WO2019165720A1 - 一种采用纳滤膜分离提高"蒸发结晶+冷冻"分盐工艺回收率的方法 - Google Patents

一种采用纳滤膜分离提高"蒸发结晶+冷冻"分盐工艺回收率的方法 Download PDF

Info

Publication number
WO2019165720A1
WO2019165720A1 PCT/CN2018/088999 CN2018088999W WO2019165720A1 WO 2019165720 A1 WO2019165720 A1 WO 2019165720A1 CN 2018088999 W CN2018088999 W CN 2018088999W WO 2019165720 A1 WO2019165720 A1 WO 2019165720A1
Authority
WO
WIPO (PCT)
Prior art keywords
freezing
salt
nanofiltration membrane
crystallization
mother liquor
Prior art date
Application number
PCT/CN2018/088999
Other languages
English (en)
French (fr)
Inventor
吴晓华
陈业钢
Original Assignee
上海东硕环保科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海东硕环保科技股份有限公司 filed Critical 上海东硕环保科技股份有限公司
Publication of WO2019165720A1 publication Critical patent/WO2019165720A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • C01D3/06Preparation by working up brines; seawater or spent lyes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/14Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • C01D5/16Purification

Definitions

  • the invention relates to a zero discharge method for wastewater treatment, in particular to a method for improving the recovery rate of the "evaporation crystallization + freezing" salt separation process by using nanofiltration membrane separation.
  • the researchers of the present invention have developed a method for improving the recovery rate of the "evaporation crystallization + freezing" salt separation process by using nanofiltration membrane separation through a lot of in-depth research work, and solved the present problem.
  • the purity of the crystalline salt in the "steaming crystallization + freezing" salt separation process is not up to standard, the recovery rate of the finished salt is low, and the proportion of the mixed salt is large.
  • the object of the present invention is to provide a method for improving the recovery rate of the "evaporation crystallization + freezing" salt separation process by using a nanofiltration membrane to solve the above problems in the prior art.
  • the technical scheme adopted by the invention is: (1) heat exchange of the frozen mother liquor after freezing and crystallization of the high-salt wastewater, and the temperature of the frozen mother liquor is raised to 15 ° C to 25 ° C; (2) the frozen mother liquor after heat exchange enters the nanofiltration membrane device Concentrated separation; (3) The treated nanofiltration concentrated water is returned to the front end of the frozen crystallization, and enters the frozen crystallization section together with the high brine, and the nanofiltration produced water is processed into a sodium chloride treatment section to finally obtain a high-purity sodium chloride crystal salt. .
  • the frozen mother liquor after freezing and crystallization of the high-salt wastewater is heated to raise the temperature of the frozen mother liquor to 15 ° C to 25 ° C; the temperature of the frozen crystallizer is generally controlled at -5 ° C to 0 ° C, thereby freezing the mother liquor The temperature is lower, and it is necessary to heat up and then enter the nanofiltration membrane system to better ensure the separation effect of the nanofiltration membrane.
  • the heat-exchanged frozen mother liquid enters the nanofiltration membrane device for concentration and separation; and the secondary separation by the nanofiltration membrane reduces the sulfate and other divalent ions in the produced water again, thereby ensuring sodium chloride.
  • the purity of the product salt also reduces the amount of salt.
  • the treated nanofiltration concentrated water is returned to the frozen crystallization front end, enters the frozen crystallization section together with the high brine, and the nanofiltration produced water is processed into the sodium chloride treatment section to finally obtain high purity sodium chloride.
  • Crystalline salt; the nanofiltration membrane concentrated water is returned to the freezing crystallization section, and the sodium sulfate in the system is fully recycled, which greatly improves the recovery rate of the sodium sulfate product salt.
  • the method provided by the invention for improving the recovery rate of the "evaporation crystallization + freezing” salt separation process by using nanofiltration membrane has the following advantages:
  • the frozen mother liquor still contains a certain amount of sodium sulfate, which is concentrated by the nanofiltration membrane and returned to the freezing crystallizer for recycling, which greatly improves the recovery rate of sodium sulfate in the system;
  • the first step is to exchange heat of the frozen mother liquor after freezing and crystallization of the high-salt wastewater, and raise the temperature of the frozen mother liquor to 15 ° C to 25 ° C;
  • the freezing mother liquor from the freezing crystallizer has a lower temperature, and after the heat exchange is heated, the operating temperature of 15 ° C to 25 ° C greatly ensures the separation effect of the nanofiltration membrane device.
  • the frozen mother liquor after heat exchange enters the nanofiltration membrane device for concentration separation; the frozen mother liquor still contains a certain amount of sodium sulfate, and if the operation is improper, the sodium sulfate content is higher, and the nanofiltration membrane is used for the second step.
  • the second separation can fully guarantee the quality of the salt of the sodium chloride product and reduce the proportion of the mixed salt to some extent.
  • the treated nanofiltration concentrated water is returned to the front end of the frozen crystallization, and enters the frozen crystallization section together with the high salt water, and the nanofiltration produced water is processed into a sodium chloride treatment section to finally obtain a high-purity sodium chloride crystalline salt.
  • the most part of the nanofiltration membrane device is sodium sulfate, which is recycled and reused, which greatly improves the recovery rate of sodium sulfate.
  • the sodium sulfate in the wastewater treatment system is fully recycled, the recovery rate of the sodium sulfate product salt is greatly improved, and the salt purity of the sodium chloride product is ensured while reducing the amount of the salt, to a great extent Achieved “zero emissions” and “resources”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种采用纳滤膜分离提高"蒸发结晶+冷冻"分盐工艺回收率的方法,具体实施方法:(1)对高盐废水冷冻结晶后的冷冻母液换热,将冷冻母液温度提升至15℃~25℃;(2)换热后的冷冻母液进入纳滤膜装置进行浓缩分离;(3)处理后的纳滤浓水回至冷冻结晶前端,与高盐水一起进入冷冻结晶工段,纳滤产水进入氯化钠处理工段处理,最终得到高纯度氯化钠结晶盐。该方法有效地解决了因冷冻结晶器冷冻效果差,冷冻母液硫酸盐含量高引起的系统硫酸钠结晶盐回收率低、后续氯化钠结晶盐纯度低、杂盐含量高等问题,充分保证了系统中产品盐的纯度及回收率。

Description

一种采用纳滤膜分离提高“蒸发结晶+冷冻”分盐工艺回收率的方法 技术领域
本发明涉及一种废水处理零排放方法,具体涉及一种采用纳滤膜分离提高“蒸发结晶+冷冻”分盐工艺回收率的方法。
背景技术
随着废水零排放的要求越来越高,以高含盐废水“蒸结晶发+冷冻”分盐为处理终点零排放技术得到行业越来越多的认可,但随着近几年来越来越多的“蒸发结晶+冷冻”作为盐硝分离工艺应用于各类废水处理中,分盐工艺中氯化钠结晶盐的纯度不达标、成品盐回收率低、杂盐比例大等问题成为制约其发展的一大难题。
发明内容
鉴于现有技术中存在上述不足之处,本发明的研究人员通过大量深入研究工作,研究出了一种采用纳滤膜分离提高“蒸发结晶+冷冻”分盐工艺回收率的方法,解决了现有“蒸结晶发+冷冻”分盐工艺中结晶盐的纯度不达标、成品盐回收率低、杂盐比例大等问题。
本发明的目的在于提供一种采用纳滤膜分离提高“蒸发结晶+冷冻”分盐工艺回收率的方法,解决现有技术存在的上述问题。
本发明采用的技术方案是:(1)对高盐废水冷冻结晶后的冷冻母液换热,将冷冻母液温度提升至15℃~25℃;(2)换热后的冷冻母液进入纳滤膜装置进行浓缩分离;(3)处理后的纳滤浓水回至冷冻结晶前端,与高盐水一起进入冷冻结晶工段,纳滤产水进入氯化钠处理工段处理,最终得到高纯度氯化钠结晶盐。
在一个优选例中,所述对高盐废水冷冻结晶后的冷冻母液换热,将冷冻母液温度提升至15℃~25℃;冷冻结晶器温度一般控制在-5℃~0℃,因而冷冻母液温度较低,需换热升温后再进入纳滤膜系统才能更好地保证纳滤膜分离效果。
在另一个优选例中,所述换热后的冷冻母液进入纳滤膜装置进行浓缩分离;通过纳滤膜二次分离,再次降低产水中硫酸根及其他二价离子含量,在保证氯化钠产品盐纯度的同时减少了杂盐量。
在另一个优选例中,所述处理后的纳滤浓水回至冷冻结晶前端,与高盐水一起进入冷冻结晶工段,纳滤产水进入氯化钠处理工段处理,最终得到高纯度氯化钠结晶盐;将纳滤 膜浓水回流至冷冻结晶工段,对系统内的硫酸钠充分回收利用,极大提高了硫酸钠产品盐的回收率。
本发明提供的一种采用纳滤膜分离提高“蒸发结晶+冷冻”分盐工艺回收率的方法具有如下优点:
(1)冷冻母液中仍含有一定量的硫酸钠,经纳滤膜浓缩后再次回到冷冻结晶器循环回收,极大提高了系统对硫酸钠的回收率;
(2)冷冻母液经纳滤膜再次分离后产水中硫酸根及其他二价离子含量极低,进一步保证了氯化钠处理系统中氯化钠产品盐的纯度;
(3)系统对硫酸钠的充分回收在一定程度上减少了杂盐量。
具体实施方式
为了便于本发明内容的理解,下面结合具体实施例对本发明的实施过程作进一步的说明。
本发明的具体实施方法如下:
第一步,对高盐废水冷冻结晶后的冷冻母液换热,将冷冻母液温度提升至15℃~25℃;
冷冻结晶器出来的冷冻母液温度较低,换热升温后,15℃~25℃的运行温度极大保证了纳滤膜装置的分离效果。
第二步,换热后的冷冻母液进入纳滤膜装置进行浓缩分离;冷冻母液中仍含有一定量的硫酸钠,若操作不当,其中硫酸钠含量会更高,采用纳滤膜对其进行二次分离,能充分保证氯化钠产品盐的品质,且在一定程度上减少了杂盐比例。
第三步,处理后的纳滤浓水回至冷冻结晶前端,与高盐水一起进入冷冻结晶工段,纳滤产水进入氯化钠处理工段处理,最终得到高纯度氯化钠结晶盐。纳滤膜装置中极大部分盐为硫酸钠,对其进行循环冷冻回用,极大提高了系统对硫酸钠的回收率。通过本发明,对废水处理系统中硫酸钠进行充分的回收利用,极大提高了硫酸钠产品盐的回收率,且在保证氯化钠产品盐纯度的同时减少了杂盐量,极大程度上实现了“零排放”及“资源化”。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

  1. 一种采用纳滤膜分离提高“蒸发结晶+冷冻”分盐工艺回收率的方法,所述方法包括:(1)对高盐废水冷冻结晶后的冷冻母液换热,将冷冻母液温度提升至15℃~25℃;(2)换热后的冷冻母液进入纳滤膜装置进行浓缩分离;(3)处理后的纳滤浓水回至冷冻结晶前端,与高盐水一起进入冷冻结晶工段,纳滤产水进入氯化钠处理工段处理,最终得到高纯度氯化钠结晶盐。
  2. 如权利要求1所述的一种采用纳滤膜分离提高“蒸发结晶+冷冻”分盐工艺回收率的方法,所述(1)对高盐废水冷冻结晶后的冷冻母液换热,将冷冻母液温度提升至15℃~25℃;冷冻结晶器温度一般控制在-5℃~0℃,因而冷冻母液温度较低,需换热升温后再进入纳滤膜系统才能更好地保证纳滤膜分离效果。
  3. 如权利要求1所述的一种采用纳滤膜分离提高“蒸发结晶+冷冻”分盐工艺回收率的方法,所述(2)换热后的冷冻母液进入纳滤膜装置进行浓缩分离;通过纳滤膜二次分离,再次降低产水中硫酸根及其他二价离子含量,在进一步保证氯化钠产品盐纯度的同时减少了杂盐量。
  4. 如权利要求1所述的一种采用纳滤膜分离提高“蒸发结晶+冷冻”分盐工艺回收率的方法,所述(3)处理后的纳滤浓水回至冷冻结晶前端,与高盐水一起进入冷冻结晶器工段,纳滤产水进入氯化钠处理工段处理,最终得到高纯度氯化钠结晶盐;将纳滤膜浓水回流至冷冻结晶器,对系统硫酸钠充分回收利用,极大提高了硫酸钠产品盐的回收率。
PCT/CN2018/088999 2018-02-27 2018-05-30 一种采用纳滤膜分离提高"蒸发结晶+冷冻"分盐工艺回收率的方法 WO2019165720A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810188774.XA CN110194469A (zh) 2018-02-27 2018-02-27 一种采用纳滤膜分离提高“蒸发结晶+冷冻”分盐工艺回收率的方法
CN201810188774.X 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019165720A1 true WO2019165720A1 (zh) 2019-09-06

Family

ID=67751336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088999 WO2019165720A1 (zh) 2018-02-27 2018-05-30 一种采用纳滤膜分离提高"蒸发结晶+冷冻"分盐工艺回收率的方法

Country Status (2)

Country Link
CN (1) CN110194469A (zh)
WO (1) WO2019165720A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112028364A (zh) * 2020-08-28 2020-12-04 倍杰特集团股份有限公司 一种高含盐废水的多级提纯系统和方法
CN112047362A (zh) * 2020-08-28 2020-12-08 河南倍杰特环保技术有限公司 一种高含盐废水的多级提纯设备和工艺
CN112624505A (zh) * 2020-12-17 2021-04-09 内蒙古久科康瑞环保科技有限公司 高含盐废水蒸发母液的处理方法及系统
WO2021174344A1 (en) * 2020-03-02 2021-09-10 Saltworks Technologies Inc. Crystallization of salts from high pressure reverse osmosis concentrate
CN114275837A (zh) * 2021-12-28 2022-04-05 江苏卓生源环保科技有限公司 一种冷冻结晶处理系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112624476A (zh) * 2020-12-28 2021-04-09 西安西热控制技术有限公司 一种火电厂末端废水分盐结晶系统
CN113213684A (zh) * 2021-04-23 2021-08-06 北京国电富通科技发展有限责任公司 一种用于焦化废水提高盐资源化率的分盐系统和方法
CN113860607A (zh) * 2021-11-10 2021-12-31 内蒙古恒盛环保科技工程有限公司 一种高盐废水纳滤低温结晶膜法分盐结晶工艺及设备
CN114314907A (zh) * 2021-12-17 2022-04-12 烟台金正环保科技有限公司 一种废水处理产生杂盐提纯系统及方法
CN114772823B (zh) * 2022-03-30 2023-08-25 烟台金正环保科技有限公司 一种蒸发母液处理系统及工艺
CN117430297A (zh) * 2023-12-21 2024-01-23 北京东雷恒业环保科技有限公司 一种高盐废水资源化处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730893A1 (en) * 1995-03-07 1996-09-11 Waterworks International, Inc. Freeze crystallization concentration methods and apparatus
CN104692574A (zh) * 2014-12-22 2015-06-10 内蒙古久科康瑞环保科技有限公司 一种高含盐废水的处理方法
CN106116002A (zh) * 2016-08-03 2016-11-16 东华工程科技股份有限公司 一种提取煤化工高含盐废水中高纯度硫酸钠及氯化钠产品的方法
CN106946395A (zh) * 2017-05-09 2017-07-14 北京天地人环保科技有限公司 一种脱硫废水分质结晶处理的方法及装置
CN206692498U (zh) * 2017-02-09 2017-12-01 杭州上拓环境科技股份有限公司 一种含盐含磷废水资源化处理系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106422675B (zh) * 2016-11-18 2019-01-15 成都先进金属材料产业技术研究院有限公司 有机胺法脱硫工艺有机胺脱硫剂的净化装置及净化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730893A1 (en) * 1995-03-07 1996-09-11 Waterworks International, Inc. Freeze crystallization concentration methods and apparatus
CN104692574A (zh) * 2014-12-22 2015-06-10 内蒙古久科康瑞环保科技有限公司 一种高含盐废水的处理方法
CN106116002A (zh) * 2016-08-03 2016-11-16 东华工程科技股份有限公司 一种提取煤化工高含盐废水中高纯度硫酸钠及氯化钠产品的方法
CN206692498U (zh) * 2017-02-09 2017-12-01 杭州上拓环境科技股份有限公司 一种含盐含磷废水资源化处理系统
CN106946395A (zh) * 2017-05-09 2017-07-14 北京天地人环保科技有限公司 一种脱硫废水分质结晶处理的方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021174344A1 (en) * 2020-03-02 2021-09-10 Saltworks Technologies Inc. Crystallization of salts from high pressure reverse osmosis concentrate
CN112028364A (zh) * 2020-08-28 2020-12-04 倍杰特集团股份有限公司 一种高含盐废水的多级提纯系统和方法
CN112047362A (zh) * 2020-08-28 2020-12-08 河南倍杰特环保技术有限公司 一种高含盐废水的多级提纯设备和工艺
CN112047362B (zh) * 2020-08-28 2023-08-08 河南倍杰特环保技术有限公司 一种高含盐废水的多级提纯设备和工艺
CN112624505A (zh) * 2020-12-17 2021-04-09 内蒙古久科康瑞环保科技有限公司 高含盐废水蒸发母液的处理方法及系统
CN114275837A (zh) * 2021-12-28 2022-04-05 江苏卓生源环保科技有限公司 一种冷冻结晶处理系统

Also Published As

Publication number Publication date
CN110194469A (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
WO2019165720A1 (zh) 一种采用纳滤膜分离提高"蒸发结晶+冷冻"分盐工艺回收率的方法
CN104973726A (zh) 含氯化钠和硫酸钠的高盐废水的回收处理方法
CN105036222A (zh) 一种高盐废水的回收处理方法
CN103553138B (zh) 高盐废水中硫酸锰、硫酸镁、硫酸钙分离、浓缩、提纯的综合利用方法
CN105254099A (zh) 一种煤化工浓盐废水高纯度结晶提盐工艺
CN102642970A (zh) 钒渣提钒高盐废水资源化利用的方法
CN103819041A (zh) 一种低温浓缩高盐废水的方法
CN106082516A (zh) 一种分盐结晶工艺和装置
CN110304640A (zh) 一种碳酸氢钠生产方法
CN105384293B (zh) 一种经过除杂脱氨后的沉钒废水的处理方法
CN104477944A (zh) 一种从氯碱工业淡盐水中制取元明粉的工艺
CN108726491A (zh) 一种硫酸法钛白废酸膜处理方法
CN110642317A (zh) 一种硫酸钠废水资源化利用方法
CN102627301A (zh) 三效错流蒸发系统及工艺
CN207259304U (zh) 一种多级膜结晶综合处理含盐废水的系统
CN113402096B (zh) 一种pcb厂剥挂废液处理方法
CN105152186A (zh) 高盐废水单质分盐并联产硫化碱的工艺方法
CN110606499A (zh) 一种含锂盐湖卤水提锂组合装置
CN111646488B (zh) 多比重浓度硫酸钠与硫酸镁混合盐溶液的分离装置及分离方法
CN211111482U (zh) 一种碳酸锂洗水资源化综合利用的装置
CN109896680B (zh) 高含盐废水荧光示踪分盐方法及系统
CN113526542A (zh) 一种脱除硫酸锌液中氟氯的方法
CN106748895A (zh) 一种adc发泡剂缩合母液的处理方法
CN106167326A (zh) 一种废酸处理工艺
CN213865781U (zh) 基于三效蒸发装置用于蚀刻废液蒸发结晶设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908104

Country of ref document: EP

Kind code of ref document: A1