WO2019170529A1 - Verfahren zur herstellung von fasern, folien und formkörpern eines polybenzazolpolymers (p) - Google Patents

Verfahren zur herstellung von fasern, folien und formkörpern eines polybenzazolpolymers (p) Download PDF

Info

Publication number
WO2019170529A1
WO2019170529A1 PCT/EP2019/055092 EP2019055092W WO2019170529A1 WO 2019170529 A1 WO2019170529 A1 WO 2019170529A1 EP 2019055092 W EP2019055092 W EP 2019055092W WO 2019170529 A1 WO2019170529 A1 WO 2019170529A1
Authority
WO
WIPO (PCT)
Prior art keywords
methylimidazolium
diyl
dicarboxylic acid
group
butyl
Prior art date
Application number
PCT/EP2019/055092
Other languages
English (en)
French (fr)
Inventor
Marcel BRILL
Ines DEBEAUVAIS DE VASCONCELOS
Maik Nowak
Olivier FLEISCHEL
Martin Merger
Achim Stammer
Joachim Ruch
Frank Hermanutz
Ronald BEYER
Michael R. Buchmeiser
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to JP2020547038A priority Critical patent/JP7350762B2/ja
Priority to EP19707020.4A priority patent/EP3762447A1/de
Priority to US16/978,948 priority patent/US20200407508A1/en
Priority to CN201980018209.1A priority patent/CN111836849B/zh
Publication of WO2019170529A1 publication Critical patent/WO2019170529A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a process for producing fibers, films and moldings of a polybenzazole polymer (P) as defined in the claims.
  • the present invention also relates to fibers, films and moldings which are obtainable by the process according to the invention and to the use of the fibers obtainable by the process according to the invention in textiles, the use of the films obtainable by the process according to the invention and the use of the moldings which are obtainable by the process according to the invention.
  • Polybenzazole polymers are known and represent a class of organic polymers that are used primarily as high-performance fibers and even exceed glass, ceramic and carbon fibers due to their exceptional tensile strength in their properties.
  • Organic high performance fibers such as polybenzazole polymers are increasingly used in technically demanding areas, as they are characterized in particular by exceptionally high strengths and moduli of elasticity and by high temperature resistance, flame retardancy and chemical resistance.
  • polymeric materials based on polybenzazole polymers and usually also the corresponding fibers, films and molded articles are often susceptible to degradation processes under natural environmental conditions, leading to rapid aging and thus to a deterioration of the properties up to the end point Lead to uselessness. Exposure to external environmental influences such as UV radiation and moisture generally leads to rapid degradation, as a result of which the mechanical properties and, in the case of fiber materials, in particular the tensile strength are significantly reduced. Due to the rapid aging, materials based on polybenzazole polymers generally either have to be replaced after a short time or, in a corresponding manner, be protected from environmental influences by composite construction with more resistant materials. Although the aging process can be slowed down by coating, the low resistance to aging prevents universal use of materials based on polybenzazole polymers beyond a few special areas.
  • a problem of the polybenzazole polymers, for example PBO, is that they dissolve only in very few solvents, the solvent of choice both for the conversion to the polybenzazole polymers, for example PBO, and also the further processing to, for example, fibers and films of polyphosphoric acid optionally with the addition of Diphosphorus pentoxide P2O5, see Wang et al. P. 15, second paragraph, first to fifth line.
  • the phosphoric acid can be present as free phosphoric acid or in the form of aryl phosphate esters which are bound to polybenzoxazole, the aryl phosphate esters slowly hydrolyzing in the presence of water and forming phosphoric acid.
  • CN 103 880 767 describes a process for the preparation of a polybenzazole polymer in polyphosphoric acid.
  • terephthalic acid dichloride and 4,6-diaminoresorcinol (4,6-diamino-1,3-dihydroxybenzene) are reacted in another solvent, namely in a strongly hydrophobic ionic liquid.
  • this condensation product is converted into phosphoric acid and phosphorus pentoxide in a second step.
  • the object on which the present invention is based is thus to provide an improved production process for fibers, films and moldings of polybenzazole polymers, preferably PBO, which without the solvents used in the prior art for the preparation and / or further processing of the polybenzazole polymer , Preferably PBO, or in which the solvent, usually after workup, can be reused.
  • the improved process is intended to provide chamfers, films and moldings of polybenzazole polymers, preferably PBO, which have improved aging resistance, hydrolysis resistance and / or better resistance to UV radiation.
  • Ar 1 is selected from the group consisting of unsubstituted or at least monosubstituted phenylene, naphthalenediyl, anthracenediyl, biphenyldiyl, diphenylmethanediyl, diphenyletherdiyl, diphenylthioetherdiyl, diphenylsulfonediyl, benzophenonediyl, pyridinediyl, pyrimidinediyl, furandiyl and thiophenediyl, where the substituents are selected from A group consisting of -F, -CI, -Br, -OR 1 and -Ci-Cio-alkyl, wherein R 1 is -H or-Ci-Cio-alkyl;
  • X 1 , X 2 are independently selected from the group consisting of
  • R 2 is -H, -Ci-Cio-alkyl, -Ci-Cio-alkenyl or a repeating unit of the general formula (Ia):
  • m is a natural number from 1 to 50, and R 3 is -H, -CC-Cio-alkyl or -CC-Cio-alkenyl;
  • n 0 or 1
  • Y 1 , Y 2 , Y 3 , Y 4 are independently -H, -OR 4 or -SR 4 , wherein R 4 is selected from the group consisting of
  • Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , Z 6 , Z 7 , Z 8 are independently -NH 2 or -NH 3 + Qr, where Q _ is an anion equivalent selected from the group consisting of F ⁇ , Ch, Br, h, HSO4, S0 4 2 - H3C-SO3-, P-H3C-C6H4-SO3- and N0 3 -; and
  • ionic liquids are very suitable as solvents for the preparation of the product mixture (PVG) and the product mixture (PVG) can be further processed well in the presence of the solvent ionic liquid by the usual methods to form fibers, films and moldings, and Finally, these convert by heating to a temperature in the range of 250 to 500 ° C and optionally stretching into the corresponding fibers, films and moldings of polybenzazole polymers (P), for example PBO.
  • the acids used in the processes disclosed in the prior art, in particular polyphosphoric acid are optionally not required with the addition of diphosphorus pentoxide P2O5.
  • the fibers, films and moldings of polybenzazole polymers (P), preferably PBO, obtained in the presence of ionic liquids thus have an increased resistance to aging processes and external environmental influences, for example hydrolysis or UV radiation.
  • ionic liquids eliminates the need for laborious separation or purification procedures to remove acid residues from the polybenzazole polymer, preferably PBO, or the polybenzazole polymer precursor, thereby providing more environmentally friendly and cost-effective process control in the synthesis to downstream processing to fibers, films and moldings is made possible.
  • the reusability of the ionic liquids in the preparation of the polybenzazole polymers (P) achieves a significant improvement in process control over the processes disclosed in the prior art. The present invention will be explained in detail below.
  • Polybenzazole polymer (P) fibers, films and moldings, preferably PBO are prepared in the process according to the invention by reacting a reaction mixture (RG) at a temperature in the range from 0 to 120 ° C. to obtain a product mixture (PVG), processing the product mixture ( PVG), at a temperature Tv in the range from 0 to 100 ° C. to fibers, films and moldings by the customary processes and heating of the fibers, films and moldings thus obtained to a temperature in the range from 250 to 500 ° C. which contain the polybenzazole polymer (P), preferably PBO.
  • Polybenzazole polymers are a class of polymers which are known in principle to the person skilled in the art.
  • a "polybenzazole polymer (P)" is understood as meaning a polymer which contains repeating units of polybenzoxazole and / or polybenzothiazole.
  • polybenzoxazole refers to polymers which contain oxazole rings and aromatic groups as repeating units.
  • the aromatic groups are not necessarily benzene rings.
  • polybenzothiazole refers to polymers which contain thiazole rings and aromatic groups as repeating units.
  • the aromatic groups are not necessarily benzene rings.
  • the reaction mixture (RG) is the mixture which is reacted to produce the polybenzazole polymer (P).
  • the reaction mixture (RG) contains as components at least one dicarboxylic aromatic compound of the general formula (I) (component (a)), at least one aromatic diamino compound of the general formula (IIa), (Mb), (IIc) and / or (I Id) (component (b)) and at least one ionic liquid (IL) (component (c)).
  • Components (a) and (b) are usually virtually completely dissolved in component (c).
  • the term "practically completely dissolved” means that preferably at most 5% by weight, preferably at most 3% by weight, more preferably at most 2% by weight and particularly preferably at most 1% by weight of components (a) and ( b) are present in the component (c) as solid particles, based on the total weight of component (a) and (b) in the reaction mixture (RG).
  • component (c) contains no solid particles of components (a) and (b). Thus, most preferably, components (a) and (b) can not be separated by filtration from component (c).
  • components (a) and (b) in component (c) can be carried out by all methods known to the person skilled in the art.
  • the components (a) and (b) are under Stirring dissolved in component (c).
  • the components (a) and (b) can be dissolved in component (c) simultaneously or preferably one after the other, for example first component b) and then a) or vice versa, the variant first preference being given to component b) and then a) is.
  • the components (a) or (b) are preferably dissolved in the component (c) at elevated temperatures, preferably in the range of 20 to 120 ° C and more preferably in the range of 60 to 90 ° C.
  • the molar ratio of component (a): component (b) is in the range from 1, 05: 1, 00 to 1, 01: 1, 00, preferably in the range of 1, 01: 1, 00 to 1, 00: 1, 00th
  • component (a) with component (b) in the presence of component (c) takes place at a temperature in the range from 0 to 120 ° C, preferably in the range from 35 to 100 ° C, particularly preferably in the range from 70 to 80 ° C.
  • component (b) is initially charged in component (c) and component (a) is added to this mixture, preferably in portions of the intended total amount.
  • the reaction of component (a) with component (b) in the presence of component (c) takes place with stirring.
  • component (c) serves as a solvent and preferably does not copolymerize with components (a) and (b).
  • a part of the component (c) copolymerizes with the components (a) and (b)
  • preferably at most 1% by weight, more preferably at most 0.5% by weight, of the component (c) is copolymerized on the total weight of component (c), with components (a) and (b).
  • component (c) does not copolymerize at all with components (a) and (b).
  • the reaction mixture (R G ) according to the invention can, in one embodiment, obtain at least one basic compound.
  • the at least one basic compound can in principle be any basic compound known to the person skilled in the art.
  • the at least one basic compound is a basic alkali or alkaline earth metal compound or amines.
  • the at least one basic compound is particularly preferably selected from the group consisting of lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, lithium hydride, sodium hydride, potassium hydride, magnesium hydride, calcium hydride, Triethylamine, tripropylamine, tributylamine, N-methylimidazole, N-ethylimidazole.
  • the at least one basic compound (B) is selected from the group consisting of sodium carbonate, potassium carbonate, lithium hydride, sodium hydride, magnesium hydride, calcium hydride, triethylamine, tripropylamine, tributylamine, N-methylimidazole, N-ethylimidazole.
  • the reaction mixture (RG) may contain at least one inorganic salt which differs from the at least one basic compound defined above.
  • the at least one inorganic salt may in principle be any inorganic salt known to the person skilled in the art and may be exactly one inorganic salt as well as mixtures of two or more different inorganic salts.
  • the at least one inorganic salt is an alkali, alkaline earth, aluminum, tin (II), iron (II) or manganese (II) salt. More preferably, the at least one inorganic salt is an alkali, alkaline earth, aluminum, tin (II), iron (II) or manganese (II) halide.
  • the at least one inorganic salt is preferably selected from the group consisting of lithium chloride, lithium bromide, lithium iodide, sodium chloride, sodium bromide, sodium iodide, potassium chloride, potassium bromide, potassium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, calcium bromide, calcium iodide, Barium chloride, barium bromide, barium iodide, aluminum chloride, aluminum bromide, aluminum iodide, tin (II) chloride, tin (II) bromide, tin (II) iodide, iron (II) chloride, iron (II) bromide, iron (II) iodide, Manganese (II) chloride, manganese (II) bromide and manganese (II) iodide.
  • the at least one inorganic salt is selected from the group consisting of lithium chloride, sodium chloride, potassium chloride, magnesium chloride, calcium chloride, aluminum chloride, tin (II) chloride, iron (II) chloride and manganese (II) chloride.
  • volatile by-products may form, which are preferably continuously separated off during the reaction of the reaction mixture (RG).
  • volatile by-products are all compounds formed during the reaction of the reaction mixture (RG) which have a boiling point below 200.degree. C., preferably below 150.degree. C. and particularly preferably below 120.degree C have.
  • Preferred volatile by-products include, for example, water (water of reaction) or hydrogen halides.
  • the separation of the volatile by-products can in principle be carried out by all methods known to those skilled in the art.
  • the volatile by-products are continuously distilled off during the reaction of the reaction mixture (RG), if appropriate with constant supply of a nitrogen stream.
  • reaction mixture (RG) refers to the mixture before carrying out the reaction; the reaction is also called “addition reaction” in the following.
  • addition reaction the reaction mixture (RG) is converted to the product mixture (PVG) which contains the addition product, also referred to herein as "arabide", for example poly (ortho-hydroxy) aramid, and the at least one ionic liquid (IL). Consequently, all information regarding the product mixture (PVG) refers to the mixture after carrying out the addition reaction.
  • the reaction mixture (R G ) preferably contains 5 wt .-% to 25 wt .-% of component (a), 5 wt .-% to 25 wt .-% of component (b) and 50 wt .-% to 90 wt .-% of the component (c), based on the total weight of the reaction mixture (R G ).
  • the reaction mixture contains (R G ) 8 wt .-% to 18 wt .-% of component (a), 8 wt .-% to 18 wt .-% of component (b) and 64 wt .-% to 84 wt .-% of component (c), based on the total weight of the reaction mixture (R G ) and more preferably contains the reaction mixture (R G ) 10 wt .-% to 15 wt .-% of component (a), 10 wt .-% to 15 wt .-% of component (b) and 70 wt .-% to 80 wt .-% of the component (c), based on the total weight of the reaction mixture (R G ).
  • the reaction mixture (R G ) additionally contains as comonomer at least one linear or branched aliphatic dicarboxyl compound.
  • the at least one linear or branched aliphatic dicarboxylic compound preferably contains 2 to 20 carbon atoms.
  • Particularly preferred linear or branched aliphatic dicarboxylic dicarboxyl compounds are oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and their branched isomers.
  • the product mixture (PVG) generally contains preferably from 5% by weight to 25% by weight, preferably from 10% by weight to 22% by weight and particularly preferably from 12% by weight to 20% by weight of the aramid, based on the total weight of the production mixture (PVG).
  • the aramid is preferably at least partially dissolved in the at least one ionic liquid (IL).
  • IL ionic liquid
  • the aramid, for further processing into fibers or films, in particular fibers is dissolved almost completely in the at least one ionic liquid (IL).
  • the term "practically completely dissolved” means that preferably at most 5% by weight, preferably at most 3% by weight, more preferably at most 2% by weight and particularly preferably at most 1% by weight of the aramid in the at least an ionic liquid (IL) as solid particles, based on the total weight of the aramid in the product mixture (PVG).
  • the at least one ionic liquid (IL) contains no solid particles of the aramid.
  • the aramid can not be separated by filtration from the at least one ionic liquid (IL).
  • the aramid can be separated from the product mixture (PVG) by all methods known to those skilled in the art.
  • the aramid can be precipitated from the product mixture (PVG) by addition of a suitable precipitant.
  • suitable precipitants are known in principle to those skilled in the art and include aprotic or protic polar solvents, preferably protic polar solvents such as water, methanol, ethanol, n-propanol, isopropanol, glycerol, ethylene glycol or mixtures thereof.
  • the reaction mixture (R G ) contains at least one aromatic dicarboxyl compound of the general formula (I) as component (a).
  • component (a) at least one aromatic dicarboxyl compound of the general formula (I)
  • aromatic dicarboxyl compound (I) at least one aromatic dicarboxyl compound (I)
  • aromatic dicarboxyl compound of the general formula (I) refers to exactly one aromatic dicarboxyl compound of the general formula (I), as well as mixtures of two or more different aromatic dicarboxyl compounds of the general formula (I). Suitable aromatic dicarboxyl compounds of the general formula (I) are known in principle to the person skilled in the art.
  • the at least one aromatic dicarboxyl compound used in the process according to the invention has the general formula (I):
  • Ar 1 is selected from the group consisting of unsubstituted or at least monosubstituted phenylene, naphthalenediyl, anthracenediyl, biphenyldiyl, diphenylmethanediyl, diphenyletherdiyl, diphenylthioetherdiyl, diphenylsulfondiyl, benzophenonediyl, pyridinediyl, pyrimidinediyl, furandiyl and thiophenediyl, where the substituents are selected from Group consisting of -F,
  • X 1 , X 2 are independently selected from the group consisting of -OR 2 , -F, -CI and -Br, wherein R 2 is -H, -Ci-Cio-alkyl, -Ci-Cio-alkenyl or a repeating unit of the general Formula (la) is: wherein m is a natural number from 1 to 50, and R 3 is -H, -CC-Cio-alkyl or -Ci-Cio-alkenyl.
  • the at least one aromatic dicarboxyl compound of the general formula (I) used in the process according to the invention preferably contains two functional groups which are selected independently of one another from the group consisting of carboxyl groups (-CO2H), carboxylic acid fluorides (-COF), carboxylic acid chlorides (- OCI), carboxylic acid bromides (COBr), carboxylic acid esters (-CO 2 R 2 , where R 2 is a C 1 -C 10 -alkyl group or a C 1 -C 10 -alkenyl group) and carboxylic anhydrides (-CO 2 R 2 , where R 2 is a repeating unit of the above-defined general formula (Ia)).
  • Ar 1 is selected from the group consisting of unsubstituted or at least monosubstituted phenylene, naphthalenediyl, anthracenediyl, biphenyldiyl, diphenylmethanediyl, diphenyletherdiyl, diphenylthioetherdiyl, diphenylsulfonyl, benzophenonediyl, pyridinediyl, pyrimidinediyl, furandiyl and thiophenediyl.
  • suitable aromatic dicarboxylic compounds of the general formula (I) are known in principle to the person skilled in the art. In principle, all of the corresponding aromatic dicarboxylic compounds of the general formula (I) known to the person skilled in the art can be used in the process according to the invention.
  • Unsubstituted or at least monosubstituted phenylene groups suitable for the radical Ar 1 are, for example, selected from the group consisting of 1,2-phenylene, 1,3-phenylene and 1,4-phenylene, preferably 1,4-phenylene.
  • the phenylene groups are unsubstituted.
  • Corresponding aromatic dicarboxylic compounds (I) having a phenylene group as Ar 1 include for example phthalic acid, isophthalic acid, terephthalic acid, phthalic anhydride, Phthal Acidifluorid, phthaloyl chloride, Phthal Acidibromid, isophthalic acid anhydride, Isophthal Acidifluorid, isophthalic acid dichloride, isophthalic acid dibromide, terephthalic, Terephthal Acidifluorid, terephthaloyl dichloride, Terephthal Acidibromid , Polyanhydrides of phthalic acid, polyanhydrides of isophthalic acid, polyanhydrides of terephthalic acid and C 1 -C 10 -alkyl esters of phthalic acid, isophthalic acid and terephthalic acid and C 1 -C 10 -alkenyl esters of phthalic acid, isophthalic acid and terephthalic acid.
  • Unsubstituted or at least monosubstituted naphthalenediyl groups suitable for the radical Ar 1 are, for example, selected from the group consisting of naphthalene-1, 4-diyl, naphthalene-1, 5-diyl, naphthalene-2,6-diyl and naphthalene-2,7 -diyl, preferably naphthalene
  • Corresponding aromatic dicarboxylic compounds (I) having a naphthalenediyl group as the radical Ar 1 include, for example, naphthalene-1, 4-dicarboxylic acid, naphthalene-1, 5-dicarboxylic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7 -dicarboxylic acid, naphthalene-1,4-dicarboxylic anhydride, naphthalene-1,4-dicarboxylic acid difluoride, naphthalene-1,4-dicarboxylic acid dichloride, naphthalene-1,4-dicarboxylic acid dibromide, naphthalene-1,5-dicarboxylic anhydride, naphthalene -1, 5-
  • Unsubstituted or at least monosubstituted anthracene diyl groups which are suitable for the radical Ar 1 are selected, for example, from the group consisting of anthracene-1, 4-diyl, anthracene-1, 5-diyl, anthracene-2,6-diyl and anthracene-9,10 -diyl, preferably anthracene
  • Corresponding aromatic dicarboxylic compounds (I) having an anthracenediyl group as radical Ar 1 include, for example, anthracene-1, 4-dicarboxylic acid, anthracene-1, 5-dicarboxylic acid, anthracene-2,6-dicarboxylic acid, anthracene-9,10-dicarboxylic acid, anthracene 1,4-dicarboxylic acid difluoride, anthracene-1,4-dicarboxylic anhydride, anthracene-1,4-dicarboxylic acid dichloride, anthracene-1,4-dicarboxylic acid dibromide, anthracene-1,5-dicarboxylic acid anhydride, anthracene-1, 5 dicarboxylic acid difluoride, anthracene-1
  • biphenyldiyl groups suitable for the radical Ar 1 are for example selected from the group consisting of biphenyl-3,3'-diyl and biphenyl-4,4'-diyl, preferably biphenyl-4,4'-diyl.
  • the biphenyldiyl groups are unsubstituted.
  • Corresponding aromatic dicarboxylic compounds having a biphenyldiyl group as radical Ar 1 include, for example, biphenyl-3,3'-dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, biphenyl-3,3'-dicarboxylic acid anhydride, biphenyl-3,3'- dicarboxylic acid difluoride, biphenyl-3,3'-dicarboxylic acid dichloride, biphenyl-3,3'-dicarboxylic acid dibromide, biphenyl-4,4'-dicarboxylic acid anhydride biphenyl-4,4'-dicarboxylic acid difluoride, biphenyl-4,4'-di- Carboxylic acid dichloride, biphenyl-4,4'-dicarboxylic acid dibromide, polyanhydrides of biphenyl-3,3'-dicarboxylic acid, polyanhydrides of biphenyl-4,4'
  • Unsubstituted or at least monosubstituted diphenylmethanediyl groups suitable for the radical Ar 1 are, for example, selected from the group consisting of diphenylmethane-3,3'-diyl and diphenylmethane-4,4'-diyl, preferably diphenylmethane-4,4'-diyl , Preferably, the diphenylmethanediyl groups are unsubstituted.
  • Corresponding aromatic dicarboxylic compounds (I) having a diphenylmethanediyl group as radical Ar 1 include, for example, diphenylmethane-3,3'-dicarboxylic acid, diphenylmethane-4,4'-dicarboxylic acid, diphenylmethane-3,3'-dicarboxylic anhydride, Diphenylmethane-3,3'-dicarboxylic acid difluoride, diphenylmethane-3,3'-dicarboxylic acid dichloride, diphenylmethane-3,3'-dicarboxylic acid dibromide, diphenylmethane-4,4'-dicarboxylic acid anhydride, diphenylmethane-4,4'-dicarboxylic acid difluoride Diphenylmethane-4,4'-dicarboxylic acid dichloride, diphenylmethane-4,4'-dicarboxylic acid dibromide, poly
  • Unsubstituted or at least monosubstituted diphenyletherdiyl groups suitable for the radical Ar 1 are, for example, selected from the group consisting of diphenyl ether-3,3'-diyl and diphenyl ether-4,4'-diyl, preferably diphenyl ether-4,4'-diyl , Preferably, the diphenyl ether diyl groups are unsubstituted.
  • Corresponding aromatic dicarboxylic compounds (I) having a diphenyl ether diyl group as radical Ar 1 include, for example, diphenyl ether-3,3'-dicarboxylic acid, diphenyl ether-4,4'-dicarboxylic acid, diphenyl ether-3,3'-dicarboxylic acid anhydride, diphenyl ether-3,3'-dicarboxylic acid difluoride, diphenyl ether-3,3'-dicarboxylic acid dichloride, diphenyl ether-3,3'-dicarboxylic acid dibromide, diphenyl ether-4,4'-dicarboxylic acid anhydride, diphenyl ether-4,4'-dicarboxylic acid difluoride , Diphenyl ether-4,4'-dicarboxylic acid dichloride, diphenyl ether-4,4'-dicarboxylic acid dibromide, polyanhydrides of diphenyl ether
  • Unsubstituted or at least monosubstituted diphenylthioetheryl groups suitable for the radical Ar 1 are for example selected from the group consisting of diphenylthio-3,3'-diyl and diphenylthioether-4,4'-diyl, preferably diphenylthioether-4,4'-diyl , Preferably, the diphenylthioetherdiyl groups are unsubstituted.
  • Corresponding aromatic dicarboxylic compounds (I) having a diphenylthioetherdiyl group as radical Ar 1 include, for example, diphenylthioether-3,3'-dicarboxylic acid, diphenylthioether-4,4'-dicarboxylic acid, diphenylthioether-3,3'-di-carboxylic acid difluoride, diphenylthioether-3, 3'-dicarboxylic acid anhydride, diphenylthioether-3,3'-dicarboxylic acid dichloride, diphenylthioether-3,3'-dicarboxylic acid dibromide, diphenylthioether-4,4'-dicarboxylic anhydride, diphenylthioether-4,4'-dicarboxylic acid difluoride, diphenylthioether 4,4'-dicarboxylic acid dichloride, diphenylthioether-4,4'-dicarboxylic acid dibromide
  • Unsubstituted or at least monosubstituted diphenylsulfondiyl groups suitable for the radical Ar 1 are, for example, selected from the group consisting of diphenylsulfone-3,3'-diyl and diphenylsulfone-4,4'-diyl, preferably diphenylsulfone-4,4 ' diyl.
  • the diphenylsulfonediyl groups are unsubstituted.
  • Corresponding aromatic dicarboxyl compounds (I) having a diphenylsulfonediyl group as radical Ar 1 include, for example, diphenylsulfone-3,3'-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, diphenylsulfone-3,3'-dicarboxylic acid anhydride, diphenylsulfone S''-dicarboxylic acid difluoride, diphenylsulfone-3,3'-dicarboxylic acid dichloride, diphenylsulfone-3,3'-dicarboxylic acid dibromide, diphenylsulfone-4,4'-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid difluoride, diphenylsulfone-4,4 ' dicarboxylic acid dichloride, diphenylsulfone-4,4'-dicarbox
  • Unsubstituted or at least monosubstituted benzophenone diyl groups which are suitable for the radical Ar 1 are selected, for example, from the group consisting of benzophenone-3,3'-diyl and benzophenone-4,4'-diyl, preferably benzophenone-4,4'-diyl , Preferably, the benzophenonediyl groups are unsubstituted.
  • Corresponding aromatic dicarboxylic compounds (I) having a benzophenonediyl group as radical Ar 1 include, for example, benzophenone-3,3'-dicarboxylic acid, benzophenone-4,4'-dicarboxylic acid, benzophenone-3,3'-dicarboxylic anhydride, Benzophenone-3,3'-dicarboxylic acid difluoride, benzophenone-3,3'-dicarboxylic acid dichloride, benzophenone-3,3'-dicarboxylic acid dibromide, benzophenone-4,4'-dicarboxylic acid anhydride, benzophenone-4,4 ' -dicarboxylic acid difluoride, benzophenone-4,4'-dicarboxylic acid dichloride, benzophenone-4,4'-dicarboxylic acid dibromide, polyanhydrides of benzophenone-3,3'-dicarboxylic acid, polyanhydrides of benzophenone
  • the pyridinediyl groups are unsubstituted.
  • Corresponding aromatic dicarboxyl compounds (I) having a pyridinediyl group as radical Ar 1 include, for example, pyridine-2,5-dicarboxylic acid, pyridine-2,6-dicarboxylic acid, pyridine-3,5-carboxylic acid, pyridine-2,5-dicarboxylic anhydride , Pyridine
  • Unsubstituted or at least monosubstituted pyrimidine diyl groups which are suitable for the radical Ar 1 are, for example, selected from the group consisting of pyrimidine-2,4-diyl, pyridinium-2,5-diyl and pyrimidine-4,6-diyl Pyridine n-4, 6-dyl.
  • the pyrimidinediyl groups are unsubstituted.
  • Corresponding aromatic dicarboxylic compounds (I) having a pyrimidinediyl group as radical Ar 1 include, for example, pyrimidine
  • 2,4-dicarboxylic anhydride pyrimidine-2,4-dicarboxylic acid difluoride, pyrimidine-2,4-dicarboxylic acid dichloride, pyrimidine-2,4-dicarboxylic acid dibromide, pyrimidine-2,5-dicarboxylic anhydride, pyrimidine-2,5-dicarboxylic acid difluoride, pyrimidine 2,5-dicarboxylic acid dichloride, pyrimidine-2,5-dicarboxylic acid dibromide, pyrimidine-4,6-dicarboxylic anhydride, pyrimidine-4,6-dicarboxylic acid difluoride, pyrimidine-4,6-dicarboxylic acid dichloride, pyrimidine-4,6-dicarboxylic acid dibromide, Polyanhydrides of pyrimidine-2,4-dicarboxylic acid, polyanhydrides of pyrimidine-2,5-dicarboxylic acid, polyan
  • Unsubstituted or at least monosubstituted furandiyl groups which are suitable for the radical Ar 1 are selected, for example, from furan-2,5-diyl.
  • the radical Ar 1 is selected, for example, from furan-2,5-diyl.
  • Corresponding aromatic dicarboxylic compounds (I) having a furandiyl group as radical Ar 1 include, for example, furan-2,5-dicarboxylic acid, furan-2,5-dicarboxylic anhydride, furan-2,5-dicarboxylic acid difluoride, furan-2,5-dicarboxylic acid redichloride, furan 2,5-dicarboxylic acid dibromide, polyanhydrides of furan-2,5-dicarboxylic acid, C 1 -C 10 -alkyl esters of furan-2,5-dicarboxylic acid and C 1 -C 10 -alkenyl esters of furan-2,5-dicarboxylic acid.
  • Unsubstituted or at least monosubstituted thiophenediyl groups which are suitable for the radical Ar 1 are selected, for example, from thiophene-2,5-diyl. Preferably, the thiophenediyl group is unsubstituted.
  • Corresponding aromatic dicarboxylic compounds (I) having a thiophenediyl group as radical Ar 1 include, for example, thiophene-2,5-dicarboxylic acid, thiophene-2,5-dicarboxylic anhydride, thiophene-2,5-dicarboxylic acid difluoride, thiophene
  • the radical Ar 1 is selected from the group consisting of unsubstituted or at least monosubstituted 1, 3-phenylene, 1, 4-phenylene, naphthalene-1, 4-diyl, naphthalene
  • the present invention thus also provides a process, characterized in that Ar 1 is selected from the group consisting of unsubstituted or at least monosubstituted 1, 3-phenylene, 1, 4-phenylene, naphthalene-1, 4-diyl, naphthalene 2,6-diyl, anthracene-2,6-diyl, anthracene-9,10-diyl, biphenyl-4,4'-diyl, diphenylmethane-4,4'-diyl, diphenyl ether-4,4'- diyl, diphenylthioether-4,4'-diyl, diphenylsulfone-4,4'-diyl, benzophenone-4,4'-diyl, pyridine-2,5-diyl, pyrimidine-4,6-diyl, furan-2,5 -diyl and thiophene-2,5-diyl.
  • unsubstituted in the context of the present invention means that the radical Ar 1 in addition to the functional groups shown in the general formula (I) (- COX 1 and -COX 2 ) has no substituents other than hydrogen (-H).
  • C 1 -C 10 -alkyl groups include linear and branched, saturated alkyl groups of 1 to 10 carbon atoms.
  • Particularly preferred C 1 -C 10 -alkyl groups are C 1 -C 6 -alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, 2- or 3-methylpentyl or longer-chain groups such as n-heptyl,
  • C 1 -C 10 -alkenyl groups include linear and branched at least monosubstituted alkyl groups having 1 to 10 carbon atoms.
  • Particularly preferred C 1 -C 10 -alkenyl groups are vinyl, allyl, isopropenyl, 1-butenyl, crotyl, 3-butenyl, 1, 3-butadienyl or longer-chain groups such as pentenyl, pentadienyl, hexenyl, hexadienyl, hexatrienyl, Heptenyl, heptadienyl, heptatrienyl, octenyl, octadienyl, octatrienyl, octatetraenyl, nonyl, nonadienyl, nonatrienyl, nonatetradienyl, decenyl, decadienyl, decatrienyl, decatetraenyl or decapenta
  • m is preferably a natural number from 1 to 50, particularly preferably from 1 to 30, very particularly preferably from 1 to 10 and in particular from 1 to 5. Most preferably m is 1.
  • Component (a) is preferably selected from the group consisting of isophthalic acid, isophthalic anhydride, isophthalic acid difluoride, isophthalic acid dichloride, isophthalic acid dibromide, polyanhydrides of isophthalic acid, C 1 -C 10 -alkyl esters of isophthalic acid, C 1 -C 10 -alkenyl esters of isophthalic acid, terephthalic acid, Terephthalic anhydride, terephthalic acid difluoride, terephthalic acid dichloride, terephthalic acid dibromide, polyanhydrides of terephthalic acid, C 1 -C 10 -alkyl esters of terephthalic acid, C 1 -C 10 -alkenyl esters of terephthalic acid, naphthalene-1, 4-dicarboxylic acid, naphthalene-1, 4-dicarboxylic anhydride, naphthalene 1,4
  • Component (a) is particularly preferably selected from the group consisting of terephthalic acid, terephthalic anhydride, terephthalic acid difluoride, terephthalic acid dichloride, terephthalic acid dibromide, C 1 -C 10 -alkyl esters of terephthalic acid, C 1 -C 10 -alkenyl esters of terephthalic acid, isophthalic acid, isophthalic anhydride, isophthalic acid difluoride, isophthalic acid.
  • component (a) contains at least 80% by weight, more preferably at least 90% by weight and most preferably at least 98% by weight of at least one aromatic dicarboxylic compound of general formula (I) selected from the group consisting from terephthalic acid, terephthalic anhydride, terephthalic acid difluoride, terephthalic acid dichloride, terephthalic acid dibromide, C 1 -C 10 -alkyl esters of terephthalic acid, C 1 -C 10 -alkenyl esters of terephthalic acid, isophthalic acid, Isophthalic anhydride, isophthalic acid difluoride, isophthalic acid dichloride, isophthalic acid dibromide, polyanhydrides of isophthalic acid, C 1 -C 10 -alkyl esters of isophthalic acid and C 1 -C 10 -alkenyl ester of isophthalic acid, based on the total weight of component
  • the weight data given here for component (a) relate to the total weight of terephthalic acid used, terephthalic anhydride, terephthalic acid difluoride, terephthalic acid dichloride, terephthalic acid dibromide, C 1 -C 10 -alkyl esters of terephthalic acid, C 1 -C 10 -alkenyl esters of terephthalic acid, Isophthalic acid, isophthalic anhydride, isophthaloyl difluoride, isophthalic acid dichloride, isophthalic acid dibromide, polyanhydrides of isophthalic acid, C 1 -C 10 -alkyl esters of isophthalic acid and C 1 -C 10 -alkenyl esters of isophthalic acid.
  • component (a) consists essentially of at least one aromatic dicarboxylic compound of general formula (I) selected from the group consisting of terephthalic acid, terephthalic anhydride, terephthalic acid, terephthalic acid, terephthalic acid, terephthalic acid, C1-C10-alkyl esters of Terephthalic acid, C 1 -C 10 -alkenyl esters of terephthalic acid, isophthalic acid, isophthalic anhydride, isophthalic acid difluoride, isophthalic acid dichloride, isophthalic acid dibromide, polyanhydrides of isophthalic acid, C 1 -C 10 -alkyl esters of isophthalic acid and C 1 -C 10 -alkenyl esters of isophthalic acid.
  • aromatic dicarboxylic compound of general formula (I) selected from the group consisting of terephthalic acid, terephthalic anhydride, terephthalic
  • component (a) contains at least 99% by weight, preferably at least 99.5% by weight and more preferably at least 99.9% by weight.
  • component (a) consists essentially of at least one aromatic dicarboxyl compound of the general formula (I) selected from terephthalic anhydride, terephthalic acid dichloride and C1-C10 alkenyl esters of terephthalic acid.
  • component (a) is terephthalic acid dichloride.
  • the reaction mixture (RG) contains at least one aromatic diamino compound of the general formula (IIa), (Mb), (IIc) and / or (Idl) as component (b).
  • component (b) contains at least one aromatic diamino compound of the general formula (Ia1), (Mb), (IIc) and / or (Id)" and "at least one aromatic diamino compound (IIa-d)" are used synonymously below.
  • aromatic diamino compound of the general formula (IIa), (Mb), (IIc) and / or (Id) refers to exactly one aromatic diamino compound of the general formula (IIa), (Mb), ( llc) and / or (lld) as well as mixtures of two or more different aromatic diamino compounds of the general formula (IIa), (Mb), (IIc) and / or (Idl).
  • Suitable aromatic diamino compounds of the general formula (IIa), (Mb), (IIc) and / or (Id) are known in principle to the person skilled in the art.
  • the at least one aromatic diamino compound (IIa-d) used in the process according to the invention contains two amino groups.
  • amino group is understood in the context of the present invention -NH 2 .
  • Q is an anion selected from the group consisting of fluoride (F ⁇ ), chloride (Ch), Bromide (Br), iodide (I-), hydrogen sulfate (HSO 4 ), sulfate (SO 4 2 ), methanesulfonate (H3C-SO3), p-toluenesulfonate (P-H3C-C6H4-SO3) and nitrate (NO3).
  • anion equivalent is understood to mean that an anion having a single negative charge or a charge equivalent of an anion having two or more negative charges is present.
  • the at least one aromatic diamino compound used in the process according to the invention has the general formula (IIa), (Mb), (IIc) and / or (IId):
  • n is 0 or 1 Y 1 , Y 2 , Y 3 , Y 4 are independently -H, -OR 4 or -SR 4 , wherein R 4 is selected from the group consisting of
  • Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , Z 6 , Z 7 , Z 8 are independently -NH 2 or -NH 3 + Q, where Q _ is an anion equivalent selected from the group consisting of F ⁇ , Ch, Br, I, HSO 4 -, S0 4 2- , H 3 C-S0 3 -, pH 3 CC 6 H 4 -S0 3 - and N0 3 -
  • C 1 -C 10 -alkyl groups include linear and branched, saturated alkyl groups of 1 to 10 carbon atoms.
  • Particularly preferred C 1 -C 10 -alkyl groups are C 1 -C 6 -alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, 2- or 3-methylpentyl or longer-chain groups such as n-heptyl, n-octyl, n-nonyl or n-decyl and their branched isomers.
  • Y 1 , Y 2 , Y 3 and Y 4 in the at least one aromatic diamino compound of the general formula (IIa), (Mb), (IIc) and / or (Id) are preferably independently of one another hydroxy groups or thiol groups.
  • hydroxy groups is meant in the context of the present invention -OH.
  • thiol groups in the context of the present invention is understood to mean -SH.
  • Y 1 , Y 2 , Y 3 and Y 4 in the at least one aromatic diamino compound of the general formula (IIa) and / or (Mb) are hydroxy groups.
  • Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , Z 6 , Z 7 and Z 8 are independently of one another amino groups (-NH 2 ) or amino hydrogen salts (-NH 3 + Q ⁇ ).
  • Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , Z 6 , Z 7 and Z 8 are preferably in the at least one aromatic diamino compound of the general formula (IIa), (Mb), (IIc) and / or (lld) Amino hydrogen salts.
  • Component (b) is preferably selected from the group consisting of 4,6-diamino-1,3-dihydroxybenzene, 4,6-diamino-1,3-dithiobenzene, 4,6-diamino-3-hydroxy-1-thiobenzene , 2,5-diamino-1,4-dihydroxybenzene, 2,5-diamino-1,4-dithiobenzene, 2,5-diamino-4-hydroxy-1-thiobenzene, 4,6-diamino-1,3-dihydroxybenzene dihydrochloride, 4,6-diamino-1,3-dithiobenzene dihydrochloride, 4,6-diamino-3-hydroxy-1-thiobenzene dihydrochloride, 2,5-diamino-1,4-dihydroxybenzene dihydrochloride, 2,5-diamino-1,4-dihydroxybenzene dihydrochloride, 2,
  • Component (b) is particularly preferably selected from the group consisting of 4,6-diamino-1,3-dihydroxybenzene, 4,6-diamino-1,3-dihydroxybenzene dihydrochloride, 2,5-diamino
  • component (b) contains at least 80% by weight, more preferably at least 90% by weight and most preferably at least 98% by weight of at least one aromatic diamino compound (IIa-d) selected from the group consisting of 4,6-diamino-1,3-dihydroxybenzene, 4,6-diamino-1,3-dihydroxybenzene dihydrochloride, 5-diamino-1,4-dihydroxybenzene and 2,5-diamino-1,4-dihydroxybenzene dihydrochloride, based on the total weight of component (b) in the reaction mixture (RG).
  • aromatic diamino compound (IIa-d) selected from the group consisting of 4,6-diamino-1,3-dihydroxybenzene, 4,6-diamino-1,3-dihydroxybenzene dihydrochloride, 5-diamino-1,4-dihydroxybenzene and 2,5-diamino-1,4-dihydroxybenz
  • the weight data given here relative to component (b) relate to the total weight of 4,6-diamino-1,3-dihydroxybenzene, 4,6-diamino-1,3-dihydroxybenzene dihydrochloride, 5-diamino-1, 4 used. dihydroxybenzene and 2,5-diamino-1,4-dihydroxybenzene dihydrochloride.
  • component (b) consists essentially of at least one aromatic diamino compound (IIa-d) selected from the group consisting of 4, 6-diamino-1,3-dihydroxybenzene, 4,6-diamino-1, 3-dihydroxybenzene dihydrochloride, 5-diamino-1,4-dihydroxybenzene and 2,5-diamino-1,4-dihydroxybenzene dihydrochloride.
  • aromatic diamino compound (IIa-d) selected from the group consisting of 4, 6-diamino-1,3-dihydroxybenzene, 4,6-diamino-1, 3-dihydroxybenzene dihydrochloride, 5-diamino-1,4-dihydroxybenzene and 2,5-diamino-1,4-dihydroxybenzene dihydrochloride.
  • the term “consisting essentially of” means that component (b) contains at least 99% by weight, preferably at least 99.5% by weight and
  • At least one aromatic diamino compound (IIa-d) selected from the group consisting of 4,6-diamino-1,3-dihydroxybenzene, 4,6-diamino-1,3-dihydroxybenzene dihydrochloride, 5-diamino 1, 4-dihydroxybenzene and 2,5-diamino-1, 4-dihydroxybenzene dihydrochloride, based on the total weight of component (b) in the reaction mixture (RG).
  • component (b) consists of at least one aromatic diamino compound (IIa-d) selected from the group consisting of 4, 6-diamino-1,3-dihydroxybenzene, 4,6-diamino-1 , 3-dihydroxybenzene dihydrochloride, 5-diamino-1, 4-dihydroxybenzene and 2,5-diamino-1,4-dihydroxybenzene dihydrochloride.
  • aromatic diamino compound (IIa-d) selected from the group consisting of 4, 6-diamino-1,3-dihydroxybenzene, 4,6-diamino-1 , 3-dihydroxybenzene dihydrochloride, 5-diamino-1, 4-dihydroxybenzene and 2,5-diamino-1,4-dihydroxybenzene dihydrochloride.
  • component (b) 2,5-diamino-1,4-dihydroxybenzene dihydrochloride is particularly preferred as component (b).
  • component (c) 2,5-diamino-1,4-dihydroxybenzene dihydrochloride is particularly preferred as component (b).
  • the reaction mixture (R G ) contains at least one ionic liquid (IL) as component (c).
  • component (c) and “at least one ionic liquid (IL)” are used interchangeably below.
  • ionic liquid refers to exactly one ionic liquid (IL) as well as to mixtures of two or more different ionic liquids (IL).
  • IL ionic liquids
  • ionic liquids are understood to mean compounds which have at least one cationic center and at least one anionic center, in particular at least one cation and at least one anion, where at least one of the ions, in particular the cation, is organic is.
  • Ionic liquids are defined by Wasserscheid and Keim in: Angewandte Chemie, 1 12, 3926 - 3945 (2000), at relatively low temperatures melting salts of non-molecular, ionic character. They are already liquid at relatively low temperatures and relatively low in viscosity. They have very good solubilities for a large number of organic, inorganic and polymeric substances. In addition, they are generally non-flammable, non-corrosive and have no measurable vapor pressure.
  • Ionic liquids are compounds that are formed from positive and negative ions, but are charge-neutral overall. The positive as well as the negative
  • Ions are predominantly monovalent, but also possible are multivalent anions and / or cations, for example with one to five, preferably with one to four, more preferably with one to three and most preferably with one to two electrical charges per ion.
  • the charges may be located at different localized or delocalized regions within a molecule, ie betain-like, or even distributed as a separate anion and cation. Preference is given to those ionic liquids which are composed of at least one cation and at least one anion.
  • the invention is not limited to special ionic liquids; It is possible to use all suitable ionic liquids known to the person skilled in the art.
  • the at least one ionic liquid (IL) preferably has the lowest possible melting point.
  • the melting point of the at least one ionic liquid (IL) is preferably below 150 ° C., more preferably below 100 ° C., and most preferably below 80 ° C.
  • At least one cation refers to exactly one cation as well as to mixed species of two or more cations, such as
  • mixed species with metal cations can be used, such as
  • the cation [C] n + is preferably at least one unsubstituted or at least monosubstituted cation selected from the group consisting of
  • Ci-Cis-alkyl groups linear and branched, saturated alkyl groups having 1 to 18 carbon atoms, which are optionally interrupted by one or more oxygen and / or sulfur atoms and / or one or more unsubstituted or at least monosubstituted imino groups, the Ci-cis-alkyl groups given may be substituted by functional groups and / or halogen groups.
  • the number of oxygen and / or sulfur atoms and / or imino groups is not limited. As a rule, it is not more than 5 in the radical, preferably not more than 4 and very particularly preferably not more than 3. Furthermore, at least one carbon atom, preferably at least two carbon atoms, is usually present between two heteroatoms.
  • Unsubstituted or at least monosubstituted imino groups may be, for example, imino, methylimino, isopropylimino, n-butylimino or tert-butylimino.
  • Preferred functional groups include, for example, carboxy, carboxamide, hydroxy, di (C 1 -C 4 -alkyl) amino, C 1 -C 4 -alkyloxycarbonyl, cyano or C 1 -C 4 -alkyloxy.
  • C 1 -C 6 -alkyl groups include, for example, C 1 -C 4 -alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl
  • alkyl groups such as n-pentyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-dodecyl, n-tetradecyl, n-hexadecyl or n-octadecyl and their branched isomers.
  • C 1 -C 6 -alkyl groups which are substituted by functional groups and / or halogen groups include, for example, 2-cyanoethyl, 2-cyano-propyl, 2-methoxycarbonylethyl, 2-ethoxycarbonylethyl, 2-butoxycarbonylpropyl,
  • C 1 -C 6 -alkyl groups which are interrupted by one or more oxygen and / or sulfur atoms and / or one or more unsubstituted or at least monosubstituted imino groups include, for example, butylthiomethyl, 2-dodecylthioethyl, 2-phenylthioethyl, 2-aminoethyl , 2-aminopropyl,
  • preferred C 5 -C 12 cycloalkyl groups include unsubstituted or at least monosubstituted, saturated cycloalkyl groups having 5 to 12 carbon atoms, which are optionally interrupted by one or more oxygen and / or sulfur atoms and / or one or more unsubstituted or at least monosubstituted imino groups, wherein the C5-Ci2-cycloalkyl groups optionally substituted by functional groups and / or halogen groups.
  • Preferred C 5 -C 12 -cycloalkyl groups include, for example, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclododecyl, methylcyclopentyl, dimethylcyclopentyl, methylcyclohexyl, dimethylcyclohexyl, diethylcyclohexyl, butylcyclohexyl, methoxycyclohexyl, dimethoxycyclohexyl, diethoxycyclohexyl, butylthiocyclohexyl, chlorocyclohexyl, dichlorocyclohexyl, dichlorocyclopentyl, 1, 3-dioxolan-2-yl, 2-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dioxolan-2-yl or norbornyl.
  • preferred C 6 -C 4 - Aryl groups include unsubstituted or at least mono-substituted aryl groups having 6 to 14 carbon atoms, wherein the C 6 -C 4 -aryl groups may optionally be substituted by functional groups and / or halogen groups.
  • Preferred C 6 -C 4 -aryl groups include, for example, phenyl, tolyl, xylyl, benzyl, a-naphthyl, 4-diphenylyl, chlorophenyl, dichlorophenyl, trichlorophenyl, difluorophenyl, p-chlorobenzyl, 2,4-dichlorobenzyl, methylphenyl, dimethylphenyl , Trimethylphenyl, ethylphenyl, diethylphenyl, isopropylphenyl, tert-butylphenyl, 1-phenylethyl,
  • R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 and R 14 are each independently selected from the group consisting of -H, methyl, ethyl, n Propyl, isopropyl, n -butyl, tert -butyl, n -pentyl, n -hexyl, 2-hydroxyethyl, 2-cyanoethyl, 2- (methoxycarbonyl) ethyl, 2- (ethoxycarbonyl) ethyl, 2- (n-butoxycarbonyl ) ethyl, benzyl, acetyl, dimethylamino, diethylamine and chlorine.
  • the at least one ionic liquid (IL) contains as cation [C] n + at least one imidazolium cation of the general formula (IV):
  • R 5 , R 6 , R 7 , R 8 , R 9 are independently selected from the group consisting of -H, linear or branched -Ci-Cis-alkyl,
  • the cation [C] n + is at least one cation selected from the group consisting of 1-methylimidazolium, 1-methyl-2-ethylimidazolium, 1-methyl-3-octylimidazolium, 1, 2-dimethylimidazolium, 1, 3 Dimethylimidazolium, 2,3-dimethylimidazolium, 3,4-dimethylimidazolium, 1,2,3-trimethylimidazolium, 1,3,4-trimethylimidazolium, 1,3,4,5-tetramethylimidazolium, 1 - Ethylimidazolium, 1-ethyl-2-methylimidazolium, 1-ethyl-3-methylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 2-ethyl-3,4-dimethylimidazolium, 1-propylimidazolium, 1-propyl-2- methylimidazolium, 1-propyl-3-
  • a further subject of the present application is therefore also a process, characterized in that the cation [C] n + is at least one cation selected from the group consisting of 1-methylimidazolium, 1-methyl-2-ethylimidazolium, 1-methyl 3-octylimidazolium, 1,2-dimethylimidazolium, 1,3-dimethylimidazolium, 2,3-dimethylimidazolium, 3,4-dimethylimidazolium, 1,2,3-trimethylimidazolium, 1,3,4-trimethylimidazolium, 1, 3,4,5-tetramethylimidazolium, 1-ethylimidazolium, 1-ethyl-2-methylimidazolium, 1-ethyl-3-methylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 2-ethyl-3,4-dimethylimidazolium, 1-propylimidazolium, 1-propylimid
  • the cation [C] n + is at least one cation selected from the group consisting of 1-methylimidazolium, 1,2-dimethylimidazolium, 1,2,3-tri-methylimidazolium, 1-methyl-2-ethylimidazolium, 1-ethylimidazolium , 1-ethyl-2-methylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 1-ethyl-3-methylimidazolium, 1,3-diethylimidazolium, 1-propylimidazolium, 1-propyl-3-methylimidazolium, 1-butyl -imidazolium, 1-butyl-2-methylimidazolium, 1-butyl-3-methylimidazolium, 1-butyl-2,3-dimethylimidazolium, 1,3-dibutylimidazolium, 1-pentylimidazolium, 1-pentyl-2-
  • the cation [C] n + is at least one cation selected from the group consisting of 1-methylimidazolium, 1,2-dimethylimidazolium, 1, 2,3-trimethylimidazolium, 1-ethylimidazolium, 1-ethyl-2 methylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 1- Ethyl 3-methylimidazolium, 1, 3-diethylimidazolium, 1-butylimidazolium, 1-butyl-2-methylimidazolium, 1-butyl-3-methylimidazolium and 1-butyl-2,3-dimethylimidazolium, 1, 3 Dibutylimidazolium.
  • the anion [A] n - is preferably selected from the group consisting of the group of halogen-containing anions such as: the group consisting of cyanide, thiocyanate, cyanate and isocyanate:
  • CN SCN, OCN, NCO, the group consisting of nitrite and nitrate:
  • R a COO- the group of borates of the general formulas:
  • R a B0 2 2_ R a R b BO-, the group of carbonates or carbonic esters of the general formulas:
  • R a O-, wherein R a and R b are independently selected from the group consisting of - H, -Ci-Ci 8 alkyl, -C5-Ci2-cycloalkyl and -C6-Ci4-aryl.
  • C 1 -C 18 -alkyl groups which are preferred for the radicals R a and R b include linear and branched, saturated alkyl groups having 1 to 18 carbon atoms which are optionally substituted by one or more oxygen and / or sulfur atoms and / or one or more unsubstituted or at least one monosubstituted imino groups are interrupted, wherein the Ci-cis-alkyl groups may optionally be substituted by functional groups and / or halogen groups.
  • the number of oxygen and / or sulfur atoms and / or imino groups is not limited. As a rule, it is not more than 5 in the radical, preferably not more than 4 and very particularly preferably not more than 3. Furthermore, at least one carbon atom, preferably at least two carbon atoms, is usually present between two heteroatoms.
  • Unsubstituted or at least monosubstituted imino groups may be, for example, imino, methylimino, isopropylimino, n-butylimino or tert-butylimino.
  • Preferred functional groups include, for example, carboxy, carboxamide, hydroxy, di (C 1 -C 4 -alkyl) amino, C 1 -C 4 -alkyloxycarbonyl, cyano or C 1 -C 4 -alkyloxy.
  • C 1 -C 6 -alkyl groups include, for example, C 1 -C 4 -alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl
  • C 1 -C 6 -alkyl groups which are substituted by functional groups and / or halogen groups include, for example, 2-cyanoethyl, 2-cyano-propyl, 2-methoxycarbonylethyl, 2-ethoxycarbonylethyl, 2-butoxycarbonylpropyl,
  • C 1 -C 6 -alkyl groups which are interrupted by one or more oxygen and / or sulfur atoms and / or one or more unsubstituted or at least monosubstituted imino groups include, for example, butylthiomethyl, 2-dodecylthioethyl, 2-phenylthioethyl, 2-aminoethyl , 2-aminopropyl,
  • C 5 -C 12 -cycloalkyl groups which are preferred for the radicals R a and R b include unsubstituted or at least monosubstituted, saturated cycloalkyl groups having 5 to 12 carbon atoms which are optionally substituted by one or more oxygen and / or sulfur atoms and / or one or more unsubstituted or at least monosubstituted Imino groups are interrupted, wherein the C5-Ci2-cycloalkyl groups may optionally be substituted by functional groups and / or halogen groups.
  • Preferred C 5 -C 12 -cycloalkyl groups include, for example, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclododecyl, methylcyclopentyl, dimethylcyclopentyl, methylcyclohexyl, dimethylcyclohexyl, diethylcyclohexyl, butylcyclohexyl, methoxycyclohexyl, dimethoxycyclohexyl, diethoxycyclohexyl, butylthiocyclohexyl, chlorocyclohexyl, dichlorocyclohexyl, dichlorocyclopentyl, 1, 3-dioxolan-2-yl, 2-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dioxolan-2-yl or norbornyl.
  • C 6 -C 4 -aryl groups preferred for the radicals R a and R b include unsubstituted or at least monosubstituted aryl groups having 6 to 14 carbon atoms, where the C 6 -C 4 -aryl groups are optionally substituted by functional groups and / or halogen groups may be substituted.
  • Preferred C 6 -C 4 -aryl groups include, for example, phenyl, tolyl, xylyl, benzyl, a-naphthyl, 4-diphenylyl, chlorophenyl, dichlorophenyl, trichlorophenyl, difluorophenyl, p-chlorobenzyl, 2,4-dichlorobenzyl, methylphenyl, dimethylphenyl , Trimethylphenyl, ethylphenyl, diethylphenyl, isopropylphenyl, tert-butylphenyl, 1-phenylethyl,
  • R a and R b are preferably independently selected from the group consisting of -H, methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, n-pentyl, n-hexyl, 2-hydroxyethyl, 2-cyanoethyl, 2- (methoxycarbonyl) ethyl, 2- (ethoxycarbonyl) ethyl, 2- (n-butoxycarbonyl) ethyl, benzyl, acetyl, dimethylamino, diethylamino and chloro.
  • n is preferably selected from the group consisting of fluoride, chloride, bromide, iodide, tetrachloroaluminate, heptachlorodialuminate, tetrabromoaluminate, heptabromodialuminate, trichlorozincate, thiocyanate, nitrite, nitrate, sulfate, hydrogensulfate, methylsulfate, ethylsulfate, sulfite , Hydrosulfite, methanesulfonate, trifluoromethanesulfonate, ethanesulfonate, tosylate, decylbenzenesulfonate, didecylbenzenesulfonate, dodecylbenzenesulfonate, didodecylbenzenesulfonate, bis (trifluoromethanesulfonyl) methane
  • the anion [A] n is particularly preferably selected from the group consisting of chloride, tetrachloroaluminate, heptachlorodialuminate, trichlorozincate, sulfate, hydrogensulfate, methylsulfate, ethylsulfate, methanesulfonate, trifluoromethanesulfonate, ethanesulfonate, tosylate, decylbenzenesulfonate, didecylbenzenesulfonate, dodecyl Benzenesulfonate, didodecylbenzenesulfonate, acetate, carbonate, methyl carbonate and bicarbonate.
  • the anion [A] n ⁇ is selected from the group consisting of chloride and tetrachloroaluminate.
  • the at least one ionic liquid (IL) is selected from the group consisting of 1-methylimidazolium chloride, 1, 2-dimethylimidazolium chloride, 1, 3-dimethylimidazolium chloride, 1, 2,3-trimethylimidazolium chloride, 1-ethylimidazolium chloride, 1 - Ethyl 2-methylimidazolium chloride, 1-ethyl-3-methylimidazolium chloride, 1-ethyl-2,3-dimethylimidazolium chloride, 1,3-diethylimidazolium chloride, 1-butylimidazolium chloride, 1-butyl-2-methylimidazolium chloride, 1 - Butyl-3-methylimidazolium chloride, 1-butyl-2,3-dimethylimidazolium chloride, 1,
  • methylimidazolium hydrogencarbonate 1-ethyl-2,3-dimethylimidazolium hydrogencarbonate, 1, 3-diethylimidazolium hydrogencarbonate, 1-butylimidazolium hydrogencarbonate, 1-butyl-2-methylimidazoliumhydrogencarb onat, 1-butyl-3-methylimidazolium hydrogencarbonate, 1-butyl-2,3-dimethylimidazolium hydrogencarbonate and 1,3-dibutylimidazolium hydrogencarbonate.
  • the at least one ionic liquid (IL) is particularly preferably selected from the group consisting of 1-methylimidazolium chloride, 1, 3-dimethylimidazolium chloride, 1-ethylimidazolium chloride, 1-ethyl-3-methylimidazolium chloride, 1-ethyl-2,3-dimethylimidazoliumchlo - 1, 3-diethylimidazolium chloride, 1-butylimidazolium chloride, 1-butyl-3-methylimidazolium chloride, 1-butyl-2,3-dimethylimidazolium chloride, 1, 3-dibutylimidazolium chloride, 1-methylimidazolium tetrachloroaluminate, 1, 3-dimethylimidazolium tetrachloroaluminate , 1-ethylimidazolium tetrachloroaluminate, 1-ethyl-3-methylimidazolium tetrachlor
  • the at least one ionic liquid (IL) is selected from the group consisting of 1-methylimidazolium chloride, 1-ethylimidazolium chloride, 1-ethyl-3-methylimidazolium chloride, 1-butylimidazolium chloride, 1-butyl-3-methylimidazolium chloride,
  • the reaction mixture (RG) preferably contains at least 50% by weight of component (c), based on the total weight of the reaction mixture (RG). Particularly preferably, the reaction mixture (RG) contains at least 64% by weight and very particularly preferably at least 70% by weight of component (c), based on the total weight of the reaction mixture (RG).
  • the reaction mixture (RG) preferably contains at most 90% by weight of the component (c), based on the total weight of the reaction mixture (RG). Particularly preferably, the reaction mixture (RG) contains at most 84% by weight and very particularly preferably at most 80% by weight of component (c), based on the total weight of the reaction mixture (RG).
  • the total weight of all components in the reaction mixture (RG) generally gives 100 wt .-%.
  • the reaction mixture (RG) preferably contains 50 to 90 wt .-% of component (c), based on the total weight of the reaction mixture (RG). Particularly preferably, the reaction mixture contains (RG) 64 to 84 wt .-% and most preferably 70 to 80 wt .-% of component (c), based on the total weight of the reaction mixture (RG).
  • component (c) contains at least 80% by weight, preferably at least 90% by weight and particularly preferably at least 98% by weight of at least one ionic liquid (IL) selected from the group consisting of 1-methylimidazolium chloride , 1-ethylimidazolium chloride, 1-ethyl-3-methylimidazolium chloride, 1-butylimidazolium chloride, 1-butyl-3-methylimidazolium chloride, 1,3-dibutylimidazolium chloride, 1-methylimidazolium tetrachloroaluminate, 1-ethylimidazolium tetra-chloroaluminate, 1 Ethyl 3-methylimidazolium tetrachloroaluminate, 1,3-diethylimidazolium tetrachloroaluminate, 1-butylimidazolium tetra- chloroaluminate, 1-butyl-3-methylimida
  • component (c) consists essentially of at least one ionic liquid (IL) selected from the group consisting of 1-methylimidazolium chloride, 1-ethylimidazolium chloride, 1-ethyl-3-methylimidazolium chloride, 1-butylimidazolium chloride , 1-Butyl-3-methylimidazolium chloride, 1,3-dibutylimidazolium chloride, 1-methylimidazolium tetrachloroaluminate, 1-ethylimidazolium tetrachloroaluminate, 1-ethyl-3-methylimidazolium tetrachloroaluminate, 1,3-diethylimidazolium tetrachloroaluminate, 1-butylimidazolium tetrachloroaluminate, 1-butyl-3-methylimidazolium tetrachloroaluminate , 1,3-IL) selected from the group
  • component (c) contains at least 99% by weight of an ionic liquid (IL), based on the total weight of component (c) in FIG Reaction mixture (RG).
  • IL ionic liquid
  • Preferred and particularly preferred reaction mixtures (RG) are obtained by combining the respective preferred components (a), (b) and (c) or the particular particularly preferred components (a), (b) and (c), such as they are described herein. Examples of particular preferred reaction mixtures (RG) are shown in the following table, wherein for component (b) the corresponding dihydrochlorides are disclosed:
  • the reaction mixture (RG) is reacted at a temperature in the range from 0 to 120 ° C., preferably in the range from 35 to 100 ° C. and more preferably in the range from 70 to 80 ° C., to give the product mixture (PVG), which is the aramid contains.
  • volatile reaction products formed in the reaction for example halohydrocarbons such as hydrogen chloride, are preferably removed from the reaction space, for example by suppressing and / or flowing through the reaction space and / or the reaction mixture (RG) with an inert gas, i.e. a gas which does not participate in the reaction under the conditions described, for example nitrogen or a noble gas such as Argon or optionally by addition of a base, as described above.
  • reaction of the reaction mixture (R G ) to the product mixture (PVG) can be carried out in the usual apparatus of the chemical industry, such as stirred tanks, screw machines, for example extruders.
  • reaction of the reaction mixture (RG) to the product mixture (PVG) can be carried out batchwise or continuously.
  • the components (a) and (b) for forming the reaction mixture (RG) are generally added in bulk (in the sense of undiluted), as a rule individually and sequentially to the component (c).
  • the components (c) and (b) are initially charged, preferably with stirring, and the component (a) is in the desired amount, usually in stoichiometric amount or in slight excess, for example 0.5 mol% excess, based on the component (b) added to this mixture, preferably in portions. If component (a) is added in portions, the number of portions is, for example, 2 to 10.
  • the end of the reaction of the reaction mixture (RG) to the product mixture (PVG) can be recognized by the fact that the torque of the stirrer no longer increases.
  • the product mixture (PVG) is then further processed into fibers, films or moldings without further work-up or after working up, for example by isolating the aramid, for example by precipitation, preferably without further processing, in particular during further processing into fibers workup.
  • Tv is in the range of 0 to 100 ° C, preferably in the range of 20 to 60 ° C.
  • the further processing of the product mixture (PVG) to fibers is usually carried out by the method of spinning in the usual apparatus suitable for this purpose, for example a piston spinning plant, at the usual temperatures specific to the polymer. Usually it is spun vertically downwards. Suitable spinnerets are 144 holes /
  • the pressures generated during spinning are very much dependent on the conditions of spinning, such as spinning temperature, nozzle geometry and dimension, usually ranging from 60 to 100 bar.
  • the exit velocity of the dope obtained from the product mixture (PVG) is for example in the range of 1 to 2 m / min.
  • the filament bundle formed as a rule is generally passed through an air gap of a spatulate width in the range from 1 to 100 mm, for example in the range from 10 to 50 mm, into a coagulation bath. This usually consists of demineralized water, but may also contain portions of component (c) (IL) used.
  • the temperature of the coagulation bath is, for example, at 20 to 30 ° C, the residence time in the coagulation bath is, for example, about 40 s.
  • the filament bundle obtained from the product mixture (PVG) by spinning is drawn by the customary methods. For example, for stretching the filament bundle obtained from the product mixture (PVG) by spinning, it is conveyed via a deflection roller from the coagulation bath onto a godet roller. Their speed usually determines the draw ratio.
  • the strands of the filament bundle obtained from the product mixture (PVG) by spinning are, for example, in the range of 20% to 30%.
  • the filament bundle obtained from the product mixture (PVG) by spinning is then in a preferred embodiment by a heated to a temperature in the range of 60 to 100 ° C, for example, heated to 88 to 90 ° C demineralized water bath, usually to remove solvent residues or impurities.
  • the filament bundle obtained from the product mixture (PVG) by spinning is usually dried at a temperature at which virtually no conversion into polybenzazole polymer (P), for example PBO, takes place, for example at 120 ° C., for example in a hot-air channel ,
  • P polybenzazole polymer
  • the thus obtained fibers, films and moldings of aramid, preferably fibers and films of aramid, in particular fibers of aramid are obtained by heating to a temperature in the range of 250 to 500 ° C, preferably in the range of 300 to 450 ° C in Fa - converted, films and moldings of polybenzazole polymer (P), for example, PBO.
  • the aramid fibers thus obtained are prepared by heating to a temperature in the range of 250 to 500 ° C, preferably in the range of 300 to 450 ° C, and preferably each by drawing into fibers of polybenzazole polymer (P), for example wise PBO, transferred.
  • the fibers are produced from aramid at the highest possible draws.
  • the orientation of many spinning parameters, such as the spinning temperature are dependent and difficult to quantify.
  • the term "highest possible draws" is understood to mean those which, when exceeded, result in relatively frequent filament breaks during spinning.
  • the process according to the invention produces fibers, films and moldings of polybenzazole polymer (P), for example PBO.
  • P polybenzazole polymer
  • Another object of the present invention are thus fibers, films and moldings of polybenzazole polymer (P), for example PBO, which is prepared by the inventive method.
  • P polybenzazole polymer
  • the polybenzazole polymer (P) preferably has repeating units of the general formula (XIIa), (XIIb), (XIIc), (XIId), (XIle) and / or (XIIf):
  • the polybenzazole polymer (P) contains at least 40% by weight, preferably at least 60% by weight and particularly preferably at least 80% by weight, of repeating units selected from the group consisting of repeating units of the general formulas (XIIa) , (XIIb), (XI Ic), (Xlld), (XIle) and (Xllf), based on the total weight of the polybenzazole polymer (P).
  • the polybenzazole polymer (P) contains at least 40% by weight, preferably at least 60% by weight and more preferably at least 80% by weight of repeating units selected from the group consisting of repeating units of the general formulas (Xlla) and (Xllb).
  • the weight data given here with respect to the repeat units of the general formulas (XIIa), (XIIb), (XIIc), (XIId), (XIle) and (XIIf) relate to the total weight of repeat units of the general formula (XIIa) , (XIIb), (Xllc), (Xlld), (XIle) and (Xllf).
  • the polybenzazole polymer (P) consists essentially of repeating units selected from the group consisting of repeating units of the general formulas (XIIa) and (XIIb).
  • the term "consisting essentially of” in the context of the present invention is understood to mean that the polybenzazole polymer (P) has at least 95% by weight, preferably at least 97% by weight and particularly preferably at least 99% by weight. repeating units selected from the group consisting of repeating units of the general formulas (XIIa) and (XIIb), based on the total weight of the polybenzazole polymer
  • the polybenzazole polymer (P) consists of repeating units selected from the group consisting of repeating units of the general formulas (XI la) ie PBO and (XI Ib) ie trans-PBO.
  • the polybenzazole polymer (P) is poly (p-phenylene-2,6-benzobisoxazole, i.e. PBO.
  • the polybenzazole polymer (P) obtained by the process according to the invention for example PBO, generally has a viscosity number of from 3 to 40 dl / g, preferably from 10 to 35 dl / g and more preferably from 15 to 30 dl / g.
  • the determination of the viscosity number is carried out in accordance with DIN EN ISO 1628-1 at 25 ° C in methanesulfonic acid.
  • the fibers, films or moldings of polybenzazole polymer (P) according to the invention for example PBO, practically do not contain sulfur or phosphorus, for example in the form of sulfur-containing or phosphorus-containing acids.
  • "Virtually none” in this context usually means an amount below the detection limit of the elemental - analysis, for example for phosphorus less than 100 ppm by weight, as determined by the method described in the Examples.
  • sulfur-containing or phosphorus-containing acids are generally known to the person skilled in the art and in particular include phosphoric acid, polyphosphoric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid and chlorosulfonic acid.
  • the polybenzazole polymer (P) fibers, films and molded articles produced by the process according to the invention can be used in many fields, for example (i) the fibers for the production of tows, ropes, cords, sheathing glass fibers, for the production fiber-reinforced rubber materials, for example vehicle tires and conveyor belts, for producing fiber-reinforced building materials, for example continuous fibers or short cut fibers in cement or concrete, for example shotcrete, for the production of brake pads for disc brakes, for the production of nonwovens, for example for gas filtration tile , for the manufacture of textiles, for example bullet-resistant jackets, temperature-resistant protective clothing, layers in helmets, for supply cable sheaths, for textile-reinforced building materials, for example as textile concrete for the repair and repair of structures, (ii) the films in ther mechanically stable membranes for gas separation, in proton-conducting membranes, in electro-optical devices or light-emitting diodes, (iii)
  • hydrochloric acid mixture of concentrated hydrochloric acid (about 36% by weight HCl) + water in a volume ratio of 3: 1) and deionized water.
  • the exact volume is determined by reweighing and calculating the density.
  • Matrix digestion solution and the standards c (HCI) about 0.6 mol / L, about 0.2% (m / v) CS 2 SO 4 .
  • Device ICP-OES spectrometer Agilent 5100.
  • Measurement conditions integration time 10 sec, generator 1200 W, atomizer Conikal 1 ml, spectral line (nm): P 213.618; Corrections: Sc 361, 383 nm (internal standard), calibration: external.
  • BMIM-CI 1-butyl-3-methylimidazolium chloride
  • DAR 4,6-diaminoresorcinol dihydrochloride
  • DAR 4,6-diamino-1,3-dihydroxybenzene dihydrochloride
  • TSC terephthalic acid dichloride
  • Reaction gases were removed via a stream of nitrogen (about 90 L / h) at reduced pressure (about 50 mbar absolute pressure).
  • the torque of the stirring increased slowly until a torque of about 80 Ncm was reached, in which case the stirring speed was reduced (to about 20 rpm).
  • additional TSC was added (total of the six dosages equaled 100.1 to 100.6 mol% relative to the amount of DAR), as a result of which the torque increased rapidly.
  • the stirring speed was further reduced (about 10 rpm) and stirring was continued until no further torque increase took place.
  • the mixture was stored for 1 h without further stirring at reduced pressure (about 50 mbar) in order to reduce the amount of gas inclusions in solution, which generally facilitates further processing (for example for spinning).
  • reduced pressure about 50 mbar
  • an aliquot of the solution was taken for rheological characterization (see characterization).
  • the polymer solutions were rheologically characterized on a DHR rheometer from TA Instruments, Newcastle (USA) by means of frequency sweeps at a constant temperature.
  • the frequencies were logarithmically equidistant distributed between 250 and 1 rad / s with 10 points per decade.
  • the temperature was gradually varied between 10 ° C and 60 ° C in 10 K increments.
  • the tempering system used was a lower Peltier plate with a nitrogen-purged cover made of acrylic glass to prevent condensation (absolutely necessary in view of the hygroscopic properties of the IL used).
  • the top plate had a diameter of 25 mm with a gap width of 1 mm.
  • the imprinted deformation was consistently 10%.
  • Suitable solutions for spinning were those solutions in which the correlation between the loss factor tan ( ⁇ ) and the amount of the complex viscosity
  • 45000 - 90000 Pa * s). This process window was determined empirically.
  • the spinning apparatus used is a piston spinning machine from Fourne. Before the actual spinning test, the spinning solution was transferred into the spinning flask as free of gas bubbles as possible.
  • the filled flask was installed in the piston spinning unit and heated to spinning temperature, see Table 2.1.
  • the nozzle used was either a 144 hole 100 pm nozzle or a 64 hole 150 pm nozzle with a L / D ratio of 3/1. It was spun vertically downwards.
  • the pressures that were generated here were highly dependent on the temperature, the solution concentration, the piston advance speed and the nozzle to be used. Generally they were at 60 to 100 bar.
  • the exit speed of the spinning mass was 1 to 2 m / min.
  • the filament bundle formed in this way was passed through an air gap (distance nozzle to border coagulation bath) of 10 to 100 mm length into a coagulation bath of demineralized water at a temperature of about 25 ° C.
  • the filament bundle from the bath was transferred to a godet roll via a deflection roller directed. Their speed determines the draw ratio. Stable spinning experiments could be realized with a stretch of 20% and 30%. Spinning tests with 50% stretching and more often lead to filaments being torn in the fiber bundle. The residence time in the coagulation bath was about 40 s.
  • the fiber bundle was passed through a demineralized water bath heated to 88 to 90 ° C. The residence time was about 32 s here. The fiber was stretched over a godet by 20%. Then, the fiber was passed through a hot-air channel at 120 ° C by means of a Galette for drying. The residence time during the drying was about 34 s. From the latter galette, the resulting fiber was wound with a tension-controlled winder of Oeriklon-Barmag (Wuff 6 e) with a pretensioning force of 100 cN.
  • Table 2.1 below. Herein the V number. 1, 2 3 the approaches given in Table 1.1, and the corresponding spinning experiments A, B, C lead to the samples 1A, 1 B, 1C, 2A and 3A, which were used in the condensations as shown in 3.1 and 3.2. Table 2.1
  • the fibers obtained from the spinning test were passed through a nitrogen purged oven at 420 ° C (oven length 3 m, 8 heating zones).
  • the stretching of the material was achieved by a thread brake in the unwinding unit.
  • a defined roll resistance was specified.
  • the yarn was fed via a galette to a tension-controlled winder. Stable stretching was 20 to 30%, with higher draws there were some filament breaks.
  • the residence times in this process were about 60 minutes.
  • Table 3.1.1 Table 3.1.1
  • the residence time per heating zone was 1/6 of the total residence time, which can be taken from the following table.
  • a stretching of the material was realized by the speed difference of two godets (1x oven inlet, 1x oven outlet). With a tension controlled winder, the obtained PBO fiber was wound up. Stable stretches were between 20 and 30%, with higher draws there were some breaks in the filaments.
  • the experiments and results are summarized in Table 3.2.1 and 3.2.2.
  • the hydrolysis of a fiber according to the invention from PBO namely 1 B-K2 from Table 3.1 .1 was carried out according to the conditions described below, as also listed in the technical data sheet of the commercial PBO fiber Zylon® (PBO Fiber Zylon Technical Information, 2005 , 1-18.).
  • the PBO fibers according to the invention were stored at 80 ° C. and 80% relative air humidity and, after various periods of time, the tensile strength was determined in accordance with DIN EN ISO 5079. No significant degradation in tensile strength could be determined after 50 days of treatment, cf. Table 4.1. 1.
  • the PBO fiber Zylon® AS loses about 30% tensile strength after 50 days according to the information given in the Toyobo technical data sheet mentioned above.
  • the alkali stability of a PBO fiber according to the invention was carried out according to the conditions described below, as also listed in the technical data sheet of the commercial PBO fiber Zylon® (PBO Fiber Zylon Technical Information, 2005, 1 -18.).
  • the fibers of PBO according to the invention were stored at 80 ° C. in alkali lye (10% by weight NaOH) and the tensile strength was determined after 100 h. While the loss of the tensile strength of the PBO fibers according to the invention was only about 8% of the initial strength, the PBO fiber Zylon® AS lost about 70% of the original tensile strength according to the information given in the technical specification sheet by Toyobo ,
  • the PBO fibers according to the invention were subjected to the following conditions in a xenon laboratory weathering apparatus and the tensile strength was determined after 168 h: lamp type: xenon 320, dose 42 W / m 2 , temperature: 30 ° C., relative humidity: 60%, While the loss of tensile strength of the PBO fibers according to the invention was only about 9% of the initial strength, the PBO fiber Zylon® AS lost about 75% of the original tensile strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Artificial Filaments (AREA)
  • Materials Engineering (AREA)

Abstract

Verfahren zur Herstellung von Folien, Fasern und Formkörpern eines Polybenzazolpolymers (P) durch Umsetzen eines Reaktionsgemisches (RG), das die folgenden Komponenten enthält: (a) mindestens eine aromatische Dicarboxylverbindung der allgemeinen Formel (I) in der Ar1 ausgewählt ist aus der Gruppe bestehend aus unsubstituiertem oder zumindest monosubstituiertem Phenylen, Naphthalindiyl, Anthracendiyl, Biphenyldiyl, Diphenylmethandiyl, Diphenyletherdiyl, Diphenylthioetherdiyl, Diphenylsulfondiyl, Benzophenondiyl, Pyridindiyl, Pyrimidindiyl, Furandiyl und Thiophendiyl, wobei die Substituenten ausgewählt sind aus der Gruppe bestehend aus -F, -Cl, -Br, -OR1 und -C1-C10-Alkyl, wobei R1 -H oder -C1-C10-Alkyl ist; X1, X2 unabhängig voneinander ausgewählt sind aus der Gruppe bestehend -OR2, -F, -Cl und -Br, wobei R2 -H, -C1-C10-Alkyl, -C1-C10-Alkenyl oder eine Wiederholungseinheit der allgemeinen Formel (la) ist in der m eine natürliche Zahl von 1 bis 50 ist, und R3 -H, -C1-C10-Alkyl oder -C1-C10-Alkenyl ist; (b) mindestens eine aromatische Diaminoverbindung der allgemeinen Formel (IIa), (IIb), (llc) und/oder (lld) in denen n 0 oder 1 ist Y1, Y2, Y3, Y4 unabhängig voneinander -H, -OR4 oder -SR4 sind, wobei R4 ausgewählt ist aus der Gruppe bestehend aus -H, -C1-C10-Alkyl, Trimethylsilyl, tert-Butyldimethylsilyl, Acetyl und tert-Butyloxycarbonyl, und wobei höchstens einer der Reste Y1 und Y2 -H ist, und wobei höchstens einer der Reste Y3 und Y4 -H ist; Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8 unabhängig voneinander -NH2 oder -NH3+ Q- sind, wobei Q- ein Anionenäquivalent ist, ausgewählt aus der Gruppe bestehend aus F-, Cl-, Br-, I-, HSO4-, SO4 2-, H3C-SO3-, P-H3C-C6H4-SO3- und NO3-; und (c) mindestens eine ionische Flüssigkeit (IL); dadurch gekennzeichnet, dass die Umsetzung des Reaktionsgemisches (RG) bei einer Temperatur TR im Bereich von 0 bis 120 °C stattfindet unter Erhalt eines Produktgemisches (PVG), Verarbeiten des Produktgemisches (PVG) ZU Folien, Fasern oder Formkörpern bei einer Temperatur Tv im Bereich von 0 bis 100 °C und Erhitzen der so gewonnenen Folien, Fasern oder Formkörper auf eine Temperatur TP im Bereich von 250 bis 500 °C.

Description

Verfahren zur Herstellung von Fasern, Folien und Formkörpern eines Polybenzazolpolymers
(P)
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Fasern, Folien und Formkörpern eines Polybenzazolpolymers (P) wie in den Ansprüchen definiert. Die vorlie- gende Erfindung betrifft außerdem Fasern, Folien und Formkörper, welche durch das erfin- dungsgemäße Verfahren erhältlich sind sowie die Verwendung der Fasern, welche durch das erfindungsgemäße Verfahren erhältlich sind in Textilien, die Verwendung der Folien, welche durch das erfindungsgemäße Verfahren erhältlich sind und die die Verwendung der Formkörper, welche durch das erfindungsgemäße Verfahren erhältlich sind.
Polybenzazolpolymere sind bekannt und stellen eine Klasse organischer Polymere dar, die vor allem als Hochleistungsfasern eingesetzt werden und aufgrund ihrer außergewöhnlichen Zugfestigkeit in ihren Eigenschaften sogar Glas-, Keramik- und Carbonfasern übertreffen. Organische Hochleistungsfasern wie Polybenzazolpolymere werden zunehmend in technisch anspruchsvollen Bereichen eingesetzt, da sie sich insbesondere durch außergewöhnlich hohe Festigkeiten und Elastizitätsmodule sowie durch hohe Temperaturbeständigkeit, Flammhemmung und Chemikalienresistenz auszeichnen.
Im Gegensatz zu metallischen Werkstoffen sind polymere Materialien auf Basis von Polyb- enzazolpolymeren und üblicherweise auch die entsprechenden Fasern, Folien und Formkör- per aber oft anfällig gegenüber Abbauprozessen unter natürlichen Umwelteinflüssen, die zu einer schnellen Alterung und damit zu einer Verschlechterung der Eigenschaften bis hin zur Unbrauchbarkeit führen. Unter Einwirkung äußerer Umwelteinflüsse wie UV-Strahlung und Feuchtigkeit findet im allgemeinen ein rascher Abbau statt, wodurch letztlich die mechani- schen Eigenschaften und bei Fasermaterialien insbesondere die Zugfestigkeit deutlich her- abgesetzt werden. Durch die schnelle Alterung müssen Materialien auf Basis von Polyb- enzazolpolymeren im allgemeinen entweder nach kurzer Zeit ausgewechselt werden oder in entsprechender Weise durch Verbundkonstruktion mit beständigeren Materialien gegenüber Umwelteinflüssen geschützt werden. Durch Ummantelung kann die Alterung zwar verlang- samt werden, allerdings verhindert die geringe Alterungsbeständigkeit eine universelle Ein- setzbarkeit von Materialien auf Basis von Polybenzazolpolymeren über wenige Spezialberei- che hinaus.
Die Herstellung von Polybenzazolpolymeren - beispielsweise Poly(benzo[1 ,2-d:4,5‘-d“]biso- xazol-2,6-diyl-1 ,4-phenylen), im folgenden hierin auch als„PBO“ bezeichnet - ist bekannt und im Stand der Technik beschrieben:
So wird in„Kumar et al., Rigid-Rod Polymerie Fibers, Journal of Applied Polymer Science, Vol. 100, 791-802 (2006)” die Herstellung von Polybenzazolpolymeren aus Terephthalsäure und einer aromatischen Diaminoverbindung, die zwei weitere Substituenten aufweist, offen- bart, wobei die zwei weiteren Substituenten Aminogruppen, Hydroxygruppen oder Thiolgrup- pen sein können.
In etwas allgemeinerer Form aber dennoch auch speziell PBO betreffend beschäftigen sich David H. Wang, Hao Jiang, W. Wade Adams, mit„Rigid Rod Polymers“ in Encyclopedia of Polymer Science and Technology, John Wiley and Sons, Inc., S. 1 bis 88, 2011 , im Folgen- den auch als„Wang et al.“ bezeichnet.
Die Polykondensation der Ausgangsverbindungen Terephthalsäure und aromatische Diami- noverbindung die zwei weitere Substituenten aufweist beispielsweise zum PBO, erfolgt in den meisten in der Literatur beschriebenen Fällen in Gegenwart von Polyphosphorsäure, ge- gebenenfalls unter Zusatz von Diphosphorpentoxid P2O5, welche gleichzeitig als Lösungsmit- tel, Katalysator und wasserentziehendes Mittel dient.
Ein Problem der Polybenzazolpolymere, beispielsweise PBO, ist, dass sie sich nur in sehr wenigen Lösungsmitteln lösen, wobei das Lösungsmittel der Wahl sowohl für die Umsetzung zu den Polybenzazolpolymeren, beispielsweise PBO, und auch die Weiterverarbeitung zu beispielsweise Fasern und Folien Polyphosphorsäure gegebenenfalls unter Zusatz von Diphosphorpentoxid P2O5, siehe Wang e al. S. 15, zweiter Absatz, erste bis fünfte Zeile.
Die Verwendung der bisher eingesetzten Säuren - insbesondere Polyphosphorsäure gege- benenfalls unter Zusatz von Diphosphorpentoxid P2O5 - für die Synthese von Polybenzazol- polymeren, beispielsweise PBO hat sich allerdings als nachteilig herausgestellt, da diese Säuren nach dem Herstellungsprozess aus dem Polybenzazolpolymer, beispielsweise PBO, nicht vollständig entfernen lassen und somit immer in geringen Konzentrationen in der Poly- mermatrix verbleiben. Diese Säurereste initiieren unter Feuchtigkeitseinwirkung die Hydro- lyse der Polymerketten, beispielsweise des PBO. Dieser Abbau wird durch UV-Einwirkung noch deutlich beschleunigt.
So offenbart beispielsweise„Holmes et al., The Effect of Enviromental and Mechanical Me- chanisms on the Performance of Soft Body Armor, 2009, Analytical Chemistry Division,
ICCM International Conferences on Composite Materials 01/2009“, dass die mangelnde Hyd- rolysestabilität von Benzoxazolringen auf geringe Restgehalte an Phosphorsäure aus dem Herstellungsverfahren von PBO zurückzuführen ist. Die Phosphorsäure kann dabei als freie Phosphorsäure oder in Form von Arylphosphatestern, welche an Polybenzoxazol gebunden sind, vorliegen, wobei die Aryl phosphatester in Anwesenheit von Wasser langsam hydroly- sieren und Phosphorsäure bilden.
In„Chin et al., Temperature and humidity aging of poly(p-phenylene-2,6-benzo-bisoxazole) fibers: Chemical and physical characterization, Polymer Degradation and Stability, 92, 1234 - 1246 (2007)“ wird offenbart, dass die Empfindlichkeit von Polybenoxazolpolymeren (PBO) gegenüber Hydrolyse oder erhöhten Temperaturen durch Reste von Polyphosphorsäure zu stande kommt, die zu einer Öffnung der Benzoxazolringe und damit zum Polymerabbau füh- ren.
CN 103 880 767 beschreibt ein Verfahren zur Herstellung eines Polybenzazol-polymers in Polyphosphorsäure. Hierbei werden allerdings in einem ersten Schritt Terephthalsäuredichlo- rid und 4,6-Diaminoresorcinol (4,6-Diamino-1 ,3-dihydroxybenzol) in einem anderen Lösungs- mittel, nämlich in einer stark hydrophoben ionischen Flüssigkeit zur Reaktion gebracht. Hier- bei entsteht ein dimers, also kein polymeres, Reaktionsprodukt, das aus genau einem Mole- kül Terephthalsäuredichlorid und genau einem Molekül 4,6-Diaminoresorcinol gebildet wurde. Zur Herstellung des Polybenzazolpolymers wird dieses Kondensationsprodukt in ei- nem zweiten Schritt in Phosphorsäure und Phosphorpentoxid umgesetzt.
Die der vorliegenden Erfindung zugrunde liegende Aufgabe besteht somit in der Bereitstel- lung eines verbesserten Herstellungsverfahrens für Fasern, Folien und Formkörper von Poly- benzazolpolymeren, vorzugsweise PBO, welches ohne die im Stand der Technik verwende- ten Lösungsmittel zur Herstellung und/oder Weiterverarbeitung des Polybenzazolpolymeren, vorzugsweise PBO, durchgeführt werden kann oder in welchen das Lösungsmittel, üblicher- weise nach Aufarbeitung, wiederverwendet werden kann. Mit dem verbesserten Verfahren sollen Fasen, Folien und Formkörper aus Polybenzazolpolymeren, vorzugsweise PBO, be- reitgestellt werden können, die eine verbesserte Alterungsbeständigkeit, Hydrolysebestän- digkeit und/oder bessere Beständigkeit gegenüber UV-Strahlung aufweisen.
Diese Aufgabe wurde gelöst durch ein Verfahren zur Herstellung von Fasern, Folien und Formkörpern eines Polybenzazolpolymers (P), beispielsweise PBO, durch Umsetzen eines Reaktionsgemisches (RG), das die folgenden Komponenten enthält:
(a) mindestens eine aromatische Dicarboxylverbindung der allgemeinen Formel (I):
Figure imgf000005_0001
in der
Ar1 ausgewählt ist aus der Gruppe bestehend aus unsubstituiertem oder zumindest mo- nosubstituiertem Phenylen, Naphthalindiyl, Anthracendiyl, Biphenyldiyl, Diphenylmethandiyl, Diphenyletherdiyl, Diphenylthio-etherdiyl, Diphenylsulfondiyl, Benzophenondiyl, Pyridindiyl, Pyrimidindiyl, Furandiyl und Thiophendiyl, wobei die Substituenten ausgewählt sind aus der Gruppe bestehend aus -F, -CI, -Br, -OR1 und -Ci-Cio-Alkyl, wobei R1 -H oder -Ci-Cio-Alkyl ist;
X1, X2 unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus
-OR2, -F, -CI und -Br, wobei R2 -H, -Ci-Cio-Alkyl, -Ci-Cio-Alkenyl oder eine Wiederholungseinheit der allgemeinen Formel (la) ist:
Figure imgf000006_0001
in der m eine natürliche Zahl von 1 bis 50 ist, und R3 -H, -Ci-Cio-Alkyl oder -Ci-Cio-Alkenyl ist;
(b) mindestens eine aromatische Diaminoverbindung der allgemeinen Formel (I la), (Mb), (llc) und/oder (I Id):
Figure imgf000006_0002
in denen n 0 oder 1 ist
Y1, Y2, Y3, Y4 unabhängig voneinander -H, -OR4 oder -SR4 sind, wobei R4 ausgewählt ist aus der Gruppe bestehend aus
-H, -Ci-Cio-Alkyl, Trimethylsilyl, tert-Butyldimethylsilyl, Acetyl und tert-Butyloxycarbonyl, und wobei höchstens einer der Reste Y1 und Y2 -H ist, und wobei höchstens einer der Reste Y3 und Y4 -H ist;
Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8 unabhängig voneinander -NH2 oder -NH3 + Qr sind, wobei Q_ein Anionenäquivalent ist, ausgewählt aus der Gruppe bestehend aus F~, Ch, Br, h , HSO4-, S04 2- H3C-SO3-, P-H3C-C6H4-SO3- und N03- ; und
(c) mindestens eine ionische Flüssigkeit (IL); dadurch gekennzeichnet, dass die Umsetzung des Reaktionsgemisches (RG) bei einer Tem- peratur TR im Bereich von 0 bis 120 °C stattfindet unter Erhalt eines Produktgemisches (PVG), Verarbeiten des Produktgemisches (PVG) ZU Folien, Fasern oder Formkörpern bei einer Tem- peratur Tv im Bereich von 0 bis 100 °C und Erhitzen der so gewonnenen Folien, Fasern oder Formkörper auf eine Temperatur TP im Bereich von 250 bis 500 °C.
Es wurde überraschend gefunden, dass sich ionische Flüssigkeiten als Lösungsmittel für die Herstellung des Produktgemisches (PVG) gut eignen und sich das Produktgemisch (PVG) in Gegenwart des Lösungsmittels ionische Flüssigkeit gut mit den üblichen Verfahren zu Fa- sern, Folien und Formkörper weiterverarbeiten lässt und sich diese schließlich durch Erhit- zen auf eine Temperatur im Bereich von 250 bis 500 °C und gegebenenfalls Verstrecken in die entsprechenden Fasern, Folien und Formkörper aus Polybenzazolpolymeren (P), bei- spielsweise PBO, umwandeln. Somit sind die in den im Stand der Technik offenbarten Ver- fahren verwendeten Säuren, insbesondere Polyphosphorsäure gegebenenfalls unter Zusatz von Diphosphorpentoxid P2O5 nicht erforderlich. Die in Gegenwart von ionischen Flüssigkei- ten erhaltenen Fasern, Folien und Formkörper aus Polybenzazolpolymeren (P), vorzugs- weise PBO, weisen dadurch eine erhöhte Beständigkeit gegenüber Alterungsprozessen und äußeren Umwelteinflüssen, beispielsweise Hydrolyse oder UV-Strahleneinwirkung auf.
Durch die Verwendung von ionischen Flüssigkeiten sind aufwändige Abtrenn- oder Aufreini- gungsverfahren zur Entfernung von Säureresten aus dem Polybenzazolpolymer, vorzugs- weise PBO, oder der Vorstufe des Polybenzazolpolymers nicht erforderlich, so dass eine umweltfreundlichere und kostengünstigere Prozessführung bei der Synthese bis hin zu den Weiterverarbeitungsverfahren zu Fasern, Folien und Formkörpern ermöglicht wird. Durch die Wiederverwendbarkeit der ionischen Flüssigkeiten bei der Herstellung der Polybenzazolpoly- mere (P) wird eine bedeutende Verbesserung der Prozessführung gegenüber den im Stand der Technik offenbarten Verfahren erreicht. Die vorliegende Erfindung wird nachfolgend im Detail erläutert.
Fasern, Folien und Formkörper aus Polybenzazolpolymer (P), vorzugsweise PBO, werden im erfindungsgemäßen Verfahren durch Umsetzen eines Reaktionsgemisches (RG) bei einer Temperatur im Bereich von 0 bis 120 °C unter Erhalt eines Produktgemisches (PVG), Verar- beiten des Produktgemisches (PVG), bei einer Temperatur Tv im Bereich von 0 bis 100 °C zu Fasern, Folien und Formkörpern mit den üblichen Verfahren und Erhitzen der so gewonne- nen Fasern, Folien und Formkörper auf eine Temperatur im Bereich von 250 bis 500 °C er- halten, welche das Polybenzazolpolymer (P), vorzugsweise PBO, enthalten.
Polybenzazolpolymere sind eine Klasse von Polymeren, die dem Fachmann prinzipiell be- kannt sind. Unter einem„Polybenzazolpolymer (P)“ wird im Rahmen der vorliegenden Erfin- dung ein Polymer verstanden, welches Wiederholungseinheiten aus Polybenzoxazol und/o- der Polybenzothiazol enthält.
Im Rahmen der vorliegenden Erfindung bezieht sich die Bezeichnung„Polybenzoxazol“ auf Polymere, die als Wiederholungseinheiten Oxazolringe und aromatische Gruppen enthalten. Die aromatischen Gruppen sind dabei nicht notwendigerweise Benzolringe.
Im Rahmen der vorliegenden Erfindung bezieht sich die Bezeichnung„Polybenzothiazol“ auf Polymere, die als Wiederholungseinheiten Thiazolringe und aromatische Gruppen enthalten. Die aromatischen Gruppen sind dabei nicht notwendigerweise Benzolringe.
Das Reaktionsgemisch (RG) ist das Gemisch, welches zur Herstellung des Polybenzazolpo- lymers (P) umgesetzt wird.
Das Reaktionsgemisch (RG) enthält als Komponenten mindestens eine aromatische Dicar- boxylverbindung der allgemeinen Formel (I) (Komponente (a)), mindestens eine aromatische Diaminoverbindung der allgemeinen Formel (lla), (Mb), (llc) und/oder (I Id) (Komponente (b)) sowie mindestens eine ionische Flüssigkeit (IL) (Komponente (c)).
Die Komponenten (a) und (b) sind in der Komponente (c) üblicherweise praktisch vollständig gelöst. Die Bezeichnung„praktisch vollständig gelöst“ bedeutet dabei, dass vorzugsweise höchstens 5 Gew-%, bevorzugt höchstens 3 Gew.-%, mehr bevorzugt höchstens 2 Gew.-% und besonders bevorzugt höchstens 1 Gew.-% der Komponenten (a) und (b) in der Kompo- nente (c) als Feststoffpartikel vorliegen, bezogen auf das Gesamtgewicht der Komponente (a) und (b) im Reaktionsgemisch (RG). Ganz besonders bevorzugt enthält die Komponente (c) gar keine Feststoffpartikel der Komponenten (a) und (b). Folglich können die Komponen- ten (a) und (b) ganz besonders bevorzugt nicht durch Filtration von der Komponente (c) ab- getrennt werden.
Das Lösen der Komponenten (a) und (b) in Komponente (c) kann durch alle dem Fachmann bekannten Methoden erfolgen. Vorzugsweise werden die Komponenten (a) und (b) unter Rühren in Komponente (c) gelöst. Das Lösen der Komponenten (a) und (b) in Komponente (c) kann gleichzeitig oder vorzugsweise nacheinander erfolgen, zum Beispiel zuerst Kompo- nente b) und dann a) oder umgekehrt, wobei die Variante zuerst Komponente b) und dann a) bevorzugt ist.
Die Komponenten (a) oder (b) werden in der Komponente (c) vorzugsweise bei erhöhten Temperaturen gelöst, bevorzugt im Bereich von 20 bis 120 °C und besonders bevorzugt im Bereich von 60 bis 90 °C.
Das Molverhältnis der Komponente (a) : Komponente (b) liegt im Bereich von 1 ,05 : 1 ,00 bis 1 ,01 : 1 ,00, vorzugsweise im Bereich von 1 ,01 : 1 ,00 bis 1 ,00 : 1 ,00.
Die Umsetzung der Komponente (a) mit der Komponente (b) in Gegenwart der Komponente (c) geschieht bei einer Temperatur im Bereich von 0 bis 120 °C, vorzugsweise im Bereich von 35 bis 100 °C, besonders bevorzugt im Bereich von 70 bis 80 °C. In einer bevorzugten Ausführungsform wird die Komponente (b) in der Komponente (c) gelöst vorgelegt und die Komponente (a) zu dieser Mischung zugegbeben, vorzugsweise in Portionen der beabsich- tigten Gesamtmenge. Üblicherweise führt die Umsetzung der Komponente (a) mit der Kom- ponente (b) in Gegenwart der Komponente (c) unter Rühren statt.
Umsetzung der Komponenten (a) und (b) unter den beschriebenen Bedingungen in Gegen- wart der Komponente (c) führt zu einer Vorstufe des Polybenzazolpolymers (P), vorzugs- weise des PBO, nämlich dem Produktgemisch (PVG). Die Komponente (c) dient als Lösungs- mittel und copolymerisiert dabei vorzugsweise nicht mit den Komponenten (a) und (b). Für den Fall, dass ein Teil der Komponente (c) mit den Komponenten (a) und (b) copolymerisiert, copolymerisiert bevorzugt höchstens 1 Gew.-%, besonders bevorzugt höchstens 0,5 Gew.-% der Komponente (c), bezogen auf das Gesamtgewicht der Komponente (c), mit den Kompo- nenten (a) und (b). Ganz besonders bevorzugt copolymerisiert die Komponente (c) gar nicht mit den Komponenten (a) und (b).
Das erfindungsgemäße Reaktionsgemisch (RG) kann in einer Ausführungsform mindestens eine basische Verbindung erhalten. Die mindestens eine basische Verbindung kann prinzipi- ell jede dem Fachmann bekannte basische Verbindung sein. Bevorzugt ist die mindestens eine basische Verbindung eine basische Alkali- oder Erdalkalimetallverbindung oder Amine. Besonders bevorzugt ist die mindestens eine basische Verbindung ausgewählt aus der Gruppe bestehend aus Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid, Magnesiumhyd- roxid, Calciumhydroxid, Bariumhydroxid, Lithiumcarbonat, Natriumcarbonat, Kaliumcarbonat, Magnesiumcarbonat, Calciumcarbonat, Lithiumhydrid, Natriumhydrid, Kaliumhydrid, Magne- siumhydrid, Calciumhydrid, Triethylamin, Tripropylamin, Tributylamin, N-Methylimidazol, N- Ethylimidazol. Ganz besonders bevorzugt ist die mindestens eine basische Verbindung (B) ausgewählt aus der Gruppe bestehend aus Natriumcarbonat, Kaliumcarbonat, Lithiumhydrid, Natriumhydrid, Magnesiumhydrid, Calciumhydrid, Triethylamin, Tripropylamin, Tributylamin, N-Methylimidazol, N-Ethylimidazol. Darüber hinaus kann das Reaktionsgemisch (RG) mindestens ein anorganisches Salz enthal- ten, welches sich von der vorstehend definierten mindestens einen basischen Verbindung unterscheidet. Das mindestens eine anorganische Salz kann prinzipiell jedes dem Fachmann bekannte anorganische Salz sein und kann genau ein anorganisches Salz als auch Mischun- gen aus zwei oder mehr verschiedenen anorganischen Salzen sein. Bevorzugt ist das min- destens eine anorganische Salz ein Alkali-, Erdalkali-, Aluminium-, Zinn(ll)-, Eisen(ll)- oder Mangan(ll)-Salz. Mehr bevorzugt ist das mindestens eine anorganische Salz ein Alkali-, Erdalkali-, Aluminium-, Zinn(ll)-, Eisen(ll)- oder Mangan(ll)-Halogenid. Besonders bevorzugt ist das mindestens eine anorganische Salz ausgewählt aus der Gruppe bestehend aus Lithi- umchlorid, Lithiumbromid, Lithiumiodid, Natriumchlorid, Natriumbromid, Natriumiodid, Kali- umchlorid, Kaliumbromid, Kaliumiodid, Magnesiumchlorid, Magnesiumbromid, Magnesiumio- did, Calciumchlorid, Calciumbromid, Calciumiodid, Bariumchlorid, Bariumbromid, Bariumio- did, Aluminiumchlorid, Aluminiumbromid, Aluminiumiodid, Zinn(ll)chlorid, Zinn(ll)bromid, Zinn(ll)iodid, Eisen(ll)chlorid, Eisen(ll)bromid, Eisen(ll)iodid, Mangan(ll)chlorid, Man- gan(ll)bromid und Mangan (ll)iodid. Ganz besonders bevorzugt ist das mindestens eine an- organische Salz ausgewählt aus der Gruppe bestehend aus Lithiumchlorid, Natriumchlorid, Kaliumchlorid, Magnesiumchlorid, Calciumchlorid, Aluminiumchlorid, Zinn(ll)chlorid, Ei- sen(ll)chlorid und Mangan(ll)chlorid.
Während der Umsetzung des Reaktionsgemisches (RG) können flüchtige Nebenprodukte entstehen, die vorzugsweise bereits während der Umsetzung des Reaktionsgemisches (RG) stetig abgetrennt werden. Als„flüchtige Nebenprodukte“ werden im Rahmen der vorliegen- den Erfindung alle bei der Umsetzung des Reaktionsgemisches (RG) entstehenden Verbin- dungen verstanden, die einen Siedepunkt unterhalb von 200 °C, bevorzugt unterhalb von 150 °C und besonders bevorzugt unterhalb von 120 °C aufweisen. Bevorzugte flüchtige Ne- benprodukte umfassen beispielsweise Wasser (Reaktionswasser) oder Halogenwasser- stoffe. Die Abtrennung der flüchtigen Nebenprodukte kann prinzipiell nach allen dem Fach- mann bekannten Methoden erfolgen. In einer bevorzugten Ausführungsform werden die flüchtigen Nebenprodukte während der Umsetzung des Reaktionsgemisches (RG) stetig ab- destilliert, gegebenenfalls unter stetiger Zuführung eines Stickstoffstroms.
Sämtliche nachfolgenden Angaben bezüglich des Reaktionsgemisches (RG) beziehen sich auf das Gemisch vor dem Durchführen der Umsetzung; die Umsetzung wird im folgenden auch„Additionsreaktion“ genannt. In der Additionsreaktion wird das Reaktionsgemisch (RG) zu dem Produktgemisch (PVG) umgesetzt, welches das Additionsprodukt, hierin auch„Ara- mid“ genannt, beispielsweise Poly(ortho-hydroxy)aramid, und die mindestens eine ionische Flüssigkeit (IL) enthält. Folglich beziehen sich sämtliche Angaben bezüglich des Produktge- misches (PVG) auf das Gemisch nach dem Durchführen der Additionsreaktion.
Das Reaktionsgemisch (RG) enthält vorzugsweise 5 Gew.-% bis 25 Gew.-% der Komponente (a), 5 Gew.-% bis 25 Gew.-% der Komponente (b) und 50 Gew.-% bis 90 Gew.-% der Kom- ponente (c), bezogen auf das Gesamtgewicht des Reaktionsgemisches (RG). Bevorzugt enthält das Reaktionsgemisch (RG) 8 Gew.-% bis 18 Gew.-% der Komponente (a), 8 Gew.-% bis 18 Gew.-% der Komponente (b) und 64 Gew.-% bis 84 Gew.-% der Kompo- nente (c), bezogen auf das Gesamtgewicht des Reaktionsgemisches (RG) und besonders bevorzugt enthält das Reaktionsgemisch (RG) 10 Gew.-% bis 15 Gew.-% der Komponente (a), 10 Gew.-% bis 15 Gew.-% der Komponente (b) und 70 Gew.-% bis 80 Gew.-% der Kom- ponente (c), bezogen auf das Gesamtgewicht des Reaktionsgemisches (RG).
In einer weiteren Ausführungsform kann das Reaktionsgemisch (RG) als Comonomer zusätz- lich mindestens eine lineare oder verzweigte aliphatische Dicarboxylverbindung enthalten. Die mindestens eine lineare oder verzweigte aliphatische Dicarboxylverbindung enthält be- vorzugt 2 bis 20 Kohlenstoffatome. Besonders bevorzugte lineare oder verzweigte aliphati sche Dicarboxylverbindungen sind Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Suberinsäure, Azelainsäure, Sebacinsäure sowie deren ver- zweigte Isomere.
Das Produktgemisch (PVG) enthält im allgemeinen vorzugsweise 5 Gew.-% bis 25 Gew.-%, bevorzugt 10 Gew.-% bis 22 Gew.-% und besonders bevorzugt 12 Gew.-% bis 20 Gew.-% des Aramids, bezogen auf das Gesamtgewicht des Produktionsgemisches (PVG).
Das Aramid ist in der mindestens einen ionischen Flüssigkeit (IL) vorzugsweise zumindest teilweise gelöst. Bevorzugt sind mindestens 40 Gew.-%, besonders bevorzugt mindestens 60 Gew.-% und ganz besonders bevorzugt mindestens 80 Gew.-% des Aramids in der min- destens einen ionischen Flüssigkeit (IL) gelöst, bezogen auf das Gesamtgewicht des Ara- mids im Produktgemisch (PVG). Ganz besonders bevorzugt ist das Aramid für die Weiterver- arbeitung zu Fasern oder Folien, insbesondere zu Fasern, praktisch vollständig in der min- destens einen ionischen Flüssigkeit (IL) gelöst. Die Bezeichnung„praktisch vollständig ge- löst“ bedeutet dabei, dass vorzugsweise höchstens 5 Gew-%, bevorzugt höchstens 3 Gew.- %, mehr bevorzugt höchstens 2 Gew.-% und besonders bevorzugt höchstens 1 Gew.-% des Aramids in der mindestens einen ionischen Flüssigkeit (IL) als Feststoffpartikel vorliegen, be- zogen auf das Gesamtgewicht des Aramids im Produktgemisch (PVG). Ganz besonders be- vorzugt enthält die mindestens eine ionische Flüssigkeit (IL) gar keine Feststoffpartikel des Aramids. Folglich kann das Aramid ganz besonders bevorzugt nicht durch Filtration von der mindestens einen ionischen Flüssigkeit (IL) abgetrennt werden.
Das Aramid kann vom Produktgemisch (PVG) nach allen dem Fachmann bekannten Metho- den abgetrennt werden. Beispielsweise kann das Aramid durch Zugabe eines geeigneten Fällungsmittels aus dem Produktgemisch (PVG) ausgefällt werden. Geeignete Fällungsmittel sind dem Fachmann prinzipiell bekannt und umfassen aprotische oder protische polare Lö- sungsmittel, vorzugsweise protische polare Lösungsmittel wie Wasser, Methanol, Ethanol, n- Propanol, Isopropanol, Glycerol, Ethylenglycol oder Gemische davon.
Die Komponenten (a), (b), und (c) werden nachfolgend im Detail erläutert. Komponente (a)
Das Reaktionsgemisch (RG) enthält mindestens eine aromatische Dicarboxylverbindung der allgemeinen Formel (I) als Komponente (a).
Die Bezeichungen„Komponente (a)“,„mindestens eine aromatische Dicarboxylverbindung der allgemeinen Formel (I)“ sowie„mindestens eine aromatische Dicarboxylverbindung (I)“ werden dabei nachfolgend synonym verwendet.
Die Bezeichnung„mindestens eine aromatische Dicarboxylverbindung der allgemeinen For- mel (I)“ bezieht sich dabei auf genau eine aromatische Dicarboxylverbindung der allgemei- nen Formel (I), als auch Mischungen von zwei oder mehreren verschiedenen aromatischen Dicarboxylverbindungen der allgemeinen Formel (I). Geeignete aromatische Dicarboxylver- bindungen der allgemeinen Formel (I) sind dem Fachmann prinzipiell bekannt.
Die im erfindungsgemäßen Verfahren eingesetzte mindestens eine aromatische Dicarboxyl- verbindung weist die allgemeine Formel (I) auf:
Figure imgf000012_0001
in der
Ar1 ausgewählt ist aus der Gruppe bestehend aus unsubstituiertem oder zumindest mo- nosubstituiertem Phenylen, Naphthalindiyl, Anthracendiyl, Biphenyldiyl, Diphenylmethandiyl, Diphenyletherdiyl, Diphenylthioetherdiyl, Diphenyl-sulfondiyl, Benzophenondiyl, Pyridindiyl, Pyrimidindiyl, Furandiyl und Thiophendiyl, wobei die Substituenten ausgewählt sind aus der Gruppe bestehend aus -F,
-CI, -Br, -OR1 und -Ci-Cio-Alkyl, wobei R1 -H oder -Ci-Cio-Alkyl ist;
X1, X2 unabhängig voneinander ausgewählt sind der Gruppe bestehend aus -OR2, -F, -CI und -Br, wobei R2 -H, -Ci-Cio-Alkyl, -Ci-Cio-Alkenyl oder eine Wiederholungseinheit der allgemeinen Formel (la) ist:
Figure imgf000013_0001
in der m eine natürliche Zahl von 1 bis 50 ist, und R3 -H, -Ci-Cio-Alkyl oder -Ci-Cio-Alkenyl ist.
Die im erfindungsgemäßen Verfahren eingesetzte mindestens eine aromatische Dicarboxyl- verbindung der allgemeinen Formel (I) enthält bevorzugt zwei funktionelle Gruppen, die un- abhängig voneinander ausgewählt sind aus der Gruppe bestehend aus Carboxylgruppen (- CO2H), Carbonsäurefluoride (-COF), Carbonsäurechloride (-OCI), Carbonsäurebromide (- COBr), Carbonsäureester (-CO2R2, wobei R2 eine Ci-Cio-Alkylgruppe oder eine Ci-Cio-Alke- nylgruppe ist) und Carbonsäureanhydride (-CO2R2, wobei R2 eine Wiederholungseinheit der vorstehend definierten allgemeinen Formel (la) ist).
Ar1 ist im erfindungsgemäßen Verfahren ausgewählt aus der Gruppe bestehend aus unsub- stituiertem oder zumindest monosubstituiertem Phenylen, Naphthalindiyl, Anthracendiyl, Biphenyldiyl, Diphenylmethandiyl, Diphenyletherdiyl, Diphenyl-thioetherdiyl, Diphenylsulfon- diyl, Benzophenondiyl, Pyridindiyl, Pyrimidindiyl, Furandiyl und Thiophendiyl. Entsprechende geeignete aromatische Dicarboxylverbindungen der allgemeinen Formel (I) sind dem Fach- mann prinzipiell bekannt. Prinzipiell können im erfindungsgemäßen Verfahren alle dem Fachmann bekannten entsprechenden aromatischen Dicarboxylverbindungen der allgemei- nen Formel (I) eingesetzt werden.
Für den Rest Ar1 geeignete unsubstituierte oder zumindest monosubstituierte Phenylengrup- pen sind beispielsweise ausgewählt aus der Gruppe bestehend aus 1 ,2-Phenylen, 1 ,3-Phe- nylen und 1 ,4-Phenylen, bevorzugt 1 ,4-Phenylen. Vorzugsweise sind die Phenylengruppen unsubstituiert. Entsprechende aromatische Dicarboxylverbindungen (I) mit einer Phenylen- gruppe als Rest Ar1 umfassen beispielsweise Phthalsäure, Isophthalsäure, Terephthalsäure, Phthalsäureanhydrid, Phthalsäuredifluorid, Phthalsäuredichlorid, Phthalsäuredibromid, Isophthalsäure-anhydrid, Isophthalsäuredifluorid, Isophthalsäuredichlorid, Isophthalsäure- dibromid, Terephthalsäureanhydrid, Terephthalsäuredifluorid, Terephthalsäuredichlorid, Terephthalsäuredibromid, Polyanhydride von Phthalsäure, Polyanhydride von Isophthal- säure, Polyanhydride von Terephthalsäure sowie Ci-Cio-Alkylester von Phthalsäure, Isoph- thalsäure und Terephthalsäure und Ci-Cio-Alkenylester von Phthalsäure, Isophthalsäure und Terephthalsäure. Für den Rest Ar1 geeignete unsubstituierte oder zumindest monosubstituierte Naphthalin- diylgruppen sind beispielsweise ausgewählt aus der Gruppe bestehend aus Naphthalin-1 ,4- diyl, Naphthalin-1 ,5-diyl, Naphthalin-2,6-diyl und Naphthalin-2,7-diyl, bevorzugt Naphthalin-
1.4-diyl und Naphthalin-2,6-diyl. Vorzugsweise sind die Naphthalingruppen unsubstituiert. Entsprechende aromatische Dicarboxyl-verbindungen (I) mit einer Naphthalindiylgruppe als Rest Ar1 umfassen beispielsweise Naphthalin-1 ,4-dicarbonsäure, Naphthalin-1 ,5-dicarbon- säure, Naphthalin-2,6-dicarbon-säure, Naphthalin-2,7-dicarbonsäure, Naphthalin-1 ,4-dicar- bonsäureanhydrid, Naph-thalin-1 ,4-dicarbonsäuredifluorid, Naphthalin-1 ,4-dicarbonsäure- dichlorid, Naphthalin-1 ,4-dicarbonsäuredibromid, Naphthalin-1 ,5-dicarbonsäureanhydrid, Naphthalin-1 ,5-dicarbonsäuredifluorid, Naphthalin-1 ,5-dicarbonsäuredichlorid, Naphthalin-
1.5-dicarbonsäuredibromid, Naphthalin-2,6-dicarbonsäureanhydrid, Naphthalin-2,6-dicarbon- säuredifluorid, Naphthalin-2,6-dicarbonsäuredichlorid, Naphthalin-2,6-dicarbonsäuredibro- mid, Naphthalin-2,7-dicarbonsäureanhydrid, Naphthalin-2,7-dicarbonsäuredifluorid, Naphtha- lin-2,7-dicarbonsäuredichlorid, Naphthalin-2,7-dicarbonsäuredibromid, Polyanhydride von Naphthalin-1 ,4-dicarbonsäure, Polyanhydride von Naphthalin-1 ,5-dicarbonsäure, Polyanhyd- ride von Naphthalin-2,6-dicarbonsäure, Polyanhydride von Naphthalin-2,7-dicarbonsäure so- wie Ci-Cio-Alkylester von Naphthalin-1 ,4-dicarbonsäure, Naphthalin-1 ,5-dicarbonsäure, Naphthalin-2,6-dicarbon-säure und Naphthalin-2,7-dicarbonsäure und Ci-Cio-Alkenylester von Naphthalin-1 ,4-dicarbonsäure, Naphthalin-1 ,5-dicarbonsäure, Naphthalin-2,6-dicarbon- säure und Naphthalin-2,7-dicarbonsäure.
Für den Rest Ar1 geeignete unsubstituierte oder zumindest monosubstituierte Anthracen- diylgruppen sind beispielsweise ausgewählt aus der Gruppe bestehend aus Anthracen-1 ,4- diyl, Anthracen-1 ,5-diyl, Anthracen-2,6-diyl und Anthracen-9,10-diyl, bevorzugt Anthracen-
2.6-diyl und Anthracen-9,10-diyl. Vorzugsweise sind die Anthracengruppen unsubstituiert. Entsprechende aromatische Dicarboxylverbindungen (I) mit einer Anthracendiylgruppe als Rest Ar1 umfassen beispielsweise Anthracen-1 ,4-dicarbonsäure, Anthracen-1 ,5-dicarbon- säure, Anthracen-2,6-dicarbonsäure, Anthracen-9,10-dicarbonsäure, Anthracen-1 ,4-dicar- bonsäuredifluorid, Anthracen-1 ,4-dicarbonsäureanhydrid, Anthracen-1 ,4-dicarbonsäuredich- lorid, Anthracen-1 ,4-dicarbonsäuredibromid, Anthracen-1 ,5-dicarbonsäureanhydrid, Anth- racen-1 ,5-dicarbonsäuredifluorid, Anthracen-1 ,5-di-carbonsäuredichlorid, Anthracen-1 ,5-di- carbonsäuredibromid, Anthracen-2,6-dicarbonsäureanhydrid, Anthracen-2,6-dicarbonsäure- difluorid, Anthracen-2,6-dicarbonsäuredichlorid, Anthracen-2,6-dicarbonsäuredibromid, Anth- racen-9,10-dicarbonsäureanhydrid, Anthracen-9,10-dicarbonsäuredifluorid, Anthracen-9,10- dicarbonsäuredichlorid, Anthracen-9,10-dicarbonsäuredibromid, Polyanhydride von Anth- racen-1 ,4-dicarbonsäure, Polyanhydride von Anthracen-1 ,5-dicarbonsäure, Polyanhydride von Anthracen-2,6-dicarbonsäure, Polyanhydride von Anthracen-9,10-dicarbonsäure sowie Ci-Cio-Alkylester von Anthracen-1 ,4-dicarbonsäure, Anthracen-1 ,5-dicarbonsäure, Anth- racen-2,6-dicarbonsäure und Anthracen-9,10-dicarbonsäure und Ci-Cio-Alkenylester von Anthracen-1 ,4-dicarbonsäure, Anthracen-1 ,5-dicarbonsäure, Anthracen-2,6-dicarbonsäure und Anthracen-9,10-dicarbonsäure. Für den Rest Ar1 geeignete unsubstituierte oder zumindest monosubstituierte Biphe- nyldiylgruppen sind beispielsweise ausgewählt aus der Gruppe bestehend aus Biphenyl- 3,3‘-diyl und Biphenyl-4,4‘-diyl, bevorzugt Biphenyl-4,4‘-diyl. Vorzugsweise sind die Biphe- nyldiylgruppen unsubstituiert. Entsprechende aromatische Dicarboxyl-verbindungen mit einer Biphenyldiylgruppe als Rest Ar1 umfassen beispielsweise Biphenyl-3,3‘-dicarbonsäure, Biphenyl-4,4‘-dicarbonsäure, Biphenyl-3,3‘-dicarbon-säureanhydrid, Biphenyl-3,3‘-dicarbon- säuredifluorid, Biphenyl-3,3‘-dicarbonsäure-dichlorid, Biphenyl-3,3‘-dicarbonsäuredibromid, Biphenyl-4,4‘-dicarbonsäureanhydrid Biphenyl-4,4‘-dicarbonsäuredifluorid, Biphenyl-4,4‘-di- carbonsäuredichlorid, Biphenyl-4,4‘-dicarbonsäuredibromid, Polyanhydride von Biphenyl- 3,3‘-dicarbonsäure, Polyanhydride von Biphenyl-4,4‘-dicarbonsäure sowie Ci-Cio-Alkylester von Biphenyl-3,3‘-dicarbonsäure und Biphenyl-4,4‘-dicarbonsäure und Ci-Cio-Alkenylester von Biphenyl-3,3‘-dicarbonsäure und Biphenyl-4,4‘-dicarbonsäure.
Für den Rest Ar1 geeignete unsubstituierte oder zumindest monosubstituierte Diphenylmet- handiylgruppen sind beispielsweise ausgewählt aus der Gruppe bestehend aus Diphenylme- than-3,3‘-diyl und Diphenylmethan-4,4‘-diyl, bevorzugt Diphenylmethan-4,4‘-diyl. Vorzugs- weise sind die Diphenylmethandiylgruppen unsubstituiert. Entsprechende aromatische Di- carboxylverbindungen (I) mit einer Diphenylmethandiylgruppe als Rest Ar1 umfassen bei- spielsweise Diphenylmethan-3,3‘-dicarbonsäure, Diphenylmethan-4,4‘-dicarbonsäure, Diphe- nylmethan-3,3‘-di-carbonsäureanhydrid, Diphenylmethan-3,3‘-dicarbonsäuredifluorid, Diphe- nylmethan-3,3‘-dicarbonsäuredichlorid, Diphenylmethan-3,3‘-dicarbonsäuredibromid, Diphe- nyl-methan-4,4‘-dicarbonsäureanhydrid, Diphenylmethan-4,4‘-dicarbonsäuredifluorid, Diphe- nylmethan-4,4‘-dicarbonsäuredichlorid, Diphenylmethan-4,4‘-dicarbonsäure-dibromid, Poly- anhydride von Diphenylmethan-3,3‘-dicarbonsäure, Polyanhydride von Diphenylmethan-4,4‘- dicarbonsäure sowie Ci-Cio-Alkylester von Diphenylmethan-3,3‘-dicarbonsäure und Diphe- nylmethan-4,4‘-dicarbonsäure und Ci-Cio-Alkenylester von Diphenylmethan-3,3‘-dicarbon- säure und Diphenylmethan-4,4‘-dicarbonsäure.
Für den Rest Ar1 geeignete unsubstituierte oder zumindest monosubstituierte Diphenylet- herdiylgruppen sind beispielsweise ausgewählt aus der Gruppe bestehend aus Diphe- nylether-3,3‘-diyl und Diphenylether-4,4‘-diyl, bevorzugt Diphenylether-4,4‘-diyl. Vorzugs- weise sind die Diphenyletherdiylgruppen unsubstituiert. Entsprechende aromatische Dicar- boxylverbindungen (I) mit einer Diphenyl-etherdiylgruppe als Rest Ar1 umfassen beispiels- weise Diphenylether-3,3‘-di-carbonsäure, Diphenylether-4,4‘-dicarbonsäure, Diphenylether- 3,3‘-dicarbonsäure-anhydrid, Diphenylether-3,3‘-dicarbonsäuredifluorid, Diphenylether- 3,3‘-dicarbonsäure-dichlorid, Diphenylether-3,3‘-dicarbonsäuredibromid, Diphenylether-4,4‘- dicarbonsäure-anhydrid, Diphenylether-4,4‘-dicarbonsäuredifluorid, Diphenylether-4,4‘-dicar- bonsäure-dichlorid, Diphenylether-4,4‘-dicarbonsäuredibromid, Polyanhydride von Diphe- nylether-3,3‘-dicarbonsäure, Polyanhydride von Diphenylether-4,4‘-dicarbonsäure sowie Cr Cio-Alkylester von Diphenylether-3,3‘-dicarbonsäure und Diphenylether-4,4‘-dicarbonsäure und Ci-Cio-Alkenylester von Diphenylether-3,3‘-dicarbonsäure und Diphenylether-4,4‘-dicar- bonsäure. Für den Rest Ar1 geeignete unsubstituierte oder zumindest monosubstituierte Diphenylthioet- herdiylgruppen sind beispielsweise ausgewählt aus der Gruppe bestehend aus Diphenylthio- ether-3,3‘-diyl und Diphenylthioether-4,4‘-diyl, bevorzugt Diphenylthioether-4,4‘-diyl. Vor- zugsweise sind die Diphenylthioetherdiylgruppen unsubstituiert. Entsprechende aromatische Dicarboxylverbindungen (I) mit einer Diphenylthioetherdiylgruppe als Rest Ar1 umfassen bei- spielsweise Diphenylthioether-3,3‘-dicarbonsäure, Diphenylthioether-4,4‘-dicarbonsäure, Diphenylthioether-3,3‘-di-carbonsäuredifluorid, Diphenylthioether-3,3‘-dicarbonsäureanhyd- rid, Diphenylthioether-3,3‘-dicarbonsäuredichlorid, Diphenylthioether-3,3‘-dicarbonsäure- dibromid, Diphenyl-thioether-4,4‘-dicarbonsäureanhydrid, Diphenylthioether-4,4‘-dicarbon- säuredifluorid, Diphenylthioether-4,4‘-dicarbonsäuredichlorid, Diphenylthioether-4,4‘-dicar- bonsäure-dibromid, Polyanhydride von Diphenylthioether-3,3‘-dicarbonsäure, Polyanhydride von Diphenylthioether-4,4‘-dicarbonsäure sowie Ci-Cio-Alkylester von Diphenylthioether- 3,3‘-dicarbonsäure und Diphenylthioether-4,4‘-dicarbonsäure und Ci-Cio-Alkenylester von Diphenylthioether-3,3‘-dicarbonsäure und Diphenylthioether-4,4‘-dicarbonsäure.
Für den Rest Ar1 geeignete unsubstituierte oder zumindest monosubstituierte Diphenylsul- fondiylgruppen sind beispielsweise ausgewählt aus der Gruppe bestehend aus Diphenylsul- fon-3,3‘-diyl und Diphenylsulfon-4,4‘-diyl, bevorzugt Diphenyl-sulfon-4,4‘-diyl. Vorzugsweise sind die Diphenylsulfondiylgruppen unsubstituiert. Entsprechende aromatische Dicarboxyl- verbindungen (I) mit einer Diphenyl-sulfondiylgruppe als Rest Ar1 umfassen beispielsweise Diphenylsulfon-3,3‘-dicarbonsäure, Diphenylsulfon-4,4‘-dicarbonsäure, Diphenylsulfon- 3,3‘-dicarbon-säureanhydrid, Diphenylsulfon-S^'-dicarbonsäuredifluorid, Diphenylsulfon- 3,3‘-di-carbonsäuredichlorid, Diphenylsulfon-3,3‘-dicarbonsäuredibromid, Diphenylsulfon- 4,4‘-dicarbonsäure, Diphenylsulfon-4,4‘-dicarbonsäuredifluorid, Diphenylsulfon-4,4‘-dicarbon- säuredichlorid, Diphenylsulfon-4,4‘-dicarbonsäuredibromid, Polyanhydride von Diphenylsul- fon-3,3‘-dicarbonsäure, Polyanhydride von Diphenylsulfon-4,4‘-dicarbon-säure, sowie C1-C10- Alkylester von Diphenylsulfon-3,3‘-dicarbonsäure und Diphenyl-sulfon-4,4‘-dicarbonsäure und Ci-Cio-Alkenylester von Diphenylsulfon-3,3‘-dicarbonsäure und Diphenylsulfon-4,4‘-di- carbonsäure.
Für den Rest Ar1 geeignete unsubstituierte oder zumindest monosubstituierte Benzophenon- diylgruppen sind beispielsweise ausgewählt aus der Gruppe bestehend aus Benzophenon- 3,3‘-diyl und Benzophenon-4,4‘-diyl, bevorzugt Benzo-phenon-4,4‘-diyl. Vorzugsweise sind die Benzophenondiylgruppen unsubstituiert. Entsprechende aromatische Dicarboxylverbin- dungen (I) mit einer Benzo-phenondiylgruppe als Rest Ar1 umfassen beispielsweise Benzo- phenon-3,3‘-dicarbonsäure, Benzophenon-4,4‘-dicarbonsäure, Benzophenon-3,3‘-dicarbon- säureanhydrid, Benzophenon-3,3‘-dicarbonsäuredifluorid, Benzophenon-3,3‘-dicarbon-säure- dichlorid, Benzophenon-3,3‘-dicarbonsäuredibromid, Benzophenon-4,4‘-dicarbon-säurean- hydrid, Benzophenon-4,4‘-dicarbonsäuredifluorid, Benzophenon-4,4‘-dicarbon-säuredichlo- rid, Benzophenon-4,4‘-dicarbonsäuredibromid, Polyanhydride von Benzophenon-3,3‘-dicar- bonsäure, Polyanhydride von Benzophenon-4,4‘-dicarbon-säure sowie Ci-Cio-Alkylester von Benzophenon-3,3‘-dicarbonsäure und Benzophenon-4,4‘-dicarbonsäure und Ci-Cio-Alke- nylester von Benzophenon-3,3‘-dicarbonsäure und Benzophenon-4,4‘-dicarbonsäure. Für den Rest Ar1 geeignete unsubstituierte oder zumindest monosubstituierte Pyridin- diylgruppen sind beispielsweise ausgewählt aus der Gruppe bestehend aus Py ri d i n-2 , 5-d iyl , Pyridin-2,6-diyl und Pyridin-3,5-diyl, bevorzugt Pyrid i n-2 , 5-d iyl . Vorzugsweise sind die Pyri- dindiylgruppen unsubstituiert. Entsprechende aromatische Dicarboxylverbindungen (I) mit ei- ner Pyridindiylgruppe als Rest Ar1 umfassen beispielsweise Pyridin-2,5-dicarbonsäure, Pyri- din-2,6-dicarbonsäure, Pyridin-3,5-carbonsäure, Pyridin-2,5-dicarbonsäureanhydrid, Pyridin-
2.5-dicarbonsäuredifluorid, Pyridin-2,5-dicarbonsäuredichlorid, Pyridin-2,5-dicarbonsäure- dibromid, Pyridin-2,6-dicarbonsäureanhydrid, Pyridin-2,6-dicarbonsäuredifluorid, Pyridin-
2.6-dicarbon-säuredichlorid, Pyridin-2,6-dicarbonsäuredibromid, Pyridin-3,5-dicarbonsäure- anhydrid, Pyridin-3,5-dicarbonsäuredifluorid, Pyridin-3,5-dicarbonsäuredichlorid, Pyridin- 3,5-dicarbonsäuredibromid, Polyanhydride von Pyridin-2,5-dicarbonsäure, Poly-anhydride von Pyridin-2,6-dicarbonsäure, Polyanhydride von Pyridin-3,5-dicarbonsäure sowie C1-C10- Alkylester von Pyridin-2,5-dicarbonsäure, Pyridin-2,6-dicarbonsäure und Pyridin-3,5-dicar- bonsäure und Ci-Cio-Alkenylester von Pyridin-2,5-dicarbonsäure, Pyridin-2,6-dicarbonsäure und Pyridin-3,5-dicarbonsäure.
Für den Rest Ar1 geeignete unsubstituierte oder zumindest monosubstituierte Pyrimidin- diylgruppen sind beispielsweise ausgewählt aus der Gruppe bestehend aus Pyrimidin-2,4- diyl, Py ri m i d i n-2 , 5-d iyl und Pyrimidin-4,6-diyl, bevorzugt Py ri m i d i n-4 , 6-d iyl . Vorzugsweise sind die Pyrimidindiylgruppen unsubstituiert. Entsprechende aromatische Dicarboxylverbin- dungen (I) mit einer Pyrimidindiylgruppe als Rest Ar1 umfassen beispielsweise Pyrimidin-
2.4-dicarbonsäure, Pyrimidin-2,5-dicarbonsäure, Pyrimidin-4,6-dicarbonsäure, Pyrimidin-
2.4-dicarbonsäureanhydrid, Pyrimidin-2,4-dicarbonsäuredifluorid, Pyrimidin-2,4-dicarbonsäu- redichlorid, Pyrimidin-2,4-dicarbonsäuredibromid, Pyrimidin-2,5-dicarbonsäureanhydrid, Pyri- midin-2,5-dicarbonsäuredifluorid, Pyrimidin-2,5-dicarbonsäuredichlorid, Pyrimidin-2,5-dicar- bonsäuredibromid, Pyrimidin-4,6-dicarbonsäureanhydrid, Pyrimidin-4,6-dicarbonsäuredifluo- rid, Pyrimidin-4,6-dicarbonsäuredichlorid, Pyrimidin-4,6-dicarbonsäuredibromid, Polyanhyd- ride von Pyrimidin-2,4-dicarbonsäure, Polyanhydride von Pyrimidin-2,5-dicarbonsäure, Poly- anhydride von Pyrimidin-4,6-dicarbonsäure sowie Ci-Cio-Alkylester von Pyrimidin-2,4-dicar- bonsäure, Pyrimidin-2,5-dicarbonsäure und Pyrimidin-4,6-dicarbonsäure und Ci-Cio-Alke- nylester von Pyrimidin-2,4-dicarbonsäure, Pyrimidin-2,5-dicarbonsäure und Pyrimidin-4,6-di- carbonsäure.
Für den Rest Ar1 geeignete unsubstituierte oder zumindest monosubstituierte Furandiylgrup- pen sind beispielsweise ausgewählt aus Furan-2,5-diyl. Vorzugsweise ist die
Furandiylgruppe unsubstituiert. Entsprechende aromatische Dicarboxylverbindungen (I) mit einer Furandiylgruppe als Rest Ar1 umfassen beispielsweise Furan-2,5-dicarbonsäure, Furan-2,5-dicarbonsäureanhydrid, Furan-2,5-dicarbonsäuredifluorid, Furan-2,5-dicarbonsäu- redichlorid, Furan-2,5-dicarbonsäure-dibromid, Polyanhydride von Furan-2,5-dicarbonsäure, Ci-Cio-Alkylester von Furan-2,5-dicarbonsäure und Ci-Cio-Alkenylester von Furan-2,5-dicar- bonsäure. Für den Rest Ar1 geeignete unsubstituierte oder zumindest monosubstituierte Thiophen- diylgruppen sind beispielsweise ausgegewählt aus Thiophen-2,5-diyl. Vorzugsweise ist die Thiophendiylgruppe unsubstituiert. Entsprechende aromatische Dicarboxylverbindungen (I) mit einer Thiophendiylgruppe als Rest Ar1 umfassen beispielsweise Thiophen-2,5-dicarbon- säure, Thiophen-2,5-dicarbonsäureanhydrid, Thiophen-2,5-dicarbonsäuredifluorid, Thiophen-
2.5-dicarbonsäuredichlorid, Thiophen-2,5-dicarbonsäuredibromid, Polyanhydride von Thio- phen-2,5-dicarbonsäure,
Ci-Cio-Alkylester von Thiophen-2,5-dicarbonsäure und Ci-Cio-Alkenylester von Thiophen-
2.5-dicarbonsäure.
Bevorzugt ist der Rest Ar1 ausgewählt aus der Gruppe bestehend aus unsubstituiertem oder zumindest monosubstituiertem 1 ,3-Phenylen, 1 ,4-Phenylen, Naphthalin-1 ,4-diyl, Naphthalin-
2.6-diyl, Anthracen-2,6-diyl, Anthracen-9,10-diyl, Biphenyl-4,4‘-diyl, Diphenylmethan-4,4‘-diyl, Diphenylether-4,4‘-diyl, Diphenylthioether-4,4‘-diyl, Diphenylsulfon-4,4‘-diyl, Benzophenon- 4,4‘-diyl, Pyridin-2,5-diyl, Pyrimidin-4,6-diyl, Furan-2,5-diyl und Thiophen-2,5-diyl. Besonders bevorzugt sind die vorstehend genannten Reste unsubstituiert.
Gegenstand der vorliegenden Erfindung ist somit auch ein Verfahren, dadurch gekennzeich- net, dass Ar1 ausgewählt ist aus der Gruppe bestehend aus unsubstituiertem oder zumindest monosubstituiertem 1 ,3-Phenylen, 1 ,4-Phenylen, Naphthalin-1 ,4-diyl, Naphthalin-2,6-diyl, Anthracen-2,6-diyl, Anthracen-9,10-diyl, Biphenyl-4,4‘-diyl, Diphenylmethan-4,4‘-diyl, Diphe- nylether-4,4‘-diyl, Diphenylthioether-4,4‘-diyl, Diphenylsulfon-4,4‘-diyl, Benzophenon-4,4‘-diyl, Pyridin-2,5-diyl, Pyrimidin-4,6-diyl, Furan-2,5-diyl und Thiophen-2,5-diyl.
Die Bezeichnung„unsubstituiert“ bedeutet im Rahmen der vorliegenden Erfindung, dass der Rest Ar1 neben den in der allgemeinen Formel (I) dargestellten funktionellen Gruppen (- COX1 und -COX2) keine weiteren Substituenten außer Wasserstoff (-H) aufweist.
Die Bezeichnung„zumindest monosubstituiert“ bedeutet im Rahmen der vorliegenden Erfin dung, dass der Rest Ar1 neben den in der allgemeinen Formel (I) dargestellten funktionellen Gruppen, genau einen Substituenten oder auch zwei oder mehr Substituenten zusätzlich zu den in der allgemeinen Formel (I) dargestellten Carboxylgruppen aufweisen kann.
Bevorzugte Ci-Cio-Alkylgruppen umfassen lineare und verzweigte, gesättigte Alkylgruppen mit 1 bis 10 Kohlenstoffatomen. Besonders bevorzugte Ci-Cio-Alkylgruppen sind dabei Cr C6-Alkyl gruppen wie Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sec-Butyl, 2- oder 3-Methyl- pentyl oder längerkettige Gruppen wie n-Heptyl,
n-Octyl, n-Nonyl oder n-Decyl sowie deren verzweigte Isomere.
Bevorzugte Ci-Cio-Alkenylgruppen umfassen lineare und verzweigte zumindest einfach un- gesättigte Alkylgruppen mit 1 bis 10 Kohlenstoffatomen. Besonders bevorzugte Ci-Cio-Alke- nylgruppen sind dabei Vinyl, Allyl, Isopropenyl, 1-Butenyl, Crotyl, 3-Butenyl, 1 ,3-Butadienyl oder längerkettige Gruppen wie Pentenyl, Pentadienyl, Hexenyl, Hexadienyl, Hexatrienyl, Heptenyl, Heptadienyl, Heptatrienyl, Octenyl, Octadienyl, Octatrienyl, Octatetraenyl, None- nyl, Nonadienyl, Nonatrienyl, Nonatetradienyl, Decenyl, Decadienyl, Decatrienyl, Decatetrae- nyl oder Decapentaenyl sowie deren verzweigte Isomere.
Vorzugsweise ist m in der Wiederholungseinheit der allgemeinen Formel (la) eine natürliche Zahl von 1 bis 50, besonders bevorzugt von 1 bis 30, ganz besonders bevorzugt von 1 bis 10 und insbesondere von 1 bis 5. Am meisten bevorzugt ist m 1.
Bevorzugt ist die Komponente (a) ausgewählt aus der Gruppe bestehend aus Isophthal- säure, Isophthalsäureanhydrid, Isophthalsäuredifluorid, Isophthalsäure-dichlorid, Isophthal- säuredibromid, Polyanhydride von Isophthalsäure, Ci-Cio-Alkylester von Isophthalsäure, Cr Cio-Alkenylester von Isophthalsäure, Terephthalsäure, Terephthalsäureanhydrid, Terephthal- säuredifluorid, Terephthalsäuredichlorid, Terephthalsäuredibromid, Polyanhydride von Terephthalsäure, Ci-Cio-Alkylester von Terephthalsäure, Ci-Cio-Alkenylester von Tereph- thalsäure, Naphthalin-1 ,4-dicarbonsäure, Naphthalin-1 ,4-dicarbonsäureanhydrid, Naphthalin- 1 ,4-dicarbonsäuredifluorid, Naphthalin-1 ,4-dicarbonsäuredichlorid, Naphthalin-1 ,4-dicarbon- säuredibromid, Polyanhydride von Naphthalin-1 ,4-dicarbonsäure, Ci-Cio-Alkylester von Naphthalin-1 ,4-dicarbonsäure, Ci-Cio-Alkenylester von Naphthalin-1 ,4-dicarbonsäure, Naph- thalin-2,6-dicarbonsäure, Naphthalin-2,6-dicarbonsäureanhydrid, Naphthalin-2,6-dicarbon- säuredifluorid, Naphthalin-2,6-dicarbonsäuredichlorid, Naphthalin-2,6-dicarbonsäuredibro- mid, Polyanhydride von Naphthalin-2,6-dicarbonsäure, Ci-Cio-Alkylester von Naphthalin-2,6- dicarbonsäure, Ci-Cio-Alkenylester von Naphthalin-2,6-dicarbonsäure, Anthracen-2,6-dicar- bonsäure, Anthracen-2,6-dicarbonsäureanhydrid, Anthracen-2,6-dicarbonsäuredifluorid, Anthracen-2,6-dicarbonsäuredichlorid, Anthracen-2,6-dicarbonsäuredibromid, Polyanhydride von Anthracen-2,6-dicarbonsäure, Ci-Cio-Alkylester von Anthracen-2,6-dicarbonsäure, Cr Cio-Alkenylester von Anthracen-2,6-dicarbonsäure, Anthracen-9,10-dicarbonsäure, Anth- racen-9,10-dicarbonsäureanhydrid, Anthracen-9,10-dicarbonsäuredifluorid, Anthracen-9,10- dicarbonsäuredichlorid, Anthracen-9,10-dicarbonsäuredibromid, Polyanhydride von Anth- racen-9,10-dicarbonsäure, Ci-Cio-Alkylester von Anthracen-9,10-dicarbonsäure, Ci-Cio-Alke- nylester von Anthracen-9,10-dicarbonsäure, Biphenyl-4,4‘-dicarbonsäure, Biphenyl-4,4‘-di- carbonsäureanhydrid, Biphenyl^^'-dicarbonsäuredifluorid, Biphenyl-4,4‘-dicarbonsäuredich- lorid, Biphenyl-4,4‘-dicarbonsäuredibromid, Polyanhydride von Biphenyl-4,4‘-dicarbonsäure, Ci-Cio-Alkylester von Biphenyl-4,4‘-dicarbonsäure, Ci-Cio-Alkenylester von Biphenyl-4,4‘-di- carbonsäure, Diphenylmethan-4,4‘-dicarbonsäure, Diphenylmethan-4,4‘-dicarbonsäurean- hydrid, Diphenylmethan^^'-dicarbonsäuredifluorid, Diphenylmethan-4,4‘-dicarbonsäuredich- lorid, Diphenylmethan-4,4‘-dicarbonsäuredibromid, Polyanhydride von Diphenylmethan-4,4‘- dicarbonsäure, Ci-Cio-Alkylester von Diphenylmethan-4,4‘-dicarbonsäure, Ci-Cio-Alkenyles- ter von Diphenylmethan-4,4‘-dicarbonsäure, Diphenylether-4,4‘-dicarbonsäure, Diphe- nylether-4,4‘-dicarbonsäureanhydrid, Diphenylethe ^'-dicarbonsäuredifluorid, Diphe- nylether-4,4‘-dicarbonsäuredichlorid, Diphenylether-4,4‘-dicarbonsäuredibromid, Polyanhyd- ride von Diphenylether-4,4‘-dicarbonsäure, Ci-Cio-Alkylester von Diphenylether-4,4‘-dicar- bonsäure, Ci-Cio-Alkenylester von Diphenylether-4,4‘-dicarbonsäure, Diphenylthioether-4,4‘- dicarbonsäure, Diphenylthioether-4,4‘-dicarbonsäureanhydrid, Diphenylthioether-4,4‘-dicar- bonsäuredifluorid, Diphenylthioether-4,4‘-dicarbonsäuredichlorid, Diphenylthioether-4,4‘-di- carbonsäuredibromid, Polyanhydride von Diphenylthioether-4,4‘-dicarbonsäure, C1-C10-AI- kylester von Diphenylthioether-4,4‘-dicarbonsäure, Ci-Cio-Alkenylester von Diphenylthio- ether-4,4‘-dicarbonsäure, Diphenylsulfon-4,4‘-dicarbonsäure, Diphenylsulfon-4,4‘-dicarbon- säureanhydrid, Diphenylsulfon-4,4‘-dicarbonsäuredifluorid, Diphenylsulfon-4,4‘-dicarbonsäu- redichlorid, Diphenylsulfon-4,4‘-dicarbonsäuredibromid, Polyanhydride von Diphenylsulfon- 4,4‘-dicarbonsäure, Ci-Cio-Alkylester von Diphenylsulfon-4,4‘-dicarbonsäure, Ci-Cio-Alke- nylester von Diphenylsulfon-4,4‘-dicarbonsäure, Benzophenon-4,4‘-dicarbonsäure, Benzo- phenon-4,4‘-dicarbonsäureanhydrid, Benzophenon^^'-dicarbonsäuredifluorid, Benzo- phenon-4,4‘-dicarbonsäuredichlorid, Benzophenon-4,4‘-dicarbonsäuredibromid, Polyanhyd- ride von Benzophenon-4,4‘-dicarbonsäure, Ci-Cio-Alkylester von Benzophenon-4,4‘-dicar- bonsäure, Ci-Cio-Alkenylester von Benzophenon-4,4‘-dicarbonsäure, Pyridin-2,5-dicarbon- säure, Pyridin-2,5-dicarbonsäureanhydrid, Pyridin-2,5-dicarbonsäuredifluorid, Pyridin-2,5-di- carbonsäuredichlorid, Pyridin-2,5-dicarbonsäuredibromid, Polyanhydride von Pyridin-2,5-di- carbonsäure, Ci-Cio-Alkylester von Pyridin-2,5-dicarbonsäure, Ci-Cio-Alkenylester von Pyri- din-2,5-dicarbonsäure, Pyrimidin-4,6-dicarbonsäure, Pyrimidin-4,6-dicarbonsäureanhydrid, Pyrimidin-4,6-dicarbonsäuredifluorid, Pyrimidin-4,6-dicarbonsäuredichlorid, Pyrimidin-4,6-di- carbonsäuredibromid, Polyanhydride von Pyrimidin-4,6-dicarbonsäure, Ci-Cio-Alkylester von Pyrimidin-4,6-dicarbonsäure, Ci-Cio-Alkenylester von Pyrimidin-4,6-dicarbonsäure, Furan- 2,5-dicarbonsäure, Furan-2,5-dicarbonsäureanhydrid, Furan-2,5-dicarbonsäuredifluorid, Furan-2,5-dicarbonsäuredichlorid, Furan-2,5-dicarbonsäuredibromid, Polyanhydride von Furan-2,5-dicarbonsäure, Ci-Cio-Alkylester von Furan-2,5-dicarbonsäure, Ci-Cio-Alkenyles- ter von Furan-2,5-dicarbonsäure, Thiophen-2,5-dicarbonsäure, Thiophen-2,5-dicarbonsäure- anhydrid, Thiophen-2,5-dicarbonsäuredifluorid, Thiophen-2,5-dicarbonsäuredichlorid, Thio- phen-2,5-dicarbonsäuredibromid, Polyanhydride von Thiophen-2,5-dicarbonsäure, C1-C10- Alkylester von Thiophen-2,5-dicarbonsäure und Ci-Cio-Alkenylester von Thiophen-2,5-dicar- bonsäure.
Besonders bevorzugt ist die Komponente (a) ausgewählt aus der Gruppe bestehend aus Terephthalsäure, Terephthalsäureanhydrid, Terephthalsäuredifluorid, Terephthalsäuredichlo- rid, Terephthalsäuredibromid, Ci-Cio-Alkylestern von Terephthalsäure, Ci-Cio-Alkenylester von Terephthalsäure, Isophthalsäure, Isophthalsäureanhydrid, Isophthalsäuredifluorid, Isoph- thalsäuredichlorid, Isophthalsäuredibromid, Polyanhydride von Isophthalsäure, C1-C10-AI- kylester von Isophthalsäure und Ci-Cio-Alkenylester von Isophthalsäure.
In einer bevorzugten Ausführungsform enthält die Komponente (a) mindestens 80 Gew.-%, besonders bevorzugt mindestens 90 Gew.-% und ganz besonders bevorzugt mindestens 98 Gew.-% mindestens einer aromatischen Dicarboxylverbindung der allgemeinen Formel (I) ausgewählt aus der Gruppe bestehend aus Terephthalsäure, Terephthalsäureanhydrid, Terephthalsäuredifluorid, Terephthalsäuredichlorid, Terephthalsäuredibromid, C1-C10-AI- kylestern von Terephthalsäure, Ci-Cio-Alkenylestern von Terephthalsäure, Isophthalsäure, Isophthalsäureanhydrid, Isophthalsäuredifluorid, Isophthalsäuredichlorid, Isophthalsäure- dibromid, Polyanhydride von Isophthalsäure, Ci-Cio-Alkylester von Isophthalsäure und Cr Cio-Alkenylester von Isophthalsäure, bezogen auf das Gesamtgewicht der Komponente (a) in dem Reaktionsgemisch (RG). Die hier angegebenen Gewichtsangaben bezüglich der Kom- ponente (a) beziehen sich dabei auf das Gesamtgewicht an eingesetzter Terephthalsäure, Terephthalsäureanhydrid, Terephthalsäuredifluorid, Terephthalsäuredichlorid, Terephthal- säuredibromid, Ci-Cio-Alkylestern von Terephthalsäure, Ci-Cio-Alkenylestern von Tereph- thalsäure, Isophthalsäure, Isophthalsäureanhydrid, Isophthalsäuredifluorid, Isophthalsäure- dichlorid, Isophthalsäuredibromid, Polyanhydride von Isophthalsäure, Ci-Cio-Alkylester von Isophthalsäure und Ci-Cio-Alkenylester von Isophthalsäure.
In einer besonders bevorzugten Ausführungsform besteht die Komponente (a) im Wesentli- chen aus mindestens einer aromatischen Dicarboxylverbindung der allgemeinen Formel (I) ausgewählt aus der Gruppe bestehend aus Terephthalsäure, Terephthalsäureanhydrid, Terephthalsäuredifluorid, Terephthalsäuredichlorid, Terephthalsäuredibromid, C1-C10-AI- kylestern von Terephthalsäure, Ci-Cio-Alkenylestern von Terephthalsäure, Isophthalsäure, Isophthalsäureanhydrid, Isophthalsäuredifluorid, Isophthalsäuredichlorid, Isophthalsäure- dibromid, Polyanhydride von Isophthalsäure, Ci-Cio-Alkylester von Isophthalsäure und C1- Cio-Alkenylester von Isophthalsäure.
Unter der Bezeichnung„besteht im Wesentlichen aus“ wird im Rahmen der vorliegenden Er- findung verstanden, dass die Komponente (a) mindestens 99 Gew.-%, bevorzugt mindestens 99,5 Gew.-% und besonders bevorzugt mindestens 99,9 Gew.-% mindestens einer aromati- schen Dicarboxylverbindung der allgemeinen Formel (I) ausgewählt aus der Gruppe beste- hend aus Terephthalsäure, Terephthalsäureanhydrid, Terephthalsäuredifluorid, Terephthal- säuredichlorid, Terephthalsäuredibromid, Ci-Cio-Alkylestern von Terephthalsäure, C1-C10- Alkenylestern von Terephthalsäure, Isophthalsäure, Isophthalsäureanhydrid, Isophthalsäure- difluorid, Isophthalsäuredichlorid, Isophthalsäuredibromid, Polyanhydride von Isophthalsäure, Ci-Cio-Alkylester von Isophthalsäure und Ci-Cio-Alkenylester von Isophthalsäure enthält, be- zogen auf das Gesamtgewicht der Komponente (a) in dem Reaktionsgemisch (RG).
In einer weiteren ganz besonders bevorzugten Ausführungsform besteht die Komponente (a) im Wesentlichen aus mindestens einer aromatischen Dicarboxylverbindung der allgemeinen Formel (I) ausgewählt aus Terephthalsäureanhydrid, Terephthalsäuredichlorid und C1-C10- Alkenylestern von Terephthalsäure.
In einer insbesondere bevorzugten Ausführungsform ist die Komponente (a) Terephthalsäu- redichlorid.
Komponente (b)
Das Reaktionsgemisch (RG) enthält mindestens eine aromatische Diaminoverbindung der all- gemeinen Formel (lla), (Mb), (llc) und/oder (lld) als Komponente (b). Die Bezeichungen„Komponente (b)“,„mindestens eine aromatische Diaminoverbindung der allgemeinen Formel (I la), (Mb), (llc) und/oder (lld)“ sowie„mindestens eine aromatische Dia- minoverbindung (lla-d)“ werden dabei nachfolgend synonym verwendet.
Die Bezeichnung„mindestens eine aromatische Diaminoverbindung der allgemeinen Formel (lla), (Mb), (llc) und/oder (lld)“ bezieht sich dabei auf genau eine aromatische Diaminoverbin- dung der allgemeinen Formel (lla), (Mb), (llc) und/oder (lld) als auch auf Mischungen von zwei oder mehreren verschiedenen aromatischen Diaminoverbindungen der allgemeinen Formel (lla), (Mb), (llc) und/oder (lld). Geeignete aromatische Diaminoverbindungen der all- gemeinen Formel (lla), (Mb), (llc) und/oder (lld) sind dem Fachmann prinzipiell bekannt.
Die im erfindungsgemäßen Verfahren eingesetzte mindestens eine aromatische Diaminover- bindung (lla-d) enthält zwei Aminogruppen. Unter der Bezeichnung„Aminogruppe“ wird im Rahmen der vorliegenden Erfindung -NH2 verstanden. Dem Fachmann ist klar, dass Amino- gruppen auch in protonierter Form als Amino-Hydrogensalze (-NH3 + Q ) vorliegen können, wobei Q ein Anionenäquivalent ist, ausgewählt aus der Gruppe bestehend aus Fluorid (F~), Chlorid (Ch), Bromid (Br), lodid (I-), Hydrogensulfat (HSO4 ), Sulfat (SO4 2 ), Methansulfonat (H3C-SO3 ), p-Toluolsulfonat (P-H3C-C6H4-SO3 ) und Nitrat (NO3 ).
Unter„einem Anionenäquivalent“ versteht der Fachmann im Rahmen der vorliegenden An- meldung, dass ein Anion mit einer einfachen negativen Ladung oder ein Ladungsäquivalent eines Anions mit zwei oder mehr negativen Ladungen vorliegt.
Die im erfindungsgemäßen Verfahren eingesetzte mindestens eine aromatische Diaminover- bindung weist die allgemeine Formel (lla), (Mb), (llc) und/oder (lld) auf:
Figure imgf000022_0001
in denen n 0 oder 1 ist Y1, Y2, Y3, Y4 unabhängig voneinander -H, -OR4 oder -SR4 sind, wobei R4 ausgewählt ist aus der Gruppe bestehend aus
-H, -Ci-Cio-Alkyl, Trimethylsilyl, Triethylsilyl, tert-Butyldimethylsilyl, Acetyl und tert-Buty- loxycarbonyl, und wobei höchstens einer der Reste Y1 und Y2-H ist, und wobei höchstens einer der Reste Y3 und Y4-H ist;
Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8 unabhängig voneinander -NH2 oder -NH3 + Q sind, wobei Q_ein Anionenäquivalent ist, ausgewählt aus der Gruppe bestehend aus F~, Ch, Br, I-, HS04-, S04 2-, H3C-S03-, p-H3C-C6H4-S03- und N03-
Bevorzugte Ci-Cio-Alkylgruppen umfassen lineare und verzweigte, gesättigte Alkylgruppen mit 1 bis 10 Kohlenstoffatomen. Besonders bevorzugte Ci-Cio-Alkylgruppen sind dabei Cr C6-Alkyl gruppen wie Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sec-Butyl, 2- oder 3-Methyl- pentyl oder längerkettige Gruppen wie n-Heptyl, n-Octyl, n-Nonyl oder n-Decyl sowie deren verzweigte Isomere.
Y1, Y2, Y3 und Y4 sind in der mindestens einen aromatischen Diaminoverbindung der allge meinen Formel (lla), (Mb), (llc) und/oder (lld) vorzugsweise unabhängig voneinander Hydro- xygruppen oder Thiolgruppen.
Unter der Bezeichnung„Hydroxygruppen“ wird im Rahmen der vorliegenden Erfindung -OH verstanden. Analog dazu wird unter„Thiolgruppen“ im Rahmen der vorliegenden Erfindung -SH verstanden.
In einer besonders bevorzugten Ausführungsform sind Y1, Y2, Y3 und Y4 in der mindestens einen aromatischen Diaminoverbindung der allgemeinen Formel (lla) und/oder (Mb) Hydro- xygruppen.
Z1, Z2, Z3, Z4, Z5, Z6, Z7 und Z8 sind unabhängig voneinander Aminogruppen (-NH2) oder Amino-Hydrogensalze (-NH3 + Q~). Bevorzugt sind Z1, Z2, Z3, Z4, Z5, Z6, Z7 und Z8 in der min- destens einen aromatischen Diaminoverbindung der allgemeinen Formel (lla), (Mb), (llc) und/oder (lld) Amino-Hydrogensalze.
Bevorzugt ist die Komponente (b) ausgewählt aus der Gruppe bestehend aus 4,6-Diamino- 1 ,3-dihydroxybenzol, 4,6-Diamino-1 ,3-dithiobenzol, 4,6-Diamino-3-hydroxy-1 -thiobenzol, 2,5- Diamino-1 ,4-dihydroxybenzol, 2,5-Diamino-1 ,4-dithiobenzol, 2,5-Diamino-4-hydroxy-1 - thiobenzol, 4,6-Diamino-1 ,3-dihydroxybenzol-dihydrochlorid, 4,6-Diamino-1 ,3-dithiobenzol- dihydrochlorid, 4,6-Diamino-3-hydroxy-1 -thiobenzol-dihydro-chlorid, 2,5-Diamino-1 ,4-dihydro- xybenzol-dihydrochlorid, 2,5-Diamino-1 ,4-dithiobenzol-dihydrochlorid, 2,5-Diamino-4-hyd- roxy-1 -thiobenzol-dihydrochlorid, S^'-Diamino^^'-dihydroxybiphenyl, 3,3,-Diamino-4,4‘- dihydroxybiphenyl-dihydrochlorid, 4,4,-Diamino-3,3‘-dihydroxybiphenyl, 4,4,-Diamino-3,3‘- dihydroxybiphenyl-dihydrochlorid, S^'-Diamino^^'-dihydroxydiphenylmethan, 3,3‘-Diamino- 4,4‘-dihydroxydiphenylmethan-dihydrochlorid, 4,4,-Diamino-3,3‘-dihydroxydiphenylmethan und 4,4,-Diamino-3,3‘-dihydroxydiphenylmethan-dihydrochlorid.
Besonders bevorzugt ist die Komponente (b) ausgewählt aus der Gruppe bestehend aus 4,6- Diamino-1 ,3-dihydroxybenzol, 4,6-Diamino-1 ,3-dihydroxybenzoldihydrochlorid, 2,5-Diamino-
1 .4-dihydroxybenzol und 2,5-Diamino-1 ,4-dihydroxybenzoldihydrochlorid.
In einer bevorzugten Ausführungsform enthält die Komponente (b) mindestens 80 Gew.-%, besonders bevorzugt mindestens 90 Gew.-% und ganz besonders bevorzugt mindestens 98 Gew.-% mindestens einer aromatischen Diaminoverbindung (lla-d) ausgewählt aus der Gruppe bestehend aus 4, 6-Diamino-1 ,3-dihydroxybenzol, 4,6-Diamino-1 ,3-dihydroxybenzol- dihydrochlorid, 5-Diamino-1 ,4-dihydroxybenzol und 2,5-Diamino-1 ,4-dihydroxybenzoldihydro- chlorid, bezogen auf das Gesamtgewicht der Komponente (b) im Reaktionsgemisch (RG).
Die hier angegebenen Gewichtsangaben bezüglich der Komponente (b) beziehen sich dabei auf das Gesamtgewicht an eingesetztem 4, 6-Diamino-1 ,3-dihydroxybenzol, 4,6-Diamino-1 ,3- dihydroxybenzoldihydrochlorid, 5-Diamino-1 ,4-dihydroxybenzol und 2,5-Diamino-1 ,4-dihydro- xybenzoldihydrochlorid.
In einer weiteren besonders bevorzugten Ausführungsform besteht die Komponente (b) im Wesentlichen aus mindestens einer aromatischen Diaminoverbindung (lla-d) ausgewählt aus der Gruppe bestehend aus 4, 6-Diamino-1 ,3-dihydroxybenzol, 4,6-Diamino-1 ,3-dihydroxyben- zol-dihydrochlorid, 5-Diamino-1 ,4-dihydroxybenzol und 2,5-Diamino-1 ,4-dihydroxybenzol- dihydrochlorid. Unter der Bezeichnung„besteht im Wesentlichen aus“ wird im Rahmen der vorliegenden Erfindung verstanden, dass die Komponente (b) mindestens 99 Gew.-%, be- vorzugt mindestens 99,5 Gew.-% und besonders bevorzugt mindestens 99,9 Gew.-% min- destens einer aromatischen Diaminoverbindung (lla-d) ausgewählt aus der Gruppe beste- hend aus 4, 6-Diamino-1 ,3-dihydroxybenzol, 4,6-Diamino-1 ,3-dihydroxybenzol-dihydrochlorid, 5-Diamino-1 ,4-dihydroxybenzol und 2,5-Diamino-1 ,4-dihydroxybenzoldihydrochlorid enthält, bezogen auf das Gesamtgewicht der Komponente (b) im Reaktionsgemisch (RG).
In einer insbesondere bevorzugten Ausführungsform besteht die Komponente (b) aus min- destens einer aromatischen Diaminoverbindung (lla-d) ausgewählt aus der Gruppe beste- hend aus 4, 6-Diamino-1 ,3-dihydroxybenzol, 4,6-Diamino-1 ,3-dihydroxybenzol-dihydrochlorid, 5-Diamino-1 ,4-dihydroxybenzol und 2,5-Diamino-1 ,4-dihydroxybenzoldihydrochlorid.
In diesen Ausführungsformen sind 4,6-Diamino-1 ,3-dihydroxybenzoldihydrochlorid und/oder
2.5-Diamino-1 ,4-dihydroxybenzoldihydrochlorid als Komponente (b) besonders bevorzugt. Komponente (c)
Das Reaktionsgemisch (RG) enthält mindestens eine ionische Flüssigkeit (IL) als Kompo- nente (c).
Die Bezeichnungen„Komponente (c)“ und„mindestens eine ionische Flüssigkeit (IL)“ werden dabei nachfolgend synonym verwendet.
Die Bezeichnung„mindestens eine ionische Flüssigkeit (IL)“ bezieht sich dabei auf genau eine ionische Flüssigkeit (IL) als auch auf Mischungen von zwei oder mehreren verschiede- nen ionischen Flüssigkeiten (IL). Geeignete ionische Flüssigkeiten (IL) sind dem Fachmann prinzipiell bekannt.
Unter ionischen Flüssigkeiten werden im Sinne der vorliegenden Erfindung Verbindungen verstanden, die mindestens ein kationisches Zentrum und mindestens ein anionisches Zent- rum aufweisen, insbesondere die mindestens ein Kation und mindestens ein Anion aufwei- sen, wobei mindestens eines der Ionen, insbesondere das Kation, organisch ist.
Ionische Flüssigkeiten sind nach der Definition von Wasserscheid und Keim in: Angewandte Chemie, 1 12, 3926 - 3945 (2000), bei relativ niedrigen Temperaturen schmelzende Salze mit nicht molekularem, ionischem Charakter. Sie sind bereits bei relativ niedrigen Tempera- turen flüssig und dabei relativ niedrig viskos. Sie besitzen sehr gute Löslichkeiten für eine große Anzahl organischer, anorganischer und polymerer Substanzen. Darüber hinaus sind sie in der Regel nicht brennbar, nicht korrosiv und haben keinen messbaren Dampfdruck.
Ionische Flüssigkeiten sind Verbindungen, die aus positiven und negativen Ionen gebildet, jedoch insgesamt ladungsneutral sind. Die positiven wie auch die negativen
Ionen sind überwiegend einwertig, möglich sind jedoch auch multivalente Anionen und/oder Kationen, beispielsweise mit einer bis fünf, bevorzugt mit einer bis vier, weiter bevorzugt mit einer bis drei und ganz besonders bevorzugt mit einer bis zwei elektrischen Ladungen pro Ion. Die Ladungen können sich an verschiedenen lokalisierten oder delokalisierten Berei- chen innerhalb eines Moleküls befinden, also betainartig, oder auch wie ein getrenntes Anion und Kation verteilt sein. Bevorzugt sind solche ionischen Flüssigkeiten, die aus mindestens einem Kation und mindestens einem Anion aufgebaut sind.
Die Erfindung ist nicht eingeschränkt auf spezielle ionische Flüssigkeiten; es können alle dem Fachmann bekannten, geeigneten ionischen Flüssigkeiten verwendet werden.
Bevorzugt weist die mindestens eine ionische Flüssigkeit (IL) einen möglichst niedrigen Schmelzpunkt auf. Der Schmelzpunkt der mindestens einen ionischen Flüssigkeit (IL) befin- det sich bevorzugt unterhalb von 150°C, besonders bevorzugt unterhalb von 100°C und ganz besonders bevorzugt unterhalb von 80°C.
Bevorzugt weist die mindestens eine ionische Flüssigkeit (IL) die allgemeine Formel (III) auf: [C]n+ [A]n (III) in der n = 1 , 2, 3 oder 4 ist; das Kation [C] n + mindestens ein Kation ist, ausgewählt aus der Gruppe bestehend aus unsubstituierten oder zumindest monosubstituierten Imidazolium-Kationen, Imidazolinium- Kationen, Imidazolidinium-Kationen, quartären Ammonium-Kationen, quartären Phospho- nium-Kationen, Pyrazolium-Kationen, Pyrazolinium-Kationen, Pyridinium-Kationen, Pyridazi- nium-Kationen, Pyrimidinium-Kationen, Pyrazinium-Kationen, Pyrrolidinium-Kationen, Guani- dinium-Kationen, Thiazolium-Kationen, Oxazolium-Kationen, Triazolium-Kationen, dem 1 ,8- Diazabicyclo[5.4.0]undec-7-enium-Kation, dem 1 ,8-Diazabicyclo[4.3.0]non-5-enium-Kation und Oligomeren oder Polymeren, die diese Kationen enthalten, wobei die Substituenten ausgewählt sind aus der Gruppe bestehend aus linearem oder ver- zweigtem -Ci-Cis-Alkyl, -C5-Ci2-Cycloalkyl und -C6-Ci4-Aryl; das Anion [A] n~ ausgewählt ist aus der Gruppe bestehend aus halogenidhaltigen Anio- nen, Cyanid, Thiocyanat, Cyanat, Isocyanat, Nitrit, Nitrat, sowie unsubstituierten oder zumin- dest monosubstituierten Sulfaten, Sulfiten, Sulfonaten, Carboxylaten, Boraten, Boronaten, Carbonaten, Kohlensäureestern, Amiden, Carbonsäureimidaten, Sulfonylimidaten, bis(Sul- fonyl)imidaten, Alkoxiden und Aryloxiden, wobei die Substituenten ausgewählt sind aus der Gruppe bestehend aus linearem oder ver- zweigtem -Ci-Cis-Alkyl, -C5-Ci2-Cycloalkyl und -C6-Ci4-Aryl.
Die Bezeichnung„mindestens ein Kation“ bezieht sich dabei auf genau ein Kation als auch auf gemischte Spezies aus zwei oder mehr Kationen, wie
[C1]+[C2]+ 2 [A] -, [C1]+[C2]+ [A]2-, [C1]+[C2]+[C3]+ [A]3- oder [C1]+[C2]+[C3]+[C4]+ [A]4- wobei C1, C2, C3 und C4 unabhängig voneinander aus den für [C]n + genannten Gruppen aus- gewählt sind.
Daneben können auch gemischte Spezies mit Metallkationen verwendet werden, wie
[C1]+[C2]+[C3]+[M1]+ [A]4-, [C1]+[C2]+[M1]+[M2]+ [A]4- [C1]+[M1]+[M2]+[M3]+ [A]4-, [C1]+[C2]+[M1]+ [A]3-, [C1]+[M1]+[M2]+ [A]3- [C1]+[M1]+ [A]2-, [C1]+[M1]+ 2 [A]-, [C1]+[C2]+[M4]2+ [A]4-, [C1]+[M1]+[M4]2+ [A]4-,
[C1]+[M5]3+ [A]4-, [C1]+[M4]2+ [A]3- wobei M1, M2, M3 einwertige Metallkationen, M4 zweiwertige Metallkationen und M5 dreiwer- tige Metallkationen darstellen.
Das Kation [C]n + ist vorzugsweise mindestens ein unsubstituiertes oder zumindest monosub- stituiertes Kation ausgewählt aus der Gruppe bestehend aus
Imidazolium-Kationen der allgemeinen Formel (IV)
Figure imgf000027_0001
sowie alle, der obigen Formel analogen isomeren Imidazoliniumkationen und Imidazolidini- umkationen, quartären Ammonium-Kationen der allgemeinen Formel (V)
[NR5R6R7R8]+ (V), quartären Phosphonium-Kationen der allgemeinen Formel (VI)
[PR5R6R7R8]+ (VI),
H-Pyrazolium-Kationen der allgemeinen Formel (VII)
Figure imgf000027_0002
sowie 3H-Pyrazolium-Kationen, 4H-Pyrazolium-Kationen, 1 -Pyrazolinium-Kationen, 2-Py- razolinium-Kationen und 3-Pyrazolinium-Kationen,
Pyridinium-Kationen der allgemeinen Formel (VIII)
Figure imgf000028_0001
sowie Pyridazinium-, Pyrimidinium- und Pyraziniumionen, - Pyrrolidinium-Kationen der allgemeinen Formel (IX)
Figure imgf000028_0002
( ), fünf- bis sechsgliedrige heterocyclische Kationen, die mindestens ein Phosphor- oder Stickstoffatom sowie gegebenenfalls ein Sauerstoff- oder ein Schwefelatom aufweisen, wie beispielsweise Thiazolium-, Oxazolium, 1 ,2,4-Triazolium- oder 1 ,2,3-Triazolium-Kationen, besonders bevorzugt solche Verbindungen, die mindestens einen fünf- bis sechsgliedrigen Heterocyclus enthalten, der ein, zwei oder drei Stickstoffatome und ein Sauerstoff- oder ein Schwefelatom aufweist, ganz besonders bevorzugt solche mit ein oder zwei Stickstoffato- men, dem 1 ,8-Diazabicyclo[5.4.0]undec-7-enium-Kation sowie dem 1 ,8-Diazabicyclo- [4.3.0]non-5-enium-Kation der allgemeinen Formel (XI)
Figure imgf000029_0001
sowie Oligo- und Polymere, die diese Kationen enthalten, wobei R5, R6, R7, R8, R9, R10, R11, R12, R13 und R14 unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus -H, -Ci-Cis-Alkyl, -C5-Ci2-Cycloalkyl und -C6-Ci4-Aryl.
Dem Fachmann ist klar, dass es sich bei den allgemeinen Formeln (IV), (VII), (VIII) und (X) jeweils um eine mögliche mesomere Grenzstruktur des entsprechenden Kations handelt und die positive Ladung über mehrere mesomere Grenzstrukturen delokalisiert ist.
Für die Reste R5, R6, R7, R8, R9, R10, R11, R12, R13 und R14 in den allgemeinen Formeln (IV) bis (XI) bevorzugte Ci-Cis-Alkylgruppen umfassen lineare und verzweigte, gesättigte Alkyl gruppen mit 1 bis 18 Kohlenstoffatomen, die gegebenenfalls durch ein oder mehrere Sauer- stoff- und/oder Schwefelatome und/oder ein oder mehrere unsubstituierte oder zumindest monosubstituierte Iminogruppen unterbrochen sind, wobei die Ci-Cis-Alkylgruppen gegebe- nenfalls durch funktionelle Gruppen und/oder Halogengruppen substituiert sein können.
Die Anzahl der Sauerstoff- und/oder Schwefelatome und/oder Iminogruppen ist nicht be- schränkt. In der Regel beträgt sie nicht mehr als 5 in dem Rest, bevorzugt nicht mehr als 4 und ganz besonders bevorzugt nicht mehr als 3. Weiterhin befindet sich zwischen zwei Hete- roatomen in der Regel mindestens ein Kohlenstoffatom, bevorzugt mindestens zwei Kohlen- stoffatome.
Unsubstituierte oder zumindest monosubstituierte Iminogruppen können beispielsweise Imino-, Methylimino-, Isopropylimino, n-Butylimino oder tert-Butylimino sein.
Bevorzugte funktionelle Gruppen umfassen beispielsweise Carboxy, Carboxamid, Hydroxy, Di-(C-i-C4-alkyl)-amino, Ci-C4-Alkyloxycarbonyl, Cyano oder Ci-C4-Alkyloxy.
Bevorzugte Ci-Cis-Alkylgruppen umfassen beispielsweise Ci-C4-Alkyl gruppen wie Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sec-Butyl, tert-Butyl
oder längerkettige Alkylgruppen wie n-Pentyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl, n-Dodecyl, n-Tetradecyl, n-Hexadecyl oder n-Octadecyl sowie deren verzweigte Isomere.
Weiterhin bevorzugte Ci-Cis-Alkylgruppen, die durch funktionelle Gruppen und/oder Halo- gengruppen substituiert sind, umfassen beispielsweise 2-Cyanoethyl, 2-Cyano-propyl, 2-Me- thoxycarbonylethyl, 2-Ethoxycarbonylethyl, 2-Butoxycarbonylpropyl,
1 ,2-Di-(methoxycarbonyl)ethyl, 2-Methoxyethyl, 2-Methoxypropyl, 3-Methoxypropyl, 4-Methoxybutyl, 6-Methoxyhexyl, 2-Ethoxyethyl, 2-Ethoxypropyl, 3-Ethoxypropyl,
4-Ethoxybutyl, 6-Ethoxyhexyl, 2-Butoxyethyl, Diethoxymethyl, Diethoxyethyl,
2-lsopropoxyethyl, 2-Butoxypropyl, Chlormethyl, 2-Chlorethyl, Trichlormethyl, Trifluormethyl,
1 ,1 -Dimethyl-2-chlorethyl, 2-Methoxyisopropyl, 2-Ethoxyethyl, 2,2,2-T rifluorethyl, 2-Hydro- xyethyl, 2-Hydroxypropyl, 3-Hydroxypropyl, 4-Hydroxybutyl,
6-Hydroxyhexyl oder 2-Hydroxy-2,2-dimethylethyl.
Weiterhin bevorzugte Ci-Cis-Alkylgruppen, die durch ein oder mehrere Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere unsubstituierte oder zumindest monosubstituierte Iminogruppen unterbrochen sind, umfassen beispielsweise Butylthiomethyl, 2-Dodecylthio- ethyl, 2-Phenylthioethyl, 2-Aminoethyl, 2-Aminopropyl,
3-Aminopropyl, 4-Aminobutyl, 6-Aminohexyl, 2-Methylaminoethyl, 2-Methylamino-propyl, 3- Methylaminopropyl, 4-Methylaminobutyl, 6-Methylaminohexyl, 2-Dimethyl-aminoethyl, 2-Di- methylaminopropyl, 3-Dimethylaminopropyl, 4-Dimethylaminobutyl,
6-Dimethylaminohexyl, 5-Hydroxy-3-oxa-pentyl, 8-Hydroxy-3,6-dioxa-octyl,
1 1 -Hydroxy-3,6,9-trioxa-undecyl, 7-Hydroxy-4-oxa-heptyl, 1 1 -Hydroxy-4,8-dioxa-undecyl, 15- Hydroxy-4,8,12-trioxa-pentadecyl, 9-Hydroxy-5-oxa-nonyl, 14-Hydroxy-5,10-oxa-tetradecyl,
5-Methoxy-3-oxa-pentyl, 8-Methoxy-3,6-dioxa-octyl, 1 1 -Methoxy-3,6,9-trioxa-undecyl, 7-Me- thoxy-4-oxa-heptyl, 1 1 -Methoxy-4,8-dioxa-undecyl,
15-Methoxy-4,8,12-trioxa-pentadecyl, 9-Methoxy-5-oxa-nonyl, 14-Methoxy-5,10-oxa-tetrade- cyl, 5-Ethoxy-3-oxa-pentyl, 8-Ethoxy-3,6-dioxa-octyl, 1 1 -Ethoxy-3,6,9-trioxa-undecyl,
7-Ethoxy-4-oxa-heptyl, 1 1 -Ethoxy-4,8-dioxa-undecyl, 15-Ethoxy-4,8,12-trioxa-pentadecyl, 9- Ethoxy-5-oxa-nonyl oder 14-Ethoxy-5,10-oxa-tetradecyl.
Für die Reste R5, R6, R7, R8, R9, R10, R11, R12, R13 und R14 in den allgemeinen Formeln (IV) bis (XI) bevorzugte C5-Ci2-Cycloalkylgruppen umfassen unsubstituierte oder zumindest mo- nosubstituierte, gesättigte Cycloalkylgruppen mit 5 bis 12 Kohlenstoffatomen, die gegebe- nenfalls durch ein oder mehrere Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere unsubstituierte oder zumindest monosubstituierte Iminogruppen unterbrochen sind, wobei die C5-Ci2-Cycloalkylgruppen gegebenenfalls durch funktionelle Gruppen und/oder Halogengruppen substituiert sein können.
Bevorzugte C5-Ci2-Cycloalkylgruppen umfassen beispielsweise Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclododecyl, Methylcyclopentyl, Dimethyl-cyclopentyl, Methylcyclo- hexyl, Dimethylcyclohexyl, Diethylcyclohexyl, Butylcyclohexyl, Methoxycyclohexyl, Dime- thoxycyclohexyl, Diethoxycyclohexyl, Butylthiocyclohexyl, Chlorcyclohexyl, Dichlorcyclohexyl, Dichlorcyclopentyl, 1 ,3-Dioxolan-2-yl, 2-Methyl-1 ,3-dioxolan-2-yl, 4-Methyl-1 ,3-dioxolan-2-yl oder Norbornyl.
Für die Reste R5, R6, R7, R8, R9, R10, R11, R12, R13 und R14 in den allgemeinen Formeln (IV) bis (XI) bevorzugte C6-Ci4-Aryl gruppen umfassen unsubstituierte oder zumindest mono-sub- stituierte Arylgruppen mit 6 bis 14 Kohlenstoffatomen, wobei die C6-Ci4-Arylgruppen gegebe- nenfalls durch funktionelle Gruppen und/oder Halogengruppen substituiert sein können. Bevorzugte C6-Ci4-Aryl gruppen umfassen beispielsweise Phenyl, Tolyl, Xylyl, Benzyl, a- Naphthyl, 4-Diphenylyl, Chlorphenyl, Dichlorphenyl, Trichlorphenyl, Difluorphenyl, p-Chlor- benzyl, 2,4-Dichlorbenzyl, Methylphenyl, Dimethylphenyl, Trimethylphenyl, Ethylphenyl, Diet- hylphenyl, Isopropylphenyl, tert-Butylphenyl, 1 -Phenylethyl,
2-Phenylethyl, a,a-Dimethylbenzyl, Benzhydryl, p-Tolylmethyl, 1 -(p-Butylphenyl)ethyl, Dode- cylphenyl, Methoxyphenyl, Dimethoxyphenyl, Ethoxyphenyl, Hexyloxyphenyl, p-Methoxy- benzyl, m-Ethoxybenzyl, 2-Phenoxyethyl, 2-Phenoxypropyl, 3-Phenoxypropyl, 4-Phen- oxybutyl, 6-Phenoxyhexyl, Methylnaphthyl, Isopropylnaphthyl, Chlornaphthyl, Ethoxynaph- thyl, 2,6-Dimethylphenyl, 2,4,6-Trimethylphenyl, 2,6-Dimethoxyphenyl, 2,6-Dichlorphenyl, 4- Bromphenyl, 2-Nitrophenyl, 4-Nitrophenyl, 2,4-Dinitrophenyl, 2,6-Dinitrophenyl, 4-Dimethyla- minophenyl, 4-Acetylphenyl, Methoxyethylphenyl oder Ethoxymethylphenyl.
Bevorzugt sind R5, R6, R7, R8, R9, R10, R11, R12, R13 und R14 unabhängig voneinander ausge- wählt aus der Gruppe bestehend aus -H, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, tert- Butyl, n-Pentyl, n-Hexyl, 2-Hydroxyethyl, 2-Cyanoethyl, 2-(Methoxycarbonyl)ethyl, 2- (Ethoxycarbonyl)ethyl, 2-(n-Butoxy-carbonyl)ethyl, Benzyl, Acetyl, Dimethylamino, Diethyla- mino und Chlor.
Besonders bevorzugt enthält die mindestens eine ionische Flüssigkeit (IL) als Kation [C] n + mindestens ein Imidazolium-Kation der allgemeinen Formel (IV):
Figure imgf000031_0001
in der
R5, R6, R7, R8, R9 unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus -H, linearem oder verzweigtem -Ci-Cis-Alkyl,
-C5-Ci2-Cycloalkyl und -C6-Ci4-Aryl.
Bevorzugt ist das Kation [C]n + mindestens ein Kation ausgewählt aus der Gruppe bestehend aus 1 -Methylimidazolium, 1 -Methyl-2-ethylimidazolium, 1 -Methyl-3-octylimidazolium, 1 ,2-Di- methylimidazolium, 1 ,3-Dimethylimidazolium, 2,3-Dimethyl-imidazolium, 3,4-Dimethylimida- zolium, 1 ,2,3-Trimethylimidazolium, 1 ,3,4-Trimethyl-imidazolium, 1 ,3,4,5-Tetramethylimida- zolium, 1 -Ethylimidazolium, 1 -Ethyl-2-methyl-imidazolium, 1 -Ethyl-3-methylimidazolium, 1 -Ethyl-2,3-dimethylimidazolium, 2-Ethyl-3,4-dimethylimidazolium, 1 -Propylimidazolium, 1 - Propyl-2-methylimidazolium, 1 -Propyl-3-methylimidazolium, 1 -Propyl-2,3-dimethylimida- zolium, 1 ,3-Dipropyl-imidazolium, 1 -Butylimidazolium, 1 -Butyl-2-methylimidazolium, 1 -Butyl-3-methyl-imidazolium, 1 -Butyl-4-methylimidazolium, 1 -Butyl-2,3-dimethylimidazolium, 1-Butyl-3,4-dimethylimidazo-lium, 1-Butyl-3,4,5-trimethylimidazolium, 1-Butyl-2-ethyl-imida- zolium, 1-Butyl-3-ethylimidazolium, 1-Butyl-2-ethyl-5-methylimidazolium, 1 ,3-Di-butylimida- zolium, 1,3-Dibutyl-2-methylimidazolium, 1-Pentylimidazolium, 1-Pentyl-2-methylimidazolium, 1-Pentyl-3-methylimidazolium, 1-Pentyl-2,3-dimethylimidazolium, 1-Hexylimidazolium, 1-He- xyl-2-methylimidazolium, 1-Hexyl-3-methylimidazolium, 1-Hexyl-2,3-dimethyl-imidazolium, 1- Octyl-2-methylimidazolium, 1 -Octyl-3-methylimidazolium, 1 -Decyl-3-methylimidazolium, 1-Dodecyl-3-methylimidazolium, 1-Tetradecyl-3-methylimidazolium, 1-Hexadecyl-3-methyli- midazolium und 1-Benzyl-3-methylimidazolium.
Ein weiterer Gegenstand der vorliegenden Anmeldung ist daher auch ein Verfahren, dadurch gekennzeichnet, dass das Kation [C] n + mindestens ein Kation ist, ausgewählt aus der Gruppe bestehend aus 1-Methylimidazolium, 1-Methyl-2-ethylimidazolium, 1 -Methyl-3-octyli- midazolium, 1,2-Dimethylimidazolium, 1,3-Dimethylimidazolium, 2,3-Dimethylimidazolium, 3,4-Dimethylimidazolium, 1,2,3-Trimethylimidazolium, 1,3,4-Tri-methylimidazolium, 1, 3,4,5- Tetramethylimidazolium, 1-Ethylimidazolium, 1-Ethyl-2-methylimidazolium, 1 -Ethyl-3-methyli- midazolium, 1-Ethyl-2,3-dimethylimidazolium, 2-Ethyl-3,4-dimethylimidazolium, 1-Propyli- midazolium, 1-Propyl-2-methylimidazolium, 1-Propyl-3-methylimidazolium, 1-Propyl-2,3-di- methylimidazolium, 1,3-Dipropyl-imidazo-lium, 1-Butylimidazolium, 1-Butyl-2-methylimida- zolium, 1-Butyl-3-methyl-imidazolium, 1-Butyl-4-methylimidazolium, 1-Butyl-2,3-dimethyli- midazolium, 1-Butyl-3,4-dimethyl-imidazolium, 1-Butyl-3,4,5-trimethylimidazolium,
1-Butyl-2-ethylimidazolium, 1-Butyl-3-ethylimidazolium, 1-Butyl-2-ethyl-5-methylimidazolium,
1.3-Dibutylimidazolium, 1,3-Di-butyl-2-methylimidazolium, 1-Pentylimidazolium, 1-Pentyl-2- methylimidazolium, 1-Pentyl-3-methylimidazolium, 1-Pentyl-2,3-dimethylimidazolium, 1-He- xylimidazolium, 1-Hexyl-2-methylimidazolium, 1-Hexyl-3-methylimidazolium, 1-Hexyl-2,3-di- methylimida-zolium, 1-Octyl-2-methylimidazolium, 1-Octyl-3-methylimidazolium, 1-Decyl-3- methyl-imidazolium, 1-Dodecyl-3-methylimidazolium, 1-Tetradecyl-3-methylimidazolium, 1- Hexadecyl-3-methylimidazolium und 1-Benzyl-3-methylimidazolium
Besonders bevorzugt ist das Kation [C] n + mindestens ein Kation ausgewählt aus der Gruppe bestehend aus 1-Methylimidazolium, 1,2-Dimethylimidazolium, 1,2,3-Tri-methylimidazolium, 1-Methyl-2-ethylimidazolium, 1-Ethylimidazolium, 1-Ethyl-2-methylimidazolium, 1 -Ethyl-2,3- dimethylimidazolium, 1-Ethyl-3-methylimidazolium, 1,3-Diethylimidazolium, 1-Propylimida- zolium, 1-Propyl-3-methylimidazolium, 1-Butyl-imidazolium, 1-Butyl-2-methylimidazolium, 1-Butyl-3-methylimidazolium, 1-Butyl-2,3-dimethylimidazolium, 1,3-Dibutylimidazolium, 1- Pentylimidazolium, 1-Pentyl-2-methylimidazolium, 1-Pentyl-3-methylimidazolium, 1-Pentyl-
2.3-dimethylimidazolium, 1-Hexylimidazolium, 1-Hexyl-2-methylimidazolium, 1-Hexyl-3-me- thylimidazolium, 1-Hexyl-2,3-dimethylimidazolium, 1-Octyl-3-methylimidazolium, 1-Decyl-3- methylimidazolium, 1-Dodecyl-3-methylimidazolium und 1-Benzyl-3-methylimidazolium.
Ganz besonders bevorzugt ist das Kation [C] n + mindestens ein Kation ausgewählt aus der Gruppe bestehend aus 1-Methylimidazolium, 1,2-Dimethylimidazolium, 1 ,2,3-Trimethylimida- zolium, 1-Ethylimidazolium, 1-Ethyl-2-methylimidazolium, 1-Ethyl-2,3-dimethylimidazolium, 1- Ethyl-3-methylimidazolium, 1 ,3-Diethylimidazolium, 1-Butyl-imidazolium, 1-Butyl-2-methyli- midazolium, 1-Butyl-3-methylimidazolium und 1-Butyl-2,3-dimethylimidazolium, 1 ,3-Dibutyli- midazolium.
Als Anionen sind prinzipiell alle Anionen einsetzbar.
Das Anion [A] n- ist bevorzugt ausgewählt aus der Gruppe bestehend aus der Gruppe der halogenhaltigen Anionen wie:
Figure imgf000033_0001
der Gruppe bestehend aus Cyanid, Thiocyanat, Cyanat und Isocyanat:
CN-, SCN-, OCN-, NCO-, der Gruppe bestehend aus Nitrit und Nitrat:
N02-, NOs- der Gruppe der Sulfate, Sulfite oder der Sulfonate der allgemeinen Formeln:
S04 2-, HSO4-, SO32-, HSO3-, Ra0S03-, RaS03 _, der Gruppe der Carboxylate der allgemeinen Formel:
RaCOO-, der Gruppe der Borate der allgemeinen Formeln:
BO33-, HBO32-, H2BO3-, RaRbB03 , RaHB03-, RaB03 2_, der Gruppe der Boronate der allgemeinen Formeln:
RaB02 2_, RaRbBO-, der Gruppe der Carbonate oder der Kohlensäureester der allgemeinen Formeln:
HCO3-, CO32-, RaC03-, der Gruppe der Amide der allgemeinen Formeln: H2N-, RaNH-, RaRbN- der Gruppe der Carbonsäureimidate, Bis(sulfonyl)imidate oder der Sulfonylimidate der allgemeinen Formeln:
Figure imgf000034_0001
der Gruppe der Alkoxide oder der Aryloxide der allgemeinen Formel:
RaO-, wobei Ra und Rb unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus - H, -Ci-Ci8-Alkyl, -C5-Ci2-Cycloalkyl und -C6-Ci4-Aryl.
Für die Reste Ra und Rb bevorzugte Ci-Cis-Alkylgruppen umfassen lineare und verzweigte, gesättigte Alkylgruppen mit 1 bis 18 Kohlenstoffatomen, die gegebenenfalls durch ein oder mehrere Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere unsubstituierte o- der zumindest monosubstituierte Iminogruppen unterbrochen sind, wobei die Ci-Cis-Alkyl- gruppen gegebenenfalls durch funktionelle Gruppen und/oder Halogengruppen substituiert sein können.
Die Anzahl der Sauerstoff- und/oder Schwefelatome und/oder Iminogruppen ist nicht be- schränkt. In der Regel beträgt sie nicht mehr als 5 in dem Rest, bevorzugt nicht mehr als 4 und ganz besonders bevorzugt nicht mehr als 3. Weiterhin befindet sich zwischen zwei Hete- roatomen in der Regel mindestens ein Kohlenstoffatom, bevorzugt mindestens zwei Kohlen- stoffatome.
Unsubstituierte oder zumindest monosubstituierte Iminogruppen können beispielsweise Imino-, Methylimino-, Isopropylimino, n-Butylimino oder tert-Butylimino sein.
Bevorzugte funktionelle Gruppen umfassen beispielsweise Carboxy, Carboxamid, Hydroxy, Di-(C-i-C4-alkyl)-amino, Ci-C4-Alkyloxycarbonyl, Cyano oder Ci-C4-Alkyloxy.
Bevorzugte Ci-Cis-Alkylgruppen umfassen beispielsweise Ci-C4-Alkyl gruppen wie Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sec-Butyl, tert-Butyl
oder längerkettige Alkylgruppen wie n-Pentyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl, n-Dodecyl, n-Tetradecyl, n-Hexadecyl oder n-Octadecyl sowie deren verzweigte Isomere. Weiterhin bevorzugte Ci-Cis-Alkylgruppen, die durch funktionelle Gruppen und/oder Halo- gengruppen substituiert sind, umfassen beispielsweise 2-Cyanoethyl, 2-Cyano-propyl, 2-Me- thoxycarbonylethyl, 2-Ethoxycarbonylethyl, 2-Butoxycarbonylpropyl,
1 ,2-Di-(methoxycarbonyl)ethyl, 2-Methoxyethyl, 2-Methoxypropyl, 3-Methoxypropyl,
4-Methoxybutyl, 6-Methoxyhexyl, 2-Ethoxyethyl, 2-Ethoxypropyl, 3-Ethoxypropyl,
4-Ethoxybutyl, 6-Ethoxyhexyl, 2-Butoxyethyl, Diethoxymethyl, Diethoxyethyl,
2-lsopropoxyethyl, 2-Butoxypropyl, Chlormethyl, 2-Chlorethyl, Trichlormethyl, Trifluormethyl,
1 ,1-Dimethyl-2-chlorethyl, 2-Methoxyisopropyl, 2-Ethoxyethyl, 2,2,2-T rifluorethyl, 2-Hydro- xyethyl, 2-Hydroxypropyl, 3-Hydroxypropyl, 4-Hydroxybutyl,
6-Hydroxyhexyl oder 2-Hydroxy-2,2-dimethylethyl.
Weiterhin bevorzugte Ci-Cis-Alkylgruppen, die durch ein oder mehrere Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere unsubstituierte oder zumindest monosubstituierte Iminogruppen unterbrochen sind, umfassen beispielsweise Butylthiomethyl, 2-Dodecylthio- ethyl, 2-Phenylthioethyl, 2-Aminoethyl, 2-Aminopropyl,
3-Aminopropyl, 4-Aminobutyl, 6-Aminohexyl, 2-Methylaminoethyl, 2-Methylamino-propyl, 3- Methylaminopropyl, 4-Methylaminobutyl, 6-Methylaminohexyl, 2-Dimethyl-aminoethyl, 2-Di- methylaminopropyl, 3-Dimethylaminopropyl, 4-Dimethylaminobutyl,
6-Dimethylaminohexyl, 5-Hydroxy-3-oxa-pentyl, 8-Hydroxy-3,6-dioxa-octyl,
1 1-Hydroxy-3,6,9-trioxa-undecyl, 7-Hydroxy-4-oxa-heptyl, 1 1-Hydroxy-4,8-dioxa-undecyl, 15- Hydroxy-4,8,12-trioxa-pentadecyl, 9-Hydroxy-5-oxa-nonyl, 14-Hydroxy-5,10-oxa-tetradecyl,
5-Methoxy-3-oxa-pentyl, 8-Methoxy-3,6-dioxa-octyl, 1 1-Methoxy-3,6,9-trioxa-undecyl, 7-Me- thoxy-4-oxa-heptyl, 11-Methoxy-4,8-dioxa-undecyl,
15-Methoxy-4,8,12-trioxa-pentadecyl, 9-Methoxy-5-oxa-nonyl, 14-Methoxy-5,10-oxa-tetrade- cyl, 5-Ethoxy-3-oxa-pentyl, 8-Ethoxy-3,6-dioxa-octyl, 11-Ethoxy-3,6,9-trioxa-undecyl,
7-Ethoxy-4-oxa-heptyl, 1 1-Ethoxy-4,8-dioxa-undecyl, 15-Ethoxy-4,8,12-trioxa-pentadecyl, 9- Ethoxy-5-oxa-nonyl oder 14-Ethoxy-5,10-oxa-tetradecyl.
Für die Reste Ra und Rb bevorzugte C5-Ci2-Cycloalkylgruppen umfassen unsubstituierte oder zumindest monosubstituierte, gesättigte Cycloalkylgruppen mit 5 bis 12 Kohlenstoffatomen, die gegebenenfalls durch ein oder mehrere Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere unsubstituierte oder zumindest monosubstituierte Iminogruppen unterbro- chen sind, wobei die C5-Ci2-Cycloalkylgruppen gegebenenfalls durch funktionelle Gruppen und/oder Halogengruppen substituiert sein können.
Bevorzugte C5-Ci2-Cycloalkylgruppen umfassen beispielsweise Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclododecyl, Methylcyclopentyl, Dimethyl-cyclopentyl, Methylcyclo- hexyl, Dimethylcyclohexyl, Diethylcyclohexyl, Butylcyclohexyl, Methoxycyclohexyl, Dime- thoxycyclohexyl, Diethoxycyclohexyl, Butylthiocyclohexyl, Chlorcyclohexyl, Dichlorcyclohexyl, Dichlorcyclopentyl, 1 ,3-Dioxolan-2-yl, 2-Methyl-1 ,3-dioxolan-2-yl, 4-Methyl-1 ,3-dioxolan-2-yl oder Norbornyl. Für die Reste Ra und Rb bevorzugte C6-Ci4-Aryl gruppen umfassen unsubstituierte oder zu- mindest monosubstituierte Arylgruppen mit 6 bis 14 Kohlenstoffatomen, wobei die C6-CI4-A- rylgruppen gegebenenfalls durch funktionelle Gruppen und/oder Halogengruppen substituiert sein können.
Bevorzugte C6-Ci4-Aryl gruppen umfassen beispielsweise Phenyl, Tolyl, Xylyl, Benzyl, a- Naphthyl, 4-Diphenylyl, Chlorphenyl, Dichlorphenyl, Trichlorphenyl, Difluorphenyl, p-Chlor- benzyl, 2,4-Dichlorbenzyl, Methylphenyl, Dimethylphenyl, Trimethylphenyl, Ethylphenyl, Diet- hylphenyl, Isopropylphenyl, tert-Butylphenyl, 1 -Phenylethyl,
2-Phenylethyl, a,a-Dimethylbenzyl, Benzhydryl, p-Tolylmethyl, 1 -(p-Butylphenyl)ethyl, Dode- cylphenyl, Methoxyphenyl, Dimethoxyphenyl, Ethoxyphenyl, Hexyloxyphenyl, p-Methoxy- benzyl, m-Ethoxybenzyl, 2-Phenoxyethyl, 2-Phenoxypropyl, 3-Phenoxypropyl, 4-Phen- oxybutyl, 6-Phenoxyhexyl, Methylnaphthyl, Isopropylnaphthyl, Chlornaphthyl, Ethoxynaph- thyl, 2,6-Dimethylphenyl, 2,4,6-Trimethylphenyl, 2,6-Dimethoxyphenyl, 2,6-Dichlorphenyl, 4- Bromphenyl, 2-Nitrophenyl, 4-Nitrophenyl, 2,4-Dinitrophenyl, 2,6-Dinitrophenyl, 4-Dimethyla- minophenyl, 4-Acetylphenyl, Methoxyethylphenyl oder Ethoxymethylphenyl.
Bevorzugt sind Ra und Rb unabhängig voneinander ausgewählt aus der Gruppe bestehend aus -H, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, tert-Butyl, n-Pentyl, n-Hexyl, 2-Hydro- xyethyl, 2-Cyanoethyl, 2-(Methoxycarbonyl)ethyl, 2-(Ethoxycarbonyl)ethyl, 2-(n-Butoxycar- bonyl)ethyl, Benzyl, Acetyl, Dimethylamino, Diethylamino und Chlor.
Bevorzugt ist das Anion [A]n~ ausgewählt aus der Gruppe bestehend aus Fluorid, Chlorid, Bromid, lodid, Tetrachloroaluminat, Heptachlorodialuminat, Tetrabromoaluminat, Heptabro- modialuminat, Trichlorozinkat, Thiocyanat, Nitrit, Nitrat, Sulfat, Hydrogensulfat, Methylsulfat, Ethylsulfat, Sulfit, Hydrogensulfit, Methansulfonat, Trifluormethansulfonat, Ethansulfonat, To- sylat, Decylbenzolsulfonat, Didecylbenzolsulfonat, Dodecylbenzolsulfonat, Didodecyl-ben- zolsulfonat, bis(Trifluoromethansulfonyl)methan, Acetat, Trifluoroacetat, Borat, Tetracyano- borat, bis(Oxalato)borat, bis(Malonato)borat, bis(Phtalato)borat, bis(Salicylato)borat, tetrakis- (Hydrogensulfato)borat, tetrakis(Methylsulfonato)borat, Carbonat, Methylcarbonat, Hydro- gencarbonat, Dicyanamid, bis(Trifluoromethyl)imidat und bis(Trifluoromethansulfonyl)imidat.
Besonders bevorzugt ist das Anion [A]n~ ausgewählt aus der Gruppe bestehend aus Chlorid, Tetrachloroaluminat, Heptachlorodialuminat, Trichlorozinkat, Sulfat, Hydrogensulfat, Methyl- sulfat, Ethylsulfat, Methansulfonat, Trifluormethansulfonat, Ethansulfonat, Tosylat, Decylben- zolsulfonat, Didecylbenzolsulfonat, Dodecyl-benzolsulfonat, Didodecylbenzolsulfonat, Acetat, Carbonat, Methylcarbonat und Hydrogencarbonat.
Ganz besonders bevorzugt ist das Anion [A]n~ ausgewählt aus der Gruppe bestehend aus Chlorid und Tetrachloroaluminat. Bevorzugt ist die mindestens eine ionische Flüssigkeit (IL) ausgewählt aus der Gruppe be- stehend aus 1 -Methylimidazoliumchlorid, 1 ,2-Dimethylimidazoliumchlorid, 1 ,3-Dimethylimida- zoliumchlorid, 1 ,2,3-Trimethylimidazoliumchlorid, 1 -Ethylimidazoliumchlorid, 1 -Ethyl-2-methy- limidazoliumchlorid, 1 -Ethyl-3-methylimidazoliumchlorid, 1 -Ethyl-2,3-dimethylimidazolium- chlorid, 1 ,3-Diethylimidazoliumchlorid, 1 -Butylimidazoliumchlorid, 1 -Butyl-2-methylimidazoli- umchlorid, 1 -Butyl-3-methylimidazoliumchlorid, 1 -Butyl-2,3-dimethylimidazoliumchlorid, 1 ,3- Dibutylimidazoliumchlorid, 1 -Methylimidazoliumtetrachloroaluminat, 1 ,2-Dimethylimidazoli- umtetrachloroaluminat, 1 ,3-Dimethylimidazoliumtetrachloroaluminat, 1 ,2,3-Trimethylimida- zoliumtetrachloroaluminat, 1 -Ethyltetrachloroaluminat, 1 -Ethyl-2-methyltetrachloroaluminat, 1 -Ethyl-3-methylimidazoliumtetrachloroaluminat, 1-Ethyl-2,3-dimethylimidazoliumtetrachloro- aluminat, 1 ,3-Diethylimidazoliumtetrachloroaluminat, 1 -Butylimidazoliumtetrachloroaluminat,
1 -Butyl-2-methylimidazoliumtetrachloroaluminat, 1 -Butyl-3-methylimidazoliumtetrachloroalu- minat, 1 -Butyl-2,3-dimethylimidazoliumtetrachloroaluminat, 1 ,3-Dibutylimidazoliumtetrachlo- roaluminat, 1 -Methylimidazoliumsulfat, 1 ,2-Dimethylimidazoliumsulfat, 1 ,3-Dimethylimidazoli- umsulfat, 1 ,2,3-Trimethylimidazoliumsulfat, 1 -Ethylimidazoliumsulfat, 1 -Ethyl-2-methylimida- zoliumsulfat, 1 -Ethyl-3-methylimidazoliumsulfat, 1 -Ethyl-2,3-dimethylimidazoliumsulfat, 1 ,3- Diethylimidazoliumsulfat, 1 -Butylimidazoliumsulfat, 1 -Butyl-2-methylimidazoliumsulfat, 1 - Butyl-3-methylimidazoliumsulfat, 1 -Butyl-2,3-dimethylimidazoliumsulfat, 1 ,3-Dibutylimidazoli- umsulfat, 1 -Methylimidazoliumhydrogensulfat, 1 ,2-Dimethylimidazoliumhydrogensulfat, 1 ,3- Dimethylimidazoliumhydrogensulfat, 1 ,2,3-T rimethylimidazoliumhydrogensulfat, 1 -Ethylimida- zoliumhydrogensulfat, 1 -Ethyl-2-methylimidazoliumhydrogensulfat, 1 -Ethyl-3-methylimidazoli- umhydrogensulfat, 1 -Ethyl-2,3-dimethylimidazoliumhydrogensulfat, 1 ,3-Diethylimidazolium- hydrogensulfat, 1 -Butylimidazoliumhydrogensulfat, 1 -Butyl-2-methylimidazoliumhydrogensul- fat, 1 -Butyl-3-methylimidazoliumhydrogensulfat, 1 -Butyl-2,3-dimethylimidazoliumhydrogen- sulfat, 1 ,3-Dibutylimidazoliumhydrogensulfat, 1 -Methylimidazoliummethyl-sulfat, 1 ,2-Dimethy- limidazoliummethylsulfat, 1 ,3-Dimethylimidazoliummethylsulfat, 1 ,2,3-T rimethylimidazolium- methylsulfat, 1 -Ethylimidazoliummethylsulfat, 1 -Ethyl-2-methylimidazoliummethylsulfat, 1 - Ethyl-3-methylimidazoliummethylsulfat, 1 -Ethyl-2,3-dimethylimidazoliummethylsulfat, 1 ,3-Di- ethylimidazoliummethylsulfat, 1 -Butylimidazoliummethylsulfat, 1 -Butyl-2-methylimida-zolium- methylsulfat, 1 -Butyl-3-methylimidazoliummethylsulfat, 1 -Butyl-2,3-dimethyl-imidazoliumme- thylsulfat, 1 ,3-Dibutylimidazoliummethylsulfat, 1 -Methylimidazolium-ethylsulfat, 1 ,2-Dimethyli- midazoliumethylsulfat, 1 ,3-Dimethylimidazoliumethylsulfat, 1 ,2,3-T rimethylimidazoliumethyl- sulfat, 1 -Ethylimidazoliumethylsulfat, 1 -Ethyl-2-methylimidazoliumethylsulfat, 1 -Ethyl-3-me- thylimidazoliumethylsulfat, 1 -Ethyl-2,3-dimethylimidazoliumethylsulfat, 1 ,3-Diethylimidazoli- umethylsulfat, 1 -Butylimidazoliumethylsulfat, 1 -Butyl-2-methylimidazoliumethylsulfat, 1 -Butyl- 3-methylimidazoliumethylsulfat, 1 -Butyl-2,3-dimethylimidazoliumethylsulfat, 1 ,3-Dibutylimida- zoliumethylsulfat, 1 -Methylimidazoliummethansulfonat, 1 ,2-Dimethylimidazoliummethansulfo- nat, 1 ,3-Dimethylimidazoliummethansulfonat, 1 ,2,3-Trimethylimidazoliummethansulfonat, 1 - Ethylimidazoliummethansulfonat, 1 -Ethyl-2-methylimidazoliummethansulfonat, 1 -Ethyl-3-me- thylimidazoliummethansulfonat, 1 -Ethyl-2,3-dimethylimidazoliummethansulfonat, 1 ,3-Diethyli- midazoliummethansulfonat, 1 -Butylimidazoliummethansulfonat, 1 -Butyl-2-methylimidazolium- methansulfonat, 1 -Butyl-3-methylimidazoliummethansulfonat, 1 -Butyl-2,3-dimethylimidazoli- ummethansulfonat, 1 ,3-Dibutylimidazoliummethansulfonat, 1 -Methylimidazoliumtrifluorme- thansulfonat, 1 ,2-Dimethylimidazoliumtrifluormethansulfonat, 1 ,3-Dimethylimidazoliumtrifluor- methan-sulfonat, 1 ,3-Dimethylimidazoliumtrifluormethansulfonat, 1 ,2,3-T rimethylimidazolium- trifluormethansulfonat, 1 -Ethylimidazoliumtrifluormethansulfonat, 1 -Ethyl-2-methylimidazoli- umtrifluormethansulfonat, 1 -Ethyl-3-methylimidazoliumtrifluormethansulfonat, 1 -Ethyl-2,3-di- methylimidazoliumtrifluormethansulfonat, 1 ,3-Diethylimidazoliumtrifluormethansulfonat, 1 - Butylimidazoliumtrifluormethansulfonat, 1 -Butyl-2-methylimidazoliumtrifluormethansulfonat,
1 -Butyl-3-methylimidazoliumtrifluormethansulfonat, 1 -Butyl-2,3-dimethylimidazoliumtrifluor- methansulfonat, 1 ,3-Dibutylimidazoliumtrifluormethansulfonat, 1 -Methylimidazoliumtosylat,
1 ,2-Dimethylimidazoliumtosylat, 1 ,3-Dimethylimidazoliumtosylat, 1 ,2,3-T rimethylimidazolium- tosylat, 1 -Ethylimidazoliumtosylat, 1 -Ethyl-2-methylimidazoliumtosylat, 1 -Ethyl-3-methyli- midazoliumtosylat, 1 -Ethyl-2,3-dimethylimidazoliumtosylat, 1 ,3-Diethylimidazoliumtosylat, 1 - Butylimida-zoliumtosylat, 1 -Butyl-2-methylimidazoliumtosylat, 1 -Butyl-3-methylimidazoliumto- sylat, 1 -Butyl-2,3-dimethylimidazoliumtosylat, 1 ,3-Dibutylimidazoliumtosylat, 1 -Methylimida- zoliumacetat, 1 ,2-Dimethylimidazoliumacetat, 1 ,3-Dimethylimidazoliumacetat, 1 ,2,3-Trime- thylimidazoliumacetat, 1 -Ethylimidazoliumacetat, 1 -Ethyl-2-methylimidazoliumacetat, 1 -Ethyl- 3-methylimidazoliumacetat, 1 -Ethyl-2,3-dimethylimidazoliumacetat, 1 ,3-Diethylimidazolium- acetat, 1 -Butylimidazoliumacetat, 1 -Butyl-2-methylimidazoliumacetat, 1 -Butyl-3-methylimida- zoliumacetat, 1 -Butyl-2,3-dimethylimidazoliumacetat, 1 ,3-Dibutylimidazoliumacetat, 1 -Methyl- imidazoliummethylcarbonat, 1 ,2-Dimethylimidazoliummethylcarbonat, 1 ,3-Dimethylimidazoli- ummethylcarbonat, 1 ,2,3-T rimethyl-imidazoliummethylcarbonat, 1 -Ethylimidazoliummethyl- carbonat, 1 -Ethyl-2-methylimidazoliummethylcarbonat, 1 -Ethyl-3-methylimidazoliummethyl- carbonat, 1 -Ethyl-2,3-dimethylimidazoliummethylcarbonat, 1 ,3-Diethylimidazoliummethylcar- bonat, 1 -Butylimidazoliummethylcarbonat, 1 -Butyl-2-methylimidazoliumcarbonat, 1 -Butyl-3- methylimidazoliummethylcarbonat, 1 -Butyl-2,3-dimethylimidazoliummethylcarbonat, 1 ,3-Di- butylimidazoliummethylcarbonat, 1 -Methylimidazoliumhydrogencarbonat, 1 ,2-Dimethylimida- zoliumhydrogencarbonat, 1 ,3-Dimethylimidazoliumhydrogencarbonat, 1 ,2,3-T rimethylimida- zoliumhydrogencarbonat, 1 -Ethylimidazoliumhydrogencarbonat, 1 -Ethyl-2-methylimidazoli- umhydrogencarbonat, 1 -Ethyl-3-methylimidazoliumhydrogencarbonat, 1 -Ethyl-2,3-dimethyli- midazoliumhydrogencarbonat, 1 ,3-Diethylimidazoliumhydrogencarbonat, 1 -Butylimidazolium- hydrogencarbonat, 1 -Butyl-2-methylimidazoliumhydrogencarbonat, 1 -Butyl-3-methylimida- zoliumhydrogencarbonat, 1 -Butyl-2,3-dimethylimidazoliumhydrogencarbonat und 1 ,3-Dibutyl- imidazoliumhydrogencarbonat.
Besonders bevorzugt ist die mindestens eine ionische Flüssigkeit (IL) ausgewählt aus der Gruppe bestehend aus 1 -Methylimidazoliumchlorid, 1 ,3-Dimethylimidazoliumchlorid, 1 -Ethyli- midazoliumchlorid, 1 -Ethyl-3-methylimidazoliumchlorid, 1 -Ethyl-2,3-dimethylimidazoliumchlo- rid, 1 ,3-Diethylimidazoliumchlorid, 1 -Butylimidazoliumchlorid, 1 -Butyl-3-methylimidazolium- chlorid, 1 -Butyl-2,3-dimethylimidazoliumchlorid, 1 ,3-Dibutylimidazoliumchlorid, 1 -Methyli- midazoliumtetrachloroaluminat, 1 ,3-Dimethylimidazoliumtetrachloroaluminat, 1 -Ethylimida- zoliumtetrachloroaluminat, 1 -Ethyl-3-methylimidazoliumtetrachloroaluminat, 1 -Ethyl-2,3-di- methylimidazoliumtetrachloroaluminat, 1 ,3-Diethylimidazoliumtetrachloroaluminat, 1 -Butyli- midazoliumtetrachloroaluminat, 1 -Butyl-3-methylimidazoliumtetrachloroaluminat, 1 -Butyl-2,3- dimethylimidazoliumtetrachloroaluminat, 1 ,3-Dibutylimidazoliumtetrachloroaluminat, 1 -Methy- limidazoliumhydrogensulfat, 1 ,3-Dimethylimidazoliumhydrogensulfat, 1 -Ethylimidazoliumhyd- rogensulfat, 1 -Ethyl-3-methylimidazoliumhydrogensulfat, 1 -Ethyl-2,3-dimethylimidazolium- hydrogensulfat, 1 ,3-Diethylimidazoliumhydrogensulfat, 1 -Butylimidazoliumhydrogensulfat, 1 - Butyl-3-methylimidazoliumhydrogensulfat, 1 -Butyl-2,3-dimethylimidazoliumhydrogensulfat,
1 .3-Dibutylimidazoliumhydrogensulfat, 1 -Methylimidazoliummethansulfonat, 1 ,3-Dimethyli- midazoliummethansulfonat, 1 -Ethylimidazoliummethansulfonat, 1 -Ethyl-3-methylimidazolium- methansulfonat, 1 -Ethyl-2,3-dimethylimidazoliummethansulfonat, 1 ,3-Diethylimidazoliumme- thansulfonat, 1 -Butylimidazoliummethansulfonat, 1 -Butyl-3-methylimidazoliummethansulfo- nat, 1 -Butyl-2,3-dimethylimidazoliummethansulfonat, 1 ,3-Dibutylimidazoliummethansulfonat, 1 -Methylimidazoliumacetat, 1 ,3-Dimethylimidazoliumacetat, 1 -Ethylimidazoliumacetat, 1 - Ethyl-3-methylimidazoliumacetat, 1 -Ethyl-2,3-dimethylimidazoliumacetat, 1 ,3-Diethylimida- zoliumacetat, 1 -Butylimidazoliumacetat, 1 -Butyl-3-methylimidazoliumacetat, 1 -Butyl-2,3-di- methylimidazoliumacetat, 1 ,3-Dibutylimidazoliumacetat, 1 ,3-Dimethylimidazoliummethylcar- bonat, 1 -Ethyl-3-methylimidazoliummethylcarbonat, 1 -Ethyl-2,3-dimethylimidazoliumacetat, 1 -Butyl-3-methylimidazoliummethylcarbonat und 1-Butyl-2,3-dimethylimidazoliummethylcar- bonat.
Ganz besonders bevorzugt ist die mindestens eine ionische Flüssigkeit (IL) ausgewählt aus der Gruppe bestehend aus 1 -Methylimidazoliumchlorid, 1 -Ethylimidazoliumchlorid, 1 -Ethyl-3- methylimidazoliumchlorid, 1 -Butylimidazoliumchlorid, 1 -Butyl-3-methylimidazoliumchlorid,
1 .3-Diethylimidazoliumchlorid, 1 ,3-Dibutylimidazoliumchlorid, 1 -Methylimidazoliumtetrachlo- roaluminat, 1 -Ethylimidazoliumtetrachloroaluminat, 1 -Ethyl-3-methylimidazoliumtetrachloro- aluminat, 1 ,3-Diethylimidazoliumtetrachloroaluminat, 1 -Butylimidazoliumtetrachloroaluminat,
1 -Butyl-3-methylimidazoliumtetrachloroaluminat, 1 ,3-Dibutylimidazoliumtetrachloroaluminat.
Das Reaktionsgemisch (RG) enthält bevorzugt mindestens 50 Gew.-% der Komponente (c), bezogen auf das Gesamtgewicht des Reaktionsgemischs (RG). Besonders bevorzugt enthält das Reaktionsgemisch (RG) mindestens 64 Gew.-% und ganz besonders bevorzugt mindes- tens 70 Gew.-% der Komponente (c), bezogen auf das Gesamtgewicht des Reaktionsge- mischs (RG).
Desweiteren enthält das Reaktionsgemisch (RG) bevorzugt höchstens 90 Gew.-% der Kom- ponente (c), bezogen auf das Gesamtgewicht des Reaktionsgemischs (RG). Besonders be- vorzugt enthält das Reaktionsgemisch (RG) höchstens 84 Gew.-% und ganz besonders be- vorzugt höchstens 80 Gew.-% der Komponente (c), bezogen auf das Gesamtgewicht des Reaktionsgemischs (RG). Das Gesamtgewicht aller Komponenten im Reaktionsgemisch (RG) ergibt im Allgemeinen 100 Gew.-%.
Das Reaktionsgemisch (RG) enthält bevorzugt 50 bis 90 Gew.-% der Komponente (c), bezo- gen auf das Gesamtgewicht des Reaktionsgemischs (RG). Besonders bevorzugt enthält das Reaktionsgemisch (RG) 64 bis 84 Gew.-% und ganz besonders bevorzugt 70 bis 80 Gew.-% der Komponente (c), bezogen auf das Gesamtgewicht des Reaktionsgemischs (RG). In einer Ausführungsform enthält die Komponente (c) mindestens 80 Gew.-%, bevorzugt mindestens 90 Gew.-% und besonders bevorzugt mindestens 98 Gew.-% mindestens einer ionischen Flüssigkeit (IL) ausgewählt aus der Gruppe bestehend aus 1-Methylimidazolium- chlorid, 1-Ethylimidazoliumchlorid, 1-Ethyl-3-methylimidazolium-chlorid, 1-Butylimidazolium- chlorid, 1-Butyl-3-methylimidazoliumchlorid, 1 ,3-Dibutyl-imidazoliumchlorid, 1-Methylimida- zoliumtetrachloroaluminat, 1 -Ethylimidazoliumtetra-chloroaluminat, 1 -Ethyl-3-methylimida- zoliumtetrachloroaluminat, 1 ,3-Diethylimidazo-liumtetrachloroaluminat, 1 -Butylimidazoliumte- trachloroaluminat, 1 -Butyl-3-methyl-imidazoliumtetrachloroaluminat, 1 ,3-Dibutylimidazolium- tetrachloroaluminat, , bezogen auf das Gesamtgewicht der Komponente (c) im Reaktionsge- misch (RG).
In einer weiteren bevorzugten Ausführungsform besteht die Komponente (c) im Wesentli- chen aus mindestens einer ionischen Flüssigkeit (IL) ausgewählt aus der Gruppe bestehend aus 1-Methylimidazoliumchlorid, 1-Ethylimidazoliumchlorid, 1-Ethyl-3-methylimidazoliumchlo- rid, 1-Butylimidazoliumchlorid, 1-Butyl-3-methylimidazoliumchlorid, 1 ,3-Dibutylimidazolium- chlorid, 1-Methylimidazoliumtetrachloroaluminat, 1-Ethylimidazoliumtetrachloroaluminat, 1- Ethyl-3-methylimidazoliumtetrachloroaluminat, 1 ,3-Diethylimidazoliumtetrachloroaluminat, 1 - Butylimidazoliumtetrachloroaluminat, 1 -Butyl-3-methylimidazoliumtetrachloroaluminat, 1 ,3- Dibutylimidazoliumtetrachloroalu-minat.
Unter der Bezeichnung„besteht im Wesentlich aus“ wird im Zusammenhang der vorliegen- den Erfindung verstanden, dass die Komponente (c) mindestens 99 Gew.-%, einer ionischen Flüssigkeit (IL) enthält, bezogen auf das Gesamtgewicht der Komponente (c) im Reaktions- gemisch (RG).
Bevorzugte und besonders bevorzugte Reaktionsgemische (RG) ergeben sich durch Kombi- nation der jeweiligen bevorzugten Komponenten (a), (b) und (c) oder der jeweiligen beson- ders bevorzugten Komponenten (a), (b) und (c), wie sie hierin beschrieben sind. Beispiele für besondes bevorzugte Reaktionsgemische (RG) sind in folgender Tabelle dargestellt, worin für Komponente (b) die entsprechenden Dihydrochloride mitoffenbart sind:
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000042_0001
Das Reaktionsgemisch (RG) wird bei einer Temperatur im Bereich von 0 bis 120 °C, vorzugs- weise im Bereich von 35 bis 100 °C und besonders bevorzugt im Bereich von 70 bis 80 °C zum Produktgemisch (PVG) umgesetzt, welches das Aramid enthält. Gegebenenfalls bei die ser Umsetzung entstehende flüchtige Reaktionsprodukte, beispielsweise Halogenkohlenwas- serstoffe wie Chlorwasserstoff, werden vorzugsweise aus dem Reaktionsraum entfernt, zum Beispiel durch Unterdrück und/oder Durchströmen des Reaktionsraumes und/oder des Re- aktionsgemisches (RG) mit einem inerten Gas, i.e. ein Gas welches an der Umsetzung unter den beschriebenen Bedingungen nicht teilnimmt, Beispiel Stickstoff oder ein Edelgas wie Ar- gon oder gegebenenfalls durch Zusatz einer Base, wie oben beschrieben.
Die Umsetzung des Reaktionsgemisches (RG) zum Produktgemisch (PVG) kann in den übli- chen Apparaturen der chemischen Technik geschehen, wie Rührkessel, Schneckenmaschi- nen, beispielsweise Extruder.
Die Umsetzung des Reaktionsgemisches (RG) zum Produktgemisch (PVG) kann diskontinuier- lich oder kontinuierlich erfolgen.
Die Komponenten (a) und (b) zur Bildung des Reaktionsgemisches (RG) werden im allgemei- nen in Substanz (im Sinne von unverdünnt) in der Regel einzeln und sequentiell zur Kompo- nente (c) gegeben.
In einer gut geeigneten Variante für die Umsetzung des Reaktionsgemisches (RG) zum Pro- duktgemisch (PVG) werden die Komponenten (c) und (b) vorgelegt, vorzugsweise unter Rüh- ren und die Komponente (a) wird in der gewünschten Menge, üblicherweise in stöchiometri- scher Menge oder in geringem Überschuß, beispielsweise 0,5 Mol-% Überschuss, bezogen auf die Komponente (b) diesem Gemisch hinzugefügt, vorzugsweise in Portionen. Wird die Komponente (a) portionsweise zugegeben, so ist die Anzahl der Portionen beispielsweise 2 bis 10. Das Ende der Umsetzung des Reaktionsgemisches (RG) zum Produktgemisch (PVG), kann daran erkannt werden, dass sich das Drehmoment des Rührers nicht mehr steigert.
Das Produktgemisch (PVG) wird dann zu Fasern, Folien oder Formkörpern weiterverabeitet und zwar ohne weitere Aufarbeitung oder nach einer Aufarbeitung, beispielsweise durch Iso- lierung des Aramids, beispielsweise durch Fällung, vorzugsweise, insbesondere bei der Wei- terverarbeitung zu Fasern, jedoch ohne weitere Aufarbeitung.
Die Weiterverarbeitung des Produktgemischs (PVG) ZU Fasern, Folien oder Formkörpern fin- det bei einer Temperatur Tv statt, bei welcher praktisch noch keine Umwandlung in Polyb- enzazolpolymer (P), beispielsweise PBO, stattfindet. Üblicherweise liegt Tv im Bereich von 0 bis 100 °C, vorzugsweise im Bereich von 20 bis 60 °C.
Die Weiterverarbeitung des Produktgemischs (PVG) zu Fasern geschieht üblicherweise mit der Methode des Spinnens in den üblichen hierfür geeigneten Vorrichtungen, beispielsweise einer Kolbenspinnanlage, bei den üblichen für das Polymer spezifischen Temperaturen. Übli cherweise wird vertikal nach unten gesponnenen. Geeignete Spinndüsen sind 144 Loch /
100 pm oder 64 Loch / 150 pm mit enem L/D-Verhältnis von 3:1 . Die beim Spinnen entste- henden Drücke sind sehr stark von den Randbedingunegn des Spinnens abhängig, wie Spinntemperatur, Düsengeometrie und -dimension, üblicherweise liegen sie im Bereich von 60 bis 100 bar. Die Austrittsgeschwindigkeit der aus dem Produktgemisch (PVG) erhaltenen Spinnmasse liegt beispielsweise im Bereich von 1 bis 2 m/min. Das üblich gebildete Fila- mentbündel wird in der Regel über einen Luftspalt einer Spatlbreite im Bereich von 1 bis 100 mm beispielsweise im Bereich von 10 bis 50 mm in ein Koagulationsbad geleitet. Dieses be- steht üblicherweise aus demineralisiertem Wasser, kann aber auch Anteile der verwendeten Komponente (c) (IL) enthalten. Die Temperatur des Koagulationsbades liegt beispielsweise bei 20 bis 30 °C, die Verweilzeit im Koagulationsbad beträgt, beispielsweise ca. 40 s.
In einer bevorzugten Ausführungsform wird das aus dem Produktgemischs (PVG) durch Spinnen erhaltene Filamentbündel mit den üblichen Methoden verstreckt. Beispielsweise wird zum Verstrecken des aus dem Produktgemisch (PVG) durch Spinnen erhaltene Fila- mentbündels dieses über eine Umlenkrolle aus dem Koagulationsbad auf eine Galette gelei tet. Deren Geschwindigkeit bestimmt üblicherweise das Verstreckverhältnis. Die Verstre- ckung des aus dem Produktgemisch (PVG) durch Spinnen erhaltenen Filamentbündels liegt beispielsweise im Bereich von 20 % bis 30 %. Das aus dem Produktgemischs (PVG) durch Spinnen erhaltene Filamentbündel wird dann in einer bevorzugten Ausführungsform durch ein auf eine Temperatur im Bereich von 60 bis 100 °C beheiztes, beispielsweise auf 88 bis 90 °C beheiztes demineralisiertes Wasserbad, üblicherweise zur Entfernung von Lösungs- mittelresten oder Verunreinigungen, geführt.
Üblicherweise wird das aus dem Produktgemischs (PVG) durch Spinnen erhaltene Filament- bündel bei einer Temperatur bei welcher praktisch noch keine Umwandlung in Polybenzazol- polymer (P), beispielsweise PBO, stattfindet, beispielsweise bei 120 °C getrocknet, beispiels- weise in einem Heissluftkanal. Die so gewonnenen Fasern, Folien und Formkörper aus Aramid, vorzugsweise Fasern und Folien aus Aramid, insbesonderer Fasern aus Aramid werden durch Erhitzen auf eine Tem- peratur im Bereich von 250 bis 500 °C, vorzugsweise im Bereich von 300 bis 450 °C in Fa- sern, Folien und Formkörper aus Polybenzazolpolymer (P), beispielsweise PBO, überführt.
Beispielsweise werden die so gewonnenen Fasern aus Aramid durch Erhitzen auf eine Tem- peratur im Bereich von 250 bis 500 °C, vorzugsweise im Bereich von 300 bis 450 °C und je- weils vorzugsweise mittels Verstreckung in Fasern aus Polybenzazolpolymer (P), beispiels- weise PBO, überführt. In einer weiteren gut geeigneten Ausführungsform werden die Fasern aus Aramid bei möglichst hohen Verstreckungen hergestellt. Der Fachmann weiß, dass die Verstreckung von vielen Verspinnungsparametern, beispielsweise der Spinntemperatur, ab- hängig sind und schwer quantifizierbar sind. Beispielsweise werden hier unter„möglichst ho- hen Verstreckungen“, solche verstanden, bei deren Überschreitung es zu relativ häufigen Filamentabrissen bei dem Verspinnen kommt.
Durch das erfindungsgemäße Verfahren werden Fasern, Folien und Formkörper aus Polyb- enzazolpolymer (P), beispielsweise PBO, hergestellt.
Ein weiterer Gegenstand der vorliegenden Erfindung sind somit auch Fasern, Folien und Formkörper aus Polybenzazolpolymer (P), beispielsweise PBO, welche durch das erfin- dungsgemäße Verfahren hergestellt wird.
Bevorzugt weist das Polybenzazolpolymer (P) Wiederholungseinheiten der allgemeinen For- mel (Xlla), (Xllb), (Xllc), (Xlld), (Xlle) und/oder (Xllf) auf:
Figure imgf000044_0001
Figure imgf000045_0001
In einer bevorzugten Ausführungsform enthält das Polybenzazolpolymer (P) mindestens 40 Gew.-%, bevorzugt mindestens 60 Gew.-% und besonders bevorzugt mindestens 80 Gew.- % an Wiederholungseinheiten ausgewählt aus der Gruppe bestehend aus Wiederholungs- einheiten der allgemeinen Formeln (Xlla), (Xllb), (XI Ic), (Xlld), (Xlle) und (Xllf), bezogen auf das Gesamtgewicht des Polybenzazolpolymers (P).
In einer besonders bevorzugten Ausführungsform enthält das Polybenzazolpolymer (P) min- destens 40 Gew.-%, bevorzugt mindestens 60 Gew.-% und besonders bevorzugt mindes- tens 80 Gew.-% an Wiederholungseinheiten ausgewählt aus der Gruppe bestehend aus Wiederholungseinheiten der allgemeinen Formeln (Xlla) und (Xllb) auf.
Die hier angegebenen Gewichtsangaben bezüglich der Wiederholungseinheiten der allge meinen Formeln (Xlla), (Xllb), (Xllc), (Xlld), (Xlle) und (Xllf) beziehen sich dabei auf das Ge- samtgewicht an Wiederholungseinheiten der allgemeinen Formel (Xlla), (Xllb), (Xllc), (Xlld), (Xlle) und (Xllf).
In einer weiteren besonders bevorzugten Ausführungsform besteht das Polybenzazolpoly- mer (P) im Wesentlichen aus Wiederholungseinheiten ausgewählt aus der Gruppe beste- hend aus Wiederholungseinheiten der allgemeinen Formeln (Xlla) und (Xllb). Unter der Be- zeichnung„besteht im Wesentlichen aus“ wird im Rahmen der vorliegenden Erfindung ver- standen, dass das Polybenzazolpolymer (P) mindestens 95 Gew.-%, bevorzugt mindestens 97 Gew.-% und besonders bevorzugt mindestens 99 Gew.-% an Wiederholungseinheiten ausgewählt aus der Gruppe bestehend aus Wiederholungseinheiten der allgemeinen For- meln (Xlla) und (Xllb) enthält, bezogen auf das Gesamtgewicht des Polybenzazolpolymers
(P). In einer weiteren besonders bevorzugten Ausführungsform besteht das Polybenzazolpoly- mer (P) aus Wiederholungseinheiten ausgewählt aus der Gruppe bestehend aus Wiederho- lungseinheiten der allgemeinen Formeln (XI la) i.e. PBO und (XI Ib) i.e. trans-PBO.
Insbesondere bevorzugt ist das Polybenzazolpolymer (P) Poly(p-phenylen-2,6-benzobiso- xazol, i.e. PBO.
Das durch das erfindungsgemäße Verfahren erhaltene Polybenzazolpolymer (P), beispiels- weise PBO, weist allgemein eine Viskositätszahl von 3 bis 40 dl/g, bevorzugt von 10 bis 35 dl/g und besonders bevorzugt von 15 bis 30 dl/g auf. Die Bestimmung der Viskositätszahl er- folgt gemäß der DIN EN ISO 1628-1 bei 25 °C in Methansulfonsäure.
Die erfindungsgemäßen Fasern, Folien oder Formkörpern aus Polybenzazolpolymer (P), bei- spielsweise PBO, enthaltenpraktisch keinen Schwefel oder Phosphor, zum Beispiel in Form von schwefelhaltigen oder phosphorhaltigen Säuren.„Praktisch keinen“ bedeutet in diesem Zusammenhang üblicherweise eine Menge unterhalb der Nachweisgrenze der Elementar- analyse, beispielsweise für Phosphor weniger als 100 Gew.-ppm, wie mit der in den Beispie- len beschriebenen Methode bestimmt.
Entsprechende schwefelhaltige oder phosphorhaltige Säuren sind dem Fachmann generell bekannt und umfassen insbesondere Phosphorsäure, Polyphosphorsäure, Schwefelsäure, Methansulfonsäure, Trifluormethansulfonsäure und Chlorsulfonsäure.
Die durch das erfindungsgemäße Verfahren hergestellten Fasern, Folien und Formkörper aus Polybenzazolpolymer (P), beispielsweise PBO können in vielen Bereichen verwendet werden, beispielsweise (i) die Fasern zur Herstellung von Tauen, Seilen, Kordeln, zur Um- mantelungen von Glasfasern, zur Herstellung von faserverstärkten Gummimaterialien, bei- spielsweise Fahrzeugreifen und Fließbänder, zur Herstellung von faserverstärkten Baustof- fen, beispielsweise Endlosfasern oder Kurzschnittfasern in Zement oder Beton, beispiels- weise Spritzbeton, zur Herstellung von Bremsbelägen für Scheibenbremsen, zur Herstellung von Fliesmaterialien, beispielsweise für Fliese zur Gasfiltration, zur Herstellung von Textilien, beispielsweise für beschusshemmende Westen, temperaturbeständige Schutzkleidung, Schichten in Helmen, für Versorgungskabelmäntel, für textilienverstärkte Baustoffe, bei- spielsweise als Textilbeton zur Instandsetzung und Reparatur von Bauwerken, (ii) die Folien in thermisch stabilen Membranen zur Gastrennung, in protonenleitenden Membranen, in elektro-optischen Geräten oder lichtemittierenden Dioden, (iii) die Formkörper als hochtem- peraturbeständige polymere Werkstoffe.
Beispiele
Folgende Methoden wurden zur Bestimmung der folgenden Kenngrößen angewendet:
Zugfestigkeit und E-Modul von Fasern gemäß DIN EN ISO 5079. Viskositätszahl gemäß DIN EN ISO 1628-1 bei 25 °C in Methansulfonsäure.
Phosphorbestimmung (Methode MB 2018/05, BASF SE, Kompetenzzentrum Analytik) wie im folgenden beschrieben:
Teilmengen der Phosphor-haltigen Probe von 0,2 bis 0,3 g werden bei 320 °C mit konz. Schwefelsäure (ca. 96 Gew.-% H2SO4), konzentrierter Salpetersäure (ca. 65 Gew.-% HNO3) und Cäsiumsulfatlösung (50 g Cäsiumsulfat CS2SO4 (Reinheit 99,9) werden mit Wasser auf ein Volumen von 1000 ml gelöst) aufgeschlossen. Der erhaltene Rückstand wird mit Misch- säure (konz. Salpetersäure + konz. Perchlorsäure (ca. 70 Gew.-% HCIO4) + konz. Schwefel- säure im Volumenverhältnis 2 : 1 : 1 ) bei ca. 160 °C behandelt. Die überschüssigen Säuren werden abgeraucht und der Rückstand mit 25 Vol.-%iger Salzsäure (Mischung aus konz. Salzsäure (ca. 36 Gew.-% HCl) + Wasser im Volumenverhältnis 3:1) und deionisiertem Was- ser aufgekocht und gelöst. Das genaue Volumen wird über Rückwägung und Berechnung der Dichte ermittelt.
In der erhaltenen Aufschlußlösung wird Phosphor mittels Atomemissionsspektrometrie (ICP- OES) gemessen.
Matrix Aufschlußlösung und der Standards: c(HCI) ca. 0,6 mol/L, ca. 0,2 % (m/v) CS2SO4. Gerät: ICP-OES Spektrometer Agilent 5100.
Messbedingungen: Integrationszeit 10 sec, Generator 1200 W, Zerstäuber Conikal 1 ml, Spektrallinie (nm): P 213,618; Korrekturen: Sc 361 ,383 nm (interner Standard), Kalibration: extern.
1. Allgemeine Versuchsvorschrift zur Herstellung des Produktgemisches (PVG)
In einem 750-ml Doppelmantel-Glasreaktor, der mit einem Ankerrührer und Destillationsbrü- cke ausgestattet war, wurde mit 1-Butyl-3-methylimidazoliumchlorid („BMIM-CI“) befüllt. Die ionische Flüssigkeit (IL) wurde bei 130 °C unter Rühren (100 upm) unter Stickstoffzuführung (60 L/h) und reduziertem Druck (50 mbar absoluter Druck) getrocknet bis ein Wassergehalt von <0.03 % erreicht wurde (Messung über Karl-Fischer Titration eines entnommenen Ali- quots). Nach Temperierung der IL auf 75°C wurde 4,6-Diaminoresorcinoldihydrochlorid (IU- PAC-Name 4,6-Diamino-1 ,3-dihydroxybenzoldihydrochlorid) („DAR“) zugegeben und über Nacht gerührt bis eine homogene Lösung erhalten wurde (ca. 16 h). Anschließend wurde Terephthalsäuredichlorid („TSC“) als Feststoff in fünf Portionen unter Rühren (100 Upm) zu- gegen, wobei ca. 15 min zwischen aufeinanderfolgenden Dosierungen lagen. Die Gesamtdo- sierungsmenge dieser fünf Dosierungen betrugen 50, 75, 88, 95, 98 mol-% TSC bezogen auf die eingesetzte DAR-Menge. Reaktionsgase wurden über einen Stickstoffstrom (ca. 90 L/h) bei Unterdrück (ca. 50 mbar absoluter Druck) abgeführt. Nach der fünften Dosierung der ent- sprechenden TSC-Menge (siehe oben) stieg das Drehmoment des Rühres langsam an bis ein Drehmoment von ca.80 Ncm erreicht wurde, wobei dann die Rührgeschwindigkeit redu- ziert wurde (auf ca. 20 Upm). Sobald kein weiterer Anstieg des Drehmoments erfolgte, wurde weiteres TSC zugegeben (Gesamtmenge der sechs Dosierungen entsprach damit 100,1 bis 100,6 mol-% bezüglich der DAR Menge), infolgedessen stieg das Drehmoment schnell an. Die Rührgeschwindigkeit wurde weiter reduziert (ca. 10 Upm) und es wurde weiter gerührt bis kein weiterer Drehmomentsanstieg erfolgte. Zuletzt wurde die Mischung für 1 h ohne wei- teres Rühren bei reduziertem Druck ( ca.50 mbar) aufbewahrt um die Menge der in Lösung befindlichen Gaseinschlüsse zu reduzieren womit in der Regel die weitere Verarbeitung (bei- spielsweise zur Verspinnung) erleichtert wird. Nach dem Entspannen des Reaktionsgefäßes auf Normaldruck (ca. 1013 mbar) wurde ein Aliquot der Lösung zur rheologischen Charakte- risierung entnommen (siehe Charakterisierung).
Beispiele V1 bis V3 Tabelle 1.1
Figure imgf000048_0001
Charakterisierung
Die Polymerlösungen wurden auf einem Rheometer vom Typ DHR der Firma TA Instru- ments, Newcastle (USA) mittels Frequenz-Sweeps bei jeweils konstanter Temperatur rheolo- gisch charakterisiert. Die Frequenzen lagen logarithmisch äquidistant verteilt zwischen 250 und 1 rad/s mit 10 Punkten pro Dekade. Die Temperatur wurde stufenweise zwischen 10°C und 60°C in Schritten von 10 K variiert. Als Temperiersystem diente eine untere Peltierplatte mit stickstoffgespülter Abdeckung aus Acrylglas zur Vermeidung von Kondensation (zwin- gend erforderlich angesichts der hygroskopischen Eigenschaften der verwendeten IL). Die obere Platte hatte einen Durchmesser von 25 mm bei einer Spaltweite von 1 mm. Die aufge- prägte Deformation betrug durchgängig 10%.
Aus den Ergebnissen der 6 isothermen Frequenzversuche wurde für jede Lösung eine Mas- terkurve bei einer Referenztemperatur von 20°C erstellt. Die horizontalen Shiftfaktoren aT wurden gefittet an die WLF-Gleichung nach Malcolm L. Williams, Robert F. Landei und John D. Ferry The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids, Journal of the American Chemical Society, 1955. ~ C1 (T ~ frei)
1°§io at C2 + T— Tref
Für die vertikalen Shiftfaktoren bT wurde nur die Temperatur berücksichtigt über
Figure imgf000049_0001
wobei hier alle Temperaturen in Kelvin anzugeben sind.
Als für eine Verspinnung geeignet wurden solche Lösungen bewertet, bei denen die Korrela- tion zwischen dem Verlustfaktor tan(ö) und dem Betrag der komplexen Viskosität |h*| bei ei- ner beliebigen, aber festgelegten Frequenz in einem gewissen Prozessfenster lag (tan(ö)/|q*| ~ 1 , bei 0,1 rad/s, wobei |h*| = 45000 - 90000 Pa*s). Dieses Prozessfenster wurde empirisch ermittelt.
2. Spinnversuche mit PVG:
Als Spinnapparatur dient eine Kolbenspinnanlage der Firma Fourne. Vor dem eigentlichen Spinnversuch, wurde die Spinnlösung in den Spinnkolben möglichst gasblasenfrei überge- führt.
Der befüllte Kolben wurde in die Kolbenspinnanlage eingebaut und auf Spinntemperatur be- heizt, siehe Tabelle 2.1. Als Düse kam entweder eine 144 Loch 100 pm Düse oder eine 64 Loch 150 pm Düse mit einem L/D Verhältnis von 3/1 zum Einsatz. Es wurde vertikal nach un- ten gesponnen. Die Drücke, die hier entstanden, waren stark von der Temperatur, der Lö- sungskonzentration, der Kolbenvorschubgeschwindigkeit und der zu verwendeten Düse ab- hängig. Allgemein lagen sie bei 60 bis 100 bar. Die Austrittsgeschwindigkeit der Spinnmasse betrug 1 bis 2 m/min. Über einen Luftspalt (Abstand Düse zu Grenze Koagulationsbad) von 10 bis 100 mm Länge wurde das so gebildete Filamentbündel in ein Koagulationsbad aus demineralisiertem Wasser einer Temperatur von ca. 25 °C geleitet.. Über eine Umlenkrolle wurde das Filamentbündel aus dem Bad auf eine Galette geleitet. Deren Geschwindigkeit bestimmt das Verstreckverhältnis. Stabile Spinnversuche konnten mit einer Verstreckung von 20 % und 30 % realisiert werden. Spinnversuche mit 50 % Verstreckung und mehr führ- ten relativ häufig zu gerissenenen Filamenten im Faserbündel. Die Verweilzeit im Koagulati- onsbad betrug ca. 40 s.
Zum Waschen wurde das Faserbündel durch ein auf 88 bis 90 °C beheiztes demineralisier- tes Wasserbad geführt. Die Verweilzeit betrug hier ca. 32 s. Dabei wurde die Faser über eine Galette um 20 % verstreckt. Dann wurde die Faser zur Trocknung durch einen Heissluftkanal bei 120 °C mittels einer Galette geführt. Die Verweilzeit bei der Trocknung betrug ca. 34s. Von letzterer Galette aus wurde die so entstandene Faser mit einem tensionsgesteuerten Wickler von Oeriklon-Barmag (Wuff 6 e) mit einer Vorspannkraft von 100cN aufgespult. Die Ergebnisse sind in der folgenden Tabelle 2.1 aufgeführt. Hierin bedeuten die V-Nr. 1 , 2 3 die in Tabelle 1.1 angegebenen Ansätze, und die entsprechenden Spinnversuche A, B, C führen zu den Proben 1A, 1 B, 1C, 2A und 3A, welche in den Kondensationen wie in 3.1 und 3.2 dar- gestellt eingesetzt wurden. Tabelle 2.1
Figure imgf000050_0001
3.1 PBO Kondensation Nr. 1 :
Die aus dem Spinnversuch gewonnenen Fasern wurden durch einen mit Stickstoff gespülten Ofen bei 420°C geführt (Ofenlänge 3 m, 8 Heizzonen). Die Verstreckung des Materials wurde durch eine Fadenbremse in der Abspuleinheit erreicht. Hier wurde ein definierter Roll wiederstand vorgegeben. Am Ofenausgang wurde der Faden über eine Galette zu einem tensionsgesteuerten Wickler geführt. Stabile Verstreckungen lagen bei 20 bis 30 %, bei hö- heren Verstreckungen kam es teilweise zu Filamentabrissen. Die Verweilzeiten bei diesem Prozess betrugen ca. 60 min. Die Versuche und Ergebnisse sind in Tabelle 3.1.1. zusam- mengestellt. Tabelle 3.1.1
Figure imgf000050_0002
Figure imgf000051_0001
Hierin sind Versuche mit den verschiedenen erfindungsgemäßen Aramid-Fasern 1 B, 1 C und 2A dargestellt in welchen jeweils die Verstreckung variiert wurde, außer bei 1 C-K1. Man er- kennt aus Tabelle 3.1.1 , dass sich beispielsweise E-Modul und Zugfestigkeit der erfindungs- gemäßen Aramid-Faser nach der Kondensation sehr stark erhöhen, Spalten mit den Titeln 1 B-K1 , 1 B-K2 und Spalten 2A-K1 bis 2A-K4.
Darüber hinaus erkennt man, dass wenn schon bei der Herstellung der erfindungsgemäßen Aramid-Faser eine höhere Verstreckung angewendet wurde (vergleiche Spalte 1 B und 1C in Tabelle 2.1 , Zeile„Gesamtverstreckung“) wirkt sich dies vorteilhaft auf die Eigenschaften (beispielsweise E-Modul, Zugfestigkeit) der Fasern aus PBO aus, die bei vergleichbaren Ver- streckungen während der Umwandlung Aramid-Faser zu Faser aus PBO erhalten wurden, vergleiche T abeile 3.1.1 1 B-K2 mit 1 C-K1.
3.2 PBO Kondensation Nr. 2:
In diesen Versuchen wurde die Verweilzeit von ca. 60 min auf ca. 10 min verkürzt. Die Fa- sern wurden durch einen mit Inertgas (N2) gespülten Ofen geführt (Ofenlänge 3 m, 6 Heizzo- nen), wobei folgende Heizprogramme (HP) zum Einsatz kamen:
Figure imgf000051_0002
Die Verweilzeit pro Heizzone betrug 1/6 der Gesamtverweilzeit, welche der folgenden Ta- belle zu entnehmen sind. Eine Verstreckung des Materials wurde durch den Geschwindig- keitsunterschied von zwei Galetten (1x Ofeneingang, 1x Ofenausgang) realisiert. Mit einem tensionsgesteuerten Wickler wurde die erhaltene PBO-Faser aufgespult. Stabile Verstre- ckungen lagen bei 20 bis 30 %, bei höheren Verstreckungen kam es teilweise zu Filamen- tabrissen. Die Versuche und Ergebnisse sind in Tabelle 3.2.1 und 3.2.2 zusammengestellt.
Tabelle 3.2.1
Figure imgf000052_0001
Hierin sind Versuche 3A-K1 bis 3A-K6 dargestellt in welchen zum Beispiel das Heizpro- gramm (HP1 , HP2) und/oder die Gesamtverweilzeit variiert wurden und die Verstreckung nicht variiert wurde. Man erkennt aus Tabelle 3.2.1 , dass sich beispielsweise E-Modul und Zugfestigkeit der erfindungsgemäßen Aramid-Faser (Spalte mit dem Titel 3A) nach der Kon- densation sehr stark erhöhen, Spalten mit den Titeln 3A-K1 bis 3A-K6.
Tabelle 3.2.2
Figure imgf000052_0002
Hierin sind Versuche 3A-K7 bis 3A-K13 dargestellt in welchen zum Beispiel das Heizpro- gramm (HP1 , HP2) und/oder die Gesamtverweilzeit variiert wurden, und die Verstreckung wurde zusätzlich variiert. Man erkennt aus Tabelle 3.2.2, dass sich durch höhere Verstre- ckung beispielsweise E-Modul und Zugfestigkeit der erfindungsgemäßen Aramid-Faser
(Spalte mit dem Titel 3A) nach der Kondensation weiter erhöhen, Spalten mit den Titeln 3A- K7 bis 3A-K13.
4. Untersuchungen zur Stabilität der Faser aus PBO gegenüber Hydrolyse und Alkalilauge 4.1 Hydrolyse
Die Hydrolyse einer erfindungsgemäßen Faser aus PBO nämlich 1 B-K2 aus Tabelle 3.1 .1 wurde nach den im folgenden beschriebenen Bedingungen durchgeführt, wie sie auch im technischen Datenblatt der kommerziellen PBO-Faser Zylon®- aufgeführt sind (PBO Fiber Zylon Technical Information, 2005, 1 -18.). Die erfindungsgemäßen Fasern aus PBO wurden bei 80 °C und 80 % relativer Luftfä uftigkeit gelagert und nach verschiedenen Zeitspannen die Zugfestigkeit bestimmt gemäß DIN EN ISO 5079. Es konnte kein signifikanter Abbau an Zug- festigkeit nach 50 Tagen Behandlung festgestellt werden, vergleiche Tabelle 4.1.1. Im Ver- gleich dazu, büßt die PBO-Faser Zylon® AS gemäß den Informationen im vorher genanntem technischen Datenblatt von Toyobo ca. 30 % Zugfestigkeit nach 50 Tagen ein.
Tabelle 4.1.1
Figure imgf000053_0001
4.2 Alkalistabilität
Die Alkalistabilität einer erfindungsgemäßen PBO-Faser, nämlich 1 B-K2 aus Tabelle 3.1.1 , wurde nach den im folgenden beschriebenen Bedingungen durchgeführt, wie sie auch im technischen Datenblatt der kommerziellen PBO-Faser Zylon® aufgeführt sind (PBO Fiber Zylon Technical Information, 2005, 1 -18.). Die erfindungsgemäßen Fasern aus PBO wurden bei 80 °C in Alkalilauge (10 Gew.-% NaOH) gelagert und die Zugfestigkeit nach 100 h be- stimmt. Während der Verlust der Zugfestigkeit der erfindungsgemäßen Fasern aus PBO bei lediglich ca. 8 % der Ausgangsfestigkeit lag, büßt die PBO-Faser Zylon® AS gemäß den In- formationen im vorher genanntem technischen Datenblatt von Toyobo ca. 70% der ursprüng- lichen Zugfestigkeit ein.
4.3 UV-Stabilität
Die UV-Stabilität einer erfindungsgemäßen PBO-Faser, nämlich 1 B-K2 aus Tabelle 3.1.1 , wurde nach den im folgenden beschriebenen Bedingungen durchgeführt, wie sie in ähnlicher Ausführung auch im technischen Datenblatt der kommerziellen PBO-Faser Zylon® aufge- führt sind (PBO Fiber Zylon Technical Information, 2005, 1 -18.). Die erfindungsgemäßen Fa- sern aus PBO wurden in einem Xenon-Laborbewitterungsgerät folgenden Bedingungen aus- gesetzt und die Zugfestigkeit nach 168 h bestimmt: Lampentyp: Xenon 320, Dosis 42 W/m2, Temperatur: 30 °C, relative Luftfeuchtigkeit: 60 %, Während der Verlust der Zugfestigkeit der erfindungsgemäßen Fasern aus PBO lediglich bei ca. 9 % der Ausgangsfestigkeit lag, büßt die PBO-Faser Zylon® AS ca. 75% der ursprünglichen Zugfestigkeit ein.

Claims

Ansprüche
1. Verfahren zur Herstellung von Folien, Fasern und Formkörpern eines Polybenzazol- polymers (P) durch Umsetzen eines Reaktionsgemisches (RG), das die folgenden Komponenten enthält:
(a) mindestens eine aromatische Dicarboxylverbindung der allgemeinen Formel (I):
Figure imgf000054_0001
in der
Ar1 ausgewählt ist aus der Gruppe bestehend aus unsubstituiertem oder zumin- dest monosubstituiertem Phenylen, Naphthalindiyl, Anthracendiyl, Biphenyldiyl, Diphenylmethandiyl, Diphenyletherdiyl, Diphenylthioetherdiyl, Diphenylsulfondiyl, Benzophenondiyl, Pyridindiyl, Pyrimidindiyl, Furandiyl und Thiophendiyl, wobei die Substituenten ausgewählt sind aus der Gruppe bestehend aus -F, -CI, -Br, -OR1 und -Ci-Cio-Alkyl, wobei R1 -H oder -Ci-Cio-Alkyl ist;
X1, X2 unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus - OR2, -F, -CI und -Br, wobei R2 -H, -Ci-Cio-Alkyl, -Ci-Cio-Alkenyl oder eine Wiederholungseinheit der all- gemeinen Formel (la) ist:
Figure imgf000054_0002
in der m eine natürliche Zahl von 1 bis 50 ist, und
R3 -H, -Ci-Cio-Alkyl oder -Ci-Cio-Alkenyl ist; (b) mindestens eine aromatische Diaminoverbindung der allgemeinen Formel (lla), (Mb), ( (llc) und/oder (I Id):
Figure imgf000055_0001
in denen n 0 oder 1 ist
Y1, Y2, Y3, Y4 unabhängig voneinander -H, -OR4 oder -SR4 sind, wobei R4 ausgewählt ist aus der Gruppe bestehend aus
-H, -Ci-Cio-Alkyl, Trimethylsilyl, tert-Butyldimethylsilyl, Acetyl und tert-Butyloxycar- bonyl, und wobei höchstens einer der Reste Y1 und Y2 -H ist, und wobei höchstens einer der Reste Y3 und Y4 -H ist;
Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8 unabhängig voneinander -NFh oder -NH3 + Qr sind, wobei Q_ein Anionenäquivalent ist, ausgewählt aus der Gruppe bestehend aus F~, Ch , Br, I-, HSO4 , SO42 , FhC-SOs-, P-H3C-C6H4-SO3- und NOß-; und
(c) mindestens eine ionische Flüssigkeit (IL); dadurch gekennzeichnet, dass die Umsetzung des Reaktionsgemisches (RG) bei ei- ner Temperatur TR im Bereich von 0 bis 120 °C stattfindet unter Erhalt eines Produkt- gemisches (PVG), Verarbeiten des Produktgemisches (PVG) ZU Folien, Fasern oder Formkörpern bei einer Temperatur Tv im Bereich von 0 bis 100 °C und Erhitzen der so gewonnenen Folien, Fasern oder Formkörper auf eine Temperatur TP im Bereich von 250 bis 500 °C.
2. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass Ar1 ausgewählt ist aus der Gruppe bestehend aus unsubstituiertem oder zumindest monosubstituiertem 1 ,3- Phenylen, 1 ,4-Phenylen, Naphthalin-1 ,4-diyl, Naphthalin-2,6-diyl, Anthracen-2,6-diyl, Anthracen-9,10-diyl, Biphenyl-4,4‘-diyl, Diphenylmethan-4,4‘-diyl, Diphenylether-4,4‘- diyl, Diphenylthioether-4,4‘-diyl, Diphenylsulfon-4,4‘-diyl, Benzophenon-4,4‘-diyl, Pyri- din-2,5-diyl, Pyrimidin-4,6-diyl, Furan-2,5-diyl und Thiophen-2,5-diyl.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Komponente (a) ausgewählt aus der Gruppe bestehend aus Terephthalsäure, Terephthalsäurean- hydrid, Terephthalsäuredifluorid, Terephthalsäuredichlorid, Terephthalsäuredibromid, Ci-Cio-Alkylestern von Terephthalsäure, Ci-Cio-Alkenylester von Terephthalsäure, Isophthalsäure, Isophthalsäureanhydrid, Isophthalsäuredifluorid, Isophthalsäuredich- lorid, Isophthalsäuredibromid, Polyanhydride von Isophthalsäure, Ci-Cio-Alkylester von Isophthalsäure und Ci-Cio-Alkenylester von Isophthalsäure.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Komponente (b) ausgewählt ist aus der Gruppe bestehend aus 4,6-Diamino-1 ,3- dihydroxybenzol, 4,6-Diamino-1 ,3-dihydroxybenzoldihydrochlorid, 2,5-Diamino-1 ,4- dihydroxybenzol und 2,5-Diamino-1 ,4-dihydroxybenzoldihydrochlorid.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Reaktionsgemisch (RG) 5 bis 25 Gew.-% der Komponente (a), 5 bis 25 Gew.-% der Komponente (b) und 50 bis 90 Gew.-% der Komponente (c) enthält, bezogen auf das Gesamtgewicht des Reaktionsgemisches (RG).
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die mindestens eine ionische Flüssigkeit (IL) die allgemeine Formel (III) aufweist:
[C]n+ [A]"- (I I I) in der n = 1 , 2, 3 oder 4 ist; das Kation [C] n + mindestens ein Kation ist, ausgewählt aus der Gruppe beste- hend aus unsubstituierten oder zumindest monosubstituierten Imidazolium-Kationen, Imidazolinium-Kationen, Imidazolidinium-Kationen, quartären Ammonium-Kationen, quartären Phosphonium-Kationen, Pyrazolium-Kationen, Pyrazolinium-Kationen, Pyri- dinium-Kationen, Pyridazinium-Kationen, Pyrimidinium-Kationen, Pyrazinium-Katio- nen, Pyrrolidinium-Kationen, Guanidinium-Kationen, Thiazolium-Kationen, Oxazolium- Kationen, Triazolium-Kationen, dem 1 ,8-Diazabicyclo[5.4.0]undec-7-enium-Kation, dem 1 ,8-Diazabicyclo[4.3.0]non-5-enium-Kation und Oligomeren oder Polymeren, die diese Kationen enthalten, wobei die Substituenten ausgewählt sind aus der Gruppe bestehend aus linearem o- der verzweigtem -Ci-Cis-Alkyl,
-C5-Ci2-Cycloalkyl und -C6-Ci4-Aryl; das Anion [A] n~ ausgewählt ist aus der Gruppe bestehend aus halogenidhalti- gen Anionen, Cyanid, Thiocyanat, Cyanat, Isocyanat, Nitrit, Nitrat, unsubstituierten oder zumindest monosubstituierten Sulfaten, Sulfiten, Sulfonaten, Carboxy-Iaten, Bo- raten, Boronaten, Carbonaten, Kohlensäure-estern, Amiden, Carbonsäureimidaten, Sulfonylimidaten, bis(Sulfonyl)imidaten, Alkoxiden und Aryloxiden, wobei die Substituenten ausgewählt sind aus der Gruppe bestehend aus linearem o- der verzweigtem -Ci-Cis-Alkyl,
-C5-Ci2-Cycloalkyl und -C6-Ci4-Aryl.
7. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, dass die mindestens eine io- nische Flüssigkeit (IL) als Kation [C] n + mindestens ein Imidazolium-Kation der allge- meinen Formel (IV) enthält:
Figure imgf000057_0001
in der
R5, R6, R7, R8, R9 unabhängig voneinander ausgewählt sind aus der Gruppe be- stehend aus -H, linearem oder verzweigtem -Ci-Cis-Alkyl, -C5-Ci2-Cycloalkyl und - C6-Ci4-Aryl.
8. Verfahren gemäß Anspruch 6 oder 7, dadurch gekennzeichnet, dass das Kation [C] n + mindestens ein Kation ist, ausgewählt aus der Gruppe bestehend aus 1 -Methylimida- zolium, 1 -Methyl-2-ethylimidazolium, 1 -Methyl-3-octylimidazolium, 1 ,2-Dimethylimida- zolium, 1 ,3-Dimethylimidazolium, 2,3-Dimethylimidazolium, 3,4-Dimethylimidazolium,
1 ,2,3-Trimethylimidazolium, 1 ,3,4-Trimethylimida-zolium, 1 ,3,4,5-Tetramethylimida- zolium, 1-Ethylimidazolium, 1-Ethyl-2-methylimidazolium, 1-Ethyl-3-methylimida- zolium, 1-Ethyl-2,3-dimethyl-imidazolium, 2-Ethyl-3,4-dimethylimidazolium, 1-Propyli- midazolium, 1-Propyl-2-methylimidazolium, 1-Propyl-3-methylimidazolium, 1-Pro- pyl-2,3-dimethyl-imidazolium, 1 ,3-Dipropylimidazolium, 1-Butylimidazolium, 1 -Butyl-2- methylimidazolium, 1 -Butyl-3-methylimidazolium, 1 -Butyl-4-methylimidazolium, 1-Butyl-2,3-dimethylimidazolium, 1-Butyl-3,4-dimethylimidazolium, 1-Butyl-3,4,5-trime- thylimidazolium, 1-Butyl-2-ethylimidazolium, 1-Butyl-3-ethyl-imidazolium, 1 -Butyl-2- ethyl-5-methylimidazolium, 1 ,3-Di-butylimidazolium, 1 ,3-Dibutyl-2-methylimidazolium, 1-Pentylimidazolium, 1-Pentyl-2-methyl-imidazolium, 1-Pentyl-3-methylimidazolium, 1-Pentyl-2,3-dimethylimidazolium, 1-Hexylimidazolium, 1-Hexyl-2-methylimidazolium, 1-Hexyl-3-methyl-imidazolium, 1-Hexyl-2,3-dimethylimidazolium, 1-Octyl-2-methyli- midazolium, 1-Octyl-3-methylimidazolium, 1-Decyl-3-methylimidazolium, 1-Dodecyl-3- methylimidazolium, 1-Tetradecyl-3-methylimidazolium, 1-Hexadecyl-3-methylimida- zolium und 1-Benzyl-3-methylimidazolium.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die mindestens eine ionische Flüssigkeit (IL) ausgewählt ist aus der Gruppe bestehend aus 1-Methylimidazoliumchlorid, 1-Ethylimidazoliumchlorid, 1-Ethyl-3-methylimidazoli- umchlorid, 1-Butylimidazoliumchlorid, 1-Butyl-3-methylimidazoliumchlorid, 1 ,3-Diethyl- imidazoliumchlorid, 1 ,3-Dibutylimidazoliumchlorid, 1-Methylimidazoliumtetrachloroalu- minat, 1 -Ethylimidazoliumtetrachloroaluminat, 1 -Ethyl-3-methylimidazoliumtetrachlo- roaluminat, 1 ,3-Diethylimidazoliumtetrachloroaluminat, 1 -Butylimidazoliumtetrachloro- aluminat, 1 -Butyl-3-methylimidazoliumtetrachloroaluminat, 1 ,3-Dibutylimidazoliumtet- rachloroaluminat.
10. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Umsetzung des Reaktionsgemisches (RG) in Gegenwart mindestens einer basischen Verbindung erfolgt, die ausgewählt ist aus der Gruppe bestehend aus Trialkylamin, Imidazol, Pyridin, Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid, Magnesiumhyd- roxid, Calciumhydroxid, Bariumhydroxid, Lithiumcarbonat, Natriumcarbonat, Kali- umcarbonat, Magnesiumcarbonat, Calciumcarbonat, Lithiumhydrid, Natriumhydrid, Kaliumhydrid, Magnesiumhydrid und Calciumhydrid.
1 1. Verfahren gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Reaktionsgemisch (RG) die Komponenten (a), (b) und (c) in folgenden Kombinationen enthält, worin für Komponente (b) außerdem die entsprechenden Dihydrochloride mit- beansprucht sind:
Figure imgf000058_0001
Figure imgf000059_0001
Figure imgf000060_0001
12. Fasern, Folien und Formkörper, erhältlich nach dem Verfahren gemäß einem der An- sprüche 1 bis 11.
13. Verwendung von Fasern erhältlich nach dem Verfahren gemäß einem der Ansprüche
1 bis 1 1 zur Herstellung von Tauen, Seilen, Kordeln, zur Ummantelungen von Glasfa- sern, zur Herstellung von faserverstärkten Gummimaterialien, zur Herstellung von fa- serverstärkten Baustoffen, zur Herstellung von Bremsbelägen für Scheibenbremsen, zur Herstellung von Fliesmaterialien, zur Herstellung von Textilien beispielsweise für beschusshemmende Westen, temperaturbeständige Schutzkleidung, Schichten in
Helmen, für Versorgungskabelmäntel, für textilienverstärkte Baustoffe, beispielsweise als Textilbeton zur Instandsetzung und Reparatur von Bauwerken.
14. Verwendung von Folien erhältlich nach dem Verfahren gemäß einem der Ansprüche 1 bis 1 1 in thermisch stabilen Membranen zur Gastrennung, in protonenleitenden
Membranen, in elektro-optischen Geräten oder lichtemittierenden Dioden.
15. Verwendung von Formkörpern erhältlich nach dem Verfahren gemäß einem der An- sprüche 1 bis 1 1 als hochtemperaturbeständige polymere Werkstoffe.
PCT/EP2019/055092 2018-03-09 2019-03-01 Verfahren zur herstellung von fasern, folien und formkörpern eines polybenzazolpolymers (p) WO2019170529A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020547038A JP7350762B2 (ja) 2018-03-09 2019-03-01 ポリベンザゾールポリマー(p)の繊維、フィルムおよび成形体の製造方法
EP19707020.4A EP3762447A1 (de) 2018-03-09 2019-03-01 Verfahren zur herstellung von fasern, folien und formkörpern eines polybenzazolpolymers (p)
US16/978,948 US20200407508A1 (en) 2018-03-09 2019-03-01 Method for producing fibers, films and moldings of a polybenzazole polymer (p)
CN201980018209.1A CN111836849B (zh) 2018-03-09 2019-03-01 制备聚吲哚聚合物(p)的纤维、膜和模制品的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18160970 2018-03-09
EP18160970.2 2018-03-09

Publications (1)

Publication Number Publication Date
WO2019170529A1 true WO2019170529A1 (de) 2019-09-12

Family

ID=61691220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/055092 WO2019170529A1 (de) 2018-03-09 2019-03-01 Verfahren zur herstellung von fasern, folien und formkörpern eines polybenzazolpolymers (p)

Country Status (5)

Country Link
US (1) US20200407508A1 (de)
EP (1) EP3762447A1 (de)
JP (1) JP7350762B2 (de)
CN (1) CN111836849B (de)
WO (1) WO2019170529A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089591A (en) * 1990-10-19 1992-02-18 The Dow Chemical Company Rapid advancement of molecular weight in polybenzazole oligomer dopes
US20010003130A1 (en) * 1999-12-06 2001-06-07 Go Matsuoka Polybenzazole and fiber thereof
CN103880767A (zh) 2014-04-17 2014-06-25 哈尔滨工业大学 一种2-(对甲酰氯基苯基)-5-氨基-6-羟基苯并噁唑的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3322723A (en) * 1963-06-17 1967-05-30 Du Pont Polyoxazole/amides
JPS432475Y1 (de) * 1964-11-27 1968-02-01
JP3185820B2 (ja) * 1992-12-28 2001-07-11 東洋紡績株式会社 ロープ
ATE266008T1 (de) * 2000-10-27 2004-05-15 Centre Nat Rech Scient Imidazolium-salze und die verwendung dieser ionischen flüssigkeiten als lösungsmittel und als katalysator
JP2006249166A (ja) * 2005-03-09 2006-09-21 Nippon Synthetic Chem Ind Co Ltd:The 芳香族ポリイミドの製造方法
CN1962635A (zh) * 2006-11-17 2007-05-16 浙江工业大学 一种吲哚类化合物的制备方法
KR20100021421A (ko) * 2007-04-30 2010-02-24 데이진 아라미드 비.브이. 폴리벤자졸 및 폴리벤자졸 전구체
BRPI0912651A2 (pt) * 2008-05-15 2016-01-26 Basf Se membrana polimérica condutora de próton, método para produzir uma membrana polimérica condutora de próton, eletrodo com um revestimento polimérico condutor de prótons, unidade de membrana-eletrodo, e, célula de combustível
WO2012167114A2 (en) * 2011-06-01 2012-12-06 Board Of Regents, The University Of Texas System Polymer synthesis and thermally rearranged polymers as gas separation membranes
EP3512905B1 (de) * 2016-09-14 2022-08-24 Basf Se Verfahren zur herstellung eines polybenzazolpolymers (p)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089591A (en) * 1990-10-19 1992-02-18 The Dow Chemical Company Rapid advancement of molecular weight in polybenzazole oligomer dopes
US20010003130A1 (en) * 1999-12-06 2001-06-07 Go Matsuoka Polybenzazole and fiber thereof
CN103880767A (zh) 2014-04-17 2014-06-25 哈尔滨工业大学 一种2-(对甲酰氯基苯基)-5-氨基-6-羟基苯并噁唑的制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ANGEWANDTE CHEMIE, vol. 112, 2000, pages 3926 - 3945
CHIN ET AL.: "Temperature and humidity aging of poly(p-phenylene-2,6-benzo-bisoxazole) fibers: Chemical and physical characterization", POLYMER DEGRADATION AND STABILITY, vol. 92, 2007, pages 1234 - 1246
DAVID H. WANG; HAO JIANG; W. WADE ADAMS: "Encyclopedia of Polymer Science and Technology", 2011, JOHN WILEY AND SONS, INC., article "Rigid Rod Polymers", pages: 1 - 88
HOLMES ET AL.: "The Effect of Enviromental and Mechanical Mechanisms on the Performance of Soft Body Armor, 2009", ANALYTICAL CHEMISTRY DIVISION, ICCM INTERNATIONAL CONFERENCES ON COMPOSITE MATERIALS, January 2009 (2009-01-01)
KUMAR ET AL.: "Rigid-Rod Polymeric Fibers", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 100, 2006, pages 791 - 802, XP007913804, DOI: doi:10.1002/app.22680
MALCOLM L. WILLIAMS; ROBERT F. LANDEL; JOHN D. FERRY: "The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1955
PBO FIBER ZYLON TECHNICAL INFORMATION, 2005, pages 1 - 18

Also Published As

Publication number Publication date
EP3762447A1 (de) 2021-01-13
JP7350762B2 (ja) 2023-09-26
CN111836849A (zh) 2020-10-27
US20200407508A1 (en) 2020-12-31
CN111836849B (zh) 2023-04-07
JP2021515835A (ja) 2021-06-24

Similar Documents

Publication Publication Date Title
EP2209812B1 (de) Verfahren zur herstellung von regenerierten biopolymeren und die danach erhältlichen regenerierten erzeugnisse
WO2007101811A1 (de) Verfahren zum abbau von cellulose in lösung
WO2005070896A1 (de) Herstellungsmethode für ionische flüssigkeiten
WO2007147813A1 (de) Verfahren zur silylierung von cellulose
WO2007144282A1 (de) Verfahren zur acylierung von cellulose
EP1994060A1 (de) Verfahren zum abbau von cellulose
DE102005017715A1 (de) Lösungen von Cellulose in ionischen Flüssigkeiten
EP1994058A1 (de) Verfahren zum abbau von cellulose mit nucleophilen
EP3824012A1 (de) Bulkpolymerisierung von polyoxazolidon
EP1966284A1 (de) Lösungssystem auf der basis geschmolzener ionischer flüssigkeiten, dessen herstellung sowie verwendung zur herstellung regenerierter kohlenhydrate
EP2041183A1 (de) Verfahren zur darstellung von celluloseacetalen
EP2038307A1 (de) Verfahren zur acylierung von cellulose mit gezieltem durchschnittlichen polymerisationsgrad
EP2094889A2 (de) Verfahren zur herstellung von fasern
DE102006035830A9 (de) Lösungssystem auf der Basis geschmolzener ionischer Flüssigkeiten, dessen Herstellung sowie Verwendung zur Herstellung regenerierter Kohlenhydrate
WO2019170529A1 (de) Verfahren zur herstellung von fasern, folien und formkörpern eines polybenzazolpolymers (p)
EP3512905B1 (de) Verfahren zur herstellung eines polybenzazolpolymers (p)
EP2460843B1 (de) Polymerlösungen in ionischen Flüssigkeiten mit verbesserter thermischer und rheologischer Stabilität
WO2018069237A1 (de) Betain (b) und verfahren zu dessen herstellung
RU2300581C2 (ru) Получение нитей на основе сополиамидобензимидазола с щелочной обработкой
WO2007088152A1 (de) Verfahren zur herstellung von isocyanaten
CN108085828A (zh) 耐磨纤维面料及其制造方法
WO2011116403A2 (de) Verfahren zur herstellung eines stickstoffenthaltenden polysaccharids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19707020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547038

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019707020

Country of ref document: EP