では、参照信号生成部112は、デマッピング部110から入力される硬判定結果に基づいて参照信号を生成してもよい。また、パイロット、SOFなどの既知信号が含まれる区間では、参照信号生成部112は、既知信号をそのまま参照信号として用いることもできる。
 図4は、図1に示す受信装置100の動作を示すフローチャートである。まず受信装置100のフレーム検出部105は、既知信号の一部を検出するフレームタイミングの検出処理を行う(ステップS101)。フレーム検出部105は、検出結果に基づいて既知信号に対応する受信信号を取り出して線形伝搬路推定部106に入力する。線形伝搬路推定部106は、入力される受信信号を用いて、伝搬路推定処理を行い、線形フィルタ部113のフィルタ係数の初期値を算出する(ステップS102)。
 等化処理部107は、算出された初期値を使用して、線形フィルタ部113を使用して非線形フィルタ部114を使用しない状態で行う第1等化処理を開始する(ステップS103)。第1等化処理において等化処理部107が出力する等化処理後の信号は、ナイキスト点のサンプルデータを含む信号列となる。
 周波数推定部109は、ナイキスト点のサンプルデータ列に対して、周波数推定処理を行う(ステップS104)。具体的には、周波数推定部109は、変調方式ごとにデータビットの影響を取り除く処理、例えば変調方式がQPSK(Quadrature Phase Shift Keying)であれば位相4逓倍処理を行い、位相の変動から周波数偏差を推定したり、異なる時刻の複数の既知信号の間の位相変動量から周波数偏差を推定したりすることができる。なお図4では図示していないが、タイミング推定部108によるタイミング推定処理などが周波数推定処理と並行して実行されてもよい。
 等化処理部107は、予め定められた条件を満たすか否かを判断する(ステップS105)。予め定められた条件が満たされる場合(ステップS105:Yes)、等化処理部107は、線形フィルタ部113および非線形フィルタ部114を使用する適応等化処理である第2等化処理を開始する(ステップS106)。予め定められた条件が満たされない場合(ステップS105:No)、ステップS104の周波数推定処理を繰り返す。
 適応等化処理と周波数推定処理とを同時に行う場合、特にタップ数が大きく制御するフィルタ係数の数が多い場合、フィルタ係数が周波数偏差による位相回転に正しく追従することができないという問題が発生することがある。このため、上記の例では、まず固定のフィルタ係数を用いて周波数推定処理を行い、周波数推定の精度を高めた後に、適応アルゴリズムによるフィルタ係数の更新を開始している。
 図5は、図4に示す動作の変形例を示すフローチャートである。フィルタのタップ数が大きい場合、受信装置100に高い同期精度が求められる。このため、本変形例では、線形フィルタ部113のフィルタ係数の適応制御を開始した後、同期精度をさらに高めてから、非線形フィルタ部114のフィルタ係数の適応制御を開始する。図5に示すステップS101からステップS103の処理は図4と同様である。
 周波数推定部109は、固定のフィルタ係数を用いて、線形フィルタ部113のみで等化処理を行った受信信号に基づいて、第1周波数推定処理を行う(ステップS107)。そして、等化処理部107は、予め定められた第1条件が満たされるか否かを判断する(ステップS108)。第1条件が満たされた場合(ステップS108:Yes)、等化処理部107は、線形フィルタ部113のフィルタ係数の更新を開始する(ステップS109)。第1条件が満たされていない場合(ステップS108:No)、ステップS107の第1周波数推定処理が繰り返される。
 第1条件が満たされ、等化処理部107が線形フィルタ部113のフィルタ係数の更新を開始すると、周波数推定部109は、第2周波数推定処理を行う(ステップS110)。ここで、第2周波数推定処理は、第1周波数推定処理で使用するよりも長いシンボルデータ列を用いて、周波数の推定精度を向上させる。その後、等化処理部107は、第2条件が満たされているか否かを判断する(ステップS111)。第2条件が満たされている場合(ステップS111:Yes)、等化処理部107は、非線形フィルタ部114のフィルタ係数の更新を開始する(ステップS112)。第2条件が満たされていない場合(ステップS111:No)、ステップS110の第2周波数推定処理が繰り返される。
 図5に示すような動作を行うことで、受信装置100は、同期が不完全である状態から次第に同期精度を高めて、適応アルゴリズムによるフィードバック処理および適応アルゴリズム自体の動作に悪影響を及ぼすことを抑制しながら、最終的に高精度な等化処理を実現することで、受信性能を改善することが可能になる。
 以上説明したように、本発明の実施の形態1にかかる受信装置100によれば、まず、非線形フィルタ部114のフィルタ係数をゼロにするなど、非線形フィルタ部114を使用せずに線形フィルタ部113を使用する状態で、既知信号を使用した伝搬路推定により求められたフィルタ係数の初期値を使用して第1等化処理が行われ、この第1等化処理後の受信信号を用いて同期処理が行われる。そして、同期精度を高めた後で、適応等化処理である第2等化処理が開始される。したがって、フィルタのタップ数が大きく、算出するフィルタ係数の数が既知信号のシンボル数よりも多い場合であっても、フィルタ係数を算出することが可能になる。
 またフィルタ係数制御部118は、線形フィルタ部113のフィルタ係数の適応制御を開始するタイミングと、非線形フィルタ部114のフィルタ係数の適応制御を開始するタイミングとのそれぞれを個別に制御することができる。これにより、適応アルゴリズムのフィードバック処理が同期処理や適応アルゴリズム自体の動作に及ぼす悪影響を抑制することが可能になる。
実施の形態2.
 図6は、本発明の実施の形態2にかかる線形伝搬路推定部106-1の構成を示す図である。実施の形態2にかかる受信装置は、図1に示す受信装置100の線形伝搬路推定部106を図6に示す線形伝搬路推定部106-1に置き換えたものであり、その他の構成は受信装置100と同様であるため、説明を省略する。
 線形伝搬路推定部106-1は、既知信号抽出部201と、既知信号保持部202と、帯域制限フィルタ情報保持部301と、レプリカ生成部302と、伝搬路算出部303と、伝搬路逆特性計算部304と、補間部305とを有する。
 既知信号抽出部201および既知信号保持部202の機能は実施の形態1と同様である。既知信号抽出部201は、抽出した既知信号を伝搬路算出部303に入力する。既知信号保持部202は、保持している既知信号をレプリカ生成部302に出力する。
 帯域制限フィルタ情報保持部301は、送信側の帯域制限、ロールオフフィルタの係数に対応したFIRフィルタの係数である帯域制限フィルタ情報を保持する。或いは帯域制限フィルタ情報保持部301は、RF回路部102、受信側の帯域制限フィルタの影響をたたみこんだ状態の重みを保持してもよい。帯域制限フィルタ情報保持部301は、レプリカ生成部302および伝搬路逆特性計算部304に、保持している帯域制限フィルタ情報を入力することができる。
 レプリカ生成部302は、帯域制限フィルタ情報および既知信号保持部202から入力される既知信号を用いて、オーバサンプルされた状態で波形整形された受信信号列であるレプリカを生成する。レプリカ生成部302は、生成したレプリカを補間部305に入力する。
 補間部305は、レプリカ生成部302から入力されるレプリカのサンプリングタイミングをずらして、伝搬路算出部303に入力することができる。補間部305は、異なるタイミングオフセットで生成した複数のレプリカを伝搬路算出部303および伝搬路逆特性計算部304に入力することができる。
 伝搬路算出部303は、レプリカ生成部302で生成されるレプリカと、受信信号から抽出される既知信号とに基づいて、伝搬路推定を行う。具体的には、伝搬路算出部303は、レプリカの成分で構成された行列の逆行列と、受信信号の成分で構成された行列をを乗算して、伝搬路推定を行う。伝搬路算出部303は、伝搬路推定結果を伝搬路逆特性計算部304に入力する。伝搬路算出部303は、このとき、補間部305から入力される複数のレプリカのそれぞれを用いて、複数の伝搬路推定結果を生成し、複数の伝搬路推定結果の中から1つを選択して、選択した伝搬路推定結果を伝搬路逆特性計算部304に入力することができる。例えば伝搬路算出部303は、複数の伝搬路推定結果のうち、フィルタ係数の絶対値の和が最も小さい候補を選択することができる。
 伝搬路逆特性計算部304は、帯域制限フィルタ情報保持部301から入力される帯域制限フィルタ情報と、補間部305から入力されるレプリカと、伝搬路算出部303から入力される伝搬路推定結果とに基づいて、伝搬路逆特性である波形整形の影響を考慮した伝搬路推定値を計算する。伝搬路逆特性計算部304は、計算した伝搬路推定値を線形フィルタ部113のフィルタ係数に変換して出力する。
 帯域制限フィルタの情報は、予め計算しておくことができる。このため、生成すべき逆特性の情報も予め生成することができる。伝搬路に応じて変動する成分の情報量を削減しておき、一部の逆特性を事前に計算しておくことで、逆特性計算の計算負荷を削減することができる。
 以上説明したように、本発明の実施の形態2にかかる線形伝搬路推定部106-1によれば、伝搬路の逆特性を直接計算するのではなく、伝搬路を同定した後に逆特性として等化処理部107のフィルタ係数を生成する。これにより、算出する伝搬路のタップ長を小さくすることができ、逆行列計算処理の構成が容易になる。また、線形伝搬路推定部106-1によれば、送信側の帯域制限フィルタの形状情報に基づいて、帯域制限フィルタの影響を除いて、伝搬路特性を推定することができる。このような構成をとることで、ロールオフ率が小さい場合など、等化処理部107のフィルタのタップ長が長くなりがちな状況であっても、推定すべき変数の数を低減することができ、既知信号のシンボル数が少なくても、等化処理部107のフィルタ係数を決定することが可能になる。
 また、線形伝搬路推定部106-1によれば、補間部305は、異なる複数のタイミングオフセットで生成した複数の既知信号列を生成する。このため、レプリカ生成部302は、複数の既知信号列のそれぞれに基づいた複数のレプリカを生成することになる。レプリカ生成部302が生成するレプリカと既知信号抽出部201で生成した信号とのタイミングがずれていると、伝搬路成分の値のうち、帯域制限フィルタの影響を除く成分の値は変動する。上記のように、異なる複数のタイミングオフセットで生成した複数の既知信号列のそれぞれに基づいて、伝搬路推定を行うことで、このタイミングのずれによる影響を低減することが可能になる。
 図7は、図1に示す受信装置100を専用のハードウェアを用いて構成する例を示す図である。受信装置100の機能は、受信データ生成回路401と、処理回路402と、受信結果格納装置403とを用いて実現することができる。
 受信データ生成回路401は、アンテナから受信信号を取得する。処理回路402は、歪みを補償するベースバンド処理などを行う。処理回路402は、例えば、FPGA(Field Programmable Gate Array)、LSI(Large Scale Integration)などの回路である。受信データ生成回路401が実行する処理と、処理回路402が実行する処理との分担は、必要に応じて変更することもできる。受信結果格納装置403は、処理回路402により復調されたデータを受信結果として記憶する。
 図8は、図1に示す受信装置100をソフトウェアを用いて構成する例を示す図である。受信装置100の機能は、受信データ生成回路401と、プロセッサ404と、メモリ405と、ディスプレイ406とを用いて実現することができる。
 プロセッサ404は、歪み補償を行うコンピュータプログラムをメモリ405から読み出して実行することにより、上記の受信装置100の各機能を実現する。プロセッサ404は、CPU(Central Processing Unit)であり、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)などとも呼ばれる。
 メモリ405は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disk)などである。メモリ405は、プロセッサ404が実行する各処理における一時メモリとしても用いられ、プロセッサ404の処理の途中データである波形、フィルタ係数、設定値などが読み書きされる。
 ディスプレイ406は処理結果を表示する表示装置である。なおここでは受信装置100がディスプレイ406を備えることとしたが、本復調結果を取得して動作する、受信装置100以外の装置がディスプレイ406を備えてもよい。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 例えば、誤り訂正符号を用いない通信システムでは、受信装置100はFEC部111を省略してもよい。位相雑音が無視することができない程度に大きい環境では、受信装置100は、周波数推定部109の前に位相補償機能を設けて、受信信号の位相オフセットの変動に追従して、フィルタ出力またはフィルタ入力に、観測した基準位相からのずれ量を補正する処理を加えてもよい。またロールオフフィルタなど係数が固定された波形整形フィルタをRF回路部102よりも後段に備えてもよい。
 また、上記の非線形歪み補償を伴う受信方式では、特に非線形歪みの大きいアンプの駆動電力で、かつ高いSNR(Signal-Noise Ratio)で動作する多値化、高符号化率の伝送方式では、高い性能改善効果を得られる。これに対して低多値化方式では白色雑音の影響が支配的となり、性能改善効果は限定的となる。DVB-S2伝送のように、変調方式を切り替え可能なシステムでは、フレームに含まれる変調方式情報(MODCOD)、または符号化率の少なくとも1つを示す情報に基づいて、多値式フィルタの加算処理を停止することができるようにしてもよい。これにより、低いSNRで駆動する変調方式を用いる場合でも不必要な非線形歪み補償を停止することができ、通信性能を向上させることが可能になる。
 11 ヘッダ部、12 パイロット部、13 データ部、100 受信装置、101 受信アンテナ、102 RF回路部、103 タイミング制御部、104 周波数制御部、105 フレーム検出部、106,106-1 線形伝搬路推定部、107 等化処理部、108 タイミング推定部、109 周波数推定部、110 デマッピング部、111 FEC部、112 参照信号生成部、113 線形フィルタ部、114 非線形フィルタ部、115 フィルタ加算部、116 線形フィルタ係数保持部、117 多項式フィルタ係数保持部、118 フィルタ係数制御部、120 同期処理部、201 既知信号抽出部、202 既知信号保持部、203 逆行列計算部、204 フィルタ係数算出部、301 帯域制限フィルタ情報保持部、302 レプリカ生成部、303 伝搬路算出部、304 伝搬路逆特性計算部、305 補間部、401 受信データ生成回路、402 処理回路、403 受信結果格納装置、404 プロセッサ、405 メモリ、406 ディスプレイ。

Claims (11)

  1.  線形フィルタ部と、非線形フィルタ部とを含み、受信信号の等化処理を行う等化処理部と、
     受信信号に含まれる既知信号を用いて伝搬路推定を行い、前記線形フィルタ部のフィルタ係数を算出する線形伝搬路推定部と、
     前記等化処理部が出力する信号に基づいて、周波数偏差を補正する同期処理を行う同期処理部と、
     を備え、
     前記等化処理部は、前記線形フィルタ部によりフィルタリングされた受信信号を前記同期処理部へ出力する第1等化処理を実行した後、予め定められた条件が満たされると、前記線形フィルタ部によりフィルタリングされた受信信号と前記非線形フィルタ部によりフィルタリングされた受信信号との加算結果を前記同期処理部へ出力する適応等化処理である第2等化処理を開始することを特徴とする受信装置。
  2.  前記同期処理部は、シンボルタイミング位相の推定結果に基づいて、タイミング位相を補償するタイミング制御部と、タイミング位相を補償後の信号を用いて周波数補正を行う周波数制御部と、
     を含むことを特徴とする請求項1に記載の受信装置。
  3.  前記等化処理部は、前記線形フィルタ部のフィルタ係数と、前記非線形フィルタ部のフィルタ係数とを制御するフィルタ係数制御部を有し、
     前記フィルタ係数制御部は、前記第2等化処理において、前記線形フィルタ部のフィルタ係数の更新を開始した後、前記非線形フィルタ部のフィルタ係数の更新を開始することを特徴とする請求項1または2に記載の受信装置。
  4.  前記同期処理部は、前記線形フィルタ部がフィルタ係数の初期値を使用している状態で前記周波数偏差を推定する第1の周波数推定処理を行い、前記線形フィルタ部のフィルタ係数の更新が開始された後、前記非線形フィルタ部のフィルタ係数の更新が開始される前に、前記周波数偏差を推定する第2の周波数推定処理を行う周波数推定部を有することを特徴とする請求項3に記載の受信装置。
  5.  前記非線形フィルタ部は、メモリ多項式を用いた多項式フィルタであることを特徴とする請求項1に記載の受信装置。
  6.  前記受信信号に含まれる変調方式および符号化率の少なくとも1つを示す情報に基づいて、前記非線形フィルタ部を使用するか否かを切り替えることを特徴とする請求項1に記載の受信装置。
  7.  前記線形伝搬路推定部は、送信側の帯域制限フィルタの形状情報を用いて前記伝搬路推定を行うことを特徴とする請求項1に記載の受信装置。
  8.  前記線形伝搬路推定部は、オーバサンプルされた既知信号列を生成し、当該既知信号列に基づいて、前記帯域制限フィルタの影響を除く伝搬路成分を推定することを特徴とする請求項7に記載の受信装置。
  9.  前記線形伝搬路推定部は、異なるタイミングオフセットで生成した複数の前記既知信号列を生成し、複数の前記既知信号列のそれぞれに基づいて、前記帯域制限フィルタの影響を除く伝搬路成分を推定することを特徴とする請求項8に記載の受信装置。
  10.  予め定められた前記条件は、前記同期処理を開始してからの時間、前記同期処理を開始してからの処理サンプル数、および等化処理後の信号品質の少なくとも1つに基づくことを特徴とする請求項1に記載の受信装置。
  11.  受信信号を受信する受信装置が、
     前記受信信号に含まれる既知信号を用いて伝搬路推定を行い、線形フィルタ部のフィルタ係数を算出するステップと、
     算出したフィルタ係数を用いた第1等化処理において線形フィルタ部によりフィルタリングされた受信信号に基づき周波数偏差を補正する同期処理を行うステップと、
     予め定められた条件が満たされると、前記線形フィルタ部によりフィルタリングされた受信信号と非線形フィルタ部によりフィルタリングされた受信信号との加算結果を等化処理の結果として出力する第2等化処理を開始するステップと、
     前記線形フィルタ部および前記非線形フィルタ部のフィルタ係数を適応アルゴリズムを用いて更新するステップと、
     を実行することを特徴とする受信信号処理方法。
PCT/JP2018/009062 2018-03-08 2018-03-08 受信装置および受信信号処理方法 WO2019171551A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2018/009062 WO2019171551A1 (ja) 2018-03-08 2018-03-08 受信装置および受信信号処理方法
PCT/JP2018/040872 WO2019171655A1 (ja) 2018-03-08 2018-11-02 受信装置および受信信号処理方法
JP2020504772A JP6746030B2 (ja) 2018-03-08 2018-11-02 受信装置、受信信号処理方法、制御回路および記憶媒体
CA3093079A CA3093079C (en) 2018-03-08 2018-11-02 Reception device, reception signal processing method, control circuit, and recording medium
US16/964,443 US11196459B2 (en) 2018-03-08 2018-11-02 Reception device, reception signal processing method, control circuit, and recording medium
EP18909156.4A EP3748862A4 (en) 2018-03-08 2018-11-02 RECEIVING DEVICE AND RECEIVING SIGNAL PROCESSING METHODS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/009062 WO2019171551A1 (ja) 2018-03-08 2018-03-08 受信装置および受信信号処理方法

Publications (1)

Publication Number Publication Date
WO2019171551A1 true WO2019171551A1 (ja) 2019-09-12

Family

ID=67845942

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/009062 WO2019171551A1 (ja) 2018-03-08 2018-03-08 受信装置および受信信号処理方法
PCT/JP2018/040872 WO2019171655A1 (ja) 2018-03-08 2018-11-02 受信装置および受信信号処理方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040872 WO2019171655A1 (ja) 2018-03-08 2018-11-02 受信装置および受信信号処理方法

Country Status (5)

Country Link
US (1) US11196459B2 (ja)
EP (1) EP3748862A4 (ja)
JP (1) JP6746030B2 (ja)
CA (1) CA3093079C (ja)
WO (2) WO2019171551A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124463A1 (ja) * 2019-12-17 2021-06-24 三菱電機株式会社 無線受信装置、制御回路、記憶媒体および無線通信方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161495A1 (ja) * 2020-02-14 2021-08-19 三菱電機株式会社 受信装置、制御回路、記憶媒体および受信信号処理方法
JP7415165B2 (ja) * 2020-03-19 2024-01-17 富士通株式会社 伝送装置及び歪み補償方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05327416A (ja) * 1992-05-25 1993-12-10 Sony Corp 自動等化器
JPH06204902A (ja) * 1992-12-28 1994-07-22 Nec Corp 判定帰還形等化器
JP2004336563A (ja) * 2003-05-09 2004-11-25 Matsushita Electric Ind Co Ltd 無線受信装置および受信フィルタリング方法
WO2017130314A1 (ja) * 2016-01-27 2017-08-03 三菱電機株式会社 受信装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3102221B2 (ja) * 1993-09-10 2000-10-23 三菱電機株式会社 適応等化器および適応ダイバーシチ等化器
JP3629059B2 (ja) * 1995-03-31 2005-03-16 富士通株式会社 Mlse型等化器を用いた復調装置
US7142616B2 (en) 2001-04-09 2006-11-28 Matsushita Electric Industrial Co., Ltd. Front end processor for data receiver and nonlinear distortion equalization method
JP4459507B2 (ja) 2001-04-09 2010-04-28 パナソニック株式会社 非線形歪等化回路、非線形歪等化方法
US6628707B2 (en) * 2001-05-04 2003-09-30 Radiant Networks Plc Adaptive equalizer system for short burst modems and link hopping radio networks
JP4488868B2 (ja) * 2004-11-15 2010-06-23 パナソニック株式会社 波形等化方法、波形等化器、無線装置及び無線通信システム
JP2006295766A (ja) * 2005-04-14 2006-10-26 Matsushita Electric Ind Co Ltd 非線形歪等化システム
US8837626B2 (en) * 2011-12-09 2014-09-16 Lsi Corporation Conditional adaptation of linear filters in a system having nonlinearity
US20110069749A1 (en) * 2009-09-24 2011-03-24 Qualcomm Incorporated Nonlinear equalizer to correct for memory effects of a transmitter
US9231792B1 (en) * 2015-01-21 2016-01-05 Nitero Pty Ltd. Adaptive WiGig equalizer
US9397824B1 (en) * 2015-01-28 2016-07-19 Texas Instruments Incorporated Gear shifting from binary phase detector to PAM phase detector in CDR architecture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05327416A (ja) * 1992-05-25 1993-12-10 Sony Corp 自動等化器
JPH06204902A (ja) * 1992-12-28 1994-07-22 Nec Corp 判定帰還形等化器
JP2004336563A (ja) * 2003-05-09 2004-11-25 Matsushita Electric Ind Co Ltd 無線受信装置および受信フィルタリング方法
WO2017130314A1 (ja) * 2016-01-27 2017-08-03 三菱電機株式会社 受信装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124463A1 (ja) * 2019-12-17 2021-06-24 三菱電機株式会社 無線受信装置、制御回路、記憶媒体および無線通信方法

Also Published As

Publication number Publication date
US11196459B2 (en) 2021-12-07
EP3748862A1 (en) 2020-12-09
CA3093079C (en) 2023-07-11
US20210050883A1 (en) 2021-02-18
JP6746030B2 (ja) 2020-08-26
WO2019171655A1 (ja) 2019-09-12
JPWO2019171655A1 (ja) 2020-06-18
CA3093079A1 (en) 2019-09-12
EP3748862A4 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
US9166833B2 (en) Feed forward equalization for highly-spectrally-efficient communications
CA2493106C (en) Method and apparatus for hybrid decision feedback equalization
WO2019171551A1 (ja) 受信装置および受信信号処理方法
JP7004879B2 (ja) 受信装置、制御回路、記憶媒体および受信信号処理方法
US9008228B1 (en) Post-distortion filter for reducing sensitivity to receiver nonlinearities
JP4822946B2 (ja) 適応等化器
JPWO2006090438A1 (ja) 受信装置
JP4795274B2 (ja) 適応等化装置
JP7106017B2 (ja) 無線受信装置、制御回路、記憶媒体および無線通信方法
JP2007235407A (ja) 適応等化器および通信装置
JP2008271409A (ja) 受信装置
CN111107025A (zh) Gfsk接收机中的自适应均衡器
JP2006238091A (ja) 受信機
KR20120070084A (ko) 채널 추정치를 이용한 lms훈련을 기반으로 하는 결정 궤환 등화 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP