WO2019169803A1 - 一种果菜类蔬菜射频预处理-低温气调贮藏方法 - Google Patents

一种果菜类蔬菜射频预处理-低温气调贮藏方法 Download PDF

Info

Publication number
WO2019169803A1
WO2019169803A1 PCT/CN2018/093120 CN2018093120W WO2019169803A1 WO 2019169803 A1 WO2019169803 A1 WO 2019169803A1 CN 2018093120 W CN2018093120 W CN 2018093120W WO 2019169803 A1 WO2019169803 A1 WO 2019169803A1
Authority
WO
WIPO (PCT)
Prior art keywords
vegetables
storage
fruits
electronic nose
low temperature
Prior art date
Application number
PCT/CN2018/093120
Other languages
English (en)
French (fr)
Inventor
张慜
冯蕾
过志梅
范东翠
Original Assignee
江南大学
无锡海核装备科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学, 无锡海核装备科技有限公司 filed Critical 江南大学
Publication of WO2019169803A1 publication Critical patent/WO2019169803A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/005Preserving by heating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/14Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10
    • A23B7/144Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10 in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • A23B7/148Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10 in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/005Preserving by heating
    • A23B7/01Preserving by heating by irradiation or electric treatment
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/04Freezing; Subsequent thawing; Cooling
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/14Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10
    • A23B7/144Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10 in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • A23B7/152Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10 in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere comprising other gases in addition to CO2, N2, O2 or H2O ; Elimination of such other gases

Definitions

  • the invention belongs to the technical field of fresh-keeping of fruits and vegetables, and particularly relates to a radio frequency pretreatment-low temperature modified atmosphere storage method for fruits and vegetables.
  • Heat shock treatment refers to a physical preservation method for post-harvest treatment of fruits and vegetables in non-lethal high temperature for a short time. It is a temperature stress treatment method that does not cause high temperature thermal damage, which can prolong the cold resistance and storage period of fruits and vegetables. Including hot air, steam, hot water soaking, etc.
  • Radio frequency is an electromagnetic frequency between 300KHz and 300MHz. It is a high-frequency AC electromagnetic wave that can penetrate the inside of the material, causing the oscillation of the charged ions to oscillate and convert the electric energy into heat energy, thus achieving the purpose of rapid heating. And can achieve a satisfactory bactericidal effect at a lower material temperature.
  • Liu Qian et al (2014) studied the bactericidal effect of radio frequency on green vegetables. The results showed that when the RF condition was 20mm/20min, the temperature of the product was about 62°C, and the radiofrequency sterilization effect was the best. Kong Ling et al. (2014) studied the bactericidal effect of radio frequency combined with hot air treatment on fresh-cut carrots. The results showed that radio frequency combined with hot air treatment had good bactericidal effect and good finished product quality.
  • Zhang Yongdi et al. (2015) studied RF-heated apple slices. The results showed that when the RF condition was 105mm/101s, the cell damage of apple slices was the smallest and the quality was the best. Zhang Etc.
  • Modified atmosphere storage is a storage method that inhibits the respiration and physiological metabolism of fruits and vegetables by increasing the concentration of carbon dioxide in the storage environment, reducing the concentration of oxygen. And changes in the composition of the ambient gas can change the response of fruits and vegetables to the temperature of chilling, thereby reducing the chilling damage of fruits and vegetables.
  • Zhang Zhengzhou et al. (2015) invented a method for regulating fresh-keeping bitter gourd (publication number: CN105028619A).
  • Zhang Et al. (2016) discloses a method for intelligent identification of climacteric fruit and vegetable quality in pressurized inert gas pretreatment combined with controlled atmosphere storage (Publication No.: CN105594842A), which identifies carbon dioxide by regulating online conditions of fruit and vegetable atmosphere storage in real time. Concentration, and send information to the monitoring center to identify the storage period.
  • Zhao Wenfeng et al. (2016) disclosed an intelligent ultraviolet sterilization system (publication number: CN105660822A) suitable for fruit storage. The invention has the functions of intelligent start-up and fruit detection and monitoring, and realizes sterilization and fresh-keeping treatment of fruits.
  • Pan Leiqing et al. (2015) disclosed a method for predicting the growth of Pseudomonas aeruginosa by odor sensor (CN 104267067A).
  • the odor information of two concentrations of Pseudomonas aeruginosa cultured for 48 hours was obtained by electronic nose technology to establish odor information and A growth model of Pseudomonas aeruginosa, which predicts its growth by detecting the overall odor emitted by microorganisms.
  • Chen Xiaoyu et al (2016) disclosed a method for evaluating the quality of ethyl ester type fish oil based on electronic nose analysis (CN105628883A).
  • the volatile odor of ethyl ester type fish oil during storage was detected by electronic nose technique, combined with partial least squares method.
  • the method establishes a predictive model of acid value and peroxide value, and the patent can quickly and effectively determine the degree of corruption of ethyl ester type fish oil in storage.
  • the electronic nose is used to judge the overall taste of the food through pattern recognition, and the methods for quality and safety analysis and evaluation of non-destructive, rapid and intelligent food are more sensory evaluation, microbial physical and chemical indicators, etc.
  • the detection of traditional methods has obvious advantages.
  • the storage method in this patent is radio frequency pretreatment combined with low temperature modified atmosphere storage, controlling heat shock treatment time, and combined with electronic nose technology to detect the overall odor in the storage environment in real time, achieving joint control of chilling damage and spoilage bacteria, and high reliability. , versatility.
  • Radiofrequency pretreatment can avoid thermal damage caused by over-treatment, combined with hot air to achieve the purpose of killing microorganisms under low temperature conditions, and combined with the overall odor characteristics of fruits and vegetables in the process of controlled atmosphere storage to predict low temperature chilling and spoilage infection, operation Simple, high accuracy, and reduced food preservation costs.
  • the object of the present invention is to provide a method for cryopreservation of fruit and vegetable vegetables jointly controlled by chilling and spoilage bacteria.
  • radio frequency pretreatment combined with controlled atmosphere storage, controlling the time and temperature of heat shock treatment, and real-time detection of volatile substances in fruits and vegetables during storage, establishing a model of overall flavor characteristics, chilling injury rate and total number of microbial colonies, to achieve fruit and vegetables
  • the intelligent prediction and control of chilling and spoilage bacteria in low-temperature storage of vegetables reduces the cost of research on storage technology of fruits and vegetables, and has good versatility and practicability.
  • a radiofrequency pretreatment of fruit and vegetable vegetables - a low temperature modified atmosphere storage method the steps are as follows:
  • the operating frequency of the radio frequency device is 27.12 MHz
  • the power is 1500 W
  • the distance between the plates is 20-40 cm
  • the heat treatment time of the hot air device is 20-40 min.
  • the fruits and vegetables are packaged in a low-density polyethylene bag and then stored at a low temperature, and the low-temperature atmosphere storage environment is: 2-5% oxygen, 2-5% carbon dioxide, and 90-96% nitrogen gas.
  • the atmosphere storage temperature is 4-6 ° C, and the relative humidity is 85-95%.
  • the electronic nose technology detecting method is: detecting the overall odor characteristic of the fruit and vegetable vegetables in the storage process by the electronic nose sensor array, the electronic nose sensor array is composed of 14 metal oxide sensors, and the electronic The nasal sensor array collects data every 1d, the sampling rate is 1L/min, the sampling time is 120s, the electronic nose detection of fruit and vegetable vegetables is completed at room temperature 25 °C; the electronic nose detects the flavor change, immediately detects the fruits and vegetables The chilling rate and the microbial content of spoilage bacteria were tested.
  • the fruit and vegetable vegetables are cold-sensitive vegetables.
  • the invention relates to the joint control of chilling injury and spoilage bacteria in low-temperature storage of fruits and vegetables: radio frequency treatment can penetrate the inside of fruit vegetables, achieve rapid and uniform heating, achieve heat shock reaction, combine hot air and control pretreatment. Time, on the basis of no overheating reaction to destroy the nutritional quality of vegetables, the use of electronic nose technology to detect the overall flavor characteristics of fruit and vegetable vegetables during low temperature modified atmosphere storage, establish electronic nasal response signal and chilling injury rate, microbial content The model reduces the physiological metabolism of fruits and vegetables, realizes intelligent storage of joint control of chilling and spoilage bacteria, and improves the quality of fruit vegetables in low temperature storage.
  • the present invention studies the storage and preservation of cold-sensitive fruits and vegetables, does not add chemical preservatives, is safe and reliable, can timely and accurately control the heat shock treatment time and temperature, and uses partial least squares method to establish the overall flavor characteristics and chilling damage.
  • Example 1 A method for radiofrequency pretreatment of cherry tomatoes combined with chilling and spoilage bacteria - low temperature controlled atmosphere storage
  • the standard frequency of the RF device is 27.12MHz
  • the power is 1500W
  • the plate spacing is 20cm.
  • the hot air holding time is 30 min, and the reducing rate is greater than 90%.
  • the RF-treated cherry tomatoes were stored at a low temperature atmosphere at 4 ° C with 5% oxygen, 3% carbon dioxide, 92% nitrogen, and a relative humidity of 85-95%.
  • the electronic nose technique was used to detect the flavor change of cherry tomato during storage, and the partial least squares model of electronic nasal response signal, chilling injury rate and microbial content was established.
  • the chilling injury rate of cherry tomatoes after cryopreservation for 25 days was less than 5%, and the reduction rate of mold and yeast was more than 85%.
  • the partial least squares model of the electronic nose response signal predicts that the fitting coefficient is greater than 0.9 and the prediction result is good.
  • Example 2 A method for radiofrequency pretreatment of fruit cucumber combined with chilled and spoilage bacteria - low temperature modified atmosphere storage
  • the chilling injury rate of fruit cucumber after storage for 25 days at low temperature was less than 5%, and the reduction rate of mold and yeast was more than 85%.
  • the partial least squares model of the electronic nose response signal predicts that the fitting coefficient is greater than 0.9 and the prediction result is good.
  • Example 3 A method for radiofrequency pretreatment of eggplant combined with cold damage and spoilage bacteria - low temperature modified atmosphere storage
  • the standard frequency of the RF device is 27.12MHz
  • the power is 1500W
  • the plate spacing is 25cm
  • the hot air is combined.
  • the incubation time is 40 min, and the reduction rate is greater than 90%.
  • the RF-treated eggplant was stored at a low temperature atmosphere at 4 ° C with oxygen of 5%, carbon dioxide of 5%, nitrogen of 90%, and relative humidity of 85-95%.
  • the electronic nose technique was used to detect the flavor change of eggplant during storage, and the partial least squares model of electronic nose response signal, chilling injury rate and microbial content was established.
  • the chilling injury rate of eggplant after storage for 25 days at low temperature was less than 5%, and the reduction rate of mold and yeast was more than 85%.
  • the partial least squares model of the electronic nose response signal predicts that the fitting coefficient is greater than 0.9 and the prediction result is good.
  • Example 4 A method for radiofrequency pretreatment of green pepper combined with chilled and spoilage bacteria - low temperature modified atmosphere storage
  • the standard frequency of the RF device is 27.12MHz
  • the power is 1500W
  • the plate spacing is 40cm
  • the hot air is combined.
  • the incubation time is 40 min, and the reduction rate is greater than 90%.
  • the radio-treated green pepper was stored at a low temperature atmosphere at 6 ° C, with oxygen of 2%, carbon dioxide of 4%, nitrogen of 94%, and relative humidity of 85-90%.
  • the electronic nose technology was used to detect the flavor change of green pepper during storage, and the partial least squares model of electronic nasal response signal, chilling injury rate and microbial content was established.
  • the chilling injury rate of green pepper after 30 days storage at low temperature is less than 5%, and the reduction rate of mold and yeast is more than 85%.
  • the partial least squares model of the electronic nose response signal predicts that the fitting coefficient is greater than 0.9 and the prediction result is good.
  • Example 5 A combined method of radiofrequency pretreatment of green beans and low temperature controlled atmosphere storage jointly controlled by chilling and spoilage bacteria
  • the chilling injury rate of the green beans after 30 days of storage at low temperature was less than 5%, and the reduction rate of mold and yeast was more than 85%.
  • the partial least squares model of the electronic nose response signal predicts that the fitting coefficient is greater than 0.9 and the prediction result is good.

Abstract

一种果菜类蔬菜射频预处理-低温气调贮藏方法,首先采用射频装置对果菜类蔬菜进行热激预处理,并利用热风装置对果菜类蔬菜进行保温处理;然后将热激预处理后的果菜类蔬菜置于低温下进行气调贮藏;采用电子鼻技术实时检测贮藏过程中果菜类蔬菜的风味变化,当风味发生变化后,马上对检测过的果菜类蔬菜进行冷害率检测及腐败菌微生物含量检测;通过建立电子鼻响应信号与冷害率、腐败菌微生物含量之间的偏最小二乘模型,预测冷害率及腐败菌微生物含量。

Description

一种果菜类蔬菜射频预处理-低温气调贮藏方法 技术领域
本发明属于果蔬保鲜技术领域,具体涉及一种果菜类蔬菜射频预处理-低温气调贮藏方法。
背景技术
采后果蔬在贮藏及运输过程中,失去外界的养分供应,且本身生命活动仍在进行,往往会出现软化、衰老、微生物侵染,从而导致变质腐烂,损失严重。温度是决定果蔬贮藏品质的重要因素之一,低温冷藏能影响果蔬的物理、化学以及诱变反应,抑制微生物生长繁殖,延长贮藏寿命。但冷敏性果菜类蔬菜,对低温比较敏感,在不适低温下贮藏极易发生冷害,出现果蔬生理代谢失调、软化衰老、营养损失等问题,且发生冷害的果蔬更易受到微生物侵染,加速品质劣变和严重腐烂。由于冷害症状的滞后性,当果蔬从低温环境转移到温暖环境后才急剧表现,并迅速腐烂变质,而此时的损失已无法挽回。因此,需要开发新型预处理技术结合贮藏方法,最大限度地保持果蔬品质的相对稳定,抑制采后果蔬的生理代谢及微生物的生长繁殖,降低冷害率。
热激处理是指将果蔬短时间置于非致死高温中进行采后处理的一种物理保鲜方法,是一种不致高温热损伤的温度逆境胁迫处理法,可延长果蔬的抗冷性及贮藏期,包括热空气、蒸汽、热水浸泡等。而射频(Radio Frequency)是一种介于300KHz~300MHz的电磁频率,属于高频交流电磁波,能穿透物料内部,引起带电离子的振荡迁移,将电能转化为热能,从而达到迅速加热的目的,且能实现在较低的物料温度获得满意的杀菌效果。刘倩等(2014)研究了射频对青菜的杀菌效果,结果表明,当射频条件为20mm/20min时,产品的温度为62℃左右,射频杀菌效果最好。孔玲等(2014)研究了射频联合热风处理对鲜切胡萝卜的杀菌效果,结果表明,射频联合热风处理杀菌效果佳,成品品质好。张永迪等(2015)研究了射频加热处理苹果片,结果表明,当射频条件为105mm/101s时,对苹果片的细胞破坏最小,品质最佳。张
Figure 615c_1
等(2016)公开了一种小包装根茎类混合鲜切蔬菜的柔性杀菌方法(公开号:CN105028619A),该方法将包装好的蔬菜通过射频、热风联合处理,可显著延长产品货架期,贮藏9个月后产品菌落总数小于1000cfu/g,致病菌未检出,且产品质构和色泽俱佳。本专利采用射频预处理联合热风技术,依据射频的穿透特性,使物料内外迅速升温,达到热激处理温度,同时实现在较低的物料温度下杀灭微生物的目的,该处理方式具有无毒、无污染、无残留、贮藏保鲜效果显著等优点。
气调贮藏是通过提高贮藏环境中二氧化碳浓度,降低氧气的浓度,抑制果蔬呼吸作用及生理代谢的一种贮藏方法。且环境气体组成的变化能够改变果蔬对冷害温度的反应,从而减轻果蔬冷害。魏文毅等(2008)研究了气调贮藏对“八月脆”桃的研究,结果表明在0~1℃温度下,气体条件为10%O2及10%CO2能推迟果实冷害的发生,降低果实的褐变程度。张正周等(2015)发明了一种气调保鲜苦瓜的方法(公开号:CN105028619A),该方法采用臭氧水清洗灭菌后,在保鲜袋中添加保鲜剂1-甲基环丙烯与过氧化钙,结合气调贮藏(N2为91-93%,O2为4.5-5.5%,CO2为2-4%)苦瓜贮藏60天未出现冷害现象。李素清等(2014)研究了气调贮藏对青椒保鲜效果的影响,结果表明分阶段调节氧气及二氧化碳浓度结合魔芋葡甘聚糖复合涂膜处理能较好的保持青椒的品质,在前期气体浓度采用6%O2 + 5%CO2 + 89%N2,后期采用4%O2 + 2%CO2 + 94%N2,可以增强保鲜效果。从以上专利及研究可知,通过调节氧气和二氧化碳的浓度进行气调贮藏可减轻冷害,但仍需结合化学处理才可显著增强保鲜效果。本专利采用射频预处理结合气调贮藏技术,依据射频技术能穿透物料使其内外迅速升温而产生热激反应及杀菌效果,并结合低氧高二氧化碳的气调贮藏抑制果蔬生理代谢,抑制冷害的发生。
Figure 615c_1
等(2016)公开了一种加压惰性气体预处理结合气调贮藏的呼吸跃变型果蔬品质智能化识别方法(公开号:CN105594842A),该发明通过在线实时监测果蔬气调贮藏环境条件,识别二氧化碳浓度,并向监控中心发送信息,识别贮藏期。赵文锋等(2016)公开了一种适用于水果储藏的智能紫外杀菌系统(公开号:CN105660822A),该发明具有智能启动和水果检测监控功能,实现对水果的杀菌保鲜处理。张
Figure 615c_1
等(2017)公开了一种智能预冷处理结合分段气调贮藏控制冷敏性果菜类蔬菜低温冷害的系统(公开号:CN106973982A),该发明能够通过传感器在线检测实时监测保鲜室内的气体变化,并上传至远端监控中心,通过控制系统对环境参数进行控制。以上专利均依据贮藏环境中的二氧化碳、乙烯等气体分别进行预测,不具有整体性。王俊等(2011)公开了一种识别与预测肉新鲜度的方法(公开号:CN102297930A),采用电子鼻技术及神经网络分析建立了电子鼻响应信号与肉的贮藏时间、感官得分、挥发性盐基氮和微生物含量之间关系的数学模型,该专利对肉新鲜度进行了预测。潘磊庆等(2015)公开了一种气味传感器对铜绿假单胞杆菌生长预测的方法(CN 104267067A),通过电子鼻技术获得两种浓度的铜绿假单胞杆菌培养48h的气味信息,建立气味信息与铜绿假单胞杆菌的生长模型,该专利通过检测微生物散发的整体气味来预测其生长状况。陈小娥等(2016)公开了一种基于电子鼻分析的乙酯型鱼油品质评价方法(CN105628883A),通过电子鼻技术对贮藏过程中的乙酯型鱼油的挥发性气味进行检测,结合偏最小二乘法法建立酸价、过氧化值的预测模型,该专利可以对乙酯型鱼油在贮藏中的腐败程度进行快速、有效的测定。电子鼻作为一种直接获取样品挥发性物质的整体信息,通过模式识别进行风味的整体判断,对食品无损、快速、智能的质量与安全分析和评估的方法,较感官评价、微生物理化指标等其他传统方法的检测具有明显优势。本专利中的贮藏方法是射频预处理结合低温气调贮藏,控制热激处理时间,同时结合电子鼻技术对贮藏环境中的整体气味进行实时检测,实现冷害及腐败菌的联合控制,可靠性高,通用性强。
现有的果蔬贮藏保鲜的研究方法比较单一,目前果蔬预处理结合气调贮藏控制低温冷害及微生物侵染的研究方法比较繁琐,且果蔬种类繁多,冷害现象及发生滞后,主观影响因素较多;采用射频预处理可以避免过度处理引起的热损伤,联合热风协同实现低温条件下杀灭微生物的目的,并结合气调贮藏过程中果菜类蔬菜的整体气味特征预测低温冷害及腐败菌侵染,操作简单,准确率高,食品保鲜成本降低。
技术问题
针对上述现有技术存在的不足,本发明的目的是要提供一种冷害与腐败菌联合控制的果菜类蔬菜低温贮藏方法。,通过射频预处理结合气调贮藏,控制热激处理的时间及温度,同时实时检测贮藏过程中果菜类蔬菜的挥发性物质,建立整体风味特征与冷害率及微生物菌落总数的模型,实现果菜类蔬菜低温贮藏中冷害与腐败菌的智能预测及控制,降低了果蔬贮藏技术研究的成本,具有较好的通用性和实用性。
技术解决方案
本发明的技术方案:
一种果菜类蔬菜射频预处理-低温气调贮藏方法,步骤如下:
(1)采用射频装置对果菜类蔬菜进行热激预处理,并利用热风装置对果菜类蔬菜进行保温处理,通过控制热激预处理时间及温度,来杀灭腐败菌微生物;
(2)将热激预处理后的果菜类蔬菜进行低温气调贮藏;
(3)采用电子鼻技术实时检测贮藏过程中果菜类蔬菜的风味变化,当风味发生变化后,马上对检测过的果菜类蔬菜进行冷害率检测及腐败菌微生物含量检测;
(4)建立电子鼻响应信号与冷害率、腐败菌微生物含量之间的偏最小二乘模型,通过拟合系数预测果菜类蔬菜在低温气调贮藏过程中的冷害率及腐败菌微生物含量。
所述步骤(1)中,射频装置的工作频率为27.12MHz,功率为1500W,极板间距为20-40cm,热风装置的保温处理时间为20-40min。
所述步骤(2)中,果菜类蔬菜采用低密度聚乙烯袋包装后进行低温气调贮藏,低温气调贮藏环境为:氧气2-5%,二氧化碳2-5%,氮气90-96%,气调贮藏温度4-6℃,相对湿度85-95%。
所述步骤(3)中,电子鼻技术检测方法为:通过电子鼻传感器阵列对贮藏过程中果菜类蔬菜的整体气味特征进行检测,所述电子鼻传感器阵列由14个金属氧化物传感器组成,电子鼻传感器阵列每1d采集一次数据,采样速率为1L/min,采样时间为120s,果菜类蔬菜的电子鼻检测在室温25℃下完成;电子鼻检测风味变化后,马上对检测过的果菜类蔬菜进行冷害率及腐败菌微生物含量检测。
所述的果菜类蔬菜为冷敏性蔬菜。
有益效果
本发明的有益效果:
(1)本发明对果菜类蔬菜低温贮藏中冷害与腐败菌联合控制的特点是:射频处理能够穿透果菜类蔬菜内部,达到快速和均匀加热,实现热激反应,联合热风并控制预处理的时间,在不出现过热反应破坏蔬菜营养品质的基础上达到杀菌要求,同时利用电子鼻技术实时检测低温气调贮藏过程中果菜类蔬菜的整体风味特征,建立电子鼻响应信号与冷害率、微生物含量的模型,降低果菜类蔬菜的生理代谢,实现冷害及腐败菌联合控制的智能化贮藏,提高果菜类蔬菜在低温贮藏过程中的品质。
(2)本发明研究了冷敏性果菜类蔬菜的贮藏保鲜,不添加化学保鲜剂,安全可靠,可及时、准确的控制热激处理时间及温度,采用偏最小二乘法建立整体风味特征与冷害率、微生物含量的模型,联合控制冷害及微生物侵染,提高了果菜类蔬菜低温贮藏品质。
本发明的实施方式
以下结合具体实施方式对本发明做进一步说明。
实施例1:一种冷害与腐败菌联合控制的樱桃番茄射频预处理-低温气调贮藏的联合方法
选择新鲜、无腐烂、大小均一的樱桃番茄1000g,置于射频工作腔内的介电阻块上进行热激预处理,射频装置的标准频率为27.12MHz,功率为1500W,极板间距为20cm,联合热风保温时间为30min,减菌率大于90%。将射频处理后的樱桃番茄置于4℃下低温气调贮藏,氧气为5%,二氧化碳为3%,氮气为92%,相对湿度85-95%。采用电子鼻技术实时检测贮藏过程中樱桃番茄的风味变化,建立电子鼻响应信号与冷害率、微生物含量的偏最小二乘模型。经过射频预处理结合气调贮藏,樱桃番茄在低温贮藏25天后冷害率小于5%,霉菌及酵母菌减菌率大于85%。通过电子鼻响应信号的偏最小二乘模型预测,拟合系数大于0.9,预测结果佳。
实施例2:一种冷害与腐败菌联合控制的水果黄瓜射频预处理-低温气调贮藏的联合方法
选择新鲜、无腐烂、大小均一的水果黄瓜1000g,置于射频工作腔内的介电阻块上进行热激预处理,射频装置的标准频率为27.12MHz,功率为1500W,极板间距为25cm,联合热风保温时间为40min,减菌率大于90%。将射频处理后的水果黄瓜置于4℃下低温气调贮藏,氧气为5%,二氧化碳为3%,氮气为92%,相对湿度85-95%。采用电子鼻技术实时检测贮藏过程中水果黄瓜的风味变化,建立电子鼻响应信号与冷害率、微生物含量的偏最小二乘模型。经过射频预处理结合气调贮藏,水果黄瓜在低温贮藏25天后冷害率小于5%,霉菌及酵母菌减菌率大于85%。通过电子鼻响应信号的偏最小二乘模型预测,拟合系数大于0.9,预测结果佳。
实施例3:一种冷害与腐败菌联合控制的茄子射频预处理-低温气调贮藏的联合方法
选择新鲜、无腐烂、大小均一的茄子1000g,置于射频工作腔内的介电阻块上进行热激预处理,射频装置的标准频率为27.12MHz,功率为1500W,极板间距为25cm,联合热风保温时间为40min,减菌率大于90%。将射频处理后的茄子置于4℃下低温气调贮藏,氧气为5%,二氧化碳为5%,氮气为90%,相对湿度85-95%。采用电子鼻技术实时检测贮藏过程中茄子的风味变化,建立电子鼻响应信号与冷害率、微生物含量的偏最小二乘模型。经过射频预处理结合气调贮藏,茄子在低温贮藏25天后冷害率小于5%,霉菌及酵母菌减菌率大于85%。通过电子鼻响应信号的偏最小二乘模型预测,拟合系数大于0.9,预测结果佳。
实施例4:一种冷害与腐败菌联合控制的青椒射频预处理-低温气调贮藏的联合方法
选择新鲜、无腐烂、大小均一的青椒1000g,置于射频工作腔内的介电阻块上进行热激预处理,射频装置的标准频率为27.12MHz,功率为1500W,极板间距为40cm,联合热风保温时间为40min,减菌率大于90%。将射频处理后的青椒置于6℃下低温气调贮藏,氧气为2%,二氧化碳为4%,氮气为94%,相对湿度85-90%。采用电子鼻技术实时检测贮藏过程中青椒的风味变化,建立电子鼻响应信号与冷害率、微生物含量的偏最小二乘模型。经过射频预处理结合气调贮藏,青椒在低温贮藏30天后冷害率小于5%,霉菌及酵母菌减菌率大于85%。通过电子鼻响应信号的偏最小二乘模型预测,拟合系数大于0.9,预测结果佳。
实施例5:一种冷害与腐败菌联合控制的四季豆射频预处理-低温气调贮藏的联合方法
选择新鲜、无腐烂、大小均一的四季豆1000g,置于射频工作腔内的介电阻块上进行热激预处理,射频装置的标准频率为27.12MHz,功率为1500W,极板间距为20cm,联合热风保温时间为20min,减菌率大于90%。将射频处理后的四季豆置于5℃下低温气调贮藏,氧气为5%,二氧化碳为5%,氮气为90%,相对湿度85-90%。采用电子鼻技术实时检测贮藏过程中四季豆的风味变化,建立电子鼻响应信号与冷害率、微生物含量的偏最小二乘模型。经过射频预处理结合气调贮藏,四季豆在低温贮藏30天后冷害率小于5%,霉菌及酵母菌减菌率大于85%。通过电子鼻响应信号的偏最小二乘模型预测,拟合系数大于0.9,预测结果佳。

Claims (5)

  1. 一种果菜类蔬菜射频预处理-低温气调贮藏方法,其特征在于,步骤如下:
    (1)采用射频装置对果菜类蔬菜进行热激预处理,并利用热风装置对果菜类蔬菜进行保温处理,通过控制热激预处理的时间及温度,来杀灭腐败菌微生物;
    (2)将热激预处理后的果菜类蔬菜置于低温下进行气调贮藏;
    (3)采用电子鼻技术实时检测贮藏过程中果菜类蔬菜的风味变化,当风味发生变化后,马上对检测过的果菜类蔬菜进行冷害率检测及腐败菌微生物含量检测;
    (4)建立电子鼻响应信号与冷害率、腐败菌微生物含量之间的偏最小二乘模型,通过拟合系数预测果菜类蔬菜在低温气调贮藏过程中的冷害率及腐败菌微生物含量。
  2. 根据权利要求1所述的方法,其特征在于,步骤(1)中射频装置的工作频率为27.12MHz,功率为1500W,极板间距为20-40cm,热风装置的保温处理时间为20-40min。
  3. 根据权利要求1所述的方法,其特征在于,步骤(2)中,果菜类蔬菜采用低密度聚乙烯袋包装后进行低温气调贮藏,贮藏环境:氧气2-5%,二氧化碳2-5%,氮气90-96%,气调贮藏温度4-6℃,相对湿度85-95%。
  4. 根据权利要求1所述的方法,其特征在于,步骤(3)中的电子鼻技术检测方法为:通过电子鼻传感器阵列对贮藏过程中果菜类蔬菜的整体气味特征进行检测,所述的电子鼻传感器阵列由14个金属氧化物传感器组成,电子鼻传感器阵列每1d采集一次数据,采样速率为1L/min,采样时间为120s,果菜类蔬菜的电子鼻检测在室温25℃下完成;电子鼻检测风味变化后,马上对检测过的果菜类蔬菜进行冷害率及腐败菌微生物含量检测。
  5. 根据权利要求1所述的方法,其特征在于,所述的果菜类蔬菜为冷敏性蔬菜。
PCT/CN2018/093120 2018-03-05 2018-06-27 一种果菜类蔬菜射频预处理-低温气调贮藏方法 WO2019169803A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810178785.XA CN108402171A (zh) 2018-03-05 2018-03-05 一种果菜类蔬菜射频预处理-低温气调贮藏方法
CN201810178785.X 2018-03-05

Publications (1)

Publication Number Publication Date
WO2019169803A1 true WO2019169803A1 (zh) 2019-09-12

Family

ID=63130115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093120 WO2019169803A1 (zh) 2018-03-05 2018-06-27 一种果菜类蔬菜射频预处理-低温气调贮藏方法

Country Status (2)

Country Link
CN (1) CN108402171A (zh)
WO (1) WO2019169803A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111198209A (zh) * 2020-01-16 2020-05-26 大连工业大学 一种基于电子鼻快速预测发酵水产品tvb-n值方法
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110771678B (zh) * 2019-10-30 2022-05-17 北京市农林科学院 一种抑制白萝卜蓝变的护色方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636521A (zh) * 2012-04-27 2012-08-15 江南大学 一种用于果蔬加热干燥过程中的气味在线监测方法
CN103968646A (zh) * 2014-05-20 2014-08-06 南京财经大学 一种超高水分粮食射频与微波干燥防霉的方法
CN105557976A (zh) * 2016-01-07 2016-05-11 地利营养配餐科技有限公司 一种小包装根茎类混合鲜切蔬菜的柔性杀菌方法
CN105594842A (zh) * 2016-01-08 2016-05-25 江南大学 一种加压惰性气体预处理结合气调贮藏的呼吸跃变型果蔬品质智能化识别方法
CN106290441A (zh) * 2016-09-14 2017-01-04 江南大学 一种用低场核磁结合电子鼻确定柔性杀菌调理果蔬菜肴保质期的方法
CN106720284A (zh) * 2016-12-21 2017-05-31 江南大学 一种对粮食射频处理的杀虫方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103609666B (zh) * 2013-11-26 2015-04-15 浙江省嘉兴市农业科学研究院(所) 一种水蜜桃物理贮藏方法
CN105628883A (zh) * 2015-12-31 2016-06-01 浙江海洋学院 一种基于电子鼻分析的乙酯型鱼油品质评价方法
CN106973982A (zh) * 2017-04-27 2017-07-25 江南大学 一种智能预冷处理结合分段气调贮藏控制冷敏性果菜类蔬菜低温冷害的系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636521A (zh) * 2012-04-27 2012-08-15 江南大学 一种用于果蔬加热干燥过程中的气味在线监测方法
CN103968646A (zh) * 2014-05-20 2014-08-06 南京财经大学 一种超高水分粮食射频与微波干燥防霉的方法
CN105557976A (zh) * 2016-01-07 2016-05-11 地利营养配餐科技有限公司 一种小包装根茎类混合鲜切蔬菜的柔性杀菌方法
CN105594842A (zh) * 2016-01-08 2016-05-25 江南大学 一种加压惰性气体预处理结合气调贮藏的呼吸跃变型果蔬品质智能化识别方法
CN106290441A (zh) * 2016-09-14 2017-01-04 江南大学 一种用低场核磁结合电子鼻确定柔性杀菌调理果蔬菜肴保质期的方法
CN106720284A (zh) * 2016-12-21 2017-05-31 江南大学 一种对粮食射频处理的杀虫方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KONG, LING ET AL.: "Impacts of RF-Hot Air Sterilizing on the Quality of Carrots in a Small Package", JOURNAL OF FOOD SCIENCE AND BIOTECHNOLOGY, no. 9, September 2015 (2015-09-01) - 31 December 2015 (2015-12-31), pages 943 - 948, XP055636152 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111198209A (zh) * 2020-01-16 2020-05-26 大连工业大学 一种基于电子鼻快速预测发酵水产品tvb-n值方法
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods

Also Published As

Publication number Publication date
CN108402171A (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
WO2019169803A1 (zh) 一种果菜类蔬菜射频预处理-低温气调贮藏方法
Guo et al. New development in radio frequency heating for fresh food processing: A review
Speck et al. Effects of freezing and storage on microorganisms in frozen foods: a review
Luna-Guzmán et al. Comparison of calcium chloride and calcium lactate effectiveness in maintaining shelf stability and quality of fresh-cut cantaloupes
Díaz et al. Microbial, physical–chemical and sensory spoilage during the refrigerated storage of cooked pork loin processed by the sous vide method
WO2019015306A1 (zh) 果蔬相温预冷兼容多耦合抗衰老处理技术及装备
Hassenberg et al. Impact of postharvest UV-C and ozone treatments on microbiological properties of white asparagus (Asparagus officinalis L.)
Alam et al. Studies on refrigerated storage of minimally processed papaya (Carica papaya L.)
Kim et al. Calcinated calcium and mild heat treatment on storage quality and microbial populations of fresh-cut iceberg lettuce
McDaniel et al. Effect of different packaging treatments on microbiological and sensory evaluation of precooked beef roasts
Lu et al. Effects of fruit size on fresh cucumber composition and the chemical and physical consequences of fermentation
Byrne et al. Radio frequency heating of comminuted meats-considerations in relation to microbial challenge studies
CN103749649A (zh) 一种水蜜桃热处理贮藏保鲜技术
Guadagni et al. Effect of controlled atmosphere on flavor stability of almonds
Liu et al. Combination of precooling with ozone fumigation or low fluctuation of temperature for the quality modifications of postharvest sweet cherries
CN112825916A (zh) 一种高效真空微波干燥科学烤核桃的加工方法
US20140030402A1 (en) Treating produce to reduce browning and improve quality
Crespo et al. Effect of conventional and microwave heating on Pseudomonas putrefaciens, Streptococcus faecalis and Lactobacillus plantarum in meat tissue
Zhao et al. Magnetic field technology in improving the quality of food refrigeration and freezing: Mechanisms, applications, and challenges
Mondhe et al. Studies on osmotic dehydration of carrot slices
Raseta et al. Optimization of pasteurization of meat products using pasteurization values (p-values)
KR102654965B1 (ko) 라디오파를 이용한 육류 급속 숙성 장치 및 이를 이용한 육류 급속 숙성 방법
CN111406792B (zh) 一种微波灭酶和低场核磁协同干制果蔬的方法
CN108576552A (zh) 一种利用聚能光电脉冲进行食品杀菌消毒的方法
King Spoilage and preservation of food

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908892

Country of ref document: EP

Kind code of ref document: A1