WO2019165664A1 - 界面聚合反应装置、中空纤维复合纳滤膜制备装置及方法 - Google Patents

界面聚合反应装置、中空纤维复合纳滤膜制备装置及方法 Download PDF

Info

Publication number
WO2019165664A1
WO2019165664A1 PCT/CN2018/081413 CN2018081413W WO2019165664A1 WO 2019165664 A1 WO2019165664 A1 WO 2019165664A1 CN 2018081413 W CN2018081413 W CN 2018081413W WO 2019165664 A1 WO2019165664 A1 WO 2019165664A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
tank
phase monomer
interfacial polymerization
communication portion
Prior art date
Application number
PCT/CN2018/081413
Other languages
English (en)
French (fr)
Inventor
陈顺权
Original Assignee
广州中国科学院先进技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州中国科学院先进技术研究所 filed Critical 广州中国科学院先进技术研究所
Publication of WO2019165664A1 publication Critical patent/WO2019165664A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/48Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/42Details of membrane preparation apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions

Definitions

  • the invention relates to the technical field of separation membranes, in particular to an interface polymerization reaction device, a hollow fiber composite nanofiltration membrane preparation device and a method.
  • Membrane separation technology uses pressure as a driving force to selectively separate mixed liquids through membrane pore size and surface affinity.
  • the composite nanofiltration membrane prepared by the interfacial polymerization method has a large permeation flux and a salt rejection rate.
  • the interfacial polymerization method has a very important position in the basic research and commercialization of nanofiltration membranes. This is because the nanofiltration membrane prepared by the interfacial polymerization method can be controlled by separately controlling the structure and properties of the support layer or the dense composite layer to prepare a composite with different mechanical strength, compression resistance, different selectivity and different permeability. Nanofiltration.
  • the composite nanofiltration membrane product includes a flat membrane module and a hollow fiber membrane module.
  • most of the composite nanofiltration membranes on the market are flat membrane modules, and there are few hollow fiber membrane modules.
  • the hollow fiber composite nanofiltration membrane used in the hollow fiber membrane module is generally prepared by interfacial polymerization, which is immersed and coated prior to the aqueous phase monomer, taken out, and then immersed in the oil phase monomer. It has been produced, which has made it difficult to produce on a large scale in the industry.
  • the hollow fiber composite nanofiltration membrane requires a long soaking time for the aqueous phase monomer coating in the interfacial polymerization reaction, resulting in low production efficiency.
  • the hollow fiber membrane module has the advantages of more flexible application, high membrane packing density, simple raw water pretreatment, low operation and maintenance cost, and wider application range. Therefore, it is urgent to provide an interface polymerization capable of achieving large-scale continuous production in the industry. Reaction device, hollow fiber composite nanofiltration membrane preparation device and method.
  • An interfacial polymerization reaction device comprising:
  • a coating assembly comprising a first tank for filling the water phase monomer and a second tank for filling the oil phase monomer, the first tank body comprising a body, a first communication portion and a second communication The first communication portion and the second communication portion are respectively connected to the body and the opening is arranged upward;
  • the guiding assembly includes a first guiding member and a second guiding member, wherein the first guiding member is configured to introduce the product to be processed from the first communication portion into the body of the first groove body, the second guiding member And a product to be processed for coating the body of the first tank body with an aqueous phase monomer from the second communication portion into the second tank body to make the water phase monomer coated on the product
  • the oil phase monomer undergoes interfacial polymerization on the surface of the product to form a composite film;
  • a drying assembly disposed between the second communication portion and the second tank for drying the product to be processed coated with the water phase monomer.
  • the interfacial polymerization reaction device can be applied to the surface polymerization reaction of a hollow fiber ultrafiltration support film to form a composite film, thereby obtaining a hollow fiber composite nanofiltration membrane.
  • a hollow fiber composite nanofiltration membrane not only hollow fiber composite nanofiltration membranes and the like which are required to be produced by interfacial polymerization can be industrially realized in large-scale continuous production, and production efficiency is improved, and performance stability of hollow fiber composite nanofiltration membranes and the like is also improved. .
  • the method further includes heating the first tank first heating assembly and/or heating the second tank second heating assembly.
  • the coating assembly further includes a first temperature control for temperature adjustment control of the aqueous phase monomer in the first tank and/or a temperature adjustment control for the oil phase monomer in the second tank The second temperature control.
  • the coating assembly further includes a first pressure monitoring member for monitoring the hydraulic pressure of the liquid level of the product to be processed in the body of the first tank and/or for monitoring the A hydraulic second pressure monitoring member of the liquid level of the product to be processed in the second tank.
  • the first tank body is U-shaped.
  • the first trough body is formed by a plurality of sections of open-ended pipes connected by flanges.
  • the drying assembly includes a power source for supplying compressed air to the air main pipe, and an air drying pipe, wherein the air drying pipe is disposed at the second communication portion and the second Between the tanks, the pipe wall of the air-drying pipe is a hollow structure, the pipe wall has a ventilating inner cavity for communicating with the power source, and an inner surface of the pipe wall is provided with an air outlet hole to The product to be processed passed through the tube hole of the air-drying tube is air-dried.
  • a preparation device for a hollow fiber composite nanofiltration membrane comprising a heat treatment device and an interfacial polymerization reaction device, wherein the interfacial polymerization reaction device is used for interfacial polymerization on a surface of a hollow fiber ultrafiltration support membrane to form a composite membrane separation layer
  • the heat treatment apparatus is configured to heat-treat a hollow fiber ultrafiltration support film formed with a composite membrane separation layer to obtain the hollow fiber composite nanofiltration membrane.
  • a preparation method of a hollow fiber composite nanofiltration membrane which comprises the preparation device of the above hollow fiber composite nanofiltration membrane, the preparation method comprising the following steps:
  • the hollow fiber ultrafiltration support film Passing the hollow fiber ultrafiltration support film through the first communication portion and the second guide member through the first communication portion, the body, the second communication portion, the drying assembly, and the first a two-slot body, the hollow fiber ultrafiltration support film is coated with a water phase monomer in the first tank body, dried by the drying module, and then coated with an oil phase monomer in the second tank body, and The aqueous phase monomer and the oil phase monomer undergo an interfacial polymerization reaction on the surface of the hollow fiber ultrafiltration support film to form a composite film separation layer; and further heat treatment in the heat treatment device to obtain the hollow fiber composite nanofiltration membrane.
  • the hollow fiber ultrafiltration support membrane is made of polysulfone, polyethersulfone, polyethylene, polypropylene, polyvinyl chloride, polyimide, polyacrylonitrile, polyvinylidene fluoride, poly Tetrafluoroethylene or polyester;
  • the aqueous phase monomer is piperazine, triaminobenzene, p-aminobenzene, m-aminobenzene, polyethylene glycol sulfate, polyethylene glycol phosphate, quaternized polyethylene glycol and polyethylene glycol amphoteric poly
  • the oil phase monomer is at least one of trimesoyl chloride, terephthaloyl chloride, isophthaloyl chloride, diisocyanate, epichlorohydrin, diglycidyl ether and glycerol glycidyl ether with an organic solvent. a mixed solution; the organic solvent is at least one of n-hexane and toluene;
  • the first tank has a liquid level of 0.5 to 5 m, the aqueous phase monomer has a coating time of 0.5 to 5 minutes, and the oil phase monomer has a coating time of 10 to 60 seconds.
  • Fig. 1 is a configuration diagram of an interfacial polymerization reaction apparatus according to an embodiment.
  • an interfacial polymerization reaction apparatus 10 of an embodiment includes a coating assembly, a guide assembly, and a drying assembly 14.
  • the coating assembly includes a first tank 11 for filling the aqueous phase monomer and a second tank 12 for filling the oil phase monomer.
  • the first tank body 11 includes a body 111, a first communication portion 112 and a second communication portion 113.
  • the first communication portion 112 and the second communication portion 113 are respectively connected to the body 111 and the openings are arranged upward.
  • the guiding assembly includes a first guiding member 131 and a second guiding member 132.
  • the first guiding member 131 is for introducing the product to be processed from the first communication portion 112 into the body 111 of the first tank body 11.
  • the second guiding member 132 is configured to introduce the product to be processed coated with the water phase monomer in the body 111 of the first tank body 11 from the second communication portion 113 into the second tank body 12 to apply water coated on the product.
  • the phase monomer and the oil phase monomer undergo interfacial polymerization on the surface of the product to form a composite film.
  • the drying assembly 14 is disposed between the second communication portion 113 and the second tank body 12 for drying the product to be processed coated with the water phase monomer, removing excess moisture on the surface thereof, and controlling the filament entering the oil phase monomer. Wait for the dryness of the processed product.
  • the first phase body 11 and the second tank body 12 are respectively filled with the water phase monomer and the oil phase monomer, and the other products to be processed such as the hollow fiber ultrafiltration support film are set in the first a guiding member 131 and a second guiding member 132, and sequentially passing through the first communicating portion 112, the body 111, the second communicating portion 113, the drying assembly 14 and the second tank body 12, so that the water phase monomer and the oil phase The monomer undergoes interfacial polymerization on the surface of a hollow fiber ultrafiltration support film to form a composite film.
  • the aqueous phase of the interfacial polymerization reaction has a high activity of monomer and oil phase monomer, and once contacted, a network-like ultra-thin dense surface layer, that is, a composite film, is formed on the surface of the product. Finally, a hollow fiber composite nanofiltration membrane is obtained by heat treatment.
  • the above-mentioned interfacial polymerization reaction device 10 adopts a guiding component to continuously coat the water phase monomer coating and the oil phase monomer coating, and uses the drying component 14 to remove excess water on the surface of the product to be processed coated with the aqueous phase monomer, thereby overcoming the problem.
  • the hollow fiber ultrafiltration support film and other silk film-like products can not remove the excess liquid by brushing like the flat support layer, avoiding excess liquid and uneven coating, resulting in "pinhole" defects in the composite film, thereby affecting the hollow fiber.
  • the problem of the permeation retention performance of the composite nanofiltration membrane is a guiding component to continuously coat the water phase monomer coating and the oil phase monomer coating, and uses the drying component 14 to remove excess water on the surface of the product to be processed coated with the aqueous phase monomer, thereby overcoming the problem.
  • the hollow fiber ultrafiltration support film and other silk film-like products can not remove the excess liquid by brushing like the flat support layer, avoiding excess liquid and uneven coating,
  • the liquid level of the first communication portion 112 and the second communication portion 113 can be controlled by the unique design of the first tank body 11 to control the hollow fiber ultrafiltration support film and the like in the body 111 of the first tank body 11.
  • the liquid level at the liquid level increases the pressure of the hollow fiber ultrafiltration support membrane during the aqueous phase coating process to accelerate the osmotic adsorption rate of the water phase monomer and the hollow fiber ultrafiltration support membrane.
  • the application of the interfacial polymerization reaction device 10 not only enables the hollow fiber composite nanofiltration membrane and the like, which are required to be produced by the interfacial polymerization reaction, can realize large-scale continuous production in the industry, and improves the production efficiency, and further improves the hollow fiber composite. Performance stability of products such as nanofiltration membranes.
  • the coating time of the aqueous phase monomer is at least 5 to 20 minutes with the action of the aqueous phase monomer, and the coating time of the aqueous phase monomer can be shortened to 0.5 by using the above-mentioned interfacial reaction device. ⁇ 5 minutes.
  • the above-mentioned interfacial polymerization reaction device 10 can be used for one or more hollow fiber ultrafiltration support membranes to wait for processing products to simultaneously perform interfacial polymerization reaction, and can also be used for chemical modification of the membrane surface.
  • the guide assembly may be appropriately modified to provide grooves or baffles.
  • the method for preparing the interfacial polymerization reaction has the advantage of the structure of the dense layer thickness and the pore size, thereby breaking the water flux and the rejection rate of the separation membrane prepared by the conventional process, and the permeation flux and the interception of the prepared composite membrane. The rate is simultaneously increased.
  • the interfacial polymerization device 10 further includes a first heating assembly (not shown).
  • the first heating assembly is for heating the first tank body 11.
  • the interfacial polymerization device 10 further includes a second heating assembly (not shown).
  • the second heating assembly is for heating the second tank 12.
  • the heating temperature of the first heating assembly can be set according to the temperature required for the water phase monomer coating.
  • the heating temperature of the second heating assembly can be set according to the temperature required for the oil phase monomer coating.
  • the coating assembly further includes a first temperature control 114.
  • the first temperature control 114 is used to adjust the temperature of the water phase monomer in the first tank 11.
  • the coating assembly further includes a second temperature control (not shown). The second temperature control is used to adjust the temperature of the oil phase monomer in the second tank 12.
  • the coating assembly further includes a first pressure monitoring member 115.
  • the first pressure monitoring member 115 is for monitoring the hydraulic pressure of the liquid level of the product to be processed in the body 111 of the first tank body 11.
  • the coating assembly further includes a second pressure monitoring member (not shown).
  • the second pressure monitoring member is for monitoring the hydraulic pressure of the liquid level of the product to be processed in the second tank body 12.
  • the first pressure monitoring member and the second pressure monitoring member are pressure gauges.
  • the first tank body 11 has a U-shaped structure.
  • the first tank body 11 of the U-shaped structure can reduce the amount of use of the water phase monomer. That is, the body 111 of the first tank body 11, the first communication portion 112, and the second communication portion 113 collectively form a U-shaped structure.
  • the first tank body 11 is formed by a plurality of sections of pipes open at both ends by flange connection.
  • the arrangement of the first tank body 11 is very flexible, and the heights of the first communication portion 112 and the second communication portion 113 can also be flexibly set as needed.
  • the pipe is a steel pipe.
  • the bottom of the body 111 of the first tank body 11 is provided with a first liquid discharge port (not shown).
  • the bottom of the second tank body 12 is provided with a second liquid discharge port (not shown).
  • the drying assembly 14 includes a power source (not shown) and an air drying tube (not shown).
  • the power source is used to supply compressed air to the air main pipe, and the air main pipe is disposed between the second communication portion 113 and the second groove body 12.
  • the power source is an air compressor.
  • the wall of the air-drying tube is a hollow structure having a venting cavity for communicating with a power source.
  • the pipe wall is connected with the power source, and the inner surface of the pipe wall is provided with an air outlet hole to uniformly air dry the product inside the air main pipe, and the air drying degree is controllable.
  • the number of air outlet holes may be plural.
  • the inner cavity is ventilated to allow the compressed air to form a fine air flow therein so that the compressed gas uniformly flows out from the air outlet hole through the fine air flow path, and the product to be processed is uniformly air-dried.
  • the outlet holes are evenly distributed on the inner surface of the air-dried tube to perform 360-degree air drying on the product to be processed.
  • the drying assembly 14 further includes a heating temperature control unit that is capable of precise heating and temperature control of the flowing gas.
  • the drying assembly 14 further includes a third pressure monitoring adjustment member (not shown) disposed on the line connecting the air main pipe and the power source for adjusting and monitoring the wind speed.
  • the third pressure monitoring adjustment member is a pressure gauge.
  • the interfacial polymerization device 10 further includes a first bracket 15 and a second bracket 16.
  • the first bracket 15 is connected to the first communication portion 112, the body 111, and the second communication portion 113 of the first tank body 11 to ensure stability thereof.
  • the second bracket 16 is coupled to the second tank body 12 for supporting the second tank body 12.
  • the first guiding member 131 is connected to the first bracket 15 and located at the opening of the first communication portion 112.
  • the air main pipe is connected to the first bracket 15 and disposed opposite to the opening of the second communication portion 113.
  • the second guiding member 132 is coupled to the first bracket 15 and located at an opening of the air drying tube away from the first communicating portion 112.
  • the first bracket 15 is a rectangular frame structure
  • the first slot body 11 is located in the first bracket 15
  • the first communication portion 112 , the body 111 , and the second communication portion 113 are respectively connected to the first bracket 15
  • the second bracket 16 is disposed at one side of the first bracket 15 . More specifically, the first bracket 15 and the second bracket 16 are located in one plane.
  • first bracket 15 is further provided with a reinforcing rib.
  • the horizontal arrangement of the ribs is disposed in parallel with the joint of the first guide member 131 and the second guide member 132.
  • first bracket 15 and the second bracket 16 are connected to each other to enhance the overall stability of the interface reaction device.
  • the guiding assembly further includes a third guiding member 133, and the third guiding member 133 is disposed on the first bracket 15, and the product to be processed for the air drying tube provides a buffering section before entering the second tank body 12.
  • the number of the third guiding members 133 is plural, and the plurality of third guiding members 133 are spaced apart from the first bracket 15 , and the distance between the adjacent two third guiding members 133 from the first bracket 15 is different. To further increase the buffer segment.
  • each of the guide members is a guide wheel.
  • the surface of each guide member is provided with a sponge foam to reduce the wear of the surface of the product by the guide member.
  • the sponge foam is a high molecular polymer soft sponge foam. More specifically, the sponge foam is made of at least one of polyurethane, polyethylene, phenolic resin, polyether, polyvinyl alcohol, and natural latex.
  • the interfacial polymerization device 10 further includes a unwinding assembly.
  • the unwinding assembly is disposed at the opening of the first communication portion 112 and is used for unwinding the product to be coated.
  • the unwinding assembly has a unwinding wheel, and the surface of the unwinding wheel may also be provided with the sponge foam described above. It can be understood that, in an embodiment, the first guiding member 131 can replace the unwinding wheel while functioning as an unwinding and guiding.
  • the interfacial polymerization device 10 further includes a winding assembly 17.
  • the winding assembly 17 is disposed on one side of the second tank 12 and is used for winding the product after the interfacial polymerization reaction.
  • the winding assembly 17 has a winding reel, and the surface of the winding reel can also be provided with the above-mentioned sponge foam.
  • the winding wheel is coupled to the second bracket 16.
  • the present invention also provides an apparatus for preparing a hollow fiber composite nanofiltration membrane according to an embodiment. It includes a heat treatment device and the above-described interfacial polymerization device 10.
  • the interfacial polymerization reactor 10 is used for interfacial polymerization on the surface of the hollow fiber ultrafiltration support membrane to form a composite membrane separation layer.
  • the heat treatment device is used for heat-treating the hollow fiber membrane on which the composite membrane separation layer is formed, so that the composite membrane separation layer is further cross-linked and polymerized, and the micropores of the surface layer are further shrunk and densified to obtain a hollow fiber composite nanofiltration membrane.
  • the heat treatment apparatus is an apparatus which can realize heat treatment such as an oven.
  • the preparation device of the above hollow fiber composite nanofiltration membrane can be used for large-scale continuous production of hollow fiber composite nanofiltration membrane, and has high production efficiency and product performance stability.
  • the hollow fiber composite nanofiltration membrane prepared by the hollow fiber ultrafiltration support membrane is an intermediate support layer, and the composite membrane separation layer is a dense composite separation layer tightly and uniformly bonded to the outer surface of the hollow fiber ultrafiltration support membrane.
  • the present invention also provides a method for preparing a hollow fiber composite nanofiltration membrane according to an embodiment, which comprises using the above hollow fiber composite nanofiltration membrane preparation apparatus.
  • the preparation method comprises the following steps:
  • the hollow fiber ultrafiltration support film passes through the first communication portion, the body, the second communication portion, the drying assembly, and the second tank body through the first guide member and the second guide member in sequence.
  • the hollow fiber ultrafiltration support film is coated with the water phase monomer in the first tank body, dried by the drying component, and then the oil phase monomer is coated in the second tank body, and the water phase monomer and the oil phase monomer are in the hollow fiber super
  • the surface of the filter support membrane undergoes interfacial polymerization to form a composite membrane; and heat treatment is performed in a heat treatment apparatus to obtain a hollow fiber composite nanofiltration membrane.
  • the hollow fiber composite nanofiltration membrane has the advantages of simple preparation method, low cost, continuous and high-efficiency production, and high stability of the prepared hollow fiber composite nanofiltration membrane.
  • the hollow fiber ultrafiltration support film is made of polysulfone, polyethersulfone, polyethylene, polypropylene, polyvinyl chloride, polyimide, polyacrylonitrile, polyvinylidene fluoride, polytetrafluoroethylene or polyester. .
  • the hollow fiber ultrafiltration membrane support layer can be directly purchased or prepared by a thermally induced phase separation method, a non-solvent-induced phase separation method, or a hot stretching method.
  • the aqueous monomer is piperazine, triaminobenzene, p-aminobenzene, m-aminobenzene, polyethylene glycol sulfate, polyethylene glycol phosphate, quaternized polyethylene glycol, and polyethylene glycol.
  • the oil phase monomer is at least one of trimesoyl chloride, terephthaloyl chloride, isophthaloyl chloride, diisocyanate, epichlorohydrin, diglycidyl ether, and glycerol glycidyl ether, and an organic solvent.
  • the mixed solution, the organic solvent is at least one of n-hexane and toluene.
  • the coating time of the oil phase monomer passes through the second tank for 10 to 60 seconds. Therefore, in order to further achieve continuous and efficient production, the coating time of the aqueous phase monomer should be as close as possible.
  • the first tank has a liquid level of 0.5 to 5 m, that is, the hollow fiber ultrafiltration support membrane in the body of the first tank is at a liquid level of 0.5 to 5 m.
  • the time of the hollow fiber ultrafiltration supporting membrane passing through the aqueous phase monomer in the first tank can be controlled to be 0.5 to 5 minutes, that is, The coating time of the aqueous phase monomer is from 0.5 to 5 minutes.
  • the coating time of the aqueous phase monomer can be made comparable to the coating time of the oil phase monomer by adjusting the liquid level and the conveying speed of the guiding assembly.
  • the heat treatment conditions are heat treatment at 70 to 100 ° C for 10 to 50 minutes.
  • a hollow fiber ultrafiltration support membrane was prepared. Taking 17wt% polyvinylidene fluoride as the main material, 12wt% polyethylene glycol 200, 8wt% polyethylene glycol 20000 as porogen, 63wt% dimethylacetamide as solvent, water as core liquid and external solidification In the bath, a hollow fiber ultrafiltration support film was spun on a hollow fiber spinning machine.
  • the unwinding wheel mounted on the unwinding assembly of the interface reaction device is removed together with the wire receiving wheel.
  • One end of the hollow fiber ultrafiltration support membrane is pulled out.
  • a 2% by weight aqueous solution of triaminobenzene as a monomer of the aqueous phase was added to the first tank until the hollow fiber ultrafiltration support membrane in the body was at a liquid level of 3.5 m.
  • a 0.1 wt% solution of trimesoyl chloride in n-hexane was added as an oil phase monomer to the second tank.
  • the outer surface of the ultrafiltration support membrane is continuously coated to form a composite membrane separation layer.
  • the coating time of the oil phase monomer was 60 seconds, and the coating time of the aqueous phase monomer was 1 minute.
  • the whole roll of film is coated, the whole roll of film is removed and heat treated at 85 ° C for 30 minutes to obtain a hollow fiber composite nanofiltration membrane having a dense composite separation layer.
  • a hollow fiber ultrafiltration support membrane was prepared. 19wt% polyethersulfone as the main material, 10wt% polyvinylpyrrolidone, 8wt% n-propanol as porogen, 63wt% dimethylacetamide as solvent, water as core liquid and external coagulation bath, in hollow fiber spinning A hollow fiber ultrafiltration support film is spun on a wire machine.
  • the unwinding wheel mounted on the unwinding assembly of the interface reaction device is removed together with the wire receiving wheel.
  • One end of the hollow fiber ultrafiltration support membrane is pulled out.
  • a quaternized polyethylene glycol aqueous solution having a mass fraction of 1.5% by weight of the aqueous phase monomer is added to the first tank until the hollow fiber ultrafiltration support membrane of the body is in the body. Located at 2 meters. A 0.1 wt% solution of epichlorohydrin in n-hexane was added as an oil phase monomer to the second tank.
  • the outer surface of the ultrafiltration support membrane is continuously coated to form a composite membrane separation layer.
  • the coating time of the oil phase monomer was 60 seconds, and the coating time of the aqueous phase monomer was 1.5 minutes.
  • the whole roll of film is coated, the whole roll of film is removed and heat treated at 100 ° C for 12 minutes to obtain a hollow fiber composite nanofiltration membrane having a dense composite separation layer.
  • Example 3 The preparation method of Example 3 is basically the same as that of Example 1, except that the hollow fiber ultrafiltration support membrane in the body is at a liquid level of 5 m, the oil phase monomer coating time is 30 seconds, and the water phase is single.
  • the coating time of the body was 0.5 minutes, and the heat treatment conditions were heat treatment at 70 ° C for 50 minutes.
  • the hollow fiber ultrafiltration support membrane, the aqueous phase monomer, the oil phase monomer, and the heat treatment conditions were all the same as in Example 1.
  • the hollow fiber ultrafiltration support membrane was immersed in the aqueous phase monomer for 10 minutes, and taken out after being naturally dried.
  • the interfacial polymerization reaction was carried out for 60 s in the oil phase monomer to form a composite membrane separation layer on the outer surface of the hollow fiber ultrafiltration support membrane, taken out, washed and dried, and then heat-treated to obtain a hollow fiber composite nanofiltration membrane.
  • Comparative Example 1 It was apparent from actual production that the production efficiency of Comparative Example 1 was lower than that of Examples 1 to 3. Further, the hollow fiber composite nanofiltration membranes prepared in Comparative Example 1 and Examples 1 to 3 were subjected to yield analysis, and the yield of Comparative Example 1 was 80%, and the yields of Examples 1 to 3 were all 90%. The coating of Comparative Example 1 was not uniform and the coating process and coating time were difficult to precisely control, resulting in poor reproducibility.
  • the qualified product of the hollow fiber composite nanofiltration membrane prepared in Comparative Example 1 and Examples 1 to 3 was tested at 0.2 MPa for the pure water flux, the rejection of the concentration of 1000 ppm of Na 2 SO 4 and the concentration of 1000 ppm.
  • the retention rate of MgCl 2 , the average value of the obtained pure water flux, the average value of the rejection of Na 2 SO 4 and the average retention rate of MgCl 2 are shown in the following table. It can be seen that the preparation method can also improve the separation efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种界面聚合反应装置(10)、中空纤维复合纳滤膜制备装置及方法,该装置(10)包括涂覆组件、导向组件及干燥组件(14)。涂覆组件包括用于填装水相单体的第一槽体(11)及用于填装油相单体的第二槽体(12),第一槽体(11)包括本体(111)、与本体(111)连通且开口朝上的第一连通部(112)及第二连通部(113)。导向组件包括第一导向件(131)及第二导向件(132),第一导向件(131)用于将待加工产品从第一连通部(112)导入第一槽体(11)的本体(111)内,第二导向件(132)用于将待加工产品从第二连通部(113)导入第二槽体(12)内,以使产品上涂覆的水相单体与油相单体在产品表面发生界面聚合反应形成复合膜。干燥组件(14)设于第二连通部(113)和第二槽体(12)之间。该装置和方法可使中空纤维复合纳滤膜等产品在产业上实现大规模连续高效生产。

Description

界面聚合反应装置、中空纤维复合纳滤膜制备装置及方法 技术领域、
本发明涉及分离膜技术领域,特别是涉及一种界面聚合反应装置、中空纤维复合纳滤膜制备装置及方法。
背景技术
膜分离技术以压力为驱动力,通过膜孔径尺寸和表面亲和性对混合液体进行选择性分离。其中,界面聚合法制备的复合纳滤膜具有较大的渗透通量和盐截留率。就目前的研究报道和实际应用来看,界面聚合法在纳滤膜基础研究和商业化领域均具有非常重要的地位。这是由于界面聚合法制备纳滤膜,可以通过单独控制支撑层或致密复合层的结构和性能进行调控,制备出所需的力学强度优异、耐压密的不同选择性和不同渗透性的复合纳滤膜。
复合纳滤膜产品有平板膜组件及中空纤维膜组件等。但市面上绝大多数的复合纳滤膜为平板膜组件,而鲜有中空纤维膜组件。这主要是因为中空纤维膜组件所用的中空纤维复合纳滤膜一般是采用界面聚合反应制得,其是先于水相单体中浸泡涂覆,取出,再于油相单体中浸泡涂覆制得,因而导致其很难在产业上大规模连续生产。其次,中空纤维复合纳滤膜在界面聚合反应中水相单体涂覆所需的浸泡时间长,导致生产效率较低。然而中空纤维膜组件具有应用更灵活、膜丝装填密度高、原水预处理简单、运行维护成本低及应用范围更加广泛等优点,因此急需提供一种能够在产业上实现大规模连续生产的界面聚合反应装置、中空纤维复合纳滤膜制备装置及方法。
发明内容
基于此,有必要提供一种能够在产业上实现大规模连续高效生产的界面聚合反应装置、中空纤维复合纳滤膜制备装置及方法。
一种界面聚合反应装置,包括:
涂覆组件,包括用于填装水相单体的第一槽体及用于填装油相单体的第二 槽体,所述第一槽体包括本体、第一连通部及第二连通部,所述第一连通部及所述第二连通部分别与本体连通且开口朝上设置;
导向组件,包括第一导向件及第二导向件,所述第一导向件用于将待加工产品从所述第一连通部导入所述第一槽体的本体内,所述第二导向件用于将所述第一槽体的本体内涂覆有水相单体的待加工产品从所述第二连通部导入所述第二槽体内,以使产品上涂覆的水相单体与油相单体在产品表面发生界面聚合反应形成复合膜;及
干燥组件,设于所述第二连通部和所述第二槽体之间,用于干燥涂覆有水相单体的待加工产品。
该界面聚合反应装置可应用于中空纤维超滤支撑膜等产品的表面发生界面聚合反应形成复合膜,进而制得中空纤维复合纳滤膜。如此不仅使中空纤维复合纳滤膜等需要采用界面聚合反应生产的产品可在产业上实现大规模连续生产,且提高了生产效率,此外还提高了中空纤维复合纳滤膜等产品的性能稳定性。
在其中一个实施例中,还包括用于加热所述第一槽体第一加热组件和/或用于加热所述第二槽体第二加热组件。
在其中一个实施例中,所述涂覆组件还包括用于第一槽体内水相单体温度调节控制的第一温控件和/或用于第二槽体内油相单体温度调节控制的第二温控件。
在其中一个实施例中,所述涂覆组件还包括用于监测所述第一槽体的本体内的待加工产品所处液面的液压的第一压力监测件和/或用于监测所述第二槽体内的待加工产品所处液面的液压的第二压力监测件。
在其中一个实施例中,所述第一槽体为U型结构。
在其中一个实施例中,所述第一槽体由多段两端开口的管道通过法兰连接而成。
在其中一个实施例中,所述干燥组件包括动力源及风干管,所述动力源用于给所述风干管提供压缩气体,所述风干管设于所述第二连通部和所述第二槽体之间,所述风干管的管壁为中空结构,所述管壁具有用于与所述动力源连通 的通风内腔,且所述管壁的内表面设有出风孔,以对所述风干管的管孔中通过的待加工产品进行风干。
一种中空纤维复合纳滤膜的制备装置,包括热处理装置及上述界面聚合反应装置,所述界面聚合反应装置用于在中空纤维超滤支撑膜的表面进行界面聚合反应以形成复合膜分离层,所述热处理装置用于将形成有复合膜分离层的中空纤维超滤支撑膜进行热处理,以制得所述中空纤维复合纳滤膜。
一种中空纤维复合纳滤膜的制备方法,使用上述中空纤维复合纳滤膜的制备装置,所述制备方法包括以下步骤:
将中空纤维超滤支撑膜通过所述第一导向件和所述第二导向件依次穿过所述第一连通部、所述本体、所述第二连通部、所述干燥组件及所述第二槽体,所述中空纤维超滤支撑膜在所述第一槽体内涂覆水相单体,经所述干燥组件干燥,再于所述第二槽体涂覆油相单体,并使所述水相单体与所述油相单体在所述中空纤维超滤支撑膜的表面发生界面聚合反应形成复合膜分离层;再于所述热处理装置进行热处理,得到所述中空纤维复合纳滤膜。
在其中一个实施例中,所述中空纤维超滤支撑膜的材质为聚砜、聚醚砜、聚乙烯、聚丙烯、聚氯乙烯、聚酰亚胺、聚丙烯腈、聚偏氟乙烯、聚四氟乙烯或聚酯;
所述水相单体为哌嗪、三氨基苯、对氨基苯、间氨基苯、聚乙二醇硫酸酯、聚乙二醇磷酸酯、季胺化聚乙二醇及聚乙二醇两性聚电解质中的至少一种的水溶液;所述水溶液的质量分数为0.5%~5%;
所述油相单体为均苯三酰氯、对苯二酰氯、间苯二酰氯、二异氰酸酯、环氧氯丙烷、二缩水甘油醚及丙三醇缩水甘油醚中的至少一种与有机溶剂的混合液;所述有机溶剂为正己烷和甲苯中的至少一种;
所述第一槽体的液位为0.5~5m,所述水相单体的涂覆时间为0.5~5分钟,所述油相单体的涂覆时间为10~60秒。
附图说明
图1为一实施方式的界面聚合反应装置的结构图。
具体实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述,并给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
参照图1,一实施方式的界面聚合反应装置10包括涂覆组件、导向组件及干燥组件14。
涂覆组件包括用于填装水相单体的第一槽体11及用于填装油相单体的第二槽体12。第一槽体11包括本体111、第一连通部112及第二连通部113,第一连通部112及第二连通部113分别与本体111连通且开口朝上设置。
导向组件包括第一导向件131及第二导向件132。第一导向件131用于将待加工产品从第一连通部112导入第一槽体11的本体111内。第二导向件132用于将第一槽体11的本体111内涂覆有水相单体的待加工产品从第二连通部113导入第二槽体12内,以使产品上涂覆的水相单体与油相单体在产品表面发生界面聚合反应形成复合膜。
干燥组件14设于第二连通部113和第二槽体12之间,用于干燥涂覆有水相单体的待加工产品,除去其表面多余的水分,控制进入油相单体前膜丝等待加工产品的干燥程度。
上述界面聚合反应装置10工作时,在第一槽体11和第二槽体12内分别装填水相单体和油相单体,并将中空纤维超滤支撑膜等其他待加工产品设于第一导向件131和第二导向件132上,且依次穿过第一连通部112、本体111、第二连通部113、干燥组件14及第二槽体12,以使水相单体与油相单体在中空纤维超滤支撑膜等产品的表面发生界面聚合反应形成复合膜。界面聚合反应的水相 单体和油相单体活性很高,一旦接触很快在产品表面形成网状超薄致密表层,即复合膜。最后通过热处理得到中空纤维复合纳滤膜。
上述界面聚合反应装置10,采用导向组件将水相单体涂覆和油相单体涂覆连续化,采用干燥组件14除去涂覆有水相单体的待加工产品表面多余的水分,克服了中空纤维超滤支撑膜等丝膜状的产品无法像平板支撑层一样通过刷子刷去多余的液体的问题,避免多余液体和涂覆不均匀导致复合膜形成“针孔”缺陷,进而影响中空纤维复合纳滤膜的渗透截留性能的问题。且,通过第一槽体11的独特设计,可控制第一连通部112和第二连通部113的液面,以控制第一槽体11的本体111内的中空纤维超滤支撑膜等产品所处的液位,进而通过较高的液位增加中空纤维超滤支撑膜在水相涂覆过程中所受的压力,以加快水相单体与中空纤维超滤支撑膜等产品的渗透吸附速率,进而缩短水相涂覆所需的浸泡时间,从而缩短了水相单体涂覆所需的浸泡时间,进而减小了水相单体涂覆和油相单体涂覆所需的浸泡时间差异,进一步在连续化生产的基础上减少了生产时间,提高了生产效率。
因此该界面聚合反应装置10的应用,不仅使中空纤维复合纳滤膜等需要采用界面聚合反应生产的产品可在产业上实现大规模连续生产,且提高了生产效率,此外还提高了中空纤维复合纳滤膜等产品的性能稳定性。
具体地,传统制备方法,水相单体的涂覆时间即与水相单体作用的时间至少要5~20分钟,而采用上述界面反应装置可将水相单体的涂覆时间缩短至0.5~5分钟。
可理解,上述界面聚合反应装置10可用于一根或多根中空纤维超滤支撑膜等待加工产品同时进行界面聚合反应,还可用于膜表面化学改性。具体地,为了避免多根中空纤维超滤支撑膜相互影响,可对导向组件进行适当改进,设置沟槽或者挡板。界面聚合反应制备的方法具有致密层厚度和孔径的结构可调控的优点,从而突破常规过程制备的分离膜水通量和截留率此消彼长的制约,制备的复合膜出渗透通量和截留率同时提高。
进一步地,该界面聚合反应装置10还包括第一加热组件(图未示)。第一加热组件用于加热第一槽体11。进一步地,该界面聚合反应装置10还包括第二 加热组件(图未示)。第二加热组件用于加热第二槽体12。如此可根据水相单体涂覆所需的温度设置第一加热组件的加热温度。可根据油相单体涂覆所需的温度设置第二加热组件的加热温度。
进一步地,涂覆组件还包括第一温控件114。第一温控件114用于调节控制第一槽体11内水相单体的温度。进一步地,涂覆组件还包括第二温控件(图未示)。第二温控件用于调节控制第二槽体12内油相单体的温度。
进一步地,涂覆组件还包括第一压力监测件115。第一压力监测件115用于监测第一槽体11的本体111内的待加工产品所处液面的液压。进一步地,涂覆组件还包括第二压力监测件(图未示)。第二压力监测件用于监测第二槽体12内的待加工产品所处液面的液压。第一压力监测件和第二压力监测件均为压力表。
具体地,第一槽体11为U型结构。U型结构的第一槽体11可减少水相单体的使用量。也就是说第一槽体11的本体111、第一连通部112及第二连通部113共同形成U型结构。具体地,第一槽体11由多段两端开口的管道通过法兰连接而成。如此第一槽体11的设置非常灵活,第一连通部112和第二连通部113的高度也可根据需要灵活设置。具体地,管道为钢管。
具体地,第一槽体11的本体111的底部设有第一排液口(图未示)。第二槽体12的底部设有第二排液口(图未示)。
进一步地,干燥组件14包括动力源(图未示)及风干管(图未标)。动力源用于给风干管提供压缩气体,风干管设于第二连通部113和第二槽体12之间。
具体地,动力源为空气压缩机。具体地,风干管的管壁为中空结构,具有用于与动力源连通的通风内腔。管壁与动力源连通,且管壁的内表面设有出风孔,以对风干管内部的产品进行均匀风干,且风干程度可控。更具体地,出风孔的数量可为多个。具体地,通风内腔以使压缩空气在其内形成细小的空气气流,以使压缩气体通过细小空气流道从出风孔均匀流出,对待加工产品进行均匀风干。更具体地,出风孔均匀分布在风干管的内表面上,以对待加工产品进行360度风干。
具体地,干燥组件14还包括加热温控部件,加热温控部件能够对流过的气 体进行精确的加热控温。
具体地,干燥组件14还包括第三压力监测调节件(图未示),设于风干管和动力源连通的管路上以用于调节和监测出风速度。第三压力监测调节件为压力表。
更具体地,该界面聚合反应装置10还包括第一支架15和第二支架16。第一支架15与第一槽体11的第一连通部112、本体111、第二连通部113分别连接以保证其稳定性。第二支架16与第二槽体12连接,以用于支撑第二槽体12。
具体地,第一导向件131连接于第一支架15上且位于第一连通部112的开口处。具体地,风干管连接于第一支架15上且正对第二连通部113的开口设置。具体地,第二导向件132连接于第一支架15且位于风干管远离第一连通部112的开口处。
具体地,第一支架15为矩形框架结构,第一槽体11位于第一支架15内且第一连通部112、本体111、第二连通部113分别与第一支架15连接。具体地,第二支架16设于第一支架15的一侧。更具体地,第一支架15和第二支架16位于一个平面内。
具体地,第一支架15上还设有加强筋。加强筋水平设置与第一导向件131和第二导向件132连接处平行设置。
更具体地,第一支架15和第二支架16相互连接,以增强界面反应装置的整体稳定性。
具体地,导向组件还包括第三导向件133,第三导向件133设于第一支架15上,且用于给风干管出来的待加工产品在进入第二槽体12之前提供一个缓冲段。具体地,第三导向件133的数量为多个,多个第三导向件133间隔设于第一支架15上,且相邻两个第三导向件133距离第一支架15的距离设置不相同,以进一步增加缓冲段。
具体地,各导向件均为导向轮。各导向件的表面设有海绵泡沫,以减少产品表面受到导向件的磨损。具体地,海绵泡沫为高分子聚合物软体海绵泡沫。更具体地,海绵泡沫由聚氨酯,聚乙烯、酚醛树脂、聚醚、聚乙烯醇及天然乳胶中的至少一种材质制成。
进一步地,该界面聚合反应装置10还包括放卷组件。放卷组件设于第一连通部112的开口处,且用于将待涂覆的产品进行退绕。具体地,放卷组件具有放卷轮,放卷轮的表面也可设有上述海绵泡沫。可理解,在一实施例中,第一导向件131可替代放卷轮,同时起到退绕和导向的作用。
进一步地,该界面聚合反应装置10还包括收卷组件17。收卷组件17设于第二槽体12的一侧,且用于将进行界面聚合反应后的产品进行收卷。具体地,收卷组件17具有收卷轮,收卷轮的表面也可设有上述海绵泡沫。收卷轮连接于第二支架16上。
本发明还提供了一实施方式的中空纤维复合纳滤膜的制备装置。其包括热处理装置及上述界面聚合反应装置10。
界面聚合反应装置10用于在中空纤维超滤支撑膜的表面进行界面聚合反应以形成复合膜分离层。
热处理装置用于将形成有复合膜分离层的中空纤维膜进行热处理,以使复合膜分离层进一步交联聚合,使表层的微孔进一步收缩致密化,得到中空纤维复合纳滤膜。
具体地,热处理装置为烘箱等可以实现热处理的装置。
上述中空纤维复合纳滤膜的制备装置可用于大规模连续生产中空纤维复合纳滤膜,且具有较高的生产效率和产品性能稳定性。
制得的中空纤维复合纳滤膜以中空纤维超滤支撑膜为中间支撑层,复合膜分离层为致密复合分离层紧密均匀结合在中空纤维超滤支撑膜的外表面上。
本发明还提供了一实施方式的中空纤维复合纳滤膜的制备方法,使用上述中空纤维复合纳滤膜的制备装置。该制备方法包括以下步骤:
将中空纤维超滤支撑膜通过第一导向件和第二导向件上依次穿过第一连通部、本体、第二连通部、干燥组件及第二槽体。中空纤维超滤支撑膜在第一槽体内涂覆水相单体,经干燥组件干燥,再于第二槽体涂覆油相单体,并使水相单体与油相单体在中空纤维超滤支撑膜的表面发生界面聚合反应形成复合膜; 再于热处理装置进行热处理,得到中空纤维复合纳滤膜。
上述中空纤维复合纳滤膜的制备方法简单,成本低,能够实现连续化高效生产,且制得的中空纤维复合纳滤膜的性能稳定性高。
进一步地,中空纤维超滤支撑膜的材质为聚砜、聚醚砜、聚乙烯、聚丙烯、聚氯乙烯、聚酰亚胺、聚丙烯腈、聚偏氟乙烯、聚四氟乙烯或聚酯。
具体地,中空纤维超滤膜支撑层可直接购买或由热致相分离法、非溶剂致相分离法、热拉伸法制备得到。
进一步地,水相单体为哌嗪、三氨基苯、对氨基苯、间氨基苯、聚乙二醇硫酸酯、聚乙二醇磷酸酯、季胺化聚乙二醇及聚乙二醇两性聚电解质中的至少一种的水溶液;水溶液的质量分数为0.5%~5%。
进一步地,油相单体为均苯三酰氯、对苯二酰氯、间苯二酰氯、二异氰酸酯、环氧氯丙烷、二缩水甘油醚及丙三醇缩水甘油醚中的至少一种与有机溶剂的混合液,有机溶剂为正己烷和甲苯中的至少一种。
在本实施例中,油相单体的涂覆时间,也就是涂覆有水相单体的中空纤维超滤支撑膜经过第二槽体的时间为10~60秒。因此为了进一步实现连续高效生产,水相单体的涂覆时间要尽可能地与之接近。在其中一个实施例中,第一槽体的液位为0.5~5m,即第一槽体的本体内的中空纤维超滤支撑膜所处的液位为0.5~5m。通过控制中空纤维超滤支撑膜所经水相单体的路程及导向组件的传送速度,可控制中空纤维超滤支撑膜经过第一槽体内的水相单体的时间为0.5~5分钟,即水相单体的涂覆时间为0.5~5分钟。优选地,可通过调节液位及导向组件的传送速度使水相单体的涂覆时间与油相单体的涂覆时间相当。
具体地,热处理的条件为70~100℃下热处理10~50分钟。
以下为具体实施例。以下实施例均采用图1所示的界面聚合反应装置10制得。
实施例1
制备中空纤维超滤支撑膜。以17wt%的聚偏氟乙烯为主体材料,以12wt%聚乙二醇200、8wt%聚乙二醇20000为致孔剂,63wt%二甲基乙酰胺为溶剂, 水为芯液和外凝固浴,在中空纤维纺丝机上纺制中空纤维超滤支撑膜。
待纺制的中空纤维超滤支撑膜洗干净晾干后,连同收丝轮一起取下安装在界面反应装置的放卷组件的放卷轮上。将中空纤维超滤支撑膜的一头拉出。确保设备上膜丝运行顺畅后,将作为水相单体的质量分数2wt%的三氨基苯水溶液加入到第一槽体,直到本体内的中空纤维超滤支撑膜所处液位在3.5米。将0.1wt%的均苯三酰氯正己烷溶液作为油相单体加入到第二槽体。启动设备,调整好送丝轮速率和收丝轮速率,开启吹干设备,通过导向组件依次穿过第一连通部、本体、第二连通部、干燥组件及第二槽体,开始在中空纤维超滤支撑膜的外表面连续涂覆以形成复合膜分离层。油相单体的涂覆时间为60秒,水相单体的涂覆时间为1分钟。
待整卷膜丝涂覆完毕,取下整卷膜丝于85℃进行热处理30分钟,即可得到具有致密复合分离层的中空纤维复合纳滤膜。
实施例2
制备中空纤维超滤支撑膜。以19wt%聚醚砜为主体材料,以10wt%聚乙烯吡咯烷酮、8wt%正丙醇为致孔剂,63wt%二甲基乙酰胺为溶剂,水为芯液和外凝固浴,在中空纤维纺丝机上纺制中空纤维超滤支撑膜。
待纺制的中空纤维超滤支撑膜洗干净晾干后,连同收丝轮一起取下安装在界面反应装置的放卷组件的放卷轮上。将中空纤维超滤支撑膜的一头拉出。确保设备上膜丝运行顺畅后,将作为水相单体的质量分数1.5wt%的季胺化聚乙二醇水溶液加入到第一槽体,直到本体内的中空纤维超滤支撑膜所处液位在2米。将0.1wt%的环氧氯丙烷正己烷溶液作为油相单体加入到第二槽体。启动设备,调整好送丝轮速率和收丝轮速率,开启吹干设备,通过导向组件依次穿过第一连通部、本体、第二连通部、干燥组件及第二槽体,开始在中空纤维超滤支撑膜的外表面连续涂覆以形成复合膜分离层。油相单体的涂覆时间为60秒,水相单体的涂覆时间为1.5分钟。
待整卷膜丝涂覆完毕,取下整卷膜丝于100℃进行热处理12分钟,即可得到具有致密复合分离层的中空纤维复合纳滤膜。
实施例3
实施例3的制备方法与实施例1基本相同,不同之处在于,本体内的中空纤维超滤支撑膜所处液位在5米,油相单体的涂覆时间为30秒,水相单体的涂覆时间为0.5分钟,热处理的条件为70℃下热处理50分钟。
对比例1
中空纤维超滤支撑膜、水相单体、油相单体和热处理条件均与实施例1相同。
将中空纤维超滤支撑膜置于水相单体中浸泡10分钟,取出自然干燥后。置于油相单体中60s进行界面聚合反应,以在中空纤维超滤支撑膜的外表面形成复合膜分离层,取出清洗干燥,再进行热处理,得到中空纤维复合纳滤膜。
通过实际生产明显得知对比例1的生产效率相比实施例1~3的生产效率较低。且将对比例1和实施例1~3制得的中空纤维复合纳滤膜进行合格率分析,对比例1的合格率为80%,实施例1~3的合格率均达90%。对比例1的涂覆欠均匀且涂覆过程及涂覆时间难以精确控制,导致其重现性较差。
此外,将对比例1和实施例1~3制得的中空纤维复合纳滤膜的合格品在0.2MPa下测试其纯水通量、浓度为1000ppm的Na 2SO 4的截留率及浓度为1000ppm的MgCl 2的截留率,得到的纯水通量平均值、Na 2SO 4的截留率平均值及MgCl 2的截留率平均值,结果如下表所示。可见,本制备方法还可提高分离效率。
Figure PCTCN2018081413-appb-000001
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细, 但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种界面聚合反应装置,其特征在于,包括:
    涂覆组件,包括用于填装水相单体的第一槽体及用于填装油相单体的第二槽体,所述第一槽体包括本体、第一连通部及第二连通部,所述第一连通部及所述第二连通部分别与本体连通且开口朝上设置;
    导向组件,包括第一导向件及第二导向件,所述第一导向件用于将待加工产品从所述第一连通部导入所述第一槽体的本体内,所述第二导向件用于将所述第一槽体的本体内涂覆有水相单体的待加工产品从所述第二连通部导入所述第二槽体内,以使产品上涂覆的水相单体与油相单体在产品表面发生界面聚合反应形成复合膜;及
    干燥组件,设于所述第二连通部和所述第二槽体之间,用于干燥涂覆有水相单体的待加工产品。
  2. 如权利要求1所述的界面聚合反应装置,其特征在于,还包括用于加热所述第一槽体的第一加热组件和/或用于加热所述第二槽体的第二加热组件。
  3. 如权利要求2所述的界面聚合反应装置,其特征在于,所述涂覆组件还包括用于第一槽体内水相单体温度调节控制的第一温控件和/或用于第二槽体内油相单体温度调节控制的第二温控件。
  4. 如权利要求2所述的界面聚合反应装置,其特征在于,所述涂覆组件还包括用于监测所述第一槽体的本体内的待加工产品所处液面的液压的第一压力监测件和/或用于监测所述第二槽体内的待加工产品所处液面的液压的第二压力监测件。
  5. 如权利要求1所述的界面聚合反应装置,其特征在于,所述第一槽体为U型结构。
  6. 如权利要求5所述的界面聚合反应装置,其特征在于,所述第一槽体由多段两端开口的管道通过法兰连接而成。
  7. 如权利要求1~6任一项所述的界面聚合反应装置,其特征在于,所述干燥组件包括动力源及风干管,所述动力源用于给所述风干管提供压缩气体,所 述风干管设于所述第二连通部和所述第二槽体之间,所述风干管的管壁为中空结构,所述管壁具有用于与所述动力源连通的通风内腔,且所述管壁的内表面设有出风孔,以对所述风干管的管孔中通过的待加工产品进行风干。
  8. 一种中空纤维复合纳滤膜的制备装置,其特征在于,包括热处理装置及如权利要求1~7任一项所述的界面聚合反应装置,所述界面聚合反应装置用于在中空纤维超滤支撑膜的表面进行界面聚合反应以形成复合膜分离层,所述热处理装置用于将形成有复合膜分离层的中空纤维膜进行热处理,以制得所述中空纤维复合纳滤膜。
  9. 一种中空纤维复合纳滤膜的制备方法,其特征在于,使用如权利要8所述的中空纤维复合纳滤膜的制备装置,所述制备方法包括以下步骤:
    将中空纤维超滤支撑膜通过所述第一导向件和所述第二导向件依次穿过所述第一连通部、所述本体、所述第二连通部、所述干燥组件及所述第二槽体,所述中空纤维超滤支撑膜在所述第一槽体内涂覆水相单体,经所述干燥组件干燥,再于所述第二槽体涂覆油相单体,并使所述水相单体与所述油相单体在所述中空纤维超滤支撑膜的表面发生界面聚合反应形成复合膜分离层;再于所述热处理装置进行热处理,得到所述中空纤维复合纳滤膜。
  10. 如权利要求9所述的中空纤维复合纳滤膜的制备方法,其特征在于,所述中空纤维超滤支撑膜的材质为聚砜、聚醚砜、聚乙烯、聚丙烯、聚氯乙烯、聚酰亚胺、聚丙烯腈、聚偏氟乙烯、聚四氟乙烯或聚酯;
    所述水相单体为哌嗪、三氨基苯、对氨基苯、间氨基苯、聚乙二醇硫酸酯、聚乙二醇磷酸酯、季胺化聚乙二醇及聚乙二醇两性聚电解质中的至少一种的水溶液;所述水溶液的质量分数为0.5%~5%;
    所述油相单体为均苯三酰氯、对苯二酰氯、间苯二酰氯、二异氰酸酯、环氧氯丙烷、二缩水甘油醚及丙三醇缩水甘油醚中的至少一种与有机溶剂的混合液;所述有机溶剂为正己烷和甲苯中的至少一种;
    所述第一槽体的液位为0.5~5m,所述水相单体的涂覆时间为0.5~5分钟,所述油相单体的涂覆时间为10~60秒。
PCT/CN2018/081413 2018-03-01 2018-03-30 界面聚合反应装置、中空纤维复合纳滤膜制备装置及方法 WO2019165664A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810172608.0A CN108452691B (zh) 2018-03-01 2018-03-01 界面聚合反应装置、中空纤维复合纳滤膜制备装置及方法
CN201810172608.0 2018-03-01

Publications (1)

Publication Number Publication Date
WO2019165664A1 true WO2019165664A1 (zh) 2019-09-06

Family

ID=63219702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081413 WO2019165664A1 (zh) 2018-03-01 2018-03-30 界面聚合反应装置、中空纤维复合纳滤膜制备装置及方法

Country Status (2)

Country Link
CN (1) CN108452691B (zh)
WO (1) WO2019165664A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110772999A (zh) * 2019-10-28 2020-02-11 德蓝水技术股份有限公司 一种用于健康水制备的专用膜的制备方法
CN110917909B (zh) * 2019-12-27 2022-03-15 乌海图微新材料科技有限公司 聚硫酸(氨)酯类聚合物及其改性聚合物为制膜材料制备分离膜的方法
CN113461933B (zh) * 2021-06-01 2022-09-06 浙江大学 聚合物自支撑纳米薄膜及其连续和宏量制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304329A (zh) * 1998-06-05 2001-07-18 科克梅姆布莱尼系统公司 高性能复合膜
CN103446895A (zh) * 2013-08-19 2013-12-18 武汉利英唯尔科学技术有限公司 超薄膜聚合物复合膜的流延微浸涂连续生产设备及方法
US20150290595A1 (en) * 2012-11-23 2015-10-15 Council Of Scientific & Industrial Research Modified thin film composite reverse osmosis membrane and a process for preparation thereof
CN105617885A (zh) * 2016-03-25 2016-06-01 北京碧水源膜科技有限公司 一种连续制备正渗透复合膜的设备和方法
CN106076129A (zh) * 2016-08-05 2016-11-09 武汉工程大学 一种聚酰胺纳滤膜的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106731873A (zh) * 2017-02-15 2017-05-31 北京新源国能科技集团股份有限公司 一种中空纤维复合膜的制备方法及装置
CN208302546U (zh) * 2018-03-01 2019-01-01 广州中国科学院先进技术研究所 界面聚合反应装置及中空纤维复合纳滤膜制备装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304329A (zh) * 1998-06-05 2001-07-18 科克梅姆布莱尼系统公司 高性能复合膜
US20150290595A1 (en) * 2012-11-23 2015-10-15 Council Of Scientific & Industrial Research Modified thin film composite reverse osmosis membrane and a process for preparation thereof
CN103446895A (zh) * 2013-08-19 2013-12-18 武汉利英唯尔科学技术有限公司 超薄膜聚合物复合膜的流延微浸涂连续生产设备及方法
CN105617885A (zh) * 2016-03-25 2016-06-01 北京碧水源膜科技有限公司 一种连续制备正渗透复合膜的设备和方法
CN106076129A (zh) * 2016-08-05 2016-11-09 武汉工程大学 一种聚酰胺纳滤膜的制备方法

Also Published As

Publication number Publication date
CN108452691B (zh) 2020-01-14
CN108452691A (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
WO2019165664A1 (zh) 界面聚合反应装置、中空纤维复合纳滤膜制备装置及方法
RU2390586C2 (ru) Армированный полотном сепаратор и способ его непрерывного изготовления
CN106731873A (zh) 一种中空纤维复合膜的制备方法及装置
CN104117289B (zh) 一种增强复合支撑中空纤维膜及其制备方法
CN101543731B (zh) 纤维编织管嵌入增强型聚合物中空纤维微孔膜的制备方法
CN107970791B (zh) 一种增强型中空纤维微滤膜的制备方法及制备系统
JP5798680B2 (ja) 加圧式中空糸膜モジュール
CN112957915B (zh) 一种大通量低压反渗透膜制备方法及装置
KR20150110518A (ko) 다층 중합체의 혼합 매트릭스 막 제조를 위한 신규 기법 및 막 증류용 장치
CN106422808A (zh) 一种超亲水性聚丙烯晴中空纤维超滤膜及其制备方法
EP3702021A1 (en) Manufacturing method for polyphenyl sulfone hollow-fiber membrane for use in humidification film
KR101035717B1 (ko) 복합막용 비대칭 다공성 폴리이서블록아마이드 막과 이의제조방법
CN108525524B (zh) 一种中空纤维气体分离膜的修复装置
CN116474573A (zh) 一种金属-有机框架材料分离膜及其制备方法与应用
KR20160116466A (ko) 세미 열유도 상분리법을 이용한 기체분리용 비대칭 중공사막의 제조방법 및 그에 의하여 제조된 기체분리용 비대칭 중공사막
CN109351202A (zh) 一种基于陶瓷管为支撑体复合炭膜的制备方法
CN115121133A (zh) 一种水处理用pvdf薄膜及其制备方法
CN109453673A (zh) 一种内支撑聚醚砜中空纤维超滤膜的制备方法
CN105709609A (zh) 一种中空纤维纳滤膜的制备方法
CN111744370A (zh) 一种中空纤维复合膜、其制备方法及其应用
CN115532064A (zh) 一种超亲水中空纤维超滤膜膜丝制备方法及制品
CN206508823U (zh) 一种中空纤维复合膜的制备装置
CN102343218A (zh) 耐高压管式支撑覆合膜的制备方法
CN112691552B (zh) 一种制备高性能有机气体分离膜的方法
CN210934507U (zh) 一种高强度中空纤维膜的制备装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907899

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/12/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18907899

Country of ref document: EP

Kind code of ref document: A1