WO2019168376A1 - 셀루로오스계 또는 약산 화합물계 전도성 고분자를 구비한 전극 활물질 및 이를 포함한 리튬이온배터리 - Google Patents

셀루로오스계 또는 약산 화합물계 전도성 고분자를 구비한 전극 활물질 및 이를 포함한 리튬이온배터리 Download PDF

Info

Publication number
WO2019168376A1
WO2019168376A1 PCT/KR2019/002430 KR2019002430W WO2019168376A1 WO 2019168376 A1 WO2019168376 A1 WO 2019168376A1 KR 2019002430 W KR2019002430 W KR 2019002430W WO 2019168376 A1 WO2019168376 A1 WO 2019168376A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
binder
negative electrode
cellulose
ion battery
Prior art date
Application number
PCT/KR2019/002430
Other languages
English (en)
French (fr)
Inventor
김종은
서보원
김성도
김종도
이보람
정규진
Original Assignee
주식회사 씨엔피솔루션즈
김종은
서보원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180173583A external-priority patent/KR102225340B1/ko
Application filed by 주식회사 씨엔피솔루션즈, 김종은, 서보원 filed Critical 주식회사 씨엔피솔루션즈
Priority to JP2020568653A priority Critical patent/JP6980217B2/ja
Priority to US16/976,843 priority patent/US20210005893A1/en
Priority to EP19761451.4A priority patent/EP3761409A4/en
Priority to CN201980016569.8A priority patent/CN111819716B/zh
Publication of WO2019168376A1 publication Critical patent/WO2019168376A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an active material composition of a lithium ion battery and a lithium ion battery using the same, and more specifically, to a conductive polymer using a cellulose-based or weak acid compound as a template, an active material slurry composition comprising the same, and lithium using the same It relates to an ion battery.
  • a lithium ion battery mixes a positive electrode active material of lithium-containing compound particles and a negative electrode active material such as graphite with a binder to form a positive electrode active material layer and a negative electrode active material layer on the surface of an electrode plate material such as aluminum or copper, and an electrolyte therein. After impregnation, it is made by placing a so-called separator called a separator in the middle and laminating it.
  • a separator so-called a separator in the middle and laminating it.
  • Lithium-ion batteries unlike electric double-layer electric storage devices that operate while repeating adsorption and desorption on the surface, that is, capacitors, are charged and discharged as lithium ions travel between the positive electrode active material layer and the negative electrode active material layer.
  • the process of the intercalation into the positive electrode active material layer and the negative electrode active material layer is repeatedly repeated. During this process, the initial discharge capacity decreases as the number of charge and discharge cycles increases, thereby degrading so-called cycle characteristics, which degrades performance.
  • the degree to which the cycle characteristics worsen and the initial capacity decreases as the charge / discharge is repeated are known to vary depending on the type of the active material.
  • the positive electrode active material lithium cobalt oxide (LCO) or the negative electrode active material is used.
  • the initial discharge capacity decreases relatively slowly, so that the cycle characteristics are known to be relatively good.
  • nickel-cobalt-manganese (NCM) active material or nickel containing nickel or aluminum is introduced.
  • NCM nickel-cobalt-aluminum
  • active materials such as silicon metal particles or silicon oxide, which are known to have a very high capacity, have a sudden decrease in initial capacity according to the cycle number. Cycle characteristics are rapidly worsened.
  • a binder material is used to promote adhesion between these active material particles, and in particular, to promote adhesion between the electrode plate and the electrode.
  • a binder used abundantly is an organic binder such as polyvinylideneflouride (PVDF) because it is difficult to use an aqueous solvent in the case of the positive electrode active material, and carboxylated methylcellulose in the case of the negative electrode active material.
  • PVDF polyvinylideneflouride
  • CMC styrene-butadiene rubber
  • PAA polyacrylic acid
  • binder materials Main components such as carbon black and active materials used to enhance electrical conductivity are mixed with a solvent such as N-methyl-2-pyrrolidone (NMP) and water to make an active material composition, and again A lithium ion battery is manufactured by forming a coating film having a predetermined thickness on the electrode plate and using it as an electrode material.
  • NMP N-methyl-2-pyrrolidone
  • graphite When graphite is used as a negative electrode active material, graphite has a high electric conductivity, so no separate carbon black is used or only a small amount is used.
  • the content of the binder is very low when preparing an active material composition for a lithium ion battery.
  • the graphite is 95% or more, and the rest consists of a binder and carbon black.
  • the content of the binder material is very low, uniform dispersion with the active material and carbon black, adhesion to the electrode plate, and density in the electrode layer are very important.
  • Carbon black is known to have a large amount of hydroxyl groups (-OH) on its surface, and because of the hydroxyl groups, carbon black is agglomerated with each other, and it is known that carbon black is not uniformly dispersed with an organic solvent and a binder. While carbon black undergoes charging and discharging, that is, heating and cooling, the adhesion to the binder material is reduced, or the conductivity is lowered. In fact, when dismantling a lithium ion battery after 100 cycles of charging and discharging tests, the active material layer is often separated from the electrode plate, and it is known that the resistance value is greatly increased by measuring the composite impedance through the electrode plate. Increasing the inter-plate resistance during the charging and discharging process means that the carbon black does not act as an electrical conduction passage, which indicates a decrease in the performance of the lithium ion battery.
  • -OH hydroxyl groups
  • Korean Patent Publication No. 10-2016-0100133 has improved lifespan characteristics by supplementing the electrical conductivity of the conventional PVDF-based binder
  • a cathode active material composition including a conductive aqueous binder was proposed to make a lithium battery.
  • the cathode active material composition of the Republic of Korea Patent Publication No. 10-2016-0100133 is used by mixing using a conductive material PEDOT: PSSA as a binder to exhibit the advantage that the conductivity of the conductive material is maintained compared to the conventional PVDF-based binder The improvement was made.
  • PEDOT: PSSA a conductive material
  • the composition of the conventional lithium ion battery, the ratio of the active material, the binder and the conductive material in order to increase the capacity of 90% or more of the active material and the remainder of the organic binder and conductivity enhancer carbon black as the ratio of the organic binder is quite low. This is because the amount of the active material must be increased in order to increase the capacity of the active material composition.
  • the thickness of the electrode layer may be rather thin.
  • the ratio of the active material to the negative electrode active material composition is increased, the viscosity of the slurry is increased and the solid content is too high, making it difficult to form a thin electrode layer.
  • the present invention may show the best properties as a binder for a lithium ion battery and also with the conventional binder material.
  • a compound of the same system as a template to provide a binder synthesized by a conjugated conductive polymer.
  • the present invention provides a novel conjugated conductive polymer binder which is excellent in compatibility with the active materials and can improve the life characteristics of the lithium ion battery.
  • the present invention provides a new binder material for a lithium ion battery positive electrode or a negative electrode active material to improve the charging and discharging life of the lithium ion battery, and to provide a large capacity long-life lithium ion battery having good life characteristics using the same.
  • the electrode active material layer is strongly adhered to the electrode plate while increasing the thickness of the material forming the electrode layer while making the electrode layer thin.
  • a new conjugated conductive polymer compound was synthesized and used as a binder material when mixed with an active material which is a lithium ion battery electrode material.
  • the new binder of the present invention is to make a conductive polymer using a cellulose-based or weak acid compound-based, which is widely used as a binder for a lithium ion battery negative electrode active material, and utilizes it as a binder for the active material.
  • the conductive polymer binder of the present invention is a cellulose-based compound in a conductive polymer synthesized from a monomer for synthesizing a conductive polymer such as aniline, pyrrole, thiophene or 3,4-ethylenedioxythiophene, or a modified conductive polymer monomer modified therefrom. It is a conductive polymer binder synthesized using as a template.
  • the new binder has good electrical conductivity when the binder material itself is mixed with the active material, and has good mixing and adhesion with the positive electrode or negative electrode active material, better adhesion to the electrode plate material of the electrode material layer, and particularly good flow characteristics of the active material slurry.
  • the active material composition of one or both of the negative electrode and the positive electrode of the lithium ion battery is a cellulose-based conductive polymer binder synthesized using a cellulose-based compound as a template
  • the cellulose Template is a mixed conductive polymer binder mixed with one or more conductive polymers synthesized using an OS-based conductive polymer binder and another compound, or a polymer compound having a hydrogen ion index (pH) in the range of 2-6 in an aqueous solution state. It characterized in that it comprises any one or more of the cellulose-based conductive polymer binder synthesized using.
  • the cellulose-based compound is substituted with a component capable of dissolving a part of the -R component of the -OR group of the cellulose molecule in water. that;
  • the cellulose-based compound is characterized in that the -R component of the -OR of the cellulose molecule is an alkyl carboxylic acid or a salt compound or hydroxy group thereof.
  • the alkyl group of the alkyl carboxylic acid or a salt compound thereof has a length of 1-4 carbon atoms;
  • the cellulose-based compound is characterized in that the carboxy methyl cellulose (CMC) having a substitution degree of 0.5 or more.
  • the cellulose-based compound has a weight average molecular weight of 50,000-4,000,000 grams / mol
  • the conductive polymer synthesized using these as a template is modified from aniline, pyrrole, thiophene or these It characterized in that it comprises any one or more of the modified conductive polymer.
  • the cellulose-based conductive polymer is poly (3,4-ethylenedioxythiophene): carboxymethyl cellulose (PEDOT: CMC), and the aqueous dispersion of PEDOT: CMC.
  • PEDOT: CMC solid content is characterized in that 1-10%.
  • the template of the cellulose-based conductive polymer binder is characterized in that the mixed template in which the acryl-based compound is mixed with the cellulose-based compound.
  • the cellulose-based compound is carboxymethyl cellulose
  • the other type of the compound is an acrylic polymer, polyacrylic acid, synthesized by a mixed template contained in a binder aqueous dispersion.
  • Solid content of the conductive polymer is 1-10%, and the weight ratio of carboxymethyl cellulose and polyacrylic acid is (95: 5) to (5:95).
  • the other type of compound is a high molecular compound or polystyrenesulfonic acid (PSSA) having a hydrogen ion index (pH) of 2-6 in an aqueous solution state, and the number of binders.
  • PSSA polystyrenesulfonic acid
  • the solids content of the entire conductive polymer binder in the dispersion is characterized by 1-10%.
  • the other kind of compound includes at least one of polyacrylic acid (PAA) and polystyrenesulfonic acid (PSSA), and the cellulose compound is a template
  • PAA polyacrylic acid
  • PSSA polystyrenesulfonic acid
  • the mixing ratio of the conductive polymer synthesized using a conductive polymer synthesized with a template of another kind of compound is characterized in that one component is 5% or more by weight.
  • the active material composition is characterized in that it further comprises carbon nanotubes for enhancing the density and conductivity of the electrode layer.
  • the carbon nanotube in the active material composition is characterized in that 5-300 parts by weight based on the weight of 100 parts by weight of the solid content of the conductive polymer binder.
  • the carbon nanotube is a mixture of any one or more of single-walled, double-walled and multi-walled carbon nanotubes, and the length of the carbon nanotubes is 5-100 microns It is done.
  • the lithium ion battery of the present invention is characterized in that the active material composition comprises a negative electrode active material containing a silicon component as an active ingredient or a negative electrode active material containing graphite in the silicon component.
  • the content of the negative electrode active material is the weight of the total solid content of the negative electrode active material composition 10-85% by weight, or when the negative electrode active material is a negative electrode active material containing graphite in the silicon or silicon-based oxide component, the content of the negative electrode active material is 40-98% by weight relative to the total weight of the negative electrode active material composition .
  • the content of the silicon or silicon oxide component mixed with graphite is characterized in that 1-90% by weight of the total negative electrode active material.
  • the negative electrode active material slurry composition including the negative electrode active material composition is 5-60% by weight of the total solids content of the negative electrode active material slurry, and the thickness of the negative electrode is 2 to 50 microns It is done.
  • the thickness of the negative electrode layer is 5-40 microns, or the negative electrode active material is the silicon or silicon oxide component.
  • the thickness of the negative electrode layer is characterized in that 5-50 microns.
  • a thickener is further added to adjust the viscosity of the negative electrode active material slurry, and the thickener for adjusting the viscosity of the negative electrode active material slurry is hydroxypropyl cellulose, ethyl cellulose, carboxymethyl cellulose.
  • Cellulose thickener comprising, or is characterized in that the acrylic polymer compound having a weight average molecular weight of 1,000,000g / mole or more.
  • the active material composition is a positive electrode active material composition
  • the positive electrode active material is characterized in that it comprises any one or more of components such as lithium, manganese, nickel, cobalt, aluminum, and the like. .
  • the binder is a cellulose-based conductive polymer binder synthesized using a cellulose-based compound as a template, the cellulose-based conductivity Using a polymeric binder and a different compound as a template, a mixed conductive polymeric binder mixed with one or more conductive polymers synthesized, or a polymeric compound having a hydrogen ion index (pH) of 2-6 in aqueous solution as a template It is characterized in that the binder containing any one or two or more of the synthesized cellulose-based conductive polymer binder.
  • the template of the cellulose-based conductive polymer binder is characterized in that the mixed template in which the acryl-based compound is mixed with the cellulose-based compound.
  • the binder used in the active material composition of the negative electrode or the positive electrode of the lithium ion battery of the present invention contains any one or more of polystyrenesulfonic acid (PSSA) or polyacrylic acid (PAA), and
  • PSSA polystyrenesulfonic acid
  • PAA polyacrylic acid
  • the binder according to the technology of the present invention is mixed with a negative electrode active material or a positive electrode active material to form an active material composition, and then coated and dried on a pole plate to manufacture a lithium ion battery, a continuous charge / discharge cycle is performed without lowering initial rate characteristics.
  • a continuous charge / discharge cycle is performed without lowering initial rate characteristics.
  • the life characteristics of the test are improved.
  • the adhesion to the metal plate material is excellent, the positive electrode active material layer or the negative electrode active material layer is well adhered to the electrode plate.
  • the solution state of the active material slurry mixed with the active material has a viscosity as if it feels like honey, the workability is excellent when the active material slurry is coated on the electrode plate in the mass production line.
  • the conductive polymer binder of the present invention does not have a high acidity in the aqueous dispersion state, so there is no fear of corrosive components of lithium ion batteries such as electrode plates or active materials, and there is no possibility of causing side reactions in which lithium ions react with the binder material. There is an effect of improving the life characteristics of the lithium ion battery.
  • the composition of the conductive polymer binder, carbon nanotube, and electrode active material of the present invention is mixed, good electrical conductivity can be obtained without using carbon black of the agglomeration property, and the uniformity and density of the electrode layer structure can be obtained.
  • the uniformity and density of the electrode layer structure can be obtained.
  • the thickness of the electrode layer thinner.
  • the electrode active material having a high capacity even if the thickness of the electrode layer is reduced (particularly, the thickness of the negative electrode layer is reduced), the same capacity can be obtained, and the thickness of the positive electrode layer is increased as the thickness of the negative electrode layer is reduced.
  • the positive electrode layer active material may be further used, the total capacity of the lithium ion battery of the same size may be increased or the size of the lithium ion battery of the same capacity may be reduced.
  • a negative electrode active material composition including a negative electrode active material such as silicon particles or SiOx having a high theoretical capacity.
  • FIG. 1 is a layer structure diagram as an example of a lithium ion battery using an active material composition according to the present invention.
  • FIG. 2 is a layer structure diagram of another example of a lithium ion battery using the active material composition according to the present invention.
  • a technical feature of the present invention is a conductive polymer synthesized using an active material composition of a lithium ion battery as a template, or a polymer compound having a hydrogen ion index (pH) of 2-6 in an aqueous solution state as a template. It is to include a conductive polymer synthesized using.
  • the conductive polymer of the present invention is a conductive polymer synthesized from a monomer for synthesizing a conductive polymer such as aniline, pyrrole, thiophene, or 3,4-ethylenedioxythiophene, or a modified conductive polymer monomer modified therefrom. It is a conductive polymer synthesized using a cellulose compound as a template and template. It is preferable that the surface resistance of this conductive polymer is 10 8 ohms / area or less. The lower the surface resistance of the synthesized conductive high-lower days, the better. However, if the surface resistance is 10 8 ohms / area or more, the electrical conductivity is too low, so that a large effect may not be obtained.
  • the cellulose-based compound usable as the template described above includes a compound in which a part of the -R component of the -OR group of the molecule is different, typically a hydroxy group or an alkyl (or alkylene) carboxyl (or carboxylate) group. Any cellulose-based compound made by combining so that it can be dissolved in water can be used.
  • the present invention is to synthesize a PEDOT using a preferred cellulose-based compound as a template and to utilize it as a lithium ion battery, the scope of the present invention is not limited to PEDOT: CMC used in the description below, but of a different kind. It is apparent that a conductive polymer synthesized using a conductive polymer synthesis monomer or a conductive polymer synthesized with another cellulose compound has the same effect.
  • the present invention is to synthesize a new binder and to utilize the binder to be mixed with the active material of the lithium ion battery.
  • the description of the present invention will be described for the case of using a mixed active material mixed with silicon oxide (SiOx) and graphite, which is known to have poor charge and discharge cycle characteristics.
  • the technique of the present invention includes other types of active materials, namely graphite, silicon metal particles, SiOx, alloyed anode active materials including lithium, or carbon containing or complexed with them (e.g. Nanotubes)
  • the active material for the negative electrode and any type of active material may be applied regardless of the form of particles, wires, and flakes.
  • it can be used as a binder to be mixed with the active material for the positive electrode to make a positive electrode active material slurry can be used for the positive electrode, of course.
  • PEDOT CMC
  • Synthesis process of PEDOT: CMC of the present invention is as follows.
  • % means weight%.
  • the chemical formula of PEDOT: CMC of the present invention is shown in Equation 1 below.
  • N and m are one or more natural numbers.
  • the template CMC is dissolved in water so that the solid content is 0.5-5% by weight. If it does not melt well, sonicate or add strong acid, solubility in water. After the addition of oxidizing agents such as 3,4-ethylenedioxythiophene (EDOT), ammonium persulfate (APS), ferric sulfate, etc., which are monomers for the synthesis of conductive polymers, are mixed and stirred at a predetermined temperature to synthesize PEDOT: CMC. , And then treated with dialysis bag and ion exchange resin to remove unreacted and ionic impurities to obtain a dark blue conductive polymer, ie PEDOT: CMC.
  • EDOT 3,4-ethylenedioxythiophene
  • APS ammonium persulfate
  • ferric sulfate etc.
  • the solid content of CMC dissolved in ultrapure water is 0.5 wt% or less, the content of CMC is so low that the synthesized conductive polymer is precipitated or the conductivity is too low during the synthesis reaction, and if it is 5 wt% or more, the viscosity of the solution in which the CMC is dissolved is too high. It is rather disadvantageous because it is difficult to proceed with the post-process.
  • the molar ratio of the cellulose-based template compound, the conductive polymer monomer and the oxidizing agent may be basically synthesized in a molar ratio of 1: 1: 1. However, by controlling the molar ratio of each component it is possible to synthesize a conductive polymer binder of various characteristics. At this time, when the ratio of each component present in the synthetic solution is 1 mol of the template compound, the content of the monomer EDOT is 0.5 to 5.0 molar ratio.
  • the ratio of the oxidizing agent is a suitable ratio of 0.8-3 mole to 1 mole of monomer content.
  • the synthesized PEDOT: CMC has low electrical conductivity, and even if less than 0.8 mole, the electrical conductivity is low. Most preferably a 0.8-2 molar ratio is suitable.
  • CMC a template of the present invention
  • the degree to which the -R component of the -OR group in the unit is substituted with another compound, that is, the degree of substitution is at least 0.5 or more.
  • the substitution degree of 0.5 means that one -R per two repeating units is substituted with a carboxy group.
  • the higher the degree of substitution the better the preparation of PEDOT: CMC, and if the degree of substitution is less than 0.5, it is not well dissolved in water, and the electrical conductivity of PEDOT: CMC, which is a conductive polymer synthesized using the template, is also disadvantageous.
  • there is no need to limit the upper limit of the degree of substitution because the higher the degree of substitution, the more conductive the polymer is synthesized and the higher the electrical conductivity of the synthesized PEDOT: CMC is in accordance with the object of the present invention.
  • the cellulose-based compound of the present invention is advantageous to use a compound having a weight average molecular weight of 50,000-4,000,000 grams / mol. If the molecular weight is lower than 50,000 grams / mole, the synthesized PEDOT: CMC particles are precipitated, which is disadvantageous. If the molecular weight is 4,000,000 grams / mole, the CMC itself is difficult to dissolve in water.
  • the ratio of CMC and EDOT can be used in the range of 0.2-5 molar ratio as molar ratio of 1 mole of EDOT. At this time, if the content of CMC is less than 0.2 mole ratio compared to EDOT, the synthesized PEDOT: CMC is precipitated in the form of particles and cannot be used as a binder for the active material. Is so low that it is rather disadvantageous. Preferably it is advantageous to set it in the range of 1.0-2.0 molar ratio.
  • the cleaning process may be performed according to the general organic matter cleaning process.
  • pure PEDOT: CMC can be obtained by removing unreacted residue and ionic impurities using a dialysis bag and an ion exchange resin after the synthesis reaction. Since the cleaning operation is similar to the general cleaning operation performed after the synthesis of organic matter, the detailed cleaning method is a matter that can be found through trial and error by those skilled in the art, and thus, there is no need to specifically limit the cleaning method.
  • the composition may be synthesized by adjusting the ratio of each component such as the monomer, oxidant, and CMC according to the solid content.
  • the PEDOT: CMC of the present invention is a conjugated conducting polymer which is itself conductive, which is not a simple mixture of a commercially available PEDOT system (ie, PEDOT: PSS) and a CMC used as a binder of a conventional battery. Is self-explanatory.
  • the PEDOT: CMC prepared by the above-described method uses a CMC as a basic template and has a negative CMC molecule in a state in which the PEDOT portion, which is positive due to the action of an oxidant, is dissolved in water. It is a compound in the form of a complex in an electrically bonded form. Therefore, it is obvious to those skilled in the art that PEDOT and CMC molecules are not simply mixed.
  • the cellulose-based compound of the present invention When the cellulose-based compound of the present invention is used as a template, the cellulose-based compound and other types of polymers such as sulfonated polystyrene polymers or acrylic polymers may be used in the weight ratio of (95: 5) to (5:95).
  • the conductive polymer may be synthesized by using a mixing template made by mixing in proportion.
  • one component is the main component so that it can not be called a mixing template. It is advantageous to.
  • the method for preparing an active material slurry using the PEDOT: CMC of the present invention is similar to the method for preparing an active material slurry using a conventional binder. That is, the PEDOT: CMC, the active material, the carbon nanotube, the conductivity-imparting agent, and the like of the present invention may be prepared by mixing uniformly at a desired ratio.
  • the content (solid content) of PEDOT: CMC which is a binder component contained in the PEDOT: CMC binder solution to be used is in the range of 0.5-10% by weight. If the solid content is less than 0.5% by weight, the solution is too thin and the viscosity of the entire composition is too low even if the active material is mixed, which is disadvantageous due to problems such as the formation of the active material electrode layer is difficult or the thickness of the coating film is too low. When the viscosity is too high, it is difficult to prepare a slurry, which causes a problem of adding water again.
  • carbon nanotubes may be any of single-wall, double-walled, or multi-walled carbon nanotubes, and any one or more of these may be used in combination.
  • the content of carbon nanotubes may be 5-300 parts by weight based on 100 parts by weight of the solids of the conductive polymer binder. If the content of the carbon nanotubes is less than 5 parts by weight, the content is too small and there is no effect of mixing the carbon nanotubes, and if the content is more than 300 parts by weight, the carbon nanotubes content is too high and the viscosity is so high that it is difficult to handle or charge and discharge There is no need to use a large amount of carbon nanotubes because the effect of improving cycle characteristics does not increase proportionally.
  • carbon nanotubes having a length of 5-100 microns in length are also advantageous. This is because the length of the carbon nanotubes is effective to make the structure of the electrode layer material compact. If the length of the carbon nanotube is less than 5 microns, the length is too short to increase the density of the electrode layer material is insignificant, and if it is more than 100 microns, the dispersion is not very good when mixing with the active material is rather disadvantageous.
  • the conductive polymer binder of the present invention has electric conductivity in itself, it may be used in combination with conductive carbon black like other conventional lithium ion batteries rather than being used by itself.
  • carbon nanomaterials having conductivity other than conductive carbon black for example, carbon nanotubes, such as graphene nanocarbon materials may be mixed and used together.
  • carbon nanotubes such as graphene nanocarbon materials
  • the aspect ratio is very large, so that the same effect may be obtained by mixing the carbon nanotubes together with the conductive polymer binder alone or alone.
  • the experimental results of the present inventors it was confirmed that the use of carbon nanotubes to improve the adhesion between the active material and the electrode plate.
  • the present invention relates to synthesizing a conductive polymer using a cellulose-based polymer as a template, and using the same as a binder material in preparing an active material composition of a lithium ion battery. Therefore, the type of active material, that is, an active material for a negative electrode made of graphite or a silicon component (for example, silicon oxide: SiOx or an alloy material containing lithium-silicon) or a mixed active material in which one or more of these components are mixed (for example, graphite / It can be applied to all kinds of active materials irrespective of the type, such as silicon oxide mixed active material), or a composite active material in which these components and other components are combined (for example, carbon nanotubes in which silicon particles are placed in an internal space).
  • a conductive material such as conductive carbon black or carbon nanotube may not need to be added, but conductive carbon black may be added separately.
  • the weight ratio of the active material and the binder may be different when the active material having a high theoretical capacity is used alone and when the mixed active material is mixed with graphite. Can be.
  • the active material having a large theoretical capacity for example, a silicon-based active material
  • graphite mixed with a negative electrode active material is 40-98% by weight of the mixed active material
  • the rest of the present invention PEDOT: CMC binder and
  • the active material slurry may be prepared by using carbon nanotubes. If the content of the mixed active material is less than 40% by weight, the thickness of the negative electrode active material slurry should be thick to achieve a desired capacity.
  • the wet coating thickness is too thick in the manufacturing process, and if it is more than 98% by weight, the binder and the carbon nano The content of the tube is lowered, which is rather disadvantageous due to a decrease in adhesion to the electrode plate or a lower density of the electrode layer itself.
  • the solid content weight of the mixed active material is preferably 50-95% by weight.
  • the content of the silicon-based active material is 1-90% by weight based on the weight of the graphite mixed in the graphite based on 100% by weight of the mixture of the graphite and the silicon-based active material. It can mix and use in a range. If the content of the silicon-based active material mixed with graphite is less than 1% by weight, the mixing effect of the silicon-based active material is insignificant, and if it is more than 90%, too much silicon-based active material enters, which is almost similar to the silicon-based single active material, which is less meaningful as a mixed active material. .
  • the content of the active material is about 10-85% by weight depending on the desired capacity Use it after adjusting. Even if the active material is high theoretical capacity, if the content of the active material is less than 10% by weight, the binder and carbon nanotubes are too large, making it difficult to manufacture a battery of a desired capacity, and if it is 85% by weight or more, it is formed on the electrode plate to produce a desired capacity. The thickness of the coating film becomes so thin that it is disadvantageous in the manufacturing process.
  • the PEDOT: CMC and carbon nanotubes of the present invention are mostly dispersed in a solvent such as water, and the like may be calculated and added based on the solid content of each component during slurry production.
  • the solid content of the slurry sufficiently mixed by mixing all the above components is dependent on the solid content of each component added. Since the slurry is a dispersion liquid for forming the electrode layer, the content of solid content in which the electrode layer is smoothly formed may be appropriately selected and used. Preferably the total content of solids in the slurry is advantageously about 5-60%. If the solid content in the slurry is less than 5%, the viscosity becomes so low that if the desired electrode layer needs to be thick, the film forming process such as the solution thickness (wet thickness) should be too thick, which is disadvantageous, and the solid content is 60 If it is more than%, the slurry is too thick, which makes it difficult to form a thin electrode layer, which is disadvantageous.
  • the viscosity of the slurry may be too low to form an electrode layer.
  • a thickener may be further added to adjust the viscosity of the slurry required for electrode formation.
  • the thickener used at this time is mainly a cellulose thickener, and can be used if it is a cellulose thickener regardless of the kind of functional group. Particularly, some of the cellulose is used as a binder material for the graphite active material, and thus does not particularly adversely affect the performance of the battery.
  • Representative cellulose thickeners belonging thereto are hydroxypropyl cellulose, ethyl cellulose, carboxymethyl cellulose and the like.
  • a high molecular weight acrylic polymer compound may be used as a thickener, where high molecular weight means at least 1,000,000 g / mole or more.
  • Polymers having a weight average molecular weight of 1,000,000 g / mole or less are disadvantageous because they are difficult to use because they do not have a high viscosity when dissolved in water. In this case, the higher the viscosity in the state dissolved in water, the lower the content of the acrylic polymer to be mixed, so there is no need to limit the upper limit of the molecular weight.
  • the thickness of the negative electrode layer is preferably 2-50 microns thick.
  • the electrode layer thickness here is the final thickness of the electrode layer after passing a rolling process.
  • the electrode layer does not have to be thick and need not be thick, so it is not necessary to increase the thickness of the electrode layer. If the thickness of the negative electrode layer is less than 2 microns, no matter how large the active material is, it is difficult to form a thin coating film. If the thickness of the negative electrode layer is 50 microns or more, the thickness of the positive electrode layer cannot be followed as the capacity of the negative electrode layer is increased. no need.
  • the capacity of the silicon-based active material negative electrode layer is sufficiently high, and a thickness of 40 microns is sufficient.
  • the negative electrode layer has a thickness of about 5-50 microns to form the negative electrode layer in various ways according to the purpose. For example, when making a negative electrode active material based solely or mainly on a silicon-based active material, a thickness of about 25 microns is preferable when considering the thickness or capacity of the entire lithium ion battery.
  • the upper limit thickness may be made to increase the capacity to the same thickness, but in the case of the graphite mixed active material in consideration of reducing the thickness of the negative electrode layer according to the present invention. Edo 40 microns thick is also good. According to the present invention, it is preferable to increase the content of the silicon-based active material to reduce the thickness, but considering the convenience or stability of coating film formation and considering the theoretical capacity, both silicon-based alone or mixed active materials are preferably 5 microns or more.
  • the solid content of the lubricating slurry mixed and sufficiently stirred depends on the solid content of each component added.
  • the slurry is a dispersion liquid for forming the electrode layer
  • an appropriate content of solid content for smooth electrode layer formation may be selected and used.
  • the proper thickness of the electrode layer after drying and rolling may be found through trial and error in consideration of the desired capacity and convenience in the manufacturing process. to be. Therefore, it is obvious in the present invention that there is no need to limit the specific solid content or the electrode layer thickness.
  • the viscosity of the slurry may be too low to form an electrode layer.
  • a thickener may be further added to adjust the viscosity of the slurry required for electrode formation.
  • the thickener used may mainly be an acrylic or cellulose thickener. Molecular weight or content of the thickener is apparent to those skilled in the art can be sufficiently determined through trial and error, and the present invention does not particularly limit the content of the thickener.
  • carbonate additives may be further added as needed.
  • the electrolyte for a lithium ion battery is used by dissolving a lithium compound in a carbonate solvent.
  • the solvent is used by mixing several kinds of carbonate solutions rather than using only one solvent. Therefore, similar methods may be used for the active material composition of the present invention.
  • various carbonate solvents such as ethyl carbonate, dimethyl carbonate, diethyl carbonate, propylene carbonate, vinylene carbonate, ethyl methyl carbonate, and fluoroethyl carbonate are mixed. Can be used.
  • the mixed conductive polymer binder prepared by mixing the PEDOT: CMC synthesized in the present invention with another conductive polymer is used as the mixed conductive polymer binder, better results can be obtained.
  • PEDOT: PSA a conductive polymer synthesized using sulfonated pulleystyrene as a template
  • PEDOT: PAA a conductive polymer synthesized using an acrylic polymer as a template
  • a conductive polymer binder synthesized it is advantageous because it can compensate for the insufficient properties that may occur when using one type of binder.
  • the mixing ratio of the relative conductive polymer binder mixed with PEDOT: CMC may be a ratio of (95: 5) to (5:95) as the weight ratio.
  • the upper limit and the lower limit are out of the range, any one of the properties becomes too strong and thus does not function as a mixed conductive polymer binder.
  • each of the conductive polymer binders to be mixed contains 5% or more as the weight ratio.
  • the binder material of the present invention is not limited to an active material having a particular shape such as a shape of a negative electrode or a positive electrode active material, that is, a particle or a nanowire or a pyramid shape, and is applicable to an active material having all kinds of shapes.
  • the weight ratio of various components used in the production of the positive electrode active material slurry may be used as it is. That is, the cathode active material slurry may be prepared by applying the component ratio of the anode active material to the cathode active material.
  • the method of dispersing the PEDOT: CMC binder, the negative electrode active material, and carbon nanotubes or carbon black of the present invention is a conventional dispersion method, that is, planetary centrifugal mixer (C-mixer), high pressure homogenizer. Any one or more of a high pressure homogenizer, an attraction mixer, an ultrasonic dispersion method, a sand ball mill, a low speed stirrer, and a high speed stirrer may be used in combination.
  • a conductive polymer binder synthesized by using a compound having a hydrogen ion index (pH) in the range of 2-6 in an aqueous solution state of an active material composition of a lithium ion battery as a template will be described.
  • the conductivity of the conductive material is maintained in the mixed active material.
  • PEDOT: PSSA PSSA
  • PSSA used as a template is sulfonic acid, and the hydrogen ion index is 1.0-.
  • lithium was bonded to SO 3 - ions to reduce mobility, which adversely affects the life and capacity of the battery.
  • the conjugated conducting polymers Is a conductive polymer that provides conductivity, for example, a PEDOT portion is a portion that provides conductivity, and a so-called template compound electrically coupled with the PEDOT portion is to dissolve the conductive polymer in a solvent such as water.
  • a solvent such as water.
  • PSSA polystyrenesulfonic acid
  • a conductive polymer synthesized from such a template When a conductive polymer synthesized from such a template is used as a binder for a battery active material, it is in an aqueous solution (or water dispersion) state.
  • the acid is very strong (hydrogen ion index is less than 2.0 in water dispersion), so it corrodes the electrode plate or reacts with lithium ions moving from the anode layer to the cathode layer during initial charging and discharging to make PEDOT: PSS-Li compound. Since lithium ions to be used are consumed, there is a problem that the so-called coulombic efficiency is lowered.
  • the present invention synthesizes a conductive polymer by using a compound of a weak acid having a lower acidity, that is, a compound having an appropriate acidity, as a template, and not a strong acid polystyrenesulfonic acid (PSSA) compound, and using it as a binder material of a lithium ion battery.
  • PSSA used as a template is a conductive polymer (hereinafter referred to as PEDOT: PSSA) that synthesizes poly (3,4-ethylenedioxythiophene) (PEDOT), a representative conductive polymer using polystyrenesulfonic acid (PSSA) as a template.
  • the sulfonic acid component which does not participate in electrical bonding, has strong acidity when it meets water, and it is highly corrosive.
  • the SO 3 - anion component of PSSA is combined with lithium ions moving through the electrolyte. It is very likely that the main ingredient will consume lithium ions. Therefore, when a compound having a strong acidity is used as a template, the active material is corroded to degrade performance or consume lithium ions, which adversely affects cycle characteristics.
  • a conductive polymer such as PEDOT when a conductive polymer such as PEDOT has a strong acid in a water dispersible state, it is intended to prevent degradation of cycle life characteristics of a lithium ion battery by corroding an active material or consuming lithium ions.
  • Any compound having no strong acidity in the water dispersible state can be said to meet the object of the present invention.
  • Suitable acidity in the present invention means that the hydrogen ion index (pH) in the aqueous solution state is in the range of 2-6. If the pH is 2 or less, the acidity is so strong that the loss of lithium ions is high when used as a binder, and if it is 6 or more, the acidity is too weak to act as a dopant in the synthesis of PEDOT.
  • the conductive polymer of the present invention is a conductive polymer synthesized from a monomer for synthesizing a conductive polymer such as aniline, pyrrole, thiophene or 3,4-ethylenedioxythiophene, or a modified conductive polymer monomer modified therefrom, and having a pH of 2 in the conductive polymer. It is a conductive polymer using a water-soluble acrylic polymer of the compound of -6 as a template. It is preferable that the resistance of this conductive polymer is 10 5 ohms / area or less.
  • a compound of the pH 2-6 that can be used as a template described above is a polymer having a water-soluble carboxyl group, carbonate group, acrylic acid group.
  • the most preferable compound is a water-soluble acrylic acid compound.
  • the water-soluble acrylic acid compounds polyacrylic acid (PAA) is the most preferable because it has a hydrogen ion index (pH) in the range of 2-6 and is advantageous for synthesizing 3,4-ethylenedioxythiophene having high utility as a conductive polymer. .
  • the content of the present invention will be described mainly based on the most preferred poly (3,4-ethylenedioxythiophene) (PEDOT) as the conductive polymer of the active material composition.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • the present invention synthesizes PEDOT using a preferred water-soluble acrylic polymer as a template and utilizes it as a lithium ion battery
  • the scope of the present invention is not limited to the PEDOT used in the following description, but the same is true for other types of conductive polymers. It is obvious to have an effect.
  • PAA an acrylic polymer of the present invention
  • PAA is only one example of a water-soluble acrylic polymer
  • any polymer compound having a pH of 2-6 that can be used as a template for synthesizing a conductive polymer may be used, and an acrylic compound is particularly preferable.
  • the present invention is to synthesize a new binder and to utilize it as a binder for mixing with the active material of the lithium ion battery. Therefore, the description of the present invention will be described for the case of using the silicon nanoparticles known to have the worst charge and discharge cycle characteristics as a negative electrode active material.
  • the new binder of the present invention can be applied to various kinds of electrode active materials such as silicon-based negative electrode active materials, existing graphite-based negative electrode active materials, and nickel-cobalt-manganese (NCM) positive electrode active materials. It is easy to see.
  • electrode active materials such as silicon-based negative electrode active materials, existing graphite-based negative electrode active materials, and nickel-cobalt-manganese (NCM) positive electrode active materials. It is easy to see.
  • This new binder has not been used as a binder for a lithium ion battery, and has a self-conductivity, and when mixed with conductive carbon black, the electrical conductivity of the positive electrode active material composition can be more stabilized.
  • PEDOT: PAA is described mainly as the most preferable example of the binder material used by this invention.
  • Synthesis process of PEDOT: PAA of the present invention is as follows.
  • an oxidizing agent such as 3,4-ethylenedioxythiophene (EDOT), ammoniumpersulfate (APS), and ferric sulfate, and PAA, which are monomers, are mixed in water, and then stirred at a predetermined temperature. Inducing PEDOT synthesis. As the PEDOT: PAA synthesis reaction proceeds, the reaction solution turns dark blue. The thus synthesized solution was removed from impurities using a dialysis bag, and then added with an appropriate ion exchange resin and stirred again to remove ionic impurities remaining in the reaction solution to obtain PEDOT: PAA. In this case, when using an adjuvant such as ferric sulfate, it is advantageous to obtain a PEDOT: PAA compound having a small particle size.
  • EDOT 3,4-ethylenedioxythiophene
  • APS ammoniumpersulfate
  • PAA ferric sulfate
  • PAA ferric sulfate
  • the content of EDOT mixed in water is 0.5-5.0 moles. If the content of EDOT is less than 0.5 mole, the electrical conductivity of the synthesized conductive polymer is low, and if it is more than 5 moles, the monomer is too large and polymer synthesis does not proceed smoothly or too many unreacted monomers are left, resulting in complicated cleaning. Rather disadvantageous.
  • the content ratio of oxidant and EDOT used in the synthesis reaction of the present invention is ideally maintained at 1: 0.8-1: 3 in molar ratio since one oxidant molecule oxidizes one EDOT. If more than 3 moles of oxidant based on EDOT is used, the conductivity is lowered. If the molar ratio of oxidant is less than 0.8 mole, the conductivity is also lowered. Preferably from 0.8 moles to 2 moles is preferred, and as mentioned above, more preferably the 1 mole ratio is high in conductivity. However, since the electrical conductivity of the synthesized PEDOT: PAA depends on this ratio, the molar ratio of the oxidizing agent and EDOT may be adjusted to obtain the desired electrical conductivity.
  • PAA which is the most important component of the present invention, is basically a water-soluble polymer, an acrylic polymer having a weight average molecular weight of 50,000-4,000,000 grams / mol, and the content used in the synthesis reaction may be used in a range of 0.5-5 molar ratio with respect to EDOT. .
  • the content of PEDOT component in the synthesized PEDOT: PAA is so high that the synthesized conductive polymer does not exist in solution but in the form of large particles, which is used as a binder for lithium ion batteries. It is disadvantageous in that it is difficult to do so.
  • the content of PAA is more than 5 molar ratio compared to EDOT, the content of PAA is too high, so that the conductivity of the synthesized conductive polymer is too low, which is not suitable for use as a binder.
  • the synthesized PEDOT: PAA is in the form of large particles, and dissolves well in water when it is 4,000,000 grams / mol or more.
  • the viscosity of PEDOT: PAA which is not synthesized or synthesized, is too high to be inconvenient to use and rather disadvantageous.
  • the cleaning process may be performed through a process similar to the cleaning process after synthesis of the organic material. That is, in addition to the PEDOT: PAA to be synthesized, there are many impurities such as unreacted monomers and oxidizing agents in the reaction solution. Therefore, first, filter out impurities using a dialysis bag, and then again mix an appropriate amount of cation exchange resin and anion exchange resin into a dialysis treated solution and leave it to remove residual ions, or put these exchange resins in a column and place an ion exchange column. The remaining ions are removed while passing the dialysis reaction solution through this ion exchange column. At this time, the pore size of the dialysis bag and the type of ion exchange resin to be used can be found through trial and error, so there is no need to limit the type and method of the special type of dialysis bag and ion exchange resin.
  • the composition may be controlled by adjusting the ratio of each component of the monomer, oxidizing agent, and water-soluble acrylic polymer according to the solid content.
  • the solid content (content of PEDOT: PAA in the binder solution) contained in the PEDOT: PAA binder solution used is suitably in the range of 1.0-5%. This is because the viscosity of the composition may vary depending on the content ratio of the active material, the binder and the conductive material at the time of preparing the composition according to the type of active material, because it affects the formation of the electrode material layer when coating the active material composition on the electrode plate.
  • the solution is too dilute to mix the active material so that the viscosity of the entire composition is too low to form an active material film, the thickness of the coating film is too low, or the solvent is too large to wash out the lithium on the surface of the active material. Due to the problem, even when the conductive component such as carbon black or carbon nanotube is mixed with the binder, the improvement of the charge / discharge cycle characteristics is insignificant, and if it is 5% or more, it is good in terms of the improvement of the charge / discharge cycle characteristics.
  • the amount of the PEDOT: PAA aqueous dispersion is too small to make the active material composition difficult, or the PEDOT: PAA solution itself is difficult to manufacture, or may be precipitated.
  • the conductive carbon black is mixed with the cathode active material particles and the binder. This carbon black is mixed in a binder and electrically insulates the role of increasing the electrical conductivity of the binder component.
  • the conductive polymer binder of the present invention has electric conductivity in itself, it may be used in combination with conductive carbon black like other conventional lithium ion batteries rather than being used by itself.
  • conductive carbon nanomaterials for example, carbon nanotubes and nanocarbon materials such as graphene may be mixed and used together.
  • the aspect ratio is very large, so that the same effect may be obtained by mixing the carbon nanotubes together with the conductive polymer binder alone or alone.
  • the experimental results of the present inventors it was confirmed that the use of carbon nanotubes to improve the adhesion between the active material and the electrode plate.
  • the present invention relates to the synthesis of a conductive polymer using a water-soluble acrylic polymer (PEDOT: PAA) as a template, and to using this as a binder material in preparing an active material composition of a lithium ion battery. Therefore, it is applicable to all kinds of active materials irrespective of the type of active material, that is, graphite, silicon nanoparticles or other negative electrode active materials, and negative electrode active materials prepared by mixing these negative electrode active materials. In the case of graphite among the negative electrode active materials, graphite itself has excellent electrical conductivity, so it is not necessary to add additional conductive materials such as conductive carbon black or carbon nanotubes.
  • PDOT water-soluble acrylic polymer
  • binders of various cathode active materials such as lithium cobalt-oxide (LCO), nickel-cobalt-manganese (NCM), or nickel-cobalt-aluminium (NCA) It can be used as a self-evident fact.
  • the binder material of the present invention is not limited to an active material having a particular shape such as a shape of a negative electrode or a positive electrode active material, that is, a particle or a nanowire or a pyramid shape, and is applicable to an active material having all kinds of shapes.
  • the PEDOT: PAA of the present invention is used as a binder, the content ratio of the positive electrode active material (or negative electrode active material), the binder, and the conductive carbon black or carbon nanotube may be used as it is.
  • the method of dispersing by mixing the PEDOT: PAA binder and the positive electrode active material (or negative electrode active material) and carbon black or carbon nanotube of the present invention is a conventional dispersion method, that is, planetary centrifugal mixer (C-mixer) ), A high pressure homogenizer, an attraction mixer, or a sand ball mill can be used as it is.
  • C-mixer planetary centrifugal mixer
  • a high pressure homogenizer, an attraction mixer, or a sand ball mill can be used as it is.
  • the binder of the present invention when using the binder of the present invention, even if the content of the positive electrode active material was increased up to 30% compared to the existing content, the positive electrode active material dispersion could be applied to the surface of the metal electrode plate and dried to prepare the positive electrode plate without difficulty, and the battery operated well.
  • the PEDOT: PAA of the present invention has excellent interfacial adhesion with the active material and excellent adhesion with metallic electrode plate materials such as copper foil and aluminum foil.
  • metallic electrode plate materials such as copper foil and aluminum foil.
  • the charging and discharging cycle test of the present invention initially raised to 0.1C ⁇ 0.5C rate and then conducted a life test at 0.5C rate. Therefore, the initial capacity of the Examples and Comparative Examples of the present invention means the capacity after three cycles, the capacity retention rate is a value comparing the capacity after three cycles and the final cycle. In Li-ion batteries, it is important to maintain the initial capacity (capacity retention or residual rate) during repeated charging and discharging. Therefore, in the embodiment of the present invention, the capacity maintenance ratio was mentioned in some cases.
  • Examples 1-2 relate to PEDOT: CMC synthesis.
  • Example 1 uses CMC with a degree of substitution of 0.9
  • Example 2 is an example using CMC with a degree of substitution of 1.2
  • Comparative Example 1 uses a CMC having a degree of substitution of 0.4.
  • the conductive polymer monomer is generally added slightly more than the molar ratio of these components.
  • the synthesized solution is placed in a dialysis bag (cellulosic tubular membrane), sealed, and then placed in a container containing ultrapure water and dialyzed for 24 hours to remove unreacted monomer. At this time, the unreacted monomer was removed by checking whether the water color of the dialysis bag is yellow. Then, the anion exchange resin (Lewatit, MP62) and the cation exchange resin (Lewatit, S100) in a ratio of 1: 1 by weight ratio 30 parts by weight to 100 parts by weight of the dialysis reaction solution and put into the ion exchange treatment for 5 hours Residual ion components were removed. Thereafter, a 400-mesh network is used to obtain a dark blue solution.
  • the dark blue solution is a PEDOT: CMC aqueous dispersion, which is a conductive polymer solution in which PEDOT: CMC is dispersed.
  • the surface resistance of the conductive polymer PEDOT: CMC obtained by the above technique was 10 7 ohms / area in Example 1, the viscosity was 250 centipoise (cP), and Example 2 was 10 6 ohms / area, and the viscosity was 320 cP is a dark blue conductive polymer.
  • the surface resistance of the synthesized PEDOT: CMC was measured to be more than 10 9 ohms / area.
  • Example 3 and 4 are the same as in Example 2 except that the template is mixed with CMC and PAA (molecular weight: 450,000 grams / mole, Sigma Aldrich).
  • Example 3 had a weight ratio of CMC: PAA of 5: 5 and Example 4 of 7: 3.
  • the conductive polymers (PEDOT: CMC / PAA) made by the above technique all look dark blue, and the surface resistance of these conductive polymers was measured in 10 5 ohms / area in Example 3 and 10 6 ohms / area in Example 4. As a result, in the case of the mixed template, it was confirmed that the surface resistance was lowered if the content of PAA was high.
  • Example 5 and Comparative Example 2 Graphite / SiOx (90:10) Mixed Active Material
  • Example 5 is an example in which the PEDOT: CMC solution prepared by the technique of Example 1 is applied to a mixed active material in which graphite (theoretical capacity: 370 mAh / g) and SiOx (theoretical capacity: 1,400 mAh / g) are mixed.
  • PEDOT: CMC of Example 1 was mixed with graphite / SiOx (weight ratio: 90/10, theoretical capacity: 473 mAh / g) mixed active material and carbon nanotube (single wall carbon nanotube) to prepare a negative electrode active material slurry.
  • the weight ratio of the solid content of PEDOT: CMC / mixed material / carbon nanotube was mixed so that the weight ratio was 5: 90: 5.
  • the mixture of each component is put into a C-mixer and kneaded three times for 10 minutes at 2,000 rpm, and then treated once with a sonicator for 10 minutes, and finally the final stirring for 10 minutes in a C-mixer to prepare an electrode material composition. .
  • the flow of the negative electrode active material slurry showed a shape similar to that of flowing honey.
  • the active material slurry was made from the PEDOT: CMC of the present invention, it was confirmed that there would be no problem during coating in the battery production line.
  • the negative electrode layer was formed on the copper foil so as to have a thickness of 30 microns after drying and rolling.
  • a half cell coin cell (CR2032) was made using the negative electrode plate manufactured by the above technique, and a charge / discharge cycle test thereof was performed at a rate of 0.5C.
  • lithium metal foil was used as the counter electrode, and the electrolyte was ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), vinylene carbonate (VC), and phloethylene carbonate (FC).
  • EC ethylene carbonate
  • PC propylene carbonate
  • DEC diethyl carbonate
  • VC vinylene carbonate
  • FC phloethylene carbonate
  • Coin cell preparation was made in a glove box filled with argon gas.
  • Comparative Example 2 is the same as Example 5 except for using an electrically conductive non-conductive polymer as a binder material and using CMC, which is conventionally used as a binder for a negative electrode active material.
  • CMC which is conventionally used as a binder for a negative electrode active material.
  • Example 5 As a result of the charge and discharge cycle test of the coin cell manufactured by the above technique, in Example 5, the discharge capacity was 445 mAh / g after three cycles, and the discharge capacity was 440 mAh / g after 50 cycles. Was measured. On the other hand, in Comparative Example 2, the discharge capacities after 3 cycles and 50 cycles were measured at 452 mAh / g and 373 mAh / g, respectively. As for the decrease in the life curve, in Example 5, there was almost no difference in discharge capacity after 3 and 50 cycles, and thus the capacity retention ratio of 95% or more was shown in Comparative Example 2, whereas the capacity retention ratio was about 82%. Was measured. In particular, in the case of Comparative Example 2, the capacity is observed to continue to decrease even after 50 charge and discharge cycles, and the capacity is expected to decrease as the number of cycles increases.
  • Example 5 Comparing the results of Example 5 and Comparative Example 2, it was found that the use of PEDOT: CMC synthesized using the template as a binder showed excellent battery characteristics rather than using CMC itself, which is frequently used as a binder. Can be.
  • Comparative Example 3 is the same as in Example 5 except for using the conductive polymer binder PEDOT: PAA (Example 16) to compare the flow state of the negative electrode active material slurry.
  • Example 5 From the results of Example 5 and Comparative Example 3, the negative electrode active material slurry prepared by using the PEDOT: CMC of the present invention as a binder shows a flowing property like honey, it was found that the PEDOT: CMC binder of the present invention is more suitable for the battery coating process lost.
  • Example 6-7 is the same as Example 5 except that the weight of the mixed active material (graphite / SiOx weight ratio: 90/10) of graphite and SiOx was changed.
  • the weight ratio of the binder / mixed material / carbon nanotube was 10/85/5
  • Example 7 was 10/80/10
  • Comparative Example 4 prepared the active material slurry at a weight ratio of 1 / 98.5 / 0.5. It was.
  • Example 6 and Example 7 had a capacity retention ratio of 95% or more after 50 cycles.
  • the content of the active material was so high that the negative electrode layer formed on the electrode plate was very easily damaged.
  • the capacity retention ratio was very high as 75% after 50 cycles. It was measured to show poor dose retention.
  • Example 8 is the same as Example 5 except for using the conductive polymer binder using the mixed template of Example 3.
  • Example 9 a negative electrode plate was manufactured by using silicon nanoparticles (theoretical capacity: 4,200 mAh / g) as a negative electrode active material such that the weight ratio of silicon nanoparticles / PEDOT: CMC / carbon nanotubes was 60:20:20. Except for the rest, the same as in Example 5. After the rolling mill of the negative electrode plate thus manufactured, the thickness was set to 30 microns. Comparative Example 5 is the same as Example 9 except for using CMC as the binder material.
  • Example 9 As a result of the life test of the coin cell manufactured according to Example 9, the initial capacity of Example 9 and Comparative Example 5 was about 4000 mAh / g, the discharge capacity after 50 cycles was 3,275 mAh / g for Example 9 and compared When the CMC of Example 5 was used, it was measured at 2,350 mAh / g. Thus, it can be seen that the life characteristics of Example 9 using the cellulose-based conductive polymer of the present invention as a binder are much better than those of Comparative Example 5.
  • Example 10-11 and Comparative Example 6 Binder / Carbon Nanotube Content
  • Example 10-11 is the same as Example 5 except for changing the ratio of the binder and the carbon nanotubes.
  • the ratio of the binder and the carbon nanotubes is 5/9/81/5, and the weight ratio of the binder / SiOx / graphite / carbon nanotubes is 7/9/81/3.
  • Comparative Example 6 is a ratio of 9.6 / 9/81 / 0.4.
  • Examples 10 and 11 had a capacity retention ratio of 95% or more after 50 cycles, and almost no initial capacity was decreased. However, in Comparative Example 6, the capacity retention ratio was 81% after 50 cycles.
  • Example 12 and Comparative Example 7 are the same as in Example 5 except for changing the length of the carbon nanotubes.
  • Example 12 used a carbon nanotube having a length of 40 microns
  • Comparative Example 7 used a carbon nanotube having a length of 3 microns.
  • Examples 13 and 14 were prepared using PEDOT: PAA (CNPS) and PEDOT: PSS (Heraus, PT-2, rotary evaporator), which were conductive polymers synthesized using PEDOT: CMC and other compounds of Example 1 as templates. 2% by weight), except that the charge and discharge life characteristics were measured using this as a binder, and the same as in Example 5.
  • Example 13 is a mixture of PEDOT: CMC and PEDOT: PAA at a weight ratio of 50:50
  • Example 14 is a mixture of PEDOT: CMC and PEDOT: PSS at a weight ratio of 50:50 to use it as a binder.
  • Example 15 relates to a characteristic test of a coin cell (CR2032) prepared using a nickel-cobalt-manganese (NCM) cathode active material.
  • CR2032 coin cell using the NCM-based cathode active material of this Example was prepared according to the method of Example 5.
  • the positive electrode active material composition ratio of NCM / PEDOT: CMC / carbon nanotube / carbon black was 92 / 3.5 / 3.0 / 1.5 ratio.
  • Comparative Example 8 is the same as in Example 15 except for using PVDF (anode binder, Solvay Co., Ltd.). PVDF was used by dissolving in NMP (N-Methyl-2-pyrrolidone).
  • Examples 16-19 relate to the synthesis of PEDOT: PAA, by synthesizing the synthesized PEDOT: PAA by adjusting the content ratio of each component used in the synthesis reaction, and compares the properties of the synthesized PEDOT: PAA.
  • Example 16 a process of synthesizing PEDOT: PAA using a ratio of EDOT, PAA, and an oxidizing agent in a molar ratio of 1: 1: 1 will be described.
  • Examples 17-19 to adjust the content ratio of each component and the rest can be synthesized in the same manner as in Example 16.
  • PAA molecular weight: 1.250,000 grams / mol, repeat unit molecular weight: 72 grams / mol
  • EDOT molecular weight: 140 grams / mol
  • APS molecular weight: 228 grams / mol
  • the synthesized solution is placed in a dialysis bag (cellulose cellulose membrane), placed in a beaker containing ultrapure water, and dialyzed for 24 hours to remove unreacted monomer. At this time, the unreacted monomer was removed by checking whether the water color of the dialysis bag is yellow.
  • a dialysis bag cellulose cellulose membrane
  • this dark blue solution is a PEDOT: PAA solution containing PEDOT: PAA.
  • Table 1 compares the characteristics such as surface resistance and viscosity of PEDOT: PAA synthesized through Examples 16-19. As shown in Table 1, the dark blue conductive polymer was successfully synthesized, and the resistance decreases as the EDOT content increases.
  • n and m are natural numbers.
  • Table 1 shows PEDOT: PAA and properties synthesized through Examples 16-19.
  • Example Component ratio (molar ratio) (EDOT: PAA: oxidizer) Surface resistance (kohm / sq.) Viscosity (cP) Solution color 16 1: 1: 1 2 450 Dark blue 17 0.8: 1: 1 5 1630 Dark blue 18 0.6: 1: 1 10 3980 Dark blue 19 0.3: 1: 1 200 4746 Dark blue
  • Example 20 is a PEDOT: PAA solution prepared by the technique of Example 16, silicon nanoparticles (average diameter: 50 nanometers) and multiwall carbon nanotubes (MWCNT) 20:60:20 Mix to weight ratio.
  • silicon nanoparticles average diameter: 50 nanometers
  • MWCNT multiwall carbon nanotubes
  • 0.6 grams of silicon nanoparticles, 0.2 grams of carbon nanotubes, and 10 grams of PEDOT: PAA solution containing 2% solids were added to a C-mixer, kneaded three times for 10 minutes at 2,000 rpm, and then 10 minutes using a bar-type sonicator. After treating once and finally stirring for 10 minutes in a C-mixer to prepare an electrode material composition.
  • the composition is dried on a copper foil and a negative electrode plate is made to be 40 microns thick.
  • the surface of the negative electrode plate produced by the above technique was scratched with a knife, and then the scotch tape was put on and then peeled off. As a result of the adhesion test, the electrode material layer was strongly adhered without falling off the electrode plate.
  • Comparative Example 9 is the same as in Example 20 except that the binder material was used polyvinylidene fluoride (PVDF, Solvay).
  • PVDF polyvinylidene fluoride
  • Example 20 Comparative Example 9, it can be seen that when using the PEDOT: PAA of the present invention as a binder than the conventional PVDF binder, the electrode material layer of the negative electrode plate is strongly bonded to the electrode plate.
  • Example 21 a negative electrode plate was manufactured by the same technique as in Example 20, and a coin cell having a half cell structure (CR2016 type) was made by using the same technique, and Comparative Example 10-12 was a coin cell having the same structure with different binder types. Made.
  • the coin cell prepared by the above technique was placed in a charge and discharge tester, and a charge and discharge cycle test was performed. At this time, lithium metal foil was used as the counter electrode, and the electrolyte was ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), vinylene carbonate (VC), and phloethylene carbonate (FC).
  • EC ethylene carbonate
  • PC propylene carbonate
  • DEC diethyl carbonate
  • VC vinylene carbonate
  • FC phloethylene carbonate
  • LiPF 6 LiPF 6
  • Coin cell preparation was made in a glove box filled with argon gas.
  • Table 2 shows the charge and discharge test cycle results according to the binder type of Example 21 and Comparative Examples 10-12.
  • the remaining ratio (%) means the ratio of remaining capacity to initial capacity, that is, capacity maintenance (%).
  • Example 22 and Comparative Example 13 uses graphite which is a negative electrode active material of a conventionally commercialized lithium ion battery as a negative electrode active material.
  • the coin cells of the half cell structures of Example 22 and Comparative Example 13 were prepared as follows. In Example 22, 2.91 grams of graphite and 1.5 grams of PEDOT: PAA having 2% solids were added to a C-mixer, and then kneaded twice at 2,000 rpm for 10 minutes to prepare a negative electrode active material composition. At this time, the weight ratio to solids was 97: 3 (graphite: PEDOT: PAA). This was coated on a copper foil, dried to prepare a negative electrode plate having a thickness of 40 microns after drying. Thereafter, a coin cell having a half cell structure was manufactured by the method of Example 21, and the charge and discharge cycle test was performed in a charge and discharge cycle tester.
  • Comparative Example 13 is the same as Example 21, except that styrene-butadiene rubber (SBR) and CMC mixed binder (weight: 1: 1) used to prepare a negative electrode active material composition of a conventionally commercialized lithium ion battery as a binder are used. .
  • SBR styrene-butadiene rubber
  • CMC mixed binder weight: 1: 1
  • Example 22 Comparing the results of Example 22 and Comparative Example 13, it can be seen that the performance of the PEDOT: PAA binder is superior to that of SBR / CMC mixed binder, which is a binder material of a commercially available lithium ion battery.
  • Example 23 relates to a characteristic test of a coin cell manufactured using nickel-cobalt-manganese (NCM) cathode active material, which is a cathode active material of a high-capacity lithium ion battery that has been commercialized and sold.
  • NCM nickel-cobalt-manganese
  • the positive electrode active material composition was prepared by repeatedly weighing the NCM active material: PEDOT: PAA binder: MWCNT so as to have a weight ratio of 96: 2: 2 to a solid ratio of 96: 2: 2, followed by kneading at 2,000 rpm for 5 minutes for 5 minutes.
  • the composition was coated on an aluminum electrode plate and dried to prepare a 40 micron thick positive electrode plate.
  • the negative electrode plate was used as it is lithium metal.
  • Comparative Example 14 is the same as in Example 23 except for using PVDF (Solvay Co., Ltd.) used to prepare a positive electrode active material composition of a commercially available NCM lithium ion battery as a binder material.
  • PVDF Solvay Co., Ltd.
  • the test of the samples of Example 23 and Comparative Example 14 measured 100 cycle charge and discharge characteristics at 45 degrees for each sample.
  • Example 23 As a result of measurement, the remaining capacity after charging and discharging 100 cycles at 45 degrees of Example 23 was measured to be maintained at 89.4% of the initial capacity. On the other hand, in the case of using PVDF, a conventional binder, the remaining capacity after charging and discharging 100 cycles was 67.4%.
  • Examples 24-26 are to determine the adhesion by the difference in the content of carbon nanotubes, the density of the electrode layer and the remaining capacity after 100 cycles of charge and discharge test.
  • Example 24 is a 20:60:20 PEDOT: PAA solution prepared by the technique of Example 16, silicon nanoparticles (average diameter: 50 nanometers) and multiwall carbon nanotubes (MWCNT) compared to the solid content Mix to weight ratio.
  • silicon nanoparticles average diameter: 50 nanometers
  • MWCNT multiwall carbon nanotubes
  • 0.6 grams of silicon nanoparticles, 0.2 grams of carbon nanotubes, and 10 grams of PEDOT: PAA solution containing 2% solids were added to a C-mixer, kneaded three times for 10 minutes at 2,000 rpm, and then 10 minutes using a bar-type sonicator.
  • the composition slurry was dried on an 8 micron thick copper foil and the thickness of the electrode layer to a thickness of 6 microns total 14 microns A negative electrode plate of thickness was made.
  • Example 25 the content ratio of the conductive polymer binder: active material: carbon nanotube is 25:65:10, and in Example 26, the ratio is 15:55:30.
  • the same procedure as in Example 24 was carried out except that the slurry was prepared.
  • Example 24-26 The surface of the negative electrode plate produced by the technique of Example 24-26 was scratched with a knife, and then the scotch tape was attached and detached thereon. As a result of the adhesion test, the electrode layer was strongly adhered without falling off the electrode plate. In addition, the density of the electrode layer was good enough that the electrode layer was not greatly damaged even when scraped with tweezers. This phenomenon was observed to occur in all of Examples 24-26.
  • Comparative Example 15 was the same as in Example 24 except that the binder material was a mixed binder in which 1: 1 mixing of styrene-butadiene (SBR) and carboxymethylcellulose (CMC), not PEDOT: PAA.
  • Comparative Example 16 is the same as Comparative Example 15 except for using a conductive carbon black (Super P) rather than carbon nanotubes as a conductivity imparting agent.
  • Table 3 summarizes the charge and discharge cell tests of Examples 24-26 and Comparative Examples 15-16.
  • the charge and discharge cycle test was evaluated using a coin cell (CR2032 type) having a half cell structure. At this time, lithium metal foil was used as a counter electrode, and electrolyte was mixed with 1.15 mol LiPF 6 in an ethylene carbonate (EC) and diethyl carbonate (DEC) in a weight ratio of 3: 7, and then vinylene carnobate ( VC) and fluoroethylene carbonate (FEC) 1: 1 mixed solvent was added to the total amount of 10% by weight of the organic electrolyte was used.
  • Coin cell preparation was made in a glove box filled with argon gas. The cycle test of all cell tests of the present invention was performed at 0.5C rate.
  • Comparative Example 15-16 the use of CMC / SBR mixed binder which is a conventional binder for graphite, although the remaining capacity is lower than that of the conductive polymer binder of the present invention, the use of carbon nanotubes than the case of using conductive carbon black It can be seen that there is a little high remaining capacity. In particular, as a result of comparing the reduction of the cycle test initial capacity, it can be seen that the battery half cell manufactured by the technology of the present invention is much lower than the samples of the comparative example in the capacity decrease during the initial tens of cycles.
  • Comparative Example 17-18 compares the effect of the composition ratio of each component in the production of the active material slurry of the present invention. Comparative Example 17-18 is to prepare an active material slurry in a proportion similar to that of each component of the slurry composition generally applied when using graphite as a negative electrode active material.
  • Table 3 shows the remaining capacity and remaining ratio according to the cycle test.
  • Comparative Examples 15 and 16 Weight Ratio of CMC / SBR / Si / Carbon Nanotubes / Conductive Carbon Black
  • Comparative Example 18 Weight ratio of CMC / SBR / Si / Carbon Nanotube / Conductive Carbon Black
  • Example 27 is the same as in Example 24 except for the use of SiOx as the active material for the negative electrode instead of Si metal particles when preparing the slurry composition.
  • Comparative Example 19 as shown in Table 4, the composition ratio of the active material slurry is the same as in Example 27, except that the binder material and the conductivity imparting agent are different from each other.
  • SiOx having a theoretical capacity of 1,400 mAh / g was used in this example and the comparative example.
  • the remaining capacity after 3 cycles is 1,150 mAh / g and the remaining capacity after 100 cycles is 960 mAh / g.
  • the ratio is about 83%.
  • the remaining capacity was measured to be about 54% after 100 cycles.
  • the slurry is manufactured with the composition ratio (SBR / CMC / SiOx / carbon black: 2/2/95/1) applied to the existing graphite, and the half cell is made, the remaining capacity is almost within tens of cycles after the cycle test. It has been observed to drastically decrease to 0 mAh / g, losing performance as a battery.
  • the battery performance when applying the composition ratio of the present invention was found to be significantly superior to the composition ratio generally used when using the existing graphite. This is the same result as when using Si metal particle
  • Table 4 shows the remaining capacity and remaining ratio according to the cycle test.
  • Example 28-30 the content of the binder and the carbon nanotubes was 20:20 (binder / carbon nanotube weight ratio), and the content of the active material was fixed in a state where the mixing ratio of the silicon nanoparticles and the graphite was fixed at 20:80. Except for the other things, the same as in Example 24. At this time, the thickness of the electrode layer was adjusted to be 30 microns.
  • the remaining capacity after the cycle test for the half cell using the active material composition including the CMC / SBR mixed binder and the conductive carbon black was not compared.
  • the existing binders exhibit lower cycle characteristics than those of the conductive polymer binders and carbon nanotubes of the present invention.
  • Table 5 shows the remaining capacity and remaining ratio according to the cycle test.
  • Electrode layer thickness control (graphite / SiOx weight ratio: 80/20)
  • Example 31-32 prepared a composition (weight ratio of binder / graphite / SiOx / carbon nanotube: 5/72/18/5) using a mixed active material mixed with graphite and SiOx, and using the thickness of the negative electrode layer Except for the different except the same as in Example 24.
  • Example 31 made the electrode layer thickness 25 microns
  • Example 32 made the electrode layer thickness 40 microns.
  • Example 31 and 32 were confirmed that the remaining capacity after the 100 cycles test was maintained at 93% or more compared to the initial value, the battery performance is very good.
  • Examples 33-34 and Comparative Example 20 are the same as in Example 32 except that the composition was made by varying the length of the multi-walled carbon nanotubes and the electrode layer was formed by applying the composition to the electrode plate.
  • Example 33 used multi-walled carbon nanotubes having a length of 30 microns and a length of 60 microns.
  • Comparative Example 20 carbon nanotubes having a short length of 2 microns of multi-walled carbon nanotubes were used.
  • the electrode layers of Examples 33-34 were found to have excellent density, but in the case of Comparative Example 20, it was observed to be easily scratched. As a result, it was found that carbon nanotubes having a predetermined length or more were effective in order to increase the density of the electrode layer.
  • Example 33-34 the remaining capacity after the 100 cycle test was maintained at a very good performance of 93% or more, while in Comparative Example 20 was about 80% in Example 33- It was confirmed that the performance was lower than 34.
  • Examples 35-37 and Comparative Examples 21-22 were the same as in Example 34 except for changing the content ratio of the conductive polymer binder and the carbon nanotubes.
  • Example 35-37 As a result of confirming the density of the negative electrode layer, in Example 35-37, the adhesion between the electrode plate and the electrode layer was also good, and the densities evaluated by scraping with a sharp tip were also observed.
  • the adhesion is good but the density of the negative electrode layer is good but the adhesion with the electrode plate is poor (Comparative Example 21), or the adhesion with the electrode plate is good but the density of the electrode layer is poor (Comparative Example 22). It was inferior to Example 35-37.
  • Table 6 shows the remaining capacity and remaining ratio according to the cycle test.
  • the active material is mixed therein to make an active material composition slurry, and when a lithium ion battery is manufactured using the electrode layer, It turns out that the adhesive force of is very excellent and the density of the electrode layer itself is favorable.
  • the battery cell is made using the active material composition prepared by mixing only the conductive polymer binder and the carbon nanotube of the present invention, the remaining capacity after the charge / discharge cycle test is different, that is, when an electrically insulating binder or carbon black is used. You can see that it is much higher. Therefore, it can be seen that the life characteristics of the lithium ion battery manufactured using the technology of the present invention are greatly improved.
  • the lithium ion battery includes a positive electrode current collector 10, a positive electrode material layer 20, a separator 30, a negative electrode material layer 40, a negative electrode current collector 50, and a seal. It consists of a gasket 80 and a case 90.
  • the active material composition of the present invention can be used for the positive electrode material layer 20 and the negative electrode material layer 40, and can be used in various lithium ion batteries using the active material as well as the structure of the illustrated lithium ion battery. Do.
  • Lithium ion battery of the present invention can be used in devices using a variety of batteries, such as electric vehicles, mobile phones or laptops.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 셀루로오스계 화합물 또는 약산 화합물계를 단독으로 또는 하나 이상을 혼합하여 템플레이트로 사용하여 합성된 전도성 고분자를 합성하고, 이를 전극활물질용 바인더 물질로 사용하여 전극활물질 조성물을 만들고, 다시 이를 이용하여 제조된 리튬이온배터리에 관한 것이다. 바람직한 활물질 조성물로서 PEDOT:CMC를 합성하고, 이를 바인더로 사용하여 제조된 리튬이온배터리에 관한 것이다. 본 발명의 기술을 이용하면 흑연 성분 또는 실리콘 성분을 단독으로 또는 이들 활물질과의 혼합물의 형태인 음극활물질, 그리고 니켈-코발트-망간계(NCM) 활물질, 니켈-코발트-알루미늄계(NCA) 활물질, 리튬-코발트옥사이드(LCO) 활물질 및 기타 리튬을 포함하는 각종 양극활물질로 이루어진 리튬이온배터리의 사이클 특성, 즉 수명을 향상시킬 수 있다는 큰 장점이 있다.

Description

셀루로오스계 또는 약산 화합물계 전도성 고분자를 구비한 전극 활물질 및 이를 포함한 리튬이온배터리
본 발명은 리튬이온배터리의 활물질 조성물 및 이를 이용한 리튬이온배터리에 관한 것으로서, 보다 구체적으로는 셀루로오스계 또는 약산 화합물을 템플레이트로 사용하여 전도성 고분자를 만들고, 이를 포함하는 활물질 슬러리 조성물 및 이를 이용한 리튬이온배터리에 관한 것이다.
리튬이온배터리는 리튬을 포함하고 있는 화합물 입자의 양극활물질과 그리고 흑연으로 대표되는 음극활물질들을 바인더와 함께 혼합하여 알루미늄 또는 구리 등의 극판 물질 표면에 양극활물질층 및 음극활물질층을 형성하고 여기에 전해질을 함침한 후 중간에 분리막으로 불리우는 소위 세퍼레이터(separator)를 놓고 합지하여 만들어진다.
리튬이온배터리는 표면에서 흡착 및 탈착을 되풀이하면서 작동되는 전기이중층 전기저장장치, 즉 캐패시터와는 달리, 리튬 이온이 양극활물질층과 음극활물질층 사이를 왕래하면서 충전과 방전과정을 거치게 되며, 리튬 이온은 양극활물질층과 음극활물질층 내로 삽입(intercalation)되었다가 빠져 나오는 과정을 반복적으로 되풀이하게 된다. 이 과정 중 초기 방전 용량이 충방전 횟수가 증가할수록 떨어지게 되어 성능이 저하되는, 소위 사이클 특성이 저하되게 된다.
사이클 특성이 나빠지는 정도, 충/방전이 반복됨에 따라 초기 용량이 저하되는 정도는 활물질의 종류에 따라 다른 것으로 알려져 있는데, 양극활물질의 경우에는 리튬코발트옥사이드 (lithium-cobaltoxide: LCO) 또는 음극활물질로 사용되는 흑연의 경우에는 초기 방전용량의 저하가 비교적 완만하게 일어나 사이클 특성이 비교적 좋은 것으로 알려져 있으나, 니켈이 도입되거나 알루미늄이 도입된 니켈-코발트-망간 (nickel-cobalt-manganese: NCM) 활물질 또는 니켈-코발트-알루미늄 (nickel-cobalt-aluminum: NCA) 활물질, 또는 음극 활물질의 경우에는 용량이 매우 높은 것으로 알려져 있는 실리콘 금속입자 또는 실리콘산화물 등의 활물질들은 사이클 횟수에 따른 초기용량의 감소가 급격하여 소위 사이클 특성이 급격히 나빠지는 특성을 보인다.
리튬이온배터리 제조 시 이들 활물질 입자간의 접착력을 증진시키고, 특히 극판과 접착력을 증진시키기 위해 바인더 물질을 사용한다. 일반적으로 많이 사용하는 바인더로는 양극활물질의 경우에는 수계 용매를 사용하기 어려워 폴리비닐리덴플로라이드(polyvinylideneflouride: PVDF) 같은 유기계 바인더를, 그리고 음극활물질의 경우에는 카복실레이티드메틸셀루로오스(carboxylated methylcellulose: CMC), 스티렌-부타디엔 고무(styrene-butadiene rubber: SBR), 폴리아크릴산(Polyacrylic acid: PAA) 등의 화합물이 있는데, 이들 화합물은 단독으로 또는 서로 혼합된 복합물의 형태로 사용된다.
이들 바인더 물질과 전기전도도 증진을 위하여 사용되는 카본블랙 및 활물질등 주요 성분을 엔-메틸-2-피롤리돈(N-methyl-2-pyrrolidone: NMP), 물 등의 용매와 함께 혼합하여 활물질 조성물을 만들고 이를 다시 극판에 일정 두께의 도막을 형성하고 이를 전극재료로 사용하여 리튬이온배터리를 제조한다.
음극활물질로서 흑연을 사용하는 경우에는 흑연이 자체 전기전도도가 높으므로 별도의 카본블랙을 사용하지 않거나 소량만 사용한다.
리튬이온배터리용 활물질 조성물 제조 시 바인더의 함량은 매우 낮은 편이다. 예를 들어 흑연을 사용하는 음극활물질의 경우 흑연이 95% 이상이고 나머지가 바인더와 카본블랙을 이루어져 있다. 이와 같이 바인더 물질의 함량이 매우 낮기 때문에 활물질 및 카본 블랙과의 균일한 분산, 극판과의 접착력, 그리고 전극층 내의 치밀도 등이 매우 중요하다.
카본 블랙은 표면에 수산기(-OH)가 많이 존재하는 물질로 알려져 있고, 이 수산기 때문에 카본 블랙이 서로 뭉치게 되어 유기 용매 및 바인더와의 균일한 분산이 잘 안 되는 것으로 알려져 있다. 카본 블랙이 충방전 과정, 즉 발열과 냉각 과정을 거치는 동안 바인더 물질과의 접착력이 저하되거나, 또는 전도도가 저하되는 일이 발생한다. 실제로 100회 사이클 충방전 시험을 완료한 리튬이온배터리를 해체하면 활물질층이 극판으로부터 분리되는 경우가 많이 발견되고, 또한 극판을 통한 복합임피던스를 측정해 보면 저항값이 크게 증가하는 것으로 알려져 있다. 이와 같이 충방전 과정을 거치는 동안 극판간 저항이 증가한다는 것은 카본 블랙이 전기전도 통로로서의 역할을 하지 못한다는 것을 의미하고, 이는 곧 리튬이온배터리의 성능 저하로 나타난다.
이러한 카본블랙의 단점을 보완하고 활물질 조성물로 이루어진 전극층 자체의 안정적인 전기전도도를 부여하기 위하여, 대한민국 공개 특허 제 10-2016-0100133 호는 종래의 PVDF계 바인더의 전기전도도를 보완하여 향상된 수명특성을 가지는 리튬전지를 만들 수 있도록 전도성 수계바인더를 포함하는 양극활물질조성물을 제안하였다. 특히 대한민국 공개 특허 제 10-2016-0100133 호의 양극활물질조성물은 전도성을 가지는 물질인 PEDOT:PSSA를 바인더로 사용하여 혼합하여 사용되어 전도성 물질의 전도성이 유지되는 장점을 발휘함으로써 종래의 PVDF계 바인더에 비해서 향상은 되었다. 하지만 연속적인 충방전 사이클 시험의 수명특성과 배터리의 용량을 증가시킬 수 있는 성능의 개선이 여전히 필요한 상황이다.
그리고 전도성 고분자 바인더를 사용하는 경우에도 카본블랙 자체가 뭉쳐있는 현상을 근본적으로 막을 수 없기 때문에 사이클 횟수가 증가함에 따라 결국은 사이클 특성이 크게 저하되는 문제점을 근본적으로 개선시킬 수는 없다. 또한 기존의 리튬이온배터리의 조성물을 보면 용량 증대를 위하여 활물질과 바인더 및 전도성 물질의 비율의 경우 90% 이상이 활물질이고 나머지가 유기 바인더 및 전도성 증진제인 카본블랙으로서 유기 바인더의 비율은 상당히 낮다. 이러한 활물질 조성물은 용량을 늘리기 위하여 활물질의 양이 늘려야 하기 때문이다.
그러나 용량이 매우 높은 활물질의 경우에는, 예를 들어 이론용량이 4,000 mAh/g 이상인 실리콘 금속입자의 경우에는 실리콘 자체의 용량이 매우 높기 때문에 음전극층의 두께를 두껍게 하지 않아도 충분한 용량을 낼 수 있다. 이런 경우에는 오히려 전극층의 두께를 얇게 할 수도 하는데, 이때 음전극 활물질 조성물에서 차지하는 활물질의 비율이 높아지면 슬러리의 점성이 높아지고 고형분 함량이 너무 높아져 얇은 두께의 전극층을 형성하기가 어려워진다는 문제점이 있다.
이와 같이 실리콘계 활물질 등 충방전 시 팽창/수축이 심한 활물질을 사용할 경우에는 이들 활물질을 단독으로 사용하기 보다는 흑연과 혼합하여 사용하는 경우가 일반적이다. 그러나 이때에도 실리콘 금속입자 또는 SiOx 등의 활물질이 혼합되어 있는 경우 충방전에 따른 팽창/수축이 마찬가지로 일어나는 문제점이 있다.
위와 같은 문제점을 해결하기 위한 것으로, 전도성 고분자라 해도 템플레이트 화합물을 어느 것을 사용하느냐에 따라 다른 특성을 보일 수 있기 때문에, 본 발명은 리튬이온배터리용 바인더로서 가장 좋은 특성을 보일 수 있으며 또한 기존 바인더 물질과 동일한 계통의 화합물을 템플레이트로 사용하여 공액형 전도성 고분자를 합성한 바인더를 제공한다. 그리고 본 발명은 활물질들과의 적합성이 우수하며 리튬이온배터리의 수명특성을 향상시킬 수 있는 새로운 공액형 전도성 고분자 바인더를 제공한다.
본 발명은 리튬이온배터리 양전극 또는 음전극 활물질용 새로운 바인더 물질을 제공하여 리튬이온배터리의 충방전 수명을 향상시키는 기술 및 이를 이용한 수명특성이 좋은 대용량 긴 수명의 리튬이온배터리를 제공하고자 한다.
그리고 본 발명은 용량이 높은 음극활물질을 이용하여 리튬이온배터리를 제조하는 경우 전극층의 두께를 얇게 만들면서 이 전극활물질층이 극판에 강하게 접착되어 있고 전극층을 이루는 물질의 치밀함을 증가시켜 충방전 사이클 특성을 향상시킬 수 있는 새로운 음전극 활물질 조성물을 제공하고, 이를 구비하는 리튬이온배터리를 제공하고자 한다.
상기의 목적을 달성하기 위하여, 본 발명에서는 새로운 공액형 전도성 고분자 화합물을 합성하여 이를 리튬이온배터리 전극재료인 활물질과 혼합 시 바인더 물질로 사용하는 방법을 이용하였다.
본 발명의 새로운 바인더는 기존에 리튬이온배터리 음전극 활물질용 바인더로 많이 사용하고 있는 셀루로오스계 또는 약산 화합물계를 이용하여 전도성 고분자를 만들고 이를 활물질용 바인더로 활용하는 것이다.
본 발명의 전도성 고분자 바인더는 아닐린, 피롤, 티오펜 또는 3,4-에틸렌디옥시티오펜 등과 같은 전도성 고분자 합성용 모노머 또는 이로부터 변성된 변성 전도성 고분자용 모노머로부터 합성된 전도성 고분자 내에 셀루로오스계 화합물을 템플레이트로 사용하여 합성된 전도성 고분자 바인더이다. 이 새로운 바인더는 활물질과 혼합 시 바인더 물질 자체가 전기전도성을 가지면서 양극 또는 음극활물질과 혼합성 및 접착력을 좋게 하고 전극물질층의 극판 재료와의 접착력을 더 좋게 하고 특히 활물질 슬러리의 흐름특성이 좋아 기존 리튬이온배터리의 극판제막 공정에 적합할 뿐만 아니라 합성된 전도성 고분자 바인더의 산성도가 낮아 구성물질의 부식이나 리튬이온의 손실을 감소시켜 최종적으로는 리튬이온배터리의 충방전 사이클 특성을 향상시키도록 설계된 것이다.
본 발명의 리튬이온배터리에 있어서, 상기 리튬이온배터리의 음전극이나 양전극 중 어느 하나 또는 두 전극의 활물질 조성물이 셀루로오스계 화합물을 템플레이트로 사용하여 합성된 셀루로오스계 전도성 고분자 바인더, 상기 셀루로오스계 전도성 고분자 바인더와 다른 종류의 화합물을 템플레이트로 사용하여 합성된 전도성 고분자 하나 이상과 혼합된 혼합 전도성 고분자 바인더, 또는 수용액 상태에서 수소이온지수(pH)가 2-6의 범위인 고분자 화합물을 템플레이트로 사용하여 합성된 셀루로오스계 전도성 고분자 바인더 중 어느 하나 이상을 포함하는 것을 특징으로 한다.
또한, 본 발명의 리튬이온배터리에 있어서, 상기 셀루로오스계 화합물은 셀루로오스 분자의 -OR기의 -R 성분의 일부가 물에 녹여줄 수 있는 성분으로 치환되어 있고, 상기 치한도가 0.5 이상인 것; 그리고 상기 셀루로오스계 화합물은 셀루로오스 분자의 -OR의 -R 성분이 알킬카복실산 또는 이들의 염화합물 또는 하이드록시기인 임을 특징으로 한다.
또한, 본 발명의 리튬이온배터리에 있어서, 상기 알킬카복실산 또는 이들의 염화합물의 알킬기의 길이가 탄소갯수가 1-4임; 그리고 상기 셀루로오스계 화합물은 치환도가 0.5 이상인 카복시메틸셀루로오스(carboxy methyl cellulose: CMC)임을 특징으로 한다.
또한, 본 발명의 리튬이온배터리에 있어서, 상기 셀루로오스계 화합물은 중량평균분자량이 50,000-4,000,000그램/몰이며, 이들을 템플레이트로 사용하여 합성된 전도성 고분자는 아닐린, 피롤, 티오펜 또는 이들로부터 변성된 변성 전도성 고분자 중 어느 하나 또는 그 이상을 포함하는 것을 특징으로 한다.
또한, 본 발명의 리튬이온배터리에 있어서, 상기 셀루로오스계 전도성 고분자는 폴리(3,4-에틸렌디옥시티오펜):카복시메틸셀루로오스(PEDOT:CMC)로서, 상기 PEDOT:CMC의 수분산액에 들어있는 PEDOT:CMC 고형분 함량이 1-10%임을 특징으로 한다.
또한, 본 발명의 리튬이온배터리에 있어서, 상기 셀루로오스계 전도성 고분자 바인더의 템플레이트는 셀루로오스계 화합물에 아크릴계 화합물을 혼합한 혼합템플레이트임을 특징으로 한다.
또한, 본 발명의 리튬이온배터리에 있어서, 상기 셀루로오스계 화합물은 카복시메틸셀루로오스이고, 그리고 상기 다른 종류의 화합물은 아크릴계 고분자는 폴리아크릴산이며, 바인더 수분산액에 들어있는 혼합템플레이트로 합성된 전도성 고분자의 고형분 함량이 1-10%임, 그리고 상기 카복시메틸셀루로오스와 폴리아크릴산의 무게비율은 (95:5)~(5:95)임을 특징으로 한다.
또한, 본 발명의 리튬이온배터리에 있어서, 상기 다른 종류의 화합물은 수용액 상태에서 수소이온지수(pH)가 2-6의 범위인 고분자 화합물 또는 폴리스티렌설폰산(polystyrenesulfonic acid; PSSA)이며, 그리고 바인더 수분산액에 들어있는 전체 전도성 고분자 바인더의 고형분 함량이 1-10%을 특징으로 한다.
또한, 본 발명의 리튬이온배터리에 있어서, 상기 다른 종류의 화합물은 폴리아크릴산 (PAA)과 폴리스티렌설폰산(polystyrenesulfonic acid; PSSA) 중 어느 하나 이상을 포함하는 것이며, 그리고 상기 셀루로오스계 화합물을 템플레이트로 사용하여 합성된 전도성 고분자와 다른 종류의 화합물을 템플레이트로 합성된 전도성 고분자의 혼합비율은 하나의 성분이 무게비로 5% 이상임을 특징으로 한다.
또한, 본 발명의 리튬이온배터리에 있어서, 상기 활물질 조성물이 전극층의 치밀도 및 전도도 증진을 위한 탄소나노튜브를 더 포함하는 것을 특징으로 한다.
또한, 본 발명의 리튬이온배터리에 있어서, 상기 활물질 조성물에 있어서 탄소나노튜브는 전도성 고분자 바인더의 고형분 100중량부의 무게 대비 5-300중량부임을 특징으로 한다.
또한, 본 발명의 리튬이온배터리에 있어서, 상기 탄소나노튜브는 일중벽, 이중벽 및 다중벽 탄소나노튜브 중 어느 하나 또는 그 이상이 혼합된 것이며, 그리고 탄소나노튜브의 길이는 5-100 미크론임을 특징으로 한다.
또한, 본 발명의 리튬이온배터리에 있어서, 상기 활물질 조성물이 음극 활물질 조성물로서, 실리콘 성분을 유효 성분으로 하는 음극활물질, 또는 상기 실리콘 성분에 흑연이 포함된 음극활물질을 포함하는 것을 특징으로 한다.
또한, 본 발명의 리튬이온배터리에 있어서, 상기 음극활물질의 실리콘 성분이 실리콘 또는 실리콘계산화물 성분이며 그리고 실리콘 성분을 유효성분으로 포함하는 음극활물질인 경우 상기 음극활물질의 함량이 음극활물질 조성물 전체 고형분 무게 대비 10-85중량%이거나, 또는 상기 음극활물질이 상기 실리콘 또는 실리콘계산화물 성분에 흑연이 포함된 음극활물질인 경우 상기 음극활물질의 함량이 음극활물질 조성물 전체 고형분 무게 대비 40-98중량% 인 것을 특징으로 한다.
또한, 본 발명의 리튬이온배터리에 있어서, 흑연과 혼합되는 실리콘 또는 실리콘계산화물 성분의 함량은 전체 음극활물질의 1-90중량% 임을 특징으로 한다.
또한, 본 발명의 리튬이온배터리에 있어서, 상기 음극활물질 조성물을 포함한 음전극 활물질 슬러리 조성물이 상기 음전극 활물질 슬러리의 전체 고형분 함량의 5-60중량% 이며, 그리고 상기 음전극의 두께가 2 내지 50 미크론임을 특징으로 한다.
또한, 본 발명의 리튬이온배터리에 있어서, 상기 음극활물질이 실리콘 성분을 단독 유효성분으로 포함하는 음극활물질인 경우 음극층의 두께는 5-40 미크론이거나, 또는 상기 음극활물질이 상기 실리콘 또는 실리콘계 산화물 성분에 흑연이 포함된 혼합 음극활물질인 경우 상기 음극층의 두께는 5-50 미크론인 것을 특징으로 한다.
또한, 본 발명의 리튬이온배터리에 있어서, 음전극 활물질 슬러리의 점도조절용으로 증점제를 더 첨가하며, 그리고 상기 음전극 활물질 슬러리 점도조절용 증점제는 하이드록시프로필셀루로오스, 에틸셀루로오스, 카복시메틸셀루로오스를 포함하는 셀루로오스계 증점제, 또는 중량평균분자량이 1,000,000g/mole 이상인 아크릴계 고분자 화합물임을 특징으로 한다.
또한, 본 발명의 리튬이온배터리에 있어서, 상기 활물질 조성물이 양극 활물질 조성물로서, 상기 양극활물질은 리튬, 망간, 니켈, 코발트, 알루미늄, 등의 성분 중 어느 하나 또는 그 이상을 포함하는 것임을 특징으로 한다.
본 발명의 리튬이온배터리의 음전극 또는 양전극의 활물질 조성물에 사용되는 바인더에 있어서, 상기 바인더는, 셀루로오스계 화합물을 템플레이트로 사용하여 합성된 셀루로오스계 전도성 고분자 바인더, 상기 셀루로오스계 전도성 고분자 바인더와 다른 종류의 화합물을 템플레이트로 사용하여 합성된 전도성 고분자 하나 이상과 혼합된 혼합 전도성 고분자 바인더, 또는 수용액 상태에서 수소이온지수(pH)가 2-6의 범위인 고분자 화합물을 템플레이트로 사용하여 합성된 셀루로오스계 전도성 고분자 바인더, 중 어느 하나 또는 둘 이상을 포함한 바인더 인 것을 특징으로 한다.
본 발명의 리튬이온배터리의 음전극 또는 양전극의 활물질 조성물에 사용되는 바인더에 있어서, 상기 셀루로오스계 전도성 고분자 바인더의 템플레이트는 셀루로오스계 화합물에 아크릴계 화합물을 혼합한 혼합템플레이트임을 특징으로 한다.
본 발명의 리튬이온배터리의 음전극 또는 양전극의 활물질 조성물에 사용되는 바인더에 있어서, 상기 바인더는 폴리스티렌설폰산(polystyrenesulfonic acid; PSSA) 또는 폴리아크릴산 (PAA) 중 어느 하나 또는 그 이상을 포함하는 것이며, 그리고 상기 다른 종류의 화합물을 템플레이트로 합성된 전도성 고분자들의 혼합비율은 하나의 성분이 무게비로 5% 이상임을 특징으로 한다.
본 발명의 기술에 의한 바인더를 음극활물질 또는 양극활물질과 혼합하여 활물질 조성물을 만들고 이를 극판 위에 도포, 건조하여 리튬이온배터리를 제조하면 초기 율특성(rate characteristics)을 저하시키지 않으면서 연속적인 충방전 사이클 시험의 수명특성이 향상되는 큰 장점이 있다. 또한 금속 극판 재질과의 접착력이 우수하여 양극활물질층 또는 음극활물질층이 극판과 잘 접착된다. 특히 활물질을 혼합한 활물질 슬러리의 용액 상태가 마치 꿀과 같은 느낌이 들 정도의 점성을 가져 양산라인에서 극판 위에 활물질 슬러리를 코팅할 때 작업성이 월등히 우수하다는 큰 장점이 있다.
또한 본 발명의 전도성 고분자 바인더는 수분산액 상태에서 산성도가 높지 않아 극판이나 활물질 등의 리튬이온배터리의 구성성분을 부식시킬 우려가 없으며 리튬이온이 바인더 물질과 반응하는 부반응을 일으킬 우려가 낮아 최종적으로는 리튬이온배터리의 수명특성을 향상시키는 효과가 있다.
특히 본 발명의 전도성 고분자 바인더, 카본나노튜브, 및 전극용 활물질이 혼합된 조성물을 사용하면 서로 뭉치는 성질의 카본블랙을 사용하지 않으면서도 좋은 전기전도도를 낼 수 있고, 전극층 조직의 균일도 및 치밀도를 향상시켜 결국 배터리의 수명을 향상시킬 수 있으며 또한, 전극층의 두께를 얇게 만들 수 있는 장점이 있다. 또한, 용량이 높은 전극 활물질을 사용함으로써 전극층의 두께를 얇게 하여도(특히 음전극층의 두께를 얇게 하여도) 동일한 용량을 낼 수 있고, 음전극층의 두께가 얇아지는 만큼 양전극층의 두께를 두껍게 하거나 또는 양전극층 활물질을 더 사용할 수 있으므로, 최종적으로는 같은 크기의 리튬이온배터리의 전체 용량을 증가시킬 수 있거나 또는 같은 용량의 리튬이온배터리를 소형화할 수 있어 더욱 효과적이다. 본 기술을 이용하면 이론용량이 높은 실리콘 입자 또는 SiOx 등과 같은 음전극 활물질을 포함하는 음극활물질 조성물에 매우 효과적이다.
도 1은 본 발명에 따른 활물질 조성물을 사용하는 리튬이온배터리의 일 예로서의 층구조도이다.
도 2는 본 발명에 따른 활물질 조성물을 사용하는 리튬이온배터리의 다른 예로서의 층구조도이다.
이하, 본 발명의 내용을 구체적으로 설명하고자 한다.
본 발명의 기술적 특징은 리튬이온배터리의 활물질 조성물이 셀루로오스계 화합물을 템플레이트로 사용하여 합성된 전도성 고분자나 또는 수용액 상태에서 수소이온지수(pH)가 2-6의 범위인 고분자 화합물을 템플레이트로 사용하여 합성된 전도성 고분자를 포함하도록 하는 것이다.
먼저, 본 발명의 기술적 특징으로 리튬이온배터리의 활물질 조성물이 셀루로오스계 화합물을 템플레이트로 사용하여 합성된 전도성 고분자에 대해 설명한다.
종래의 전도성 고분자 바인더는 전도성 고분자 바인더가 수용액 상태에서 산도가 너무 높거나, 또는 기존에 사용하던 바인더 물질이 아닌 전혀 새로운 물질을 사용하기 때문에 이들 새로운 바인더와 기존 활물질과의 적합성의 부족 등의 문제점으로 인하여 실제 적용이 제약되고 있다. 그러나 본 발명의 셀루로오스계 화합물은 기존 리튬이온배터리의 바인더 물질로 많이 사용되고 있는 것이므로, 이를 전도성 고분자화하여 사용하면 기존에 사용하는 활물질과의 적합성이 아주 좋아 적용에 어려움이 없을 것이다.
본 발명의 전도성 고분자는 아닐린, 피롤, 티오펜 또는 3,4-에틸렌디옥시티오펜 등과 같은 전도성 고분자 합성용 모노머 또는 이로부터 변성된 변성 전도성 고분자용 모노머로부터 합성된 전도성 고분자로서, 전도성 고분자내에 고분자 도판트 겸 템플레이트로서 셀루로오스계 화합물을 사용하여 합성한 전도성 고분자이다. 이 전도성 고분자의 표면저항이 108 오움/면적 이하인 것이 바람직하다. 합성된 전도성 고부낮의 표면저항은 낮을수록 좋으나, 표면저항이 108 오움/면적 이상이면 전기전도도가 너무 낮아 큰 효과를 얻지 못할 우려가 있어 불리하다.
그리고 위에서 설명한 템플레이트로 사용 가능한 셀루로오스계 화합물은 분자의 -OR기의 -R 성분의 일부가 다른 화합물을, 대표적으로는 하이드록시기 또는 알킬(또는 알킬렌) 카복실(또는 카복실레이트)기 등을 결합시켜 물에 녹을 수 있도록 만든 셀루로오스계 화합물이면 어느 것이나 사용 가능하다. 여기에서 알킬렌의 길이는 탄소의 개수가 1-4인 것을 사용하는 것이 바람직하다. 탄소갯수가 4 이상이면 알킬렌기의 길이가 너무 길어 물에 녹는 특성을 저해할 수가 있어 오히려 불리하다.
이하 본 발명의 내용을 활물질 조성물의 전도성 고분자로서 가장 바람직한 PEDOT:CMC를 위주로 설명하기로 한다. 그러나 본 발명에서 바람직한 셀루로오스계 화합물을 템플레이트로 사용하여 PEDOT를 합성하고 이를 리튬이온배터리로 활용하기 위한 것이므로, 본 발명의 범위가 아래 설명에 사용된 PEDOT:CMC에 국한되는 것이 아니라 다른 종류의 전도성고분자 합성용 모노머를 이용하여 합성한 전도성 고분자 또는 다른 종류의 셀루로오스계 화합물로 합성한 전도성 고분자도 마찬가지 효과를 가짐은 자명하다. 또한 전술한 바와 같이, 본 발명은 새로운 바인더를 합성하고 이 바인더를 리튬이온배터리의 활물질과 혼합할 수 있도록 활용하기 위한 것이다. 따라서 본 발명의 설명은 충방전 사이클 특성이 나쁜 것으로 알려져 있는 실리콘산화물(SiOx)와 흑연을 혼합한 혼합활물질을 사용하는 경우에 대하여 기술하고자 한다. 그러나 본 발명의 기술은 다른 종류의 활물질, 즉 흑연, 실리콘 금속입자, SiOx, 리튬을 포함하는 합금상태의 음극활물질, 또는 이들을 포함하거나 이들과 복합화된 (예를 들어, 실리콘이 내부 공간에 형성된 탄소나노튜브) 음전극용 활물질, 그리고 입자상, 와이어상, 플레이크상 등 형태에 상관없이 어느 형태의 활물질이건 상관없이 적용될 수 있음은 자명하다. 또한 양전극용 활물질과 혼합되는 바인더로서 사용하여 양극 활물질 슬러리를 만들어 양극에 사용할 수 있음은 물론이다.
본 발명에서 사용하는 바인더 물질 중 한 예로서 PEDOT:CMC를 위주로 설명한다. 본 발명의 PEDOT:CMC의 합성 과정은 다음과 같다. 이하 본 명세서에서 별다른 표시가 없다면 %는 중량%를 의미한다. 본 발명의 PEDOT:CMC의 화학식은 아래 식 1과 같다.
Figure PCTKR2019002430-appb-C000001
여기서 n, m은 1 이상의 자연수이다.
먼저 템플레이트인 CMC를 고형분이 0.5-5중량%가 되도록 물에 넣고 용해시킨다. 이때 잘 녹지 않을 경우 초음파 처리하거나 강산을 첨가하면 물에 잘 녹는다. 이후 전도성 고분자 합성용 모노머인 3,4-에틸렌디옥시티오펜(EDOT), 암모늄퍼설페이트(ammoniumpersulfate: APS), 페릭설페이트 등의 산화제 등을 넣고 혼합한 후 일정 온도에서 교반하면서 PEDOT:CMC를 합성하고, 이후 미반응 불순물 및 이온성 불순물을 제거하기 위하여 투석백 및 이온교환수지로 처리하여 진청색의 전도성 고분자, 즉 PEDOT:CMC를 얻는다,
초순수에 녹아있는 CMC의 고형분이 0.5중량% 이하이면 CMC의 함량이 너무 낮아 합성된 전도성 고분자가 합성 반응 시 침전되거나 전도도가 너무 낮아져서 불리하고, 5중량% 이상이면 CMC를 녹인 용액의 점도가 너무 높아 후공정을 진행하기 어려워 오히려 불리하다.
셀루로오스계 템플레이트 화합물, 전도성 고분자 모노머 그리고 산화제의 몰비율은 기본적으로는 1:1:1의 몰비율로 합성하면 된다. 그러나 각 성분의 몰비율을 조절하여 다양한 특성의 전도성 고분자 바인더를 합성할 수 있다. 이때 합성용액 내에 존재하는 각 성분의 비율은 템플레이트 화합물의 농도를 1몰로 하였을 때, 모노머인 EDOT의 함량은 0.5-5.0 몰비율이 되도록 한다. EDOT의 함량이 0.5 몰 미만이면 합성된 전도성 고분자의 전기전도도가 낮아 불리하고, 5 몰 이상이면 모노머가 너무 많아 고분자 합성이 원활하게 진행되지 않거나 또는 너무 많은 미반응 모노머가 남게 되어 세정작업이 복잡해져서 오히려 불리하다. 또한 산화제의 비율은 모노머 함량 1몰 대비 0.8-3 몰비율이 적당하다. 산화제를 3몰 이상 사용하면 합성된 PEDOT:CMC의 전기전도도가 낮아져서 불리하고 0.8 몰 이하의 경우에도 전기전도도가 낮아져서 불리하다. 가장 바람직하게는 0.8-2 몰비율이 적당하다.
본 발명의 템플레이트인 CMC는 셀루로오스 화합물이 물에 녹게 하기 위하여 메틸렌(또는 일반적으로 메틸이라고 부르기도 한다)카복실산 또는 이들의 염화합물로 개질한 셀루로오스계 화합물로서, 셀루로오스 화합물의 반복단위 내에 있는 -OR기의 -R 성분이 다른 화합물로 치환된 정도, 즉 치환도가 최소 0.5 이상인 것이 바람직하다. 여기에서 치환도가 0.5라 함은 2 개의 반복단위 당 하나의 -R이 카복시기로 치환되었음을 의미한다. 일반적으로 치환도가 높을수록 PEDOT:CMC를 제조하기에 좋은데, 치환도가 0.5 미만이면 물에 잘 녹지 않을 뿐만 아니라 이를 템플레이트로 사용하여 합성된 전도성 고분자인 PEDOT:CMC의 전기전도도도 낮아서 불리하다. 반면에, 치환도의 상한선은 구태여 한정할 필요가 없는데, 이는 치환도가 높을수록 전도성 고분자가 잘 합성되고 합성된 PEDOT:CMC의 전기전도도도 높아서 본 발명의 목적에 부합하기 때문이다.
본 발명의 셀루로오스계 화합물은 중량평균분자량이 50,000-4,000,000 그램/몰인 화합물을 사용하는 것이 유리하다. 분자량이 50,000 그램/몰 이하로 낮으면 합성된 PEDOT:CMC가 입자로 되어 침전되는 현상이 발생하여 불리하고, 4,000,000 그램/몰 이상이면 CMC 자체를 물에 녹이기 어려워 오히려 불리하다. CMC와 EDOT의 비율은 EDOT 1몰 대비 몰비로 0.2-5 몰비의 범위에서 사용하면 된다. 이때 CMC의 함량이 EDOT 대비 0.2 몰비 이하이면 합성된 PEDOT:CMC가 입자상으로 침전되어 활물질용 바인더로 사용할 수 없어 불리하고, 5 몰비 이상이면 합성된 PEDOT:CMC 중의 전도성 고분자 파트 함량이 너무 낮아 전기전도도가 너무 낮아져서 오히려 불리하다. 바람직하게는 1.0-2.0 몰비의 범위로 하는 것이 유리하다.
본 발명의 PEDOT:CMC 합성 후 세정 과정은 일반적인 유기물 합성 후 세정과정에 따라 하면 된다. 일반적으로는 합성 반응 후 투석백 및 이온교환수지를 이용하여 미반응 잔여물 및 이온성 불순물을 제거하여 순수한 PEDOT:CMC를 수득할 수 있다. 이러한 세정작업은 유기물 합성 후 시행하는 일반적인 세정작업과 유사하므로 자세한 세정방법은 당업 종사자라면 시행착오를 거쳐 알아낼 수 있는 사항이므로 세정방법을 특별히 한정할 필요가 없다.
본 발명의 PEDOT:CMC 합성 시 합성 및 세정 후 고형분 함량을 조절하기 위해서는 상술한 모노머, 산화제, CMC 등 각 성분의 비율을 고형분 함량에 맞게 조절하여 합성하면 된다.
본 발명의 PEDOT:CMC는 자체가 전도성을 띠는 공액계 전도성 고분자(conjugated conducting polymer)로서, 이는 시판되는 PEDOT계(즉, PEDOT:PSS)와 기존 배터리의 바인더로 사용하는 CMC와의 단순한 혼합물이 아님은 자명하다. 상술한 방법에 의해 제조된 PEDOT:CMC는 기본 템플레이트로서 CMC를 사용하고 산화제의 작용으로 양(+)의 상태가 된 PEDOT 부분이 물에 녹아져 있는 상태에서 음(-)의 상태를 갖는 CMC 분자에 전기적으로 결합된 형태의 복합체 형태의 화합물이다. 따라서 이는 PEDOT와 CMC 분자들이 단순히 혼합된 것이 아님은 당업계 종사자라면 충분히 알 수 있는 자명한 사실이다.
본 발명의 셀루로오스계 화합물을 템프레이트로 사용하는 경우 셀루로오스계 화합물과 술폰화된 폴리스티렌 고분자나 아크릴계 고분자 등 다른 종류의 고분자를 무게비율로 (95:5)~(5:95)의 비율로 혼합하여 만든 혼합템플레이트를 사용하여 전도성 고분자를 합성하여도 무방하다.
상기 무게비율의 상한치과 하한치를 넘어서는 경우 실제적으로 혼합템플레이트라고 부를 수 없을 정도로 어느 하나의 성분이 주된 것이라 혼합템플레이트라기 보다는 어느 한 화합물의 특성을 너무 강하게 보이므로 상기 비율범위에서 혼합하여 혼합템플레이트로 사용하는 것이 유리하다.
본 발명의 PEDOT:CMC를 이용하여 활물질 슬러리를 제조하는 방법은 기존 바인더를 이용하여 활물질 슬러리를 제조하는 방법과 유사하다. 즉, 본 발명의 PEDOT:CMC, 활물질, 탄소나노튜브 및 전도성 부여제 등을 원하는 비율로 균일하게 혼합하여 제조하면 된다.
이때 사용하는 PEDOT:CMC 바인더 용액 내에 들어있는 바인더 성분인 PEDOT:CMC의 함량(고형분)은 0.5-10 중량% 범위가 적당하다. 고형분 함량이 0.5 중량% 미만이면 용액이 너무 묽어 활물질을 혼합해도 전체 조성물의 점도가 너무 낮아 활물질 전극층 형성이 어렵거나 도막 두께가 너무 낮아지는 등의 문제점으로 인하여 불리하고, 그리고 고형분이 너무 높으면 슬러리 제조 시 점도가 너무 높아 슬러리 제조가 어려워져 물을 다시 첨가해야 하는 문제가 발생하여 오히려 불리하다.
리튬이온배터리 제조 시 활물질층의 전기전도성을 더욱 좋게 하고, 활물질로 이루어진 전극층 자체의 치밀도를 높이고, 반복적인 팽창/수축에도 전기전도 통로를 유지할 수 있도록 탄소나노튜브를 함께 사용하는 것이 유리하다. 본 발명에 사용 가능한 탄소나노튜브는 일중벽, 이중벽, 또는 다중벽 탄소나노튜브 중 어느 것이나 사용 가능한데, 이들 중 어느 한 종류 또는 그 이상을 혼합하여 사용할 수 있다.
탄소나노튜브의 함량은 전도성 고분자 바인더의 고형분의 무게 100 중량부 대비 5-300 중량부를 사용하면 된다. 탄소나노튜브의 함량이 5 중량부보다 작으면 함량이 너무 작아 탄소나노튜브를 혼합한 효과가 없어 불리하고, 300 중량부보다 많으면 탄소나노튜브 함량이 너무 높아 점도가 급증하여 취급이 어렵거나 충방전 사이클 특성의 향상 효과가 비례적으로 증가하지 않아 많은 양의 탄소나노튜브를 사용할 필요가 없다.
또한 탄소나노튜브의 길이가 5-100 미크론의 길이를 갖는 탄소나노튜브를 사용하는 것이 유리하다. 이는 탄소나노튜브의 길이가 어느 정도는 되어야 전극층 재료의 조직을 치밀성 있게 해 주어 효과적이기 때문이다. 탄소나노튜브의 길이가 5 미크론 미만이면 길이가 너무 짧아 전극층 재료의 치밀도 증가가 미미하여 불리하고, 100미크론 이상이면 활물질과의 혼합 시 분산이 잘 안 이루어져 오히려 불리하다.
본 발명의 전도성 고분자 바인더는 그 자체적으로 전기전도도를 가지고 있기는 하지만 그 자체적으로 사용되기 보다는 다른 기존 리튬이온배터리와 마찬가지로 전도성 카본블랙과 혼합하여 사용할 수 있다.
또한 활물질로 이루어진 전극층의 전기전도도를 더욱 증가시키기 위하여 전도성 카본 블랙 이외에 전도성을 갖는 카본 나노재료, 예를 들어 탄소나노튜브, 그래핀 등의 나노카본 재료를 함께 혼합하여 사용해도 무방하다. 특히 탄소나노튜브의 경우 종횡비(aspect ratio)가 매우 크므로, 이를 카본블랙과 함께 또는 단독으로 전도성 고분자 바인더와 혼합하여 동일한 효과를 얻을 수 있다. 또한 본 발명자들의 실험 결과, 탄소나노튜브를 사용하면 활물질과 극판 간의 접착력을 향상시키는 것으로 확인되었다.
본 발명은 셀루로오스계 고분자를 템플레이트로 하여 전도성 고분자를 합성하고, 이를 리튬이온배터리의 활물질 조성물 제조 시 바인더 재료로 사용하는 것에 대한 것이다. 따라서 활물질의 종류, 즉 흑연 또는 실리콘 성분으로 이루어진 음전극용 활물질 (예를 들어 산화실리콘: SiOx 또는 리튬-실리콘을 포함하는 합금물질) 또는 이들 성분들이 하나 이상 혼합되어 있는 혼합활물질 (예를 들어 흑연/산화실리콘 혼합활물질), 또는 이들 성분들과 다른 성분들이 복합되어 있는 복합활물질 (예를 들어 실리콘 입자가 내부 공간에 위치하도록 만든 탄소나노튜브) 등 종류에 상관없이 모든 종류의 활물질에 적용 가능하다. 음극활물질 중 흑연의 경우에는 흑연 자체가 전기전도성 물질이기 때문에 별도의 전도성 카본 블랙이나 탄소나노튜브 등 전도성 물질을 더 첨가하지 않아도 무방하나, 전도성 카본 블랙을 별도로 첨가하여 사용할 수도 있다.
본 발명의 PEDOT:CMC를 이용하여 음극활물질 슬러리 조성물을 만들 때 활물질과 바인더의 무게 비율은 이론용량이 높은 활물질을 단독으로 사용할 경우와 이들과 흑연과 혼합된 형태의 혼합활물질을 사용할 경우에 다르게 할 수 있다.
각 성분의 무게를 기준으로 이론용량이 큰 활물질(예를 들어 실리콘계 활물질)과 흑연이 혼합된 음극활물질을 사용할 경우에는 혼합활물질은 40-98중량%, 그리고 나머지는 본 발명의 PEDOT:CMC 바인더와 탄소나노튜브로 이루어지도록 하여 활물질 슬러리를 제조하여 사용하면 된다. 혼합 활물질의 함량이 40중량% 미만이면 원하는 용량을 내기 위하여 음극활물질 슬러리의 두께가 두꺼워져야 하는데, 이럴 경우 제조공정 상 습식코팅 두께가 너무 두꺼워 불리하고, 98중량% 이상이면 상대적으로 바인더와 탄소나노튜브의 함량이 낮아져서 극판과의 접착력 저하 또는 전극층 자체의 치밀도 저하 등으로 오히려 불리하다. 전극층과 극판과의 접착력 및 전극층의 치밀도 등을 고려하면 혼합된 활물질의 고형분 무게가 50-95중량%가 바람직하다.
실리콘계 활물질과 같이 이론용량이 큰 활물질을 흑연과 혼합한 혼합활물질을 사용할 경우, 흑연과 실리콘계 활물질의 혼합을 100 중량% 기준으로 흑연에 혼합되는 흑연의 무게 대비 실리콘계 활물질의 함량은 1-90중량% 범위로 혼합하여 사용할 수 있다. 흑연에 혼합되는 실리콘계 활물질의 함량이 1중량% 미만이면 실리콘계 활물질의 혼합 효과가 미미하고, 90%이상이면 너무 많은 양의 실리콘계 활물질이 들어가서 이는 결국 실리콘계 단독 활물질과 거의 유사하여 혼합활물질로서의 의미가 적다.
그러나 실리콘계 활물질, 즉 실리콘 금속입자, SiOx 또는 리튬합금 상태의 음전극용 활물질을 단독으로 또는 다른 실리콘계 활물질들과 혼합하여 사용할 경우에는(흑연 미포함) 원하는 용량에 따라 활물질의 함량을 10-85중량% 정도로 조절하여 사용하면 된다. 아무리 이론용량이 높은 활물질이어도 활물질의 함량이 10중량% 미만으로 낮으면 바인더와 탄소나노튜브가 너무 많아 원하는 용량의 배터리 제조가 어려워 불리하고, 85중량% 이상이면 원하는 용량을 내기 위해 극판에 형성되는 도막의 두께가 아주 얇아져서 제조공정상 오리혀 불리하다.
이때 본 발명의 PEDOT:CMC와 탄소나노튜브 등은 대부분 물 등의 용매에 분산되어 있어 슬러리 제조 시 각 성분의 고형분을 기준으로 계산해서 첨가하면 된다.
상기 성분을 모두 혼합하여 충분히 교반한 슬러리의 고형분은 첨가한 각 성분들의 고형분에 의해 좌우되는데, 슬러리는 전극층을 형성하기 위한 분산액이므로 전극층 형성이 원활한 고형분의 함량을 적절하게 선택하여 사용하면 된다. 바람직하게는 슬러리의 고형분의 전체 함량은 5-60% 정도가 되도록 하는 것이 유리하다. 슬러리 내의 고형분 함량이 5% 미만이면 점도가 너무 낮아져서 원하는 전극층의 두께가 두꺼워야 할 경우 용액두께(습식두께: wet thickness)가 너무 두꺼워야 하는 등의 제막공정이 어려워져 불리하고, 고형분 함량이 60% 이상이면 슬러리가 너무 진하여 얇은 두께의 전극층 형성이 어려워지는 등의 문제점이 발생하여 오히려 불리하다.
상기 음전극 활물질 조성물의 함량이 낮으면 경우에 따라 슬러리의 점도가 너무 낮아 전극층 형성이 어려워질 수도 있다. 이때 필요한 경우 증점제를 더 첨가하여 전극형성에 필요한 슬러리의 점도를 조절하여 사용할 수 있다. 이때 사용하는 증점제는 주로 셀루로오스계 증점제로서, 관능기의 종류에 상관없이 셀루로오스계 증점제이면 어느 것이나 사용할 수 있다. 특히 셀루로오스 중 일부는 흑연 활물질용 바인더 물질로 사용되는 것이므로 배터리의 성능상 특별히 큰 악영향을 미치는 않는다. 이에 속하는 대표적인 셀루로오스계 증점제로는 하이드록시프로필셀루로오스, 에틸셀루로오스, 카복시메틸셀루로오스 등이다. 이들 셀로로오스계 증점제의 함량은 당업 종사자라면 시행착오를 통하여 알아낼 수 있음은 자명하여 본 발명에서는 특별히 증점제의 함량을 한정하지 않기로 한다. 또한 분자량이 높은 아크릴계 고분자 화합물이 증점제로서 사용이 가능한데, 여기서 높은 분자량이라 함은 중량평균분자량이 최소한 1,000,000 g/mole 이상을 의미한다. 중량평균분자량이 1,000,000g/mole 이하인 고분자는 물에 용해시킬 경우 점도가 크지 않아 사용하기 어려워 불리하다. 이때 물에 용해된 상태에서 점도가 높을수록 혼합하는 아크릴계 고분자의 함량을 낮추면 되는 것이라 분자량의 상한치를 구태여 한정할 필요가 없다.
본 발명의 활물질 조성물을 이용하여 리튬이온배터리를 제조하는 경우 음전극층의 도막두께는 2-50 미크론의 두께가 적당하다. 여기에서 말하는 전극층 두께는 압연공정을 거친 후의 전극층의 최종 두께이다. 이론용량이 높은 음전극 활물질의 경우에는 구태여 전극층이 두꺼워야 할 필요가 없어 얇아도 되므로 구태여 전극층의 두께를 두껍게 할 필요가 없다. 음전극층의 두께가 2 미크론 미만이면 아무리 이론용량이 큰 활물질이어도 얇은 도막을 형성하기 어려워 불리하고 그리고 50 미크론 이상이면 음전극층의 용량이 높아짐에 따른 양전극층의 두께가 따라오지를 못하여 필요 이상으로 두꺼울 필요가 없다. 특히 실리콘계 활물질 위주로 하는 경우에는 실리콘계 활물질 음전극층의 용량이 충분히 높아서 40 미크론의 두께면 충분하다. 바람직하게는 음전극층의 두께는 5-50 미크론 정도의 두께로 목적에 따라 다양하게 음전극층을 형성하는 것이다. 예를 들면 실리콘계 활물질 단독 또는 위주로 음극활물질을 만들 경우에는 25 미크론 정도의 두께로 하는 것이 전체 리튬이온배터리의 두께나 용량을 고려할 때 좋다. 그리고 실리콘계 활물질에 흑연을 더 포함하여 만드는 경우에는 같은 두께로 용량을 상승시키기 위해서 상한의 두께(50 미크론)까지 만들 수 있지만, 본 발명에 따라 음극층의 두께를 줄이는 것을 고려하면 흑연 혼합활물질의 경우에도 40 미크론 정도의 두께로 하는 것도 좋다. 본 발명에 따라 실리콘계 활물질의 함량을 높여서 두께를 얇게 하는 것이 좋으나 도막 형성의 편리함이나 안정성을 고려하고 이론용량을 고려할 때 실리콘계 단독이나 혼합활물질 두 경우 모두 5 미크론 이상으로 하는 것이 좋다.상기 성분을 모두 혼합하여 충분히 교반한 활믈질 슬러리의 고형분은 첨가한 각 성분들의 고형분에 의해 좌우되는데, 슬러리는 전극층을 형성하기 위한 분산액이므로 전극층 형성이 원활한 고형분의 함량을 적절하게 선택하여 사용하면 된다. 또한 활물질 슬러리를 극판에 코팅하여 전극층을 형성함에 있어 건조 및 압연후 전극층의 적정두께는 원하는 용량과 제조공정 상 편리함 등을 고려하여 시행착오를 거쳐 찾아내면 된다는 것은 당업 종사자라면 얼마든지 이룰 수 있는 과제이다. 따라서 본 발명에서는 특별한 고형분 함량이나 전극층 두께를 한정할 필요가 없음은 자명하다.
상기 음전극 활물질 조성물의 함량이 낮으면 경우에 따라 슬러리의 점도가 너무 낮아 전극층 형성이 어려워질 수도 있다. 이때 필요한 경우 증점제를 더 첨가하여 전극형성에 필요한 슬러리의 점도를 조절하여 사용할 수 있다. 이때 사용하는 증점제는 주로 아크릴계 또는 셀루로오스계 증점제를 사용할 수 있다. 증점제의 분자량 또는 함량은 당업 종사자라면 시행착오를 통하여 충분히 알아낼 수 있음은 자명하여 본 발명에서는 특별히 증점제의 함량을 한정하지 않기로 한다.
본 발명의 조성물을 이용하여 활물질 슬러리 제조 시 필요에 따라 카보네이트류 첨가제를 더 첨가하여 사용할 수 있다. 리튬이온배터리용 전해질은 리튬화합물을 카보네이트류 용매에 용해시켜 사용하는데, 이때 용매는 어느 하나만 사용하는 것 아니라 여러 종류의 카보네이트류 용액을 혼합하여 사용한다. 따라서 본 발명의 활물질 조성물에도 유사한 방법을 사용하여도 무방하다. 예를 들어, 리튬화합물로서 LiPF6를 사용하는 경우 카보네이트류 용매로는 에틸카보네이트, 디메틸카보네이트, 디에틸카보네이트, 프로필렌카보네이트, 비닐렌카보네이트, 에틸메틸카보네이트, 플로로에틸카보네이트 등 다양한 카보네이트류 용매들을 혼합하여 사용할 수 있다.
본 발명에서 합성한 PEDOT:CMC를 다른 종류의 전도성 고분자와 혼합하여 만든 혼합 전도성고분자 바인더를 혼합 전도성고분자 바인더로서 사용하면 더욱 좋은 결과를 얻을 수 있다. 예를 들어 술폰화된 풀리스티렌을 템플레이트로 사용하여 합성한 전도성 고분자인 PEDOT:PSS 또는 아크릴계 고분자를 템플레이트로 사용하여 합성된 전도성고분자인 PEDOT:PAA를 본 발명의 셀루로오스계 화합물을 템플레이트로 사용하여 합성한 전도성고분자 바인더인 PEDOT:CMC와 혼합하여 사용하면 한 종류의 바인더를 사용할 때 나타날 수 있는 부족한 특성을 서로 보완해 줄 수 있어 유리하다.
이때 혼합 전도성고분자 바인더를 사용할 경우 PEDOT:CMC와 혼합되는 상대 전도성고분자 바인더의 혼합비율은 무게비로 (95:5)~(5:95)의 비율을 사용하면 된다. 상기 상한치 및 하한치를 벗어나는 경우 어느 하나의 특성이 너무 강하게 나타나게 되어 혼합 전도성 고분자 바인더로서의 역할을 하지 못하므로 오히려 불리하다. 3개 이상의 전도성 고분자 바인더를 혼합할 경우에는 혼합되는 각각의 전도성 고분자 바인더는 무게비로서 5% 이상이 포함되는 것이 바람직하다.
또한 본 발명의 PEDOT:CMC(또는 셀루로오스계 화합물을 템플레이트로 사용하여 합성한 PEDOT:Cellulose)는 리튬-코발트옥사이드(Lithium Cobalt-oxide: LCO), 니켈-코발트-망간(Nickel-Cobalt-Manganese: NCM), 또는 니켈-코발트-알루미늄(Nickel-Cobalt-Aluminium: NCA) 등 기타 다양한 양극활물질의 바인더로 사용할 수 있음은 자명한 사실이다. 또한 본 발명의 바인더 물질은 음극 또는 양극활물질의 형상, 즉 입자 또는 나노와이어 또는 피라미드 형상 등 특별한 형상의 활물질에 국한되는 것이 아니라 모든 종류의 형상을 갖는 활물질에 적용 가능하다. 또한 본 발명의 PEDOT:CMC를 바인더로 사용할 때 양극활물질 슬러리 제조 시 사용하는 여러 성분의 무게비율은 기존 함량비를 그대로 사용하여도 무방하다. 즉, 음극활물질의 성분비를 양극활물질에 적용하여 양극활물질 슬러리를 제조할 수 있다.
본 발명의 PEDOT:CMC 바인더와 음극활물질 및 탄소나노튜브 또는 카본 블랙을 혼합하여 분산시키는 방법은 기존의 분산법, 즉 행성형 자전 공전형 원심 믹서 (Planetary centrifugal mixer: C-mixer), 고압균질기 (high pressure homogenizer), 어트릭션 믹서, 초음파 분산법, 모래볼밀 (sand ball mill), 저속교반기 및 고속교반기 중 어느 하나 또는 그 이상의 방법을 병합하여 사용해도 무방하다.
또한, 리튬이온배터리의 활물질 조성물이 수용액 상태에서 수소이온지수(pH)가 2-6의 범위의 화합물을 템플레이트로 사용하여 합성되는 전도성 고분자 바인더에 대하여 설명한다.
전도성을 가지는 물질을 바인더로 사용할 경우 혼합하여 사용하는 활물질에 전도성 물질의 전도성이 유지되는 장점이 있으나 종래의 전도성 고분자 바인더인 PEDOT:PSSA에서 템플레이트로 사용되는 PSSA가 sulfonic acid로 수소이온지수가 1.0-1.5 정도의 강산의 특성을 나타낼 뿐만 아니라, SO3 - 이온에 리튬이 결합하여 이동성을 저하시키게 되어 배터리의 수명과 용량에 불리하게 작용하였다.
전도성 고분자 자체를 바인더 물질로 활용하기 위한 기술, 예를 들어 대표적인 전도성 고분자인 폴리(3,4-에틸렌디옥시티오펜) (polyethylenedioxythiophene: PEDOT)를 사용하는 기술에서, 이 공액형 전도성 고분자(conjugated conducting polymers)는 전도성을 주는 전도성 고분자, 예를 들어 PEDOT 부분은 전도성을 부여하는 부분이고, PEDOT 부분과 전기적으로 결합되어 있는 소위 템플레이트 화합물은 이 전도성 고분자를 물 등의 용매에 녹도록 하는 역할을 하는 것이다. 이때 템플레이트 화합물을 어느 것을 사용하느냐에 따라 수용액 상태에서의 거동이 많이 다르다. 예를 들어 대표적인 템플레이트인 폴리스티렌술폰산 (polystyrenesulfonic acid: PSSA)은 물에 녹은 상태에서 산성이 매우 강한 화합물로서, 이러한 템플레이트로 합성된 전도성 고분자를 배터리 활물질용 바인더로 사용할 경우 수용액(또는 수분산) 상태에서 산성이 매우 강하여(수분산 상태에서 수소이온지수가 2.0 미만) 극판을 부식시키거나 초기충방전 시 양극층에서 음극층으로 이동하는 리튬이온과 반응하여 PEDOT:PSS-Li 화합물을 만들어 충방전 과정에 사용할 리튬이온이 소모되는 것이라 소위 쿨롱효율이 낮아지는 문제점이 있다.
따라서 본 발명은 강산성의 폴리스티렌술폰산(Polystyrenesulfonic acid: PSSA)화합물이 아닌, 보다 산도가 낮은 약산의 화합물, 즉 적절한 산도의 화합물을 템플레이트로 사용하여 전도성 고분자를 합성하고 이를 리튬이온배터리의 바인더 물질로 활용하는 것이다. 폴리스티렌술폰산(Polystyrenesulfonic acid: PSSA)을 템플레이트로 사용하여 대표적인 전도성 고분자인 폴리(3,4-에틸렌디옥시티오펜)(PEDOT)를 합성한 전도성 고분자(이하 PEDOT:PSSA라 부른다)는 템플레이트로 사용된 PSSA 성분 중 PEDOT와의 도핑 시 전기적 결합에 참여하지 않는 술폰산 성분이 물을 만나면 강한 산성을 띄게 되어 부식성이 강하고, 특히 PSSA의 SO3 - 음이온 성분이 전해질을 통하여 이동하는 리튬이온과 결합하여 리튬이온배터리의 주요 성분이 리튬이온을 소모시킬 가능성이 너무 높다고 할 수 있다. 따라서 강산성을 띠는 화합물을 템플레이트로 사용할 경우에는 활물질을 부식시켜 성능을 저하시키거나 또는 리튬이온을 소모시켜 사이클 특성에 나쁜 영향을 미친다.
따라서 본 발명에서는 수분산성 상태에서 PEDOT와 같은 전도성 고분자가 강한 산성을 띠게 되면 활물질을 부식시키거나 리튬이온을 소모시켜 리튬이온배터리의 사이클 수명특성이 나빠지는 것을 방지하려는 것이다. 수분산성 상태에서 강산성을 띠지 않는 화합물이면 어느 것이나 본 발명의 목적에 부합된다고 할 수 있다. 본 발명에서 적절한 산도라 함은 수용액 상태에서 수소이온지수(pH)가 2-6의 범위인 것을 의미한다. pH가 2 이하이면 산성이 너무 강하여 바인더로 사용 시 리튬이온의 손실이 높아 불리하고, 6 이상이면 산성이 너무 약하여 PEDOT 합성 시 도판트로서 작용하기 힘들어 오히려 불리하다.
본 발명의 전도성 고분자는 아닐린, 피롤, 티오펜 또는 3,4-에틸렌디옥시티오펜 등과 같은 전도성 고분자 합성용 모노머 또는 이로부터 변성된 변성 전도성 고분자용 모노머로부터 합성된 전도성 고분자로서, 전도성 고분자내에 pH 2-6의 화합물의 수용성 아크릴계 고분자를 템플레이트로 사용한 전도성 고분자이다. 이 전도성 고분자의 저항이 105 오움/면적 이하인 것이 바람직하다.
그리고 위에서 설명한 템플레이트로 사용가능한 pH 2-6의 화합물로는 수용성 카르복실그룹, 카보네이트그룹, 아크릴산그룹을 가진 고분자가 있다. 이 중에 가장 바람직한 화합물은 수용성 아크릴산 화합물이다. 특히 수용성 아크릴산 화합물 중에서 폴리아크릴산(Polyacrylic acid: PAA)이 수소이온지수(pH)가 2-6의 범위에 속하며 전도성 고분자로서 활용성이 높은 3,4-에틸렌디옥시티오펜 합성에 유리하여 가장 바람직하다.
이하 본 발명의 내용은 활물질 조성물의 전도성 고분자로서 가장 바람직한 폴리(3,4-에틸렌디옥시티오펜) (PEDOT)를 위주로 설명하기로 한다. 그러나 본 발명에서 바람직한 수용성 아크릴계 고분자를 템플레이트로 사용하여 PEDOT를 합성하고 이를 리튬이온배터리로 활용하기 위한 것이므로, 본 발명의 범위가 아래 설명에 사용된 PEDOT에 국한되는 것이 아니라 다른 종류의 전도성 고분자도 마찬가지 효과를 가짐은 자명하다. 또한 본 발명의 아크릴계 고분자인 PAA는 수용성 아크릴계 고분자 중 하나의 예시일 뿐이며 전도성 고분자 합성을 위한 템플레이트로 사용할 수 있는 pH 2-6의 고분자 화합물이면 어느 것이나 사용 가능하며 특히 아크릴계 화합물이 바람직하다.
전술한 바와 같이, 본 발명은 새로운 바인더를 합성하고 이를 리튬이온배터리의 활물질과 혼합하기 위한 바인더로 활용하기 위한 것이다. 따라서 본 발명의 설명은 충방전 사이클 특성이 가장 나쁜 것으로 알려져 있는 실리콘 나노입자를 음극활물질로 사용하는 경우에 대하여 기술하고자 한다.
그러나 실시예를 보면 알 수 있듯이 본 발명의 새로운 바인더는 실리콘계 음극활물질 뿐만 아니라 기존 흑연계 음극활물질, 그리고 니켈-코발트-망간계(NCM) 양극활물질 등 다양한 종류의 전극용 활물질 재료에 적용 가능하다는 것은 쉽게 알 수 있다.
이 새로운 바인더는 기존에 리튬이온배터리용 바인더로 사용되지 않았던 것으로서, 자체적으로 전기전도성을 가져 전도성 카본 블랙과 혼합 시 양극활물질 조성물의 전기전도 특성이 보다 안정화될 수 있는 바인더이다.
본 발명에서 사용하는 바인더 물질 중 가장 바람직한 예로서 PEDOT:PAA를 위주로 설명한다.
본 발명의 PEDOT:PAA의 합성 과정은 다음과 같다.
먼저 모노머인 3,4-에틸렌디옥시티오펜 (3,4-ethylenedioxythiophene: EDOT), 암모늄퍼설페이트(ammoniumpersulfate: APS), 페릭설페이트 등의 산화제, 그리고 PAA를 평량하여 물에 혼합한 후 일정 온도에서 교반하면서 PEDOT 합성반응을 유도한다. PEDOT:PAA 합성 반응이 진행됨에 따라 반응 용액은 짙은 푸른색(dark blue)으로 변한다. 이렇게 합성된 용액을 투석백을 이용하여 불순물을 제거한 후 적당한 이온교환수지를 넣고 다시 교반하여 반응 용액 내에 남아 있는 이온성 불순물들을 제거하여 PEDOT:PAA를 수득한다. 이때 페릭설페이트 등의 보조제를 함께 사용하면 입자크기가 작은 PEDOT:PAA 화합물을 수득할 수 있어 유리하다.
본 발명의 PEDOT:PAA 합성 시 물에 혼합하는 EDOT의 함량은 0.5-5.0 몰이 되도록 한다. EDOT의 함량이 0.5 몰 미만이면 합성된 전도성 고분자의 전기전도도가 낮아 불리하고, 5 몰 이상이면 모노머가 너무 많아 고분자 합성이 원활하게 진행되지 않거나 또는 너무 많은 미반응 모노머가 남게 되어 세정작업이 복잡해져서 오히려 불리하다.
본 발명의 합성 반응에 사용되는 산화제 및 EDOT의 함량비는 이상적으로는 하나의 산화제 분자가 하나의 EDOT를 산화시키는 것이므로 몰비로 1:0.8-1:3을 유지하는 것이 유리하다. EDOT를 기준으로 산화제를 3몰 이상 사용할 경우 전도도가 낮아지고 산화제 몰비를 0.8몰 이하로 하면 역시 전도도가 낮아진다. 바람직하게는 0.8몰에서 2몰이 바람직하고 앞서 언급한대로 더욱 바람직하게는 1몰 비율이 전도도가 높다. 그러나 합성된 PEDOT:PAA의 전기전도도는 이 비율에 의해 좌우되므로 원하는 전기전도도를 얻기 위하여 산화제와 EDOT의 몰비를 조절하여 사용할 수도 있다.
본 발명의 가장 중요한 성분인 PAA는 기본적으로 수용성 고분자로서, 중량평균분자량이 50,000-4,000,000 그램/몰인 아크릴계 고분자로서, 합성 반응에 사용되는 함량은 EDOT 대비 몰비로 0.5-5 몰비의 범위에서 사용하면 된다. 이때 PAA 함량이 EDOT 대비 0.5 몰비 이하이면 합성된 PEDOT:PAA 중 PEDOT 성분의 함량이 너무 높아 합성된 전도성 고분자가 용액상으로 존재하는 것이 아니라 큰 입자의 형태로 존재하게 되어 리튬이온배터리의 바인더로 사용하기 어렵다는 문제점이 있어 불리하다. 또한 PAA의 함량이 EDOT 대비 5 몰비 이상이면 PAA의 함량이 너무 높아 합성된 전도성 고분자의 전도도가 너무 낮아져 바인더로 사용하기에 부적합하여 오히려 불리하다. 바람직하게는 EDOT대비 1.0-2.0 몰비의 범위에서 사용하는 것이 유리하다.
또한 PAA의 분자량이 50,000 그램/몰 미만이면 PAA의 분자량이 너무 낮아 PAA가 템플레이트로서의 역할을 하지 못하여 합성된 PEDOT:PAA가 큰 입자의 형태로 되어 불리하고 4,000,000 그램/몰 이상인 경우에는 물에 잘 용해되지 않거나 합성된 PEDOT:PAA의 점도가 너무 높아 사용하기 불편하여 오히려 불리하다.
본 발명의 PEDOT:PAA 합성 후 세정 과정은 유기물 합성 후 세정과정과 비슷한 과정을 거쳐 세정하면 된다. 즉, 반응 용액 내에는 합성하고자 하는 PEDOT:PAA 이외에도 미반응 모노머, 산화제 등의 불순물이 많이 존재한다. 따라서 먼저 투석백을 이용하여 불순물을 걸러낸 다음 다시 양이온 교환수지 및 음이온 교환수지를 적당량 혼합하여 투석처리된 반응 용액에 넣고 방치하여 잔존 이온을 제거하거나, 이들 교환수지들을 컬럼에 넣고 이온교환 컬럼을 만들고, 투석처리된 반응용액을 이 이온교환 컬럼을 통과시키면서 잔존 이온을 제거한다. 이때 사용하는 투석백의 기공크기 및 이온교환수지의 종류는 시행착오를 통하여 충분히 찾아낼 수 있는 것이므로 특별한 종류의 투석백 및 이온교환수지의 종류 및 방법에 한정할 필요가 없다.
본 발명의 PEDOT:PAA 합성 시 합성 및 세정 후 고형분 함량을 조절하기 위해서는 상술한 모노머, 산화제, 수용성 아크릴계 고분자의 각 성분의 비율을 고형분 함량에 맞게 조절하여 합성하면 된다.
리튬이온배터리 제조 시에는 바인더 물질로 사용되는 본 발명의 PEDOT:PAA 용액에 활물질 및 카본블랙 등의 성분을 균일하게 혼합한 후 활물질 슬러리를 만드는 공정이 필요하다. 이때 사용하는 PEDOT:PAA 바인더 용액 내에 들어있는 고형분(바인더 용액 내에 있는 PEDOT:PAA의 함량)은 1.0-5% 범위가 적당하다. 이는 활물질의 종류에 따라 조성물 제조 시 활물질, 바인더 및 전도성 물질의 함량비에 따라 조성물의 점도가 다를 수 있고, 이는 다시 극판 위에 활물질 조성물 코팅 시 전극물질층 형성에 영향을 주기 있기 때문이다. 이때 고형분 함량이 1.0% 미만이면 용액이 너무 묽어 활물질을 혼합해도 전체 조성물의 점도가 너무 낮아 활물질막 형성이 어렵거나 도막 두께가 너무 낮아지거나 또는 용매가 너무 많아 활물질 표면에 있는 리튬을 세척해 내는 등의 문제점으로 인해 이 바인더에 카본 블랙 또는 탄소나노튜브 등의 전도성 성분을 혼합해도 충방전 사이클 특성의 향상이 미미하여 불리하고, 5% 이상이면 충방전 사이클 특성의 향상 면에서는 좋지만, 활물질 조성물 제조 시 첨가하는 PEDOT:PAA 수분산액의 양이 너무 적어져 활물질 조성물 제조가 어려워지거나 또는 PEDOT:PAA 용액 제조 자체가 어려워지고 잘못하면 침전물이 생길 수 있어 오히려 불리하다.
리튬이온배터리 제조 시 양극활물질 입자와 바인더 혼합 시 전도성 카본블랙을 함께 혼합하여 사용한다. 이 카본블랙은 바인더 내에 혼합되어 전기적으로 절연성이 바인더 성분의 전기전도도를 증가시키는 역할을 한다.
본 발명의 전도성 고분자 바인더는 그 자체적으로 전기전도도를 가지고 있기는 하지만 그 자체적으로 사용되기 보다는 다른 기존 리튬이온배터리와 마찬가지로 전도성 카본블랙과 혼합하여 사용할 수 있다.
또한 전도성 카본 블랙 이외에 전도성을 갖는 카본 나노재료, 예를 들어 탄소나노튜브, 그래핀 등의 나노카본 재료를 함께 혼합하여 사용해도 무방하다. 특히 탄소나노튜브의 경우 종횡비(aspect ratio)가 매우 크므로, 이를 카본블랙과 함께 또는 단독으로 전도성 고분자 바인더와 혼합하여 동일한 효과를 얻을 수 있다. 또한 본 발명자들의 실험 결과, 탄소나노튜브를 사용하면 활물질과 극판 간의 접착력을 향상시키는 것으로 확인되었다.
본 발명은 수용성 아크릴계 고분자 (PEDOT:PAA)를 템플레이트로 하여 전도성 고분자를 합성하고, 이를 리튬이온배터리의 활물질 조성물 제조 시 바인더 재료로 사용하는 것에 대한 것이다. 따라서 활물질의 종류, 즉 흑연, 실리콘 나노입자 또는 기타 음극활물질 및 이들 음극활물질이 혼합하여 제조한 음극활물질 등 종류에 상관없이 모든 종류의 활물질에 적용 가능하다. 음극활물질 중 흑연의 경우에는 흑연 자체가 전기전도도가 우수하기 때문에 별도의 전도성 카본 블랙이나 탄소나노튜브 등 전도성 물질을 더 첨가하지 않아도 무방하다. 또한 리튬-코발트옥사이드(Lithium Cobalt-oxide: LCO), 니켈-코발트-망간(Nickel-Cobalt-Manganese: NCM), 또는 니켈-코발트-알루미늄(Nickel-Cobalt-Aluminium: NCA) 등 다양한 양극활물질의 바인더로 사용할 수 있음은 자명한 사실이다. 또한 본 발명의 바인더 물질은 음극 또는 양극활물질의 형상, 즉 입자 또는 나노와이어 또는 피라미드 형상 등 특별한 형상의 활물질에 국한되는 것이 아니라 모든 종류의 형상을 갖는 활물질에 적용 가능하다. 본 발명의 PEDOT:PAA를 바인더로 사용할 때 양극활물질 (또는 음극활물질), 바인더 및 전도성 카본블랙 또는 탄소나노튜브의 함량비는 기존 함량비를 그대로 사용하면 된다.
본 발명의 PEDOT:PAA 바인더와 양극활물질(또는 음극활물질) 및 카본 블랙 또는 탄소나노튜브를 혼합하여 분산시키는 방법은 기존의 분산법, 즉 행성형 자전 공전형 원심 믹서 (Planetary centrifugal mixer: C-mixer), 고압균질기 (high pressure homogenizer), 어트릭션 믹서, 또는 모래볼밀 (sand ball mill) 등 일반적으로 사용하는 각종 고성능 용액 혼련기를 그대로 사용하면 된다.
실험 결과, 본 발명의 바인더를 사용할 경우 양극활물질의 함량을 기존 함량 대비 최대 30%까지 증가시켜도 금속 극판 표면에 양극활물질 분산액을 도포, 건조하여 양극판을 무리없이 제조할 수 있었고, 배터리가 잘 작동되었다. 이는 본 발명의 PEDOT:PAA가 활물질과의 계면접착력이 우수하고 또한 구리 호일이나 알루미늄 호일 등 금속성 극판 재료와의 접착력이 우수하기 때문이다. 특히 탄소나노튜브와 같이 사용하면 극판과 전극물질과의 접착력이 더욱 증가하는 것으로 확인되었다.
상술한 본 발명의 설명은, PSSA처럼 강산성을 띠지 않는 pH 2-6의 화합물을 템플레이트로 사용하는 경우에 공히 적용될 수 있다.
이하 본 발명의 내용을 비교예 및 실시예를 통해 보다 구체적으로 설명한다. 그러나 하기 실시예는 본 발명의 예시일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 또한 본 발명의 충방전 사이클 시험 시 초기에 0.1C~0.5C율로 올리고 이후 0.5C율에서 수명시험을 시행하였다. 따라서 본 발명의 실시예 및 비교예의 초기용량이란 3회 사이클 후 용량을 의미하며, 용량유지율은 3회 사이클 후 및 최종 사이클 후 용량을 비교한 수치이다. 리튬이온배터리에서 중요한 것은 반복되는 충방전 시 초기용량의 유지율(용량유지율 또는 잔존율)이 매우 중요하다. 따라서 본 발명의 실시예에서는 경우에 따라 용량유지율을 중점적으로 언급하였다.
<실시예 1-2 및 비교예 1> PEDOT:CMC 합성
실시예 1-2는 PEDOT:CMC 합성에 관한 것이다. 실시예 1은 치환도가 0.9인 CMC를 사용한 것이고, 실시예 2는 치환도가 1.2인 CMC를 사용한 예이다. 반면에 비교예 1은 치환도가 0.4인 CMC를 사용한 것이다.
이하 PEDOT:CMC의 합성과정은 치환도가 0.9인 CMC를 이용하여 설명한다.
먼저 CMC(중량분자량: 450,000 그램/몰, 치환도: 0.9, 시그마 알드리치 사)를 물에 2중량%가 되도록 녹이고, 이후 EDOT, CMC 및 산화제를 1:1:1의 몰비로 하여 용기에 넣고 교반하면서 전도성 고분자 합성을 유도하였다. 이때 일반적으로 전도성 고분자 모노머는 이들 성분들의 몰비율보다 약간 더 첨가하는 것이 일반적이다.
먼저 3구 플라스크에 물 200 그램에 CMC 5.6 그램 , EDOT 2.98 그램, APS 4.56 그램을 넣고 5분간 교반하여 혼합한다. 이후 상온에서 48 시간 교반하면서 합성한다.
상기 합성 반응을 거친 용액을 투석백(셀루로오스계 튜블라 멤브레인)에 넣고 봉한 뒤, 이를 초순수가 들어있는 용기에 넣고 24 시간 투석시켜 미반응 모노머를 제거한다. 이때 미반응 모노머가 제거되었음은 투석백을 담근 물의 색깔이 노란색을 띄는 지 확인하면 된다. 이후 음이온교환수지(Lewatit사, MP62)와 양이온교환수지(Lewatit 사, S100)를 무게비로 1:1 비율로 하여 용액 100중량부 대비 30 중량부를 투석 처리된 반응 용액에 넣고 5 시간 이온교환 처리하여 잔존 이온 성분들을 제거하였다. 이후 400 메쉬망을 이용하여 필터링하여 짙은 푸른색의 용액을 얻는데, 이 짙은 푸른색의 용액이 PEDOT:CMC이 분산되어 있는 전도성 고분자 용액인 PEDOT:CMC 수분산액이다.
실시예 2 및 비교예 1은 실시예 1과 동일한 방법으로 각각 치환도가 1.2인 CMC 및 치환도가 0.4인 CMC를 사용하여 PEDOT:CMC를 합성하였다.
상기 기술로 수득된 전도성 고분자인 PEDOT:CMC의 표면저항은 실시예 1의 경우에는 107 오움/면적, 점도는 250 센티포이즈(cP)이고, 실시예 2는 106 오움/면적, 점도는 320 cP인 진청색의 전도성 고분자이다. 반면에, 비교예 1의 경우에는 CMC 자체가 물에 잘 녹지 않아 실시예 1과 2보다 훨씬 긴 시간 녹여야 했으며, 합성된 PEDOT:CMC의 표면저항은 109 오움/면적 이상인 것으로 측정되었다.
<실시예 3-4>
실시예 3과 4는 템플레이트를 CMC와 PAA(분자량: 450,000 그램/몰, 시그마 알드리치)를 혼합한 것을 제외한 나머지는 실시예 2와 동일하다. 실시예 3은 CMC:PAA의 무게비율이 5:5이고 실시예 4는 7:3이었다.
상기 기술로 만들어진 전도성 고분자(PEDOT:CMC/PAA)는 모두 진청색의 보이는데, 이들 전도성 고분자의 표면저항은 실시예 3은 105 오움/면적이고, 실시예 4는 106 오움/면적으로 측정되었다. 이로서 혼합템플레이트의 경우 PAA의 함량이 높으면 표면저항이 낮아짐을 확인하였다.
<실시예 5 및 비교예 2> 흑연/SiOx(90:10) 혼합활물질
실시예 5는 실시예 1의 기술로 제조한 PEDOT:CMC 용액을 흑연(이론용량: 370 mAh/g)과 SiOx(이론용량: 1,400 mAh/g)를 혼합한 혼합활물질에 적용한 예이다.
실시예 1의 PEDOT:CMC를 흑연/SiOx(무게비: 90/10, 이론용량: 473 mAh/g) 혼합활물질 및 탄소나노튜브(단일벽 탄소나노튜브)를 혼합하여 음극활물질 슬러리를 제조하였다. PEDOT:CMC/혼합활물질/탄소나노튜브의 고형분 함량 대비 무게비율은 5:90:5 무게비가 되도록 혼합하였다. 이때 각 성분의 혼합물을 C-mixer에 넣고 2,000 rpm에서 10분씩 3번 혼련한 후 초음파 처리기를 이용하여 10분간 1회 처리하고 이후 마지막으로 C-mixer에서 10분간 최종 교반하여 전극물질 조성물을 제조한다. 이와 같이 제조된 활물질 슬러리의 흐름 상태를 확인한 결과 음극활물질 슬러리가 흐름상태가 마치 꿀이 흘러내리는 것과 유사한 형상을 보였다. 이로서 본 발명의 PEDOT:CMC로 활물질 슬러리를 만들 경우 배터리 양산제조 라인에서 코팅작업 시 아무런 문제가 없을 것임을 확인하였다.
이 조성물을 구리 호일 위에 건조 및 압연공정 후 두께가 30 미크론이 되도록 음전극층을 형성하였다.
상기 기술로 제조한 음전극판의 표면에 스카치테이프를 붙였다가 떼어내는 접착력 시험을 한 결과, 전극물질층이 극판으로부터 떨어지지 않고 잘 접착되어 있음을 확인하였다.
상기 기술로 제조된 음전극판을 이용하여 하프셀 구조의 코인셀(CR2032)을 만들고 이에 대한 충방전 사이클 시험을 0.5C율로 수행하였다. 이때 카운터 전극(counter electrode)으로는 리튬 메탈호일을 사용하였고, 전해질은 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 디에틸카보네이트(DEC), 비닐렌카보네이트(VC) 및 플로로에틸렌카보네이트(FC) 등의 카보네이트류 혼합용매(무게비율: EC/DEC/VC/FEC=3/7/0.05/0.05)에 LiPF6 1.15몰을 용해시켜 전해액으로 사용하였다. 코인셀 제조는 알곤 가스로 충전된 글로브 박스에서 제조하였다.
비교예 2는 바인더 물질로서 전도성 고분자가 아닌 전기부도체이면서 기존에 음극활물질용 바인더로 사용되는 CMC를 사용한 것을 제외한 나머지는 실시예 5와 동일하다. 비교예 2의 기술로 제작된 음극활물질층에 대한 접착력 시험 결과 스카치테이프로 음극활물질층이 극판으로부터 쉽게 박리됨을 확인하였다.
상기 기술로 제조한 코인셀의 충방전 사이클 시험 결과, 실시예 5의 경우에는 3회 사이클 후 방전용량 445 mAh/g, 50회 사이클 후 방전용량 440 mAh/g으로 초기 용량의 감소가 거의 없는 것으로 측정되었다. 반면에, 비교예 2의 경우에는 3회 사이클 및 50회 사이클 후 방전용량이 각각 452 mAh/g, 373 mAh/g을 측정되었다. 수명곡선의 감소경향을 보면 실시예 5의 경우에는 3회 및 50회 사이클 후 방전용량의 차이가 거의 없어 95% 이상의 용량유지율을 보이는 반면 비교예 2의 경우에는 약 82%의 용량유지율을 보이는 것으로 측정되었다. 특히 비교예 2의 경우에는 50회 충방전 사이클 후에도 용량이 계속 감소하는 것으로 관찰되어 사이클 횟수가 늘어날수록 용량이 더욱 감소할 것으로 보인다.
실시예 5와 비교예 2의 결과를 비교하면 기존에 많이 사용하는 CMC 자체를 바인더로 사용하는 것보다 이를 템플레이트로 사용하여 합성한 PEDOT:CMC를 바인더로 사용하는 것이 월등히 우수한 배터리 특성을 보임을 알 수 있다.
<비교예 3> 흐름상태 비교용(PEDOT:PAA)
비교예 3은 음극활물질 슬러리의 흐름상태를 비교하기 위하여 전도성 고분자 바인더를 PEDOT:PAA(실시예 16)을 사용한 것을 제외한 나머지는 실시예 5와 동일하다.
상기 기술로 제조된 음극활물질 슬러리의 흐름 상태를 확인한 결과, 비교예 3의 음극활물질 슬러리는 용기에 넣고 기울였을 때 마치 푸딩같이 간헐적으로 뚝뚝 떨어지는 모습을 보였다.
실시예 5와 비교예 3의 결과로부터 본 발명의 PEDOT:CMC를 바인더로 사용하여 제조한 음극활물질 슬러리는 꿀처럼 흐르는 특성을 보여, 본 발명의 PEDOT:CMC 바인더가 배터리 코팅공정에 더 적합한 것으로 밝혀졌다.
<실시예 6-7 및 비교예 4> 흑연/SiOx 혼합활물질의 비율
실시예 6-7은 흑연과 SiOx의 혼합활물질(흑연/SiOx 무게비율: 90/10)의 무게를 달리한 것을 제외한 나머지는 실시예 5와 동일하다. 실시예 6은 바인더/혼합활물질/탄소나노튜브의 무게비율이 10/85/5, 실시예 7은 10/80/10이었으며, 비교예 4는 1/98.5/0.5의 무게비율로 활물질 슬러리를 제조하였다.
상기 기술로 제조한 음극활물질 슬러리를 구리호일 위에 압연 후 두께가 35 미크론이 되도록 음전극층을 형성하였고, 이에 대한 사이클 시험 결과, 실시예 6과 실시예 7은 50회 사이클 후 용량유지율이 95% 이상을 유지하는 반면 비교예 4의 경우에는 활물질의 함량이 너무 높아 극판 위에 형성된 음전극층이 매우 쉽게 손상되는 문제점이 발견되었으며, 이에 대한 충방전 사이클 수명시험 결과 50회 사이클 후 용량유지율이 75% 정도로 매우 나쁜 용량유지율을 보이는 것으로 측정되었다.
<실시예 8> 혼합템플레이트를 사용한 전도성 고분자 바인더
실시예 8은 실시예 3의 혼합템플레이트를 사용한 전도성 고분자 바인더를 사용한 것을 제외한 나머지는 실시예 5와 동일하다.
상기 실시예 8에 의해 제조된 코인셀에 대한 수명시험 결과, 50회 충방전 사이클 후에도 용량유지율이 95% 이상 유지됨을 확인하였다. 이로서 혼합템플레이트를 사용하여 합성된 전도성 고분자도 사이클 시험 시 용량유지율이 우수함을 알 수 있었다.
<실시예 9 및 비교예 5> 실리콘 나노입자
실시예 9는 음극활물질로서 실리콘 나노입자(이론용량: 4,200 mAh/g)를 사용하여 실리콘 나노입자/PEDOT:CMC/탄소나노튜브의 무게비가 60:20:20이 되도록 하여 음전극판을 제조한 것을 제외한 나머지는 실시예 5와 동일하다. 이와 같이 제조된 음전극판의 압연공장 후 두께가 30 미크론이 되도록 하였다. 비교예 5는 CMC를 바인더 물질로 사용한 것을 제외한 나머지는 실시예 9와 동일하다.
실시예 9에 의하여 제조된 코인셀의 수명시험 결과, 실시예 9 및 비교예 5의 초기용량은 약 4000 mAh/g 이었고, 50회 사이클 후 방전용량은 실시예 9의 경우 3,275 mAh/g이고 비교예 5의 CMC를 사용한 경우에는 2,350 mAh/g으로 측정되었다. 이로서 본 발명의 셀루로오스계 전도성 고분자를 바인더로 사용한 실시예 9의 수명특성이 비교예 5의 수명특성보다 월등히 좋음을 알 수 있다.
<실시예 10-11 및 비교예 6> 바인더/탄소나노튜브 함량
실시예 10-11은 바인더와 탄소나노튜브의 비율을 달리한 것을 제외한 나머지는 실시예 5와 동일하다. 실시예 10은 바인더와 탄소나노튜브의 비율을 바인더/SiOx/흑연/탄소나노튜브의 무게비율은 5/9/81/5이고, 실시예 11은 7/9/81/3의 비율이다. 비교예 6은 9.6/9/81/0.4의 비율이다.
상기 기술로 제조된 코인셀의 충방전 사이클 시험 결과, 실시예 10과 11은 50회 사이클 후 용량유지율이 95% 이상으로 초기용량이 거의 감소하지 않았다. 그러나 비교예 6의 경우에는 50회 사이클 후 용량유지율이 81%로 측정되었다.
이로서 탄노나노튜브의 비율이 너무 낮으면 용량유지율이 낮아짐을 알 수 있었다.
<실시예 12 및 비교예 7> 탄소나노튜브의 길이
실시예 12와 비교예 7은 탄소나노튜브의 길이를 달리한 것을 제외한 나머지는 실시예 5와 동일하다. 실시예 12는 탄소나노튜브의 길이가 40 미크론이고, 비교예 7은 탄소나노튜브의 길이가 3 미크론인 것을 사용하였다.
상기 기술에 의해 제조된 코인셀에 대한 충방전 수명시험 결과, 실시예 12의 경우 50회 사이클 후 용량유지율이 95% 이상 유지되는 반면, 비교예 7의 경우에는 83% 정도인 것으로 측정되었다.
<실시예 13-14> 혼합 전도성고분자 바인더
실시예 13과 14는 실시예 1의 PEDOT:CMC와 다른 화합물을 템플레이트로 사용하여 합성된 전도성고분자인 PEDOT:PAA(CNPS사) 및 PEDOT:PSS(Heraus사, PT-2, 로터리증발기로 고형분을 2중량%로 맞추어 사용)를 각각 혼합하여 이를 바인더로 사용하여 충방전 수명특성을 측정한 것을 제외한 나머지는 실시예 5와 동일하다. 실시예 13은 PEDOT:CMC와 PEDOT:PAA를 50:50의 무게비율로 혼합한 것이고 실시예 14는 PEDOT:CMC와 PEDOT:PSS를 50:50의 무게비율로 혼합해 이를 바인더로 사용한 것이다.
상기 기술에 의해 제조된 CR2032 코인셀에 대한 충방전 수명시험 결과, 실시예 13과 14 모두 50회 사이클 후 용량유지율이 95% 이상임을 확인하였다. 별도 실험을 통하여 PEDOT:PSS를 단독 바인더로 사용한 경우 50회 사이클 후 용량유지율이 90% 미만인 것으로 관찰되었다. 그러나 상술한 바와 같이, PEDOT:CMC와 혼합한 혼합바인더의 경우에는 95% 이상의 용량유지율을 보이는 것으로 관찰되었다. 이로서 PEDOT:CMC와 혼합하여 혼합바인더로 사용하면 PEDOT:PSS의 낮은 용량유지율이 보완되어 높은 용량유지율을 보임을 알 수 있다.
<실시예 15 및 비교예 8> 양극활물질: NCM
실시예 15는 니켈-코발트-망간(NCM) 양극활물질을 사용하여 제조한 코인셀(CR2032)의 특성 시험에 관한 것이다. 본 실시예의 NCM계 양극활물질을 이용한 CR2032 코인셀은 실시예 5의 방법에 따라 제조하였다. 이때 사용한 양극활물질 조성비는 NCM/PEDOT:CMC/탄소나노튜브/카본블랙의 무게비는 92/3.5/3.0/1.5 비율이었다. 비교예 8은 PVDF(양극용 바인더, 솔베이사)를 사용한 것을 제외한 나머지는 실시예 15와 동일하다. PVDF는 NMP(N-Methyl-2-pyrrolidone)에 녹여서 사용하였다.
상기 기술로 제조된 코인셀에 대한 충방전 사이클 시험 결과, 50회 사이클 후 용량유지율은 실시예 15는 95.7%, 비교예 8은 75%로 측정되었다.
상기 실시예 1-15 및 비교예 1-8의 결과를 비교하면, 본 발명의 셀루로오스계 화합물을 사용하여 합성하여 셀루로오스계 전도성 고분자가 잘 만들어짐을 확인하였다. 또한 템플레이트를 셀루로오스계 화합물과 아크릴계 화합물을 혼합한 혼합템플레이트를 사용하여도 전도성 고분자가 잘 만들어짐을 확인하였다. 또한 서로 다른 화합물을 템플레이트로 사용하여 합성된 전도성 고분자 바인더를 혼합하여 만든 혼합 전도성고분자 바인더를 사용하여도 충방전 수명특성을 향상시킴을 알 수 있다. 이들 전도성 고분자 바인더는 음극활물질은 물론 양극활물질계에도 공히 적용될 수 있음을 확인하였다. 또한 본 발명의 PEDOT:CMC를 바인더로 사용할 경우 활물질층이 극판 위에 잘 접촉되어 있도록 하고, 특히 탄소나노튜브와 함께 사용할 경우 전극층의 치밀도를 높여 전극층이 기계적으로 안정적으로 유지될 수 있도록 한다.
이하 수용액 상태에서 수소이온지수(pH)가 2-6의 범위인 고분자 화합물을 템플레이트로 사용하여 합성되는 전도성 고분자 바인더에 대한 실시예를 설명한다.
<실시예 16-19> PEDOT:PAA 합성
실시예 16-19는 PEDOT:PAA 합성에 관한 것으로서, 합성 반응에 사용되는 각 성분의 함량비를 조절하여 합성된 PEDOT:PAA를 합성하고, 합성된 PEDOT:PAA의 특성을 비교한 것이다.
먼저 실시예 16을 통하여 EDOT, PAA 및 산화제의 비율을 몰비로 1:1:1로 하여 PEDOT:PAA를 합성하는 과정을 설명한다. 이하 실시예 17-19는 각 성분의 함량 비율을 조절하고 나머지는 실시예 16과 동일한 방법으로 합성하면 된다.
먼저 3구 플라스크에 물 200 그램에 PAA (분자량 1,250,000 그램/몰, 반복단위 분자량: 72 그램/몰) 1.44 그램, EDOT (분자량 140 그램/몰) 2.98 그램, APS(분자량 228 그램/몰) 4.56 그램을 넣고 5분간 교반하여 혼합한다. 이후 상온에서 24 시간 교반하면서 합성한다.
상기 합성 반응을 거친 용액을 투석백(셀루로스 튜블라 멤브레인)에 넣고, 이를 초순수가 들어있는 비이커에 놓고 24 시간 투석시켜 미반응 모노머를 제거한다. 이때 미반응 모노머가 제거되었음은 투석백을 담근 물의 색깔이 노란색을 띄는 지 확인하면 된다.
이후 음이온교환수지(Lewatit사, MP62)와 양이온교환수지(Lewatit 사, S100)를 무게비로 1:1 비율로 하여 용액 대비 10 중량부를 투석 처리된 반응 용액에 넣고 3 시간 이온교환 처리하여 잔존 이온 성분들을 제거한다.
이후 400 메쉬망을 이용하여 필터링하여 짙은 푸른색의 용액을 얻는데, 이 짙은 푸른색의 용액이 PEDOT:PAA가 포함되어 있는 PEDOT:PAA 용액이다.
표 1에 상기 실시예 16-19를 통하여 합성한 PEDOT:PAA의 표면저항 및 점도 등의 특성을 비교한 것이다. 표 1에 나와 있듯이 진청색의 전도성 고분자가 성공적으로 합성되었고, EDOT 함량이 증가할수록 저항이 감소함을 알 수 있다.
위와 같이 합성된 PEDOT:PAA의 화학식은 아래의 화학식 2에 나타난 바와 같다.
Figure PCTKR2019002430-appb-C000002
n과 m은 자연수 이다.
표 1은 실시예 16-19를 통하여 합성된 PEDOT:PAA 및 특성을 나타낸다.
실시예 성분비(몰비)(EDOT:PAA:산화제) 표면저항(kohm/sq.) 점도(cP) 용액색상
16 1:1:1 2 450 진청색
17 0.8:1:1 5 1630 진청색
18 0.6:1:1 10 3980 진청색
19 0.3:1:1 200 4746 진청색
<실시예 20 및 비교예 9> 실리콘 나노입자, PEDOT:PAA, 탄소나노튜브 혼합물의 극판과의 접착력 / 기존 바인더
실시예 20은 실시예 16의 기술로 제조한 PEDOT:PAA 용액, 실리콘 나노입자 (평균직경: 50 나노미터) 및 다중벽 탄소나노튜브(multiwall carbon nanotube: MWCNT)를 고형분 함량 대비 20:60:20 무게비가 되도록 혼합한다. 이때 실리콘 나노입자 0.6 그램, 탄소나노튜브 0.2 그램 및 고형분이 2%인 PEDOT:PAA 용액 10 그램을 C-mixer에 넣고 2,000 rpm에서 10분씩 3번 혼련한 후 바타입의 초음파 처리기를 이용하여 10분간 1회 처리하고 이후 마지막으로 C-mixer에서 10분간 최종 교반하여 전극물질 조성물을 제조한다. 이 조성물을 구리 호일 위에 건조 후 두께가 40 미크론의 두께가 되도록 음전극판을 만든다.
상기 기술로 제조한 음전극판의 표면을 칼로 흠집을 낸 후 그 위에 스카치 테이프를 붙였다가 떼어내는 접착력 시험을 한 결과 전극물질층이 극판으로부터 떨어지지 않고 강하게 접착되어 있었다.
<비교예 9>
비교예 9는 바인더 물질을 폴리비닐리덴플로라이드(polyvinylidenefluoride: PVDF, 솔베이 사)을 사용한 것을 제외한 나머지는 실시예 20과 동일하다.
상기 기술을 제조한 음전극판의 전극물질층에 대한 스카치테이프를 이용한 접착력 시험 결과 전극물질층이 극판으로부터 박리됨을 확인하였다.
실시예 20과 비교예 9의 결과를 보면, 기존 PVDF 바인더를 사용하는 경우보다 본 발명의 PEDOT:PAA를 바인더로 사용할 경우 음전극판의 전극물질층은 극판에 강하게 접착되어 있음을 알 수 있다.
<실시예 21 및 비교예 10-12>
실시예 21은 실시예 20과 동일한 기술로 음전극판을 제조하고, 이를 이용하여 하프셀 구조(CR2016 타입)의 코인셀을 만들었으며, 비교예 10-12는 바인더 종류를 달리하며 동일 구조의 코인셀을 만들었다. 상기 기술에 의해 제조한 코인셀을 충방전 테스트기에 넣고 충방전 사이클 시험을 수행하였다. 이때 카운터 전극(counter electrode)으로는 리튬 메탈호일을 사용하였고 전해질은 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 디에틸카보네이트(DEC), 비닐렌카보네이트(VC) 및 플로로에틸렌카보네이트(FC) 등의 카보네이트류 혼합용매(무게비율: EC/DEC/VC/FEC=3/7/0.05/0.05)에 LiPF6 1.15몰을 용해시켜 전해액으로 사용하였다. 코인셀 제조는 알곤 가스로 충전된 글로브 박스에서 제조하였다.
상기 기술로 제조한 코인셀의 충방전 사이클 시험 결과가 표 2에 정리되어 있다. 표 2의 실시예 21과 비교예 10-12의 바인더 종류에 따른 충방전 사이클 시험 결과를 비교하면, 폴리아크릴산(polyacrylic acid polymer: PAA) 바인더, 카르복시메틸 셀루로오스 바인더(carboxymethyl cellulose: CMC), 및 PEDOT:PSSA의 100회 사이클 시험 후 잔존용량 (retention capacity, mAh/g)을 비교하면 초기 용량 대비 PEDOT:PAA는 62.2%, PAA는 36.5%, CMC는 25.9%, PEDOT:PSSA는 37.0%로 측정되었다.
상기 실시예 21과 비교예 10-12의 결과를 비교하면, 음전극활물질로서 실리콘 나노입자를 사용한 경우 PEDOT:PAA의 잔존 용량이 다른 바인더에 비하여 월등히 높다는 것을 알 수 있다. 특히 PAA, PEDOT:PSSA 및 PEDOT:PAA의 결과를 비교하면, PAA 자체를 바인더로 사용하는 것보다 PAA를 템플레이트로 하여 PEDOT를 합성하여 바인더로 사용할 경우 잔존용량이 월등히 높아짐을 알 수 있다. 또한 같은 PEDOT라 하더라도 PAA를 템플레이트로 사용하는 것이 PSSA를 템플레이트로 사용하는 것보다 수명이 월등히 좋아짐을 알 수 있다.
표 2는 실시예 21과 비교예 10-12의 바인더 종류에 따른 충방전 시험 사이클 결과를 나타낸다. 여기에서 잔존비(%)는 초기 용량 대비 남아있는 용량의 비율, 즉 용량유지울(%)을 의미한다.
구분 바인더 종류 산도(PH) 첫번째 사이클 용량 (mAhg-1) 100회 시험 후 잔존용량 (mAhg-1) 잔존비(%)
실시예 21 PEDOT:PAA 2.5 3977.5 2473.9 62.2
비교예 10 PAA 2.5 3905.3 1427.2 36.5
비교예 11 CMC 3.5 3809.1 987.7 25.9
비교예 12 PEDOT:PSSA 1 3584.6 1325.3 37.0
<실시예 22 및 비교예 13>
실시예 22와 비교예 13은 음극활물질로서 기존 상업화된 리튬이온배터리의 음극활물질인 흑연을 사용한 것이다. 상기 실시예 22 및 비교예 13의 하프셀 구조의 코인셀은 다음과 같이 제조하였다. 실시예 22는 C-mixer에 흑연 2.91 그램과 고형분이 2%인 PEDOT:PAA 1.5 그램을 투입한 후 2,000 rpm에서 10분씩 2회 혼련하여 음극활물질 조성물을 제조하였다. 이때 고형분 대비 무게비는 97:3 (흑연:PEDOT:PAA)으로 하였다. 이를 구리 호일에 도포, 건조하여 건조 후 두께 40 미크론의 음전극판을 제조하였다. 이후 실시예 21의 방법으로 하프셀 구조의 코인셀을 제조하여 충방전 사이클 시험기에 넣고 충방전 사이클 시험을 수행하였다.
비교예 13은 바인더로서 기존 상업화된 리튬이온배터리의 음극 활물질 조성물 제조에 사용하는 스티렌-부타디엔 고무(SBR)와 CMC 혼합 바인더 (무게비: 1:1)를 사용한 것을 제외한 나머지는 실시예 21과 동일하다.
상기 기술로 제조한 코인셀의 충방전 사이클 시험 결과, 100회 충방전 사이클 시험 후 잔존용량은 실시예 22의 PEDOT:PAA의 경우에는 초기 용량 대비 79.2%이었고, SBR:CMC 혼합 바인더의 경우에는 64.0% 이었다.
실시예 22와 비교예 13의 결과를 비교하면 기존 상업적으로 판매되고 있는 리튬이온배터리의 바인더 물질인 SBR/CMC 혼합 바인더에 비하여 PEDOT:PAA 바인더의 성능이 우수함을 알 수 있다.
<실시예 23 및 비교예 14> 양극활물질: NCM 배터리
실시예 23은 기존 상업화되어 판매되고 있는 고용량 리튬이온배터리의 양극활물질인 니켈-코발트-망간(NCM) 양극활물질을 사용하여 제조한 코인셀의 특성 시험에 관한 것이다.
실시예 23의 NCM계 양극활물질을 이용한 충방전 사이클 시험용 테스트 셀 제조는 다음과 같다. 먼저 양극활물질 조성물은 NCM 활물질:PEDOT:PAA 바인더:MWCNT의 고형분 대비 무게비가 96:2:2가 되도록 평량한 후 C-mixer에 넣고 2,000 rpm으로 5분간 혼련하는 과정을 4회 반복하여 제조하였다. 이 조성물을 알루미늄 극판 위에 코팅, 건조하여 40 미크론 두께의 양전극판을 제조하였다. 음극판은 리튬 금속을 그대로 사용하였다.
비교예 14는 바인더 물질로서 기존 상업화되어 판매되고 있는 NCM계 리튬이온배터리의 양극활물질 조성물 제조에 사용되는 PVDF(솔베이 사)를 사용한 것을 제외한 나머지는 실시예 23과 동일하다.
상기 실시예 23 및 비교예 14의 시료에 대한 시험은 각 시료에 대하여 45도에서 100 사이클 충방전 특성을 측정하였다.
측정 결과 실시예 23의 45도에서 실시한 100 사이클 충방전 후 잔존 용량은 초기 용량 대비 89.4% 유지되는 것으로 측정되었다. 반면에, 기존 바인더인 PVDF를 사용하는 경우에는 100 사이클 충방전 후 잔존용량은 67.4%이었다.
상기 실시예 23과 비교예 14의 결과를 비교하면, 실시예 양극활물질 조성물에서도 본 발명의 PEDOT:PAA의 잔존용량 특성이 월등히 우수함을 알 수 있다.
상기 실시예 16-23 및 비교예 9-14의 결과를 비교하면 본 발명에서 합성한 PEDOT:PAA를 리튬이온배터리의 바인더로 사용할 경우 활물질 조성물을 도포, 건조하여 극판을 제조하는 경우 활물질층이 극판과 접착력이 매우 우수함을 알 수 있고, 100회 충방전 사이클 시험 후 잔존용량이 다른 바인더 물질에 비하여 월등히 높으며, 이로부터 제조된 리튬이온배터리의 수명특성이 크게 향상됨을 알 수 있다. 또한 본 발명의 PEDOT:PAA는 음극활물질은 물론 양극활물질의 경우에도 효과적임을 알 수 있다.
이하 탄소나노튜브가 혼합되는 특성에 대하여 설명한다.
<실시예 24-26 및 비교예 15-18> 실리콘 나노입자, PEDOT:PAA, 탄소나노튜브 혼합물의 극판과의 접착력
실시예 24-26은 탄소나노튜브의 함량 차이에 의한 접착력, 전극층의 치밀도 및 100 사이클 충방전 시험 후 잔존용량을 확인하기 위한 것이다.
실시예 24는 실시예 16의 기술로 제조한 PEDOT:PAA 용액, 실리콘 나노입자 (평균직경: 50 나노미터) 및 다중벽 탄소나노튜브(multiwall carbon nanotube: MWCNT)를 고형분 함량 대비 20:60:20 무게비가 되도록 혼합한다. 이때 실리콘 나노입자 0.6 그램, 탄소나노튜브 0.2 그램 및 고형분이 2%인 PEDOT:PAA 용액 10 그램을 C-mixer에 넣고 2,000 rpm에서 10분씩 3번 혼련한 후 바타입의 초음파 처리기를 이용하여 10분간 1회 처리하고 이후 마지막으로 C-mixer에서 10분간 최종 교반하여 전극물질 조성물을 제조한 후 이 조성물 슬러리를 8 미크론 두께의 구리 호일 위에 건조 후 전극층의 두께가 6 미크론의 두께가 되도록 하여 총 14 미크론 두께의 음전극판을 만들었다.
실시예 25는 전도성 고분자 바인더:활물질:탄소나노튜브의 함량비를 25:65:10으로, 그리고 실시예 26은 이 비율을 15:55:30으로 하여 바인더 무게 대비 탄소나노튜브의 함량비를 변화시켜 슬러리를 제조한 것을 제외한 나머지는 실시예 24와 동일하다.
상기 실시예 24-26의 기술로 제조한 음전극판의 표면을 칼로 흠집을 낸 후 그 위에 스카치테이프를 붙였다가 떼어내는 접착력 시험을 한 결과, 전극층이 극판으로부터 떨어지지 않고 강하게 접착되어 있었다. 또한 전극층을 핀셋으로 긁어도 크게 손상되지 않을 정도로 전극층의 치밀도가 양호하였다. 이러한 현상은 실시예 24-26에서 공히 나타나는 것으로 관찰되었다.
비교예 15는 바인더 물질을 PEDOT:PAA가 아닌 스티렌-부타디엔(SBR)과 카복시메틸셀루로오스(CMC)를 1:1로 혼합한 혼합바인더를 사용한 것을 제외한 나머지는 실시예 24와 동일하다. 비교예 16은 전도성 부여제로서 탄소나노튜브가 아닌 전도성 카본블랙(Super P)을 사용한 것을 제외한 나머지는 비교예 15와 동일하다.
비교예 15의 기술로 만들어진 슬러리로 음전극층을 형성한 경우 스카치테이프 테스트에서 약 50% 정도가 탈락되어 구리 극판 위에 형성된 전극층의 접착력이 실시예 24에 비하여 월등히 떨어지고 핀셋의 뾰족한 부분으로 전극층을 긁으면 전극층이 쉽게 탈락되는 현상이 관찰되었다. 또한 비교예 16의 경우에는 스카치테이프 테스트에서 거의 전체 전극층이 탈락되었고, 표면을 핀셋의 뾰족한 부분으로 긁으면 전극층이 아주 쉽게 부스러지면서 탈락되는 현상이 관찰되었다.
이들 실시예 24와 비교예 15-16의 결과를 비교하면 본 발명의 전도성 고분자 바인더와 탄소나노튜브 만을 사용하여 제조한 활물질 조성물을 사용하여 전극층을 형성할 경우 극판에의 접착력 및 전극층의 치밀도가 월등히 좋음을 알 수 있다. 반면에 기존 음전극용 바인더인 SBR/CMC 혼합 바인더를 사용하거나 또는 전도성 카본블랙을 사용한 경우에는 극판과의 접착력과 전극층 자체의 치밀도가 좋지 않음을 알 수 있었다. 특히 전도성 카본블랙을 전도도부여제로 사용할 경우 전극층과 극판과의 접착력과 매우 좋지 않을 뿐 아니라 전극층 자체의 치밀도도 매우 나쁨을 확인할 수 있었다.
표 3에 상기 실시예 24-26과 비교예 15-16의 충방전 셀테스트 결과가 정리되어 있다. 충방전 사이클 시험은 하프셀 구조의 코인셀(CR2032 타입)을 이용하여 평가하였다. 이때 카운터 전극(counter electrode)으로는 리튬 메탈호일을 사용하였고 전해질은 1.15몰 LiPF6가 에틸렌 카보네이트(EC)와 디에틸카보네이트(DEC)를 3:7의 무게비율로 혼합한 후 여기에 vinylene carnobate(VC)와 fluoroethylene carbonate (FEC) 1:1 혼합용매를 총 10중량% 더 첨가하여 제조한 유기전해액을 사용하였다. 코인셀 제조는 알곤 가스로 충전된 글로브 박스에서 제조하였다. 본 발명의 모든 셀테스트의 사이클 시험은 0.5C율(0.5C rate)로 수행하였다.
상기 기술로 제조한 코인셀의 충방전 사이클 시험 결과가 표 3에 정리되어 있다. 표 3의 실시예 24-26, 그리고 비교예 15-16의 충방전 사이클 시험 결과를 보면, 본 발명의 조성물 슬러리로 제조한 하프셀의 경우 100회 사이클 시험 후 잔존용량이 비교예의 결과에 비하여 상당히 높음을 알 수 있다. 비교예 15와 16의 결과를 비교하면 전기절연성의 기존 바인더를 사용할 경우 탄소나노튜브 또는 전도성 카본블랙 모두 전도성 고분자 바인더에 비하여 월등히 낮은 잔존용량을 보인다. 비교예 15-16의 경우, 기존 흑연용 바인더인 CMC/SBR 혼합바인더를 사용할 경우 본 발명의 전도성 고분자 바인더에 비하여 잔존용량이 낮기는 하지만, 탄소나노튜브를 사용한 경우가 전도성 카본블랙을 사용한 경우보다 조금은 높은 잔존용량을 보임을 알 수 있다. 특히 사이클 시험 초기 용량의 감소정도를 비교한 결과, 본 발명의 기술로 제조된 배터리 하프셀의 경우 초기 수십회 사이클 동안 용량이 감소하는 정도가 비교예의 시료들에 비하여 월등히 낮음을 알 수 있다.
비교예 17-18은 본 발명의 활물질 슬러리 제조 시 각 성분의 조성비율의 효과를 비교한 것이다. 비교예 17-18은 흑연을 음전극 활물질로 사용할 때 일반적으로 적용하는 슬러리 조성물의 각 성분의 비율과 유사한 비율로 활물질 슬러리를 제조한 것이다.
표 3에 나와 있듯이, 비교예 17과 18의 경우 사이클 시험 시작 후 몇 십 사이클이 지나지 않아 잔존용량이 거의 0 mAh/g으로 급격히 감소하여 배터리로서의 성능을 모두 잃어버리는 것으로 확인되었다.
이러한 결과로부터 전도성 고분자 바인더는 물론 기존 바인더에서도 탄소나노튜브를 사용한 경우가 전극층의 극판과의 접착력을 증진시킴은 물로 충방전 사이클 후 잔존용량도 전도성 카본블랙에 비하여 좋음을 알 수 있다. 또한 본 발명의 슬러리 조성물의 조성비율 조합이 기존 흑연용으로 사용하는 조성물의 성분비율보다 월등히 우수한 성능을 보임을 알 수 있다.
표 3은 사이클 시험에 따른 잔존용량 및 잔존비를 나타낸다.
구분 슬러리 조성(바인더/활물질(Si)/탄소나노튜브/카본블랙) 3회 사이클 후용량 (mAh/g) 100회 사이클 후용량 (mAh/g) 잔존비(%)
실시예 24 20/60/20/0 3370 2497 74.1
실시예 25 25/60/15/0 3293 2384 72.4
실시예 26 15/55/30/0 3325 2513 75.6
비교예 15 10/10/60/20/0 3245 2216 68.3
비교예 16 10/10/60/0/20 3174 1758 55.4
비교예 17 3/95/1/1 2908 54 1.86
비교예 18 1.5/1.5/95/1/1 3021 78 2.58
비교예 15 및 16: CMC/SBR/Si/탄소나노튜브/전도성카본블랙의 무게비
비교예 17: 실시예 24의 바인더/Si/탄소나노튜브/전도성카본블랙의 무게비
비교예 18: CMC/SBR/Si/탄소나노튜브/전도성카본블랙의 무게비
<실시예 27 및 비교예 19> SiOx
실시예 27은 슬러리 조성물 제조 시 Si 메탈입자 대신 SiOx를 음전극용 활물질로 사용한 것을 제외한 나머지는 실시예 24와 동일하다. 비교예 19는 표 4에 활물질 슬러리 조성비가 나와 있듯이, 바인더 물질과 전도성 부여제를 각기 달리한 것을 제외한 나머지는 실시예 27과 동일하다. 본 실시예 및 비교예에는 이론용량이 1,400 mAh/g인 SiOx를 사용하였다.
표 4에 정리되어 있듯이, SiOx의 경우에도 본 발명의 전도성 고분자 바인더와 탄소나노튜브를 사용할 경우, 3회 사이클 후 잔존용량이 1,150 mAh/g, 100회 사이클 후 잔존용량이 960 mAh/g으로서 잔존비가 약 83%이다. CMC/SBR 혼합바인더를 사용한 경우에는 100회 사이클 시험 후 잔존용량이 약 54%로 측정되었다. 반면에 기존 흑연 사용 시에 적용되는 조성비율로 (SBR/CMC/SiOx/카본블랙: 2/2/95/1) 슬러리를 제조하여 하프 셀을 만들 경우에는 사이클 시험 후 수십 사이클 내에 잔존용량이 거의 0 mAh/g으로 급격히 감소하여 배터리로서의 성능을 잃어버리는 것으로 관찰되었다.
이 결과로부터, 100회 사이클 시험 후 잔존용량이 본 발명의 바인더를 사용하는 경우 기존 CMC/SBR 혼합바인더 그리고/또는 전도성 카본블랙을 사용 경우보다 성능이 우수함을 알 수 있다.
특히 본 발명의 조성물 비율을 적용할 때의 배터리 성능이 기존 흑연을 사용할 때 일반적으로 사용되는 조성물 비율에 비하여 월등히 우수한 것으로 확인되었다. 이는 활물질로서 Si 메탈 입자를 사용하는 경우와 마찬가지 결과이다.
표 4는 사이클 시험에 따른 잔존용량 및 잔존비를 나타낸다.
구분 슬러리 조성(바인더/활물질(SiOx)/탄소나노튜브/카본블랙) 3회 사이클 후 용량 (mAh/g) 100회 사이클 후 용량 (mAh/g) 잔존비(%)
실시예 27 20/60/20/0 1150 960 83.4
비교예 19 10/10/60/20 1170 638 54.5
실시예 27: 바인더/SiOx/탄소나노튜브의 무게비율
비교예 19: CMC/SBR/SiOx/전도성카본블랙의 무게비율
<실시예 28-30> Si/Graphite 혼합활물질 시험
상기 실시예 28-30은 바인더와 탄소나노튜브의 함량을 20:20(바인더/탄소나노튜브 무게비)으로 하고, 활물질을 실리콘 나노입자와 흑연의 혼합비를 20:80으로 고정한 상태에서 활물질의 함량을 달리한 것을 제외한 나머지는 실시예 24와 동일하다. 이때 전극층의 두께는 30 미크론이 되도록 조절하였다.
상기 기술로 제조한 코인셀의 충방전 사이클 시험 결과, 100회 충방전 사이클 시험 후 잔존용량은 실시예 28-30의 경우 모두 80% 이상의 잔존용량을 보임을 확인하였다.
본 실시예의 경우 CMC/SBR 혼합바인더 및 전도성 카본블랙을 포함하는 활물질 조성물을 이용한 하프셀에 대한 사이클 시험 후 잔존용량을 비교하지 않았다. 그러나 상술한 실시예 및 비교예에서 언급하였듯이, 기존 바인더를 사용할 경우 본 발명의 전도성 고분자 바인더 및 탄소나노튜브를 사용할 경우에 비하여 낮은 사이클 특성을 보임은 자명할 것이다.
이로서 실리콘 또는 SiOx 또는 이들과 흑연과의 혼합활물질의 경우에도 본 발명의 전도성 고분자 바인더 및 탄소나노튜브를 사용할 경우 그렇지 않은 경우에 비하여 월등히 우수한 배터리 성능을 보임을 알 수 있다.
표 5는 사이클 시험에 따른 잔존용량 및 잔존비를 나타낸다.
구분 슬러리 조성(바인더/Si/흑연/탄소나노튜브) 3회 사이클 후 용량 (mAh/g) 100회 시험 후 잔존용량 (mAh/g) 잔존비(%)
실시예 28 20/12/48/20 957 790 82.5
실시예 29 20/14/56/20 946 792 83.7
실시예 30 20/18/72/20 952 776 81.5
흑연/Si(80/20)의 이론용량: 1,137 mAh/g
<실시예 31-32> 전극층 두께 조절 (흑연/SiOx 무게비: 80/20)
실시예 31-32는 흑연과 SiOx를 혼합한 혼합 활물질을 사용하여 조성물(바인더/흑연/SiOx/탄소나노튜브의 무게비율: 5/72/18/5)을 만들고, 이를 이용하여 음전극층의 두께를 달리한 것을 제외한 나머지는 실시예 24와 동일하다. 실시예 31은 전극층의 두께를 25 미크론으로 하고, 실시예 32는 전극층의 두께를 40 미크론으로 하였다.
이들에 대한 셀테스트 결과, 실시예 31과 32는 공히 100회 사이클 시험 후 잔존용량이 초기값 대비 93% 이상 유지하여 배터리로서의 성능이 매우 우수함을 확인하였다.
<실시예 33-34 및 비교예 20> CNT 길이 조절 (흑연/SiOx 무게비: 80/20)
실시예 33-34 및 비교예 20은 다중벽 탄소나노튜브의 길이를 달리하여 조성물을 만들고 이를 극판에 도포하여 전극층을 형성한 것을 제외한 나머지는 실시예 32와 동일하다. 실시예 33은 탄소나노튜브의 길이가 30 미크론, 실시예 34는 길이가 60 미크론인 다중벽 탄소나노튜브를 사용하였다. 그리고 비교예 20은 다중벽 탄소나노튜브의 길이가 2 미크론으로 짧은 탄소나노튜브를 사용하였다. 이들 조성물들을 사용하여 음전극층 형성 후 표면을 뾰족한 핀셋으로 긁을 경우 실시예 33-34의 전극층은 치밀도가 우수한 것으로 확인되었으나, 비교예 20의 경우에는 쉽게 긁히는 것으로 관찰되었다. 이로서 전극층의 치밀도를 높이기 위해서는 일정 길이 이상의 탄소나노튜브이어야 효과적임을 알았다.
또한 이들에 대한 충방전 사이클 시험 결과, 실시예 33-34의 경우 100회 사이클 시험 후 잔존용량이 93% 이상으로서 매우 우수한 성능을 유지하는 반면, 비교예 20의 경우에는 80% 정도로서 실시예 33-34 보다는 떨어지는 성능을 보임을 확인하였다.
<실시예 35-37 및 비교예 21-22> 바인더/탄소나노튜브 비율 (흑연/SiOx 무게비: 80/20)
실시예 35-37 및 비교예 21-22는 전도성 고분자 바인더와 탄소나노튜브의 함량비율을 달리한 것을 제외한 나머지는 실시예 34와 동일하다.
음전극층의 치밀도를 확인한 결과 실시예 35-37의 경우에는 극판과 전극층과의 접착력도 양호하고 뾰족한 끝으로 긁어 평가한 치밀도도 양호한 것으로 관찰되었다. 그러나 비교예의 경우에는 접착력은 양호하지만 음전극층의 치밀도는 양호한 반면 극판과의 접착력이 나쁘거나(비교예 21), 또는 극판과의 접착력은 양호하지만 전극층의 치밀도가 떨어지는(비교예 22) 등 실시예 35-37에 비하여 열악한 특성을 보였다.
또한 100회 충방전 수명시험 결과(표 6 참조), 실시예의 경우 100회 수명시험 후 잔존용량이 공히 90% 이상을 유지하지만 비교예 21과 비교예 22의 경우 100회 수명시험 후 모두 83%와 75% 정도의 측정되어 실시예 35-37에 비하여 상대적으로 매우 낮은 수명특성을 보였다. 특히 비교예 22의 경우, 즉 탄소나노튜브 함량에 비하여 월등히 많은 함량의 전도성 고분자 바인더를 사용할 경우에는 100회 수명시험 후 잔존용량이 80% 이하로 떨어짐과 동시에 충전과 방전이 너무 오래 걸리는 문제점이 발견되었다.
표 6은 사이클 시험에 따른 잔존용량 및 잔존비를 나타낸다.
구분 슬러리 조성(바인더/Si/흑연/탄소나노튜브) 3회 사이클 후 용량 (mAh/g) 100회 시험 후 잔존용량 (mAh/g) 잔존비(%)
실시예 35 5/18/72/5 547 513 93.8
실시예 36 7/18/72/3 538 507 94.2
실시예 37 3/18/72/7 542 503 92.8
비교예 21 1/18/72/9 535 447 83.5
비교예 22 9.6/18/72/0.4 528 398 75.4
흑연/SiOx(80/20)의 이론용량: 577.6 mAh/g
상기 실시예들 및 비교예들의 결과를 비교하면, 본 발명의 전도성 고분자 및 탄소나노튜브 혼합물을 이용하여 여기에 활물질을 혼합하여 활물질 조성물 슬러리를 만들고 이를 이용하여 리튬이온배터리를 제조하면 전극층이 극판과의 접착력이 매우 우수하고, 전극층 자체의 치밀도가 양호한 것을 알 수 있다. 또한 본 발명의 전도성 고분자 바인더와 탄소나노튜브만을 혼합하여 제조한 활물질 조성물을 이용하여 배터리 셀을 만들 경우 충방전 사이클 시험 후 잔존용량이 다른 바인더, 즉 전기절연성의 바인더 또는 카본블랙을 사용한 경우에 비하여 월등히 높음을 알 수 있다. 따라서 본 발명의 기술을 이용하여 제조한 리튬이온배터리의 수명특성이 크게 향상됨을 알 수 있다.
위와 같이 제조된 본 발명의 활물질 조성물을 포함하는 리튬이온배터리의 예로서 도면을 참고하여 설명한다. 도 1 및 도 2에서 보여지는 바와 같이 상기 리튬이온배터리는 양극집전체(10), 양극물질층(20), 분리막(30), 음극물질층(40), 음극집전체(50), 밀봉을 위한 가스켓(80) 및 케이스(90)로 구성된다.
본 발명의 활물질 조성물은 양극물질층(20) 및 음극물질층(40)에 사용이 될 수 있으며, 도시된 리튬이온배터리의 구조 뿐만 아니라, 활물질을 사용하는 일반적인 리튬이온배터리에 다양하게 사용이 가능하다.
본 발명의 리튬이온배터리는 전기자동차는 물론 휴대폰이나 노트북 등 다양한 배터리를 사용하는 기기에 사용될 수 있다.

Claims (22)

  1. 리튬이온배터리에 있어서,
    상기 리튬이온배터리의 음전극이나 양전극 중 어느 하나 또는 두 전극의 활물질 조성물이,
    셀루로오스계 화합물을 템플레이트로 사용하여 합성된 셀루로오스계 전도성 고분자 바인더, 또는
    상기 셀루로오스계 전도성 고분자 바인더와 다른 종류의 화합물을 템플레이트로 사용하여 합성된 전도성 고분자 하나 이상과 혼합된 혼합 전도성 고분자 바인더, 또는
    수용액 상태에서 수소이온지수(pH)가 2-6의 범위인 고분자 화합물을 템플레이트로 사용하여 합성된 셀루로오스계 전도성 고분자 바인더,
    중 어느 하나 이상을 포함하는 것을 특징으로 하는 리튬이온배터리.
  2. 제1항에 있어서,
    상기 셀루로오스계 화합물은 셀루로오스 분자의 -OR기의 -R 성분의 일부가 물에 녹여줄 수 있는 성분으로 치환되어 있고, 상기 치한도가 0.5 이상인 것; 그리고
    상기 셀루로오스계 화합물은 셀루로오스 분자의 -OR의 -R 성분이 알킬카복실산 또는 이들의 염화합물 또는 하이드록시기인 임;
    을 특징으로 하는 리튬이온배터리.
  3. 제2항에 있어서,
    상기 알킬카복실산 또는 이들의 염화합물의 알킬기의 길이가 탄소갯수가 1-4이며; 그리고
    상기 셀루로오스계 화합물은 치환도가 0.5 이상인 카복시메틸셀루로오스(carboxy methyl cellulose: CMC)인 것;
    을 특징으로 하는 리튬이온배터리.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 셀루로오스계 화합물은 중량평균분자량이 50,000-4,000,000그램/몰이며
    이들을 템플레이트로 사용하여 합성된 전도성 고분자는 아닐린, 피롤, 티오펜 또는 이들로부터 변성된 변성 전도성 고분자 중 어느 하나 또는 그 이상을 포함하며, 그리고
    상기 전도성 고분자의 표면저항이 108 오움/면적 이하인 것,
    을 특징으로 하는 리튬이온배터리.
  5. 제4항에 있어서,
    상기 셀루로오스계 전도성 고분자는 폴리(3,4-에틸렌디옥시티오펜):카복시메틸셀루로오스(PEDOT:CMC)로서, 템플레이트로서 카복시메틸셀루로오스(CMC)와 모노머인 EDOT의 비율은 EDOT 1몰 대비 몰비로 0.2-5 몰비의 범위로 포함하여 합성되며, 그리고
    상기 PEDOT:CMC의 수분산액에 들어있는 PEDOT:CMC 고형분 함량이 1-10%임을 특징으로 하는 리튬이온배터리.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 셀루로오스계 전도성 고분자 바인더의 템플레이트는 셀루로오스계 화합물에 아크릴계 화합물을 혼합한 혼합템플레이트임을 특징으로 하는 리튬이온배터리.
  7. 제6항에 있어서,
    상기 셀루로오스계 화합물은 카복시메틸셀루로오스이고, 그리고 상기 다른 종류의 화합물은 아크릴계 고분자는 폴리아크릴산이며,
    바인더 수분산액에 들어있는 혼합템플레이트로 합성된 전도성 고분자의 고형분 함량이 1-10%임, 그리고
    상기 카복시메틸셀루로오스와 폴리아크릴산의 무게비율은 (95:5)~(5:95)임,
    을 특징으로 하는 리튬이온배터리.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 다른 종류의 화합물은 수용액 상태에서 수소이온지수(pH)가 2-6의 범위인 고분자 화합물 또는 폴리스티렌설폰산(polystyrenesulfonic acid; PSSA)이며, 그리고
    바인더 수분산액에 들어있는 전체 전도성 고분자 바인더의 고형분 함량이 1-10%을 특징으로 하는 리튬이온배터리.
  9. 제8항에 있어서,
    상기 다른 종류의 화합물은 폴리아크릴산 (PAA) 또는 폴리스티렌설폰산(polystyrenesulfonic acid; PSSA) 중 어느 하나 이상을 포함하는 것이며, 그리고
    상기 셀루로오스계 화합물을 템플레이트로 사용하여 합성된 전도성 고분자와 다른 종류의 화합물을 템플레이트로 사용하여 합성된 전도성 고분자의 혼합비율은 하나의 성분이 무게비로 5% 이상임;
    을 특징으로 하는 리튬이온배터리.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 활물질 조성물이 전극층의 치밀도 및 전도도 증진을 위한 탄소나노튜브를 더 포함하는 것을 특징으로 하는 리튬이온배터리.
  11. 제10항에 있어서,
    상기 활물질 조성물에 있어서 탄소나노튜브는 전도성 고분자 바인더의 고형분 100 중량부의 무게 대비 5-300중량부 임을 특징으로 하는 리튬이온배터리.
  12. 제10항 또는 제11항에 있어서,
    상기 탄소나노튜브는 일중벽, 이중벽 및 다중벽 탄소나노튜브 중 어느 하나 또는 그 이상이 혼합된 것이며, 그리고
    탄소나노튜브의 길이는 5-100 미크론임,
    을 특징으로 하는 리튬이온배터리.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서,
    상기 활물질 조성물이 음극 활물질 조성물로서,
    실리콘 성분을 유효 성분으로 하는 음극활물질, 또는 상기 실리콘 성분에 흑연이 포함된 음극활물질을 포함하는 것을 특징으로 하는 리튬이온배터리.
  14. 제13항에 있어서,
    상기 음극활물질의 실리콘 성분이 실리콘 또는 실리콘계산화물 성분이며 그리고 실리콘 성분을 유효성분으로 포함하는 음극활물질인 경우 상기 음극활물질의 함량이 음극활물질 조성물 전체 고형분 무게 대비 10-85중량%이거나, 또는
    상기 음극활물질이 상기 실리콘 또는 실리콘계산화물 성분에 흑연이 포함된 음극활물질인 경우 상기 음극활물질의 함량이 음극활물질 조성물 전체 고형분 무게 대비 40-98중량% 인 것,
    을 특징으로 하는 리튬이온배터리.
  15. 제14항에 있어서,
    흑연과 혼합되는 실리콘 또는 실리콘계 산화물 성분의 함량은 전체 음극활물질의 1-90중량% 임을 특징으로 하는 리튬이온배터리.
  16. 제13항 내지 제15항 중 어느 한 항에 있어서,
    상기 음극활물질 조성물을 포함한 음전극 활물질 슬러리 조성물이 상기 음전극 활물질 슬러리의 전체 고형분 함량의 5-60중량% 이며, 그리고
    상기 음전극의 두께가 2 내지 50 미크론임,
    을 특징으로 하는 리튬이온배터리.
  17. 제13항 내지 제16항 중 어느 한 항에 있어서,
    상기 음극활물질이 실리콘 성분을 단독 유효성분으로 포함하는 음극활물질인 경우 음극층의 두께는 5-40 미크론이거나, 또는
    상기 음극활물질이 상기 실리콘 또는 실리콘계산화물 성분에 흑연이 포함된 음극활물질인 경우 상기 음극층의 두께는 5-50 미크론인 것,
    을 특징으로 하는 리튬이온배터리.
  18. 제13항 내지 제17항 중 어느 한 항에 있어서,
    음전극 활물질 슬러리의 점도조절용으로 증점제를 더 첨가하며, 그리고
    상기 음전극 활물질 슬러리 점도조절용 증점제는 하이드록시프로필셀루로오스, 에틸셀루로오스, 카복시메틸셀루로오스를 포함하는 셀루로오스계 증점제, 또는 중량평균분자량이 1,000,000g/mole 이상인 아크릴계 고분자 화합물임,
    을 특징으로 하는 리튬이온배터리.
  19. 제1항 내지 제12항 중 어느 한 항에 있어서,
    상기 활물질 조성물이 양극 활물질 조성물로서,
    양극활물질은 리튬, 망간, 니켈, 코발트, 알루미늄, 등의 성분 중 어느 하나 또는 그 이상을 포함하는 것임;
    을 특징으로 하는 리튬이온배터리.
  20. 리튬이온배터리의 음전극 또는 양전극의 활물질 조성물에 사용되는 바인더에 있어서,
    상기 바인더는,
    셀루로오스계 화합물을 템플레이트로 사용하여 합성된 셀루로오스계 전도성 고분자 바인더, 또는
    상기 셀루로오스계 전도성 고분자 바인더와 다른 종류의 화합물을 템플레이트로 사용하여 합성된 전도성 고분자 하나 이상과 혼합된 혼합 전도성 고분자 바인더, 또는
    수용액 상태에서 수소이온지수(pH)가 2-6의 범위인 고분자 화합물을 템플레이트로 사용하여 합성된 셀루로오스계 전도성 고분자 바인더,
    중 어느 하나 또는 둘 이상을 포함한 바인더인 것을 특징으로 하는 리튬이온배터리의 활물질 조성물용 바인더.
  21. 제20항에 있어서,
    상기 셀루로오스계 전도성 고분자 바인더의 템플레이트는 셀루로오스계 화합물에 아크릴계 화합물을 혼합한 혼합템플레이트임을 특징으로 하는 리튬이온배터리의 활물질 조성물용 바인더.
  22. 제20항 또는 제21항에 있어서,
    상기 바인더는 폴리아크릴산(PAA) 또는 폴리스티렌설폰산(polystyrenesulfonic acid; PSSA) 중 어느 하나 또는 둘 이상을 포함하는 것이며, 그리고
    상기 다른 종류의 화합물을 템플레이트로 합성된 전도성 고분자들의 혼합비율은 하나의 성분이 무게비로 5중량% 이상임,
    을 특징으로 하는 리튬이온배터리의 활물질 조성물용 바인더.
PCT/KR2019/002430 2018-03-02 2019-02-28 셀루로오스계 또는 약산 화합물계 전도성 고분자를 구비한 전극 활물질 및 이를 포함한 리튬이온배터리 WO2019168376A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020568653A JP6980217B2 (ja) 2018-03-02 2019-02-28 セルロース系伝導性高分子を含む活物質組成物用バインダー及びこれから製造されたリチウムイオン電池
US16/976,843 US20210005893A1 (en) 2018-03-02 2019-02-28 Cellulose-templated conductive polymer containing binder for active material compositions and lithium ion batteries prepared therefrom
EP19761451.4A EP3761409A4 (en) 2018-03-02 2019-02-28 ACTIVE ELECTRODE MATERIAL WITH CONDUCTIVE CELLULOSE-BASED POLYMER OR BASED ON A WEAK ACID COMPOUND AND WITH A LITHIUM-ION BATTERY
CN201980016569.8A CN111819716B (zh) 2018-03-02 2019-02-28 包含纤维素基导电高分子的活性物质组合物用粘结剂及利用其制备而成的锂离子电池

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2018-0025045 2018-03-02
KR20180025045 2018-03-02
KR10-2018-0125831 2018-10-22
KR20180125831 2018-10-22
KR10-2018-0173583 2018-12-31
KR1020180173583A KR102225340B1 (ko) 2018-12-31 2018-12-31 리튬이 삽입된 리튬이차전지용 음극소재 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2019168376A1 true WO2019168376A1 (ko) 2019-09-06

Family

ID=67805024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002430 WO2019168376A1 (ko) 2018-03-02 2019-02-28 셀루로오스계 또는 약산 화합물계 전도성 고분자를 구비한 전극 활물질 및 이를 포함한 리튬이온배터리

Country Status (5)

Country Link
US (1) US20210005893A1 (ko)
EP (1) EP3761409A4 (ko)
JP (1) JP6980217B2 (ko)
CN (1) CN111819716B (ko)
WO (1) WO2019168376A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410455A (zh) * 2021-06-16 2021-09-17 远景动力技术(江苏)有限公司 一种负极极片及其制备方法和应用
WO2022138916A1 (ja) * 2020-12-24 2022-06-30 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極、及び非水電解質二次電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12046756B2 (en) * 2020-10-30 2024-07-23 Electronics And Telecommunications Research Institute Cellulose derivative composition for secondary battery binder and method of preparing composition for secondary battery electrode comprising the same
KR20230057741A (ko) * 2021-10-22 2023-05-02 에스케이온 주식회사 수명특성이 향상된 음극 및 이를 포함하는 이차전지
CN114843448B (zh) * 2022-06-09 2024-08-16 远景动力技术(江苏)有限公司 缓解电极极片腐蚀的方法、电极极片和锂离子电池
WO2023242670A1 (ja) * 2022-06-17 2023-12-21 株式会社半導体エネルギー研究所 リチウムイオン二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140070258A (ko) * 2012-11-30 2014-06-10 주식회사 엘지화학 양극 활물질 조성물 및 이를 포함하는 양극 및 리튬 이차 전지
KR20160100133A (ko) 2015-02-13 2016-08-23 삼성에스디아이 주식회사 양극활물질조성물, 이로부터 제조된 양극 및 리튬전지
WO2017106337A1 (en) * 2015-12-15 2017-06-22 The Board Of Trustees Of The Leland Stanford Junior University Improved electrolytes, current collectors, and binders for rechargeable metal-ion batteries
KR20180012384A (ko) * 2016-07-26 2018-02-06 인천대학교 산학협력단 폴리아크릴산과 폴리아닐린의 상호작용을 이용한 음극용 고분자 바인더

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100508570B1 (ko) * 2003-04-07 2005-08-17 주식회사 엘지화학 전극 활물질 슬러리 제조시의 분산제 조성 및 그 이용
WO2007029934A1 (en) * 2005-09-06 2007-03-15 Lg Chem, Ltd. Composite binder containing carbon nanotube and lithium secondary battery employing the same
US9178199B2 (en) * 2012-02-21 2015-11-03 Samsung Sdi Co., Ltd. Lithium battery
FR3018805A1 (fr) * 2014-03-24 2015-09-25 Commissariat Energie Atomique Materiau composite comprenant des nano-objets, notamment des nano-objets de carbone, son procede de preparation, et encre et electrode comprenant ce materiau.
KR102231209B1 (ko) * 2014-05-22 2021-03-22 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
CN105047935B (zh) * 2015-06-30 2018-06-26 深圳清华大学研究院 复合粘结剂及其制备方法、锂电池
CN105428083A (zh) * 2015-12-30 2016-03-23 益阳市万京源电子有限公司 一种具备高导电率高机械强度的电极浆料
EP3455892B1 (en) * 2016-05-13 2024-02-07 QuantumScape Battery, Inc. Solid electrolyte separator bonding agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140070258A (ko) * 2012-11-30 2014-06-10 주식회사 엘지화학 양극 활물질 조성물 및 이를 포함하는 양극 및 리튬 이차 전지
KR20160100133A (ko) 2015-02-13 2016-08-23 삼성에스디아이 주식회사 양극활물질조성물, 이로부터 제조된 양극 및 리튬전지
WO2017106337A1 (en) * 2015-12-15 2017-06-22 The Board Of Trustees Of The Leland Stanford Junior University Improved electrolytes, current collectors, and binders for rechargeable metal-ion batteries
KR20180012384A (ko) * 2016-07-26 2018-02-06 인천대학교 산학협력단 폴리아크릴산과 폴리아닐린의 상호작용을 이용한 음극용 고분자 바인더

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RAMADHONI, BENNI: "Synthesis of Poly(3,4-ethylenedioxythiophene)/ Poly(acrilic acid) (PEDOT/PAA) as a Binder for Lithium-ion Batteries (LIBs", MASTER THESIS, vol. 33, 1 December 2014 (2014-12-01), pages 1 - 41, XP009522631 *
See also references of EP3761409A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138916A1 (ja) * 2020-12-24 2022-06-30 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極、及び非水電解質二次電池
CN113410455A (zh) * 2021-06-16 2021-09-17 远景动力技术(江苏)有限公司 一种负极极片及其制备方法和应用

Also Published As

Publication number Publication date
EP3761409A4 (en) 2021-12-08
JP2021518985A (ja) 2021-08-05
CN111819716B (zh) 2023-07-14
CN111819716A (zh) 2020-10-23
EP3761409A1 (en) 2021-01-06
US20210005893A1 (en) 2021-01-07
JP6980217B2 (ja) 2021-12-15

Similar Documents

Publication Publication Date Title
WO2019168376A1 (ko) 셀루로오스계 또는 약산 화합물계 전도성 고분자를 구비한 전극 활물질 및 이를 포함한 리튬이온배터리
WO2021066458A1 (ko) 복합 음극 활물질, 이의 제조방법, 및 이를 포함하는 음극
WO2021066560A1 (ko) 양극 및 이를 포함하는 이차 전지
WO2021215830A1 (ko) 음극 및 이를 포함하는 이차 전지
WO2020149682A1 (ko) 음극 및 이를 포함하는 리튬 이차 전지
WO2022071704A1 (ko) 전극
WO2016129745A1 (ko) 가역적인 산-염기 상호작용을 통해 물리적으로 가교된 실리콘 음극용 고분자 바인더
WO2020055017A1 (ko) 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬 이차전지
JP5428126B2 (ja) 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、これを用いた非水電解液系エネルギーデバイス電極及び非水電解液系エネルギーデバイス
WO2019225884A1 (ko) 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
WO2020122549A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2022211589A1 (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
WO2022086289A1 (ko) 음극 및 이를 포함하는 이차 전지
WO2021086098A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2022164244A1 (ko) 음극 및 이를 포함하는 이차전지
WO2021020805A1 (ko) 복합 음극 활물질, 이의 제조방법, 이를 포함하는 음극, 및 이차전지
WO2017171372A1 (ko) 전극 활물질 슬러리 및 이를 포함하는 리튬 이차전지
WO2020036336A1 (ko) 리튬 이차 전지용 전해질
WO2022260412A1 (ko) 전극, 이를 포함하는 리튬전지 및 이의 제조방법
WO2024080826A1 (ko) 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
WO2021029534A1 (ko) 표면에 인산 음이온이 흡착된 옥시수산화질산철, 이의 제조방법, 상기 표면에 인산 음이온이 흡착된 옥시수산화질산철을 포함하는 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2024039227A1 (ko) 리튬이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬이차전지용 양극
WO2018012877A1 (ko) 고분자, 및 이를 포함하는 전해질과 리튬 전지
WO2021251663A1 (ko) 음극 및 이를 포함하는 이차전지
WO2018236046A1 (ko) 리튬-황 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568653

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019761451

Country of ref document: EP