WO2019167862A1 - 管路ミキサ及びこれを用いた混合物の製造供給方法 - Google Patents

管路ミキサ及びこれを用いた混合物の製造供給方法 Download PDF

Info

Publication number
WO2019167862A1
WO2019167862A1 PCT/JP2019/006986 JP2019006986W WO2019167862A1 WO 2019167862 A1 WO2019167862 A1 WO 2019167862A1 JP 2019006986 W JP2019006986 W JP 2019006986W WO 2019167862 A1 WO2019167862 A1 WO 2019167862A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressed air
supply
pipe
rotating shaft
mixture
Prior art date
Application number
PCT/JP2019/006986
Other languages
English (en)
French (fr)
Inventor
千田 昌平
二三夫 藤井
Original Assignee
株式会社チダエンジニアリング
伊藤忠Tc建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社チダエンジニアリング, 伊藤忠Tc建機株式会社 filed Critical 株式会社チダエンジニアリング
Publication of WO2019167862A1 publication Critical patent/WO2019167862A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71805Feed mechanisms characterised by the means for feeding the components to the mixer using valves, gates, orifices or openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7173Feed mechanisms characterised by the means for feeding the components to the mixer using gravity, e.g. from a hopper
    • B01F35/71731Feed mechanisms characterised by the means for feeding the components to the mixer using gravity, e.g. from a hopper using a hopper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/75455Discharge mechanisms characterised by the means for discharging the components from the mixer using a rotary discharge means, e.g. a screw beneath the receptacle
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F7/00Equipment for conveying or separating excavated material

Definitions

  • the present invention relates to a pipe mixer and a method for producing and supplying a mixture using the same.
  • the pipe mixer mixes while transporting a plurality of flowable materials supplied into the pipe, and is capable of continuous mass processing and is effective for mixing materials with different specific gravities. Therefore, it has been widely used not only for the treatment of mud soil but also for the production of cement milk, the mixing of flocculants for purification of polluted water, the production of bubble-mixed lightweight soil, and the like (see, for example, Patent Documents 1 to 3).
  • FIG. 1 shows an example of a pipe mixer 1.
  • the line mixer 1 includes a material supply unit 11 to which the flowable materials 91 and 92 to be mixed are supplied, a stirring unit 12 that transfers the flowable materials 91 and 92 while mixing, and a discharge port from which the mixture 95 is discharged. 13 in this order in the flow direction, and is concentrically supported in a range including the material supply unit 11 and the agitation unit 12 in the mixing channel 10 and is rotationally driven by a rotational drive source 29 such as a motor.
  • And wings 22 are examples of a pipe mixer 1.
  • the fluid materials 91 and 92 to be mixed are not particularly limited as long as they have fluidity, and are appropriately selected from slurry such as mud, solid-liquid mixture other than slurry, liquid, and powder. be able to.
  • the flowable materials 91 and 92 supplied to the material supply unit 11 are pushed into the agitation unit 12 of the mixing pipe line 10 by the supply screw blades 21, and thus the extrusion capability (supply) of the supply screw blades 21.
  • Volume) is the maximum processing capacity of the mixer. Therefore, the fluid materials 91 and 92 to be mixed are respectively supplied to the material supply unit 11 of the mixing pipe line 10 so as to have a predetermined mixing ratio within this range.
  • the material supply part 11 of the pipe mixer 1 is provided with supply ports 31 and 32 for supplying a plurality of flowable materials 91 and 92 to be mixed.
  • the supply ports 31 and 32 can be openings formed in the tube wall of the mixing conduit 10 or openings at the end of the mixing conduit 10.
  • the rotary shaft 20 is a hollow shaft, and an opening is provided in the peripheral wall of the rotary shaft 20 to serve as a supply port. At least one of the flowable materials 91 and 92 passes through the rotary shaft 20 into the mixing pipe 10. It can also be supplied. In the example shown in FIG. 1, the first flowable material 91 is transferred from the first supply port 31 opened to the upstream portion of the material supply unit 11 of the mixing conduit 10, and the rotation shaft is further downstream than the first supply port 31.
  • the second flowable material 92 is supplied from the second supply port 32 provided at 20, but as shown in the example shown in FIG.
  • a first supply port 31 for supplying the flowable materials 91 and 92 and a second supply port 32 for supplying the second flowable materials 91 and 92 to the pipe wall on the downstream side of the material supply unit 11 are provided. May be.
  • Reference numeral 28 denotes a swivel device attached to the end of the rotating shaft 20, and the second fluid material 92 is supplied into the rotating shaft 20 that is rotationally driven via the swivel device 28.
  • a pumping device that pumps the fluid material 42 is used in combination.
  • the second flowable material 92 is powder
  • the second flowable material 92 is moved via the swivel device 28 by the compressed air supplied from an air compressor (not shown).
  • FIG. 2 shows a pressure supply device 40 for this purpose.
  • the storage tank 41, the hopper 42 to which the second fluid material 92 in the storage tank 41 is supplied, and the second fluidity in the hopper 42 are shown.
  • a rotary feeder 43 that cuts out the material 92 and feeds it in a fixed amount, and feeds the second fluid material 92 that is fed in a constant amount from the rotary feeder 43 on a compressed air 94 from an air compressor (not shown). It is.
  • the second fluid material 92 is liquid, slurry, or a solid-liquid mixture other than slurry, the second fluid material 92 can be pumped to the second supply port 32 by a pump for liquid pumping.
  • a typical example of the use of the pipe mixer 1 is a dredged soil treatment as shown in FIG.
  • dredged mud is supplied to the mud pump 51 by the backhoe 50, and the dredged mud is supplied to the pipe mixer 1 as the first fluid material 91 by the mud pump 51 and the powder solidifying material is supplied to the second mixer.
  • the fluid material 92 is compressed and supplied from the pressure supply device 40 to the pipeline mixer 1 by compressed air 94, and after the mud and the powder solidified material are sufficiently mixed in the pipeline mixer 1, the outlet of the pipeline mixer 1 is discharged.
  • the mixture 95 (process soil) discharged from 13 is pumped to a predetermined processing place by the transport pump 52.
  • the transport pump 52 may be transported to a processing place by a belt conveyor, or it may be directly put into the pit from the pipeline mixer 1 and the mixture 95 in the pit may be carried out by a dump truck. Further, even if a piston-type pressure feed pump such as a concrete pump is used as the mud feed pump 51, the quantity of the mud supplied is increased because the screw blades of the pipe mixer 1 are used to supply a fixed amount to the stirring unit 12. In addition, the blending amount can be easily controlled by controlling the supply amount of the solidifying material.
  • FIG. 4 shows an example in which low moisture content mud soil, contaminated soil, incinerated ash, etc. are used as the first fluid material 91 and the powder solidified material is mixed as the second fluid material 92 by the pipe mixer 1 to form treated soil. Is shown. In this example, it is assumed that the first flowable material 91 is quantitatively supplied by a belt conveyor 53 with a metering device.
  • the fixed amount supply device 60 can also be attached to one first supply port 31.
  • the fixed amount supply device 60 in the illustrated example includes a storage tank 61 for the first fluid material 91, a table feeder 62 provided at a lower portion of the storage tank 61, and a first flow discharged from the discharge port 63 of the table feeder 62. And a hopper 64 for introducing the functional material 91 into the first supply port 31 of the pipe line mixer 1.
  • the first flowable material 91 supplied into the storage tank 61 is discharged while being stirred by a stirring blade 67 and a discharge blade 68 attached to a vertical rotating shaft 66 that is rotationally driven by a rotational drive source 65 such as a motor.
  • the liquid is sequentially discharged from the outlet 63 to the first supply port 31 of the pipe mixer 1.
  • a screw conveyor 72 is provided below the storage hopper 71, and a discharge port 73 of the screw conveyor 72 is connected to the material supply unit 11 of the pipe line mixer 1, and the second stored in the storage hopper 71.
  • the fluid material 92 is quantitatively supplied to the pipe mixer 1 by a screw conveyor.
  • cement milk is produced by using the first fluid material 91 as water and the second fluid material 92 as cement, or using the first fluid material 91 as mud and the second fluid material 92 as It is suitable for producing a slurry-type solidified soil by using cement.
  • the pipe mixer 1 can also be used for the production of a bubble-mixed lightweight ground material. That is, solidified soil, cement milk, or mortar mixed with generated soil such as mud and solidified material such as cement is supplied to the pipe mixer 1 as the first fluid material 91 in an unsolidified state.
  • water is mixed with a foaming agent mainly composed of a surfactant in a diluting device 76 to produce a foaming agent liquid 96, and this foaming agent liquid 96 is supplied to a foaming device 78 by a pump 77 to be compressed air.
  • the bubble liquid is produced by mixing with 94 and foaming, and this bubble liquid is supplied to the pipe mixer 1 as the second fluid material 92.
  • the first fluid material 91 and the bubble liquid (second fluid material 92) are mixed, and the mixture 95 as the bubble-mixed lightweight ground material is discharged.
  • the main problem of the present invention is to enable transport of the mixture in a simpler and space-saving manner.
  • a material supply section to which a plurality of flowable materials are supplied, a stirring section for transferring a plurality of flowable materials while mixing, and a mixing pipe having a discharge port for discharging the mixture in this order in the flow direction;
  • a supply port for supplying the flowable material to the material supply unit;
  • a rotating shaft that is coaxially supported and rotationally driven in a range including the material supply unit and the stirring unit in the mixing pipe line, A supply screw blade provided in a portion of the rotating shaft located in the material supply unit;
  • In a pipe mixer provided with a stirring blade provided in a portion located in the stirring portion in the rotating shaft and projecting in a radial direction, Between the stirring section and the discharge port in the mixing pipe line, having a material seal part,
  • the rotating shaft extends to the material seal part, In the portion located in the material seal part in the rotating shaft, the portion extending from the outer peripheral surface of the rotating shaft to the inner peripheral surface of the mixing pipe has a shape
  • the mixture produced by the pipe mixer is not discharged from the pipe mixer once, but is pneumatically fed through the conveying pipe connected to the discharge port of the pipe mixer.
  • the mixture can be transported in a space-saving manner.
  • by providing the material seal portion having the discharge screw blades it is possible to prevent backflow due to back pressure of air pressure feeding.
  • the compressed air supply means includes a compressed air supply pipe interposed between the outlet of the mixing pipe and the transport pipe, a compressed air supply provided in the compressed air supply pipe, An air compressor for supplying compressed air to the compressed air supply port, A pipeline mixer according to a first aspect.
  • the compressed air for pressure feeding is supplied downstream from the discharge port of the mixing pipe line, thereby making it possible to cope with conveyance over a longer distance (for example, hundreds of tens of meters).
  • the compressed air supply line has a mixture supply part having a mixture supply port connected to the discharge port of the mixing line, and a second material seal part provided on the downstream side of the mixture supply part. And In the compressed air supply line, a second rotation shaft that is rotationally driven and is concentrically supported in a range including the mixture supply portion and the second material seal portion is provided. A portion extending from the outer peripheral surface of the shaft to the inner peripheral surface of the compressed air supply pipe has a shape that continues in a spiral direction around the second rotation shaft, and pushes the mixture to the transport pipe side.
  • the second rotating shaft is a hollow shaft having the compressed air supply port opened at an end portion on the downstream side thereof, and a swivel device connected to an end portion of the second rotating shaft opposite to the compressed air supply port. Compressed air is supplied into the second rotating shaft via A pipeline mixer according to the second aspect.
  • a second material seal portion having a second discharge screw blade is provided, and compressed air is supplied to the downstream side of the second material seal portion, so that it is possible to handle longer distances (for example, several hundred meters to several kilometers). It is what.
  • a supply port for the first fluid material which is opened in the material supply section of the mixing conduit;
  • a second fluidity material supply port provided downstream of the first fluidity material supply port in the rotating shaft;
  • a third fluidity material supply port provided downstream of the first fluidity material supply port on the rotating shaft;
  • the third fluid material is a solidification aid or an extender
  • the first fluidity material is contaminated mud
  • the second fluid material is a pollutant reducing agent
  • the third fluid material is a powder solidifying material.
  • the plurality of flowable materials include a powder solidification material or a powder solidification aid
  • the supply port of the powder solidification material or powder solidification aid to the material supply unit is on the rotation direction side of the rotation shaft with respect to the tube wall on the upper side of the mixing pipe line, just above the rotation center of the rotation shaft. Open to the part of The pipe mixer according to any one of the first to fourth aspects.
  • the powder solidification material or powder solidification aid is supplied from the supply port provided on the pipe wall of the mixing pipe to the water or mud that is quantitatively supplied to the material supply unit. It is possible to charge the agent.
  • powder solidification material or powder solidification aid is dropped and supplied into the mixing pipe line from directly above the rotation center of the rotation shaft, water or muddy water splashes toward the supply port by the centrifugal force of the rotating supply screw blades.
  • the powder solidifying material or the powder solidifying aid is prevented from dropping, and the powder solidifying material or the powder solidifying aid adheres to the vicinity of the supply port and is solidified, thereby blocking the supply port.
  • the powder solidification material or powder solidification aid is rotated. Since it becomes sucked into (wound into) the rotating water or mud with the rotation of the powder, it becomes difficult for the powder solidifying material or the powder solidifying aid to adhere to the vicinity of the supply port, and the possibility that the supply port is blocked is reduced. be able to.
  • the stirring blade is excellent in both the stirring function and the transfer function.
  • the stirring blade is provided intermittently in a spiral direction around the rotation axis, At least some of the agitating blades are provided in a direction to exert an upstream transfer action by rotation of the rotating shaft.
  • the line mixer according to any one of the first to fifth aspects.
  • ⁇ Eighth aspect> Production of a mixture comprising mixing a plurality of flowable materials using the line mixer according to any one of the first to seventh aspects, and pneumatically feeding the mixture to a conveyance destination via the conveyance line Supply method.
  • the mixture can be transported in a simpler and space-saving manner.
  • FIG. 1 It is an equipment block diagram which shows the usage example of a pipe line mixer. It is an AA arrow line view of FIG. It is sectional drawing of a biaxial paddle mixer. It is a principal part enlarged front view of a rotating shaft. It is a principal part enlarged front view of a rotating shaft.
  • FIG. 8 shows a first form of the pipe mixer 1.
  • the pipe mixer 1 includes a material supply unit 11 to which a plurality of fluid materials 91 and 92 are supplied, a stirring unit 12 that transports the plurality of fluid materials 91 and 92 while mixing, and a discharge from which the mixture 95 is discharged.
  • the mixing pipe 10 having the outlets 13 in this order in the flow direction, the supply ports 31 and 32 for supplying the flowable materials 91 and 92 to the material supply section 11, the material supply section 11 and the stirring in the mixing pipe 10
  • a rotary shaft 20 that is concentrically supported in a range including the portion 12 and is rotationally driven, a supply screw blade 21 provided in a portion of the rotary shaft 20 located in the material supply unit 11, and a stirring unit in the rotary shaft 20 12 and a stirring blade 22 projecting in the radial direction, provided in a portion located at 12.
  • the rotating shaft 20 is supported sideways (horizontal), and the portion having the screw blades and the stirring blades 22 in the mixing pipe 10 is also a horizontal straight pipe, but these are directed toward the downstream side. It is also possible to arrange uphill or downhill.
  • the first fluid material 91 such as mud is sent from the first supply port 31 opened to the upstream part of the material supply unit 11 of the mixing pipe 10, and further downstream from the first supply port 31.
  • a second fluid material 92 such as a powder solidifying material is supplied from a second supply port 32 provided on the rotary shaft 20 on the side.
  • Reference numeral 28 denotes a swivel device attached to the end of the rotating shaft 20, and the second fluid material 92 is supplied into the rotating shaft 20 that is rotationally driven via the swivel device 28.
  • the first supply port 31 for supplying the first fluid material 91 to the upstream side of the material supply unit 11 of the mixing pipe line 10 and the material supply unit 11 are provided. You may provide the 2nd supply port 32 for supplying the 2nd fluidity material 92 to the downstream pipe wall. As can be seen from these examples, the supply ports 31 and 32 for the material supply unit 11 are not particularly limited.
  • the material seal part 14 is provided between the stirring part 12 and the discharge port 13 in the mixing pipe line 10, the rotary shaft 20 extends to the material seal part 14, and the material seal part in the rotary shaft 20. 14, a portion extending from the outer peripheral surface of the rotating shaft 20 to the inner peripheral surface of the mixing pipe line 10 is continuous in a spiral direction with the rotating shaft 20 as the center (that is, having a missing portion such as a ribbon screw). And a discharge screw blade 23 for pushing the mixture 95 mixed in the stirring unit 12 to the discharge port 13.
  • the second fluid material 92 is supplied from the second supply port 32 by the compressed air 94, and the exhaust pressure of the supply air from the second supply port 32 is supplied.
  • a conveyance distance of 50 to 100 m is assumed. That is, at least one of the plurality of flowable materials 91 and 92 needs to be a powder solidification material supplied by compressed air 94, a powder solidification aid such as incineration ash, or gypsum.
  • the aforementioned pressure feeding device 40 can be used as the second fluid material supplying device.
  • the mixture 95 produced by the pipe mixer 1 is not discharged from the pipe mixer 1 once, but is pneumatically fed through the conveying pipe connected to the discharge port 13 of the pipe mixer 1.
  • the mixture 95 can be transported in a simpler and space-saving manner.
  • the material seal portion 14 having the discharge screw blades 23 it is possible to prevent backflow due to back pressure of pneumatic feeding.
  • a compressed air supply means dedicated to the pumping of the mixture 95 is not required (which may of course be combined).
  • the discharge screw blades 23 are preferably continuous around the rotation shaft 20 for two or more rounds, particularly three or more rounds, but may be less.
  • the pumping destination of the mixture 95 is not particularly limited, and may be a temporary storage unit such as a storage pit or a storage tank, or another transport device such as a belt conveyor 53 or a dump truck, or a nearby construction site (banking, abutment ⁇ It can be used as a place of use for retaining walls, tunnel backfilling, structure backfilling, etc.
  • the types of the flowable materials 91 and 92 to be mixed, and the supply devices for the flowable materials 91 and 92 are described in the section of the background art. Since what has been described can be used as appropriate, description thereof is omitted here.
  • the compressed air 97 for supplying the second flowable material 92 is used as the compressed air 97 supplying means for pumping the mixture 95.
  • Compressed air supply means 80 can also be provided. That is, in this second embodiment, a compressed air supply pipe 81 having a compressed air supply port 82 is interposed between the discharge port 13 of the mixing pipe 10 and the transport pipe 15, and this compressed air supply port 82.
  • an air compressor (not shown) is connected. In this way, by supplying the compressed compressed air 97 downstream from the discharge port 13 of the mixing conduit 10, it is possible to cope with a longer distance (for example, hundreds of meters).
  • the compressed air supply pipe 81 uses an elbow pipe in the illustrated example, and a compressed air supply port 82 is provided in the middle of the compressed air supply pipe 81 toward the downstream pipe core.
  • a straight pipe is provided. It can also be.
  • a second material seal portion 86 having a second discharge screw blade 83 is provided as shown in FIG. It is also possible to supply compressed air 97 to the side. That is, in the third embodiment, the compressed air supply pipe 81 is provided on the downstream side of the mixture supply section 85 having a mixture supply port connected to the discharge port 13 of the mixing pipe 10 and the mixture supply section 85. The second material seal portion 86 is provided.
  • the compressed air supply pipe 81 is provided with a second rotary shaft 84 that is rotationally driven and is concentrically supported in a range including the mixture supply portion 85 and the second material seal portion 86.
  • a portion extending from the outer peripheral surface of the second rotating shaft 84 to the inner peripheral surface of the compressed air supply pipe 81 has a shape that continues in a spiral direction centering on the second rotating shaft 84, and the mixture 95 is transferred to the conveying pipe 15 side.
  • a second discharge screw blade 83 is provided to be pushed out.
  • the compressed air supply port 82 is not particularly limited, in the illustrated example, the second rotary shaft 84 is a hollow shaft with the compressed air supply port 82 opened at the downstream end thereof.
  • the compressed air 97 is supplied into the second rotating shaft 84 via a second swivel device 87 connected to the end opposite to the compressed air supply port 82. Accordingly, the compressed air 97 can be supplied along the tube core on the downstream side of the second discharge screw blade 83 of the compressed air supply pipe line 81 without using an elbow pipe as in the second embodiment.
  • a first supply port 31 for the first fluid material 91 is opened in the material supply section 11 of the pipe line 10, and the second fluid material 92 is provided downstream of the first supply port 31 in the rotary shaft 20.
  • the second supply port 32 is provided, and the third supply port 33 for the third flowable material 93 is preferably provided downstream of the second supply port 32 in the rotating shaft 20.
  • FIG. 11 also shows the case where the first fluid material 91 is supplied with soil or mud, the second fluid material 92 is solidified, and the third fluid material 93 is supplied with a solidification aid or an extender and mixed.
  • the solidification aid and the extender can be used more effectively, which is preferable.
  • FIG. 11 shows the case where the contaminated mud is supplied as the first fluid material 91, the reducing agent of the contaminant is supplied as the second fluid material 92, and the powder solidifying material is supplied and mixed as the third fluid material 93. It is preferable to supply each flowable material 91, 92, 93 in the order of the example because a reducing agent for pollutants can be used more effectively.
  • the mixing pipe line is used for water or mud as the first fluid material 91 that is quantitatively supplied to the material supply unit 11. It is possible to introduce a powder solidifying material or a powder solidifying aid as the second fluid material 92 from the second supply port 32 provided in the 10 tube walls.
  • the powder solidification material or powder solidification aid is dropped and supplied into the mixing pipe line 10 from directly above the rotation center of the rotation shaft 20, the centrifugal force of the rotating supply screw blade 21 causes the second supply port 32 to be supplied.
  • the water or muddy water splashing up prevents the powder solidifying material or the powder solidifying aid from falling, and the powder solidifying material or the powder solidifying aid adheres to the vicinity of the second supply port 32 and solidifies.
  • the supply port 32 may be blocked.
  • the second supply port 32 of the powder solidifying material or powder solidification aid to the material supply unit 11 is provided on the rotating shaft 20 on the upper tube wall of the mixing pipe 10.
  • a form is also proposed in which the opening is formed in a portion on the rotation direction (arrow direction in the drawing) side of the rotation shaft 20 from directly above the rotation center.
  • Such a charging principle can also be applied to the biaxial paddle mixer 87 as shown in FIG. 14, and in particular, the supply of the powder solidifying material or the powder solidifying aid above the rotary shaft 88.
  • the powder solidification material or the powder solidification aid is sucked (embraced) into the water or mud that rotates as the rotary shaft 88 rotates.
  • the stirring blades 22 are not particularly limited as long as they have a stirring function and a transfer function. However, as shown in FIG. 15, all the stirring blades 22 are centered on the rotating shaft 20 and are rotated by the rotation of the rotating shaft 20. When it is intermittently provided in the spiral direction of the virtual spiral screw surface 25 along the virtual spiral screw surface 25 that exhibits the downstream transfer action, both the stirring function and the transfer function are excellent. .
  • the stirring blades 22 f and 22 b are intermittently provided in the spiral direction around the rotating shaft 20, and at least some of the stirring blades 22 b are moved upstream by the rotation of the rotating shaft 20. It is preferable to be provided in such a direction as to exhibit the transfer action of the above because a turbulent flow is generated in the mixture 95 and the mixing property is excellent.
  • Reference numeral 25 in the figure indicates a virtual spiral screw surface that exerts a downstream transfer action by rotation of the rotary shaft 20, and reference numeral 22 f indicates a direction of exerting a downstream transfer action by the rotation of the rotary shaft 20.
  • the agitating blade is shown. In the illustrated example, the agitating blades 22b oriented to exert the upstream transfer action are provided every two blades, but may be provided every other blade, or every three or more blades.
  • the present invention mixes a plurality of flowable materials while conveying them, not only mud treatment, but also a wide range of cement milk production, mixing of flocculants for purification of polluted water, air bubbles mixed lightweight soil production, etc. It can be applied to applications.
  • Compressed air supply line 82 ... Compressed air supply port, 83 ... 2nd discharge screw blade, 84 ... 2nd rotating shaft, 85 ... Mixture supply part, 86 ... 2nd material seal part, 91, 92 ... Fluid material, 91 ... 1st fluidity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Accessories For Mixers (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

【課題】より簡素かつ省スペースでの混合物の搬送を可能とする。 【解決手段】上記課題は、混合管路10における撹拌部12と排出口13との間に、マテリアルシール部14を有し、回転軸20はマテリアルシール部14まで延びており、回転軸20におけるマテリアルシール部14に位置する部分に、回転軸20の外周面から混合管路10の内周面まで延びる部分が回転軸20を中心とする螺旋方向に連続する形状を有し、撹拌部12で混合された混合物95を排出口13に押し出す排出スクリュー羽根23が設けられており、排出口13から排出される混合物95を、排出口13に対して接続された搬送管路15を介して圧送するための圧縮空気を供給する圧縮空気供給手段80を有している、管路ミキサ1により解決される。

Description

管路ミキサ及びこれを用いた混合物の製造供給方法
 本発明は、管路ミキサ及びこれを用いた混合物の製造供給方法に関する。
 管路ミキサは、管路内に供給される複数の流動性材料を搬送しつつ混合するものであり、連続的に大量処理が可能であるうえ、比重の異なる材料の混合にも有効であること等から、泥土処理のみならず、セメントミルク製造、汚濁水浄化のための凝集剤の混合、気泡混合軽量土製造などに広く用いられてきた(例えば特許文献1~3参照)。
 図1は管路ミキサ1の一例を示している。この管路ミキサ1は、混合対象の流動性材料91,92が供給される材料供給部11、流動性材料91,92を混合しつつ移送する撹拌部12、及び混合物95が排出される排出口13を流れ方向にこの順に有する混合管路10と、この混合管路10内における材料供給部11及び撹拌部12を含む範囲に同心的に軸支され、モータ等の回転駆動源29により回転駆動される回転軸20と、回転軸20における材料供給部11に位置する部分に設けられたらせん状に連続する供給スクリュー羽根21と、回転軸20における撹拌部12に位置する部分に設けられた撹拌翼22とを有するものである。
 混合対象の流動性材料91,92は、流動性を有するものであれば特に限定されず、それぞれ、泥土等のスラリー、スラリー以外の固液混合物、液体、及び粉体等の中から適宜選択することができる。
 管路ミキサ1では、材料供給部11に供給される流動性材料91,92が、供給スクリュー羽根21により混合管路10の撹拌部12内に押し込まれるため、供給スクリュー羽根21の押し出し能力(供給量)がミキサの最大処理能力になる。よって、この範囲内で、所定の混合比となるように、混合管路10の材料供給部11に、混合対象の流動性材料91,92がそれぞれ供給される。
 管路ミキサ1の材料供給部11には、混合対象となる複数の流動性材料91,92をそれぞれ供給するための供給口31,32が設けられる。供給口31,32は、混合管路10の管壁に形成された開口又は混合管路10の端部の開口とすることができる。また、回転軸20を中空軸とするとともに、回転軸20の周壁に開口を設けてこれを供給口とし、流動性材料91,92の少なくとも1種を回転軸20内を通じて混合管路10内に供給することもできる。図1に示す例では、混合管路10の材料供給部11の上流部に開口された第1供給口31から第1流動性材料91を、また第1供給口31よりも下流側における回転軸20に設けた第2供給口32から第2流動性材料92を供給するようになっているが、図6に示す例のように、混合管路10の材料供給部11の上流側に第1流動性材料91,92を供給するための第1供給口31を、及び材料供給部11の下流側の管壁に第2流動性材料91,92を供給するための第2供給口32を設けてもよい。符号28は回転軸20の端部に取り付けられたスイベル装置を示しており、このスイベル装置28を介して回転駆動される回転軸20内に第2流動性材料92が供給される。
 回転軸20に設けられた供給口32から流動性材料42を供給する場合、この流動性材料42を圧送する圧送装置を組み合わせて使用する。例えば、図1に示す例において、第2流動性材料92が粉体の場合には、図示しないエアコンプレッサから供給される圧縮空気により第2流動性材料92をスイベル装置28を介して回転軸20内に圧送供給する。図2は、このための圧送供給装置40を示しており、貯留槽41と、この貯留槽41内の第2流動性材料92が供給されるホッパ42と、このホッパ42内の第2流動性材料92を切り出して定量供給を行うロータリーフィーダ43とを備えており、ロータリーフィーダ43から定量供給される第2流動性材料92を、図示しないエアコンプレッサからの圧縮空気94に乗せて圧送供給するものである。一方、第2流動性材料92が液体、スラリー、スラリー以外の固液混合物の場合には液体圧送用のポンプにより第2流動性材料92を第2供給口32に圧送することができる。
 管路ミキサ1の代表的な利用例としては、図3に示すような浚渫泥土処理を挙げることができる。図示例は、浚渫泥土をバックホウ50により送泥ポンプ51に供給し、この送泥ポンプ51により浚渫泥土を第1流動性材料91として管路ミキサ1に供給するとともに、粉体固化材を第2流動性材料92として圧送供給装置40から圧縮空気94により管路ミキサ1に圧送供給し、管路ミキサ1内で泥土と粉体固化材とを十分に混合した後、管路ミキサ1の排出口13から排出される混合物95(処理土)を、搬送ポンプ52により所定の処理場所まで圧送するものである。施工条件によっては、搬送ポンプ52に代えてベルトコンベアにより処理場所まで輸送したり、管路ミキサ1から直接ピットに投入し、ピット内の混合物95をダンプトラックで搬出したりすることもある。また、送泥ポンプ51としてコンクリートポンプ等のピストン型の圧送ポンプを用いたとしても、管路ミキサ1のスクリュー羽根の作用により撹拌部12に対しては定量供給となるため、泥土の供給量に合わせて固化材の供給量を制御することにより配合量を容易に制御することができる。
 図4は、低含水比泥土や、汚染土、焼却灰等を第1流動性材料91とし、粉体固化材を第2流動性材料92として管路ミキサ1により混合し、処理土とする例を示している。この例は、第1流動性材料91は計量装置付きのベルトコンベア53により定量供給されることを想定している。
 管路ミキサ1に対する第1流動性材料91の供給量にばらつきがある場合、例えば第1流動性材料91をサンドポンプや汎用ベルトコンベアにより行う場合には、図5に示すように、管路ミキサ1の第1供給口31に定量供給装置60を取り付けることもできる。図示例の定量供給装置60は、第1流動性材料91の貯留槽61と、この貯留槽61の下部に設けられたテーブルフィーダ62と、テーブルフィーダ62の排出口63から排出される第1流動性材料91を管路ミキサ1の第1供給口31に導入するホッパ64とを備えたものである。貯留槽61内に供給された第1流動性材料91は、モータ等の回転駆動源65により回転駆動される縦向き回転軸66に取り付けられた撹拌翼67及び排出翼68により、撹拌されつつ排出口63から管路ミキサ1の第1供給口31に対して順次排出される。
 第2流動性材料92としてセメント等の粉体を供給する場合、図6に示すように、圧縮空気94を用いない定量供給装置70により管路ミキサ1内に定量供給することもできる。図示例は、貯留ホッパ71の下部にスクリューコンベア72を設け、このスクリューコンベア72の排出口73を管路ミキサ1の材料供給部11に接続したものであり、貯留ホッパ71に貯留された第2流動性材料92をスクリューコンベアにより管路ミキサ1に定量供給するものである。この例は、第1流動性材料91を水とし、第2流動性材料92をセメントとすることによりセメントミルクを製造したり、第1流動性材料91を泥土とし、第2流動性材料92をセメントとすることによりスラリー性固化処理土を製造したりするのに好適である。これらセメントミルク又は固化処理土を未固化の状態で一時的に保管するために、図示例のように、管路ミキサ1の排出口13をアジテータ75(撹拌機付き貯留槽)に接続し、必要に応じてアジテータ75から仕向け先にポンプ圧送する形態とすることもできる。
 図7に示すように、管路ミキサ1は気泡混合軽量地盤材料の製造に用いることもできる。すなわち、泥土等の発生土及びセメント等の固化材を混合した固化処理土、セメントミルク、又はモルタルを未固化の状態で第1流動性材料91として管路ミキサ1に供給する。一方、希釈装置76で界面活性剤を主体とする起泡剤に水を混合して起泡剤液96を製造し、この起泡剤液96をポンプ77により発泡器78に供給して圧縮空気94と混合し、発泡させることにより気泡液を製造し、この気泡液を第2流動性材料92として管路ミキサ1に供給する。管路ミキサ1では、第1流動性材料91と気泡液(第2流動性材料92)とが混合され、気泡混合軽量地盤材料としての混合物95排出される。
特開平4-7422号公報 特開平9-158245号公報 特開2004-60326号公報
 従来は、管路ミキサで製造される混合物を管路ミキサから一度排出した後、輸送ポンプやベルトコンベア、又はダンプトラックにより搬送し、山岳地や軟弱地盤上での盛土、橋台・擁壁の裏込め、構造物の埋戻し等における地盤材料として用いる等していたが、より簡素かつ省スペースでの搬送に対する要望がある。
 そこで、本発明の主たる課題は、より簡素かつ省スペースでの混合物の搬送を可能とすることにある。
 上記課題を解決するための代表的態様は以下のとおりである。
 <第1の態様>
 複数の流動性材料が供給される材料供給部、複数の流動性材料を混合しつつ移送する撹拌部、及び混合物が排出される排出口を、流れ方向にこの順に有する混合管路と、
 前記材料供給部に前記流動性材料を供給する供給口と、
 この混合管路内における前記材料供給部及び前記撹拌部を含む範囲に同心的に軸支され、回転駆動される回転軸と、
 前記回転軸における前記材料供給部に位置する部分に設けられた供給スクリュー羽根と、
 前記回転軸における前記撹拌部に位置する部分に設けられた、径方向に突出する撹拌翼と、を備えた管路ミキサにおいて、
 前記混合管路における前記撹拌部と前記排出口との間に、マテリアルシール部を有し、
 前記回転軸は前記マテリアルシール部まで延びており、
 前記回転軸における前記マテリアルシール部に位置する部分に、前記回転軸の外周面から前記混合管路の内周面まで延びる部分が前記回転軸を中心とする螺旋方向に連続する形状を有し、前記撹拌部で混合された混合物を前記排出口に押し出す排出スクリュー羽根が設けられており、
 前記排出口から排出される混合物を、前記排出口に対して接続された搬送管路を介して圧送するための圧縮空気を供給する圧縮空気供給手段を有している、
 ことを特徴とする管路ミキサ。
 (作用効果)
 本態様のように、管路ミキサで製造される混合物を管路ミキサから一度排出せず、管路ミキサの排出口に対して接続された搬送管路を介して空気圧送することにより、より簡素、かつ省スペースでの混合物の搬送が可能となる。特に、排出スクリュー羽根を有するマテリアルシール部を設けたことにより、空気圧送の背圧による逆流を防止することができる。
 <第2の態様>
 前記圧縮空気供給手段は、前記混合管路の排出口と前記搬送管路との間に介在された圧縮空気供給管路と、この圧縮空気供給管路に設けられた圧縮空気供給口と、前記圧縮空気供給口に対して圧縮空気を供給するエアコンプレッサとを含むものである、
 第1の態様の管路ミキサ。
 (作用効果)
 本態様は、混合管路の排出口より下流側で圧送用の圧縮空気を供給することによって、より長距離(例えば百数十メートル)の搬送に対応可能としたものである。
 <第3の態様>
 前記圧縮空気供給管路は、前記混合管路の排出口に接続された混合物供給口を有する混合物供給部と、この混合物供給部の下流側に設けられた第2マテリアルシール部とを有しており、
 前記圧縮空気供給管路内には、前記混合物供給部及び前記第2マテリアルシール部を含む範囲に同心的に軸支された、回転駆動される第2回転軸が設けられるとともに、この第2回転軸の外周面から前記圧縮空気供給管路の内周面まで延びる部分が前記第2回転軸を中心とする螺旋方向に連続する形状を有し、前記混合物を前記搬送管路側に押し出す第2排出スクリュー羽根が設けられており、
 前記第2回転軸は、その下流側の端部に前記圧縮空気供給口が開口する中空軸であり、前記第2回転軸の前記圧縮空気供給口と反対側の端部に接続されたスイベル装置を介して前記第2回転軸内に圧縮空気が供給されるようになっている、
 第2の態様の管路ミキサ。
 (作用効果)
 本態様は、第2排出スクリュー羽根を有する第2マテリアルシール部を設け、それよりも下流側に圧縮空気を供給することによって、さらに長距離(例えば数百メートルから数キロメートル)の搬送に対応可能としたものである。
 <第4の態様>
 前記混合管路の材料供給部に開口された、第1流動性材料の供給口と、
 前記回転軸における前記第1流動性材料の供給口より下流側に設けられた、第2流動性材料の供給口と、
 前記回転軸における前記第1流動性材料の供給口より下流側に設けられた、第3流動性材料の供給口とを有し、
 (a)第1流動性材料は土又は泥土であり、第2流動性材料が水又は滑剤であり、第3流動性材料が粉体固化材であるか、
 (b)第1流動性材料は土又は泥土であり、第2流動性材料が固化材であり、第3流動性材料が固化助剤又は増量材であるか、又は
 (c)第1流動性材料は汚染泥土であり、第2流動性材料が汚染物質の還元剤であり、第3流動性材料が粉体固化材である、
 第1~3のいずれか1つの態様の管路ミキサ。
 (作用効果)
 粒子が小さく、そのまま締固めても強度の出ない低含水比の土の固化処理を行う場合、水を加えて流動性を高めた後に粉体固化材を混合すると混合性が良好となる。また、粘性の高い泥土又は低含水比の土を混合処理する場合、滑剤を加えて撹拌抵抗を小さくすることにより、撹拌翼の摩耗を減らす、撹拌翼への泥土の付着を軽減する、圧送時の管路抵抗を軽減するといった利点がもたらされる。よって、(a)の順に各流動性材料を供給し、混合することが好ましい。また、(b)の順に各流動性材料を供給し、混合することにより、固化助剤及び増量材をより効果的に用いることができる。さらに、(c)の順に各流動性材料を供給し、混合することにより、汚染物質の還元剤をより効果的に用いることができる。
 <第5の態様>
 前記複数の流動性材料は粉体固化材又は粉体固化助剤を含み、
 前記材料供給部に対する前記粉体固化材又は粉体固化助剤の供給口が、前記混合管路の上側の管壁における、前記回転軸の回転中心の真上よりも前記回転軸の回転方向側の部位に開口している、
 第1~4のいずれか1つの態様の管路ミキサ。
 (作用効果)
 管路ミキサを用いたセメントミルク製造又は泥土処理では、材料供給部に定量供給される水又は泥土に対し、混合管路の管壁に設けられた供給口から粉体固化材又は粉体固化助剤を投入することが可能である。この場合、回転軸の回転中心の真上から混合管路内に粉体固化材又は粉体固化助剤を落下供給すると、回転する供給スクリュー羽根の遠心力によって供給口に向かって跳ね上がる水又は泥水が、粉体固化材又は粉体固化助剤の落下を妨げ、供給口付近に粉体固化材又は粉体固化助剤が付着して固結し、供給口が閉塞するおそれがある。これに対して、本態様のように粉体固化材又は粉体固化助剤の供給口を真上から回転軸の回転方向側にずらすと、粉体固化材又は粉体固化助剤が回転軸の回転に伴い回転する水又は泥土に吸い込まれる(巻き込まれる)ようになるため、供給口付近に粉体固化材又は粉体固化助剤が付着しにくくなり、供給口が閉塞するおそれを低減することができる。
 <第6の態様>
 すべての前記撹拌翼は、前記回転軸を中心とし、かつ前記回転軸の回転により下流側への移送作用を発揮する仮想螺旋スクリュー面に沿って、当該仮想螺旋スクリューの螺旋方向に間欠的に設けられている、
 第1~5のいずれか1つの態様の管路ミキサ。
 (作用効果)
 このような撹拌翼を有することにより、撹拌翼が撹拌機能及び移送機能の両方に優れたものとなる。
 <第7の態様>
 前記撹拌翼は、前記回転軸を中心とする螺旋方向に間欠的に設けられており、
 少なくとも一部の撹拌翼は、前記回転軸の回転により上流側への移送作用を発揮する向きで設けられている、
 第1~5のいずれか1つの態様の管路ミキサ。
 (作用効果)
 このような撹拌翼により撹拌すると、混合物に乱流が発生し、混合性に優れたものとなる。
 <第8の態様>
 第1~7のいずれか1つの態様の管路ミキサを用い、複数の流動性材料を混合し、混合物を前記搬送管路を介して搬送先に空気圧送する、ことを特徴とする混合物の製造供給方法。
 (作用効果)
 前述の各態様と同様の作用効果を奏する。
 本発明によれば、より簡素かつ省スペースでの混合物の搬送が可能となる、等の利点がもたらされる。
管路ミキサの要部破断正面図である。 粉体の圧送供給装置の正面図である。 管路ミキサの利用例を示す設備構成図である。 管路ミキサの利用例を示す設備構成図である。 管路ミキサの利用例を示す設備構成図である。 管路ミキサの利用例を示す設備構成図である。 管路ミキサの利用例を示す設備構成図である。 管路ミキサの要部破断正面図である。 管路ミキサの要部破断正面図である。 管路ミキサの要部破断正面図である。 管路ミキサの利用例を示す設備構成図である。 管路ミキサの利用例を示す設備構成図である。 図12のA-A矢視図である。 2軸パドルミキサの断面図である。 回転軸の要部拡大正面図である。 回転軸の要部拡大正面図である。
 以下、本発明の一実施形態について添付図面を参照しながら詳説する。
 <第1の形態>
 図8は、管路ミキサ1の第1の形態を示している。この管路ミキサ1は、複数の流動性材料91,92が供給される材料供給部11、複数の流動性材料91,92を混合しつつ移送する撹拌部12、及び混合物95が排出される排出口13を、流れ方向にこの順に有する混合管路10と、材料供給部11に流動性材料91,92を供給する供給口31,32と、この混合管路10内における材料供給部11及び撹拌部12を含む範囲に同心的に軸支され、回転駆動される回転軸20と、回転軸20における材料供給部11に位置する部分に設けられた供給スクリュー羽根21と、回転軸20における撹拌部12に位置する部分に設けられた、径方向に突出する撹拌翼22とを備えている。図示例では、回転軸20は横向き(水平)に支持されており、混合管路10におけるスクリュー羽根及び撹拌翼22を有する部分も横向きの直管となっているが、これらは下流側に向かって上り勾配又は下り勾配の配置とすることもできる。
 図8に示される例では、混合管路10の材料供給部11の上流部に開口された第1供給口31から泥土等の第1流動性材料91を、また第1供給口31よりも下流側における回転軸20に設けた第2供給口32から粉体固化材等の第2流動性材料92を供給するようになっている。符号28は回転軸20の端部に取り付けられたスイベル装置を示しており、このスイベル装置28を介して回転駆動される回転軸20内に第2流動性材料92が供給される。これに対して、図12に示す例のように、混合管路10の材料供給部11の上流側に第1流動性材料91を供給するための第1供給口31を、及び材料供給部11の下流側の管壁に第2流動性材料92を供給するための第2供給口32を設けてもよい。これらの例からも分かるように、材料供給部11に対する供給口31,32は特に限定されない。
 特徴的には、混合管路10における撹拌部12と排出口13との間に、マテリアルシール部14を有し、回転軸20はマテリアルシール部14まで延びており、回転軸20におけるマテリアルシール部14に位置する部分に、回転軸20の外周面から混合管路10の内周面まで延びる部分が回転軸20を中心とする螺旋方向に連続する形状(つまりリボンスクリュー等の欠落部を有するものではない)を有し、撹拌部12で混合された混合物95を排出口13に押し出す排出スクリュー羽根23が設けられている。
 そして、排出口13から排出される混合物95は、排出口13に対して接続された搬送管路15を介して圧送される。本第1の形態は、この圧送のための圧縮空気94として、第2流動性材料92を第2供給口32から圧縮空気94により供給し、この第2供給口32からの供給空気の排気圧を利用するものであり、50~100mの搬送距離を想定しているものである。つまり、複数の流動性材料91,92のうち少なくとも1種は圧縮空気94により供給される粉体固化材や焼却灰や石膏等の粉体固化助剤等とする必要がある。圧縮空気94を供給するために第2流動性材料の供給装置として、前述の圧送供給装置40を用いることができる。このように、管路ミキサ1で製造される混合物95を管路ミキサ1から一度排出せず、管路ミキサ1の排出口13に対して接続された搬送管路を介して空気圧送することにより、より簡素、かつ省スペースでの混合物95の搬送が可能となる。また、排出スクリュー羽根23を有するマテリアルシール部14を設けたことにより、空気圧送の背圧による逆流を防止することができる。特に本第1の形態では、混合物95の圧送専用の圧縮空気供給手段を必要としない(もちろん組み合わせてもよい)利点もある。
 排出スクリュー羽根23は回転軸20の周囲に2周以上、特に3周以上連続することが好ましいが、それ以下でもよい。
 特に、図示例のように排出口と搬送管路15との間に、下流側に向かって内径が段階的又は連続的に減少する接続管路16を介在させると、マテリアルシール効果がより一層高いものとなるため好ましい。
 混合物95の圧送先は、特に限定されず、貯留ピットや貯留タンク等の一時的な貯留部としたり、ベルトコンベア53やダンプトラック等の他の搬送装置としたり、近くの工事現場(盛土、橋台・擁壁・トンネルの裏込め、構造物の埋戻し等)における利用場所としたりすることができる。
 その他の点、例えば混合対象の流動性材料91,92の種類や、送泥ポンプ51、ベルトコンベア53、圧送供給装置40等の流動性材料91,92の供給装置については、背景技術の項で述べたものを適宜用いることができるため、ここでは説明を省略する。
 <第2の形態>
 第1の形態では、混合物95の圧送のための圧縮空気97供給手段として、第2流動性材料92を供給するための圧縮空気97を利用するが、図9に示すように混合物95の圧送専用の圧縮空気供給手段80を設けることもできる。すなわち、この第2の形態は、混合管路10の排出口13と搬送管路15との間に、圧縮空気供給口82を有する圧縮空気供給管路81を介在させ、この圧縮空気供給口82に対して図示しないエアコンプレッサを接続したものである。このように、混合管路10の排出口13より下流側で圧送用の圧縮空気97を供給することによって、より長距離(例えば百数十メートル)の搬送に対応可能となる。圧縮空気供給管路81は、図示例ではエルボ管を用い、その途中に下流側の管芯に向けて圧縮空気供給口82を設けているが、次に述べる第3の形態のように直管とすることもできる。
 その他の点は第1の形態と同様であるため、ここでは説明を省略する。
 <第3の形態>
 さらに長距離(例えば数百メートルから数キロメートル)の搬送に対応可能とするために、図10に示すように、第2排出スクリュー羽根83を有する第2マテリアルシール部86を設け、それよりも下流側に圧縮空気97を供給する形態とすることもできる。すなわち、この第3の形態は、圧縮空気供給管路81は、混合管路10の排出口13に接続された混合物供給口を有する混合物供給部85と、この混合物供給部85の下流側に設けられた第2マテリアルシール部86とを有している。また、圧縮空気供給管路81内には、混合物供給部85及び第2マテリアルシール部86を含む範囲に同心的に軸支された、回転駆動される第2回転軸84が設けられるとともに、この第2回転軸84の外周面から圧縮空気供給管路81の内周面まで延びる部分が第2回転軸84を中心とする螺旋方向に連続する形状を有し、混合物95を搬送管路15側に押し出す第2排出スクリュー羽根83が設けられている。
 圧縮空気供給口82は特に限定されないが、図示例では、第2回転軸84が、その下流側の端部に圧縮空気供給口82が開口する中空軸となっており、第2回転軸84の圧縮空気供給口82と反対側の端部に接続された第2スイベル装置87を介して第2回転軸84内に圧縮空気97が供給されるようになっている。これにより、第2の形態のようにエルボ管を用いずとも、圧縮空気供給管路81の第2排出スクリュー羽根83より下流側において管芯に沿って圧縮空気97を供給することができる。
 その他の点は第2の形態と同様であるため、ここでは説明を省略する。
 <第4の形態>
 第1流動性材料91として土又は泥土、第2流動性材料92として水又は滑剤、及び第3流動性材料93として粉体固化材を供給して混合する場合、図11に示すように、混合管路10の材料供給部11に、第1流動性材料91のための第1供給口31を開口させ、回転軸20における第1供給口31より下流側に、第2流動性材料92のための第2供給口32を設け、回転軸20における第2供給口32より下流側に、第3流動性材料93のための第3供給口33を設けると好ましい。粒子が小さく、そのまま締固めても強度の出ない低含水比の土の固化処理を行う場合、水を加えて流動性を高めた後に粉体固化材を混合すると混合性が良好となる。また、粘性の高い泥土又は低含水比の土を混合処理する場合、滑剤を加えて撹拌抵抗を小さくすることにより、撹拌翼22の摩耗を減らす、撹拌翼22への泥土の付着を軽減する、圧送時の管路抵抗を軽減するといった利点がもたらされる。よって、この順に各流動性材料91,92,93を供給し、混合することが好ましい。
 また、第1流動性材料91として土又は泥土、第2流動性材料92として固化材、及び第3流動性材料93として固化助剤又は増量材を供給して混合する場合も、図11に示す例の順で各流動性材料91,92,93を供給することにより、固化助剤及び増量材をより効果的に用いることができるため好ましい。
 さらに、第1流動性材料91として汚染泥土、第2流動性材料92として汚染物質の還元剤、及び第3流動性材料93として粉体固化材を供給して混合する場合も、図11に示す例の順で各流動性材料91,92,93を供給することにより、汚染物質の還元剤をより効果的に用いることができるため好ましい。
 <第5の形態>
 管路ミキサ1を用いたセメントミルク製造又は泥土処理では、図6に示す例のように、材料供給部11に定量供給される第1流動性材料91としての水又は泥土に対し、混合管路10の管壁に設けられた第2供給口32から第2流動性材料92としての粉体固化材又は粉体固化助剤を投入することが可能である。この場合、回転軸20の回転中心の真上から混合管路10内に粉体固化材又は粉体固化助剤を落下供給すると、回転する供給スクリュー羽根21の遠心力によって第2供給口32に向かって跳ね上がる水又は泥水が、粉体固化材又は粉体固化助剤の落下を妨げ、第2供給口32付近に粉体固化材又は粉体固化助剤が付着して固結し、第2供給口32が閉塞するおそれがある。
 そこで、図12及び図13に示すように、材料供給部11に対する粉体固化材又は粉体固化助剤の第2供給口32が、混合管路10の上側の管壁における、回転軸20の回転中心の真上よりも回転軸20の回転方向(図中の矢印方向)側の部位に開口している形態も提案される。このように粉体固化材又は粉体固化助剤のための第2供給口32を真上から回転軸20の回転方向側にずらすと、粉体固化材又は粉体固化助剤が回転軸20の回転に伴い回転する水又は泥土に吸い込まれる(巻き込まれる)ようになるため、第2供給口32付近に粉体固化材又は粉体固化助剤が付着しにくくなり、第2供給口32が閉塞するおそれを低減することができる。
 なお、このような投入原理は、図14に示すように2軸パドルミキサ87に対しても応用することができ、特に、回転軸88間の上方に粉体固化材又は粉体固化助剤の供給口89を設けると、粉体固化材又は粉体固化助剤が回転軸88の回転に伴い回転する水又は泥土に吸い込まれる(抱き込まれる)ようになる。
 <第6の形態>
 撹拌翼22は、撹拌機能及び移送機能を有する限り特に限定されるものではないが、図15に示すように、すべての撹拌翼22が、回転軸20を中心とし、かつ回転軸20の回転により下流側への移送作用を発揮する仮想螺旋スクリュー面25に沿って、当該仮想螺旋スクリュー面25の螺旋方向に間欠的に設けられていると、撹拌機能及び移送機能の両方に優れたものとなる。
 <第7の形態>
 また、図16に示すように、撹拌翼22f,22bが回転軸20を中心とする螺旋方向に間欠的に設けられるとともに、少なくとも一部の撹拌翼22bは、回転軸20の回転により上流側への移送作用を発揮する向きで設けられていると、混合物95に乱流が発生し、混合性に優れたものとなるため好ましい。図中の符号25は、回転軸20の回転により下流側への移送作用を発揮する仮想螺旋スクリュー面を示しており、符合22fは回転軸20の回転により下流側への移送作用を発揮する向きの撹拌翼を示している。図示例では、上流側への移送作用を発揮する向きの撹拌翼22bが2翼置きに設けられているが、1翼置きでもよく、また3翼以上置きに設けることもできる。
 本発明は、複数の流動性材料を搬送しつつ混合するものであれば、泥土処理のみならず、セメントミルク製造、汚濁水浄化のための凝集剤の混合、気泡混合軽量土製造等、広範な用途に適用できるものである。
 1…管路ミキサ、10…混合管路、11…材料供給部、12…撹拌部、13…排出口、14…マテリアルシール部、15…搬送管路、16…接続管路、20…回転軸、21…供給スクリュー羽根、22…撹拌翼、23…排出スクリュー羽根、28…スイベル装置、29…回転駆動源、31,32…供給口、31…第1供給口、32…第2供給口、33…第3供給口、40…圧送供給装置、51…送泥ポンプ、52…搬送ポンプ、53…ベルトコンベア、60…定量供給装置、80…圧縮空気供給手段、81…圧縮空気供給管路、82…圧縮空気供給口、83…第2排出スクリュー羽根、84…第2回転軸、85…混合物供給部、86…第2マテリアルシール部、91,92…流動性材料、91…第1流動性材料、92…第2流動性材料、93…第3流動性材料、94…圧縮空気、95…混合物。

Claims (8)

  1.  複数の流動性材料が供給される材料供給部、複数の流動性材料を混合しつつ移送する撹拌部、及び混合物が排出される排出口を、流れ方向にこの順に有する混合管路と、
     前記材料供給部に前記流動性材料を供給する供給口と、
     この混合管路内における前記材料供給部及び前記撹拌部を含む範囲に同心的に軸支され、回転駆動される回転軸と、
     前記回転軸における前記材料供給部に位置する部分に設けられた供給スクリュー羽根と、
     前記回転軸における前記撹拌部に位置する部分に設けられた、径方向に突出する撹拌翼と、を備えた管路ミキサにおいて、
     前記混合管路における前記撹拌部と前記排出口との間に、マテリアルシール部を有し、
     前記回転軸は前記マテリアルシール部まで延びており、
     前記回転軸における前記マテリアルシール部に位置する部分に、前記回転軸の外周面から前記混合管路の内周面まで延びる部分が前記回転軸を中心とする螺旋方向に連続する形状を有し、前記撹拌部で混合された混合物を前記排出口に押し出す排出スクリュー羽根が設けられており、
     前記排出口から排出される混合物を、前記排出口に対して接続された搬送管路を介して圧送するための圧縮空気を供給する圧縮空気供給手段を有している、
     ことを特徴とする、管路ミキサ。
  2.  前記圧縮空気供給手段は、前記混合管路の排出口と前記搬送管路との間に介在された圧縮空気供給管路と、この圧縮空気供給管路に設けられた圧縮空気供給口と、前記圧縮空気供給口に対して圧縮空気を供給するエアコンプレッサとを含むものである、
     請求項1記載の管路ミキサ。
  3.  前記圧縮空気供給管路は、前記混合管路の排出口に接続された混合物供給口を有する混合物供給部と、この混合物供給部の下流側に設けられた第2マテリアルシール部とを有しており、
     前記圧縮空気供給管路内には、前記混合物供給部及び前記第2マテリアルシール部を含む範囲に同心的に軸支された、回転駆動される第2回転軸が設けられるとともに、この第2回転軸の外周面から前記圧縮空気供給管路の内周面まで延びる部分が前記第2回転軸を中心とする螺旋方向に連続する形状を有し、前記混合物を前記搬送管路側に押し出す第2排出スクリュー羽根が設けられており、
     前記第2回転軸は、その下流側の端部に前記圧縮空気供給口が開口する中空軸であり、前記第2回転軸の前記圧縮空気供給口と反対側の端部に接続されたスイベル装置を介して前記第2回転軸内に圧縮空気が供給されるようになっている、
     請求項2記載の管路ミキサ。
  4.  前記混合管路の材料供給部に開口された、第1流動性材料の供給口と、
     前記回転軸における前記第1流動性材料の供給口より下流側に設けられた、第2流動性材料の供給口と、
     前記回転軸における前記第1流動性材料の供給口より下流側に設けられた、第3流動性材料の供給口とを有し、
     (a)第1流動性材料は土又は泥土であり、第2流動性材料が水又は滑剤であり、第3流動性材料が粉体固化材であるか、
     (b)第1流動性材料は土又は泥土であり、第2流動性材料が固化材であり、第3流動性材料が固化助剤又は増量材であるか、又は
     (c)第1流動性材料は汚染泥土であり、第2流動性材料が汚染物質の還元剤であり、第3流動性材料が粉体固化材である、
     請求項1~3のいずれか1項に記載の管路ミキサ。
  5.  前記複数の流動性材料は粉体固化材又は粉体固化助剤を含み、
     前記材料供給部に対する前記粉体固化材又は粉体固化助剤の供給口が、前記混合管路の上側の管壁における、前記回転軸の回転中心の真上よりも前記回転軸の回転方向側の部位に開口している、
     請求項1~4のいずれか1項に記載の管路ミキサ。
  6.  すべての前記撹拌翼は、前記回転軸を中心とし、かつ前記回転軸の回転により下流側への移送作用を発揮する仮想螺旋スクリュー面に沿って、当該仮想螺旋スクリューの螺旋方向に間欠的に設けられている、
     請求項1~5のいずれか1項に記載の管路ミキサ。
  7.  前記撹拌翼は、前記回転軸を中心とする螺旋方向に間欠的に設けられており、
     少なくとも一部の撹拌翼は、前記回転軸の回転により上流側への移送作用を発揮する向きで設けられている、
     請求項1~5のいずれか1項に記載の管路ミキサ。
  8.  請求項1~7のいずれか1項に記載の管路ミキサを用い、複数の流動性材料を混合し、混合物を前記搬送管路を介して搬送先に空気圧送する、ことを特徴とする混合物の製造供給方法。
PCT/JP2019/006986 2018-03-02 2019-02-25 管路ミキサ及びこれを用いた混合物の製造供給方法 WO2019167862A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-037416 2018-03-02
JP2018037416A JP6626144B2 (ja) 2018-03-02 2018-03-02 管路ミキサ及びこれを用いた混合物の製造供給方法

Publications (1)

Publication Number Publication Date
WO2019167862A1 true WO2019167862A1 (ja) 2019-09-06

Family

ID=67805071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006986 WO2019167862A1 (ja) 2018-03-02 2019-02-25 管路ミキサ及びこれを用いた混合物の製造供給方法

Country Status (2)

Country Link
JP (1) JP6626144B2 (ja)
WO (1) WO2019167862A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110756072A (zh) * 2019-11-06 2020-02-07 中国石油天然气股份有限公司 一种用于油田伴生气油气混输的混合装置及混合方法
CN114041405A (zh) * 2021-11-20 2022-02-15 华北水利水电大学 土、秸秆、液体旋风混合与锥形挤压秸秆土壤复合管材装置
CN115228911A (zh) * 2022-06-22 2022-10-25 中国化学工程重型机械化有限公司 一种污染土修复用淋洗试验系统
CN117102233A (zh) * 2023-10-19 2023-11-24 山西大地民基生态环境股份有限公司 一种重金属污染土壤修复用挖掘装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111888972A (zh) * 2020-08-19 2020-11-06 山东鼎鲁建筑有限公司 一种建筑装饰材料生产加工用搅拌装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246571A (en) * 1975-10-11 1977-04-13 Ishikawa Takashi Mixing device
JPH08295415A (ja) * 1995-04-25 1996-11-12 Tsurumi Mfg Co Ltd 空圧搬送装置
JPH09158245A (ja) * 1995-12-11 1997-06-17 Doboku Kenkyu Center 浚渫泥土の処理方法とその装置
JP2002121764A (ja) * 2000-10-17 2002-04-26 Kojimagumi:Kk 土砂輸送装置
JP2004060326A (ja) * 2002-07-30 2004-02-26 Chida Engineering:Kk 軽量固化材料の製造方法および装置、管路型ミキサー装置、固化材製造装置、ならびに比重調整装置
JP2007120229A (ja) * 2005-10-31 2007-05-17 Zenitaka Corp 土質改良工法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100953188B1 (ko) * 2008-06-05 2010-04-15 한국지질자원연구원 슬러리 이송장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246571A (en) * 1975-10-11 1977-04-13 Ishikawa Takashi Mixing device
JPH08295415A (ja) * 1995-04-25 1996-11-12 Tsurumi Mfg Co Ltd 空圧搬送装置
JPH09158245A (ja) * 1995-12-11 1997-06-17 Doboku Kenkyu Center 浚渫泥土の処理方法とその装置
JP2002121764A (ja) * 2000-10-17 2002-04-26 Kojimagumi:Kk 土砂輸送装置
JP2004060326A (ja) * 2002-07-30 2004-02-26 Chida Engineering:Kk 軽量固化材料の製造方法および装置、管路型ミキサー装置、固化材製造装置、ならびに比重調整装置
JP2007120229A (ja) * 2005-10-31 2007-05-17 Zenitaka Corp 土質改良工法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110756072A (zh) * 2019-11-06 2020-02-07 中国石油天然气股份有限公司 一种用于油田伴生气油气混输的混合装置及混合方法
CN110756072B (zh) * 2019-11-06 2024-03-05 中国石油天然气股份有限公司 一种用于油田伴生气油气混输的混合装置及混合方法
CN114041405A (zh) * 2021-11-20 2022-02-15 华北水利水电大学 土、秸秆、液体旋风混合与锥形挤压秸秆土壤复合管材装置
CN115228911A (zh) * 2022-06-22 2022-10-25 中国化学工程重型机械化有限公司 一种污染土修复用淋洗试验系统
CN115228911B (zh) * 2022-06-22 2024-02-09 中国化学工程重型机械化有限公司 一种污染土修复用淋洗试验系统
CN117102233A (zh) * 2023-10-19 2023-11-24 山西大地民基生态环境股份有限公司 一种重金属污染土壤修复用挖掘装置
CN117102233B (zh) * 2023-10-19 2024-01-19 山西大地民基生态环境股份有限公司 一种重金属污染土壤修复用挖掘装置

Also Published As

Publication number Publication date
JP2019152018A (ja) 2019-09-12
JP6626144B2 (ja) 2019-12-25

Similar Documents

Publication Publication Date Title
WO2019167862A1 (ja) 管路ミキサ及びこれを用いた混合物の製造供給方法
US5433520A (en) Method and apparatus for continuously processing particulate cementitious material and fly ash solids and mixing them with a liquid to provide a liquid slurry of consistent proportions
US5141363A (en) Mobile train for backfilling tunnel liners with cement grout
CA2503855C (en) Concrete batching pre-mixer and method
CN103437786B (zh) 盾构泥渣净化回收再利用系统用于盾构掘进施工的方法
CN101935143A (zh) 一种淤泥固化系统及淤泥固化工艺
JP3650380B2 (ja) 軽量固化材料の製造方法
KR101863175B1 (ko) 이액형 그라우트의 혼합 공급장치
CN101584971A (zh) 固化剂供给装置及比重调整装置
KR102391426B1 (ko) 경량 기포 콘크리트 타설 장치 및 그에 사용되는 기포재생-혼합-이송 장치
CN101956558B (zh) 一种转轮湿式混凝土喷射机
CN1634691B (zh) 管路型混合装置
CN207242741U (zh) 一种防堵塞易清理的饲料管道输送装置
JP2001079827A (ja) 管路内混合装置
JP4471773B2 (ja) 多機能混合装置、発泡装置、軽量固化材の製造方法、軽量固化体
KR100833408B1 (ko) 경량 고화 재료의 제조 방법 및 장치, 관로형 믹서 장치,고화재 제조 장치, 및 비중 조정 장치
EP0699633A2 (en) Solidification and pneumatic transportation equipment for soft mud
CN215463379U (zh) 液固混合及输送系统
US20050169100A1 (en) Method and apparatus for producing lightweight solidified material, pipe-type mixer apparatus, apparatus for producing solidifying material, and gravity adjusting apparatus
JPH0813541A (ja) 軟泥の固化処理圧送装置
CN212636130U (zh) 一种混凝土搅拌设备
CN212523705U (zh) 一种药品搅拌装置
CN211226504U (zh) 一种可自动调节输送量的重介质干粉投加装置
CN213137314U (zh) 一种干粉砂浆混合输送机
TWI320742B (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760831

Country of ref document: EP

Kind code of ref document: A1