WO2019165593A1 - 一种极化信息确定方法及其相关设备 - Google Patents

一种极化信息确定方法及其相关设备 Download PDF

Info

Publication number
WO2019165593A1
WO2019165593A1 PCT/CN2018/077515 CN2018077515W WO2019165593A1 WO 2019165593 A1 WO2019165593 A1 WO 2019165593A1 CN 2018077515 W CN2018077515 W CN 2018077515W WO 2019165593 A1 WO2019165593 A1 WO 2019165593A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization information
polarization
receiving device
quality
transmitting device
Prior art date
Application number
PCT/CN2018/077515
Other languages
English (en)
French (fr)
Inventor
马腾
李昆
陈一
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18907824.9A priority Critical patent/EP3734854A4/en
Priority to PCT/CN2018/077515 priority patent/WO2019165593A1/zh
Priority to CN201880089950.2A priority patent/CN111742501B/zh
Publication of WO2019165593A1 publication Critical patent/WO2019165593A1/zh
Priority to US17/003,949 priority patent/US11038580B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/245Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction provided with means for varying the polarisation 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/1607Supply circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0805Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching
    • H04B7/0814Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching based on current reception conditions, e.g. switching to different antenna when signal level is below threshold
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, and in particular, to a method for determining polarization information and related devices.
  • Wireless communication technology includes wireless access.
  • the wireless communication link between a transmitter (TX) and a receiver (RX) is called if there is no obstacle blocking.
  • the link is a line of sight (LOS) link, and the corresponding wireless communication is LOS communication.
  • LOS line of sight
  • NLOS non-line of sight
  • the polarization pattern and direction are the basic properties of wireless electromagnetic waves, which refer to the magnitude and direction of the energy distribution of electromagnetic waves.
  • the polarization direction transmitted by the TX end is the polarization direction received by the RX end.
  • the polarization directions of the antennas at both ends are the same, which basically does not affect the RSL.
  • the polarized electromagnetic wave at the TX end is reflected. Diffraction, transmission, etc., the pattern and direction of polarization will change, so the electric field strength and direction of the electromagnetic wave will change, causing the RX terminal to receive the electromagnetic wave emitted by the TX terminal in a manner that minimizes the degree of signal degradation, resulting in receiving signals. Deterioration.
  • the two polarization channel isolation is above 40db, can be seen as two completely independent channels, when a polarized After the channel is severely bad, another polarized channel can work normally and protect it. Therefore, the RX adopts a dual-polarization architecture to receive electromagnetic waves of any polarization shape and direction, and the RSL of the signal is degraded by up to 3 db.
  • the dual-polarization architecture can basically solve the RSL loss of the received signal caused by the polarization pattern and direction change.
  • the energy loss caused by the scattering or transmission of the obstacle itself is Different, so the degree of degradation of the received signal is also different, and this loss is unpredictable in advance.
  • the energy loss of electromagnetic waves in some polarization directions may still be huge, so the existing dual-polarization architecture is transmitted at the TX end.
  • the energy loss caused by electromagnetic waves transmitted through the NLOS channel and the corresponding deterioration of the received signal may still be large.
  • the embodiment of the present application provides a method for determining polarization information and related equipment, which is used to solve the problem that the polarization shape and polarization direction of the electromagnetic wave emitted by the TX end are different, thereby causing different signal energy loss.
  • a first aspect of the embodiments of the present application provides a method for determining polarization information, including:
  • the transmitting device receives, by the receiving device, a first set of polarization information sent by the transmitting device, where the first polarization information set is obtained by traversing a polarization state in the polarization configuration diagram, and the polarization configuration diagram includes multiple polarization states.
  • the shape and polarization direction the transmitting device sets the polarization state according to the polarization profile.
  • the receiving device receives the first set of polarization information by sending the latest first polarization information to the receiving device every time the transmitting device switches the polarization state, until the traversal is completed, so the first polarization information received by the receiving device is received. Is a set that includes at least one first polarization information.
  • the polarization information of the transmitting device is continuously switched, and the quality of the corresponding received signal is also constantly changing.
  • the received signal is a signal sent by the transmitting device to the receiving device through a non-line-of-sight NLOS channel, and each first polarization information is used. There is a unique corresponding received signal quality, because the first polarization information is a set, so the received signal quality is also a set.
  • the receiving device needs to determine a quality set of the received signal, the quality set including at least one quality
  • the receiving device determines an optimal quality in the quality set.
  • the optimal quality is a quality in the quality set that minimizes the degree of degradation of the received signal;
  • the receiving device determines the optimal quality
  • the first polarization information corresponding to the optimal quality is reversed, and the first polarization information is sent to the transmitting device.
  • the embodiment of the present application has the following advantages: when the non-line-of-sight NLOS channel changes, the receiving device receives the first polarization information set sent by the transmitting device, and determines the first quality set of the received signal according to the first polarization information set, where The first polarization information in the first polarization information set corresponds to the first quality in the first quality set, and the receiving device determines a first optimal quality in the first quality set, where the first optimal quality When the degree of signal degradation in the first quality set is the smallest, the quality corresponding to the received signal, and then the receiving device sends the first optimal polarization information corresponding to the first optimal quality to the transmitting device, where the first optimal polarization information is used.
  • the polarization shape and polarization direction of the emitted electromagnetic waves are determined at the transmitting device. Therefore, compared with the prior art, after the electromagnetic wave is emitted according to a certain polarization information, the magnitude of the energy loss is unknown, thereby causing the signal channel degradation to be unknown.
  • the present application applies no matter how the NLOS channel changes, and the receiving device.
  • the first optimal quality can be selected from the first set of quality of the received signal, thereby determining the first optimal polarization information corresponding to the first optimal quality determination, where the first optimal polarization information is used to determine the emitted electromagnetic wave Polarization, the first quality of the received signal can reflect the quality of the received signal, so the transmitting device only needs to transmit the electromagnetic wave according to the first optimal polarization information, and the degree of deterioration of the received signal is minimal, thereby making Due to the different polarization directions and polarization shapes of the TX terminals, the signal loss caused by physical factors such as transmission and scattering of the NLOS channel is minimized.
  • the method further includes:
  • the receiving device determines a second set of polarization information, the second polarization information includes a polarization shape and a polarization direction, and the receiving device can set a polarization state of the receiving device according to the second polarization information.
  • Each first polarization information corresponds to unique second polarization information. Since the first polarization information is a set, the second polarization information is also a set.
  • the receiving device when the receiving device adopts a dual-polarized antenna, the receiving device can adapt the transmitting electromagnetic wave of any first polarization information.
  • the polarization state of the receiving device When the receiving device adopts a fully polarized antenna, the polarization state of the receiving device also needs to be The first polarization information of the transmitting device is changed to change to match the polarization state of the transmitting device.
  • This embodiment introduces the situation of the fully polarized antenna, which increases the diversity of implementation.
  • the receiving device needs to determine the second polarization information corresponding to the first polarization information, and the specific determination manner is: the receiving device determines, from the third polarization information set, polarization information that minimizes the degradation degree of the received signal, This polarization information is the second polarization information we need.
  • the third polarization information set includes at least one third polarization information, where the third polarization information includes a polarization shape and a polarization direction.
  • the method for determining the second polarization information is described. It can be seen that the second polarization information and the first polarization information can be optimally matched, such that the polarization state of the transmitting device and the polarization state of the receiving device. The energy loss caused by unadapted is minimized or even eliminated.
  • the receiving device determines the optimal quality in the quality set
  • the method also includes:
  • the receiving device may control a polarization shape and a polarization direction of the receiving device according to the second polarization information corresponding to the optimal quality.
  • the receiving device determines a quality set of the received signal include:
  • the receiving device detects the received signal
  • the receiving device may determine, according to the detection result, a quality of the received signal corresponding to each of the first polarization information
  • the quality is the receiving of the received signal At least one of level power RSL, signal to noise ratio SNR, and signal to interference and noise ratio SINR.
  • the method further includes:
  • the receiving device When the degree of deterioration of the received signal is higher than a preset threshold, the receiving device triggers a step of receiving a first set of polarization information sent by the transmitting device;
  • the receiving device After the preset time period arrives, the receiving device triggers the step of receiving the first set of polarization information sent by the transmitting device.
  • This embodiment describes the conditions for the transmitting device to receive the first set of polarization information, which increases the implementability and flexibility of the solution.
  • a second aspect of the embodiments of the present application provides a method for determining polarization information, including:
  • the transmitting device generates a first polarization information set, and the transmitting device sends the latest first polarization information to the receiving device every time the polarization state is switched, until the traversal is completed, and the receiving device receives the first polarization information set.
  • the first set of polarization information includes at least one first polarization information;
  • the polarization information of the transmitting device is continuously switched, and the quality of the corresponding received signal is also constantly changing.
  • the received signal is a signal sent by the transmitting device to the receiving device through a non-line-of-sight NLOS channel, and each first polarization information is used.
  • the set of qualities of the received signal is determined by the receiving device based on the first set of polarization information.
  • the transmitting device receives the first optimal polarization information sent by the receiving device, where the first optimal polarization information belongs to the first polarization information set, and the first optimal polarization information is the highest quality information.
  • the optimal quality is determined by the receiving device, and the determining manner of the optimal quality is specifically: the receiving device detects the received signal corresponding to each first polarization information, and determines the received signal with the least degree of signal degradation.
  • the quality of the received signal with the least degree of signal degradation is the optimal quality in the set of qualities.
  • the transmitting device may set the polarization shape and the polarization state of the emitted electromagnetic waves to a polarization shape and a polarization state corresponding to the first optimal polarization information.
  • the transmitting device sends the first polarization information set to the receiving device, so that the receiving device determines the received signal quality set corresponding to the first polarization information set, and the receiving device determines that the signal degradation degree is the smallest.
  • the quality of the signal, and the quality of the signal is minimized by the quality of the first optimal polarization information transmitted by the transmitting device, so the transmitting device only needs to perform electromagnetic wave transmission according to the first optimal polarization information, and the degradation of the received signal at this time
  • the degree is the smallest, and thus the signal loss caused by physical factors such as transmission and scattering of the NLOS channel is minimized due to the polarization direction or shape of the emission of different TX terminals.
  • the control channel of the control channel of the associated channel controls the same physical channel as the data channel. Therefore, the transmitting device carries the first polarization information set through the control information of the associated channel, and then sends the control information to the receiving device. The transmission of information between the receiving device and the transmitting device.
  • the control channel of the bypass control channel and the data channel take different physical channels, and the transmitting device sends the first polarization information to the receiving device by using the bypass control channel, and after receiving the data stream, the receiving device cannot determine which one
  • the data stream carries the first polarization information, so the data stream needs to be matched with the first polarization information, and then the first polarization information is determined according to the data stream and the matching result, until the Determination of all first polarization information in a set of polarization information.
  • the manner of transmitting the first set of polarization information is specifically described, and the implementability of the scheme is increased.
  • the method further includes:
  • the transmitting device When the degree of deterioration of the received signal is higher than a preset threshold, the transmitting device triggers a step of generating a first set of polarization information
  • the transmitting device After the preset time period arrives, the transmitting device triggers the step of generating a first set of polarization information.
  • This embodiment describes the traversal conditions of the transmitting device, which increases the implementability and flexibility of the solution.
  • a third aspect of the embodiments of the present application provides a receiving device, including:
  • An acquiring unit configured to acquire, by using a control channel, a first set of polarization information sent by the transmitting device, where the first set of polarization information includes at least one first polarization information, where the first polarization information includes the The polarization shape and polarization direction of the emitted electromagnetic waves of the device;
  • a determining unit configured to determine a quality set of the received signal, the quality set including at least one quality, wherein the first polarization information corresponds to a unique quality, and the received signal is a non-line of sight of the transmitting device a signal sent by the NLOS channel to the receiving device;
  • the determining unit is further configured to determine an optimal quality in the quality set, where the optimal quality is a quality in the quality set that minimizes a degree of degradation of the received signal;
  • a sending unit configured to send the first polarization information corresponding to the optimal quality to the transmitting device.
  • the determining unit is further configured to determine a second polarization information set, where the first polarization information set is The first polarization information corresponds to the second polarization information in the unique second polarization information set, and the second polarization information includes a polarization shape and a polarization direction of the receiving device.
  • the polarization information of the transmitting device is the first polarization information
  • the second polarization information is polarization information in the third polarization information set that minimizes the degree of degradation of the received signal
  • the third polarization information set includes at least one third polarization information
  • the third pole The information includes the polarization shape and polarization direction of the receiving device.
  • the control unit is further configured to control a polarization shape and a polarization direction of the receiving device according to the second polarization information corresponding to the optimal quality.
  • the determining unit includes:
  • a detecting module configured to detect the received signal
  • a determining module configured to determine, according to the detection result, a quality of the received signal corresponding to each of the first polarization information.
  • the quality of the received signal is At least one of a reception level power RSL, a signal to noise ratio SNR, and a signal to interference and noise ratio SINR of the received signal.
  • the second implementation manner of the third aspect of the embodiments of the present application is characterized in that the receiving device further includes a trigger unit.
  • the triggering unit is further configured to: when the degree of deterioration of the received signal is higher than a preset threshold, triggering a step of receiving a first set of polarization information sent by the transmitting device;
  • the triggering unit is further configured to: when the preset time period arrives, trigger the step of receiving the first set of polarization information sent by the transmitting device.
  • a fourth aspect of the embodiments of the present application provides a transmitting device, including:
  • a generating unit configured to generate a first polarization information set, where the first polarization information set includes at least one first polarization information, where the first polarization information includes polarization of the emitted electromagnetic wave of the transmitting device Shape and polarization direction;
  • a sending unit configured to send the first polarization information set to the receiving device, where the first polarization information set is used by the receiving device to determine a quality set of the received signal, where the quality set includes at least one quality,
  • the first polarization information corresponds to the unique quality
  • the received signal is a signal that the transmitting device sends to the receiving device by using a non-line-of-sight NLOS channel;
  • a receiving unit configured to receive first optimal polarization information sent by the receiving device, where the first optimal polarization information belongs to the first polarization information set, and the first optimal polarization information Corresponding to the optimal quality, the optimal quality is determined by the receiving device, and the optimal quality is a quality of the quality set that minimizes the degree of degradation of the received signal;
  • a determining unit configured to determine a polarization shape and a polarization direction of the emitted electromagnetic wave according to the first optimal polarization information.
  • the sending unit includes:
  • An information carrying module configured to carry the first set of polarization information by using control information of the path control channel
  • a first sending module configured to send the control information to the receiving device
  • a second sending module configured to send the first polarization information set to the receiving device by using a bypass control channel, so that when the receiving device determines that the first polarization information is performed by using the bypass control channel Receiving, the receiving device matches the received data stream with the first polarization information, thereby determining the first polarization information according to the data stream and the matching result, until the first polarization is completed. Determination of all first polarization information in the information set.
  • the transmitting device further includes a triggering unit, where the triggering unit is used by the triggering unit.
  • the triggering unit is used by the triggering unit.
  • the triggering unit is configured to trigger a step of generating a first set of polarization information when a preset time period arrives.
  • a fifth aspect of the embodiments of the present application provides a receiving device, where the receiving device includes a controller, a receiver, and a transmitter.
  • the receiver is configured to acquire, by using a control channel, a first set of polarization information sent by the sending device, where the first set of polarization information includes at least one first polarization information, where the first polarization information includes The polarization shape and polarization direction of the emitted electromagnetic wave of the transmitting device;
  • the controller is configured to determine a quality set of the received signal, where the quality set includes at least one quality, where the first polarization information corresponds to a unique quality, and the received signal is a non-transmitted device a signal transmitted by the line of sight NLOS channel to the receiving device;
  • the controller is further configured to determine an optimal quality in the set of qualities, wherein the optimal quality is a quality in the set of qualities that minimizes a degree of degradation of the received signal;
  • the transmitter is configured to send the first polarization information corresponding to the optimal quality to the transmitting device.
  • the controller is further configured to determine a second polarization information set, where the first polarization information set is The first polarization information corresponds to the second polarization information in the unique second polarization information set, and the second polarization information includes a polarization shape and a polarization direction of the receiving device.
  • the polarization information of the transmitting device is the first polarization information
  • the second polarization information is polarization information in the third polarization information set that minimizes the degree of degradation of the received signal
  • the third polarization information set includes at least one third polarization information
  • the third pole The information includes the polarization shape and polarization direction of the receiving device.
  • the receiving device further includes a feed network and an antenna
  • the feed network is configured to control a polarization shape and a polarization direction of the antenna according to the second polarization information corresponding to the optimal quality.
  • the receiving device further includes a radio frequency circuit And/or baseband circuitry
  • the radio frequency circuit and/or the baseband circuit is configured to detect the received signal
  • the fifth implementation manner and the second implementation manner of the fifth aspect, the fifth implementation manner of the fifth aspect of the embodiments of the present application, wherein the controller determines the The quality of the received signal is at least one of a received level power RSL, a signal to noise ratio SNR, and a signal to interference and noise ratio SINR of the received signal.
  • controller includes the first interface The second interface and the third interface, the first interface of the controller is connected to the transmitting device by using a control channel;
  • the receiving device further includes a radio frequency circuit and/or a baseband circuit, and the second interface of the controller is connected to at least one of the radio frequency circuit and the baseband circuit;
  • the receiving device further includes a feed network and an antenna, the third interface of the controller is connected to the feed network, and the feed network is connected to the antenna.
  • controller is further configured to: The step of triggering the first polarization information set sent by the transmitting device when the degree of deterioration of the received signal is higher than a preset threshold;
  • the controller is further configured to: when the preset time period arrives, trigger the step of receiving the first set of polarization information sent by the transmitting device.
  • a sixth aspect of the embodiments of the present application provides a transmitting device, including:
  • a controller configured to generate a first polarization information set, where the first polarization information set includes at least one first polarization information, where the first polarization information includes polarization of the emitted electromagnetic wave of the transmitting device Shape and polarization direction;
  • a transmitter configured to send the first set of polarization information to the receiving device, where the first set of polarization information is used by the receiving device to determine a quality set of received signals, where the quality set includes at least one quality,
  • the first polarization information corresponds to the unique quality
  • the received signal is a signal that the transmitting device sends to the receiving device by using a non-line-of-sight NLOS channel;
  • a receiver configured to receive first optimal polarization information sent by the receiving device, where the first optimal polarization information belongs to the first polarization information set, and the first optimal polarization information Corresponding to the optimal quality, the optimal quality is determined by the receiving device, and the optimal quality is a quality of the quality set that minimizes the degree of degradation of the received signal;
  • the controller is further configured to determine a polarization shape and a polarization direction of the emitted electromagnetic wave according to the first optimal polarization information.
  • the transmitter is configured to carry the first polarization information set by using control information of a path control channel ;
  • the transmitter is specifically configured to send the first polarization information set to the receiving device by using a bypass control channel, so that when the receiving device determines that the first polarization information passes the bypass control channel And performing, by the receiving device, matching the received data stream with the first polarization information, thereby determining the first polarization information according to the data stream and the matching result, until the first pole is completed.
  • the determination of all first polarization information in the information set is specifically configured to send the first polarization information set to the receiving device by using a bypass control channel, so that when the receiving device determines that the first polarization information passes the bypass control channel And performing, by the receiving device, matching the received data stream with the first polarization information, thereby determining the first polarization information according to the data stream and the matching result, until the first pole is completed. The determination of all first polarization information in the information set.
  • the controller includes a first interface and a second interface, where The first interface of the controller is connected to the receiving device through a control channel;
  • the transmitting device further includes a feed network, the feed network includes a first interface, a second interface, and a third interface, and the second interface of the controller is connected to the first interface of the feed network;
  • the transmitting device further includes a radio frequency circuit and/or a baseband circuit, and a second interface of the feed network is connected to at least one of the radio frequency circuit and the baseband circuit;
  • the transmitting device further includes an antenna, and a third interface of the feeding network is connected to the antenna.
  • the controller is further configured to: when the received signal is degraded The step of generating a first set of polarization information is triggered when the degree is higher than a preset threshold;
  • the controller is further configured to trigger a step of generating a first set of polarization information when a preset time period arrives.
  • a seventh aspect of the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the steps of the methods described above in the various aspects.
  • An eighth aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the above aspects.
  • FIG. 1 is a diagram showing a polarization state change of an NLOS channel according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a polarization configuration manner
  • FIG. 3 is a schematic diagram of an embodiment of a method for determining polarization information according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of another embodiment of a method for determining polarization information according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another embodiment of a method for determining polarization information according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another embodiment of a method for determining polarization information according to an embodiment of the present application.
  • FIG. 7(a) is a schematic diagram of an embodiment of a receiving device according to an embodiment of the present application.
  • FIG. 7(b) is a schematic diagram of an embodiment of a receiving device according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another embodiment of a receiving device according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an embodiment of a transmitting device according to an embodiment of the present application.
  • FIG. 10(a) is a schematic diagram of another embodiment of a transmitting device according to an embodiment of the present application.
  • FIG. 10(b) is a schematic diagram of another embodiment of a transmitting device according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another embodiment of a receiving device according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another embodiment of a transmitting device according to an embodiment of the present application.
  • FIG. 1 which is a schematic diagram of electromagnetic wave propagation in the NLOS channel
  • the wireless electromagnetic wave transmitted by the left TX device enters an unpredictable NLOS channel
  • the X tree (X ⁇ 1, and X is a positive integer) represents the actual life.
  • wireless electromagnetic waves are transmitted in the NLOS channel, and are received by the right RX device through scattering, multiple reflection, transmission, and the like.
  • the TX device transmits electromagnetic waves by controlling the own antenna, and the electromagnetic wave has a polarization state, which is called a transmitter polarization state (TX-POL, transmitter polarization).
  • TX-POL transmitter polarization
  • the transmission wave After passing through the NLOS channel, the transmission wave is generated and has another A polarization state, called PT-POL (partial transfer polarization), the transmitted wave reaches the RX end, and the RX end receives the transmitted wave in a new polarization state, which is called the receiving end.
  • RX-POL receiveriver polarization
  • the electromagnetic wave with polarization state of TX-POL may have two energy losses after passing through the NLOS channel: 1.
  • PT-POL and RX-POL cannot be optimally matched, so that the emitted electromagnetic wave cannot be minimized by RX with energy loss. The way is received. 2.
  • the electromagnetic waves of different TX-POLs after passing through the NLOS channel, cause physical energy defects due to physical factors such as transmission and refraction of the NLOS channel, and this physical defect is inevitable.
  • the first defect can reduce or even eliminate the energy loss by controlling the RX-POL.
  • the embodiment of the present application mainly proposes a solution for the second defect.
  • FIG. 2 A possible case of the polarization configuration is shown in Figure 2, in which the polarization direction of the circular polarization is periodically rotated at a constant temperature of ⁇ 180°, the electric field strength is fixed in each direction, and the polarization direction of the elliptical polarization is ⁇ The 180° periodic rotation is uniform, and the electric field strength in each direction is not fixed but regular.
  • the circular polarization can be regarded as a special elliptical polarization of the long axis and the short axis
  • the linear polarization can be regarded as a special elliptical polarization with the short axis close to 0. It can be seen that the receiving device or the transmitting device is in the polarization traversal. In the process, the traversal can be freely switched between circular polarization, elliptical polarization and linear polarization.
  • the first polarization information set is a set formed by the transmitting device performing the whole or partial traversal of the polarization information in the polarization configuration diagram
  • the third polarization information set may be all the polarization configuration map.
  • the polarization information may also be part of the polarization information of the polarization configuration map.
  • the second polarization information set is formed by the receiving device performing N times traversal on the third polarization information set, and the value range of N is greater than or equal to A positive integer of 1, the value of N is determined by the number of first polarization information in the first polarization information set, which is specifically described later.
  • the traversal of the polarization configuration map of the transmitting device may start from any one of the polarization information of the polarization configuration map, and the same may end at any one of the polarization information.
  • the present application proposes a polarization information determination.
  • the method aims to find the polarization shape and polarization direction that enables the transmitting device to transmit in an optimal manner, reducing the physical loss of the NLOS channel. Please refer to FIG. 3, which will be described below.
  • the receiving device receives a first polarization information set sent by the transmitting device.
  • the transmitting device sets the polarization information of the electromagnetic wave according to the polarization configuration diagram until the traversal of the polarization information in the polarization configuration diagram is performed, and the triggering of the transmitting device to perform a traversal may be performed by using a timing trigger, for example, traversing the transmitting device every 10 minutes. Once, the specific duration of the timing trigger is not limited here.
  • a timing trigger for example, traversing the transmitting device every 10 minutes. Once, the specific duration of the timing trigger is not limited here.
  • the transmitting device changes the polarization information
  • the receiving device needs to receive the latest first polarization information.
  • the transmitting device temporarily stops the switching of the polarization information, and all the first polarization information received by the receiving device is The first set of polarization information.
  • the first polarization information includes a polarization shape and a polarization direction
  • the transmitting device sets the polarization shape and the polarization direction included in the first polarization information to a polarization shape and a polarization direction of the emitted electromagnetic wave, and sequentially Traversing.
  • the polarization state may be set in a step of 1 degree, for example, polarization mode of 30 degree line polarization, 31 degree line polarization, and 32 degree line polarization.
  • the polarization state can also be set in a step of 5 degrees.
  • the specific step size of the polarization traversal is not limited herein.
  • the first polarization information set includes polarization information, 30-degree linear polarization, 60-degree linear polarization, left-hand circular polarization, and right-handed elliptical polarization, etc., and the emitted electromagnetic waves are respectively polarized according to a 30-degree line.
  • the 60-degree linear polarization, left-hand circular polarization, and right-handed elliptical polarization are transmitted.
  • the receiving device determines a quality set of the received signal.
  • the transmitting end emits electromagnetic waves according to the first polarization information.
  • the refractive transmission of the tree is unknown, and the energy loss is inevitably brought about.
  • the transmitting end transmits according to the first polarization information, and the corresponding polarization state uses TX.
  • -POL indicates that the polarization of the TX-POL after refracting, transmitting, etc. through the NLOS channel becomes the polarization state of the PT-POL.
  • the receiving end needs to be set to the polarization state of the RX-POL to match the PT-POL, due to different
  • the TX-POL has different energy losses after passing through the NLOS channel, so the transmitted PT-POL is also different. Therefore, the embodiment of the present application aims to find the best TX-POL to minimize the energy loss.
  • the polarization information and the polarization state refer to the polarization shape and polarization direction of the electromagnetic wave.
  • the first polarization information is left-handed elliptical polarization
  • the corresponding polarization state is also left-handed elliptical polarization.
  • the quality of the received signal is also a collection.
  • the quality of the received signal is determined by the receiving end, and may be determined by the receiving device after monitoring the parameters of the received signal.
  • the parameters representing the received signal quality may be the received level power RSL, the signal to noise ratio (SNR), and the signal.
  • SINR signal interference noise ratio
  • the unique correspondence between the first polarization information and the received signal quality has the following two possible situations, specifically:
  • the first polarization information corresponds to the quality of the received signal, that is, a first polarization information corresponds to a unique received signal quality
  • At least two first polarization information correspond to the quality of the same received signal.
  • the receiving device determines an optimal quality in the quality set.
  • the receiving device determines, in the determined quality set of the received signal, that the quality of the received signal is the least deteriorated, that is, the quality of the received signal, and the minimum degree of deterioration of the received signal is also understood to be that the polarization state of the transmitting end is TX-POL.
  • the electromagnetic wave is transmitted through the NLOS channel, and the energy loss of the electromagnetic wave is the smallest.
  • the electromagnetic wave emitted by the 30-degree linear polarization and the 60-degree linear polarization respectively is transmitted through the NLOS signal, and the energy loss is 10 db and 15 db, respectively, and the 30-degree line is visible.
  • the electromagnetic wave energy loss of polarization emission is the smallest, so the electromagnetic wave emitted by the 30-degree linear polarization has the smallest degree of degradation of the received signal quality.
  • the optimal quality is the quality with the least degree of deterioration of the received signal, which can be understood as the following cases:
  • the evaluation of the received signal quality only involves one parameter, and the parameter may be an RSL, an SNR or an SINR.
  • the parameter may also be other physical quantities of the received signal, which is not limited herein.
  • the optimal quality of the received signal can be understood as the maximum of RSL, SNR or SINR.
  • the evaluation of the received signal quality only involves two or more parameters
  • the parameter may be RSL, SNR and SINR
  • the parameter may also be other physical quantities of the received signal, which is not limited herein.
  • the quality of the received signal can be understood as: the sum of the value of any two of RSL, SNR or SINR and the weight coefficient it is in.
  • the optimal quality of the received signal is the maximum received signal, for example, the quality of the received signal is RSL, According to SNR, the values of RSL and SNR are x, y, and the weight coefficients are 2/5 and 3/5 respectively.
  • the received signal quality is 2/5x+3/5y.
  • the quality of the received signal can also be understood as the sum of the RSL, SNR and SINR values and the weight coefficients of the three, and the optimal quality of the received signal is the maximum received signal.
  • the receiving device may perform multiple detections on the RSL of the received signal, and determine the number of valid RSLs (ie, the RSL value is greater than the first threshold), if valid.
  • the ratio of RSL to total RSL, and the larger the RSL value the better the stability, so the better the received signal quality.
  • a possible situation is that when the received signal quality is lower than the second threshold, the RX terminal cannot receive a valid received signal, and the received signal quality can be approximately 0. Since the received signal cannot be received by the receiving device, the transmitting device at this time The transmitted first polarization information receiving device is automatically excluded.
  • the determination of the optimal quality may include more possibilities than the above, and is not limited herein.
  • the receiving device sends the first polarization information corresponding to the optimal quality to the transmitting device.
  • the receiving device may form a correspondence table between the polarization information and the quality, and the receiving device deducts the optimal quality and then pushes back
  • the first polarization information corresponding to the optimal quality is sent to the transmitting device, so that the transmitting device transmits the electromagnetic wave according to the first polarization information, and the quality of the received signal is inevitably optimal. This reduces the energy loss or signal degradation caused by the NLOS channel.
  • a possible case is that when there are two or more first polarization information corresponding to the optimal quality, the receiving device can transmit any one of the first polarization information corresponding to the optimal quality. Information to the transmitting device.
  • the receiving device after receiving the first polarization information set traversed by the transmitting device, the receiving device determines a received signal quality set corresponding to the first polarization information set, thereby determining which first polarization information is made.
  • the degree of degradation of the received signal is minimal. In this case, only the transmitting device needs to transmit according to the first polarization information, so that the loss caused by the phenomenon of refraction and transmission of the NLOS channel can be minimized, and in wireless communication, the utilization is reduced.
  • the degree of signal degradation improves the user experience.
  • the embodiment of the present application can be applied to a scene in which the channel condition is constantly changing.
  • the transmitting device can always determine the first polarization information that optimizes the signal quality by performing the steps of the embodiment shown in FIG. Send to the receiving device.
  • a change in the NLOS channel may cause the received signal to deteriorate.
  • the trigger receiving device performs the steps of the embodiment shown in FIG.
  • the timing triggering mode is adopted, and the receiving device triggers the steps of the embodiment shown in FIG. 3 after the preset time is reached. Timing triggering and signal degradation triggering can also be used at the same time, which is not limited herein.
  • the transmitting end since the transmitting end continuously switches the first polarization information according to the polarization configuration diagram, the polarization state TX-POL of the transmitting end is continuously changed, and the PT-POL is also continuously changed, thereby the polarization of the receiving end.
  • the state RX-POL needs to be constantly changed to match the PT-POL.
  • the RX end when the dual-polarized antenna is used, the RX end can receive electromagnetic waves of any polarization shape and direction, that is, no matter how the PT-POL changes, It can be optimally received by the RX terminal, so the RX terminal does not need to switch the polarization state, and the RSL of the signal is degraded by up to 3 db at this time.
  • the characteristic of the antenna is that as the receiving state of the TX end changes, the RX end needs to generate corresponding changes to achieve an optimal matching between the PT-POL and the RX-POL, which can even reduce Eliminate the defect of the 3 db RSL described in the fully polarized antenna.
  • the polarization state of the RX terminal is also continuously switched. Please refer to FIG. 4, which will be described below:
  • the receiving device receives a first polarization information set sent by the transmitting device.
  • the manner in which the receiving device receives the first set of polarization information sent by the transmitting device is similar to the step 301 in the embodiment, and details are not described herein again.
  • the receiving device determines a second set of polarization information.
  • the receiving device Each time the receiving device receives the first polarization information, the receiving device itself needs to switch the polarization information once to change the polarization state. Therefore, the receiving device needs to determine the second polarization information corresponding to the first polarization information, thereby The polarization information is switched.
  • the determining, by the receiving device, the second polarization information includes:
  • the receiving device traverses the third set of polarization information.
  • the polarization information of the transmitting device is the first polarization information, which is equivalent to the TX-POL.
  • the RX-POL is unknown, the RX-POL is different, the matching between the PT-POL and the RX-POL is different, and the energy loss is different. Therefore, the degree of deterioration of the received signal is also different.
  • the degradation of the received signal is not caused by physical factors such as refraction and transmission of the NLOS channel, but is caused by the fact that the RX-POL cannot be optimally matched with the PT-POL.
  • the receiving device In order to optimally match the PT-POL and the RX-POL, after receiving the polarization information, the receiving device needs to traverse the third polarization information set.
  • the receiving device determines polarization information in the third polarization information set that minimizes the degree of degradation of the received signal.
  • the receiving device traverses the third polarization information set, that is, when the polarization state of the transmitting device does not change, the receiving device continuously switches the RX-POL according to the third polarization information, and the received signal quality is also constantly changed, and the receiving device is continuously changed. It is necessary to find third polarization information that minimizes the degree of degradation of the received signal.
  • the receiving device determines that the polarization information that minimizes the degree of degradation of the received signal is the second polarization information.
  • the receiving device determines the polarization information that minimizes the degree of degradation of the received signal as the required second polarization information.
  • the transmitting device switches the first polarization information until all or part of the polarization information in the polarization configuration map is traversed, and the receiving device repeatedly performs steps A, B and C until the second polarization information set is determined.
  • the second polarization information and the first polarization information also have the following two possible correspondences, which may be:
  • the first polarization information and the second polarization information are in one-to-one correspondence, that is, one first polarization information corresponds to one second polarization information;
  • At least two second polarization informations correspond to the same first polarization information.
  • the first polarization information set has N first polarization information, so the receiving device needs to traverse the third polarization information set N times, and each time a second polarization information is determined, one possibility
  • the second polarization information determined when the third polarization information set is traversed twice or more is the same, so that at least two second polarization information correspond to the same first polarization information.
  • the transmitting device transmits the electromagnetic wave according to the first polarization information
  • the receiving device also needs to synchronously receive the electromagnetic wave according to the second polarization information
  • the first polarization information set is a1, b1, c1.
  • d1 the corresponding second polarization information set is a2, b2, c2, d2
  • the receiving end emits electromagnetic waves according to a1
  • the polarization state of the receiving end needs to be synchronously switched, and receives electromagnetic waves according to a2.
  • the synchronous switching in this embodiment is not necessarily the synchronization in time.
  • the synchronous switching of the receiving end relative to the transmitting end is delayed by a certain delay.
  • the delay is mainly the propagation delay of the received signal and the signal of the receiving device. Handling delays.
  • the receiving device determines a quality set of the received signal.
  • the receiving device determines an optimal quality in the quality set.
  • the receiving device sends the first polarization information corresponding to the optimal quality to the transmitting device.
  • the steps 403 to 405 of the embodiment are similar to the steps 202 to 204 of the embodiment shown in FIG. 3, and details are not described herein again.
  • the receiving device controls, according to the second polarization information corresponding to the optimal quality, a polarization shape and a polarization direction of the receiving device.
  • the receiving device After the receiving device determines the second polarization information corresponding to the optimal quality, the receiving device sets the polarization state RX-POL (polarization shape and polarization direction) according to the polarization information, and thus the polarization state PT of the received electromagnetic wave. -POL to match.
  • RX-POL polarization shape and polarization direction
  • the case where the polarization state of the receiving device also needs to be flexibly adjusted is described.
  • the flexible adjustment of the receiving device can automatically adjust the PT-POL after the TX-POL transmission, and the RX is automatically adjusted by the transmitting device.
  • -POL can achieve the optimal matching, thus avoiding the energy loss caused by the polarization state mismatch.
  • the present application adopts a similar manner to the embodiment shown in FIG.
  • wireless communication there is a use to reduce the degree of signal degradation and improve the user experience.
  • the embodiment of the present application can be applied to a scene in which the channel condition is constantly changing.
  • the transmitting device can automatically adjust the receiving device to the transmitting device to the optimal quality by performing the steps in the embodiment shown in FIG.
  • the polarization state therefore, the embodiment of the present application can minimize energy loss regardless of how the signal changes.
  • a change in the NLOS channel may cause the received signal to deteriorate.
  • the trigger receiving device performs the steps of the embodiment shown in FIG.
  • the timing triggering mode is adopted, and the receiving device triggers the steps of the embodiment shown in FIG. 4 after the preset time is reached. Timing triggering and signal degradation triggering can also be used at the same time, which is not limited herein.
  • the degree of deterioration of the received signal is too high, and one possible condition that is greater than the preset threshold is that the received signal is seriously degraded, and the value of the RSL is reduced below the receiving sensitivity of the RX.
  • the RX terminal cannot receive the RX terminal. signal.
  • the preset threshold is a preset value of the received signal RSL, for example, the preset threshold is 10 db.
  • the preset period is set to a preset time period, which may be 5 s or 10 s.
  • the transmitting device starts traversing the polarization information generation in the polarization configuration diagram.
  • the set of polarization information the receiving device also triggers the step of receiving the first set of polarization information, so the transmitting device triggers the implementation of the polarization traversal every preset time period.
  • the transmitting device generates a first polarization information set.
  • the transmitting device performs omnidirectional or partial traversal on the polarization information in the polarization configuration diagram, continuously switches the polarization state of the emitted electromagnetic wave (ie, the polarization shape and the polarization direction), and the polarization state traversed by the transmitting device forms the first pole. Information collection.
  • the specific step size of the traversing of the traversing device according to the polarization configuration table is similar to the step 301 of the embodiment, which is not limited herein.
  • the transmitting device sends the first polarization information set to the receiving device.
  • the transmitting device While traversing the polarization configuration map, the transmitting device transmits the first polarization information to the receiving device every time the electromagnetic wave is transmitted according to a first polarization information, and the loop is received. After the traversal of the transmitting device is completed, the receiving device receives the first A set of polarization information.
  • the receiving device After receiving the first set of polarization information, the receiving device needs to determine the quality of the received signal that uniquely corresponds to the first polarization information in the first set of polarization information, and the quality of the received signal belongs to the quality set of the received signal.
  • the manner of determining the quality of the received signal is similar to the step 302 of the embodiment, and details are not described herein again.
  • the corresponding relationship between the first polarization information and the received signal quality in the embodiment is similar to the step 302 of the embodiment, and details are not described herein again.
  • a possible situation is that when the receiving device adopts a fully polarized antenna, there is also a concept of a second set of polarization information, which may be used by the receiving device to determine a second set of polarization information, the second pole
  • the manner of determining the set of information is similar to that of A, B, and C in Embodiment 402, and details are not described herein again.
  • the second polarization information is used to control the polarization state RX-POL of the transmitting device to match the polarization state PT-POL of the receiving electromagnetic wave.
  • the first polarization information in the first polarization information set corresponds to the second polarization information in the unique second polarization information set, and the specific correspondence is similar to the step 402 in the embodiment, and details are not described herein again.
  • the transmitting device switches the polarization state TX-POL of the transmitting electromagnetic wave according to the first polarization information, and the receiving device needs to synchronously switch the receiving device according to the second polarization information corresponding to the first polarization information.
  • the polarization state RX-POL is similar to the step 402 in the embodiment, and details are not described herein again.
  • the transmitting device receives the first optimal polarization information sent by the receiving device.
  • the first optimal polarization information is polarization information in the first polarization information set that minimizes the degree of degradation of the received signal, and the first optimal polarization information corresponds to the optimal quality of the received signal, and the highest quality
  • the manner of determining the quantity is similar to the one or two cases described in step 303 of the embodiment, and details are not described herein again.
  • the transmitting device determines, according to the first optimal polarization information, a polarization shape and a polarization direction of the emitted electromagnetic wave.
  • the transmitting device sends the first polarization information set formed by the traversal to the receiving device, so that the receiving device determines the received signal quality set corresponding to the first polarization information set, thereby determining which first The polarization information minimizes the degree of degradation of the received signal.
  • the receiving device only needs to receive the first optimal polarization information, and emits electromagnetic waves according to the first optimal polarization information, so that the NLOS channel can be refracted and transmitted. The loss is minimized.
  • wireless communication there is a use to reduce the degree of signal degradation and improve the user experience.
  • the embodiments of the present application can be applied to scenarios in which the channel conditions are constantly changing.
  • the transmitting device can automatically adjust the receiving device to the transmitting device to the optimal quality by performing the steps in the embodiment shown in FIG.
  • the polarization state therefore, the embodiment of the present application can minimize energy loss regardless of how the signal changes.
  • a change in the NLOS channel may cause the received signal to degrade.
  • the transmitting device is triggered to perform the steps of the embodiment shown in FIG.
  • the timing triggering mode is adopted, and the transmitting device triggers the steps of the embodiment shown in FIG. 5 after the preset time is reached. Timing triggering and signal degradation triggering can also be used at the same time, which is not limited herein.
  • the information interaction between the transmitting device and the receiving device is performed through a control channel. Referring to FIG. 6, the following description is made.
  • the transmitting device generates a first polarization information set.
  • the transmitting device sends the first polarization information set to the receiving device.
  • the steps 601 and 602 of the embodiment are similar to the steps 501 and 502 of the embodiment shown in FIG. 5, and details are not described herein again.
  • the receiving device determines a quality set of the received signal.
  • the receiving device determines an optimal quality in the quality set.
  • the receiving device sends the first polarization information corresponding to the optimal quality to the transmitting device.
  • the steps 603 to 605 of the embodiment are similar to the steps 302 to 304 of the embodiment shown in FIG. 3, and details are not described herein again.
  • the transmitting device determines, according to the first polarization information corresponding to the optimal quality, a polarization shape and a polarization direction of the emitted electromagnetic wave.
  • step 605 of the embodiment is similar to the step 504 of the embodiment shown in FIG. 5, and details are not described herein again.
  • the transmitting device sends the first polarization information to the receiving device and can transmit through the control channel.
  • the transmitting device can receive the first polarization information set after the control information of the associated control channel, and then send the control information to the receiving device.
  • the control channel of the bypass control channel and the data channel take different physical channels, and the transmitting device sends the first polarization information to the receiving device through the bypass control channel, and after receiving the data stream, the receiving device cannot determine the data stream.
  • the data stream needs to be matched with the first polarization information, so that the first polarization information is determined according to the data stream and the matching result, until the first polarization information set is completed. Determination of the first polarization information.
  • the receiving device needs to detect the quality of the received signal generated by the transmitting device in each polarization state, thereby determining that the degree of degradation of the received signal is minimized.
  • the first polarization information the transmitting device emits electromagnetic waves according to the polarization information, can minimize the physical loss of the NLOS channel.
  • the embodiments of the present application can be applied to scenarios in which the channel conditions are constantly changing.
  • the transmitting device and the receiving device can automatically adjust the receiving device and the transmitting device to the highest quality by performing the steps of the embodiment shown in FIG. 6.
  • the amount of polarization is corresponding, so that the embodiment of the present application minimizes energy loss regardless of how the signal changes.
  • a change in the NLOS channel may cause the received signal to deteriorate.
  • the triggering transmitting device performs a traversal of the polarization shape and polarization direction of the emitted electromagnetic wave.
  • a first polarization information collection step is generated.
  • the timing triggering mode is adopted, and the transmitting device triggers the step of traversing the polarization shape and the polarization direction of the emitted electromagnetic wave and generating the first polarization information set after the preset time is reached.
  • Timing triggering and signal degradation triggering can also be used at the same time, which is not limited herein.
  • the embodiment of the present application provides a receiving device, which includes:
  • the acquiring unit 701 is configured to acquire, by using a control channel, a first set of polarization information sent by the sending device, where the first set of polarization information includes at least one first polarization information, where the first polarization information includes the The polarization shape and polarization direction of the emitted electromagnetic wave of the transmitting device;
  • a determining unit 702 configured to determine a quality set of the received signal, where the quality set includes at least one quality, where the first polarization information corresponds to the unique quality, and the received signal is a non-view by the transmitting device a signal transmitted to the receiving device from the NLOS channel;
  • the determining unit 702 is further configured to determine an optimal quality in the quality set, where the optimal quality is a quality in the quality set that minimizes a degree of degradation of the received signal;
  • the sending unit 703 is configured to send the first polarization information corresponding to the optimal quality to the transmitting device.
  • the determining unit determines the received signal that minimizes the degree of signal degradation in the quality set of the received signal corresponding to the first polarization information set, and then The first polarization information corresponding to the received signal having the smallest degree of deterioration of the signal is transmitted to the transmitting device, thereby controlling the transmitting device to emit electromagnetic waves.
  • a possible situation is that the polarization information of the receiving device also needs to be changed to match the change of the first polarization information of the transmitting device.
  • the determining unit 702 is further configured to determine a second polarization information set, where the first polarization information in the first polarization information set corresponds to the second polarization information in the unique second polarization information set.
  • the second polarization information includes a polarization shape and a polarization direction of the receiving device.
  • the receiving device needs to update the second polarization information synchronously with the change of the first polarization information of the transmitting device, so that the PT-POL and the RX-POL are optimally matched to avoid the polarization state of the receiving end.
  • the determining unit specifically includes:
  • a detecting module 7021 configured to detect the received signal
  • the determining module 7022 is configured to determine, according to the detection result, a quality of the received signal corresponding to each of the first polarization information.
  • the receiving device after determining the optimal quality of the received signal, the receiving device also needs to adjust the polarization state. Please refer to FIG. 8, which will be described below.
  • the obtaining unit 801 is configured to acquire, by using a control channel, a first set of polarization information sent by the sending device, where the first set of polarization information includes at least one first polarization information, where the first polarization information includes the The polarization shape and polarization direction of the emitted electromagnetic wave of the transmitting device;
  • a determining unit 802 configured to determine a second set of polarization information, where the first polarization information in the first set of polarization information corresponds to a second polarization information in the second set of second polarization information,
  • the second polarization information includes a polarization shape and a polarization direction of the receiving device.
  • the determining unit 802 is further configured to determine a quality set of the received signal, where the quality set includes at least one quality, where the first polarization information corresponds to the unique quality, and the received signal is the transmitting device a signal transmitted to the receiving device over a non-line-of-sight NLOS channel;
  • the determining unit 802 is further configured to determine an optimal quality in the quality set, where the optimal quality is a quality in the quality set that minimizes a degree of degradation of the received signal;
  • the sending unit 803 is configured to send the first polarization information corresponding to the optimal quality to the transmitting device.
  • the control unit 804 is configured to control a polarization shape and a polarization direction of the receiving device according to the second polarization information corresponding to the optimal quality.
  • the receiving device after the transmitting device adjusts the transmitting electromagnetic wave according to the first polarization information corresponding to the optimal quality, the receiving device also needs to synchronize the polarization state of the receiving device according to the second polarization information corresponding to the optimal quality. Thereby the physical loss caused by the NLOS channel is minimized.
  • FIG. 7(a) and 7(b) and FIG. 8 illustrate the embodiment of the present application from the perspective of the receiving device. Referring to FIG. 9, the embodiment of the present application will be described from the perspective of the transmitting device.
  • a generating unit 901 configured to generate a first polarization information set, where the first polarization information set includes at least one first polarization information, where the first polarization information includes a pole of the transmitting electromagnetic wave of the transmitting device Shape and polarization direction;
  • the sending unit 902 is configured to send the first polarization information set to the receiving device, where the first polarization information set is used by the receiving device to determine a quality set of the received signal, where the quality set includes at least one quality
  • the first polarization information corresponds to the unique quality
  • the received signal is a signal that the transmitting device sends to the receiving device by using a non-line-of-sight NLOS channel;
  • the receiving unit 903 is configured to receive first optimal polarization information that is sent by the receiving device, where the first optimal polarization information belongs to the first polarization information set, and the first optimal polarization Information corresponding to the optimal quality, the optimal quality being determined by the receiving device, the optimal quality being a quality of the quality set that minimizes degradation of the received signal;
  • the determining unit 904 is configured to determine a polarization shape and a polarization direction of the emitted electromagnetic wave according to the first optimal polarization information.
  • the traversing unit traverses the polarization shape and polarization state of the emitted electromagnetic wave, and forms a first set of polarization information, and sends the set to the receiving device, and then the receiving unit receives the first optimal from the receiving device.
  • Polarizing information so that the determining unit can determine the polarization state of the transmitting device according to the first optimal polarization information.
  • the receiving device determines the first optimal polarization information, it needs to switch its own polarization information to the first polarization information. Please refer to FIG. 10(a), which will be described below.
  • a generating unit 1001 configured to generate a first polarization information set, where the first polarization information set includes at least one first polarization information, where the first polarization information includes the emitted electromagnetic wave of the transmitting device Polarized shape and polarization direction;
  • the sending unit 1002 is configured to send the first polarization information set to the receiving device, where the first polarization information set is used by the receiving device to determine a quality set of the received signal, where the quality set includes at least one quality
  • the first polarization information corresponds to the unique quality
  • the received signal is a signal that the transmitting device sends to the receiving device by using a non-line-of-sight NLOS channel;
  • the receiving unit 1003 is configured to receive first optimal polarization information that is sent by the receiving device, where the first optimal polarization information belongs to the first polarization information set, and the first optimal polarization Information corresponding to the optimal quality, the optimal quality being determined by the receiving device, the optimal quality being a quality of the quality set that minimizes degradation of the received signal;
  • the determining unit 1004 is configured to determine a polarization shape and a polarization direction of the emitted electromagnetic wave according to the first optimal polarization information.
  • the receiving device further includes:
  • the control unit 1005 is configured to: when the receiving device controls the polarization shape and the polarization direction of the receiving device according to the second polarization information corresponding to the optimal quality, according to the optimal quality
  • the first optimal polarization information controls a polarization shape and a polarization direction of the antenna unit.
  • the transmitting device transmits the electromagnetic wave according to the first optimal polarization information
  • the receiving device receives the electromagnetic wave according to the second polarization information corresponding to the optimal quality to receive the electromagnetic wave
  • the received signal quality is optimal. Therefore, the physical loss of the NOLS channel can be minimized.
  • the information exchange between the receiving device and the transmitting device is performed through the control channel, and the control channel type is different, and the control information is sent in different manners. Please refer to FIG. 10(b), which will be described below.
  • the sending unit 1002 includes:
  • the information carrying module 10021 is configured to carry the first polarization information set by using control information of the path control channel;
  • the first sending module 10022 is configured to send the control information to the receiving device.
  • the second sending module 10023 is further configured to send the first polarization information set to the receiving device by using a bypass control channel, so that when the receiving device determines that the first polarization information passes the bypass control When the channel is transmitting, the receiving device matches the received data stream with the first polarization information, so as to determine the first polarization information according to the data stream and the matching result, until the first is completed. Determination of all first polarization information in the set of polarization information.
  • the receiving device of the embodiment of the present application may apply a microwave or wireless communication system.
  • the receiving device includes a radio frequency circuit 1104, a baseband circuit 1105, a controller 1101, a feed network 1102, and an antenna 1103.
  • the controller 1101 may receive a received signal quality fed back by at least one of the radio frequency circuit 1104 and the baseband circuit 1105, the received signal being a signal sent by the transmitting device to the receiving device through a non-line-of-sight NLOS channel ;
  • the receiving device may include the radio frequency circuit 1104 and the baseband circuit 1105 at the same time.
  • the receiving device may also include only one of the radio frequency circuit 1104 and the baseband circuit 1105.
  • the first interface of the controller 1101 is connected to at least one of the radio frequency circuit 1104 and the baseband circuit 1105.
  • FIG. 11 is an example in which the controller 1101 is simultaneously connected to the radio frequency circuit 1104 and the baseband circuit 1105, wherein the A radio frequency circuit 1104 is coupled to the baseband circuit 1105.
  • the first interface of the controller 1101 is connected to the radio frequency circuit 1104 or the baseband circuit 1105 included in the receiving device;
  • the second interface of the controller 1101 is connected to the transmitting device, and the controller 1101 can perform information interaction with the transmitting device.
  • the third interface of the controller 1101 is connected to the feed network 1102, and the controller 1101 can transmit polarization information to the feed network 1102, and the feed network 1102 can control the antenna according to the polarization information.
  • the feed network 1102 is connected to the antenna 1103.
  • the transmitting device of the embodiment of the present application may apply a microwave or wireless communication system.
  • the transmitting device includes a baseband circuit 1205, a radio frequency circuit 1204, a controller 1202, a feeding network 1201, and an antenna 1203.
  • the controller 1202 is connected to the first interface of the feed network 1201, and the controller 1202 can send polarization information to the feed network 1201;
  • the second interface of the feed network 1201 is connected to the radio frequency circuit 1204, the radio frequency circuit 1204 is connected to the baseband circuit 1205, and the feed network 1201 can receive the electricity from the radio frequency circuit 1204. signal;
  • a third interface of the feed network 1201 is coupled to the antenna 1203, and the feed network 1201 can control a polarization state of the antenna 1203.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be Physical units can be located in one place or distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the connection relationship between the modules indicates that there is a communication connection between them, and specifically may be implemented as one or more communication buses or signal lines.
  • U disk mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, etc., including a number of instructions to make a computer device (may be A personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present application.
  • a computer device may be A personal computer, server, or network device, etc.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请实施例提供了一种极化信息确定方法及其相关设备,用于解决TX端发射电磁波极化形状和极化方向不同,从而造成信号能量损耗不同的问题。本申请实施例方法包括:接收设备接收发射设备发送的第一极化信息集合,第一极化信息集合包括至少一个第一极化信息;接收设备确定接收信号的质量集合,质量集合包括至少一个质量,其中,第一极化信息对应唯一的质量,接收信号为发射设备通过非视距NLOS信道发送至接收设备的信号;接收设备确定质量集合中的最优质量,其中,最优质量为质量集合中使接收信号劣化程度最小的质量;接收设备发送与最优质量对应的第一极化信息至发射设备。

Description

一种极化信息确定方法及其相关设备 技术领域
本申请涉及通信领域,尤其涉及一种极化信息确定方法及其相关设备。
背景技术
无线通信技术包括无线接入,以传统的点到点微波通信举例,发射机(transmitter,TX)与接收机(receiver,RX)之间的无线通信链路如果没有障碍物阻挡,则称这种链路为视距(line of sight,LOS)链路,相应的无线通信即为LOS通信,反之,发射机与接收机之间的无线通信链路如果有障碍物阻挡,则称这种链路为非视距(non-line of sight,NLOS)链路,相应的无线通信即为NLOS通信。在非视距通信中,由于障碍物的阻挡,无线电磁波的传输一般通过反射、衍射、透射等方式进行传输,传输存在损耗,从而劣化了信道条件,主要表现为RX端的接收电平(receive signal lever,RSL)降低,传输容量减小,如果RSL降低到RX的接收灵敏度以下,则该无线通信视为中断。在当前的信息化时代,基于无线通信链路,随时随地的进行无线接入已经成为通信的基本特性,因此如何降低NLOS链路的透射、反射等现象带来的信道损耗引起了社会的广泛关注。
极化图案和方向是无线电磁波的基本属性,是指电磁波的能量分布大小和方向。在LOS链路中,TX端发射的极化方向就是RX端接收的极化方向,两端天线的极化方向一致,基本不会影响RSL,而在NLOS场景中,TX端的极化电磁波经过反射、衍射、透射等,极化的图案和方向会发生变化,因此电磁波的电场强度和方向都会发生变化,导致RX端无法以信号劣化程度最小的方式接收到TX端发射的电磁波,造成接收信号的劣化。现有一种双极化架构的无线设备(比如HV极化或正负45度极化),两个极化信道隔离度在40db以上,可以看作两个完全独立的通道,当一个极化的信道严重恶劣后另一个极化的信道还可以正常工作,起到保护作用,因此RX采用双极化架构可以接收任意极化形状和方向的电磁波,信号的RSL最多劣化3db。除TX端与RX端无法最优匹配带来的能量损耗外,障碍物的散射或透射等物理因素等本身也会带来极化的损耗影响RSL,对于同一透射场景(障碍物位置、发射设备、入射角度均固定),不同的极化形状或极化方向,经过上述障碍物的散射和透射后,能量损耗也是不一样的,信号RSL的减小值甚至可能达到30db以上,而这个损耗是事先无法预料的。
在NLOS中,双极化架构基本可以解决极化图案和方向改变带来的接收信号的RSL损耗,但是由于TX极化形状或方向不同,经过障碍本身的散射或透射后带来的能量损耗是不同的,因此接收信号的劣化程度也是不同的,而这个损耗是事先无法预料的,某些极化方向的电磁波的能量损耗仍然可能是巨大的,因此现有的双极化架构TX端发射的电磁波经过NLOS信道传输后带来的能量损耗及其对应的接收信号的劣化程度仍然可能很大。
发明内容
本申请实施例提供了一种极化信息确定方法及其相关设备,用于解决TX端发射电磁波极化形状和极化方向不同,从而造成信号能量损耗不同的问题。
本申请实施例的第一方面提供了一种极化信息确定方法,其特征在于,包括:
接收设备接收发射设备发送的第一极化信息集合,该第一极化信息集合是由发射设备遍历极化配置图中的极化状态得到的,极化配置图包含多种极化状态(极化形状和极化方向),发射设备按照极化配置图设置极化状态。
接收设备接收第一极化信息集合的方式是,发射设备每切换一次极化状态,就发送最新的第一极化信息给接收设备,直至遍历完成,因此接收设备收到的第一极化信息是一个集合,该集合中包括至少一个第一极化信息。
发射设备的极化信息不断切换,对应的接收信号的质量也在不断变化,该接收信号为所述发射设备通过非视距NLOS信道发送至所述接收设备的信号,每种第一极化信息都有唯一对应的接收信号质量,因为第一极化信息是一个集合,因此接收信号质量也是个集合。
接收设备需要确定接收信号的质量集合,该质量集合包括至少一个质量;
随后,接收设备确定质量集合中的最优质量,在本实施例中,所述最优质量为质量集合中使所述接收信号劣化程度最小的质量;
接收设备确定出最优质量后,反推该最优质量对应的第一极化信息,并把该第一极化信息至发射设备。
本申请实施例具有以下优点:当非视距NLOS信道发生变化时,接收设备接收发射设备发送的第一极化信息集合后,根据第一极化信息集合确定接收信号的第一质量集合,其中,第一极化信息集合中的第一极化信息和第一质量集合中的第一质量一一对应,接收设备确定第一质量集合中的第一最优质量,其中该第一最优质量为第一质量集合中信号劣化程度最小时,接收信号对应的质量,随后接收设备发送与第一最优质量对应的第一最优极化信息至发射设备,该第一最优极化信息用于发射设备确定发射电磁波的极化形状和极化方向。因此相比于现有技术中,发射电磁波按照某一极化信息进行电磁波发射后,带来的能量损耗大小未知,从而导致信号道劣化情况未知的状况,本申请无论NLOS信道如何变化,接收设备都能从接收信号的第一质量集合中选择第一最优质量,从而再确定与第一最优质量确定对应的第一最优极化信息,第一最优极化信息用于确定发射电磁波的极化,接收信号的第一质量能够反映接收信号的优劣情况,因此发射设备只需要按照第一最优极化信息进行电磁波的发射,此时接收信号的劣化程度就是最小的,进而使得由于不同的TX端的发射极化方向和极化形状,NLOS信道透射、散射等物理因素带来的信号损耗达到最低。
基于第一方面,在本申请第一方面的第一种实施方式中,其特征在于,所述接收设备接收发射设备发送的第一极化信息集合之后,所述方法还包括:
接收设备确定第二极化信息集合,第二极化信息包括极化形状和极化方向,接收设备可以根据第二极化信息设置接收设备的极化状态。
每个第一极化信息对应唯一的第二极化信息,由于第一极化信息是一个集合,因此第二极化信息也是一个集合。
在本实施例中,当接收设备采用双极化天线时,接收设备可以适配任意第一极化信息的发射电磁波,当接收设备采用全极化天线时,接收设备的极化状态也需要随着发射设备第一极化信息改变而发生改变,以达到与发射设备极化状态的匹配,本实施例通过对全极 化天线的这种情况进行介绍,增加了方案实施的多样性。
基于第一方面的第一种实施方式,在本申请实施例第一方面的第二种实施方式中,其特征在于,当所述发射设备的极化信息为所述第一极化信息时,接收设备需要确定出与该第一极化信息对应的第二极化信息,具体确定的方式为:接收设备从第三极化信息集合中确定使所述接收信号劣化程度最小的极化信息,该极化信息即为我们所需要的第二极化信息。
需要说明的是,该第三极化信息集合包括至少一个第三极化信息,所述第三极化信息包括极化形状和极化方向。
在本实施例中,对第二极化信息的确定方式进行了说明,可见第二极化信息与第一极化信息可以最佳适配,使得由于发射设备极化状态与接收设备极化状态不适配而导致的能量损耗降至最低甚至消除。
基于第一方面的第一种或第二种实施方式,在本申请第一方面的第三种实施方式中,其特征在于,所述接收设备确定所述质量集合中的最优质量之后,所述方法还包括:
所述接收设备可以根据与所述最优质量对应的所述第二极化信息控制所述接收设备的极化形状和极化方向。
在本实施例中,对与最优质量对应的第二极化信息的作用进行了说明,增加了方案的完整性。
基于第一方面及其第一方面的第一种或第二种实施方式,在本申请实施例第一方面的第四种实施方式中,其特征在于,所述接收设备确定接收信号的质量集合包括:
接收设备对接收信号进行检测;
接收设备可以根据检测结果确定与每个第一极化信息对应的接收信号的质量;
在本实施例中,对接收信号质量集合的确定方式进行了说明,增加了方案的可实施性。
基于第一方面及其第一方面的第一种或第二种实施方式,在本申请实施例第一方面的第五种实施方式中,其特征在于,所述质量为所述接收信号的接收电平功率RSL、信噪比SNR和信号干扰噪声比SINR中的至少一个。
在本实施例中,对接收信号指令的具体参数进行了说明,增加了方案的实用性。
基于第一方面及其第一方面的第一种或第二种实施方式,在本申请实施例第一方面的第六种实施方式中,其特征在于,所述方法还包括:
当所述接收信号的劣化程度高于预置门限值时,所述接收设备触发接收发射设备发送的第一极化信息集合的步骤;
或,
当预置的时间周期到达后,所述接收设备触发接收发射设备发送的第一极化信息集合的步骤。
本实施例对发射设备执行接收第一极化信息集合的条件进行了说明,增加了方案的可实施性和灵活性。
本申请实施例的第二方面提供了一种极化信息确定方法,其特征在于,包括:
所述发射设备生成第一极化信息集合,发射设备每切换一次极化状态,就发送最新的 第一极化信息给接收设备,直至遍历完成,接收设备也就收到了第一极化信息集合,所述第一极化信息集合包括至少一个第一极化信息;
发射设备的极化信息不断切换,对应的接收信号的质量也在不断变化,该接收信号为所述发射设备通过非视距NLOS信道发送至所述接收设备的信号,每种第一极化信息都有唯一对应的接收信号质量,因为第一极化信息是一个集合,因此接收信号质量也是个集合。接收信号的质量集合由接收设备根据第一极化信息集合确定。
发射设备接收接收设备发送的第一最优极化信息,其中,所述第一最优极化信息属于所述第一极化信息集合,所述第一最优极化信息与所述最优质量对应,所述最优质量由接收设备确定,该最优质量的确定方式具体为:接收设备对每种第一极化信息对应的接收信号进行检测,确定出信号劣化程度最小的接收信号,该信号劣化程度最小的接收信号的质量即为质量集合中的最优质量。
发射设备可以将发射电磁波的极化形状和极化状态设置为第一最优极化信息对应的极化形状和极化状态。
本申请无论NLOS信道如何变化,发射设备通过向接收设备发送第一极化信息集合,从而使得接收设备确定与第一极化信息集合对应的接收信号质量集合,接收设备再确定出信号劣化程度最小的质量,并将该信号劣化程度最小的质量对应的第一最优极化信息发送的发射设备,因此发射设备只需要按照第一最优极化信息进行电磁波的发射,此时接收信号的劣化程度就是最小的,进而使得由于不同的TX端的发射极化方向或形状,NLOS信道透射、散射等物理因素带来的信号损耗达到最低。
基于第二方面,在本申请第二方面的第一种实现方式中,其特征在于,
随路控制通道的控制信道的控制通道与数据通道走的同一物理信道,因此发射设备通过随路控制通道的控制信息携带第一极化信息集合后,再发送控制信息至接收设备,就可以实现接收设备与发射设备间信息的传递。
或,
旁路控制信道的控制通道与数据通道走不同的物理信道,发射设备通过旁路控制通道发送所述第一极化信息至所述接收设备,接收设备收到数据流后,不能确定出哪一条数据流携带了第一极化信息,因此需要将数据流与所述第一极化信息进行匹配,从而再根据所述数据流和匹配结果确定所述第一极化信息,直至完成所述第一极化信息集合中所有第一极化信息的确定。
在本实施例中,对第一极化信息集合的传递方式进行了具体说明,增加了方案的可实施性。
基于第二方面及其第一方面的第一种实现方式,在本申请第二方面的第二种实现方式中,其特征在于,所述方法还包括:
当所述接收信号的劣化程度高于预置门限值时,所述发射设备触发生成第一极化信息集合的步骤;
或,
当预置的时间周期到达后,所述发射设备触发生成第一极化信息集合的步骤。
本实施例对发射设备的遍历条件进行了说明,增加了方案的可实施性和灵活性。
本申请实施例的第三方面提供了一种接收设备,其特征在于,包括:
获取单元,用于通过控制通道获取所述发射设备发送的第一极化信息集合,所述第一极化信息集合包括至少一个第一极化信息,所述第一极化信息包括所述发射设备的发射电磁波的极化形状和极化方向;
确定单元,用于确定接收信号的质量集合,所述质量集合包括至少一个质量,其中,所述第一极化信息对应唯一的所述质量,所述接收信号为所述发射设备通过非视距NLOS信道发送至所述接收设备的信号;
所述确定单元,还用于确定所述质量集合中的最优质量,其中,所述最优质量为所述质量集合中使所述接收信号劣化程度最小的质量;
发送单元,用于发送与所述最优质量对应的所述第一极化信息至所述发射设备。
基于第三方面,在本申请实施例第三方面的第一种实现方式中,其特征在于,所述确定单元,还用于确定第二极化信息集合,所述第一极化信息集合中的第一极化信息对应唯一的所述第二极化信息集合中的第二极化信息,所述第二极化信息包括所述接收设备的极化形状和极化方向。
基于第三方面的第一种实现方式,在本申请实施例第三方面的第二种实现方式中,其特征在于,当所述发射设备的极化信息为所述第一极化信息时,所述第二极化信息为第三极化信息集合中使所述接收信号劣化程度最小的极化信息,所述第三极化信息集合包括至少一个第三极化信息,所述第三极化信息包括所述接收设备的极化形状和极化方向。
基于第三方面的第一种实现方式或第二种实现方式,在本申请实施例第三方面的第三种实现方式中,其特征在于,包括:
控制单元,还用于根据与所述最优质量对应的所述第二极化信息控制所述接收设备的极化形状和极化方向。
基于第三方面及其第三方面的第一种实现方式或第二种实现方式,在本申请实施例第三方面的第四种实现方式中,所述确定单元包括:
检测模块,用于检测所述接收信号;
确定模块,用于根据检测结果确定与每个所述第一极化信息对应的所述接收信号的质量。
基于第三方面及其第三方面的第一种实现方式或第二种实现方式,在本申请实施例第三方面的第五种实现方式中,其特征在于,所述接收信号的质量为所述接收信号的接收电平功率RSL、信噪比SNR和信号干扰噪声比SINR中的至少一个。
基于第三方面及其第三方面的第一种实现方式或第二种实现方式,在本申请实施例第三方面的第六种实现方式中,其特征在于,所述接收设备还包括触发单元,所述触发单元还用于,当所述接收信号的劣化程度高于预置门限值时,触发接收发射设备发送的第一极化信息集合的步骤;
或,
所述触发单元还用于,当预置的时间周期到达后,触发接收发射设备发送的第一极化 信息集合的步骤。
本申请实施例的第四方面提供了一种发射设备,其特征在于,包括:
生成单元,用于生成第一极化信息集合,所述第一极化信息集合包括至少一个第一极化信息,所述第一极化信息包括所述发射设备的所述发射电磁波的极化形状和极化方向;
发送单元,用于发送所述第一极化信息集合至所述接收设备,所述第一极化信息集合用于所述接收设备确定接收信号的质量集合,所述质量集合包括至少一个质量,其中,所述第一极化信息对应唯一的所述质量,所述接收信号为所述发射设备通过非视距NLOS信道发送至所述接收设备的信号;
接收单元,用于接收所述接收设备发送的第一最优极化信息,其中,所述第一最优极化信息属于所述第一极化信息集合,所述第一最优极化信息与所述最优质量对应,所述最优质量由所述接收设备确定,所述最优质量为所述质量集合中使所述接收信号劣化程度最小的质量;
确定单元,用于根据所述第一最优极化信息确定所述发射电磁波的极化形状和极化方向。
基于第四方面,在本申请实施例第四方面的第一种实现方式中,其特征在于,所述发送单元包括:
信息携带模块,用于通过随路控制通道的控制信息携带所述第一极化信息集合;
第一发送模块,用于发送所述控制信息至所述接收设备;
或,
第二发送模块,用于通过旁路控制通道发送所述第一极化信息集合至所述接收设备,以使得当所述接收设备确定所述第一极化信息通过所述旁路控制通道进行传输时,所述接收设备将收到的数据流与所述第一极化信息进行匹配,从而根据所述数据流和匹配结果确定所述第一极化信息,直至完成所述第一极化信息集合中所有第一极化信息的确定。
基于第四方面及其第四方面的第一种实现方式,在本申请实施例第四方面的第二种实现方式中,其特征在于,所述发射设备还包括触发单元,所述触发单元用于当所述接收信号的劣化程度高于预置门限值时,触发生成第一极化信息集合的步骤;
或,
所述触发单元用于,当预置的时间周期到达后,触发生成第一极化信息集合的步骤。
本申请实施例的第五方面提供了一种接收设备,其特征在于,所述接收设备包括控制器、接收器、发送器;
所述接收器,用于通过控制通道获取所述发射设备发送的第一极化信息集合,所述第一极化信息集合包括至少一个第一极化信息,所述第一极化信息包括所述发射设备的发射电磁波的极化形状和极化方向;
所述控制器,用于确定接收信号的质量集合,所述质量集合包括至少一个质量,其中,所述第一极化信息对应唯一的所述质量,所述接收信号为所述发射设备通过非视距NLOS信道发送至所述接收设备的信号;
所述控制器,还用于确定所述质量集合中的最优质量,其中,所述最优质量为所述质 量集合中使所述接收信号劣化程度最小的质量;
所述发送器,用于发送与所述最优质量对应的所述第一极化信息至所述发射设备。
基于第五方面,在本申请实施例第五方面的第一种实现方式中,其特征在于,所述控制器,还用于确定第二极化信息集合,所述第一极化信息集合中的第一极化信息对应唯一的所述第二极化信息集合中的第二极化信息,所述第二极化信息包括所述接收设备的极化形状和极化方向。
基于第五方面的第一种实现方式,在本申请实施例第五方面的第二种实现方式中,其特征在于,当所述发射设备的极化信息为所述第一极化信息时,所述第二极化信息为第三极化信息集合中使所述接收信号劣化程度最小的极化信息,所述第三极化信息集合包括至少一个第三极化信息,所述第三极化信息包括所述接收设备的极化形状和极化方向。
基于第五方面的第一种实现方式或第二种实现方式,在本申请实施例第五方面的第三种实现方式中,其特征在于,所述接收设备还包括馈电网络和天线;
所述馈电网络,用于根据与所述最优质量对应的所述第二极化信息控制所述天线的极化形状和极化方向。
基于第五方面及其第五方面的第一种实现方式或第二种实现方式,在本申请实施例第五方面的第四种实现方式中,其特征在于,所述接收设备还包括射频电路和/或基带电路;
所述射频电路和/或所述基带电路,用于检测所述接收信号;
用于根据检测结果确定与每个所述第一极化信息对应的所述接收信号的质量。
基于第五方面及其第五方面的第一种实现方式或第二种实现方式,在本申请实施例第五方面的第五种实现方式中,其特征在于,所述控制器确定的所述接收信号的质量为所述接收信号的接收电平功率RSL、信噪比SNR和信号干扰噪声比SINR中的至少一个。
基于第五方面及其第五方面的第一种实现方式或第二种实现方式,在本申请实施例第五方面的第六种实现方式中,其特征在于,所述控制器包括第一接口、第二接口和第三接口,所述控制器的所述第一接口通过控制通道与所述发射设备连接;
所述接收设备还包括射频电路和/或基带电路,所述控制器的所述第二接口与所述射频电路和所述基带电路中的至少一个连接;
所述接收设备还包括馈电网络和天线,所述控制器的所述第三接口与所述馈电网络连接,所述馈电网络与所述天线连接。
基于第五方面及其第五方面的第一种实现方式或第二种实现方式,在本申请实施例第五方面的第六种实现方式中,其特征在于,所述控制器还用于,当所述接收信号的劣化程度高于预置门限值时,触发接收发射设备发送的第一极化信息集合的步骤;
或,
所述控制器还用于,当预置的时间周期到达后,触发接收发射设备发送的第一极化信息集合的步骤。
本申请实施例的第六方面提供了一种发射设备,其特征在于,包括:
控制器,用于生成第一极化信息集合,所述第一极化信息集合包括至少一个第一极化信息,所述第一极化信息包括所述发射设备的所述发射电磁波的极化形状和极化方向;
发送器,用于发送所述第一极化信息集合至所述接收设备,所述第一极化信息集合用于所述接收设备确定接收信号的质量集合,所述质量集合包括至少一个质量,其中,所述第一极化信息对应唯一的所述质量,所述接收信号为所述发射设备通过非视距NLOS信道发送至所述接收设备的信号;
接收器,用于接收所述接收设备发送的第一最优极化信息,其中,所述第一最优极化信息属于所述第一极化信息集合,所述第一最优极化信息与所述最优质量对应,所述最优质量由所述接收设备确定,所述最优质量为所述质量集合中使所述接收信号劣化程度最小的质量;
所述控制器,还用于根据所述第一最优极化信息确定所述发射电磁波的极化形状和极化方向。
基于第六方面,在本申请实施例第六方面的第一种实现方式中,其特征在于,所述发送器,具体用于通过随路控制通道的控制信息携带所述第一极化信息集合;
发送所述控制信息至所述接收设备;
或,
所述发送器,具体用于通过旁路控制通道发送所述第一极化信息集合至所述接收设备,以使得当所述接收设备确定所述第一极化信息通过所述旁路控制通道进行传输时,所述接收设备将收到的数据流与所述第一极化信息进行匹配,从而根据所述数据流和匹配结果确定所述第一极化信息,直至完成所述第一极化信息集合中所有第一极化信息的确定。
基于第六方面及其第六方面的第一种实现方式,在本申请实施例第六方面的第四种实现方式中,其特征在于,所述控制器包括第一接口和第二接口,所述控制器的第一接口通过控制通道与所述接收设备连接;
所述发射设备还包括馈电网络,所述馈电网络包括第一接口、第二接口和第三接口,所述控制器的第二接口与所述馈电网络的第一接口连接;
所述发射设备还包括射频电路和/或基带电路,所述馈电网络的第二接口与所述射频电路和所述基带电路中的至少一个连接;
所述发射设备还包括天线,所述馈电网络的第三接口与所述天线连接。
基于第六方面及其第六方面的第一种实现方式,在本申请实施例第六方面的第四种实现方式中,其特征在于,所述控制器还用于当所述接收信号的劣化程度高于预置门限值时,触发生成第一极化信息集合的步骤;
或,
所述控制器还用于,当预置的时间周期到达后,触发生成第一极化信息集合的步骤。
本申请的第七方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述方法的步骤。
本申请的第八方面提供了包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1为本申请实施例NLOS信道的极化状态变化图;
图2为极化配置方式的示意图;
图3为本申请实施例极化信息确定方法的一个实施例示意图;
图4为本申请实施例极化信息确定方法的另一个实施例示意图;
图5为本申请实施例极化信息确定方法的另一个实施例示意图;
图6为本申请实施例极化信息确定方法的另一个实施例示意图;
图7(a)为本申请实施例接收设备的一个实施例示意图;
图7(b)为本申请实施例接收设备的一个实施例示意图;
图8为本申请实施例接收设备的另一个实施例示意图;
图9为本申请实施例发射设备的一个实施例示意图;
图10(a)为本申请实施例发射设备的另一个实施例示意图;
图10(b)为本申请实施例发射设备的另一个实施例示意图;
图11为本申请实施例接收设备的另一个实施例示意图;
图12为本申请实施例发射设备的另一个实施例示意图。
具体实施方式
下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤、功能或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤、功能或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤、功能或单元。
如图1所示,为NLOS信道中电磁波传播的示意图,左侧TX设备发送的无线电磁波进入无法预知的NLOS信道,图中用X棵树(X≥1,且X为正整数)表示实际生活中的NLOS信道,无线电磁波在NLOS信道中传输,经过散射、多重反射、透射等被右侧RX设备接收。其中,TX设备通过对自身天线进行控制发射电磁波,这个电磁波具有一种极化状态,称之为发射端极化状态(TX-POL,transmitter polarization),经过NLOS信道后,生成透射波并具有另一种极化状态,称之为转换波极化状态(PT-POL,particular transfer polarization),透射波到达RX端,RX端以一种新的极化状态接收透射波,称之为接收端极化状态(RX-POL,receiver polarization)。其中,极化状态为TX-POL的电磁波,经过NLOS信道后的能量损耗可能有两个:1、PT-POL与RX-POL不能最优匹配,导致发射的电磁波不能被RX以能量损耗最小的方式接收到。2、不同的TX-POL的电磁波,经过NLOS信道后,由于NLOS信道的透射、折射等物理因素,带来能量损耗不同的缺陷,且这个物理缺陷是不可避免的。第一个缺陷可以通过对RX-POL的控制降低甚至消除能量损耗,本申请实施例主要针对第二个缺陷提出解决方案。
极化配置方式的一种可能的情况如下图2所示,其中,圆极化的极化方向在±180°周期性匀速转动,每个方向电场强度固定,椭圆极化的极化方向在±180°周期性匀速转动,每个方向电场强度不固定但有规律。圆极化可以看成是一个长轴短轴等长的特殊椭圆极化,而线极化可以看成是短轴接近于0的特殊椭圆极化,可见,接收设备或发射设备在极化遍历的过程中,可以在圆极化、椭圆极化和线极化之间自由切换遍历。
在本申请实施例中,第一极化信息集合是发射设备对极化配置图中的极化信息进行整体或部分遍历后形成的集合,第三极化信息集合可以是极化配置图的全部极化信息,也可以是极化配置图的部分极化信息,第二极化信息集合为接收设备对第三极化信息集合进行N次遍历后形成的,N的取值范围为大于或等于1的正整数,N的取值由第一极化信息集合中第一极化信息的个数确定,具体在后续进行介绍。
需要说明的是,发射设备对极化配置图的遍历可以从极化配置图的任意一个极化信息开始,同样的可以在任意一个极化信息结束。
现有的NLOS信道中,由于发射设备按照不同极化方向和极化形状发射的电磁波,经过障碍物透射或折射后的能量损耗都是不一样的,因此本申请提出了一种极化信息确定方法,旨在找到使发射设备按照最佳方式发射的极化形状和极化方向,减少NLOS信道的物理损耗。请参照图3,下面将进行说明。
301、接收设备接收发射设备发送的第一极化信息集合。
发射设备按照极化配置图设置发射电磁波的极化信息,直至对极化配置图中的极化信息执行完一次遍历,触发发射设备执行一次遍历可以采用定时触发的方式,例如每10min发射设备遍历一次,定时触发的具体时长此处不做限定。发射设备每改变一次极化信息,接收设备都需要接收最新的第一极化信息,一次遍历完成后,发射设备暂时停止极化信息的切换,接收设备收到的所有第一极化信息即为第一极化信息集合。其中,第一极化信息包括极化形状和极化方向,发射设备将该第一极化信息中包含的极化形状和极化方向设置为发射电磁波的极化形状和极化方向,依次进行遍历。
发射设备按照极化配置表进行极化遍历时,可以以1度为一个步长设置极化状态,例如以30度线极化、31度线极化、32度线极化的极化方式进行遍历,也可以以5度为一个步长设置极化状态,极化遍历的具体步长此处不做限定。
例如,第一极化信息集合包含的极化信息有,30度线极化、60度线极化、左旋圆极化和右旋椭圆极化等,则发射电磁波分别按照30度线极化、60度线极化、左旋圆极化和右旋椭圆极化的方式进行发射。
302、接收设备确定接收信号的质量集合。
发射端的按照第一极化信息发射电磁波,如图1所示,树木的折射透射情况是未知的,也必然带来能量损耗,发射端按照第一极化信息发射,对应的极化状态用TX-POL表示,TX-POL经过NLOS信道后发生折射、透射等变成PT-POL的极化状态,此时接收端需要设置成RX-POL的极化状态与PT-POL进行匹配,由于不同的TX-POL经过NLOS信道后能量损耗不同,因此透射后的PT-POL也不同,因此本申请实施例旨在找到最佳的TX-POL使得能量损耗最小。
在本申请实施例中,极化信息和极化状态都是指电磁波的极化形状和极化方向,例如第一极化信息为左旋椭圆极化,对应的极化状态也是左旋椭圆极化。
由于每个第一极化信息带来的能量损耗不一样,经过NLOS信道后,接收信号的质量也会产生一次变化,因此每个第一极化信息都有唯一对应的接收信号的质量,接收信号的质量也是一个集合。接收信号的质量由接收端确定,可以是接收设备对接收信号的参数进行监测后确定得到,代表接收信号质量的参数可以是接收电平功率RSL、信噪比(signal noise ratio,SNR)和信号干扰噪声比(signal interference noise ratio,SINR)中的任意一个或多个的组合,具体此处不作限定。
在本实施例中,第一极化信息与接收信号质量的唯一对应关系有如下两种可能的情况,具体为:
1、第一极化信息与接收信号的质量一一对应,即一个第一极化信息对应唯一的接收信号质量;
2、至少两个第一极化信息对应相同的接收信号的质量。
303、接收设备确定质量集合中的最优质量。
接收设备在确定的接收信号的质量集合中确定出接收信号劣化程度最小的质量即为接收信号的最优质量,接收信号的劣化程度最小也可理解为发射端发射的极化状态为TX-POL的电磁波,经NLOS信道传输后,电磁波的能量损耗最小,例如分别以30度线极化和60度线极化发射的电磁波经NLOS信号传输后,能量损耗分别为10db和15db,可见30度线极化发射的电磁波能量损耗最小,因此30度线极化发射的电磁波相应的接收信号质量劣化程度最小。
最优质量是接收信号劣化程度最小的质量,具体可以理解为以下几种情况:
一、从信号参数值的角度评价接收信号质量。
1、对接收信号质量的评定只涉及一个参数,该参数可以为RSL、SNR或SINR,该参数也可以为接收信号的其他物理量,具体此处不做限定。
接收信号的最优质量可以理解为:RSL、SNR或SINR中的最大值。
2、对接收信号质量的评定只涉及两个或两个以上参数,该参数可以为RSL、SNR和SINR,该参数也可以为接收信号的其他物理量,具体此处不做限定。
接收信号的质量可以理解为:RSL、SNR或SINR中的任意两个的值与其所在的权重系数的和,接收信号的最优质量即为和最大的接收信号,例如接收信号的质量用RSL、SNR来衡量,RSL、SNR的值分别为x,y,权重系数分别为2/5、3/5,则接收信号质量为:2/5x+3/5y。
接收信号的质量也可以理解为:RSL、SNR和SINR值与三者所占的权重系数的和,接收信号的最优质量即为和最大的接收信号。
二、从信号可靠性的角度评价接收信号质量。
在本实施例中,发射设备为某一第一极化信息时,接收设备可能对接收信号的RSL进行多次检测,并判断有效RSL的次数(即RSL的值大于第一门限),如果有效RSL占总RSL的比例越大,且,RSL的值越大,说明挺好稳定性越好,因此接收信号质量也就越好。
一种可能的情况是,接收信号质量低于第二门限时,RX端不能收到有效的接收信号, 此时接收信号质量可以近似为0,由于接收信号不能被接收设备接收,此时发射设备发送的第一极化信息接收设备自动排除。
在本实施例,最优质量的确定除了上述情况外还可能包括更多的可能,具体此处不作限定。
304、接收设备发送与最优质量对应的第一极化信息至发射设备。
接收设备接收第一极化信息集合,并确定出每个第一极化信息对应的接收信号质量后,可以形成一张极化信息与质量的对应表,接收设备明确最优质量后再反推最优质量对应的第一极化信息,并将这个第一极化信息发送给发射设备,使得发射设备按照该第一极化信息发射电磁波,此时接收信号的质量必然是最优的,以此来降低NLOS信道带来的能量损耗或信号劣化。
一种可能的情况是,与最优质量对应的第一极化信息有两个或两个以上时,接收设备可以发送与最优质量对应的第一极化信息中的任意一个第一极化信息至发射设备。
在本申请实施例中,接收设备通过接收发射设备遍历的第一极化信息集合后,确定出与第一极化信息集合对应的接收信号质量集合,从而确定出哪一个第一极化信息使得接收信号劣化程度最小,此时只需要让发射设备按照该第一极化信息进行发射,就能使得NLOS信道的折射、透射等现象带来的损耗降至最低,在无线通信中,有利用降低信号劣化程度,提升用户体验。
本申请实施例可应用于信道情况不断变化的场景,在NLOS信道情况发生变化时,发射设备通过执行图3所示实施例的步骤,总能确定出使信号质量最优的第一极化信息发送给接收设备。
在本应用场景中,NLOS信道发生变化可能会导致接收信号劣化,当接收信号劣化程度过高,大于预置的门限值时,触发接收设备执行图3所示实施例的步骤。还有一种可能的情况是采用定时触发方式,接收设备在预置时间达到后触发执行图3所示实施例的步骤。也可以同时采用定时触发和信号劣化触发,具体此处不作限定。
在本申请实施例中,由于发射端按照极化配置图不断在切换第一极化信息,因此发射端的极化状态TX-POL是不断改变的,PT-POL也不断改变,从而接收端的极化状态RX-POL需要不断变化与PT-POL进行匹配,在本申请实施例中,当采用双极化天线时,RX端可以接收任意极化形状和方向的电磁波,即无论PT-POL如何改变,都能被RX端最优接收,因此RX端不需要切换极化状态,此时信号的RSL最多劣化3db。当接收端为全极化天线时,这种天线的特点在于,随着TX端接收状态变化,RX端需要产生相应的变化,以达到PT-POL与RX-POL的最优匹配,可以降低甚至消除全极化天线中所描述的3db的RSL这一缺陷,这种情况下,RX端的极化状态也在不断地进行切换,请参照图4,下面将进行说明:
401、接收设备接收发射设备发送的第一极化信息集合。
在本实施例中,接收设备接收发射设备发送的第一极化信息集合的方式与实施例步骤301类似,具体此处不再赘述。
402、接收设备确定第二极化信息集合。
接收设备每接收一次第一极化信息,接收设备自身都需要切换一次极化信息以改变极化状态,因此接收设备需要确定出与第一极化信息对应的第二极化信息,从而按照第二极化信息进行切换。
进一步的,接收设备确定第二极化信息包括:
A、接收设备遍历第三极化信息集合。
发射设备的极化信息为第一极化信息,相当于TX-POL不变,此时RX-POL未知,RX-POL不同,PT-POL与RX-POL的匹配是不同的,能量损耗也不同,因此接收信号劣化程度也有所区别,此时接收信号的劣化不是由于NLOS信道的折射、透射等物理因素带来的,而是由于RX-POL无法与PT-POL最优匹配带来的。
为使PT-POL与RX-POL最优匹配,接收设备接收此极化信息后,需要对第三极化信息集合进行遍历。
B、接收设备确定第三极化信息集合中使接收信号劣化程度最小的极化信息。
接收设备遍历第三极化信息集合,即在发射设备极化状态不变的情况为,接收设备将RX-POL按照第三极化信息不断切换,此时接收信号质量也是不断改变的,接收设备需要找出使接收信号劣化程度最小的第三极化信息。
C、接收设备确定使接收信号劣化程度最小的极化信息为第二极化信息。
接收设备确定使接收信号劣化程度最小的极化信息为所需要的第二极化信息。
随后,发射设备切换第一极化信息,直至完成极化配置图中极化信息的全部或部分遍历,接收设备重复执行步骤A、B和C,直至确定出第二极化信息集合。
可见在本实施例中,第二极化信息与第一极化信息也具有如下两种可能的对应关系,具体可以为:
1、第一极化信息与第二极化信息一一对应,即一个第一极化信息对应一个第二极化信息;
2、至少两个第二极化信息对应相同的第一极化信息。
在本实施例中,第一极化信息集合有N个第一极化信息,因此接收设备需要对第三极化信息集合遍历N次,每次确定出一个第二极化信息,一种可能的情况是,两次或两次以上对第三极化信息集合进行遍历时确定出的第二极化信息是相同的,因此有至少两个第二极化信息对应相同的第一极化信息。
需要说明的是,在本实施例中,发射设备按照第一极化信息发射电磁波时,接收设备也需要同步按照第二极化信息接收电磁波,例如第一极化信息集合为a1,b1,c1,d1,对应的第二极化信息集合为a2,b2,c2,d2,接收端按照a1发射电磁波,接收端的极化状态需要进行同步切换,按照a2接收电磁波。
在本实施例中的同步切换并不一定是时间上的同步,接收端相对于发射端同步切换是由一定时延的,这个时延具体主要为接收信号的传播时延和接收设备对信号的处理时延。
403、接收设备确定接收信号的质量集合。
404、接收设备确定质量集合中的最优质量。
405、接收设备发送与最优质量对应的第一极化信息至发射设备。
在本实施例中,实施例步骤403至405与图3所示实施例步骤202至204类似,具体此处不再赘述。
406、接收设备按照与最优质量对应的第二极化信息控制接收设备的极化形状和极化方向。
接收设备确定出与最优质量对应的第二极化信息后,接收设备按照该极化信息设置极化状态RX-POL(极化形状和极化方向),从而与接收电磁波的极化状态PT-POL进行匹配。
在本实施例中,对接收设备极化状态也需要灵活调整的情况进行了说明,接收设备的灵活调整,可以使得无论TX-POL透射后的PT-POL怎么变化,通过发射设备自动调整,RX-POL都能达到最优匹配,从而避免了极化状态不匹配带来的能量损耗,同样的,由于NLOS信道的物理因素带来的缺陷,本申请采用和图3所示实施例类似的方式,确定与接收信号的最优质量对应的第一极化信息控制发射设备,还需要确定出与接收信号的最优质量对应的第二极化信息控制接收设备,就能使得NLOS信道的折射、透射等现象带来的损耗降至最低,在无线通信中,有利用降低信号劣化程度,提升用户体验。
本申请实施例可应用于信道情况不断变化的场景,在NLOS信道情况不断变化时,发射设备通过执行图4所示实施例的步骤,能使接收设备与发射设备自动调整到最优质量对应的极化状态,因此无论信号如何变化,本申请实施例都能使能量损耗降至最低。
在本应用场景中,NLOS信道发生变化可能会导致接收信号劣化,当接收信号劣化程度过高,大于预置的门限值时,触发接收设备执行图4所示实施例的步骤。还有一种可能的情况是采用定时触发方式,接收设备在预置时间达到后触发执行图4所示实施例的步骤。也可以同时采用定时触发和信号劣化触发,具体此处不作限定。
在本实施例中,接收信号劣化程度过高,大于预置的门限值的一种可能情况是,接收信号严重劣化,RSL的值降低到RX的接收灵敏度以下,此时RX端无法接收到信号。预置门限值为预先设置的接收信号RSL可降低值,例如预置门限值为10db,当接收信号RSL的减小值超过10db,发射设备重新进行极化遍历,对应接收设备也重新开始接收第一极化信息集合。
在本实施例中,预置周期到为预先设置的时间周期,可以为5s,也可以为10s,当预置的时间周期达到后,发射设备开始遍历极化配置图中的极化信息生成第一极化信息集合,接收设备也触发接收第一极化信息集合的步骤,因此发射设备每隔预置一定的时间周期就触发执行极化遍历。
上面图3和图4从接收设备的角度对本申请实施例进行了叙述,请参照图5,下面将从发射设备的角度对本申请实施例进行说明。
501、发射设备生成第一极化信息集合。
发射设备对极化配置图中的极化信息进行全部或部分遍历,不断切换发射电磁波的极化状态(即极化形状和极化方向),发射设备遍历过的极化状态即形成第一极化信息集合。
发射设备按照极化配置表进行极化遍历的具体步长与实施例步骤301类似,具体此处不作限定。
502、发射设备发送第一极化信息集合至接收设备。
遍历极化配置图的同时,发射设备每按照一个第一极化信息发射一次电磁波,就把该第一极化信息发送给接收设备,如此循环,发射设备遍历完成后,接收设备就收到了第一极化信息集合。
接收设备接收第一极化信息集合后需要确定出与第一极化信息集合中的第一极化信息唯一对应的接收信号的质量,该接收信号的质量属于接收信号的质量集合。
在本实施例中,确定接收信号质量的方式与实施例步骤302类似,具体此处不再赘述。
在本实施例中第一极化信息与接收信号质量的对应关系与实施例步骤302类似,具体此处不再赘述。
一种可能的情况是,当接收设备采用全极化天线时,还存在第二极化信息集合的概念,第一极化信息集合可以用于接收设备确定第二极化信息集合,第二极化信息集合确定的方式与实施例402中A、B和C类似,具体此处不再赘述。
在本实施例中,第二极化信息用于控制发射设备的极化状态RX-POL与接收电磁波的极化状态PT-POL相匹配。所述第一极化信息集合中的第一极化信息对应唯一的第二极化信息集合中的第二极化信息,具体的对应关系与实施例步骤402类似,具体此处不再赘述。
在本实施例中,发射设备按照第一极化信息切换发射电磁波的极化状态TX-POL,此时接收设备需要按照与该第一极化信息对应的第二极化信息同步切换接收设备的极化状态RX-POL,同步的方式与实施例步骤402类似,具体此处不再赘述。
503、发射设备接收接收设备发送的第一最优极化信息。
在本实施例中,第一最优极化信息为第一极化信息集合中使接收信号劣化程度最小的极化信息,第一最优极化信息与接收信号的最优质量对应,最优质量的确定方式与实施例步骤303所述的一、二种情况类似,具体此处不再赘述。
504、发射设备根据第一最优极化信息确定发射电磁波的极化形状和极化方向。
在本申请实施例中,发射设备通过发送遍历形成的第一极化信息集合至接收设备,使得接收设备确定出与第一极化信息集合对应的接收信号质量集合,从而确定出哪一个第一极化信息使得接收信号劣化程度最小,此时接收设备只需要接收该第一最优极化信息,并按照该第一最优极化信息发射电磁波,就能使得NLOS信道的折射、透射等现象带来的损耗降至最低,在无线通信中,有利用降低信号劣化程度,提升用户体验。
本申请实施例可应用于信道情况不断变化的场景,在NLOS信道情况不断变化时,发射设备通过执行图5所示实施例的步骤,能使接收设备与发射设备自动调整到最优质量对应的极化状态,因此无论信号如何变化,本申请实施例都能使能量损耗降至最低。
在本应用场景中,NLOS信道发生变化可能会导致接收信号劣化,当接收信号劣化程度过高,大于预置的门限值时,触发发射设备执行图5所示实施例的步骤。还有一种可能的情况是采用定时触发方式,发射设备在预置时间达到后触发执行图5所示实施例的步骤。也可以同时采用定时触发和信号劣化触发,具体此处不作限定。
在本申请实施例中,发射设备与接收设备之间的信息交互是通过控制信道来进行的, 请参照图6,下面进行说明。
601、发射设备生成第一极化信息集合。
602、发射设备发送第一极化信息集合至接收设备。
在本实施例中,实施例步骤601、602与图5所示实施例步骤501、502类似,具体此处不再赘述。
603、接收设备确定接收信号的质量集合。
604、接收设备确定质量集合中的最优质量。
605、接收设备发送与最优质量对应的第一极化信息至发射设备。
在本实施例中,实施例步骤603至605与图3所示实施例步骤302至304类似,具体此处不再赘述。
606、发射设备根据与最优质量对应的第一极化信息确定发射电磁波的极化形状和极化方向。
在本实施例中,实施例步骤605与图5所示实施例步骤504类似,具体此处不再赘述。
需要说明的是,发射设备发送第一极化信息至接收设备可以通过控制信道进行发射,控制信道有两种:随路控制信道和旁路控制信道。
1、随路控制通道的控制信息与数据通道走的同一物理信道,因此发射设备通过随路控制通道的控制信息携带第一极化信息集合后,再发送控制信息至接收设备,就可以实现接收设备与发射设备间信息的传递。
2、旁路控制信道的控制通道与数据通道走不同的物理信道,发射设备通过旁路控制通道发送所述第一极化信息至接收设备,接收设备收到数据流后,不能确定出数据流与极化信息的对应关系,因此需要将数据流与所述第一极化信息进行匹配,从而再根据所述数据流和匹配结果确定第一极化信息,直至完成第一极化信息集合中第一极化信息的确定。
在本实施例中,发射设备对极化配置图进行一次遍历后,接收设备需要对发射设备在每种极化状态下产生的接收信号的质量进行检测,从而确定出使接收信号劣化程度最小的第一极化信息,发射设备按照此极化信息发射电磁波,就可以使NLOS信道的物理损耗降至最低。
本申请实施例可应用于信道情况不断变化的场景,在NLOS信道情况不断变化时,发射设备和接收设备通过执行图6所示实施例的步骤,能使接收设备与发射设备自动调整到最优质量对应的极化状态,因此无论信号如何变化,本申请实施例都能使能量损耗降至最低。
在本应用场景中,NLOS信道发生变化可能会导致接收信号劣化,当接收信号劣化程度过高,大于预置的门限值时,触发发射设备执行遍历发射电磁波的极化形状和极化方向并生成第一极化信息集合步骤。还有一种可能的情况是采用定时触发方式,发射设备在预置时间达到后触发执行遍历发射电磁波的极化形状和极化方向并生成第一极化信息集合的步骤。也可以同时采用定时触发和信号劣化触发,具体此处不作限定。
上面图3至图6从一种极化信息确定方法的角度对本申请实施例进行了叙述,请参照图7(a),下面将从接收设备的角度对本申请实施例进行说明。
本申请实施例提供了一种接收设备,其特征在于,包括:
获取单元701,用于通过控制通道获取所述发射设备发送的第一极化信息集合,所述第一极化信息集合包括至少一个第一极化信息,所述第一极化信息包括所述发射设备的发射电磁波的极化形状和极化方向;
确定单元702,用于确定接收信号的质量集合,所述质量集合包括至少一个质量,其中,所述第一极化信息对应唯一的所述质量,所述接收信号为所述发射设备通过非视距NLOS信道发送至所述接收设备的信号;
所述确定单元702,还用于确定所述质量集合中的最优质量,其中,所述最优质量为所述质量集合中使所述接收信号劣化程度最小的质量;
发送单元703,用于发送与所述最优质量对应的所述第一极化信息至所述发射设备。
在本实施例中,获取单元获取发射电磁波的第一极化信息集合后,确定单元确定出与第一极化信息集合对应的接收信号的质量集合中,使信号劣化程度最小的接收信号,再将该信号劣化程度最小的接收信号对应的第一极化信息发送给发射设备,从而控制发射设备发射电磁波。
进一步的,在本实施例中,一种可能的情况是,接收设备的极化信息也需要产生变化,从而来匹配发射设备第一极化信息的变化。
所述确定单元702,还用于确定第二极化信息集合,所述第一极化信息集合中的第一极化信息对应唯一的所述第二极化信息集合中的第二极化信息,所述第二极化信息包括所述接收设备的极化形状和极化方向。
对于全极化天线,接收设备需要随着发射设备第一极化信息变化,同步更新到第二极化信息,以使得PT-POL与RX-POL最优匹配,避免由于接收端极化状态与发射端极化状态不匹配带来的缺陷。
在上述图7(a)所示的实施例中,进一步的,参照图7(b),确定单元具体包括:
检测模块7021,用于检测所述接收信号;
确定模块7022,用于根据检测结果确定与每个所述第一极化信息对应的所述接收信号的质量。
在本实施例中,对质量集合的确定方式进行了说明,增加了方案的可实施性。
在本申请实施例中,在确定出接收信号的最优质量后,接收设备也需要调整极化状态,请参照图8,下面将进行说明。
获取单元801,用于通过控制通道获取所述发射设备发送的第一极化信息集合,所述第一极化信息集合包括至少一个第一极化信息,所述第一极化信息包括所述发射设备的发射电磁波的极化形状和极化方向;
确定单元802,用于确定第二极化信息集合,所述第一极化信息集合中的第一极化信息对应唯一的所述第二极化信息集合中的第二极化信息,所述第二极化信息包括所述接收设备的极化形状和极化方向。
所述确定单元802,还用于确定接收信号的质量集合,所述质量集合包括至少一个质量,其中,所述第一极化信息对应唯一的所述质量,所述接收信号为所述发射设备通过非 视距NLOS信道发送至所述接收设备的信号;
所述确定单元802,还用于确定所述质量集合中的最优质量,其中,所述最优质量为所述质量集合中使所述接收信号劣化程度最小的质量;
发送单元803,用于发送与所述最优质量对应的所述第一极化信息至所述发射设备。
控制单元804,用于根据与所述最优质量对应的所述第二极化信息控制所述接收设备的极化形状和极化方向。
在本实施例中,发射设备根据与最优质量对应的第一极化信息调整发射电磁波后,接收设备也需要同步根据与最优质量对应的第二极化信息调整接收设备的极化状态,从而使得NLOS信道带来的物理损耗降至最低。
上面图7(a)和图7(b)和图8从接收设备的角度对本申请实施例进行了叙述,请参照图9,下面将从发射设备的角度对本申请实施例进行说明。
生成单元901,用于生成第一极化信息集合,所述第一极化信息集合包括至少一个第一极化信息,所述第一极化信息包括所述发射设备的所述发射电磁波的极化形状和极化方向;
发送单元902,用于发送所述第一极化信息集合至所述接收设备,所述第一极化信息集合用于所述接收设备确定接收信号的质量集合,所述质量集合包括至少一个质量,其中,所述第一极化信息对应唯一的所述质量,所述接收信号为所述发射设备通过非视距NLOS信道发送至所述接收设备的信号;
接收单元903,用于接收所述接收设备发送的第一最优极化信息,其中,所述第一最优极化信息属于所述第一极化信息集合,所述第一最优极化信息与所述最优质量对应,所述最优质量由所述接收设备确定,所述最优质量为所述质量集合中使所述接收信号劣化程度最小的质量;
确定单元904,用于根据所述第一最优极化信息确定所述发射电磁波的极化形状和极化方向。
在本实施例中,遍历单元遍历发射电磁波的极化形状和极化状态,并形成第一极化信息集合,将此集合发送给接收设备,随后接收单元接收来自于接收设备的第一最优极化信息,从而确定单元可以根据该第一最优极化信息确定发射设备的极化状态。
在本实施例中,接收设备确定第一最优极化信息后,需要将自身的极化信息切换为第一极化信息,请参照图10(a),下面将进行说明。
生成单元1001,用于并生成第一极化信息集合,所述第一极化信息集合包括至少一个第一极化信息,所述第一极化信息包括所述发射设备的所述发射电磁波的极化形状和极化方向;
发送单元1002,用于发送所述第一极化信息集合至所述接收设备,所述第一极化信息集合用于所述接收设备确定接收信号的质量集合,所述质量集合包括至少一个质量,其中,所述第一极化信息对应唯一的所述质量,所述接收信号为所述发射设备通过非视距NLOS信道发送至所述接收设备的信号;
接收单元1003,用于接收所述接收设备发送的第一最优极化信息,其中,所述第一最 优极化信息属于所述第一极化信息集合,所述第一最优极化信息与所述最优质量对应,所述最优质量由所述接收设备确定,所述最优质量为所述质量集合中使所述接收信号劣化程度最小的质量;
确定单元1004,用于根据所述第一最优极化信息确定所述发射电磁波的极化形状和极化方向。
进一步的,所述接收设备还包括:
控制单元1005,用于当所述接收设备根据与所述最优质量对应的所述第二极化信息控制所述接收设备的极化形状和极化方向时,根据与所述最优质量对应的所述第一最优极化信息控制所述天线单元的极化形状和极化方向。
在本实施例中,当发射设备按照第一最优极化信息发射电磁波,且接收设备按照与最优质量对应的第二极化信息设置极化状态来接收电磁波时,接收信号质量是最优的,因此能将NOLS信道的物理损耗降至最低。
进一步的,在本实施例中,接收设备与发射设备信息交互是通过控制通道进行的,控制通道类型不同,控制信息的发送方式不同,请参照图10(b),下面将进行说明。
发送单元1002包括:
信息携带模块10021,用于通过随路控制通道的控制信息携带所述第一极化信息集合;
第一发送模块10022,用于发送所述控制信息至所述接收设备;
或,
第二发送模块10023,还用于通过旁路控制通道发送所述第一极化信息集合至所述接收设备,以使得当所述接收设备确定所述第一极化信息通过所述旁路控制通道进行传输时,所述接收设备将收到的数据流与所述第一极化信息进行匹配,从而根据所述数据流和匹配结果确定所述第一极化信息,直至完成所述第一极化信息集合中所有第一极化信息的确定。
本申请实施例的接收设备可以应用微波或无线通信系统,一种可能的设计为所述接收设备包括射频电路1104、基带电路1105、控制器1101、馈电网络1102、天线1103。
所述控制器1101可以接收所述射频电路1104和所述基带电路1105中至少一个反馈的接收信号质量,所述接收信号为所述发射设备通过非视距NLOS信道发送至所述接收设备的信号;
需要说明的是,接收设备可以同时包含射频电路1104和基带电路1105,接收设备也可以只包含射频电路1104与基带电路1105中的任意一个,当接收设备同时包含射频电路1104和基带电路1105时,所述控制器1101的第一接口与所述射频电路1104和所述基带电路1105中的至少一个连接,图11以控制器1101同时与射频电路1104和基带电路1105连接为例,其中,所述射频电路1104与所述基带电路1105连接。
当接收设备只包含射频电路1104或基带电路1105时,控制器1101的第一接口与接收设备中包含的射频电路1104或基带电路1105连接;
所述控制器1101的第二接口与所述发射设备连接,所述控制器1101可以与所述发射设备进行信息交互;
所述控制器1101的第三接口与所述馈电网络1102连接,所述控制器1101可以发送极 化信息至馈电网络1102,所述馈电网络1102可以根据所述极化信息控制天线的极化状态,所述馈电网络1102与所述天线1103连接。
本申请实施例的发射设备可以应用微波或无线通信系统,一种可能的设计为所述发射设备包括基带电路1205、射频电路1204、控制器1202、馈电网络1201、天线1203;
所述控制器1202与所述馈电网络1201的第一接口连接,所述控制器1202可以发送极化信息至所述馈电网络1201;
所述馈电网络1201的第二接口与所述射频电路1204连接,所述射频电路1204与所述基带电路1205连接,所述馈电网络1201可以接收所述来自于所述射频电路1204的电信号;
所述馈电网络1201的第三接口与所述天线1203连接,所述馈电网络1201可以控制所述天线1203的极化状态。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、只读存储器(ROM,read-only memory)、随机存取存储器(RAM,random access memory)、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数 据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (24)

  1. 一种极化信息确定方法,其特征在于,包括:
    接收设备接收发射设备发送的第一极化信息集合,所述第一极化信息集合包括至少一个第一极化信息,所述第一极化信息包括所述发射设备的发射电磁波的极化形状和极化方向;
    所述接收设备确定接收信号的质量集合,所述质量集合包括至少一个质量,其中,所述第一极化信息对应唯一的所述质量,所述接收信号为所述发射设备通过非视距NLOS信道发送至所述接收设备的信号;
    所述接收设备确定所述质量集合中的最优质量,其中,所述最优质量为所述质量集合中使所述接收信号劣化程度最小的质量;
    所述接收设备发送与所述最优质量对应的所述第一极化信息至所述发射设备。
  2. 根据权利要求1所述的方法,其特征在于,所述接收设备接收发射设备发送的第一极化信息集合之后,所述方法还包括:
    所述接收设备确定第二极化信息集合,所述第一极化信息集合中的第一极化信息对应唯一的所述第二极化信息集合中的第二极化信息,所述第二极化信息包括所述接收设备的极化形状和极化方向。
  3. 根据权利要求2所述的方法,其特征在于,当所述发射设备的极化信息为所述第一极化信息时,所述第二极化信息为第三极化信息集合中使所述接收信号劣化程度最小的极化信息,所述第三极化信息集合包括至少一个第三极化信息,所述第三极化信息包括所述接收设备的极化形状和极化方向。
  4. 根据权利要求2或3所述的方法,其特征在于,所述接收设备确定所述质量集合中的最优质量之后,所述方法还包括:
    所述接收设备根据与所述最优质量对应的所述第二极化信息控制所述接收设备的极化形状和极化方向。
  5. 根据权利要求1至3中任一项所述的方法,其特征在于,所述接收设备确定接收信号的质量集合包括:
    所述接收设备检测所述接收信号;
    所述接收设备根据检测结果确定与每个所述第一极化信息对应的所述接收信号的质量。
  6. 根据权利要求1至3中任一项所述的方法,其特征在于,所述质量为所述接收信号的接收电平功率RSL、信噪比SNR和信号干扰噪声比SINR中的至少一个。
  7. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    当所述接收信号的劣化程度高于预置门限值时,所述接收设备触发接收发射设备发送的第一极化信息集合的步骤;
    或,
    当预置的时间周期到达后,所述接收设备触发接收发射设备发送的第一极化信息集合的步骤。
  8. 一种极化信息确定方法,其特征在于,包括:
    发射设备生成第一极化信息集合,所述第一极化信息集合包括至少一个第一极化信息,所述第一极化信息包括所述发射设备的所述发射电磁波的极化形状和极化方向;
    所述发射设备发送所述第一极化信息集合至所述接收设备,所述第一极化信息集合用于所述接收设备确定接收信号的质量集合,所述质量集合包括至少一个质量,其中,所述第一极化信息对应唯一的所述质量,所述接收信号为所述发射设备通过非视距NLOS信道发送至所述接收设备的信号;
    所述发射设备接收所述接收设备发送的第一最优极化信息,其中,所述第一最优极化信息属于所述第一极化信息集合,所述第一最优极化信息与最优质量对应,所述最优质量为所述质量集合中使所述接收信号劣化程度最小的质量;
    所述发射设备根据所述第一最优极化信息确定所述发射电磁波的极化形状和极化方向。
  9. 根据权利要求8所述的方法,其特征在于,所述发射设备发送所述第一极化信息集合至所述接收设备包括:
    所述发射设备通过随路控制通道的控制信息携带所述第一极化信息集合;
    所述发射设备发送所述控制信息至所述接收设备;
    或,
    所述发射设备通过旁路控制通道发送所述第一极化信息集合至所述接收设备,以使得当所述接收设备确定所述第一极化信息通过所述旁路控制通道进行传输时,所述接收设备将收到的数据流与所述第一极化信息进行匹配,从而根据所述数据流和匹配结果确定所述第一极化信息,直至完成所述第一极化信息集合中所有第一极化信息的确定。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    当所述接收信号的劣化程度高于预置门限值时,所述发射设备触发生成第一极化信息集合的步骤;
    或,
    当预置的时间周期到达后,所述发射设备触发生成第一极化信息集合的步骤。
  11. 一种接收设备,其特征在于,所述接收设备包括控制器、接收器、发送器;
    所述接收器,用于通过控制通道获取所述发射设备发送的第一极化信息集合,所述第一极化信息集合包括至少一个第一极化信息,所述第一极化信息包括所述发射设备的发射电磁波的极化形状和极化方向;
    所述控制器,用于确定接收信号的质量集合,所述质量集合包括至少一个质量,其中,所述第一极化信息对应唯一的所述质量,所述接收信号为所述发射设备通过非视距NLOS信道发送至所述接收设备的信号;
    所述控制器,还用于确定所述质量集合中的最优质量,其中,所述最优质量为所述质量集合中使所述接收信号劣化程度最小的质量;
    所述发送器,用于发送与所述最优质量对应的所述第一极化信息至所述发射设备。
  12. 根据权利要求11所述的接收设备,其特征在于,所述控制器,还用于确定第二极化信息集合,所述第一极化信息集合中的第一极化信息对应唯一的所述第二极化信息集合 中的第二极化信息,所述第二极化信息包括所述接收设备的极化形状和极化方向。
  13. 根据权利要求12所述的接收设备,其特征在于,当所述发射设备的极化信息为所述第一极化信息时,所述第二极化信息为第三极化信息集合中使所述接收信号劣化程度最小的极化信息,所述第三极化信息集合包括至少一个第三极化信息,所述第三极化信息包括所述接收设备的极化形状和极化方向。
  14. 根据权利要求12或13所述的接收设备,其特征在于,所述接收设备还包括馈电网络和天线;
    所述馈电网络,用于根据与所述最优质量对应的所述第二极化信息控制所述天线的极化形状和极化方向。
  15. 根据权利要求11至13中任一项所述的接收设备,其特征在于,所述接收设备还包括射频电路和/或基带电路;
    所述射频电路和/或所述基带电路,用于检测所述接收信号;
    用于根据检测结果确定与每个所述第一极化信息对应的所述接收信号的质量。
  16. 根据权利要求11至13中任一项所述的接收设备,其特征在于,所述控制器确定的所述接收信号的质量为所述接收信号的接收电平功率RSL、信噪比SNR和信号干扰噪声比SINR中的至少一个。
  17. 根据权利要求11至13中任一项所述的接收设备,其特征在于,所述控制器还用于,当所述接收信号的劣化程度高于预置门限值时,触发接收发射设备发送的第一极化信息集合的步骤;
    或,
    所述控制器还用于,当预置的时间周期到达后,触发接收发射设备发送的第一极化信息集合的步骤。
  18. 根据权利要求11至13中任一项所述的接收设备,其特征在于,所述控制器包括第一接口、第二接口和第三接口,所述控制器的所述第一接口通过控制通道与所述发射设备连接;
    所述接收设备还包括射频电路和/或基带电路,所述控制器的所述第二接口与所述射频电路和所述基带电路中的至少一个连接;
    所述接收设备还包括馈电网络和天线,所述控制器的所述第三接口与所述馈电网络连接,所述馈电网络与所述天线连接。
  19. 一种发射设备,其特征在于,包括:
    控制器,用于生成第一极化信息集合,所述第一极化信息集合包括至少一个第一极化信息,所述第一极化信息包括所述发射设备的所述发射电磁波的极化形状和极化方向;
    发送器,用于发送所述第一极化信息集合至所述接收设备,所述第一极化信息集合用于所述接收设备确定接收信号的质量集合,所述质量集合包括至少一个质量,其中,所述第一极化信息对应唯一的所述质量,所述接收信号为所述发射设备通过非视距NLOS信道发送至所述接收设备的信号;
    接收器,用于接收所述接收设备发送的第一最优极化信息,其中,所述第一最优极化 信息属于所述第一极化信息集合,所述第一最优极化信息与最优质量对应,所述最优质量为所述质量集合中使所述接收信号劣化程度最小的质量;
    所述控制器,还用于根据所述第一最优极化信息确定所述发射电磁波的极化形状和极化方向。
  20. 根据权利要求19所述的发射设备,其特征在于,所述发送器,具体用于通过随路控制通道的控制信息携带所述第一极化信息集合;
    发送所述控制信息至所述接收设备;
    或,
    所述发送器,具体用于通过旁路控制通道发送所述第一极化信息集合至所述接收设备,以使得当所述接收设备确定所述第一极化信息通过所述旁路控制通道进行传输时,所述接收设备将收到的数据流与所述第一极化信息进行匹配,从而根据所述数据流和匹配结果确定所述第一极化信息,直至完成所述第一极化信息集合中所有第一极化信息的确定。
  21. 根据权利要求19或20所述的发射设备,其特征在于,所述控制器还用于,当所述接收信号的劣化程度高于预置门限值时,触发生成第一极化信息集合的步骤;
    或,
    所述控制器还用于,当预置的时间周期到达后,触发生成第一极化信息集合的步骤。
  22. 根据权利要求19或20所述的发射设备,其特征在于,所述控制器包括第一接口和第二接口,所述控制器的第一接口通过控制通道与所述接收设备连接;
    所述发射设备还包括馈电网络,所述馈电网络包括第一接口、第二接口和第三接口,所述控制器的第二接口与所述馈电网络的第一接口连接;
    所述发射设备还包括射频电路和/或基带电路,所述馈电网络的第二接口与所述射频电路和所述基带电路中的至少一个连接;
    所述发射设备还包括天线,所述馈电网络的第三接口与所述天线连接。
  23. 一种计算机可读存储介质,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至7所述的方法。
  24. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求8至10中任意一项所述的方法。
PCT/CN2018/077515 2018-02-28 2018-02-28 一种极化信息确定方法及其相关设备 WO2019165593A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18907824.9A EP3734854A4 (en) 2018-02-28 2018-02-28 POLARIZATION INFORMATION DETERMINATION PROCESS AND ASSOCIATED DEVICES
PCT/CN2018/077515 WO2019165593A1 (zh) 2018-02-28 2018-02-28 一种极化信息确定方法及其相关设备
CN201880089950.2A CN111742501B (zh) 2018-02-28 2018-02-28 一种极化信息确定方法及其相关设备
US17/003,949 US11038580B2 (en) 2018-02-28 2020-08-26 Method for determining polarization information and related device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/077515 WO2019165593A1 (zh) 2018-02-28 2018-02-28 一种极化信息确定方法及其相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/003,949 Continuation US11038580B2 (en) 2018-02-28 2020-08-26 Method for determining polarization information and related device thereof

Publications (1)

Publication Number Publication Date
WO2019165593A1 true WO2019165593A1 (zh) 2019-09-06

Family

ID=67804763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077515 WO2019165593A1 (zh) 2018-02-28 2018-02-28 一种极化信息确定方法及其相关设备

Country Status (4)

Country Link
US (1) US11038580B2 (zh)
EP (1) EP3734854A4 (zh)
CN (1) CN111742501B (zh)
WO (1) WO2019165593A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023050039A1 (zh) * 2021-09-28 2023-04-06 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质
CN115004840A (zh) * 2022-04-25 2022-09-02 北京小米移动软件有限公司 信道传输方法及装置、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040039512A (ko) * 2002-11-01 2004-05-12 대한민국(부경대학교 총장) 마이크로스트립 안테나를 사용한 원형 편파 다이버시티장치 및 그 방법
CN102803984A (zh) * 2009-04-23 2012-11-28 法国电信教育集团 定向和测位系统
CN103338094A (zh) * 2013-07-26 2013-10-02 厦门大学 一种多输入多输出系统信道的建模方法
CN105144472A (zh) * 2013-04-02 2015-12-09 瑞典爱立信有限公司 无线电天线定位

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3846186B2 (ja) * 2000-12-05 2006-11-15 株式会社村田製作所 分極装置および分極方法
WO2008118529A2 (en) 2007-01-30 2008-10-02 Georgia Tech Research Corporation Methods for polarization-based interference mitigation
US8213794B2 (en) 2008-02-12 2012-07-03 Nec Laboratories America, Inc. Programmable optical network architecture
CN102810731B (zh) * 2011-05-31 2015-03-11 深圳光启创新技术有限公司 一种双极化天线及具有该双极化天线的mimo天线
EP2797240B1 (en) * 2013-04-26 2019-08-14 BlackBerry Limited Antenna polarization optimization for wireless communications
US10382139B2 (en) * 2016-12-21 2019-08-13 Ceragon Networks Ltd. Polarization pre-coding for a single carrier communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040039512A (ko) * 2002-11-01 2004-05-12 대한민국(부경대학교 총장) 마이크로스트립 안테나를 사용한 원형 편파 다이버시티장치 및 그 방법
CN102803984A (zh) * 2009-04-23 2012-11-28 法国电信教育集团 定向和测位系统
CN105144472A (zh) * 2013-04-02 2015-12-09 瑞典爱立信有限公司 无线电天线定位
CN103338094A (zh) * 2013-07-26 2013-10-02 厦门大学 一种多输入多输出系统信道的建模方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3734854A4 *

Also Published As

Publication number Publication date
US11038580B2 (en) 2021-06-15
CN111742501A (zh) 2020-10-02
CN111742501B (zh) 2022-02-18
US20200395997A1 (en) 2020-12-17
EP3734854A4 (en) 2020-12-02
EP3734854A1 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
US11336347B2 (en) Beam management techniques for beam calibration
US9270355B2 (en) Control method of radio communication system, radio communication system, and radio communication apparatus
US9184821B2 (en) Control method of radio communication system, radio communication system, and radio communication apparatus
US10056685B2 (en) Antenna array self-calibration
US8933840B2 (en) Control method of wireless communication system, wireless communication system, wireless communication apparatus, and adjustment method of array weight vector
US20160190686A1 (en) Beam tracking method, apparatus, and system
EP3788724B1 (en) Beam management and participation in a beam management procedure
US20130002487A1 (en) Control method of radio communication system, radio communication system, and radio communication apparatus
JP5487965B2 (ja) ミリ波信号を改善するためのシステム及び方法
US11038580B2 (en) Method for determining polarization information and related device thereof
WO2011150823A1 (zh) 有源天线的失效补偿方法、装置及有源天线设备
JP2010157944A (ja) 指向性を制御可能なアンテナを用いた無線通信システムおよびその受信装置
WO2014205740A1 (zh) 基于天馈系统的通道校准方法、装置及基站
US20110103495A1 (en) Communications link redundancy including multiple input, multiple output architecture
WO2020158977A1 (ko) 테라헤르츠 통신 시스템 기반 comp 동작을 위한 채널상태정보를 수신 및 수신하는 방법
US10171977B2 (en) Communication network, a power converter cabinet, and a method therefore
EP4226730B1 (en) Handling of link failure between a reflection node and a network node
US20230412237A1 (en) Polarization based beam selection process
WO2016065543A1 (zh) 一种用户设备及小区切换方法
EP4128561A1 (en) Beam management procedures for network nodes and terminal devices
CN117792539A (zh) 校准信号传输方法、装置、基站及系统
WO2020200418A1 (en) Transmitter for a point-to-point microwave system
WO2012151891A1 (zh) 信号发射方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018907824

Country of ref document: EP

Effective date: 20200731

NENP Non-entry into the national phase

Ref country code: DE