WO2019163989A1 - 強化ガラスの評価装置、強化ガラスの評価方法、強化ガラスの製造方法、強化ガラス - Google Patents

強化ガラスの評価装置、強化ガラスの評価方法、強化ガラスの製造方法、強化ガラス Download PDF

Info

Publication number
WO2019163989A1
WO2019163989A1 PCT/JP2019/007083 JP2019007083W WO2019163989A1 WO 2019163989 A1 WO2019163989 A1 WO 2019163989A1 JP 2019007083 W JP2019007083 W JP 2019007083W WO 2019163989 A1 WO2019163989 A1 WO 2019163989A1
Authority
WO
WIPO (PCT)
Prior art keywords
tempered glass
light
stress distribution
glass
laser light
Prior art date
Application number
PCT/JP2019/007083
Other languages
English (en)
French (fr)
Inventor
健二 今北
聡司 大神
秀治 折原
芳男 折原
Original Assignee
Agc株式会社
有限会社折原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社, 有限会社折原製作所 filed Critical Agc株式会社
Priority to JP2020501084A priority Critical patent/JP6995324B2/ja
Priority to CN201980014816.0A priority patent/CN111801557B/zh
Priority to KR1020207023708A priority patent/KR102659463B1/ko
Publication of WO2019163989A1 publication Critical patent/WO2019163989A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens

Definitions

  • the present invention relates to a tempered glass evaluation device, a tempered glass evaluation method, a tempered glass manufacturing method, and a tempered glass.
  • glass In electronic devices such as mobile phones and smartphones, glass is often used for the display unit and the housing body. With recent reduction in thickness and weight of electronic devices, glass used in electronic devices is also required to be thin. As glass becomes thinner, its strength decreases. Therefore, in order to increase the strength of the glass, so-called chemically tempered glass whose strength has been increased by forming a surface layer (ion exchange layer) by ion exchange on the glass surface is used, and the stress of the surface is measured by an optical method. It was common to measure the value, confirm that it was strengthened correctly, and ship it to the market.
  • ion exchange layer surface layer
  • nondestructive measurement technique As a technique for measuring the stress of the surface layer of the tempered glass, for example, when the refractive index of the surface layer of the tempered glass is higher than the internal refractive index, the optical waveguide effect and the photoelastic effect are used to A technique for measuring compressive stress nondestructively (hereinafter referred to as nondestructive measurement technique) can be given.
  • this non-destructive measurement technique monochromatic light is incident on the surface layer of tempered glass, multiple modes are generated by the optical waveguiding effect, light with a fixed ray trajectory is extracted in each mode, and a bright line corresponding to each mode is obtained with a convex lens. To form an image. Note that there are as many bright lines that have been imaged as the number of modes.
  • the light extracted from the surface layer can observe bright lines for two types of light components, the horizontal and vertical directions of vibration of the light with respect to the emission surface.
  • the light of mode 1 with the lowest order uses the property of passing through the side closest to the top surface of the surface layer, and from the position of the bright line corresponding to mode 1 of the two types of light components,
  • the refractive index is calculated, and the stress near the surface of the tempered glass is obtained from the difference between the two kinds of refractive indexes and the photoelastic constant of the glass (see, for example, Patent Document 1).
  • the stress at the outermost surface of the glass (hereinafter referred to as the surface stress value) is obtained by extrapolation from the position of the bright line corresponding to mode 1 and mode 2.
  • the refractive index distribution of the surface layer changes linearly, a method for obtaining the depth of the compressive stress layer from the total number of bright lines has been proposed (see, for example, Patent Document 3 and Non-Patent Document 1).
  • a method of defining the tensile stress CT inside the glass based on the surface stress value measured by the measurement technique using the above-mentioned surface guided light and the depth of the compressive stress layer, and managing the strength of the tempered glass by the CT value has been proposed (see, for example, Patent Document 2).
  • CS is the surface stress value (MPa)
  • DOL is the depth (unit: ⁇ m) of the compressive stress layer
  • t is the plate thickness (unit: mm).
  • the total stress is zero. Therefore, the tensile stress is generated substantially evenly so that the value obtained by integrating the stress formed by the chemical strengthening in the depth direction is balanced in the central portion that is not chemically strengthened.
  • the stress distribution on the glass surface layer side is measured from the glass depth (DOL_TP) at the position where the stress distribution is bent, and based on the measurement result (measurement image) of the stress distribution on the glass surface layer side, the glass deep layer side from DOL_TP
  • a method for predicting the stress distribution has also been proposed (see, for example, Patent Document 4).
  • this method has a problem that the measurement reproducibility is poor because the stress distribution on the deeper side of the glass than DOL_TP is not actually measured.
  • tempered glass in which lithium-containing glass is exchanged with two kinds of ions of potassium and sodium to control stress distribution
  • chemically tempered glass in which transparent crystallized glass is ion-exchanged.
  • the conventional optical surface stress measurement device can evaluate the stress layer near the surface where lithium is replaced with potassium, but the internal stress layer where lithium is replaced with sodium is evaluated. The stress depth cannot be measured because it cannot.
  • the crystallized glass used here is crystallized glass whose crystal grains are sufficiently smaller than the wavelength of visible light, and in the visible region. Transparent. Therefore, the surface stress formed in the chemical strengthening process can be measured with a conventional optical surface stress measuring device.
  • the strength of crystallized glass greatly depends not only on the stress near the chemically strengthened surface, but also on the crystal grain size, grain density, grain type, etc. produced by recrystallization.
  • the impact on the subsequent chemical strengthening process is also significant.
  • the crystals produced in this recrystallization process may also change in the chemical strengthening process.
  • JP-A-53-136886 Special table 2011-530470 gazette Japanese Unexamined Patent Publication No. 2016-142600 US Patent Publication 2016/0356760
  • lithium-aluminosilicate glass has attracted attention as a glass that can easily exchange ions, has a high surface stress value, and can deepen a stress layer in a chemical strengthening process in a short time.
  • This glass is immersed in a mixed molten salt of high-temperature sodium nitrate and potassium nitrate and subjected to chemical strengthening treatment. Both sodium ions and potassium ions are ion-exchanged with lithium ions in the glass because the concentration in the molten salt is high, but since sodium ions are more likely to diffuse into the glass, first the lithium ions in the glass Sodium ions in the molten salt are exchanged.
  • the refractive index of glass is lower when sodium ions are ion-exchanged with lithium ions, and higher when potassium ions are ion-exchanged with lithium ions or sodium ions.
  • the ion-exchanged region near the glass surface has a higher potassium ion concentration than the portion of the glass that has not been ion-exchanged, and the sodium ion concentration is higher in a deeper ion-exchanged region. Therefore, the refractive index of the vicinity of the outermost surface of the ion-exchanged glass decreases with the depth, but the refractive index increases with the depth from a certain depth to a region where no ion exchange is performed.
  • the stress measuring device using the surface guided light described in the background art cannot measure the stress distribution in the deep part only by the stress value on the outermost surface or the stress distribution, but the depth of the stress layer and the CT value. , could not know the overall stress distribution. As a result, development for finding appropriate chemical strengthening conditions could not be performed, and quality control of production could not be performed.
  • the stress distribution or stress value of the chemically strengthened portion can be measured by the stress measuring device using the surface guided light described in the background art.
  • the portion that is not chemically strengthened but only air-cooled has a small change in refractive index and cannot be measured by the stress measuring device using the guided light on the surface described in the background art.
  • the depth of the stress layer, CT value, and overall stress distribution could not be known.
  • development for finding appropriate chemical strengthening conditions could not be performed, and quality control of production could not be performed.
  • crystallized glass has higher strength than general glass. Therefore, chemically strengthened crystallized glass can obtain higher strength than ordinary tempered glass.
  • physical performance such as strength is greatly influenced by the crystal state (grain size, crystal grain density, crystal seed) and the like. Therefore, in the crystallized glass, it is necessary to measure the physical quantity related to the strength of the crystallized glass together with the stress distribution due to chemical strengthening.
  • the present invention has been made in view of the above points, and provides a tempered glass evaluation apparatus that can measure the stress distribution of tempered glass and can measure physical quantities related to the strength of the tempered glass. Objective.
  • the apparatus for evaluating tempered glass includes a polarization phase difference variable member that varies the polarization phase difference of laser light by one or more wavelengths with respect to the wavelength of the laser light, and the laser light having the variable polarization phase difference changed to tempered glass.
  • the scattered light emitted by being incident is imaged a plurality of times at a predetermined time interval, an image sensor that acquires a plurality of images, and the periodic luminance change of the scattered light is measured using the plurality of images, Calculate the phase change of the luminance change, calculate the stress distribution in the depth direction from the surface of the tempered glass based on the phase change, and measure the physical quantity related to the strength of the tempered glass using the plurality of images It is a requirement to have an arithmetic unit that performs.
  • a tempered glass evaluation apparatus capable of measuring the stress distribution of tempered glass and measuring physical quantities related to the strength of the tempered glass.
  • FIG. 6 is a diagram illustrating a temporal change in scattered light luminance at points B and C in FIG. 5.
  • FIG. 1 It is a figure which illustrates the phase of the scattered light change according to glass depth. It is a figure which illustrates stress distribution calculated
  • FIG. 1 It is a figure which illustrates the phase of the scattered light change according to glass depth. It is a figure which illustrates stress distribution calculated
  • 3 is a flowchart (part 1) illustrating an evaluation method using the evaluation apparatus 1; 4 is a flowchart (part 2) illustrating an evaluation method using the evaluation apparatus 1; It is an image of scattered light at a certain time obtained by the image sensor 60. It is a graph of the time change of the average scattered light brightness
  • FIG. 1 It is a figure which illustrates the scattered light image of the laser beam L which advances the interface of a light supply member and tempered glass. It is the figure which illustrated the structure part for inserting a liquid between a light supply member and tempered glass. It is the figure which showed the 2nd example of the structure part for pinching
  • FIG. 52 is a top view, a front view, and a side view of FIG. 51. It is a conceptual diagram of the laser beam which advances in the light supply member and the tempered glass. It is a conceptual diagram of the laser beam which advances in the tempered glass. It is an example of the flowchart which calculates
  • FIG. 1 is a diagram illustrating an evaluation apparatus according to the first embodiment.
  • the evaluation apparatus 1 includes a laser light source 10, a polarizing member 20, a polarization phase difference variable member 30, a light supply member 40, a light conversion member 50, an image sensor 60, and a calculation unit 70. And an optical wavelength selection member 80.
  • the tempered glass 200 is a tempered glass to be measured.
  • the tempered glass 200 is glass that has been tempered by, for example, a chemical tempering method, an air cooling tempering method, or the like.
  • the tempered glass referred to in the present application includes crystallized glass subjected to a tempering treatment.
  • the crystallized glass is glass produced through a crystallization process, in other words, glass having crystals that are intentionally deposited.
  • the crystallized glass subjected to the tempering treatment may be referred to as tempered crystallized glass as necessary.
  • the laser light source 10 is arranged so that the laser light L is incident on the surface layer of the tempered glass 200 from the light supply member 40, and the polarization phase difference variable member 30 is interposed between the laser light source 10 and the light supply member 40. Has been inserted.
  • the laser light source 10 for example, a semiconductor laser, a helium neon laser, or an argon laser can be used.
  • Semiconductor lasers are usually polarized, and semiconductor lasers having wavelengths of 405 nm, 520 nm, 630 nm, 850 nm, etc. have been put into practical use.
  • the shorter the wavelength of the laser light the narrower the beam diameter and the higher the spatial resolution. Further, the shorter the wavelength of the laser light, the more preferable it is because noise tends to decrease.
  • the laser beam needs to pass through the measurement object.
  • the position of the minimum beam diameter of the laser light is preferably in the ion exchange layer of the tempered glass 200, and the minimum beam diameter is preferably 20 ⁇ m or less. More preferably, the position of the minimum beam diameter of the laser light is the surface 210 of the tempered glass 200.
  • the beam diameter means a width of 1 / e 2 (about 13.5%) when the brightness at the center of the beam is maximized.
  • the beam diameter is the minimum width. Means. However, in this case, the minimum width of the beam diameter needs to face the glass depth direction.
  • the cross-sectional shape of the beam emitted from the semiconductor laser is usually an ellipse, it is possible to increase the spatial resolution and improve the measurement accuracy by shaping it into a circle with the beam shaping member.
  • the output distribution within the beam shape of the beam emitted from the semiconductor laser is a Gaussian distribution, but the measurement accuracy can also be improved by shaping it into a constant distribution within the beam shape, such as a top hat distribution, using the output distribution shaping member. it can.
  • the beam shaping member and the output distribution shaping member are inserted between the laser light source 10 and the polarization phase difference variable member 30, for example.
  • the beam shaping member include a cylindrical lens, an anamorphic prism, and a diaphragm.
  • Examples of the output distribution shaping member include an aspheric lens, DOE (Diffractive Optical Element), and the like.
  • the polarizing member 20 is inserted between the laser light source 10 and the polarization phase difference variable member 30 as necessary. Specifically, when the laser light L emitted from the laser light source 10 is not polarized, the polarizing member 20 is inserted between the laser light source 10 and the polarization phase difference variable member 30. When the laser light L emitted from the laser light source 10 is polarized, the polarizing member 20 may or may not be inserted. Further, the laser light source 10 and the polarizing member 20 are installed so that the polarization plane of the laser light L is 45 ° with respect to the surface 210 of the tempered glass 200. As the polarizing member 20, for example, a polarizing plate arranged in a rotatable state can be used, but other members having the same function may be used.
  • the light supply member 40 is placed in a state of being in optical contact with the surface 210 of the tempered glass 200 that is the object to be measured.
  • the light supply member 40 has a function of causing the light from the laser light source 10 to enter the tempered glass 200.
  • an optical glass prism can be used as the light supply member 40. In this case, since the light beam is optically incident on the surface 210 of the tempered glass 200 through the prism, the refractive index of the prism needs to be approximately the same as the refractive index of the tempered glass 200 (within ⁇ 0.2). is there.
  • a liquid having a refractive index substantially the same as the refractive index of the tempered glass 200 may be sandwiched between the light supply member 40 and the tempered glass 200. Thereby, the laser beam L can be efficiently incident on the tempered glass 200. This will be described in detail in the third embodiment.
  • the laser beam L passing through the tempered glass 200 generates a scattered light L S of the trace.
  • Brightness of the scattered light L S is changed by the polarization phase difference of a portion of the scattered laser light L.
  • the laser light source 10 is installed so that the polarization direction of the laser light L is ⁇ s2 in FIG. 2 is 45 ° (within ⁇ 5 °) with respect to the surface 210 of the tempered glass 200. Therefore, cause birefringence by photoelastic effect of such in-plane direction of the reinforcing glass 200 stress, as the laser beam L travels reinforced glass, polarization phase difference also changes, the brightness of the scattered light L S along with the change Also changes.
  • the polarization phase difference is a retardation caused by birefringence.
  • an imaging device 60 between the laser light L, the light conversion member 50 so as to image the image of the scattered light L S by the laser beam L to the imaging device 60 is inserted.
  • the light conversion member 50 for example, a glass convex lens, or a lens in which a plurality of convex lenses or concave lenses are combined can be used. At this time, it is preferable that the numerical aperture (NA) of the lens is large because noise is reduced.
  • the scattered light scattered in all directions from the laser light L is mainly against the glass surface of the tempered glass 200.
  • An image can be formed only with light scattered in the 45 ° direction (image sensor direction). As a result, unnecessary light such as irregular reflection on the glass surface can be reduced.
  • an optical wavelength selection member 80 for removing light unnecessary for stress measurement is inserted between the laser beam L and the image sensor 60.
  • the light wavelength selection member 80 does not transmit light having a wavelength other than the wavelength of the laser light L by 50% or more, and preferably does not transmit 90% or more.
  • the width of the wavelength transmitted through the optical wavelength selection member 80 is preferably about 10 nm or less.
  • the image sensor 60 for example, a CCD (Charge-Coupled Device) element or a CMOS (Complementary Metal-Oxide Semiconductor) sensor element can be used.
  • the CCD element and the CMOS sensor element control the element and generate a digital image data that converts the electric signal into digital image data.
  • the circuit is connected to a digital recording apparatus that records a plurality of digital image data. Further, the digital image data generation circuit and the digital recording device are connected to the calculation unit 70.
  • the calculation unit 70 has a function of capturing image data from the image sensor 60 or a digital image data generation circuit or digital recording device connected to the image sensor 60, and performing image processing or numerical calculation.
  • the calculation unit 70 may have a configuration having other functions (for example, a function of controlling the light amount and exposure time of the laser light source 10).
  • the arithmetic unit 70 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a main memory, and the like.
  • various functions of the arithmetic unit 70 can be realized by reading a program recorded in the ROM or the like into the main memory and executing it by the CPU.
  • the CPU of the calculation unit 70 can read and store data from the RAM as necessary.
  • part or all of the calculation unit 70 may be realized only by hardware.
  • the calculation unit 70 may physically include a plurality of devices.
  • the calculation unit 70 for example, a personal computer can be used.
  • the arithmetic unit 70 may be provided with functions of a digital image data generation circuit and a digital recording device.
  • the polarization phase difference variable member 30 temporally changes the polarization phase difference when entering the tempered glass 200.
  • the polarization phase difference to be changed is one or more times the wavelength ⁇ of the laser beam.
  • the polarization phase difference must be uniform with respect to the wavefront of the laser light L. For example, in a quartz wedge, the wavefront of the laser beam is not uniform because the polarization phase difference is not uniform in the direction of the inclined surface of the wedge. Therefore, it is not preferable to use a quartz wedge as the polarization phase difference variable member 30.
  • Examples of the polarization phase difference variable member 30 that is uniform on the wavefront of the laser light and that can electrically change the polarization phase difference by 1 ⁇ or more include a liquid crystal element.
  • the liquid crystal element can vary the polarization phase difference depending on the voltage applied to the element. For example, when the wavelength of the laser beam is 630 nm, the liquid crystal element can vary 3 to 6 wavelengths. In the liquid crystal element, the maximum value of the polarization phase difference that can be varied by the applied voltage is determined by the size of the cell gap.
  • the maximum polarization phase difference is about 1 ⁇ 2 ⁇ (several hundred nm). Further, in a display using liquid crystal, no further change is required.
  • the liquid crystal element used in the present embodiment when the wavelength of the laser beam is 630 nm, for example, it is necessary to change the polarization phase difference of about 2000 nm, which is about three times 630 nm, and 20 to 50 ⁇ m. A cell gap is required.
  • FIG. 3 shows a relationship between an applied voltage and a polarization phase difference of a liquid crystal element having a cell gap of 30 ⁇ m.
  • the vertical axis represents the polarization phase difference (the number of wavelengths with respect to the wavelength of 630 nm), and the horizontal axis represents the voltage applied to the liquid crystal element (shown in logarithm).
  • the polarization phase difference of about 8 ⁇ (5000 nm) can be varied.
  • the liquid crystal element generally does not stabilize the alignment of the liquid crystal at a low voltage from 0 V to 1 V, and the polarization phase difference fluctuates due to a temperature change or the like.
  • the change in polarization phase difference is small with respect to the change in voltage.
  • the polarization phase difference of 4 ⁇ to 1 ⁇ that is, about 3 ⁇ can be stably varied by using an applied voltage of 1.5V to 5V.
  • the polarization phase difference variable member 30 When a liquid crystal element is used as the polarization phase difference variable member 30, the polarization phase difference variable member 30 is connected to a liquid crystal control circuit that controls liquid crystal, and is controlled in synchronization with the imaging element 60. At this time, it is necessary to vary the polarization phase difference linearly in time and to synchronize with the imaging timing of the image sensor 60.
  • FIG. 3 is a diagram illustrating the relationship between the voltage applied to the liquid crystal element and the polarization phase difference. As shown in FIG. 3, the voltage applied to the liquid crystal element and the polarization phase difference do not change linearly. Therefore, it is necessary to generate a signal that changes linearly within a certain period of polarization phase difference and apply it as a driving voltage to the liquid crystal element.
  • FIG. 4 is a diagram illustrating a circuit for generating a drive voltage that causes the polarization phase difference to change linearly with time in the liquid crystal element.
  • the digital data storage circuit 301 corresponds to the polarization phase difference for changing the polarization phase difference at a constant interval based on data obtained by measuring the applied voltage of the liquid crystal element to be used and the polarization phase difference in advance.
  • Voltage values to be recorded are recorded in the order of addresses as digital data within a necessary range of change in polarization phase difference.
  • Table 1 exemplifies a part of digital data recorded in the digital data storage circuit 301.
  • the voltage column in Table 1 is digital data to be recorded, and is a voltage value for each change in the polarization phase difference of 10 nm.
  • the clock signal generation circuit 302 uses a crystal resonator or the like to generate a clock signal having a constant frequency.
  • the clock signal generated by the clock signal generation circuit 302 is input to the digital data storage circuit 301 and the DA converter 303.
  • the DA converter 303 is a circuit that converts digital data from the digital data storage circuit 301 into an analog signal. In accordance with the clock signal generated by the clock signal generation circuit 302, digital data of voltage values sequentially stored from the digital data storage circuit 301 is read and sent to the DA converter 303.
  • the DA converter 303 converts the digital data of the voltage value read at a constant time interval into an analog voltage.
  • the analog voltage output from the DA converter 303 is applied to the liquid crystal element used as the polarization phase difference variable member 30 through the voltage amplifier circuit 304.
  • the drive circuit for the liquid crystal element is synchronized with the circuit for controlling the image pickup element 60 in FIG. 2, and with the start of application of the drive voltage to the liquid crystal element, the image pickup element 60 To start continuous imaging.
  • FIG. 5 is a diagram illustrating a scattered light image at a certain moment of the laser light L formed on the image sensor.
  • the depth from the surface 210 of the tempered glass 200 increases as it goes upward.
  • the point A is the surface 210 of the tempered glass 200, and the scattered light image spreads in an elliptical shape because the scattered light on the surface 210 of the tempered glass 200 is strong.
  • the scattered light brightness of the laser light L also changes with the depth.
  • the principle that the scattered light luminance of the laser light changes due to the internal stress of the tempered glass is described in, for example, Yogyo-Kyokai-Shi (Ceramic Association Magazine) 80 ⁇ 4 ⁇ 1972.
  • the polarization phase difference variable member 30 can change the polarization phase difference of the laser light L before entering the tempered glass 200 continuously in time. Thereby, at each point of the scattered light image of FIG. 5, the scattered light luminance changes according to the polarization phase difference changed by the polarization phase difference variable member 30.
  • FIG. 6 is a diagram illustrating a temporal change in the brightness of scattered light (scattered light brightness) at points B and C in FIG.
  • the temporal change in the scattered light luminance periodically changes with the period of the wavelength ⁇ of the laser light in accordance with the changed polarization phase difference of the polarization phase difference variable member 30.
  • the period of change in scattered light luminance is the same, but the phase is different. This is because when the laser beam L travels from point B to point C, the polarization phase difference further changes due to birefringence due to stress in the tempered glass 200.
  • phase difference ⁇ between the point B and the point C is represented by q indicating the polarization phase difference changed when the laser light L travels from the point B to the point C as a path difference, and ⁇ the wavelength of the laser light.
  • q / ⁇ .
  • the phase F of the periodic scattered light luminance change accompanying the change in the temporal polarization phase difference of the polarization phase difference variable member 30 at an arbitrary point S on the laser light L is expressed by the laser.
  • the differential value dF / ds with respect to s is the amount of birefringence generated by the in-plane stress of the tempered glass 200.
  • the stress ⁇ in the in-plane direction of the tempered glass 200 at the point S can be calculated by the following formula 1 (Equation 1).
  • Equation 8 Equation 8
  • the polarization phase difference variable member 30 changes the polarization phase difference by one wavelength or more continuously in time within a certain time. Within that time, a plurality of temporally continuous laser light L images are recorded by the image sensor 60. Then, the temporal change in luminance at each point of the scattered light image taken continuously is measured.
  • the change of the scattered light at each point of this scattered light image is periodic and the period is constant regardless of the place. Therefore, the period T is measured from the change in scattered light luminance at a certain point.
  • the period T may be the average of the periods at a plurality of points.
  • the polarization phase difference variable member 30 changes the polarization phase difference by one wavelength or more (one period or more), the scattered light luminance also changes by one period or more. Therefore, the period T can be measured from the difference between a plurality of peaks and valleys, or the difference in time passing through the midpoint of the amplitude. Note that it is impossible in principle to know one cycle for data in one cycle or less.
  • the phase F at that point can be accurately obtained by the least square method of the trigonometric function or Fourier integration based on the period T determined above.
  • FIG. 7 is an example of the phase of the scattered light change according to the glass depth.
  • Equation 1 a differential value at the coordinate on the laser beam L is calculated, and the stress value at the coordinate s on the laser beam L can be obtained by Equation 1. Furthermore, if the coordinate s is converted into a distance from the glass surface, a stress value with respect to the depth from the surface of the tempered glass can be calculated.
  • FIG. 8 is an example in which the stress distribution is obtained from Equation 1 based on the phase data of the scattered light change in FIG.
  • FIG. 9 is an example of actual scattered light images at different times t1 and t2.
  • Point A in FIG. 9 is the surface of the tempered glass, and surface scattered light is reflected due to the rough surface of the tempered glass.
  • the center of the surface scattered light image corresponds to the surface of the tempered glass.
  • the scattered light image of the laser light has different luminance at each point, and even at the same point, the luminance distribution at time t2 is not the same as the luminance distribution at time t1. I understand. This is because the phase of the periodic scattered light luminance change is shifted.
  • the incident surface of the laser beam L is inclined by 45 ° with respect to the surface 210 of the tempered glass 200. This will be described with reference to FIGS.
  • FIG. 10 is a diagram showing an undesired design example of the incident surface of the laser light L in the tempered glass.
  • the incident surface 250 of the laser light L in the tempered glass 200 is perpendicular to the surface 210 of the tempered glass.
  • FIG. 10 (b) is a view seen from the direction H in FIG. 10 (a).
  • the image sensor 60 is installed at an angle of 45 ° with respect to the surface 210 of the tempered glass 200, and observes the laser light L from an angle of 45 °.
  • the distances from two different points on the laser beam L, point A and point B to the image sensor 60 are distance A and distance B, the distances are different. That is, the point A and the point B cannot be focused at the same time, and the scattered light image of the laser light L in the necessary region cannot be acquired as a good image.
  • FIG. 11 is a diagram showing a preferable design example of the incident surface of the laser light L in the tempered glass.
  • the incident surface 250 of the laser light L in the tempered glass 200 is inclined 45 ° with respect to the surface 210 of the tempered glass 200.
  • FIG. 11 (b) is a view seen from the direction H in FIG. 11 (a).
  • the image pickup device 60 is installed with an inclination of 45 ° with respect to the surface 210 of the tempered glass 200, but the incident surface 250 through which the laser light L passes is similarly 45 °. Tilted. Therefore, the distance (distance A and distance B) to the image sensor 60 is the same at any point on the laser beam L, and a scattered light image of the laser beam L in a necessary region can be acquired as a good image.
  • the depth of focus is shallow and is about several tens of ⁇ m at most. Therefore, the incident surface 250 of the laser light L in the tempered glass 200 is inclined 45 ° with respect to the surface 210 of the tempered glass 200, and the distance to the image sensor 60 is the same at any point on the laser light L. It is extremely important in obtaining a good image.
  • FIG. 12 is a diagram illustrating a functional block of the calculation unit 70 of the evaluation device 1.
  • the calculation unit 70 includes a luminance change measuring unit 701, a phase change calculating unit 702, a stress distribution calculating unit 703, and a physical quantity measuring unit 704.
  • the evaluation apparatus 1 can measure the stress distribution of the tempered glass by the luminance change measuring unit 701, the phase change calculating unit 702, and the stress distribution calculating unit 703 of the calculation unit 70.
  • the physical quantity measuring unit 704 is a part having a function of measuring a physical quantity related to the strength of the tempered glass, and the physical quantity measuring unit 704 may not be used when only measuring the stress distribution of the tempered glass.
  • FIG. 13 is a flowchart (part 1) illustrating an evaluation method using the evaluation apparatus 1, and is a flowchart illustrating a method for measuring the stress distribution of the tempered glass in the evaluation apparatus 1. With reference to FIGS. 12 and 13, the flow of measurement of the stress distribution of the tempered glass in the evaluation apparatus 1 will be described.
  • the measurement shown in FIG. 13 can be performed, for example, after the step of applying a tempering treatment to the base plate to produce a tempered glass. Further, the measurement shown in FIG. 13 may be performed after a step of producing a crystallized glass by subjecting a base plate to a crystallizing treatment, and further producing a strengthened crystallized glass by subjecting the produced crystallized glass to a strengthening treatment. Good.
  • step S401 the polarization phase difference of the laser light from the polarized laser light source 10 or the polarized laser light source 10 is converted into the wavelength of the laser light continuously in time by the polarization phase difference variable member 30. On the other hand, it is variable by one wavelength or more (polarization phase difference variable step).
  • step S402 the laser beam whose polarization phase difference is varied is incident on the surface 210 obliquely with respect to the surface 210 through the light supply member 40 (light supply step). .
  • step S403 the image sensor 60 captures a plurality of images of the scattered light by the laser light having a variable polarization phase difference traveling through the tempered glass 200 at a predetermined time interval, and acquires a plurality of images (imaging image). Process).
  • step S404 the luminance change measuring means 701 of the calculation unit 70 is varied by the polarization phase difference varying step using a plurality of images of the scattered light obtained in the imaging step at intervals.
  • the periodic luminance change of the scattered light accompanying the temporal change of the polarization phase difference is measured (luminance change measuring step).
  • step S405 the phase change calculation means 702 of the calculation unit 70 calculates the phase change of the periodic luminance change of the scattered light along the laser light incident on the tempered glass 200 (phase change calculation). Process).
  • step S ⁇ b> 406 the stress distribution calculation unit 703 of the calculation unit 70 is based on the phase change of the periodic luminance change of the scattered light along the laser light incident on the tempered glass 200.
  • the stress distribution in the depth direction from the surface 210 is calculated (stress distribution calculating step).
  • the calculated stress distribution may be displayed on a display device (liquid crystal display or the like).
  • the evaluation apparatus 1 measures the stress distribution of the tempered glass using the luminance change measuring unit 701, the phase change calculating unit 702, the stress distribution calculating unit 703, and the physical quantity measuring unit 704 of the calculation unit 70, and also a physical quantity related to the strength of the tempered glass. Can be measured.
  • FIG. 14 is a flowchart (part 2) illustrating an evaluation method using the evaluation apparatus 1, and illustrates a method for measuring the stress distribution of the tempered glass and a method for measuring a physical quantity related to the strength of the tempered glass in the evaluation apparatus 1. It is a flowchart. The flow of measuring the stress distribution of the tempered glass and the physical quantity related to the strength of the tempered glass in the evaluation apparatus 1 will be described with reference to FIGS.
  • the measurement shown in FIG. 14 is performed, for example, after a step of producing a crystallized glass by subjecting a base plate to a crystallizing treatment, and further producing a strengthened crystallized glass by subjecting the produced crystallized glass to a strengthening treatment. be able to.
  • steps S401 to S403 are executed as in the case of FIG.
  • step S414 is executed in parallel with steps S404 to S406.
  • the physical quantity measuring unit 704 of the calculation unit 70 measures the physical quantity related to the strength of the tempered glass using a plurality of images of the scattered light obtained in the imaging process in step S403 that are spaced at intervals. (Physical quantity measurement process).
  • Step S414 can be executed almost simultaneously with steps S404 to S406. Note that the measured physical quantity may be displayed on a display device (liquid crystal display or the like).
  • physical quantities related to the strength of tempered glass are, for example, physical quantities such as refractive index, crystallization ratio, crystal grain size, crystal grain density, haze, defects and impurities in the glass, and these physical quantities. It is assumed that parameters necessary for obtaining the above (scattered light luminance amplitude value, average scattered light luminance, scattered light luminance dispersion value, etc.) are included. That is, the physical quantity measuring unit 704 may measure only the scattered light luminance amplitude value and the average scattered light luminance without directly measuring the physical quantity such as the crystallization rate. Even in this case, the strength of the tempered glass can be estimated from the measurement result of the physical quantity measuring means 704.
  • FIG. 15A is an image of scattered light at a certain time obtained by the image sensor 60
  • FIG. 15B is an enlarged view of a region E in FIG.
  • FIG. 16 is a graph showing temporal changes in the average scattered light luminance in the region E of FIG.
  • the scattered light luminance changes periodically with the change of the phase difference of the laser light.
  • the amplitude value of the scattered light luminance change is the scattered light luminance amplitude value
  • the average value of the scattered light luminance change is the average scattered light luminance Is.
  • the scattered light includes scattered light by several scattering mechanisms.
  • the size of the haze of crystallized glass is determined by the crystal grain size, crystal grain density, and the refractive index difference between the crystal and glass phase.
  • the tempered crystallized glass has a crystal grain size (diameter of crystal grains) that is transparent with visible light.
  • the crystal grain size is sufficiently smaller than the wavelength of visible light of about 600 nm and is controlled to 10 nm to 100 nm.
  • the Rayleigh scattering mechanism is dominant, but at the maximum crystal grain size of 100 nm, the influence of the Mie scattering mechanism also appears.
  • the scattered light luminance is proportional to the diameter of the scattering particles in higher order and to the scattering particle density in both Rayleigh scattering and Mie scattering.
  • the scattering particle diameter is proportional to the sixth power and in Mie scattering, it is proportional to the second power, and in the region where the Rayleigh scattering changes to the Mie scattering mechanism, it is considered to be between them. That is, in Rayleigh scattering and Mie scattering in which the wavelength is not different from incident light, the scattered light luminance increases as the scattering particle diameter increases and the density increases.
  • fluorescence scattering and Raman scattering as scattering in which the wavelength of scattered light is different from the wavelength of incident light.
  • fluorescence scattering occurs due to impurities or defects in the glass, and Raman scattering occurs due to composition or bonding state.
  • a light wavelength selection member 80 that transmits only the vicinity of the wavelength of the laser light is provided between the light supply member 40 and the image sensor 60. Since the width of the wavelength transmitted through the light wavelength selection member 80 is very narrow such as about 10 nm or less, only the scattered light having a wavelength substantially the same as the wavelength of the laser light is imaged on the image sensor 60. For example, fluorescent light and Raman scattering components having different wavelengths are not included in the scattered light. Therefore, the scattered light luminance amplitude value As is due to Rayleigh scattering, and the average scattered light luminance Is is due to Mie scattering.
  • the scattered light luminance amplitude value As is determined by the size of the scattering particles, that is, the crystal grains of the tempered crystallized glass, and the crystal grain density.
  • the ratio of the average scattered light luminance Is to the scattered light luminance amplitude value As is the Rayleigh scattering component and Mie scattering. Since it is determined by the ratio of the components, it is determined by the size of scattering particles, that is, crystal grains.
  • the values of the scattered light luminance amplitude value As and the average scattered light luminance Is are different, and are independent of each other. It is possible to see the difference. That is, even if the absolute values of the scattering particle diameter and scattering particle density are not calculated directly, the scattering particle diameter, scattering particle density variation and the like are known by measuring the scattered light luminance amplitude value As and the average scattered light luminance Is. be able to.
  • the scattering particle diameter and scattering particle density are measured by another method, and the relationship between the scattered light luminance amplitude value As and the average scattered light luminance Is and the crystal grain size and crystal grain density is experimentally obtained.
  • the particle size and crystal grain density can be estimated.
  • the relationship between the scattered light luminance amplitude value As and the average scattered light luminance Is and the crystal grain size or crystal grain density is obtained experimentally and stored in a memory in the calculation unit 70 as a table or a function. Then, the physical quantity measuring means 704 of the calculation unit 70 measures the scattered light luminance amplitude value As and the average scattered light luminance Is using the image obtained in the imaging step of step S403, and uses the table or function to calculate the scattered light luminance amplitude.
  • the crystal grain size and crystal grain density can be estimated from the measured values of the value As and the average scattered light luminance Is.
  • the measured values of the scattered light luminance amplitude value As and the average scattered light luminance Is reflecting the above-mentioned scattered particle diameter and scattered particle density are values in the region E of FIG.
  • the scattering particle diameter and the scattering particle density in the depth direction of the reinforced crystallized glass can be known. Thereby, it can be confirmed that the crystallization state is uniform in the depth direction from the surface.
  • the scattered light image is not uniform and is in the form of particles. This is unevenness caused by speckle because the incident light is laser light, and is called a speckle pattern. This speckle pattern is determined by the size and density of scattered particles and the optical system.
  • the degree of brightness unevenness of the speckle pattern for example, the brightness dispersion value of the region E is calculated and set as Ss.
  • the dispersion value Ss reflects the scattering particle density.
  • the crystal grain size and crystal are determined by the dispersion value Ss and the scattered light luminance amplitude value As of the speckle pattern. Grain density can be estimated.
  • the dispersion value Ss and the scattered light luminance amplitude value As can be measured to know variations in the scattering particle diameter and the scattering particle density. it can.
  • the scattering particle diameter and the scattering particle density are measured, and the dispersion value Ss and the scattered light luminance amplitude value As, the crystal grain size and the crystal grain density are determined. This relationship is experimentally obtained and stored as a table or function in the memory in the calculation unit 70, whereby the crystal grain size and crystal grain density can be estimated.
  • is an angle along the laser beam of the scattered light image. As will be described later, this angle ⁇ is determined by the refractive index of the glass to be measured.
  • the refractive index of the light supply member 40 is exactly the same as the refractive index of the tempered glass 200.
  • a material having a refractive index close to the refractive index of the tempered glass 200 is generally used as the light supply member 40. . That is, there is a slight deviation between the refractive index of the tempered glass 200 and the refractive index of the light supply member 40.
  • the refractive index of tempered glass also varies.
  • the incident angle ⁇ s1 of the laser light L into the tempered glass 200 is different from the refraction angle ⁇ s1 ′ incident into the tempered glass.
  • the angle is determined by the position and angle of the laser light source 10, the angle of each surface of the light supply member 40, the refractive index, the position and angle of the imaging device, and the refractive index of the tempered glass. If known, the refractive index of the tempered glass can be calculated by measuring the angle ⁇ along the beam of the laser light L in the scattered light image.
  • the refractive index of the original glass and the refractive index of the crystal to be deposited are different.
  • the refractive index of the base material glass is 1.52
  • the deposited beta spodume has a refractive index of 1.66.
  • the volume ratio of the crystals to be precipitated with respect to the base material is about 10 to 50%, and the entire refractive index changes depending on the volume ratio of crystallization. That is, the volume ratio of crystallization can be calculated by measuring the refractive index of tempered crystallized glass.
  • FIG. 17 illustrates the relationship between the scattered light luminance amplitude value As and the glass depth.
  • the external haze value of the glass surface layer can be estimated from the amplitude value of the glass surface.
  • the internal haze value can be estimated from the attenuation curve of the amplitude value inside the glass.
  • the transmittance can be estimated using the external haze value and the internal haze value. In addition, when one haze value is small, you may estimate using only the other haze value. Further, by using a plurality of laser beams, the transmittance for each wavelength may be estimated to estimate the color of the tempered glass.
  • the difference in the glass surface layer may be examined from the difference in the scattered light luminance amplitude value or the difference in transmittance, and the surface of the glass may be determined.
  • an anti-glare surface, an anti-fingerprint surface, an AR coating surface, an anti-bacterial surface, an ITO surface, a float transport surface (tin surface), etc. can be considered.
  • the measured values of the scattered light luminance amplitude value As, the average scattered light luminance Is, the dispersion value Ss, and the refractive index of the glass shown in the measurement examples 1 to 4 are not limited to tempered crystallized glass, and are not crystallized. Also in tempered glass, it is useful as a numerical value indicating glass defects such as impurities and abnormal crystals, quality such as composition, non-uniformity and transparency. That is, the measurement shown in FIG. 14 may be performed after the step of performing a tempering treatment on the base plate to produce tempered glass (not tempered crystallized glass). Further, physical quantities other than the physical quantities shown in the measurement examples 1 to 4 may be measured.
  • the evaluation device 1 performs the measurement based on the scattered light without performing the stress measurement depending on the refractive index distribution of the tempered glass. Therefore, regardless of the refractive index distribution of the tempered glass (regardless of the refractive index distribution of the tempered glass), the stress distribution of the tempered glass can be measured from the outermost surface of the tempered glass to a deeper part than before. For example, stress measurement is possible for a lithium aluminosilicate tempered glass having a characteristic that the refractive index increases with depth from a certain depth.
  • the polarization phase difference of the laser light is varied by one or more wavelengths with respect to the wavelength of the laser light continuously in time by the polarization phase difference variable member 30. Therefore, the phase of the periodic luminance change of the scattered light can be obtained by a least square method of a trigonometric function or Fourier integration. Unlike the conventional method of detecting the phase by changing the wave peak or valley position, the trigonometric least squares method and Fourier integration handle all the wave data, and have a known period. Since it is based, noise of other periods can be removed. As a result, it is possible to easily and accurately obtain the phase of the periodic luminance change of the scattered light.
  • the evaluation apparatus 1 can measure a physical quantity related to the strength of the tempered glass using the same image as the image taken for measuring the stress distribution. As a result, physical quantities related to strength can be measured efficiently, and a wide range of evaluations for tempered glass can be made.
  • ⁇ Variation 1 of the first embodiment In the first modification of the first embodiment, an example of an evaluation apparatus having a configuration different from that of the first embodiment is shown. In the first modification of the first embodiment, the description of the same components as those of the already described embodiments may be omitted.
  • FIG. 18 is a diagram illustrating an evaluation device according to Modification 1 of the first embodiment. As shown in FIG. 18, the evaluation apparatus 1A is different from the evaluation apparatus 1 (see FIG. 1) in that the light wavelength selection member 80 is replaced with light wavelength selection members 81 and 82. In FIG. 18, the calculation unit is not shown.
  • the optical wavelength selection members 81 and 82 are, for example, two types of bandpass filters having different transmission wavelength bands, and can be switched manually or automatically.
  • the light wavelength selection member 81 does not transmit light having a wavelength other than the wavelength of the laser light L by 50% or more, and preferably does not transmit 90% or more, like the light wavelength selection member 80 of the first embodiment.
  • the width of the wavelength transmitted through the light wavelength selection member 81 is preferably about 10 nm or less.
  • the light wavelength selection member 82 is a band-pass filter that transmits light having a wavelength different from the wavelength of the laser light L, and the center wavelength matches, for example, the Raman scattering wavelength or the fluorescence scattering wavelength specific to the tempered glass to be measured. Can be made.
  • the width of the wavelength of light transmitted through the light wavelength selection member 82 is not necessarily as narrow as that of the light wavelength selection member 81.
  • the light wavelength selection member 81 is used to measure the scattered light luminance together with the stress measurement.
  • the light wavelength selection member 81 is switched to the light wavelength selection member 82, and the scattered light luminance is measured.
  • a ratio between the scattered light luminance when the light wavelength selection member 81 is used and the scattered light luminance when the light wavelength selection member 82 is used is calculated.
  • the light wavelength selection member is not limited to two types, and three or more types may be arranged to be switchable.
  • FIG. 19 is a diagram illustrating an evaluation apparatus according to Modification 2 of the first embodiment.
  • the evaluation apparatus 1B is different from the evaluation apparatus 1 (FIG. 19) in that the laser light source 10 is replaced with laser light sources 11 and 12, and the light wavelength selection member 80 is replaced with light wavelength selection members 81 and 82. 1)).
  • the calculation unit is not shown.
  • the laser light sources 11 and 12 are two types of lasers having different oscillation wavelengths.
  • the optical wavelength selection members 81 and 82 are, for example, two types of bandpass filters having different transmission wavelength bands. In the case of the laser light source 11, the light wavelength selection member 81 is selected, and in the case of the laser light source 12, the light wavelength selection member 82 is selected and can be switched manually or automatically.
  • the wavelengths of the laser light sources 11 and 12 can be appropriately selected from, for example, 405 nm, 520 nm, 640 nm, and 850 nm.
  • the optical wavelength selection members 81 and 82 can appropriately select a band pass filter that transmits only the vicinity of the wavelengths of the selected laser light sources 11 and 12.
  • the evaluation apparatus 1B can measure the scattered light luminance amplitude value As, the average scattered light luminance Is, the dispersion value Ss, and the like using the laser light sources 11 and 12 and the light wavelength selection members 81 and 82 having different wavelengths. Since the scattered light luminance and behavior sensitively affect the relationship between the wavelength and the scattered particle diameter, it is possible to know a more reliable crystallization state by obtaining information from scattered light at a plurality of wavelengths.
  • the laser light source and the light wavelength selection member are not limited to two types, and three or more types may be arranged to be switchable.
  • the same effect can be obtained by using a plurality of evaluation apparatuses 1 including lasers having different wavelengths and optical wavelength selection members instead of the evaluation apparatus 1B.
  • FIG. 20 is a diagram illustrating an evaluation apparatus according to Modification 3 of the first embodiment.
  • the light wavelength selection member 80, the light conversion member 50, and the image sensor 60 are disposed on the side opposite to the light supply member 41 with respect to the tempered glass 200.
  • positioned so that the back surface 220 of the tempered glass 200 may be contacted differs from the evaluation apparatus 1 (refer FIG. 1).
  • the calculation unit is not shown.
  • the scattered light L S2 generated on the back surface 220 side of the tempered glass 200 is incident on the image sensor 60 through the light extraction member 42 such as a prism, the light wavelength selection member 80, and the light conversion member 50. Then, a plurality of images are picked up at intervals in a certain time by the image sensor 60.
  • the light extraction member 42 such as a prism, the light wavelength selection member 80, and the light conversion member 50.
  • a plurality of images are picked up at intervals in a certain time by the image sensor 60.
  • Other configurations and operations are the same as those in the first embodiment.
  • the reflection of the laser light L on the surface 210 of the tempered glass 200 can be reduced.
  • the laser beam L may be directly incident on the tempered glass 200 without providing the light supply member 41.
  • the scattered light Ls on the surface 210 side (incident side of the laser light L) of the tempered glass 200 is detected as in the first embodiment.
  • the scattered light L S2 on the back surface 220 side (the emission side of the laser light L) of the tempered glass 200 may be detected.
  • the laser light in the tempered glass 200 satisfies the condition of total reflection. This is because if the laser light is totally reflected on the back surface 220 of the tempered glass 200, irregular reflection on the back surface 220 of the tempered glass 200 can be reduced, and unnecessary light can be prevented from entering the image sensor 60.
  • the laser beam can satisfy the condition of total reflection on the back surface 220 of the tempered glass 200.
  • the scattered light L S3 generated on the front surface 210 side of the tempered glass 200 and emitted to the rear surface 220 side is converted into a light extraction member 42 such as a prism or the light wavelength selection.
  • the light may be incident on the image sensor 60 via the member 80 and the light conversion member 50, and a plurality of images may be captured with a time interval within a certain time by the image sensor 60.
  • Other configurations and operations are the same as those in the first embodiment.
  • the reflection of the laser light L on the surface 210 of the tempered glass 200 can be reduced, but the reflection of the laser light L on the surface 210 of the tempered glass 200 is reduced. If there is no problem, the laser beam L may be directly incident on the tempered glass 200 without providing the light supply member 41.
  • the tempered glass 200 is obtained from the phase change of the periodic luminance change of the scattered light along the laser light L incident on the tempered glass 200.
  • the stress distribution in the depth direction from the back surface 220 can be calculated.
  • the focal point of the laser is set at the same position from the glass surface without depending on the glass plate thickness. Therefore, even when measuring tempered glass with the same stress distribution, it is not necessary to adjust the focal position of the laser or fine adjustment is required, so that the measurement time is short and the repeatability is further improved. There is an effect.
  • FIG. 21 is a diagram illustrating an evaluation apparatus according to Modification 4 of the first embodiment.
  • the light wavelength selection member 80A, the light conversion member 50A, and the image sensor 60A are disposed on the opposite side of the light supply member 40 with respect to the tempered glass 200.
  • positioned so that the back surface 220 of the tempered glass 200 may be contacted differs from the evaluation apparatus 1 (refer FIG. 1).
  • the calculation unit is not shown.
  • the evaluation device 1E similarly to the evaluation apparatus 1 can detect the scattered light L S emitted from the surface 210 side of the tempered glass 200. Further, in the evaluation apparatus 1E, the scattered light L S2 emitted from the back surface 220 side of the tempered glass 200 is imaged through the light extraction member 42 such as a prism, the light wavelength selection member 80A, and the light conversion member 50A. A plurality of images are picked up at intervals in a certain time by the image sensor 60A. Other operations are the same as those in the first embodiment.
  • the stress distribution in the depth direction from the front surface 210 of the tempered glass 200 and the stress distribution in the depth direction from the rear surface 220 of the tempered glass 200 can be calculated simultaneously with the configuration of FIG. This is effective when measuring tempered glass whose front and back sides are not the same stress distribution, or when it is desired to confirm whether or not the front and back sides have the same stress distribution in any tempered glass.
  • FIG. 22 is an explanatory diagram of a polarization phase difference variable member utilizing the photoelastic effect.
  • one surface of a substantially rectangular parallelepiped polarization phase difference generating material 310 is fixed by a fixing jig 311, and the opposite surface of the polarization phase difference generating material 310 is in contact with one surface of the piezo element 312.
  • the opposite surface of the piezo element 312 is fixed by a fixing jig 313.
  • the two surfaces 310a and 310b facing the piezo element 312 of the polarization phase difference generating material 310 facing each other at right angles to each other are processed into mirror surfaces so that a polarized light beam Q can pass through.
  • a transparent material having a large photoelastic effect for example, quartz glass for glass and polycarbonate for resin can be used.
  • the piezo element 312 expands and contracts in the voltage application direction when a voltage is applied. Whether it expands or contracts is determined by the sign of the voltage.
  • a piezo element drive voltage generation circuit that controls a voltage applied to the piezo element 312 is connected to the piezo element 312.
  • the piezo element 312 When a voltage is applied to the piezo element 312 to extend the piezo element 312 by the piezo element driving voltage generation circuit, the length tends to extend in the direction in which the voltage is applied.
  • the piezo element 312 is arranged so that is positioned.
  • the piezo element 312 When a voltage in the direction in which the piezo element 312 extends is applied by the piezo element drive voltage generation circuit, the piezo element 312 extends in the direction of the polarization phase difference generating material 310. Since it is fixed by the fixing jigs 311 and 313, the polarization phase difference generating material 310 is contracted and a compressive stress is applied. Birefringence occurs in the direction in which the light beam Q passes due to the compressive stress of the polarization phase difference generating material 310, and a polarization phase difference is generated in the light beam Q. The amount of the polarization phase difference is proportional to the voltage applied to the piezo element 312, and the polarization phase difference can be controlled by a piezo element drive voltage generation circuit that applies a drive voltage to the piezo element 312.
  • a 10 mm cubic polycarbonate is used as the polarization phase difference generating material 310.
  • Polycarbonate has a photoelastic constant of about 700 nm / cm / MPa and a Young's modulus of about 2.5 GPa.
  • a laminated piezo element in which high dielectric ceramics having a perovskite crystal structure such as lead zirconate titanate having a large piezo effect are alternately stacked with electrodes can be used.
  • an elongation of 10 ⁇ m or more can be obtained with an applied voltage of 100 V by setting the thickness of one layer to 100 layers with a thickness of 200 ⁇ m and a length of about 20 mm.
  • the Young's modulus of lead zirconate titanate which is the material of the piezo element 312
  • the elongation of the piezo element 312 is almost all the compression of polycarbonate.
  • the cubic polycarbonate is compressed by 0.1%, and the compressive stress at that time is 2.5 MPa.
  • 10 mm cubic quartz glass is used as the polarization phase difference generating material 310.
  • Quartz glass has a photoelastic constant of about 35 nm / cm / MPa and a Young's modulus of about 70 GPa. Since the Young's modulus of lead zirconate titanate, which is the material of the piezo element 312, is almost the same level as quartz, the elongation of the piezo element 312 is almost half of the compression of quartz glass.
  • the cubic polycarbonate is compressed by about 0.05%, and the compression stress at that time is about 35 MPa.
  • a polarization phase difference of 1225 nm is generated. If the wavelength is 630 nm, the polarization phase difference of 1.9 ⁇ can be varied.
  • the value obtained by multiplying the photoelastic constant and the Young's modulus is important.
  • polycarbonate 0.18 (no unit), for quartz, 0.26 (no unit) ) That is, it is important to use a transparent member having this value of 0.1 or more as the polarization phase difference generating material 310.
  • the polarization phase difference variable member is not limited to the liquid crystal element, and the polarization phase difference when entering the tempered glass 200 can be temporally changed, and the polarization phase difference to be changed is a laser. As long as it can be realized that it is 1 or more times the wavelength ⁇ of light, a form using a piezo element or any other form may be used.
  • FIG. 23 is a diagram illustrating an evaluation apparatus according to the second embodiment. For example, it is described in Yogyo-Kyokai-Shi (Ceramic Association Magazine) 87 ⁇ 3 ⁇ 1979.
  • the evaluation device 2 includes a light source 15, a light supply member 25, a light extraction member 35, a light conversion member 45, a polarization member 55, an image sensor 65, and a calculation unit 75.
  • the evaluation device 2 can be used in combination with the evaluation device 1 shown in FIG.
  • the evaluation device 2 may be used in combination with the evaluation device 1A shown in FIG. 18, the evaluation device 1B shown in FIG. 19, the evaluation devices 1C and 1D shown in FIG. 20, and the evaluation device 1E shown in FIG.
  • the light source 15 is arranged so that the light beam La enters the surface layer of the tempered glass 200 from the light supply member 25.
  • the wavelength of the light source 15 is preferably a single wavelength that provides a simple bright / dark display.
  • the light source 15 for example, a Na lamp that can easily obtain single-wavelength light can be used, and the wavelength in this case is 589.3 nm. Further, a mercury lamp having a shorter wavelength than the Na lamp may be used as the light source 15, and the wavelength in this case is, for example, 365 nm which is a mercury I line. However, since the mercury lamp has many bright lines, it is preferable to use it through a band-pass filter that transmits only the 365 nm line.
  • an LED Light Emitting Diode
  • the spectrum width of the LEDs is 10 nm or more in half width, the single wavelength property is bad, and the wavelength changes depending on the temperature. Therefore, it is preferable to use through a band pass filter.
  • the light source 15 When the light source 15 is configured by passing a band-pass filter through an LED, it is not as monochromatic as a Na lamp or a mercury lamp, but it is preferable in that any wavelength can be used from the ultraviolet region to the infrared region. In addition, since the wavelength of the light source 15 does not affect the basic principle of measurement of the evaluation device 2, a light source other than the wavelengths exemplified above may be used.
  • the measurement resolution can be improved by using a light source that emits ultraviolet rays as the light source 15. That is, since the surface layer of the tempered glass 200 measured by the evaluation apparatus 2 has a thickness of about several ⁇ m, an appropriate number of interference fringes can be obtained by using a light source that irradiates ultraviolet rays as the light source 15, and the resolution is improved. To do. On the other hand, when a light source that emits light having a wavelength longer than that of ultraviolet rays is used as the light source 15, the number of interference fringes is reduced and the resolution is lowered.
  • the light supply member 25 and the light extraction member 35 are placed in a state of being in optical contact with the surface 210 of the tempered glass 200 that is a measurement object.
  • the light supply member 25 has a function of causing light from the light source 15 to enter the tempered glass 200.
  • the light extraction member 35 has a function of emitting the light propagated through the surface layer of the tempered glass 200 to the outside of the tempered glass 200.
  • an optical glass prism can be used as the light supply member 25 and the light extraction member 35.
  • the refractive index of these prisms needs to be larger than the refractive index of the tempered glass 200. Further, it is necessary to select a refractive index that allows incident light and outgoing light to pass substantially vertically on the inclined surface of each prism.
  • the refractive index of the prism is 1.72.
  • the light supply member 25 and the light extraction member 35 other members having the same function may be used instead of the prism. Further, the light supply member 25 and the light extraction member 35 may be integrated. Further, in order to make stable optical contact, the refractive index of the light supply member 25 and the light extraction member 35 and the refractive index of the tempered glass 200 are between the light supply member 25 and the light extraction member 35 and the tempered glass 200. In some cases, a liquid having a refractive index in the range (may be a gel) may be filled.
  • the image sensor 65 is disposed in the direction of the light emitted from the light extraction member 35, and the light conversion member 45 and the polarization member 55 are inserted between the light extraction member 35 and the image sensor 65.
  • the light conversion member 45 has a function of converting the light beam emitted from the light extraction member 35 into a bright line array and condensing it on the image sensor 65.
  • a convex lens can be used, but another member having the same function may be used.
  • the polarizing member 55 is a light separating unit having a function of selectively transmitting one of two kinds of light components that vibrate in parallel and perpendicular to the boundary surface between the tempered glass 200 and the light extraction member 35.
  • a polarizing plate arranged in a rotatable state can be used as the polarizing member 55, but other members having the same function may be used.
  • the light component that vibrates parallel to the boundary surface between the tempered glass 200 and the light extraction member 35 is S-polarized light
  • the light component that vibrates vertically is P-polarized light.
  • the boundary surface between the tempered glass 200 and the light extraction member 35 is perpendicular to the light emission surface of the light emitted to the outside of the tempered glass 200 through the light extraction member 35. Therefore, in other words, the light component that vibrates perpendicularly to the emission surface of the light emitted outside the tempered glass 200 through the light extraction member 35 is S-polarized light, and the light component that vibrates in parallel is P-polarized light. Also good.
  • the imaging element 65 has a function of converting light emitted from the light extraction member 35 and received through the light conversion member 45 and the polarization member 55 into an electrical signal.
  • the image sensor 65 for example, an element similar to the image sensor 60 can be used.
  • the calculation unit 75 has a function of taking image data from the image sensor 65 and performing image processing and numerical calculation.
  • the arithmetic unit 75 may have a function other than this (for example, a function of controlling the light amount and exposure time of the light source 15).
  • the calculation unit 75 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a main memory, and the like.
  • calculation unit 75 can be realized by reading a program recorded in the ROM or the like into the main memory and executing it by the CPU.
  • the CPU of the calculation unit 75 can read and store data from the RAM as necessary.
  • part or all of the calculation unit 75 may be realized only by hardware.
  • the computing unit 75 may physically include a plurality of devices. As the calculation unit 75, for example, a personal computer can be used.
  • the light beam La incident on the surface layer of the tempered glass 200 from the light source 15 through the light supply member 25 propagates in the surface layer. Then, when the light beam La propagates in the surface layer, a mode is generated by the optical waveguiding effect, and it travels through some predetermined paths and is extracted out of the tempered glass 200 by the light extraction member 35.
  • the light conversion member 45 and the polarizing member 55 form an image on the image sensor 65 as bright lines of P-polarized light and S-polarized light for each mode.
  • Image data of P-polarized light and S-polarized bright lines corresponding to the number of modes generated on the image sensor 65 is sent to the arithmetic unit 75.
  • the computing unit 75 calculates the positions of the P-polarized light and S-polarized bright lines on the image sensor 65 from the image data sent from the image sensor 65.
  • the refractive index distributions of the P-polarized light and the S-polarized light in the depth direction from the surface in the surface layer of the tempered glass 200 are calculated based on the positions of the bright lines of P-polarized light and S-polarized light. It can be calculated. Further, based on the difference between the calculated refractive index distributions of P-polarized light and S-polarized light and the photoelastic constant of the tempered glass 200, the stress distribution in the depth direction from the surface of the surface layer of the tempered glass 200 can be calculated.
  • the evaluation device 2 is an evaluation device that can measure the stress distribution using the guided light of the surface layer of the tempered glass.
  • the guided light on the glass surface is generated in a layer where the refractive index of the tempered glass 200 becomes lower as the depth increases from the surface.
  • no guided light is generated in the layer having a higher refractive index.
  • the refractive index increases with depth.
  • guided light is generated only in the outermost surface layer that becomes lower as the refractive index becomes deeper, and the stress distribution can be measured at that portion, that is, the depth where the refractive index distribution is reversed.
  • the point A in FIG. 9 is the glass surface, and the surface scattered light is strong and spreads around.
  • This spread surface scattered light reflects surface point information.
  • the surface point A is correct information.
  • the scattered light of the laser light L at a portion slightly deep from the surface point A to the scattered light reflecting the stress of the glass at the original point is the surface point A. In other words, it is difficult to measure the stress correctly for the portion where the surface scattered light is overlapped.
  • the depth of the portion where the surface scattered light overlaps varies depending on the quality of the glass and the surface state of the glass, but is usually about 10 ⁇ m.
  • the tempered glass has a deep tempered layer depth, and in the vicinity of the outermost surface, for example, a surface region of a depth of about several tens of ⁇ m, the stress in the depth direction changes slowly, the surface stress value is low, or the tempered layer is deeply strengthened. With glass, even within a depth of 10 ⁇ m that is not accurately measured, accurate stress can be estimated by extrapolating the stress distribution in a deeper portion to the glass surface.
  • the stress value near the outermost surface by extrapolation A large error occurs in the estimated value of.
  • the stress value on the outermost surface has a large error.
  • the stress distribution can be accurately measured as an absolute value outside the region where the surface scattered light is in the way.
  • the stress value measured by the evaluation device 2 or the stress distribution measured by the evaluation device 1 and the stress distribution measured by the evaluation device 1 from the stress value of the outermost surface or the stress distribution near the outermost surface it is sufficient from the outermost surface that is not disturbed by the surface scattered light.
  • the overall stress distribution can be measured with high accuracy.
  • the least square method is used in the tempered glass using the theoretically expected stress distribution function.
  • the stress in the discontinuous region can be accurately estimated by performing approximate calculation.
  • FIG. 24 is a diagram showing the stress distribution measured by the evaluation apparatuses 1 and 2 in the same graph. More specifically, the outermost surface of the tempered glass having a stress distribution that is chemically strengthened in two steps, such as having a region where the slope of the stress suddenly changes in the vicinity of a depth of 10 ⁇ m from the surface, was measured with the evaluation device 2. The stress distribution in the vicinity (region A) and the stress distribution (region C) in a sufficiently reliable region measured by the evaluation apparatus 1 are shown in the same graph.
  • FIG. 24 there is a region B that is not measured by the evaluation apparatus 1 or the evaluation apparatus 2 in the middle. Based on the stress distribution in the regions A and C, a curve obtained by the least square method using a function of the stress distribution expected in the region B is indicated by a dotted line. In this case, even if there is no actual data of the region including the bending point, the bending point position can be estimated from the curve obtained by the least square method.
  • FIG. 25 is a flowchart illustrating an evaluation method using the evaluation device 2.
  • FIG. 26 is a diagram illustrating a functional block of the calculation unit 75 of the evaluation device 2.
  • step S407 light from the light source 15 is caused to enter the surface layer of the tempered glass 200 (light supply step).
  • step S408 the light propagated in the surface layer of the tempered glass 200 is emitted out of the tempered glass 200 (light extraction process).
  • step S409 the light conversion member 45 and the polarizing member 55 respectively at least each of two types of light components (P-polarized light and S-polarized light) that vibrate parallel and perpendicular to the light exit surface. Conversion is performed as two types of bright line arrays having two or more bright lines (light conversion step).
  • step S410 the imaging element 65 images two types of bright line rows converted by the light conversion process (imaging process).
  • step S411 the position measuring unit 751 of the calculation unit 75 measures the position of each bright line in the two types of bright line rows from the image obtained in the imaging process (position measuring process).
  • step S412 the stress distribution calculation unit 752 of the calculation unit 75 starts deep from the surface of the tempered glass 200 corresponding to the two types of light components from the positions of at least two of the two types of emission lines.
  • the refractive index distribution over the vertical direction is calculated.
  • the stress distribution from the surface of the tempered glass 200 to the depth direction is calculated (stress distribution calculating step).
  • step S413 the combining unit 753 of the calculation unit 75 combines the stress distribution calculated in step S412 with the stress distribution calculated by the stress distribution calculation unit 703 of the calculation unit 70 of the evaluation device 1.
  • the combining unit 753 of the calculation unit 75 for example, as illustrated in FIG. Based on the stress distribution in the region A calculated by the stress distribution calculation unit 752 of the calculation unit 75 of the evaluation device 2 and the stress distribution of the region C calculated by the stress distribution calculation unit 703 of the calculation unit 70 of the evaluation device 1.
  • the stress distribution in region B is calculated by multiplication or the like.
  • FIG. 27 is a diagram illustrating stress distribution in the depth direction of tempered glass.
  • CS2 is the stress value at the outermost surface
  • CS_TP is the stress value at the position where the stress distribution is bent
  • CT is the stress value at the deepest part of the glass
  • DOL_TP is the glass depth at the position where the stress distribution is bent
  • DOL_zero is the stress value. Is the glass depth at which the stress becomes zero
  • DOL_tail is the glass depth at which the stress value is the same as CT.
  • the stress distribution is measured in step S501, and the characteristic value can be derived based on the stress distribution measured in step S501 in step S502. This will be described in more detail below.
  • FIG. 29 shows an example in which each characteristic value is derived from the measured stress distribution.
  • the entire distribution of stress distribution (the entire solid line shown in FIG. 29) is measured by the evaluation apparatus 1.
  • each characteristic value is derived.
  • each characteristic value is derived as follows. That is, as shown in FIG. 29, two line segments passing through CS2 and a line segment passing through DOL_zero are considered. Then, when the difference between the two line segments and the measured stress distribution is minimized, the intersections of the two line segments are CS_TP and DOL_TP. Further, the intersection of the line passing through DOL_zero and CT is defined as DOL_tail.
  • This method includes, for example, lithium-aluminosilicate tempered glass, tempered glass that has been tempered once using a mixed salt of sodium nitrate and potassium nitrate, molten salt containing sodium nitrate and molten salt containing potassium nitrate.
  • tempered glass that has been chemically tempered using at least once and tempered glass that has been both air-cooled and chemically tempered.
  • FIG. 31 shows another example in which each characteristic value is derived from the measured stress distribution.
  • step S601 in FIG. 32 the total distribution of stress distribution is measured by the evaluation apparatus 1.
  • step S602 the evaluation apparatus 2 measures the glass surface layer side from DOL_TP. It is difficult to measure the deeper side than DOL_TP with the evaluation device 2. Step S601 and step S602 are out of order.
  • step S603 the part measured in step S602 and the part measured in step S601 on the deeper side are synthesized. Thereby, the stress distribution of FIG. 31 is obtained. Thereafter, for example, each characteristic value can be derived in the same manner as in step S604 in FIG.
  • step S602 is the same as described above, and in step S601, DOL_zero and CT are measured.
  • step S603 as shown in FIG. 33, a straight line passing through DOL_zero obtained in step S601 may be drawn from the intersection of CS_TP and DOL_TP obtained in step S602, and the stress distribution may be obtained until CT.
  • FIG. 34 is an example of a quality determination flowchart using the characteristic values obtained by measuring the stress distribution.
  • steps S601 to S603 are executed as in FIG.
  • step S604 based on the data obtained in steps S601 and S602, six characteristic values of CS2, CS_TP, CT, DOL_TP, DOL_zero, and DOL_tail (hereinafter may be simply referred to as six measured values). Is derived.
  • step S605 it is determined whether or not the six characteristic values derived in step S604 are within an allowable range determined in advance requirement specifications. In this method, two measurements of steps S601 and S602 are required for one quality judgment.
  • FIG. 35 is another example of a flow chart of quality judgment using each characteristic value obtained by measuring the stress distribution.
  • preliminary data is acquired in step S600.
  • six characteristic values are derived using the evaluation apparatuses 1 and 2 for a predetermined quantity per lot.
  • an allowable range of the characteristic value is determined based on the required specification of the product and the derived characteristic value.
  • step S605 it is determined whether or not the six characteristic values measured in step S604 are within the allowable range determined in step S600.
  • this method except for the quantity measured in the preliminary process, only one measurement in step S601 is required for one quality judgment. Therefore, the quality control flow can be simplified as compared with the case of FIG.
  • the plate thickness is also measured, and the plate thickness is also measured in step S601, so that the characteristic value including the effect of the plate thickness may be derived in step S604.
  • step S600 preliminary data is acquired in step S600, and the allowable range of the characteristic value is determined.
  • step S602 the evaluation apparatus 2 measures the glass surface layer side from DOL_TP.
  • step S604 six characteristic values are derived again based on the data of the evaluation device 1 in step S600 and the data of the evaluation device 2 in step S602.
  • step S605 it is determined whether or not the six characteristic values measured in step S604 are within the allowable range determined in step S600.
  • this method except for the quantity measured in the preliminary process, only one measurement in step S602 is required for one quality judgment. Therefore, in this case as well, the quality control flow can be simplified as compared with the case of FIG. 34, as in FIG.
  • the plate thickness is also measured, and the plate thickness is also measured in step S602, so that the characteristic value including the effect of the plate thickness may be derived in step S604.
  • FIG. 36 is an example of a flow chart of quality judgment when tempering twice or more with respect to a lithium-containing glass (a glass containing 2 wt% or more of lithium) such as a lithium-aluminosilicate tempered glass.
  • a lithium-containing glass a glass containing 2 wt% or more of lithium
  • the tempered glass related to the tempering other than the final round is determined to be acceptable based on the measurement result of the evaluation device 1
  • the tempered glass related to the final tempering is determined to be acceptable based on the measurement result of the evaluation device 2.
  • step S650 the first chemical strengthening is performed.
  • step S651 the evaluation apparatus 1 measures the stress distribution on the glass deeper side than DOL_TP (hereinafter, sometimes referred to as a first stress distribution). If there is a problem in the measurement result in step S651 (in the case of NG), the tempered glass is not shipped. On the other hand, if there is no problem in the measurement result in step S651 (in the case of OK), the process proceeds to step S652 and the second chemical strengthening is performed.
  • the pass / fail determination in step S651 (OK / NG determination) can be performed based on all or part of the six characteristic values derived from the measurement result of the evaluation device 1 (for example, CT and DOL_zero).
  • step S653 the stress distribution on the glass surface layer side from DOL_TP (hereinafter, sometimes referred to as second stress distribution) is measured by the evaluation apparatus 2. If there is a problem in the measurement result in step S653 (in the case of NG), the tempered glass is not shipped. On the other hand, if there is no problem in the measurement result in step S653 (in the case of OK), the process proceeds to the next step in step S654. A specific method of the pass / fail determination (OK / NG determination) in step S653 will be described later.
  • a touch polishing process can be cited.
  • the touch polishing process is, for example, a final polishing process in which the surface of the tempered glass 200 is polished with a relatively low surface pressure.
  • step S653 may be the final process.
  • step S653 the third chemical strengthening and pass / fail determination may be performed.
  • the tempered glass related to the second tempering is determined based on the measurement result of the evaluation device 1 in the same manner as in step S651, and the tempered glass related to the third tempering (final tempering) is determined.
  • Pass / fail is determined based on the measurement result of the evaluation device 2.
  • the tempered glass related to tempering other than the final time is judged to be accepted or rejected based on the measurement result of the evaluation device 1, and the tempered glass related to the last time of tempering is measured A pass / fail decision is made based on the result. This makes it possible to shorten the evaluation time while maintaining measurement reproducibility.
  • step S653 a specific method of the pass / fail determination (OK / NG determination) in step S653 will be described.
  • evaluation data is derived in advance. Specifically, as shown in FIG. 37, the first chemical strengthening is performed in step S660. In step S661, the evaluation apparatus 1 measures the glass deep layer side from DOL_TP (first measurement). Subsequently, in step S662, the second chemical strengthening is performed. And in step S663, the glass deep layer side is measured with the evaluation apparatus 1 rather than DOL_TP (2nd measurement). In step S664, evaluation data (first stress distribution) is derived based on one or both of the first measurement result obtained in step S661 and the second measurement result obtained in step S663.
  • evaluation data is derived using only a predetermined quantity per lot.
  • first chemical strengthening and the second chemical strengthening in the evaluation data derivation are performed under the same conditions as the first chemical strengthening and the second chemical strengthening in mass production.
  • step S653 First, based on the measurement result obtained in step S653, the plate thickness t of the glass to be chemically strengthened, and the evaluation data obtained as shown in FIG. 37, the stress distribution on the glass surface layer side from the DOL_TP (second (Stress distribution) and the stress distribution (first stress distribution) closer to the glass deeper than DOL_TP. For example, a result as shown in FIG. 38 is obtained.
  • FSM indicated by a solid line indicates a stress distribution (second stress distribution) on the glass surface layer side than DOL_TP
  • SLP indicated by a broken line indicates a stress distribution (first stress distribution) on the glass deep layer side than DOL_TP.
  • T / 2 indicates the center of the glass thickness.
  • CS 0 indicates the stress value of the surface when the first stress distribution (SLP) is extended to the surface side of the tempered glass.
  • the CT is found from the stress distribution after the synthesis, each characteristic value is derived, and a pass / fail judgment (shipment judgment) is performed based on whether each characteristic value is within the allowable range.
  • the second stress distribution (FSM in FIG. 38) may be approximated by a function.
  • function approximation linear approximation is given by the following formula 2 (Equation 2).
  • Equation 2 ⁇ f (x) is the second stress distribution, a is the slope, and CS2 is the stress value on the outermost surface.
  • Equation 3 ⁇ f (x) is the second stress distribution, a is the slope, CS2 is the stress value on the outermost surface, and erfc is the error function shown in Equation 4 (Equation 4).
  • the first stress distribution may be moved in the vertical direction (stress value axis direction) in FIG.
  • the first stress distribution is moved in the direction of the stress value axis, and a CT where the integrated value of the combined stress distribution becomes zero is found.
  • a pass / fail determination shipment determination
  • the movement amount in the vertical direction of the first stress distribution is calculated from a theoretical formula based on the thickness of the glass and the second stress distribution.
  • An integral value of the stress distribution may be calculated to find a movement amount at which the integral value becomes zero.
  • t is the thickness of the glass
  • Equation 5 ⁇ (x) is derived from the combined stress distribution, ⁇ f (x) is the second stress distribution, t is the thickness of the tempered glass, and CS 0 and c are derived based on the first stress distribution. It is a parameter.
  • Equation 5 t is known. Further, CS 0 and c can be obtained from the measurement result of the evaluation apparatus 1 in the evaluation data derivation.
  • CS 0 and c may be obtained from a simulation based on the reinforcement condition.
  • CS 0 and c are CS 0 ′ and c ′ derived from the measurement results of the tempered glass evaluation device 1 relating to the tempering one time before the final round in mass production, and the following Equation 6 (Equation 6) and Equation 7 You may obtain by (Equation 7).
  • Equation 6 A1 is a proportionality constant.
  • Equation 7 A2 is a proportionality constant.
  • A1 and A2 may be obtained from the measurement result of the evaluation device 1 in the derivation of the evaluation data, or may be obtained by simulation.
  • Equation 5 the approximation of ⁇ (x) is not limited to Equation 5, and may be a polynomial approximation, for example.
  • Example 1 In Example 1, CS_TP (MPa), which is a characteristic value of stress distribution of tempered glass subjected to chemical strengthening twice, is derived three times for the same sample by the method described in FIG. 34, and evaluation time and measurement reproducibility are derived. I investigated.
  • CS_TP MPa
  • FSM second stress distribution
  • SLP first stress distribution
  • SLP first stress distribution
  • FSM second stress distribution
  • SLP first stress distribution
  • FIG. 39 shows the stress distribution obtained in Comparative Example 1 and Examples 1 to 3, and Table 2 shows a summary of the results.
  • the stress value at the position where the stress distribution is bent is CS_TP.
  • FIG. 40 is a diagram illustrating an evaluation apparatus according to the third embodiment, and illustrates a cross section near the interface between the light supply member and the tempered glass.
  • a liquid 90 having a refractive index substantially the same as the refractive index of the tempered glass 200 is sandwiched between the light supply member 40 and the tempered glass 200.
  • the refractive index of the tempered glass 200 is slightly different depending on the type of the tempered glass. Therefore, in order to completely match the refractive index of the light supply member 40, it is necessary to replace the light supply member 40 for each type of tempered glass.
  • a laser 90 is efficiently put into the tempered glass 200 by sandwiching a liquid 90 having a refractive index substantially the same as the refractive index of the tempered glass 200 between the light supply member 40 and the tempered glass 200. Light L can be incident.
  • a mixed liquid of a plurality of silicon oils having different structures may be used.
  • the refractive index can be adjusted.
  • a mixed liquid of a plurality of silicone oils whose refractive indexes are adjusted in this way may be used as the liquid 90. Since the refractive index of the liquid 90 is determined by the respective mixing ratios, it can be easily set to the same refractive index as that of the tempered glass 200.
  • the refractive index difference between the tempered glass 200 and the liquid 90 is preferably ⁇ 0.03 or less, more preferably ⁇ 0.02 or less, and further preferably ⁇ 0.01 or less. In the absence of the liquid 90, scattered light is generated between the tempered glass 200 and the light supply member, and data cannot be obtained in a range of about 20 ⁇ m.
  • the thickness of the liquid 90 is 10 ⁇ m or more, the scattered light is suppressed to about 10 ⁇ m or less, and therefore it is preferably 10 ⁇ m or more.
  • the thickness of the liquid 90 may be any amount, but considering the handling of the liquid, it is preferably 500 ⁇ m or less.
  • FIG. 41 is a diagram illustrating a scattered light image of the laser light L that travels through the interface between the light supply member 40 and the tempered glass 200.
  • point A is the surface scattered light of the tempered glass
  • point D is the surface scattered light on the surface of the light supply member 40. Between the point A and the point D is scattered light from the liquid 90.
  • the point A and the point D become almost the same point, and the surface scattered light is obtained by adding the surface scattering of the tempered glass 200 and the surface scattering of the light supply member 40.
  • the light supply member 40 measures many tempered glasses 200, the surface is often damaged. Then, very large surface scattered light is generated.
  • the surface of the light supply member 40 near the outermost surface layer is caused by the surface scattered light of the light supply member 40 by keeping the distance between the light supply member 40 and the tempered glass 200 by sandwiching the liquid 90. It is possible to prevent overlapping with scattered light.
  • FIG. 42 is a diagram illustrating a structure portion for sandwiching the liquid 90 between the light supply member 40 and the tempered glass 200.
  • a recess 40x of 10 ⁇ m or more by polishing or etching on the surface of the light supply member 40 and filling the recess 90 with the liquid 90, the thickness of the liquid 90 is stabilized to 10 ⁇ m. More than that.
  • the depth of the recess 40x may be any amount in principle, but is preferably 500 ⁇ m or less in view of ease of processing.
  • the surface of the light supply member 40 is made of metal, oxide, or the like by a thin film formation technique such as vacuum deposition or sputtering as shown in FIG.
  • the land member 100 having a thickness of 10 ⁇ m or more may be formed of resin or the like, and the land of the liquid 90 held on the land member 100 may be formed. By holding the liquid 90 with the land member 100, the thickness of the liquid 90 can be stabilized to 10 ⁇ m or more.
  • the land member 100 may have any thickness in principle, but is preferably 500 ⁇ m or less in view of ease of processing.
  • FIG. 43 is a view showing a second example of the structure part for sandwiching the liquid 90 between the light supply member 40 and the tempered glass 200.
  • the bottom of the recess 40x formed on the surface of the light supply member 40 may not be flat.
  • the depression 40x is, for example, a spherical depression similar to a concave lens.
  • the depth of the recess 40x is, for example, not less than 10 ⁇ m and not more than 500 ⁇ m. As an example, when the depth of the recess is 50 ⁇ m and the diameter around the recess is 10 mm, the radius of curvature R is 200 mm.
  • the depression 40x can be easily formed into a spherical depression by the same manufacturing method as the concave lens. Since the liquid 90 filled in the depression 40x has the same refractive index as the light supply member 40, there is no effect of the lens by the liquid 90 in the spherical depression, and the locus of the laser beam and the camera that captures the scattered light are captured. There is no effect on the image.
  • FIG. 44 is a view showing a third example of the structure part for sandwiching the liquid 90 between the light supply member 40 and the tempered glass 200.
  • a single-concave lens 43 that is a protrusion is attached to the surface of the light supply member 40 on the side of the tempered glass 200.
  • the single concave lens 43 is in contact with the tempered glass 200.
  • the single-concave lens 43 is a part of the optical path of laser light that enters the tempered glass 200 via the light supply member 40.
  • a spherical recess 43x is formed in the single-concave lens 43.
  • the depth of the depression 43x is, for example, not less than 10 ⁇ m and not more than 500 ⁇ m.
  • the light supply member 40 and the single-concave lens 43 are formed as separate bodies, and are bonded by an optical adhesive having substantially the same refractive index as that of the light supply member 40 and the single-concave lens 43.
  • the optical adhesive material is significantly deteriorated. Therefore, as an optical adhesive material that bonds the light supply member 40 and the single-concave lens 43 to each other. It is desirable to use an inorganic adhesive or low melting point glass. Alternatively, it is desirable to bond the light supply member 40 and the single-concave lens 43 by an optical contact or the like that does not use an adhesive.
  • the prism formation process that is formed only on a flat surface and the lens formation process that forms a spherical surface are different in technology, and it is difficult to form a prism with a spherically shaped depression. This process is necessary, the productivity is poor, and the manufacturing cost becomes very expensive. That is, it is difficult to make the light supply member 40 that is a prism and the single-concave lens 43 have an integral structure.
  • the light supply member 40 which is a prism
  • the single-concave lens 43 alone can be easily formed by each processing technique.
  • a glass plate having a refractive index substantially the same as that of the light supply member 40 and the single concave lens 43 may be inserted between the light supply member 40 and the single concave lens 43. This glass plate can be used to attach the light supply member 40 to the evaluation apparatus main body.
  • an optical adhesive for adhering the light supply member 40 and the glass plate and an optical adhesive for adhering the glass plate and the single-concave lens 43 when the wavelength of the light source is short and close to ultraviolet rays or ultraviolet rays, an inorganic material is used. It is desirable to use an adhesive or low melting point glass.
  • the light supply member 40 and the glass plate, and the glass plate and the single-concave lens 43 are desirably bonded by an optical contact or the like that does not use an adhesive.
  • FIG. 45 is a view showing a fourth example of a structure part for sandwiching the liquid 90 between the light supply member 40 and the tempered glass 200.
  • a flat outer edge 43 e may be formed around the single-concave lens 43.
  • the flat outer edge portion 43e is a surface in contact with the tempered glass 200, when the tempered glass 200 is brought into contact with the light supply member 40, it can be accurately parallelized. Damage such as scratches can be eliminated.
  • FIG. 46 is a view showing a fifth example of the structure part for sandwiching the liquid 90 between the light supply member 40 and the tempered glass 200.
  • the light supply member 40 and the single-concave lens 43 are not fixed with an optical adhesive, and a support 44 that can be removed by sandwiching a liquid having the same refractive index as the liquid 90 is sandwiched between It may be fixed from the outer peripheral side so as not to move.
  • the support 44 By configuring the support 44 to be openable and closable using a spring or the like, only the single-concave lens 43 can be easily replaced. For example, when the one-concave lens 43 is damaged or scratched due to contact with the tempered glass 200 or when the one-concave lens 43 is changed to a one-concave lens 43 having a depression of another shape, a plurality of one-concave lenses 43 are manufactured and replaced. Just do it.
  • the shape and structure of the support 44 may be any as long as the single-concave lens 43 can be held interchangeably.
  • FIG. 47 is a view showing a sixth example of a structure part for sandwiching the liquid 90 between the light supply member 40 and the tempered glass 200.
  • a groove 43y for discharging the liquid 90 may be formed in a flat outer edge portion 43e formed around the single-concave lens 43.
  • the groove 43y communicates with the recess 43x.
  • a groove 40y communicating with the depression 43x may be formed on the surface of the light supply member 40 on the side in contact with the tempered glass 200.
  • a groove 40y for discharging the liquid 90 around the recess 40x when the liquid 90 is dropped into the recess 40x and the tempered glass 200 is placed, bubbles are also generated from the groove 40y together with the liquid 90. Since it is discharged, it is difficult for bubbles to remain in the recess 40x.
  • the intersecting curves drawn in the depressions 40x and 43x and the vertical lines drawn on the side surfaces of the single-concave lens 43 are drawn for convenience in order to make the drawings easy to see. It does not indicate actual lines (thin grooves, protrusions, etc.).
  • the depressions 40x and 43x are described as spherical depressions.
  • the depressions 40x and 43x are not limited to spherical shapes, and may be any surface provided with a curved portion.
  • the depressions 40x and 43x may be depressions such as an aspherical shape, for example.
  • the groove shape and the number of the grooves 40y and 43y may be arbitrarily set.
  • the formula for obtaining the stress St from the polarization phase difference Rt at the laser beam depth D is the angle between the tempered glass and the surface 210 of the tempered glass 200, that is, the incident angle (refraction angle). Is represented by the following formula 8 (Equation 8).
  • Equation 8 the last ⁇ term is a correction for the contribution of birefringence to the laser beam due to stress. That is, the internal stress due to the strengthening of the tempered glass 200 is parallel to the surface 210, while the laser light is incident on the surface 210 at an angle. Therefore, it is necessary to correct the contribution of the birefringence to the laser beam due to the stress, and the last ⁇ term in Equation 8 is the correction.
  • St is used in this equation, different symbols are used for convenience because the coordinate system of the stress distribution is different from Equation 1.
  • FIG. 49 is a diagram for explaining that the laser light L is incident on the tempered glass 200.
  • the surface of the tempered glass 200 is in contact with the upper surface of the light supply member 40, and the surface of the tempered glass 200 in contact with the upper surface of the light supply member 40 and the upper surface of the light supply member 40 is positioned at xyz coordinates. doing.
  • the laser light L is incident on the incident end surface of the light supply member 40, passes through the boundary between the upper surface of the light supply member 40 and the surface of the tempered glass 200, and is incident on the tempered glass 200.
  • the image sensor 60 captures a laser trajectory (a trajectory of the laser beam L) from an oblique angle of 45 °.
  • FIG. 50 is a diagram for explaining an image of the laser trajectory taken from the position of the image sensor 60 in FIG.
  • the laser path on the image taken by the image sensor 60 is Cpass, the length is Pc, the angle of the laser path on the image is ⁇ , the horizontal distance on the image is Lx, and the vertical distance on the image is V.
  • image analysis is performed from an image from the image sensor 60 of laser light L (correctly scattered light from the laser light L), and finally stress in the tempered glass 200 is measured.
  • the image acquired by the image sensor 60 is an image from an angle below 45 °
  • the length Pc of the laser locus Cpass on the image and the actual length of the laser light L are not always the same, and the image The upper angle ⁇ is not the actual incident angle ⁇ . Therefore, in order to obtain the stress from the image of the laser beam L using Equation 8, a conversion equation for obtaining the actual distance P of the laser beam L and the incident angle ⁇ is necessary.
  • FIG. 51 is a view for explaining the definition of the angle and length of the laser light in the light supply member 40 or the tempered glass 200 of FIG.
  • a rectangular parallelepiped having an abcdefgh is considered.
  • the length of the side bf is Lx
  • the length of the side ab is H
  • the length of the side fg is D.
  • D is the same as the depth of the light supply member 40 or the tempered glass 200.
  • the laser beam L advances from the vertex c to the vertex e
  • Pass indicates the locus of the laser beam L.
  • the upper surface abfe is parallel to the upper surface of the light supply member 40 in FIG.
  • the length ce of the laser beam trajectory Pass is P
  • is an incident angle with respect to the surface of the tempered glass 200.
  • the surface acge is equivalent to the incident surface of the laser beam L.
  • the path viewed from the upper surface of the laser beam L is Uppass, the length is Pu, the path viewed from the front is Fpass, the length is Pf, the path viewed from the side is Lpass, and the length is Pl.
  • the angle ⁇ of the locus Lpass of the laser beam L viewed from the side is the incident surface angle of the laser beam L.
  • is the Z-axis rotation angle of the laser beam L, and ⁇ is the Y-axis rotation angle.
  • Lx is a unit length
  • D, H, and Pu are obtained from ⁇ and ⁇
  • the incident angle ⁇ of the laser beam to the tempered glass surface is an angle between Pass and Uppass.
  • the length P of the laser beam L and the incident angle ⁇ with respect to the surface of the tempered glass 200 can be easily obtained.
  • the refractive index np of the light supply member the refractive index ng of the tempered glass
  • the angles of these lasers and the relationship thereof are the same in the light supply member 40 and the tempered glass 200 as well.
  • the Y-axis rotation angle ⁇ 15 °
  • the Z-axis rotation angle ⁇ 15 °
  • the refractive index ng 1.516 of the tempered glass 200.
  • the actual depth D can be obtained by the following equation (10).
  • the stress of the tempered glass can be calculated from the image of the image sensor 60 of the laser beam.
  • the refractive index np of the light supply member 40 is not equal to the refractive index ng of the tempered glass 200
  • the above description is a case where the light supply member 40 and the tempered glass 200 have the same refractive index, and the laser beam advances without being refracted at the boundary surface between the light supply member 40 and the tempered glass 200, and the light supply member 40 and the tempered glass 200 are strengthened.
  • the laser light in the glass 200 is parallel.
  • the refractive indexes of the light supply member 40 and the tempered glass 200 are not necessarily the same.
  • the refractive index of the tempered glass 200 is equal to the refractive index of the light supply member 40 even if the incident surface of the laser light in the tempered glass 200 is 45 °. Otherwise, the laser light incident surface of the tempered glass 200 is deviated from 45 °. Then, the distance Pc of the laser locus Cpass shown in FIG. 50 is different from the distance P of the actual laser locus Pass (Pc ⁇ P), and Equation 10 does not hold.
  • the laser light is incident on the light supply member 40 from the air, the angle before the laser light is incident on the light supply member 40 and the angle between the laser light of the incident end surface on which the laser light of the light supply member 40 is incident.
  • the laser light is refracted and enters the light supply member 40. Therefore, the necessary incident angle and the incident surface angle of the laser light in the tempered glass 200 are considered in consideration of the incident angle before the laser beam is incident on the light supplying member 40 and the angle of the incident end surface of the light supplying member 40. .
  • the Z-axis rotation angle ⁇ and the Y-axis rotation angle ⁇ of the incident end face on which the laser of the light supply member 40 is incident are set.
  • the refractive index of the light supply member 40 is np
  • the refractive index of the tempered glass 200 is ng.
  • the Z-axis rotation angle, ⁇ L, ⁇ p, ⁇ , and ⁇ p, ⁇ g, the Y-axis rotation angle, ⁇ L, ⁇ p, ⁇ , and ⁇ p and ⁇ g satisfy Snell's law, respectively.
  • angles before the laser light enters the light supply member 40, ⁇ L and ⁇ L, angles of the incident end face of the light supply member 40, ⁇ , ⁇ , refractive indexes ng, np can be easily calculated.
  • rotation angles ⁇ L and ⁇ L of the laser light before the light supply member 40 is incident rotation angles ⁇ and ⁇ of the incident end surface where the laser light of the light supply member 40 is incident, and the refractive index np of the light supply member 40 are: It depends on the device design and is known.
  • the refractive index of the tempered glass 200 can be known by a general refractive index measuring device.
  • the refractive index of the tempered glass 200 measured by other means ⁇ L, ⁇ L, ⁇ , ⁇ , np determined by the device design, and the refractive index of the tempered glass 200, ⁇ g of the laser light in the tempered glass 200, ⁇ g, an incident angle ⁇ , and an incident surface angle ⁇ are obtained, and conversion formulas from the Pc and ⁇ of the image of the image sensor 60 of the laser beam to the incident angle ⁇ and the incident surface angle ⁇ of the laser beam in the tempered glass 200 are converted.
  • the stress distribution in the tempered glass can be measured from Equation 8. Specific examples are shown below.
  • FIG. 53 is a conceptual diagram of laser light traveling through the light supply member and the tempered glass.
  • FIG. 54 is a conceptual diagram of laser light traveling through the tempered glass, and reference numeral 215 schematically shows an observation surface observed from the image sensor 60 in a satin pattern.
  • ⁇ L is an angle (laser side) between the laser light incident on the light supply member 40 from the laser light source 10 and the normal line of the incident surface 40a of the light supply member 40.
  • ⁇ P1 is an angle (the light supply member 40 side) between the laser light incident on the light supply member 40 from the laser light source 10 and the normal line of the incident surface 40a of the light supply member 40
  • ⁇ P2 is strengthened from the light supply member 40. This is an angle (on the light supply member 40 side) between the laser beam incident on the glass 200 and the normal line of the emission surface 40 b of the light supply member 40.
  • ⁇ P1 + ⁇ P2 90 ° is not always true.
  • ⁇ g is an angle formed between the laser beam incident on the tempered glass 200 from the light supply member 40 and the normal line of the emission surface 40b of the light supply member 40 (tempered glass 200 side), and ⁇ is the surface 210 (evaluation surface) of the tempered glass 200. ) And the laser beam in the tempered glass 200, the incident angle (90- ⁇ g). Further, ⁇ is the inclination of the laser beam observed from the image sensor 60. When ⁇ , ⁇ , etc. are considered in three dimensions, they may be considered separately as shown in FIG.
  • the incident angle ⁇ can be obtained, for example, according to the flowchart shown in FIG. That is, first, in step S701, the deriving a theta P1 from ⁇ L and np. ⁇ P1 can be determined from ⁇ L and np using the Snell equation.
  • step S702 ⁇ P2 is derived from ⁇ P1 .
  • ⁇ P2 can be obtained from ⁇ P1 based on the shape of the light supply member 40.
  • step S703 ⁇ g is derived from ⁇ P2 , np, and ng.
  • ⁇ g can be obtained from ⁇ P2 , np, ng by Snell's equation.
  • step S704 ⁇ is derived from ⁇ g.
  • the refractive index np of the light supply member 40 and the refractive index ng of the tempered glass 200 are the same, there are various types of tempered glass and the refractive indexes are different.
  • the optical glass forming the light supply member 40 is not necessarily a glass having the same refractive index as that of the tempered glass.
  • the refractive index ng of the tempered glass 200 can be calculated from the angle ⁇ of the laser image of the image sensor 60. That is, the refractive index ng of the tempered glass 200 may be derived based on the image of the laser light acquired by the image sensor 60.
  • step S711 of the flowchart shown in FIG. 56 the relationship between the incident angle ⁇ and the angle ⁇ shown in FIG. 54 is derived.
  • the relationship between the incident angle ⁇ and the angle ⁇ can be obtained by geometric calculation.
  • step S712 the angle ⁇ is measured with the image sensor 60 (camera).
  • the refractive index ng of the tempered glass 200 is obtained from the angle ⁇ of the laser image of the image sensor 60, and the conversion formula is obtained based on the refractive index ng of the tempered glass 200 to obtain the stress distribution of the tempered glass 200. It is also possible to measure.
  • the refractive index ng of the tempered glass 200 may be measured in advance by another method (measurement with a refractive index measuring device or the like). preferable.
  • the incident angle ⁇ can be calibrated from the angle ⁇ of the laser image of the image sensor 60.
  • step S711 of the flowchart shown in FIG. 57 the relationship between the incident angle ⁇ and the angle ⁇ is derived in the same manner as in FIG. 56.
  • step S712 the angle ⁇ is obtained by the image sensor 60 in the same manner as in FIG. Measure.
  • step S714 the incident angle ⁇ is derived from the relationship derived in step S711 using the angle ⁇ measured in step S712. By applying the incident angle ⁇ derived in step S714 to Equation 8, an accurate stress can be obtained.
  • the value of the refractive index ng of the tempered glass 200 is known in advance, it is also effective to design the optimum light supply member 40 in consideration of the value of the refractive index ng of the tempered glass 200.
  • the incident angle ⁇ and the incident surface angle ⁇ in the tempered glass 200 can be known by calculation, when the difference between the refractive index ng of the tempered glass 200 and the refractive index np of the light supply member 40 increases, the incident surface angle ⁇ . The deviation from 45 ° increases. Accordingly, when the depth of focus of the lens of the image sensor 60 is exceeded, the focus is shifted, the spatial resolution is lowered, and a correct stress distribution cannot be measured.
  • the incident angle ⁇ of the laser light in the tempered glass 200 is 10.3 °
  • the incident surface angle ⁇ is 35 °.
  • the incident angle ⁇ can be corrected by calculation
  • the incident surface angle ⁇ is deviated from 45 ° by 10 °, and measurement accuracy cannot be maintained only by calculation.
  • the angle of the surface of the light supply member 40 on which the laser light is incident so that the incident surface of the laser light incident on the tempered glass 200 is 45 ⁇ 5 ° with respect to the surface of the tempered glass 200.
  • the distance of the laser locus is 300 ⁇ m and the incident surface angle ⁇ is shifted by 10 °
  • the difference in distance from the image sensor 60 to the laser light in the tempered glass 200 becomes 52 ⁇ m, and an image is formed on the image sensor 60.
  • the focus is not uniform at all distances of the laser trajectory imaged by the image sensor 60, and the measurement accuracy is degraded.
  • step S721 of the flowchart shown in FIG. 58 the value of the refractive index ng of the target tempered glass 200 is obtained.
  • step S722 the refractive index ng of the tempered glass 200 and the refractive index np of the light supply member 40 are fixed, and ⁇ L at which the plane through which the laser beam passes and the observation plane do not change is obtained.
  • the light supply member 40 of this specification is manufactured, and the installation of the laser light source 10 is left as it is, and only the light supply member 40 is replaced, and the tempered glass 200 having a refractive index ng significantly different from the refractive index np of the light supply member 40 is obtained. Stress distribution can be measured accurately. Further, in order to eliminate the return light to the laser light source 10, when the tempered glass 200 and the surface on which the laser light is incident on the light supply member 40 are slightly shifted (about 0.5 to 1 °), correction can be made by Expression 8. is there.
  • FIG. 59 is a diagram illustrating stress distribution in the depth direction of tempered glass.
  • a tensile stress is generated in the central portion, and in principle, the stress is zero as a whole. That is, the integrated value (stress energy) of the stress distribution is 0 from the front surface to the back surface in the depth direction.
  • the integral value of the compressive stress on the surface (compressive energy) and the integral value of the tensile stress at the center (tensile energy) are equal. Further, in the chemical strengthening process, since the chemical strengthening of both surfaces of the glass is usually performed under the same conditions, the stress distribution is symmetric with respect to the center of the glass. Therefore, the integration from the surface to the glass midpoint in the depth direction is also zero.
  • the stress value is obtained from the differential value of the phase value (for example, FIG. 7) and the photoelastic constant of the change in the glass depth and the scattered light luminance (see the first embodiment). Therefore, the phase of the change in the glass depth and scattered light luminance in FIG. 7 is the same as the integrated value of the stress values. That is, in FIG. 7, the center point of the tempered glass and the phase value of the outermost surface of the tempered glass are the same.
  • the evaluation apparatus 1 has a drawback that when the laser light is diffusely reflected on the outermost surface of the tempered glass and the irregularly reflected light is generated, the phase value of the scattered light luminance change on the outermost surface of the tempered glass cannot be measured correctly.
  • the phase value of the center point of the tempered glass is used to correct the phase value of the scattered light luminance change on the outermost surface or to correct it.
  • the stress value and the stress distribution near the outermost surface of the tempered glass and the outermost surface can be accurately measured.
  • the measured phase value may be extrapolated to the center of the tempered glass to obtain the phase value at the center of the tempered glass.
  • the phase change amount of the outermost surface of the tempered glass that can balance the stress is estimated, and the surface stress value Can be corrected.
  • FIG. 60 is a diagram illustrating an evaluation device provided with a glass thickness measurement device.
  • the evaluation device 3 shown in FIG. 60 has a configuration in which a glass thickness measurement device 120 is installed in the evaluation device 1.
  • the glass thickness measuring device 120 has a laser light source, a light receiving unit, and a calculation unit (not shown).
  • the laser light Lg emitted from the laser light source of the glass thickness measuring device 120 is reflected by the front surface 210 and the back surface 220 of the tempered glass 200 and received by the light receiving unit of the glass thickness measuring device 120.
  • the calculation part of the glass thickness measuring apparatus 120 measures the thickness of the tempered glass 200 based on the light received by the light receiving part.
  • a commercially available glass thickness meter can be used as the glass thickness measuring device 120.
  • the evaluation device 1 can measure the phase value from the surface in the tempered glass 200 in the depth direction from the change in the scattered light luminance in the tempered glass 200 by the laser light from the laser light source 10. At the same time, the evaluation device 3 can measure the thickness of the tempered glass 200 with the glass thickness measuring device 120.
  • the phase value at the center of the tempered glass 200 can be measured or extrapolated. Then, based on the phase value, the phase value of the outermost surface of the tempered glass 200 is set or corrected, and the stress distribution can be obtained from the phase value in the depth direction in which the outermost surface is corrected.
  • the stress distribution and the thickness of the tempered glass are measured, and the phase change amount of the outermost surface of the tempered glass is measured based on the measured thickness of the tempered glass. Can be estimated.
  • the evaluation apparatus 1 when the laser light is irregularly reflected on the outermost surface of the tempered glass 200 and the irregularly reflected light is generated, there is a defect that the phase value of the scattered light luminance change on the outermost surface of the tempered glass 200 cannot be measured correctly. .
  • the following method may be further used.
  • two sets of a laser light source 10, a polarizing member 20, and a polarization phase difference variable member 30 are prepared, and laser beams L and L ′ are incident from two different angles ⁇ s1 and ⁇ ′ s1. Also good. At that time, the scattered light from the laser light L and the scattered light from the laser light L ′ are measured separately.
  • the error in the phase value of the outermost surface of the tempered glass 200 due to the influence of irregular reflection on the surface of the tempered glass 200 becomes smaller. There is a case where measurement up to the deep part of the tempered glass 200 cannot be performed.
  • the phase value of the outermost surface of the tempered glass 200 is determined by measurement using laser light incident from a smaller angle, and the result is obtained as the phase value of the outermost surface of measurement using laser light incident from a larger angle.
  • the measurement accuracy may be improved and the measurement may be performed up to the deep part of the tempered glass 200.
  • a step of cleaning the surface of the tempered glass 200 with a cleaning system may be included before step S601.
  • the cleaning system may be an operation such as cleaning with a wet or dry cleaning machine or wiping.
  • the phase value of the center point of the tempered glass and the outermost surface of the tempered glass is the same.
  • the phase value of the outermost surface of the glass may be obtained without separately measuring the glass plate thickness. Further, the position of the origin of the phase may be calculated by extrapolation so that the outermost surface of the tempered glass becomes the phase of the glass middle point.
  • DOL_zero is the length which measured the point from which the stress value by the side of the back surface 220 becomes zero from the surface 210 side of the tempered glass 200.
  • the liquid 90 may be installed on the back surface 220 side. By doing so, irregular reflection on the surface on the back surface 220 side is suppressed.
  • a light shielding function by a light shielding plate or the like may be provided between the glass and the camera so that light from the back side does not enter.
  • the phase of the outermost surface on the glass surface 210 side may be estimated as follows. That is, since the sum of DOL_zero (front surface) and DOL_zero (back surface) is the glass thickness, the overall stress distribution is determined by determining the position of the outermost surface so that this sum matches the value measured by the glass thickness measuring device. Is required with high accuracy. The phase of the outermost surface is estimated by extrapolating the phase to the position of the outermost surface.
  • the origin position of the phase change calculated in S405 may be displayed at a corresponding position in the image obtained in the imaging step (S403) using a display, and the measurer may visually evaluate the method.
  • the origin position of the phase change greatly deviates due to noise during measurement, light scattering due to dust, bubbles, disturbance light, or the like, it is possible to easily determine remeasurement.
  • the position of the laser light source may be moved.
  • the evaluation devices 1 and 2 have been described using the light source as a constituent element, but the evaluation devices 1 and 2 may have a configuration that does not have a light source.
  • An appropriate light source can be prepared and used by the users of the evaluation apparatuses 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本強化ガラスの評価装置は、レーザ光の偏光位相差を、前記レーザ光の波長に対して1波長以上可変する偏光位相差可変部材と、前記偏光位相差を可変されたレーザ光が強化ガラスに入射されたことにより発する散乱光を、所定の時間間隔で複数回撮像し、複数の画像を取得する撮像素子と、前記複数の画像を用いて前記散乱光の周期的な輝度変化を測定し、前記輝度変化の位相変化を算出し、前記位相変化に基づき前記強化ガラスの表面からの深さ方向の応力分布を算出すると共に、前記複数の画像を用いて前記強化ガラスの強度にかかわる物理量を測定する演算部と、を有する。

Description

強化ガラスの評価装置、強化ガラスの評価方法、強化ガラスの製造方法、強化ガラス
 本発明は、強化ガラスの評価装置、強化ガラスの評価方法、強化ガラスの製造方法、及び強化ガラスに関する。
 携帯電話やスマートフォン等の電子機器において、表示部や、筐体本体にガラスが用いられることが多い。近年の電子機器の薄型化・軽量化に伴い、電子機器に用いるガラスにも薄板化が要求されている。ガラスは板厚が薄くなると強度が低くなる。そこで、ガラスの強度を上げるために、ガラス表面にイオン交換による表面層(イオン交換層)を形成することにより強度を上げた、所謂化学強化ガラスを使用し、光学的手法にて、表面の応力値を測定し、正しく強化されているかを確認し、市場に出荷するのが一般的であった。
 強化ガラスの表面層の応力を測定する技術としては、例えば、強化ガラスの表面層の屈折率が内部の屈折率より高い場合に、光導波効果と光弾性効果とを利用して、表面層の圧縮応力を非破壊で測定する技術(以下、非破壊測定技術とする)を挙げることができる。この非破壊測定技術では、単色光を強化ガラスの表面層に入射して光導波効果により複数のモードを発生させ、各モードで光線軌跡が決まった光を取出し、凸レンズで各モードに対応する輝線に結像させる。なお、結像させた輝線は、モードの数だけ存在する。
 又、この非破壊測定技術では、表面層から取出した光は、出射面に対して、光の振動方向が水平と、垂直の二種の光成分についての輝線を観察できる。そして、次数の一番低いモード1の光は表面層の一番表面に近い側を通る性質を利用し、二種の光成分のモード1に対応する輝線の位置から、それぞれの光成分についての屈折率を算出し、その二種の屈折率の差とガラスの光弾性定数から強化ガラスの表面付近の応力を求めている(例えば、特許文献1参照)。
 一方、上記の非破壊測定技術の原理を元に、モード1とモード2に対応する輝線の位置から、外挿でガラスの最表面での応力(以下、表面応力値とする)を求め、かつ、表面層の屈折率分布は直線的に変化すると仮定し、輝線の総本数から、圧縮応力層の深さを求める方法が提案されている(例えば、特許文献3及び非特許文献1参照)。
 又、上記の表面導波光を利用した測定技術により測定した表面応力値と圧縮応力層の深さを元に、ガラス内部の引張応力CTを定義し、CT値で強化ガラスの強度を管理する方法が提案されている(例えば、特許文献2参照)。この方法では、引張応力CTを『CT=(CS×DOL)/(t×1000-2×DOL)』(式0)で計算している。ここで、CSは表面応力値(MPa)、DOLは圧縮応力層の深さ(単位:μm)、tは板厚(単位:mm)である。
 一般的に外力が加わらなければ、応力の総和は0である。従って、化学強化により形成された応力を深さ方向に積分した値が、化学強化されていない中心部分でバランスをとるように略均等に引張応力が発生する。
 又、応力分布が屈曲する位置のガラス深さ(DOL_TP)よりもガラス表層側の応力分布を測定し、ガラス表層側の応力分布の測定結果(測定画像)に基づいて、DOL_TPよりもガラス深層側の応力分布を予測する方法も提案されている(例えば、特許文献4参照)。しかしながら、この方法では、DOL_TPよりもガラス深層側の応力分布の実測を行わないため、測定再現性が悪いという問題がある。
 しかし、化学強化ガラスも強度向上と性能向上のため、多様になっており、従来の応力測定方法では十分な評価ができなくなっている。
 例えば、リチウム含有ガラスをカリウム、ナトリウムの2種のイオンと交換し、応力分布を制御した強化ガラスや、透明な結晶化ガラスをイオン交換した化学強化ガラス等がある。
 リチウム含有ガラスの化学強化ガラスでは、従来の光学的な表面応力測定装置では、リチウムがカリウムに交換された表面付近の応力層は評価できるが、リチウムがナトリウムに交換された内部の応力層は評価できないため、応力深さは測定できない。
 結晶化ガラスにおいては、特に表示部に使用するには透明でなければならないため、ここで使用する結晶化ガラスは、結晶粒が可視光の波長より十分小さな結晶化ガラスであり、可視域においては、透明である。そのため、従来の光学的な表面応力測定装置で、化学強化工程で形成される表面の応力を測定できる。
 しかし、結晶化ガラスの強度は、化学強化された表面付近の応力だけでなく、再結晶で生成された、結晶粒径、結晶粒密度、結晶粒種等にも大きく依存し、又、再結晶後の化学強化工程への影響も大きい。更に、この再結晶工程で生成された結晶も、化学強化工程で変化する可能性もある。
 そのため、多様化した化学強化ガラスの品質を維持するためには、深部までの応力の分布や、結晶化ガラスにおける結晶状態等を測定管理する必要がある。
特開昭53-136886号公報 特表2011-530470号公報 特開2016-142600号公報 米国特許公開2016/0356760
Yogyo-Kyokai-Shi(窯業協会誌)87{3}1979 Yogyo-Kyokai-Shi(窯業協会誌)80{4}1972
 近年、イオン交換がしやすく、化学強化工程で、短時間で、表面応力値が高く、応力層の深さが深くできるガラスとして、リチウム・アルミノシリケート系のガラスが注目されている。
 このガラスを高温の硝酸ナトリウムと硝酸カリウムの混合溶融塩に浸漬して、化学強化処理を施す。ナトリウムイオン、カリウムイオンとも、溶融塩中の濃度が高いために、ガラス中のリチウムイオンとイオン交換するが、ナトリウムイオンの方がガラス中へ拡散しやすいために、まず、ガラス中のリチウムイオンと溶融塩中のナトリウムイオンが交換される。
 ここで、ガラスの屈折率は、ナトリウムイオンがリチウムイオンとイオン交換されるとより低く、カリウムイオンが、リチウムイオン、或いはナトリウムイオンとイオン交換されるとより高くなる。つまり、ガラス中のイオン交換されていない部分に比べて、ガラス表面付近のイオン交換された領域はカリウムイオン濃度が高く、更に深いイオン交換された領域になるとナトリウムイオン濃度が高くなる。そのため、イオン交換されたガラスの最表面付近は、屈折率が深さとともに下がるが、ある深さからイオン交換されていない領域まで、深さとともに屈折率が高くなる特徴を持っている。
 そのため、背景技術で説明した表面の導波光を利用した応力測定装置では、最表面の応力値、或いは、応力分布だけで、深い部分の応力分布を測定できず、応力層の深さ、CT値、全体の応力分布を知ることができなかった。その結果、適正な化学強化条件を見つけ出すための開発ができず、又、製造の品質管理ができなかった。
 又、アルミノシリケートガラスやソーダガラスを風冷強化した後に化学強化した場合、化学強化された部分は背景技術で説明した表面の導波光を利用した応力測定装置で応力分布或いは応力値を測定できる。しかし、化学強化がされておらず風冷強化だけがされた部分は屈折率変化が小さく背景技術で説明した表面の導波光を利用した応力測定装置では測定できない。その結果、応力層の深さ、CT値、全体の応力分布を知ることができなかった。その結果、適正な化学強化条件を見つけ出すための開発ができず、又、製造の品質管理ができなかった。
 一方、結晶化ガラスは、一般的なガラスより強度が高い。そのため、化学強化した結晶化ガラスは通常の強化ガラスより高い強度を得られる。しかし、その結晶化ガラスでは、強度等の物理的な性能が、結晶状態(粒径、結晶粒密度、結晶種)等に大きく影響される。そのため、結晶化ガラスでは、化学強化による応力分布と共に、結晶化ガラスの強度にかかわる物理量を測定する必要がある。
 本発明は、上記の点に鑑みてなされたものであり、強化ガラスの応力分布を測定可能であり、かつ強化ガラスの強度にかかわる物理量を測定可能な、強化ガラスの評価装置を提供することを目的とする。
 本強化ガラスの評価装置は、レーザ光の偏光位相差を、前記レーザ光の波長に対して1波長以上可変する偏光位相差可変部材と、前記偏光位相差を可変されたレーザ光が強化ガラスに入射されたことにより発する散乱光を、所定の時間間隔で複数回撮像し、複数の画像を取得する撮像素子と、前記複数の画像を用いて前記散乱光の周期的な輝度変化を測定し、前記輝度変化の位相変化を算出し、前記位相変化に基づき前記強化ガラスの表面からの深さ方向の応力分布を算出すると共に、前記複数の画像を用いて前記強化ガラスの強度にかかわる物理量を測定する演算部と、を有することを要件とする。
 開示の技術によれば、強化ガラスの応力分布を測定可能であり、かつ強化ガラスの強度にかかわる物理量を測定可能な、強化ガラスの評価装置を提供できる。
第1の実施の形態に係る評価装置を例示する図である。 第1の実施の形態に係る評価装置を図1のH方向から見た図である。 液晶素子の印加電圧と偏光位相差との関係を例示する図である。 液晶素子に偏光位相差が時間的に直線的に変化するような駆動電圧を発生させる回路を例示する図である。 撮像素子に結像されたレーザ光Lのある瞬間の散乱光像を例示する図である。 図5の点Bと点Cでの散乱光輝度の時間的な変化を例示する図である。 ガラス深さに応じた散乱光変化の位相を例示する図である。 図7の散乱光変化の位相データを基に、式1より求めた応力分布を例示する図である。 異なる時刻t1、t2の実際の散乱光像を例示する図である。 強化ガラス中のレーザ光Lの入射面の好ましくない設計例を示す図である。 強化ガラス中のレーザ光Lの入射面の好ましい設計例を示す図である。 評価装置1の演算部70の機能ブロックを例示する図である。 評価装置1を用いた評価方法を例示するフローチャート(その1)である。 評価装置1を用いた評価方法を例示するフローチャート(その2)である。 撮像素子60で得られた、ある時刻の散乱光の画像である。 図15(a)の領域Eにおける平均散乱光輝度の時間的変化のグラフである。 散乱光輝度振幅値Asとガラスの深さの関係を例示する図である。 第1の実施の形態の変形例1に係る評価装置を例示する図である。 第1の実施の形態の変形例2に係る評価装置を例示する図である。 第1の実施の形態の変形例3に係る評価装置を例示する図である。 第1の実施の形態の変形例4に係る評価装置を例示する図である。 光弾性効果を利用した偏光位相差可変部材の説明図である。 第2の実施の形態に係る評価装置を例示する図である。 評価装置1及び2で測定した応力分布を同じグラフに示した図である。 評価装置2を用いた評価方法を例示するフローチャートである。 評価装置2の演算部75の機能ブロックを例示する図である。 強化ガラスの深さ方向の応力分布を例示する図である。 応力分布に基づいて特性値を導出するフローチャート(その1)である。 測定された応力分布から各特性値を導出した例を示す図である。 応力分布に基づいて特性値を導出するフローチャート(その2)である。 測定された応力分布から各特性値を導出した他の例を示す図(その1)である。 応力分布に基づいて特性値を導出するフローチャート(その3)である。 測定された応力分布から各特性値を導出した他の例を示す図(その2)である。 応力分布の測定で得られた各特性値を用いた品質判断のフローチャートの一例を示す図である。 応力分布の測定で得られた各特性値を用いた品質判断のフローチャートの他の例を示す図である。 リチウム含有ガラスに対して2回以上の強化をする場合の品質判断のフローチャートの一例(その1)である。 リチウム含有ガラスに対して2回以上の強化をする場合の品質判断のフローチャートの一例(その2)である。 ガラス表層側の応力分布とガラス深層側の応力分布の合成結果の一例である。 比較例1及び実施例1~3で求めた応力分布である。 第3の実施の形態に係る評価装置を例示する図である。 光供給部材と強化ガラスとの界面を進むレーザ光Lの散乱光画像を例示する図である。 光供給部材と強化ガラスとの間に液体を挟むための構造部を例示した図である。 光供給部材と強化ガラスとの間に液体を挟むための構造部の第2例を示した図である。 光供給部材と強化ガラスとの間に液体を挟むための構造部の第3例を示した図である。 光供給部材と強化ガラスとの間に液体を挟むための構造部の第4例を示した図である。 光供給部材と強化ガラスとの間に液体を挟むための構造部の第5例を示した図である。 光供給部材と強化ガラスとの間に液体を挟むための構造部の第6例を示した図である。 光供給部材と強化ガラスとの間に液体を挟むための構造部の第7例を示した図である。 レーザ光Lが強化ガラス内に入射されていることを説明する図である。 図49の撮像素子の位置から撮影したレーザ軌跡の画像を説明する図である。 図49の光供給部材或いは強化ガラス内のレーザ光の角度、長さの定義を説明する図である。 図51の上面図、正面図、側面図である。 光供給部材及び強化ガラス中を進むレーザ光の概念図である。 強化ガラス中を進むレーザ光の概念図である。 入射余角Ψを求めるフローチャートの一例である。 強化ガラスの屈折率ngを求めるフローチャートの一例である。 入射余角Ψを求めるフローチャートの他の例である。 レーザ光が通る面と観測面が変わらないθLを求めるフローチャートの一例である。 強化ガラスの深さ方向の応力分布を例示する図である。 ガラス厚み測定装置を設置した評価装置を例示する図である。
 以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
 〈第1の実施の形態〉
 図1は、第1の実施の形態に係る評価装置を例示する図である。図1に示すように、評価装置1は、レーザ光源10と、偏光部材20と、偏光位相差可変部材30と、光供給部材40と、光変換部材50と、撮像素子60と、演算部70と、光波長選択部材80とを有する。
 200は、被測定体となる強化ガラスである。強化ガラス200は、例えば、化学強化法や風冷強化法等により強化処理が施されたガラスである。本願で言う強化ガラスには、強化処理が施された結晶化ガラスも含まれる。ここで、結晶化ガラスとは、結晶化工程を経て作製されたガラスであり、言い換えれば、意図的に析出させた結晶を有するガラスである。本願では、強化処理が施された結晶化ガラスを、必要に応じて、強化結晶化ガラスと称する場合がある。
 レーザ光源10は、光供給部材40から強化ガラス200の表面層にレーザ光Lを入射するように配置されており、レーザ光源10と光供給部材40との間に、偏光位相差可変部材30が挿入されている。
 レーザ光源10としては、例えば、半導体レーザ、ヘリウムネオンレーザ、アルゴンレーザを用いることができる。半導体レーザは通常偏光があり、405nm、520nm、630nm、850nm等の波長の半導体レーザが実用化されている。レーザ光の波長が短いほどビーム径を絞れ、空間分解能を高くできる。又、レーザ光の波長が短いほどノイズが小さくなる傾向があるため好ましい。なお、レーザ光は測定対象を透過する必要がある。
 強化ガラス200の深さ方向の分解能を上げるためには、レーザ光の最小ビーム径の位置が強化ガラス200のイオン交換層内にあり、最小ビーム径が20μm以下であることが好ましい。レーザ光の最小ビーム径の位置を、強化ガラス200の表面210とすると、更に好ましい。なお、レーザ光のビーム径が深さ方向の分解能となるため、必要な深さ方向の分解能以下のビーム径にする必要がある。ここで、ビーム径とはビーム中央の輝度が最大になる時の1/e(約13.5%)の幅を意味し、ビーム形状が楕円形状やシート状の場合、ビーム径は最小幅を意味する。但し、この場合は、ビーム径の最小幅がガラス深さ方向を向いている必要がある。
 半導体レーザから出射されるビームの断面形状は通常楕円形であるため、ビーム整形部材により、円形に整形することで、空間分解能を高め、測定精度を向上できる。又、半導体レーザから出射されるビームのビーム形状内出力分布はガウス分布であるが、出力分布整形部材により、トップハット分布のようなビーム形状内一定の分布に整形することでも、測定精度を向上できる。
 ビーム整形部材、出力分布整形部材は、例えば、レーザ光源10と偏光位相差可変部材30との間に挿入される。ビーム整形部材としては、例えば、シリンドリカルレンズ、アナモルフィックプリズム、絞り等が挙げられる。又、出力分布整形部材としては、例えば、非球面レンズ、DOE(Diffractive Optical Element:回折光学素子)等が挙げられる。
 偏光部材20は、必要に応じて、レーザ光源10と偏光位相差可変部材30との間に挿入される。具体的には、レーザ光源10の出射するレーザ光Lが偏光でない場合、レーザ光源10と偏光位相差可変部材30との間に偏光部材20が挿入される。レーザ光源10の出射するレーザ光Lが偏光である場合、偏光部材20は挿入されても、挿入されなくてもよい。又、レーザ光Lの偏光面が強化ガラス200の表面210に対して45°になるよう、レーザ光源10、及び、偏光部材20が設置される。偏光部材20としては、例えば、回転可能な状態で配置された偏光板等を用いることができるが、同様の機能を備えた他の部材を用いてもよい。
 光供給部材40は、被測定体である強化ガラス200の表面210に光学的に接触した状態で載置されている。光供給部材40は、レーザ光源10からの光を強化ガラス200に入射させる機能を備えている。光供給部材40としては、例えば、光学ガラス製のプリズムを用いることができる。この場合、強化ガラス200の表面210において、光線がプリズムを介して光学的に入射するために、プリズムの屈折率は強化ガラス200の屈折率とほぼ同じ(±0.2以内)にする必要がある。
 光供給部材40と強化ガラス200との間に、強化ガラス200の屈折率とほぼ同じ屈折率を持つ液体を挟んでもよい。これにより、強化ガラス200内に、効率よくレーザ光Lを入射できる。これについては、第3の実施の形態で詳しく説明する。
 強化ガラス200を通過するレーザ光Lは、微量の散乱光Lを発生する。散乱光Lの輝度は、レーザ光Lの散乱する部分の偏光位相差で変化する。又、レーザ光Lの偏光方向が、強化ガラス200の表面210に対して図2のθs2が45°(±5°以内)になるように、レーザ光源10が設置されている。そのため、強化ガラス200の面内方向にかかる応力の光弾性効果により複屈折を起こし、レーザ光Lが強化ガラス中を進むにつれ、偏光位相差も変化し、その変化に伴い散乱光Lの輝度も変化する。なお、偏光位相差とは、複屈折により生じる位相差(retardation)である。
 又、レーザ光Lは、強化ガラスの表面210に対して、θs1は10°以上30°以下に設定される。これは10°を下回ると、光導波効果によりレーザ光がガラス表面を伝播し、ガラス内部の情報を取ることができなくなるからである。逆に30°を超えると、レーザ光路長に対するガラス内部の深さ分解能が下がり、測定方法として好ましくない。よって、好ましくはθs1=15°±5°に設定する。
 次に、撮像素子60について、図2を用いて説明する。図2は、第1の実施の形態に係る評価装置を図1のH方向から見た図であり、撮像素子60の位置関係を示す図である。レーザ光Lの偏光が強化ガラス200の表面210に対して45°の角度で入射するため、散乱光Lも強化ガラス200の表面210に対して45°角度で放射される。そのため、この強化ガラスの面に対して45°で放射される散乱光Lを捉えるために、撮像素子60が、図2において、強化ガラス200の表面210に対して45°の方向に設置されている。すなわち、図2において、θs2=45°である。
 又、撮像素子60と、レーザ光Lの間に、レーザ光Lによる散乱光Lの画像を撮像素子60に結像するよう光変換部材50が挿入されている。光変換部材50としては、例えば、ガラス製の凸レンズや、複数の凸レンズや凹レンズを組み合わせたレンズを用いることができる。このとき、レンズの開口数(N.A.)が大きいと、ノイズが小さくなり好ましい。
 又、複数のレンズを組み合わせたレンズについて、主光線が光軸に平行であるテレセントリックレンズにすることで、レーザ光Lより四方に散乱する散乱光中、主に強化ガラス200のガラス表面に対して45°方向(撮像素子方向)に散乱する光のみで結像できる。その結果、ガラス表面の乱反射等の不必要な光を低減できる。
 又、レーザ光Lと撮像素子60との間に、応力測定に不必要な光を除去するための光波長選択部材80が挿入されている。光波長選択部材80は、レーザ光Lの波長以外の波長を有する光を50%以上透過させず、好ましくは90%以上透過させない。又、光波長選択部材80を透過する波長の幅は、10nm程度又はそれ以下とすることが好ましい。光波長選択部材80を挿入することにより、レーザ光Lより発生した応力測定に不必要なラマン散乱光、蛍光光や外来光を除去し、応力測定に必要な散乱光Lだけを撮像素子60に集めることができる。光波長選択部材80としては、例えば、誘電体膜を多層にしたバンドパスフィルタや、ショートパスフィルタを用いることができる。
 撮像素子60としては、例えば、CCD(Charge Coupled Device)素子やCMOS(Complementary Metal Oxide Semiconductor)センサ素子を用いることができる。図1及び図2には図示していないが、CCD素子やCMOSセンサ素子は、その素子を制御し、素子から画像の電気信号を取出す制御回路、電気信号をデジタル画像データにするデジタル画像データ生成回路、デジタル画像データを複数枚記録するデジタル記録装置に接続されている。更に、デジタル画像データ生成回路、デジタル記録装置は、演算部70に接続されている。
 演算部70は、撮像素子60、或いは、上記撮像素子60に接続された、デジタル画像データ生成回路、デジタル記録装置から画像データを取り込み、画像処理や数値計算をする機能を備えている。演算部70は、これ以外の機能(例えば、レーザ光源10の光量や露光時間を制御する機能等)を有する構成としてもよい。演算部70は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、メインメモリ等を含む。
 この場合、演算部70の各種機能は、ROM等に記録されたプログラムがメインメモリに読み出されてCPUにより実行されることによって実現できる。演算部70のCPUは、必要に応じてRAMからデータを読み出したり、格納したりできる。但し、演算部70の一部又は全部は、ハードウェアのみにより実現されてもよい。又、演算部70は、物理的に複数の装置等を有してもよい。演算部70としては、例えば、パーソナルコンピュータを用いることができる。又、演算部70にデジタル画像データ生成回路、デジタル記録装置の機能を持たせても良い。
 偏光位相差可変部材30は、強化ガラス200へ入射するときの偏光位相差を時間的に変化させる。変化させる偏光位相差は、レーザ光の波長λの1倍以上である。偏光位相差は、レーザ光Lの波面に対して均一でなければいけない。例えば、水晶楔は、楔の傾斜面のついた方向には偏光位相差が均一でないためレーザ光の波面は均一でない。そのため、偏光位相差可変部材30として水晶楔を用いることは好ましくない。
 レーザ光の波面に均一で偏光位相差を電気的に1λ以上可変できる偏光位相差可変部材30としては、例えば、液晶素子を挙げることができる。液晶素子は、素子に印加する電圧により偏光位相差を可変でき、例えば、レーザ光の波長が630nmである場合、3~6波長の可変が可能である。液晶素子において、印加する電圧で可変できる偏光位相差の最大値は、セルギャップの寸法で決まる。
 通常の液晶素子は、セルギャップが数μmであるため、最大の偏光位相差は1/2λ(数100nm)程度である。又、液晶を使ったディスプレイ等では、それ以上の変化は要求されない。これに対して、本実施の形態で使用する液晶素子は、レーザ光の波長が例えば630nmである場合、630nmの約3倍の約2000nmの偏光位相差を可変する必要があり、20~50μmのセルギャップが必要となる。
 液晶素子に印加する電圧と偏光位相差は比例しない。一例として、セルギャップが30μmの液晶素子の印加電圧と偏光位相差との関係を図3に示す。図3において、縦軸は偏光位相差(波長630nmに対しての波長数)、横軸は液晶素子に印加する電圧(対数で描かれている)である。
 液晶素子に印加する電圧が0Vから10Vで、約8λ(5000nm)の偏光位相差を可変できる。しかし、液晶素子は、一般的に0Vから1Vまでの低電圧では液晶の配向が安定せず、温度変化等で偏光位相差が変動する。又、液晶素子に印加する電圧が5V以上では、電圧の変化に対して偏光位相差の変化が少ない。この液晶素子の場合、1.5Vから5Vの印加電圧で使用することで、4λ~1λ、すなわち約3λの偏光位相差を安定に可変できる。
 偏光位相差可変部材30として液晶素子を用いる場合、偏光位相差可変部材30は液晶を制御する液晶制御回路に接続され、撮像素子60と同期して制御される。この際、偏光位相差を時間的に直線的に可変させ、撮像素子60の撮像のタイミングに同期することが必要である。
 図3は、液晶素子の印加電圧と偏光位相差との関係を例示する図である。図3で示すように、液晶素子の印加電圧と偏光位相差は直線的な変化をしない。そのため、偏光位相差がある時間内で直線的に変化するような信号を発生させ、液晶素子への駆動電圧として印加する必要がある。
 図4は、液晶素子に偏光位相差が時間的に直線的に変化するような駆動電圧を発生させる回路を例示する図である。
 図4において、デジタルデータ記憶回路301には、使用する液晶素子の印加電圧と偏光位相差とを予め測定したデータに基づいて、偏光位相差を一定間隔で変化させるための、偏光位相差に対応する電圧値が、必要な偏光位相差変化の範囲でデジタルデータとしてアドレス順に記録されている。表1に、デジタルデータ記憶回路301に記録されるデジタルデータの一部を例示する。表1の電圧の列が、記録されるデジタルデータであり、偏光位相差10nmの変化毎の電圧値である。
Figure JPOXMLDOC01-appb-T000006
 クロック信号発生回路302は、水晶振動子等を使い、周波数が一定であるクロック信号を発生させる。クロック信号発生回路302の発生したクロック信号は、デジタルデータ記憶回路301とDAコンバータ303に入力される。
 DAコンバータ303は、デジタルデータ記憶回路301からのデジタルデータをアナログ信号に変換する回路である。クロック信号発生回路302の発生したクロック信号に従って、デジタルデータ記憶回路301から順次記憶された電圧値のデジタルデータが読み出され、DAコンバータ303へ送られる。
 DAコンバータ303では、一定時間間隔で読み出された電圧値のデジタルデータをアナログ電圧に変換する。DAコンバータ303から出力されるアナログ電圧は、電圧増幅回路304を通して、偏光位相差可変部材30として用いる液晶素子へ印加される。
 なお、図4では図示していないが、この液晶素子の駆動回路は、図2の撮像素子60を制御する回路と同期がとられ、液晶素子への駆動電圧の印加の開始とともに、撮像素子60で時間的に連続な撮像を開始する。
 図5は、撮像素子に結像されたレーザ光Lのある瞬間の散乱光像を例示する図である。図5では、上に行くほど強化ガラス200の表面210からの深さが深くなる。図5において、点Aは強化ガラス200の表面210であり、強化ガラス200の表面210の散乱光が強いため、散乱光像は楕円状に広がっている。
 強化ガラス200の表面部には強い圧縮応力がかかっているため、光弾性効果による複屈折により、レーザ光Lの偏光位相差が深さとともに変化する。そのため、レーザ光Lの散乱光輝度も深さとともに変化する。なお、レーザ光の散乱光輝度が、強化ガラスの内部応力により変化する原理については、例えば、Yogyo-Kyokai-Shi(窯業協会誌)80{4}1972、等に説明されている。
 偏光位相差可変部材30により、強化ガラス200に入射する前のレーザ光Lの偏光位相差を時間的に連続して変化させることができる。これにより、図5の散乱光像の各点において、偏光位相差可変部材30で変化させた偏光位相差に応じて散乱光輝度が変化する。
 図6は、図5の点Bと点Cでの散乱光の輝度(散乱光輝度)の時間的な変化を例示する図である。散乱光輝度の時間的な変化は、偏光位相差可変部材30の変化させた偏光位相差に応じ、レーザ光の波長λの周期で、周期的に変化する。例えば、図6において、点Bと点Cでは、散乱光輝度の変化の周期は同じであるが、位相が異なっている。これは、レーザ光Lが点Bから点Cへ進むときに、強化ガラス200中の応力による複屈折で更に偏光位相差が変化したためである。点Bと点Cとの位相差δは、点Bから点Cへレーザ光Lが進んだときに変化した偏光位相差を行路差で表現したものをq、レーザ光の波長をλとすると、δ=q/λとなる。
 局所的に考えると、レーザ光L上の任意の点Sでの、偏光位相差可変部材30の時間的な偏光位相差の変化に伴う、周期的な散乱光輝度の変化の位相Fを、レーザ光Lに沿った位置sで表した関数F(s)に対して、sに対する微分値dF/dsが強化ガラス200の面内応力により発生した複屈折量である。強化ガラス200の光弾性定数Cと、dF/dsから、下記の式1(数1)により、点Sでの強化ガラス200の面内方向の応力σを計算できる。
 本明細書では、レーザ光Lがガラスに対して斜めに入射しているため、ガラス表面から垂直方向の深さに対する応力分布を求める場合は、点sから深さ方向への変換が必要で、後述の式8(数8)に示す。
Figure JPOXMLDOC01-appb-M000007
 一方、偏光位相差可変部材30は、ある時間内に時間的に連続に偏光位相差を1波長以上変化させる。その時間内に、撮像素子60により、複数枚の時間的に連続したレーザ光Lによる散乱光像を記録する。そして、この連続撮影をした散乱光像の各点における時間的な輝度の変化を測定する。
 この散乱光像の各点の散乱光の変化は周期的であり、その周期は場所によらず一定である。そこで、その周期Tをある点の散乱光輝度の変化から測定する。或いは、複数の点での周期の平均を周期Tとしてもよい。
 偏光位相差可変部材30では偏光位相差を1波長以上(1周期以上)変化させるため、散乱光輝度も1周期以上変化する。そのため、複数のピークやバレーの差、或いは、振幅の中点を通る時刻の差等から周期Tの測定が可能である。なお、1周期以下でのデータでは、1周期を知ることは原理的に不可能である。
 ある点での散乱光の周期的な変化のデータにおいて、上記で決めた周期Tを基に、三角関数の最小二乗法やフーリエ積分により、その点での位相Fを正確に求めることができる。
 予め既知である周期Tでの三角関数の最小二乗法やフーリエ積分では、既知である周期Tでの位相成分だけが抽出され、他の周期のノイズを除去可能である。又、その除去能力は、データの時間的変化が長ければ長いほど高くなる。通常、散乱光輝度は弱く、又、実際に変化する位相量も小さいため、数λの偏光位相差の可変によるデータでの測定が必要となる。
 撮像素子60により撮影した画像上のレーザ光Lに沿った散乱光像の各点での散乱光の時間的変化のデータを測定し、それぞれについて、上記と同様の方法で位相Fを求めると、レーザ光Lに沿った、散乱光輝度の位相Fを求めることができる。図7は、ガラス深さに応じた散乱光変化の位相の例である。
 このレーザ光Lに沿った散乱光輝度の位相Fにおいて、レーザ光L上の座標での微分値を計算し、式1により、レーザ光L上の座標sでの応力値を求めることができる。更に、座標sをガラス表面からの距離に換算すれば、強化ガラスの表面からの深さに対する応力値を算出できる。図8は、図7の散乱光変化の位相データを基に、式1より応力分布を求めた例である。
 図9は、異なる時刻t1、t2の実際の散乱光像の例であり、図9の点Aは強化ガラスの表面であり、強化ガラスの表面の荒れにより、表面散乱光が映っている。この表面散乱光像の中心が強化ガラスの表面に相当する。
 図9において、レーザ光の散乱光像が各点で輝度が異なっていることがわかり、又、同じ点であっても、時刻t2での輝度分布は、時刻t1での輝度分布と同じでないことが分かる。これは、周期的な散乱光輝度変化の位相がずれているためである。
 評価装置1において、レーザ光Lの入射面は、強化ガラス200の表面210に対して45°傾いた状態とすることが好ましい。これについて、図10及び図11を参照しながら説明する。
 図10は、強化ガラス中のレーザ光Lの入射面の好ましくない設計例を示す図である。図10では、強化ガラス200中のレーザ光Lの入射面250が強化ガラスの表面210に対して垂直である。
 図10(b)は図10(a)の方向Hから見た図である。図10(b)に示すように、撮像素子60は、強化ガラス200の表面210に対して45°傾けて設置されており、レーザ光Lを斜め45°から観察する。図10の場合、レーザ光L上の異なる2点、点A、点Bから撮像素子60までの距離を距離A、距離Bとすると、その距離が異なる。すなわち、点Aと点Bとで同時にピントを合わせることができず、必要な領域のレーザ光Lの散乱光像を良好な画像として取得できない。
 図11は、強化ガラス中のレーザ光Lの入射面の好ましい設計例を示す図である。図11では、強化ガラス200中のレーザ光Lの入射面250が強化ガラス200の表面210に対して45°傾いている。
 図11(b)は図11(a)の方向Hから見た図である。図11(b)に示すように、撮像素子60は、強化ガラス200の表面210に対して45°傾けて設置されているが、レーザ光Lの通る面である入射面250も同様に45°傾いている。そのため、レーザ光L上のどの点においても撮像素子60までの距離(距離Aと距離B)が同じとなり、必要な領域のレーザ光Lの散乱光像を、良好な画像として取得できる。
 特に、最小ビーム径が20μm以下であるレーザ光を用いる場合、焦点深度が浅く、せいぜい数10μm程度である。そのため、強化ガラス200中のレーザ光Lの入射面250を強化ガラス200の表面210に対して45°傾け、レーザ光L上のどの点においても撮像素子60までの距離を同じにすることは、良好な画像を取得する上で極めて重要である。
 図12は、評価装置1の演算部70の機能ブロックを例示する図である。図12に示すように、演算部70は、輝度変化測定手段701と、位相変化算出手段702と、応力分布算出手段703と、物理量測定手段704とを有している。
 評価装置1は、演算部70の輝度変化測定手段701、位相変化算出手段702、及び応力分布算出手段703により強化ガラスの応力分布を測定できる。なお、物理量測定手段704は、強化ガラスの強度にかかわる物理量を測定する機能を有する部分であり、強化ガラスの応力分布の測定のみを行う場合には物理量測定手段704は用いなくてよい。
 (測定のフロー1:強化ガラスの応力分布の測定)
 図13は、評価装置1を用いた評価方法を例示するフローチャート(その1)であり、評価装置1における強化ガラスの応力分布の測定方法を例示するフローチャートである。図12及び図13を参照しながら、評価装置1における強化ガラスの応力分布の測定のフローについて説明する。
 なお、図13に示す測定は、例えば、素板に強化処理を施して強化ガラスを作製する工程の後に行うことができる。又、図13に示す測定は、素板に結晶化処理を施して結晶化ガラスを作製し、更に作製した結晶化ガラスに強化処理を施して強化結晶化ガラスを作製する工程の後に行ってもよい。
 まず、ステップS401では、偏光のあるレーザ光源10、或いは偏光をかけたレーザ光源10からのレーザ光の偏光位相差を、偏光位相差可変部材30により、時間的に連続してレーザ光の波長に対して1波長以上可変する(偏光位相差可変工程)。
 次に、ステップS402では、偏光位相差が可変されたレーザ光を、光供給部材40を介して、被測定体である強化ガラス200内に表面210に対して斜めに入射させる(光供給工程)。
 次に、ステップS403では、撮像素子60は、強化ガラス200中を進む偏光位相差が可変されたレーザ光による散乱光を、所定の時間間隔で複数回撮像し、複数の画像を取得する(撮像工程)。
 次に、ステップS404では、演算部70の輝度変化測定手段701は、撮像工程で得られた散乱光の時間的に間隔を置いた複数の画像を用いて、偏光位相差可変工程により可変された偏光位相差の時間的変化に伴う散乱光の周期的な輝度変化を測定する(輝度変化測定工程)。
 次に、ステップS405では、演算部70の位相変化算出手段702は、強化ガラス200中に入射されたレーザ光に沿った、散乱光の周期的な輝度変化の位相変化を算出する(位相変化算出工程)。
 次に、ステップS406では、演算部70の応力分布算出手段703は、強化ガラス200中に入射されたレーザ光に沿った、散乱光の周期的な輝度変化の位相変化に基づいて、強化ガラス200の表面210からの深さ方向の応力分布を算出する(応力分布算出工程)。なお、算出した応力分布を、表示装置(液晶ディスプレイ等)に表示させてもよい。
 (測定のフロー2:強化ガラスの応力分布の測定、及び強度にかかわる物理量の測定)
 評価装置1は、演算部70の輝度変化測定手段701、位相変化算出手段702、応力分布算出手段703、及び物理量測定手段704により強化ガラスの応力分布を測定すると共に、強化ガラスの強度にかかわる物理量を測定できる。
 図14は、評価装置1を用いた評価方法を例示するフローチャート(その2)であり、評価装置1における強化ガラスの応力分布の測定方法、及び強化ガラスの強度にかかわる物理量の測定方法を例示するフローチャートである。図12及び図14を参照しながら、評価装置1における強化ガラスの応力分布の測定、及び強化ガラスの強度にかかわる物理量を測定するフローについて説明する。
 なお、図14に示す測定は、例えば、素板に結晶化処理を施して結晶化ガラスを作製し、更に作製した結晶化ガラスに強化処理を施して強化結晶化ガラスを作製する工程の後に行うことができる。
 まず、図13の場合と同様にステップS401~S403を実行する。そして、ステップS404~S406と並行してステップS414を実行する。ステップS414では、演算部70の物理量測定手段704は、ステップS403の撮像工程で得られた散乱光の時間的に間隔を置いた複数の画像を用いて、強化ガラスの強度にかかわる物理量を測定する(物理量測定工程)。ステップS414は、ステップS404~S406と略同時に実行できる。なお、測定した物理量を、表示装置(液晶ディスプレイ等)に表示させてもよい。
 ここで、『強化ガラスの強度にかかわる物理量』とは、例えば、屈折率、結晶化率、結晶粒径、結晶粒密度、ヘイズ、ガラス中の欠陥や不純物の量等の物理量、及びこれらの物理量を求めるために必要なパラメータ(散乱光輝度振幅値、平均散乱光輝度、散乱光輝度分散値等)を含むものとする。すなわち、物理量測定手段704は、結晶化率等の物理量を直接測定せずに、散乱光輝度振幅値や平均散乱光輝度のみを測定してもよい。この場合でも、物理量測定手段704の測定結果から、強化ガラスの強度を推定できる。
 以下に、強化ガラスの強度にかかわる物理量の測定について、更に詳しく説明する。
 (強化ガラスの強度にかかわる物理量の測定例1)
 図15(a)は、撮像素子60で得られた、ある時刻の散乱光の画像であり、図15(b)は、図15(a)の領域Eの拡大図である。又、図16は、図15(a)の領域Eにおける平均散乱光輝度の時間的変化のグラフである。偏光位相差可変部材30により入射するレーザ光Lの位相差が変化すると、それに伴い、散乱光輝度も変化する。そのため、図16に示す散乱光輝度の時間的変化のグラフでは、散乱光輝度がレーザ光の位相差の変化に伴う周期的な変化をする。その散乱光輝度の変化分の振幅値を散乱光輝度振幅値As、散乱光輝度の変化分の平均値を平均散乱光輝度Isとする。
 通常、散乱光には、幾つかの散乱機構による散乱光が含まれている。波長が入射光の波長と同じである散乱光は、散乱する粒子の大きさと波長との関係で、散乱の性質が異なる。散乱粒子の直径をD、入射光の波長をλとし、入射光の波長λが一定とすると、散乱粒子の十分小さな場合はレイリー散乱での散乱機構で散乱され、D=λ×1/10位から、ミー散乱での散乱機構に変わり始め、D≧λでは、完全にミー散乱となる。
 結晶化ガラスのヘイズの大きさは、結晶粒径、結晶粒密度、結晶とガラス相の屈折率差によって決まる。結晶とガラス相の屈折率差が小さいほどヘイズは小さくなるが、結晶とガラス相の屈折率を完全に一致させることは難しく、0.05~0.50程度の屈折率差が存在するのが一般的である。例えば、結晶とガラス相の間の屈折率差が0.1程度である場合、強化結晶化ガラスの結晶粒径(結晶粒の直径)が可視光で透明であるためには、強化結晶化ガラスの結晶粒径は可視光の波長約600nmより十分小さく、10nm~100nmに制御されている。そのため、多くの場合、レイリー散乱機構が支配的であるが、結晶粒径が最大の100nmでは、ミー散乱機構の影響も出てくる。又、散乱光輝度は、レイリー散乱、ミー散乱とも、散乱粒子の径に高次に比例し、散乱粒子密度に比例している。レイリー散乱では、散乱粒子径の6乗、ミー散乱では2乗に比例し、レイリー散乱からミー散乱機構に変化していく領域ではその間と考えられる。すなわち、波長が入射光と変わらないレイリー散乱、ミー散乱では、散乱粒子径が大きいほど、密度が高いほど、散乱光輝度は高くなる。
 又、散乱光の波長が、入射光の波長と異なる散乱として、蛍光散乱、ラマン散乱がある。通常、蛍光散乱はガラス中の不純物や欠陥等により発生し、ラマン散乱は組成や結合状態により発生する。
 これらの幾つかの散乱機構の中で、レイリー散乱では、入射光の偏光状態により散乱光輝度が異なる。応力の測定では、内部応力の光弾性効果により複屈折を起こしレーザ光Lがガラス中を進むとともに、偏光状態は変化していき、それに伴い散乱光輝度が変化する。これは、評価装置1の原理に使用されている。一方、他の散乱機構であるミー散乱、蛍光散乱、ラマン散乱では、一般的に散乱光輝度が入射光の偏光状態に依存しない。そのため、ミー散乱、蛍光散乱、ラマン散乱は、評価装置1の原理には使用されていない。
 評価装置1では、光供給部材40と撮像素子60の間に、レーザ光の波長近傍のみを透過する光波長選択部材80を設けている。光波長選択部材80を透過する波長の幅は10nm程度又はそれ以下と非常に狭いため、撮像素子60には、レーザ光の波長と略同じ波長の散乱光のみが撮像される。例えば、散乱光中、波長の異なる、蛍光散乱、ラマン散乱成分は含まれていない。そのため、散乱光輝度振幅値Asは、レイリー散乱によるものであり、平均散乱光輝度Isはミー散乱によるものである。
 散乱光輝度振幅値Asは、散乱粒子すなわち強化結晶化ガラスの結晶粒の大きさ、結晶粒密度により決まり、平均散乱光輝度Isと散乱光輝度振幅値Asの比は、レイリー散乱成分とミー散乱成分の比率で決まるので、散乱粒子すなわち結晶粒の大きさによって決まる。
 散乱光輝度振幅値Asと平均散乱光輝度Isの二つの測定値から、直接散乱粒子径や散乱粒子密度の絶対値を算出することはできない。しかし、散乱粒子径、散乱粒子密度すなわち、結晶粒径、結晶粒密度が異なる強化結晶化ガラスでは、散乱光輝度振幅値As及び平均散乱光輝度Isの値は異なり、又、それぞれ、独立して差を見ることが可能である。すなわち、直接散乱粒子径や散乱粒子密度の絶対値を算出しなくても、散乱光輝度振幅値Asや平均散乱光輝度Isを測定することで、散乱粒子径や散乱粒子密度のばらつき等を知ることができる。
 又、別な方法で、散乱粒子径、散乱粒子密度を測定し、散乱光輝度振幅値As及び平均散乱光輝度Isと結晶粒径や結晶粒密度との関係を実験的に求めることで、結晶粒径や結晶粒密度を推測できる。
 例えば、散乱光輝度振幅値As及び平均散乱光輝度Isと結晶粒径や結晶粒密度との関係を実験的に求めてテーブルや関数として演算部70内のメモリに記憶しておく。そして、演算部70の物理量測定手段704がステップS403の撮像工程で得られた画像を用いて散乱光輝度振幅値As及び平均散乱光輝度Isを測定し、テーブルや関数を用いて散乱光輝度振幅値As及び平均散乱光輝度Isの測定値から結晶粒径や結晶粒密度を推測できる。
 上記の散乱粒子径、散乱粒子密度が反映された散乱光輝度振幅値As及び平均散乱光輝度Isの測定値は、図15(a)の領域Eでの値である。しかし、測定する領域をレーザ画像のガラス表面から深さ方向の各深さに移動させて測定すれば、強化結晶化ガラスの深さ方向の散乱粒子径、散乱粒子密度を知ることができる。これにより、結晶化状態が表面から深さ方向に均一であることを確認できる。
 (強化ガラスの強度にかかわる物理量の測定例2)
 図15(b)に示すように、散乱光画像は、均一ではなく、粒子状になっている。これは、入射光がレーザ光であるため、スペックルにより発生したムラであり、スペックルパターンと呼ばれている。このスペックルパターンは、散乱する粒子のサイズや密度、光学系で決まる。
 スペックルパターンの輝度のムラの度合い、例えば、領域Eの輝度の分散値を計算しSsとする。分散値Ssは、散乱粒子密度を反映する。結晶粒の大きさが小さく、ミー散乱の成分が小さく、ミー散乱成分の強度の測定ができない場合、このスペックルパターンの輝度の分散値Ssと散乱光輝度振幅値Asにより、結晶粒径、結晶粒密度を推測できる。
 すなわち、直接散乱粒子径や散乱粒子密度の絶対値を算出しなくても、分散値Ssや散乱光輝度振幅値Asを測定することで、散乱粒子径や散乱粒子密度のばらつき等を知ることができる。なお、散乱光輝度振幅値As及び平均散乱光輝度Isの場合と同様に、散乱粒子径、散乱粒子密度を測定し、分散値Ss及び散乱光輝度振幅値Asと結晶粒径や結晶粒密度との関係を実験的に求めてテーブルや関数として演算部70内のメモリに記憶しておくことで、結晶粒径や結晶粒密度を推測できる。
 (強化ガラスの強度にかかわる物理量の測定例3)
 図15(a)において、θは散乱光画像のレーザ光のビームに沿った角度である。後述もするが、この角度θは、測定されるガラスの屈折率で決まる。
 光供給部材40の屈折率は、理想的には強化ガラス200の屈折率と全く同じであることが望ましい。しかし、強化ガラスの種類ごとに、光供給部材40を交換することが現実的でないことなどから、一般的には強化ガラス200の屈折率に近い屈折率を有する材料が光供給部材40として使われる。すなわち、強化ガラス200の屈折率と光供給部材40の屈折率とは若干のずれがある。又、強化ガラスの屈折率にもバラつきがある。光供給部材40と強化ガラス200の屈折率が異なると、レーザ光Lの強化ガラス200内への入射角度θs1は、強化ガラス内に入射した屈折角θs1’と異なる。その角度は、レーザ光源10の位置、角度、光供給部材40の各面の角度、屈折率、撮像素子の位置、角度、及び、強化ガラスの屈折率で決まるため、強化ガラスの屈折率以外が既知であれば、散乱光画像のレーザ光Lのビームに沿った角度θを測定し、強化ガラスの屈折率を算出できる。
 一方、強化結晶化ガラスでは、多くの場合、もとのガラスの屈折率と析出させる結晶の屈折率が異なる。例えば、リチウムアルミノシリケート系を母材とする強化結晶化ガラスでは、母材のガラスの屈折率は1.52で、析出させる、ベータスポジュメンは屈折率が1.66である。又、析出される結晶の母材に対する体積比率は、10~50%程度であり、結晶化の体積比率により、全体の屈折率が変わる。すなわち、強化結晶化ガラスの屈折率を測定することにより、結晶化の体積比率を算出できる。
 (強化ガラスの強度にかかわる物理量の測定例4)
 図17に、散乱光輝度振幅値Asとガラスの深さの関係を例示する。このガラス表面の振幅値からガラス表層の外部ヘイズ値を推測できる。又、ガラス内部の振幅値の減衰カーブから内部ヘイズ値を推測できる。更に、この外部ヘイズ値と内部ヘイズ値を利用して透過率を推測できる。なお、片方のヘイズ値が小さい場合は、もう一方のヘイズ値だけを使って推定しても良い。又、レーザ光を複数使うことで波長別の透過率を推定し強化ガラスの色味を推定しても良い。更にガラス両面を測定することで、その散乱光輝度振幅値差や透過率差からガラス表層の差を調べ、ガラスの面判定をしても良い。具体的には、アンチグレア面、アンチフィンガープリント面、ARコーティング面、アンチバクテリア面、ITO面、フロート搬送面(スズ面)等が考えられる。
 なお、上記の測定例1~4に示した散乱光輝度振幅値As、平均散乱光輝度Is、分散値Ss及びガラスの屈折率の測定値は強化結晶化ガラスに限らず、結晶化されていない強化ガラスにおいても、不純物や異常結晶等のガラス欠点や、組成や、不均一性や透明度等の品質を示す数値として有用である。すなわち、図14に示す測定は、素板に強化処理を施して強化ガラス(強化結晶化ガラスではない)を作製する工程の後に行ってもよい。又、上記の測定例1~4に示した物理量以外の物理量を測定しても良い。
 このように、評価装置1では、表面の導波光を利用した応力測定装置とは異なり、強化ガラスの屈折率分布に依存した応力測定を行わず、散乱光に基づいた測定を行う。そのため、強化ガラスの屈折率分布にかかわらず(強化ガラスの屈折率分布とは無関係に)、強化ガラスの応力分布を、強化ガラスの最表面から従来よりも深い部分まで測定可能となる。例えば、ある深さから、深さとともに屈折率が高くなる特徴を持つリチウム・アルミノシリケート系の強化ガラス等についても、応力測定が可能である。
 又、レーザ光の偏光位相差を、偏光位相差可変部材30により、時間的に連続してレーザ光の波長に対して1波長以上可変する。そのため、散乱光の周期的な輝度変化の位相を、三角関数の最小二乗法や、フーリエ積分により求めることが可能となる。三角関数の最小二乗法やフーリエ積分では、従来のように波のピークやバレーの位置の変化により位相を検知する方法とは異なり、波の全データが扱われ、又、予め分かっている周期に基づいているため、他の周期のノイズを除去可能である。その結果、散乱光の周期的な輝度変化の位相を容易かつ正確に求めることが可能となる。
 又、評価装置1では、応力分布の測定用として撮像された画像と同一の画像を用いて強化ガラスの強度にかかわる物理量を測定できる。これにより、強度にかかわる物理量を効率よく測定可能となり、又、強化ガラスに対する幅広い評価が可能となる。
 〈第1の実施の形態の変形例1〉
 第1の実施の形態の変形例1では、第1の実施の形態とは構成の異なる評価装置の例を示す。なお、第1の実施の形態の変形例1において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
 図18は、第1の実施の形態の変形例1に係る評価装置を例示する図である。図18に示すように、評価装置1Aは、光波長選択部材80が光波長選択部材81及び82に置換された点が、評価装置1(図1参照)と相違する。なお、図18において、演算部の図示は省略している。
 光波長選択部材81及び82は、例えば、透過する波長帯域が異なる2種のバンドパスフィルタであり、手動或いは自動で切り替え可能である。
 光波長選択部材81は、第1の実施形態の光波長選択部材80と同様に、レーザ光Lの波長以外の波長を有する光を50%以上透過させず、好ましくは90%以上透過させない。又、光波長選択部材81を透過する波長の幅は、10nm程度又はそれ以下とすることが好ましい。
 光波長選択部材82は、レーザ光Lの波長と異なる波長の光を透過させるバンドパスフィルタであり、中心波長は、例えば、測定する強化ガラス特有のラマン散乱の波長、或いは蛍光散乱の波長と一致させることができる。光波長選択部材82を透過する光の波長の幅は、必ずしも、光波長選択部材81ほど狭くなくてよい。
 評価装置1Aでは、まず、光波長選択部材81を用い、応力測定と共に、散乱光輝度を測定する。次に、光波長選択部材81を光波長選択部材82に切り替え、散乱光輝度を測定する。そして、光波長選択部材81を用いた場合の散乱光輝度と、光波長選択部材82を用いた場合の散乱光輝度との比率を計算する。これにより、強化ガラス中に析出した結晶や特定の不純物量等に関する情報を知ることができる。
 なお、光波長選択部材は2種には限定されず、3種以上を切り替え可能に配置しても良い。
 〈第1の実施の形態の変形例2〉
 第1の実施の形態の変形例2では、第1の実施の形態とは構成の異なる評価装置の他の例を示す。なお、第1の実施の形態の変形例2において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
 図19は、第1の実施の形態の変形例2に係る評価装置を例示する図である。図19に示すように、評価装置1Bは、レーザ光源10がレーザ光源11及び12に置換され、光波長選択部材80が光波長選択部材81及び82に置換された点が、評価装置1(図1参照)と相違する。なお、図19において、演算部の図示は省略している。
 レーザ光源11及び12は、発振する波長が異なる2種のレーザである。光波長選択部材81及び82は、例えば、透過する波長帯域が異なる2種のバンドパスフィルタである。レーザ光源11の場合には光波長選択部材81が選択され、レーザ光源12の場合には光波長選択部材82が選択されるように、手動或いは自動で切り替え可能である。
 レーザ光源11及び12の波長は、例えば、405nm、520nm、640nm、850nm等の中から適宜選択できる。光波長選択部材81及び82は、選択したレーザ光源11及び12の波長近傍のみを透過させるバンドパスフィルタを適宜選択できる。
 評価装置1Bでは、波長の異なるレーザ光源11及び12並びに光波長選択部材81及び82を用いて、散乱光輝度振幅値As、平均散乱光輝度Is、分散値Ss等を測定できる。散乱光輝度や振る舞いは、波長と散乱粒子径の関係に敏感に影響するため、複数の波長において散乱光からの情報を得ることにより、より信頼性の高い、結晶化状態を知ることができる。
 なお、レーザ光源及び光波長選択部材は2種には限定されず、3種以上を切り替え可能に配置しても良い。
 又、評価装置1Bに代えて、波長の異なるレーザ及び光波長選択部材を備えた評価装置1を複数台用いても、同様の効果を得ることができる。
 〈第1の実施の形態の変形例3〉
 第1の実施の形態の変形例3では、第1の実施の形態とは構成の異なる評価装置の更に他の例を示す。なお、第1の実施の形態の変形例3において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
 図20は、第1の実施の形態の変形例3に係る評価装置を例示する図である。図20(a)に示すように、評価装置1Cは、光波長選択部材80、光変換部材50、及び撮像素子60が、強化ガラス200に対して、光供給部材41とは反対側に配置され、更に、強化ガラス200の裏面220と接するように光取出し部材42が配置された点が、評価装置1(図1参照)と相違する。なお、図20において、演算部の図示は省略している。
 評価装置1Cでは、強化ガラス200の裏面220側で生じた散乱光LS2を、プリズム等である光取出し部材42、光波長選択部材80、及び光変換部材50を介して、撮像素子60に入射させ、撮像素子60で一定時間内、時間的に間隔を置き複数撮像する。これ以外の構成及び動作は、第1の実施の形態と同様である。
 なお、光供給部材41を設けることで、レーザ光Lの強化ガラス200の表面210での反射を低減できるが、レーザ光Lの強化ガラス200の表面210での反射が問題ない程度であれば、光供給部材41を設けずに、レーザ光Lを直接強化ガラス200に入射してもよい。
 強化ガラス200は、一般に、表裏面側が同一の応力分布であるため、第1の実施の形態のように、強化ガラス200の表面210側(レーザ光Lの入射側)の散乱光Lsを検出してもよいし、第1の実施の形態の変形例1のように、強化ガラス200の裏面220側(レーザ光Lの出射側)の散乱光LS2を検出してもよい。
 なお、強化ガラス200の裏面220側の散乱光LS2を検出する場合において、強化ガラス200中のレーザ光が全反射の条件を満たしていることが好ましい。強化ガラス200の裏面220においてレーザ光を全反射させると、強化ガラス200の裏面220での乱反射を低減でき、撮像素子60に不要光が入射することを防止できるためである。強化ガラス200へのレーザ光の入射角度を調整することで、強化ガラス200の裏面220で、レーザ光が全反射の条件を満たすことができる。
 或いは、図20(b)に示す評価装置1Dのように、強化ガラス200の表面210側で生じて裏面220側に出射した散乱光LS3を、プリズム等である光取出し部材42、光波長選択部材80、及び光変換部材50を介して、撮像素子60に入射させ、撮像素子60で一定時間内、時間的に間隔を置き複数撮像してもよい。これ以外の構成及び動作は、第1の実施の形態と同様である。
 なお、評価装置1Cと同様に、光供給部材41を設けることで、レーザ光Lの強化ガラス200の表面210での反射を低減できるが、レーザ光Lの強化ガラス200の表面210での反射が問題ない程度であれば、光供給部材41を設けずに、レーザ光Lを直接強化ガラス200に入射してもよい。
 評価装置1C及び1Dの何れの場合にも、評価装置1と同様に、強化ガラス200中に入射されたレーザ光Lに沿った、散乱光の周期的な輝度変化の位相変化から、強化ガラス200の裏面220からの深さ方向の応力分布を算出できる。
 特に、評価装置1Dによれば、ガラス板厚に依存することなくレーザの焦点がガラス表層から同じ位置に設定される。そのため、同じような応力分布を有する強化ガラスを測定するときでも、レーザの焦点位置を調整する必要がなくなったり、微調整で済んだりするため、測定時間が短かったり繰り返し精度がより向上したりするという効果を奏する。
 〈第1の実施の形態の変形例4〉
 第1の実施の形態の変形例4では、第1の実施の形態とは構成の異なる評価装置の更に他の例を示す。なお、第1の実施の形態の変形例4において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
 図21は、第1の実施の形態の変形例4に係る評価装置を例示する図である。図21に示すように、評価装置1Eは、光波長選択部材80A、光変換部材50A、及び撮像素子60Aが、強化ガラス200に対して、光供給部材40とは反対側に配置され、更に、強化ガラス200の裏面220と接するように光取出し部材42が配置された点が、評価装置1(図1参照)と相違する。なお、図21において、演算部の図示は省略している。
 評価装置1Eでは、評価装置1と同様に、強化ガラス200の表面210側から出射した散乱光Lを検出できる。更に、評価装置1Eでは、強化ガラス200の裏面220側から出射した散乱光LS2を、プリズム等である光取出し部材42、光波長選択部材80A、及び光変換部材50Aを介して、撮像素子60Aに入射させ、撮像素子60Aで一定時間内、時間的に間隔を置き複数撮像する。これ以外の動作は、第1の実施の形態と同様である。
 評価装置1Eでは、図21の構成により、強化ガラス200の表面210からの深さ方向の応力分布、及び強化ガラス200の裏面220からの深さ方向の応力分布を同時に算出できる。表裏面側が同一の応力分布でない強化ガラスを測定する場合や、任意の強化ガラスにおいて表裏面側が同一の応力分布であるか否かを確認したい場合等に有効である。
 〈第1の実施の形態の変形例5〉
 第1の実施の形態の変形例5では、第1の実施の形態とは構成の異なる偏光位相差可変部材の例を示す。なお、第1の実施の形態の変形例5において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
 偏光位相差可変部材として、透明材料の光弾性効果を利用し、加圧により偏光位相差を可変することもできる。図22は、光弾性効果を利用した偏光位相差可変部材の説明図である。
 図22に示す偏光位相差可変部材30Aにおいて、略直方体の偏光位相差発生材料310の一面が固定治具311で固定され、偏光位相差発生材料310の反対面がピエゾ素子312の一面に接し、ピエゾ素子312の反対面が固定治具313で固定されている。
 偏光位相差発生材料310のピエゾ素子312に接している面と直角方向の対向する2つの面310a及び310bは鏡面に加工してあり、偏光のある光線Qが通過できるようなっている。偏光位相差発生材料310としては、透明で光弾性効果が大きな材料、例えば、ガラスでは石英ガラス、樹脂ではポリカーボネートを用いることができる。
 ピエゾ素子312は、電圧が印加されると電圧印加方向に伸び縮みする。伸びるか縮むかは電圧の正負で決まる。図22には図示していないが、ピエゾ素子312に印加する電圧を制御するピエゾ素子駆動電圧発生回路がピエゾ素子312に接続されている。
 ピエゾ素子312は、ピエゾ素子駆動電圧発生回路によりピエゾ素子312が伸びる電圧が印加されると、電圧が印加される方向に長さが伸びようとするが、その伸びる方向に偏光位相差発生材料310が位置されるようピエゾ素子312が配置されている。
 ピエゾ素子駆動電圧発生回路によりピエゾ素子312が伸びる方向の電圧が印加されると、ピエゾ素子312は偏光位相差発生材料310の方向に伸びる。固定治具311及び313で固定されているので、偏光位相差発生材料310が縮み圧縮応力がかかる。偏光位相差発生材料310の圧縮応力により、光線Qが通過する方向に複屈折が生じ、光線Qには偏光位相差が発生する。その偏光位相差の量はピエゾ素子312に印加する電圧に比例し、ピエゾ素子312に駆動電圧を印加するピエゾ素子駆動電圧発生回路で偏光位相差を制御可能である。
 例えば、偏光位相差発生材料310として、10mmの立方体のポリカーボネートを使用する。ポリカーボネートの光弾性定数は約700nm/cm/MPa、ヤング率は約2.5GPaである。
 ピエゾ素子312としては、例えば、ピエゾ効果の大きなチタン酸ジルコン酸鉛等のペロブスカイト結晶構造を有する高誘電体セラミックを電極と交互に積み重ねた積層ピエゾ素子を用いることができる。例えば、積層ピエゾ素子において、1層の厚みが200μmで100層、長さ20mm程度にすることで、印加電圧100Vで10μm以上の伸びを得ることができる。
 ピエゾ素子312の材料であるチタン酸ジルコン酸鉛のヤング率はポリカーボネートに比べて10倍以上あるので、ピエゾ素子312の伸びは、ほぼ全てポリカーボネートの圧縮になり、ピエゾ素子312が10μm伸びると、10mmの立方体のポリカーボネートは0.1%圧縮され、その時の圧縮応力は2.5MPaとなる。10mmの偏光位相差発生材料310を光線Qが通過すると、1750nmの偏光位相差が発生し、波長630nmであれば、2.8λの偏光位相差を可変できる。
 例えば、偏光位相差発生材料310として、10mmの立方体の石英ガラスを使用する。石英ガラスの光弾性定数は約35nm/cm/MPa、ヤング率は約70GPaである。ピエゾ素子312の材料であるチタン酸ジルコン酸鉛のヤング率は石英とほぼ同じレベルなので、ピエゾ素子312の伸びは、ほぼ半分が石英ガラスの圧縮になり、ピエゾ素子312が10μm伸びると、10mmの立方体のポリカーボネートは約0.05%圧縮され、その時の圧縮応力は約35MPaとなる。10mmの偏光位相差発生材料310を光線Qが通過すると、1225nmの偏光位相差が発生し、波長630nmであれば、1.9λの偏光位相差を可変できる。
 このように材料を変形させて偏光位相差を作る場合は、光弾性定数とヤング率を乗じた値が重要で、ポリカーボネートの場合0.18(単位無し)、石英の場合0.26(単位無し)となる。つまり、この値を0.1以上の透明部材を偏光位相差発生材料310として用いることが重要になる。
 このように、偏光位相差可変部材は液晶素子に限定されるものではなく、強化ガラス200へ入射するときの偏光位相差を時間的に変化させることができ、かつ、変化させる偏光位相差がレーザ光の波長λの1倍以上であることを実現できれば、ピエゾ素子を応用した形態であってもよいし、それ以外の任意の形態であってもよい。
 〈第2の実施の形態〉
 第2の実施の形態では、第1の実施の形態に係る評価装置と組み合わせて用いる評価装置の例を示す。なお、第2の実施の形態において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
 図23は、第2の実施の形態に係る評価装置を例示する図である。例えば、Yogyo-Kyokai-Shi(窯業協会誌)87{3}1979等で説明されている。図23に示すように、評価装置2は、光源15と、光供給部材25と、光取出し部材35と、光変換部材45と、偏光部材55と、撮像素子65と、演算部75とを有する。評価装置2は、図1に示す評価装置1と組み合わせて用いることができる。評価装置2は、図18に示す評価装置1A、図19に示す評価装置1B、図20に示す評価装置1C及び1D、図21に示す評価装置1Eと組み合わせて用いてもよい。
 評価装置2において、光源15は、光供給部材25から強化ガラス200の表面層に光線Laを入射するように配置されている。干渉を利用するため、光源15の波長は、単純な明暗表示になる単波長であることが好ましい。
 光源15としては、例えば、容易に単波長の光が得られるNaランプを用いることができ、この場合の波長は589.3nmである。又、光源15として、Naランプより短波長である水銀ランプを用いてもよく、この場合の波長は、例えば水銀I線である365nmである。但し、水銀ランプは多くの輝線があるので、365nmラインだけを透過させるバンドパスフィルタを通して使用することが好ましい。
 又、光源15としてLED(Light Emitting Diode)を用いてもよい。近年、多くの波長のLEDが開発されているが、LEDのスペクトル幅は半値幅で10nm以上あり、単波長性が悪く、温度により波長が変化する。そのため、バンドパスフィルタを通して使用することが好ましい。
 光源15をLEDにバンドパスフィルタを通した構成にした場合、Naランプや水銀ランプほど単波長性はないが、紫外域から赤外域まで任意の波長を使うことができる点で好適である。なお、光源15の波長は、評価装置2の測定の基本原理には影響しないため、上に例示した波長以外の光源を用いても構わない。
 但し、光源15として紫外線を照射する光源を用いることで、測定の分解能を向上できる。すなわち、評価装置2で測定する強化ガラス200の表面層は数μm程度の厚さであるため、光源15として紫外線を照射する光源を用いることにより適度な本数の干渉縞が得られ、分解能が向上する。一方、光源15として紫外線よりも長波長の光を照射する光源を用いると、干渉縞の本数が減るため分解能が低下する。
 光供給部材25及び光取出し部材35は、被測定体である強化ガラス200の表面210に光学的に接触した状態で載置されている。光供給部材25は、光源15からの光を強化ガラス200に入射させる機能を備えている。光取出し部材35は、強化ガラス200の表面層を伝播した光を強化ガラス200の外に出射させる機能を備えている。
 光供給部材25及び光取出し部材35としては、例えば、光学ガラス製のプリズムを用いることができる。この場合、強化ガラス200の表面210において、光線がこれらプリズムを介して光学的に入射及び出射するために、これらプリズムの屈折率は強化ガラス200の屈折率よりも大きくする必要がある。又、各プリズムの傾斜面において、入射光及び出射光が略垂直に通過するような屈折率を選ぶ必要がある。
 例えば、プリズムの傾斜角が60°で、強化ガラス200の屈折率が1.52の場合は、プリズムの屈折率は例えば1.72である。なお、光供給部材25及び光取出し部材35として、プリズムに代えて、同様の機能を備えた他の部材を用いてもよい。又、光供給部材25及び光取出し部材35を一体構造としてもよい。又、安定に光学的な接触をさせるために、光供給部材25及び光取出し部材35と強化ガラス200の間に、光供給部材25及び光取出し部材35の屈折率と強化ガラス200の屈折率の間の値となる屈折率の液体(ゲル状でもよい)を充填することもある。
 光取出し部材35から出射された光の方向には撮像素子65が配置されており、光取出し部材35と撮像素子65との間に、光変換部材45と偏光部材55が挿入されている。
 光変換部材45は、光取出し部材35から出射された光線を輝線列に変換して撮像素子65上に集光する機能を備えている。光変換部材45としては、例えば、凸レンズを用いることができるが、同様の機能を備えた他の部材を用いてもよい。
 偏光部材55は、強化ガラス200と光取出し部材35との境界面に対して平行及び垂直に振動する二種の光成分のうち一方を選択的に透過する機能を備えている光分離手段である。偏光部材55としては、例えば、回転可能な状態で配置された偏光板等を用いることができるが、同様の機能を備えた他の部材を用いてもよい。ここで、強化ガラス200と光取出し部材35との境界面に対して平行に振動する光成分はS偏光であり、垂直に振動する光成分はP偏光である。
 なお、強化ガラス200と光取出し部材35との境界面は、光取出し部材35を介して強化ガラス200の外に出射した光の出射面と垂直である。そこで、光取出し部材35を介して強化ガラス200の外に出射した光の出射面に対して垂直に振動する光成分はS偏光であり、平行に振動する光成分はP偏光であると言い換えてもよい。
 撮像素子65は、光取出し部材35から出射され、光変換部材45及び偏光部材55を経由して受光した光を電気信号に変換する機能を備えている。撮像素子65としては、例えば、撮像素子60と同様の素子を用いることができる。
 演算部75は、撮像素子65から画像データを取り込み、画像処理や数値計算をする機能を備えている。演算部75は、これ以外の機能(例えば、光源15の光量や露光時間を制御する機能等)を有する構成としてもよい。演算部75は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、メインメモリ等を含む。
 この場合、演算部75の各種機能は、ROM等に記録されたプログラムがメインメモリに読み出されてCPUにより実行されることによって実現できる。演算部75のCPUは、必要に応じてRAMからデータを読み出したり、格納したりできる。但し、演算部75の一部又は全部は、ハードウェアのみにより実現されてもよい。又、演算部75は、物理的に複数の装置等を有してもよい。演算部75としては、例えば、パーソナルコンピュータを用いることができる。
 評価装置2では、光源15から光供給部材25を通して強化ガラス200の表面層に入射した光線Laは表面層内を伝播する。そして、光線Laが表面層内を伝播すると、光導波効果によりモードが発生し、幾つかの決まった経路を進んで光取出し部材35により、強化ガラス200の外へ取出される。
 そして、光変換部材45及び偏光部材55により、撮像素子65上に、モード毎にP偏光及びS偏光の輝線となって結像される。撮像素子65上に発生したモードの数のP偏光及びS偏光の輝線の画像データは、演算部75へと送られる。演算部75では、撮像素子65から送られた画像データから、撮像素子65上のP偏光及びS偏光の輝線の位置を算出する。
 このような構成により、評価装置2では、P偏光及びS偏光の輝線の位置に基づいて、強化ガラス200の表面層における表面から深さ方向の、P偏光及びS偏光の夫々の屈折率分布を算出できる。又、算出したP偏光及びS偏光の夫々の屈折率分布の差と、強化ガラス200の光弾性定数とに基づいて、強化ガラス200の表面層における表面から深さ方向の応力分布を算出できる。
 このように、評価装置2は、強化ガラスの表面層の導波光を利用して応力分布を測定可能な評価装置である。ここで、ガラス表面の導波光は、強化ガラス200の屈折率が表面から深くなるほど低くなる層で発生する。深くなるにつれ、屈折率が高くなる層では導波光は発生しない。例えば、リチウム・アルミノシリケート系ガラスにおいて、ガラスの最表面付近のみ、屈折率が深くなるにつれ低くなりが、ある深さから、深さとともに屈折率が高くなる。このような強化ガラスの場合、屈折率が深くなるにつれ低くなる最表面層だけに導波光が発生し、その部分すなわち、屈折率分布が反転する深さまでは応力分布が測定できる。
 一方、第1の実施形態1の図9に示した散乱光の画像で、図9中の点Aはガラス表面であり、表面散乱光が強く周囲に広がっている。この広がった表面散乱光は、表面点の情報を反映している。表面点Aでは、正しい情報であるが、例えば、表面点Aから少しガラスの深い部分でのレーザ光Lの散乱光は、本来のその点でのガラスの応力を反映した散乱光に表面点Aでの応力を反映した散乱光が混じっている状態であり、表面散乱光が重なっている部分については、正しく応力を測定することが困難である。
 この表面散乱光が重なる部分の深さはガラスの質や、ガラスの表面状態で異なるが、通常10μm程度である。強化ガラスの強化層深さが深く、最表面付近、例えば、深さ数10μm程度の表面領域において、応力の深さ方向の変化が緩やかな、表面応力値が低い、或いは、強化層が深い強化ガラスでは、正確に測定されない深さ10μm以内でも、それより深い部分の応力の分布をガラス表面へ外挿しても正確な応力を推定できる。
 しかし、強化ガラス200の応力分布が、最表面近傍、例えば、強化ガラス200の表面と深さ10μmの間で急に応力が高くなるような強化ガラスにおいては、外挿による最表面付近の応力値の推定値に大きな誤差が生じる。特に、最表面の応力値は誤差が大きい。しかし、この表面散乱光が邪魔をする領域以外では、絶対値として、正確に応力分布を測定可能である。
 最表面の応力値、或いは最表面付近の応力分布を評価装置2で測定した応力値、或いは応力分布と、評価装置1で測定した応力分布のうち、表面散乱光で邪魔をされない最表面から十分深い部分の応力分布を合わせることにより、全体の応力分布を精度よく測定できる。
 評価装置1の十分信頼がおける深さ領域と評価装置2の測定が可能な深さ領域が不連続の場合には、強化ガラスにおいて、理論的に予想される応力分布関数を使い、最小二乗法で、近似計算をすることにより、不連続な領域の応力も正確に推定可能である。
 図24は、評価装置1及び2で測定した応力分布を同じグラフに示した図である。より具体的には、表面から深さ10μm付近に応力の傾きが急に変化する領域を有するような、2段階で化学強化された応力分布を持つ強化ガラスを、評価装置2で測定した最表面付近の応力分布(領域A)と、評価装置1で測定した十分信頼がおける領域での応力分布(領域C)とを同じグラフに示している。
 図24の例では、中間に、評価装置1でも評価装置2でも測定されない領域Bが存在する。領域A及びCの応力分布に基づいて、領域Bにおいて予想される応力分布の関数で最小二乗法で求めた曲線を点線で示す。この場合、屈曲点が含まれる領域の実データがなくとも、最小二乗法で求められた曲線から、屈曲点位置も推定可能である。
 (測定のフロー)
 次に、図25及び図26を参照しながら測定のフローについて説明する。図25は、評価装置2を用いた評価方法を例示するフローチャートである。図26は、評価装置2の演算部75の機能ブロックを例示する図である。
 まず、ステップS407では、強化ガラス200の表面層内に光源15からの光を入射させる(光供給工程)。次に、ステップS408では、強化ガラス200の表面層内を伝播した光を強化ガラス200の外へ出射させる(光取出工程)。
 次に、ステップS409では、光変換部材45及び偏光部材55は、出射された光の、出射面に対して平行及び垂直に振動する二種の光成分(P偏光とS偏光)について、夫々少なくとも2本以上の輝線を有する二種の輝線列として変換する(光変換工程)。
 次に、ステップS410では、撮像素子65は、光変換工程により変換された二種の輝線列を撮像する(撮像工程)。次に、ステップS411では、演算部75の位置測定手段751は、撮像工程で得られた画像から二種の輝線列の各輝線の位置を測定する(位置測定工程)。
 次に、ステップS412では、演算部75の応力分布算出手段752は、二種の輝線列の夫々少なくとも2本以上の輝線の位置から、二種の光成分に対応した強化ガラス200の表面から深さ方向にわたる屈折率分布を算出する。そして、二種の光成分の屈折率分布の差とガラスの光弾性定数とに基づいて、強化ガラス200の表面から深さ方向にわたる応力分布を算出する(応力分布算出工程)。
 次に、ステップS413では、演算部75の合成手段753は、ステップS412で算出した応力分布と、評価装置1の演算部70の応力分布算出手段703が算出した応力分布とを合成する。
 評価装置1の十分信頼がおける深さ領域と評価装置2の測定が可能な深さ領域が不連続の場合には、演算部75の合成手段753は、例えば、図24に示したように、評価装置2の演算部75の応力分布算出手段752が算出した領域Aの応力分布と、評価装置1の演算部70の応力分布算出手段703が算出した領域Cの応力分布に基づいて、最小二乗法等で領域Bの応力分布を算出する。
 なお、演算部75は、図26の構成に加えて、CT値を算出するCT値算出手段や、DOL_Zero値を算出するDOL_Zero値算出手段等を備えていてもよい。この場合、合成手段753が算出した応力分布に基づいて、CT値やDOL_Zero値を算出できる。
 次に、応力分布の各特性値の導出例について説明する。図27は、強化ガラスの深さ方向の応力分布を例示する図である。図27において、CS2は最表面の応力値、CS_TPは応力分布が屈曲する位置の応力値、CTはガラス最深部における応力値、DOL_TPは応力分布が屈曲する位置のガラス深さ、DOL_zeroは応力値がゼロになるガラス深さ、DOL_tailは応力値がCTと同じ値になるガラス深さである。
 図28に示すように、ステップS501において応力分布を測定し、ステップS502においてステップS501で測定した応力分布に基づいて特性値を導出できる。以下により詳しく説明する。
 図29は、測定された応力分布から各特性値を導出した例を示している。例えば、図30のステップS601において、応力分布の全分布(図29に示す実線全体)を評価装置1で測定する。そして、ステップS604で各特性値を導出する。
 ステップS604では、例えば、以下のようにして、各特性値を導出する。すなわち、図29に示すように、CS2を通る線分、及びDOL_zeroを通る線分の2つの線分を考える。そして、2つの線分と測定した応力分布との差が最小になるようにしたとき、2つの線分の交点をCS_TP及びDOL_TPとする。又、DOL_zeroを通る線分とCTとの交点をDOL_tailとする。
 この手法は、例えば、リチウム・アルミノシリケート系強化ガラス、硝酸ナトリウムと硝酸カリウムとの混合塩を使って1回の化学強化を行った強化ガラス、硝酸ナトリウムが入った溶融塩と硝酸カリウムが入った溶融塩とをそれぞれ1回以上使って化学強化を行った強化ガラス、風冷強化と化学強化の両方を行った強化ガラス等に適用可能である。
 図31は、測定された応力分布から各特性値を導出した他の例を示している。例えば、図32のステップS601では、応力分布の全分布を評価装置1で測定する。次に、ステップS602では、DOL_TPよりもガラス表層側を評価装置2で測定する。なお、評価装置2でDOL_TPよりも深層側を測定することは困難である。ステップS601とステップS602とは順不同である。
 次に、ステップS603では、ステップS602で測定した部分と、それより深層側のステップS601で測定した部分とを合成する。これにより、図31の応力分布が得られる。その後、例えば、図30のステップS604と同様にして、各特性値を導出できる。
 或いは、ステップS602は上記と同様とし、ステップS601ではDOL_zeroとCTを測定する。そして、ステップS603では、図33に示すように、ステップS602で得られたCS_TPとDOL_TPの交点からステップS601で得られたDOL_zeroを通過する直線を引き、CTになるまでを応力分布としてもよい。
 応力分布の測定で得られた各特性値を用いて品質判断を行うことができる。図34は、応力分布の測定で得られた各特性値を用いた品質判断のフローチャートの一例である。図34では、まず、図32と同様にステップS601~S603を実行する。次に、ステップS604では、ステップS601及びS602で得られたデータに基づいて、CS2、CS_TP、CT、DOL_TP、DOL_zero、DOL_tailの6つの特性値(以下、単に6つの測定値と称する場合がある)を導出する。次に、ステップS605では、ステップS604で導出した6つの特性値が、事前の要求仕様に定められた許容範囲に入っているか否かを判断する。この方法では、1回の品質判断に、ステップS601及びS602の2回の測定が必要となる。
 図35は、応力分布の測定で得られた各特性値を用いた品質判断のフローチャートの他の例である。図35(a)では、まず、ステップS600で予備データを取得する。具体的には、例えば、1ロットにつき、所定の数量について、評価装置1及び2を用いて、6つの特性値を導出する。そして、製品の要求仕様と導出した特性値とに基づいて、特性値の許容範囲を決める。
 次に、ステップS601では、DOL_TPよりもガラス深層側を評価装置1で測定する。そして、ステップS604では、ステップS600の評価装置2のデータとステップS601の評価装置1のデータに基づいて、6つの特性値を再度導出する。
 次に、ステップS605では、ステップS604で測定した6つの特性値が、ステップS600で決めた許容範囲に入るか否かを判断する。この方法では、予備工程で測定した数量以外については、1回の品質判断に、ステップS601の1回の測定のみが必要となる。よって、図34の場合よりも品質管理フローを簡素化できる。
 なお、図35(a)の予備データでは板厚も一緒に測定し、ステップS601において板厚も測定することで、ステップS604において板厚の異なる効果も含めて特性値を導出しても良い。
 又、図35(b)のようにしてもよい。図35(b)では、図35(a)と同様に、まず、ステップS600で予備データを取得し、特性値の許容範囲を決める。
 次に、ステップS602では、DOL_TPよりもガラス表層側を評価装置2で測定する。そして、ステップS604では、ステップS600の評価装置1のデータとステップS602の評価装置2のデータに基づいて、6つの特性値を再度導出する。
 次に、ステップS605では、ステップS604で測定した6つの特性値が、ステップS600で決めた許容範囲に入るか否かを判断する。この方法では、予備工程で測定した数量以外については、1回の品質判断に、ステップS602の1回の測定のみが必要となる。よって、この場合も、図35(a)と同様に、図34の場合よりも品質管理フローを簡素化できる。
 なお、図35(b)の予備データでは板厚も一緒に測定し、ステップS602において板厚も測定することで、ステップS604において板厚の異なる効果も含めて特性値を導出しても良い。
 図36は、リチウム・アルミノシリケート系強化ガラスのようなリチウム含有ガラス(リチウムが2wt%以上含まれるガラス)に対して2回以上の強化をする場合の品質判断のフローチャートの一例である。図36では、最終回以外の強化に係る強化ガラスを評価装置1の測定結果に基づいて合否判定し、最終回の強化に係る強化ガラスを評価装置2の測定結果に基づいて合否判定する。
 具体的には、まず、ステップS650で1回目の化学強化を行う。そして、ステップS651で、DOL_TPよりもガラス深層側の応力分布(以降、第1の応力分布と称する場合がある)を評価装置1で測定する。ステップS651での測定結果に問題があれば(NGの場合)、その強化ガラスは出荷対象外となる。一方、ステップS651での測定結果に問題がなければ(OKの場合)、ステップS652に移行し2回目の化学強化を行う。ステップS651における合否判定(OK/NGの判定)は、評価装置1の測定結果から導出した6つの特性値の全部又は一部(例えば、CTとDOL_zero)に基づいて行うことができる。
 次に、ステップS653で、DOL_TPよりもガラス表層側の応力分布(以降、第2の応力分布と称する場合がある)を評価装置2で測定する。ステップS653での測定結果に問題があれば(NGの場合)、その強化ガラスは出荷対象外となる。一方、ステップS653での測定結果に問題がなければ(OKの場合)、ステップS654の次工程へ進む。ステップS653における合否判定(OK/NGの判定)の具体的な方法については、後述する。
 次工程としては、例えば、タッチポリッシュ工程が挙げられる。タッチポリッシュ工程は、例えば、強化ガラス200の表面を比較的低い面圧で研磨する仕上げ研磨の工程である。但し、タッチポリッシュ工程を設けることは必須ではなく、ステップS653が最終工程であってもよい。
 又、ステップS653の後に、3回目の化学強化及び合否判定を行ってもよい。この場合には、ステップS653において2回目の強化に係る強化ガラスをステップS651と同様に評価装置1の測定結果に基づいて合否判定し、3回目の強化(最終回の強化)に係る強化ガラスを評価装置2の測定結果に基づいて合否判定する。
 強化の回数が更に増えた場合も同様であり、最終回以外の強化に係る強化ガラスを評価装置1の測定結果に基づいて合否判定し、最終回の強化に係る強化ガラスを評価装置2の測定結果に基づいて合否判定する。これにより、測定再現性を維持しつつ、評価時間を短縮可能になる。
 ここで、ステップS653における合否判定(OK/NGの判定)の具体的な方法について説明する。
 (評価用データ導出)
 まず、事前に評価用データ導出を行う。具体的には、図37に示すように、ステップS660で1回目の化学強化を行う。そして、ステップS661で、DOL_TPよりもガラス深層側を評価装置1により測定する(1回目の測定)。続いて、ステップS662で2回目の化学強化を行う。そして、ステップS663で、DOL_TPよりもガラス深層側を評価装置1により測定する(2回目の測定)。そして、ステップS664で、ステップS661で得られた1回目の測定結果、ステップS663で得られた2回目の測定結果の一方又は双方に基づいて評価用データ(第1の応力分布)を導出する。
 なお、評価用データ導出は、1ロットにつき所定の数量のみを用いて行う。又、評価用データ導出における1回目の化学強化及び2回目の化学強化は、量産時の1回目の化学強化及び2回目の化学強化と同一条件で行う。
 (ステップS653における合否判定の方法)
 まず、ステップS653で得られた測定結果と、化学強化するガラスの板厚tと、図37のように求めた評価用データとに基づいて、DOL_TPよりもガラス表層側の応力分布(第2の応力分布)と、DOL_TPよりもガラス深層側の応力分布(第1の応力分布)とを合成する。例えば、図38のような結果が得られる。
 図38において、実線で示したFSMはDOL_TPよりもガラス表層側の応力分布(第2の応力分布)を示し、破線で示したSLPはDOL_TPよりもガラス深層側の応力分布(第1の応力分布)を示している。又、t/2はガラスの板厚中心を示している。又、CSは第1の応力分布(SLP)を強化ガラスの表面側に延長したときの表面の応力値を示している。
 次に、合成後の応力分布からCTを見つけて各特性値を導出し、各特性値が許容範囲に入っているか否かにより合否判定(出荷判断)を行う。
 この時、第2の応力分布(図38のFSM)は関数近似してもよい。関数近似の一例としては、下記の式2(数2)で直線近似することが挙げられる。
Figure JPOXMLDOC01-appb-M000008
 式2において、σf(x)は第2の応力分布、aは傾き、CS2は最表面の応力値である。
 関数近似の他の例としては、下記の式3(数3)で曲線近似することが挙げられる。
Figure JPOXMLDOC01-appb-M000009
 式3において、σf(x)は第2の応力分布、aは傾き、CS2は最表面の応力値、erfcは式4(数4)に示す誤差関数である。
Figure JPOXMLDOC01-appb-M000010
 関数近似の更に他の例としては、多項式近似することが挙げられる。
 又、第1の応力分布(図38のSLP)を図38の上下方向(応力値軸方向)に移動させてもよい。具体的には、例えば、図38に示す合成後の応力分布において、第1の応力分布(SLP)を応力値軸方向に移動させ、合成後の応力分布の積分値がゼロになるCTを見つけて各特性値を導出する。そして、各特性値が許容範囲に入っているか否かにより合否判定(出荷判断)を行うことができる。このとき、第1の応力分布の上下方向の移動量は、ガラスの板厚と第2の応力分布をもとに、理論的な式より算出しても、移動量を仮定し、合成後の応力分布の積分値を算出し、積分値がゼロになる移動量を探し出しても良い。
 又、合成後の応力分布σ(x)を下記の式5(数5)で近似し、σ(x)の積分値(x=0~t/2:tはガラスの板厚)がゼロになるCTを見つけて各特性値を導出する。そして、各特性値が許容範囲に入っているか否かにより合否判定(出荷判断)を行ってもよい。
Figure JPOXMLDOC01-appb-M000011
 式5において、σ(x)は合成後の応力分布、σf(x)は第2の応力分布、tは強化ガラスの板厚、CS及びcは第1の応力分布に基づいて導出されるパラメータである。
 式5において、tは既知である。又、CS及びcは、評価用データ導出における評価装置1の測定結果から得ることができる。
 CS及びcは、強化条件に基づいたシミュレーションから得てもよい。
 或いは、CS及びcは、量産における最終回の1回前の強化に係る強化ガラスの評価装置1の測定結果から導出したCS’及びc’並びに下記の式6(数6)及び式7(数7)により得てもよい。
Figure JPOXMLDOC01-appb-M000012
 式6において、A1は比例定数である。
Figure JPOXMLDOC01-appb-M000013
 式7において、A2は比例定数である。
 ここで、A1及びA2は、評価用データ導出における評価装置1の測定結果から得てもよいし、シミュレーションにより得てもよい。
 なお、σ(x)の近似は式5には限定されず、例えば、多項式近似としてもよい。
 [実施例]
 実施例1では、2回の化学強化を行った強化ガラスの応力分布の特性値であるCS_TP(MPa)を、図34で説明した方法により同一サンプルについて3回導出し、評価時間と測定再現性を調べた。
 実施例2では、2回の化学強化を行った強化ガラスの応力分布の特性値であるCS_TP(MPa)を、図36~図38で説明した方法により同一サンプルについて3回導出し、評価時間と測定再現性を調べた。具体的には、図36のステップS653で得られた測定結果と、化学強化するガラスの板厚tと、図37のように求めた評価用データとに基づいて、第2の応力分布(FSM)と第1の応力分布(SLP)とを合成する際に、第1の応力分布(SLP)を応力値軸方向に移動させ、合成後の応力分布の積分値がゼロになるCTを見つけてCS_TPを導出した。
 実施例3では、2回の化学強化を行った強化ガラスの応力分布の特性値であるCS_TP(MPa)を、図36~図38で説明した方法により同一サンプルについて3回導出し、評価時間と測定再現性を調べた。具体的には、図36のステップS653で得られた測定結果と、化学強化するガラスの板厚tと、図37のように求めた評価用データとに基づいて、第2の応力分布(FSM)と第1の応力分布(SLP)とを合成する際に、合成後の応力分布σ(x)を式5で近似し、σ(x)の積分値(x=0~t/2:tはガラスの板厚)がゼロになるCTを見つけてCS_TPを導出した。
 比較例1として、2回の化学強化を行った強化ガラスの応力分布の特性値であるCS_TP(MPa)を、特許文献4に記載の方法により同一サンプルについて3回導出し、評価時間(分)と測定再現性(最大値と最小値との差)を調べた。
 比較例1及び実施例1~3で求めた応力分布を図39に、結果のまとめを表2に示す。なお、図39において、応力分布が屈曲する位置の応力値がCS_TPである。
Figure JPOXMLDOC01-appb-T000014
 表2より、比較例1では、同一サンプルについて3回導出したCS_TPの値が毎回ばらついており、測定再現性が良くない。これに対して、実施例1~3では、同一サンプルについて3回導出したCS_TPの値のばらつきが少なく、比較例1に比べて測定再現性が大幅に向上している。特に、実施例2及び3では、測定再現性が優れている。又、実施例1は評価時間が長いが、実施例2及び3では評価装置1による測定回数が減ったため、評価時間が短く、かつ測定再現性に優れていることが確認できた。
 〈第3の実施の形態〉
 第3の実施の形態では、光供給部材と強化ガラスとの間に液体を挟む例を示す。なお、第3の実施の形態において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
 図40は、第3の実施の形態に係る評価装置を例示する図であり、光供給部材と強化ガラスとの界面近傍の断面を図示している。
 図40に示すように、本実施の形態では、光供給部材40と強化ガラス200との間に、強化ガラス200の屈折率とほぼ同じ屈折率を持つ液体90を挟んでいる。これは強化ガラス200の屈折率は強化ガラスの種類によって若干異なるため、光供給部材40の屈折率と完全に一致させるには、強化ガラスの種類ごとに光供給部材40を取り換える必要がある。しかしこの交換作業は非効率なので、光供給部材40と強化ガラス200との間に強化ガラス200の屈折率とほぼ同じ屈折率を持つ液体90を挟むことにより、強化ガラス200内に、効率よくレーザ光Lを入射できる。
 液体90としては、例えば、1-ブロモナフタレン(n=1.64)とキシレン(n=1.50)との混合液を用いることができる。液体90として、互いに構造の異なる複数のシリコンオイルの混合液を用いても良い。例えば、ジメチルシリコンオイル(n=1.38~1.41)やメチルフェニルシリコンオイル(n=1.43~1.57)は、それぞれのメチル基やフェニル基の鎖状長さを変えることにより屈折率を調整できる。このように屈折率を調整した複数のシリコンオイルの混合液を液体90として用いても良い。液体90の屈折率は、それぞれの混合比で決まるため、容易に強化ガラス200の屈折率と同じ屈折率にできる。
 このとき、強化ガラス200と液体90との屈折率差は±0.03以下にすることが好ましく、±0.02以下にすることがより好ましく、±0.01以下にすることが更に好ましい。液体90が無い場合、強化ガラス200と光供給部材の間には散乱光が発生し、約20μm程度の範囲でデータが取れない。
 液体90の厚みは、10μm以上にすると、散乱光が10μm程度又はそれ以下に抑制されるため、10μm以上にすることが好ましい。原理上、液体90の厚みはいくらあっても良いが液体の取扱いを考えると500μm以下とすることが好ましい。
 図41は、光供給部材40と強化ガラス200との界面を進むレーザ光Lの散乱光画像を例示する図である。図41において、点Aは強化ガラスの表面散乱光であり、点Dは光供給部材40の表面の表面散乱光である。点Aと点Dとの間は液体90からの散乱光である。
 液体90の厚みが薄いと点Aと点Dとはほぼ同じ点となり、強化ガラス200の表面散乱と光供給部材40の表面散乱が加わった表面散乱光となる。光供給部材40は、多くの強化ガラス200を測定していくと、表面の傷付が多く発生してしまう。そうすると、非常に大きな表面散乱光が発生する。
 しかし、図41のように、液体90を挟むことで、光供給部材40と強化ガラス200との間隔を保つことにより、光供給部材40の表面散乱光が強化ガラス200の最表面層付近の表面散乱光に重なることを防ぐことができる。
 図42は、光供給部材40と強化ガラス200との間に液体90を挟むための構造部を例示した図である。図42(a)のように、光供給部材40の表面に研磨やエッチングにより10μm以上の窪み40xを形成し、窪み40x内に液体90を充填することで、液体90の厚みを安定して10μm以上にできる。窪み40xの深さは、原理上いくらあっても良いが、加工のしやすさを考えると500μm以下が好ましい。
 又、光供給部材40の表面に窪み40xを形成する代わりに、図42(b)のように真空蒸着やスパッタ等の薄膜形成技術等で、光供給部材40の表面に、金属、酸化物、樹脂等により厚み10μm以上のランド部材100を形成し、ランド部材100に保持された液体90のランドを形成してもよい。ランド部材100で液体90を保持することで、液体90の厚みを安定して10μm以上にできる。ランド部材100の厚さは、原理上いくらあっても良いが、加工のしやすさを考えると500μm以下が好ましい。
 〈第3の実施の形態の変形例〉
 第3の実施の形態の変形例では、光供給部材40と強化ガラス200との間に液体90を挟むための構造部の図42とは異なる例を示す。なお、第3の実施の形態の変形例において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
 図43は、光供給部材40と強化ガラス200との間に液体90を挟むための構造部の第2例を示した図である。図43に示すように、光供給部材40の表面に形成する窪み40xの底は平坦でなくてもよい。窪み40xは、例えば、凹レンズと同様の球面状の窪みである。
 窪み40xの深さは、例えば、10μm以上500μm以下である。一例として、窪みの深さを50μm、窪みの周囲の直径を10mmとした場合には、曲率半径Rは200mmである。
 窪み40xは、凹レンズと同じ製法により、容易に球面状の窪みに形成できる。窪み40xに充填される液体90は光供給部材40の屈折率と同じであるため、球面状の窪み中の液体90によるレンズの効果はなく、レーザ光の軌跡や、散乱光を撮像するカメラの像に影響はない。
 図44は、光供給部材40と強化ガラス200との間に液体90を挟むための構造部の第3例を示した図である。図44に示すように、光供給部材40の強化ガラス200側の表面に、突起部である片凹レンズ43が取り付けられている。片凹レンズ43は、強化ガラス200と接する。
 片凹レンズ43は、光供給部材40を介して強化ガラス200内に入射するレーザ光の光路の一部となる。片凹レンズ43には、例えば球面状の窪み43xが形成されている。窪み43xの深さは、例えば、10μm以上500μm以下である。
 光供給部材40と片凹レンズ43は、それぞれ別体として形成され、光供給部材40及び片凹レンズ43と屈折率がほぼ同じである光学接着材により接着されている。
 光供給部材40と片凹レンズ43とを接着する光学接着材は、長時間レーザ光に曝されるので、耐久性の高い接着剤を使うことが望ましい。
 特に、光源の波長が短く、紫外線や紫外線に近い場合、例えば、500nm以下の波長では、光学接着材の劣化が顕著であるため、光供給部材40と片凹レンズ43とを接着する光学接着材として、無機の接着剤や低融点のガラスを使うことが望ましい。或いは、光供給部材40と片凹レンズ43とを、接着剤を使わないオプティカルコンタクト等により接着することが望ましい。
 一般的な光学素子の加工において、平面だけで形成されるプリズム形成工程と、球面を形成するレンズ形成工程とは、技術が異なり、球面形状の窪みを持ったプリズムを形成するのは難しく、多くの工程が必要で、生産性が悪く、製造コストが非常に高価になる。すなわち、プリズムである光供給部材40と片凹レンズ43とを一体構造とすることは困難である。
 しかし、プリズムである光供給部材40、片凹レンズ43単独では、それぞれの加工技術で容易に形成できる。又、光供給部材40と片凹レンズ43との間に、光供給部材40及び片凹レンズ43と屈折率がほぼ同じであるガラス板が挿入されてもよい。このガラス板は、光供給部材40を評価装置本体に取り付けるために使うことができる。
 この場合、光供給部材40とガラス板とを接着する光学接着材、及びガラス板と片凹レンズ43とを接着する光学接着材としては、光源の波長が短く、紫外線や紫外線に近い場合、無機の接着剤や低融点のガラスを使うことが望ましい。或いは、光供給部材40とガラス板、及びガラス板と片凹レンズ43を、接着剤を使わないオプティカルコンタクト等により接着することが望ましい。
 図45は、光供給部材40と強化ガラス200との間に液体90を挟むための構造部の第4例を示した図である。図45に示すように、片凹レンズ43の周囲に平坦な外縁部43eを形成してもよい。図45に示す構造では、平坦な外縁部43eが強化ガラス200と接する面となるため、強化ガラス200を光供給部材40に接触させる際に、精度よく平行にでき、又、強化ガラス200への傷等のダメージをなくすことができる。
 図46は、光供給部材40と強化ガラス200との間に液体90を挟むための構造部の第5例を示した図である。図46に示すように、光供給部材40と片凹レンズ43とを光学的な接着材で固定せず、液体90のような屈折率が同じである液体を挟み、取り外しが可能な支持体44を用いて動かないように外周側面から固定してもよい。
 支持体44をばね等を用いて開閉自在に構成することで、片凹レンズ43だけを容易に交換可能となる。例えば、強化ガラス200との接触等により片凹レンズ43に破損や傷が生じた場合、或いは、他の形状の窪みを備えた片凹レンズ43に変更する場合等、片凹レンズ43を複数作製し、交換するだけで良い。
 なお、片凹レンズ43を交換自在に保持できれば、支持体44の形状や構造は如何なるものであっても構わない。
 図47は、光供給部材40と強化ガラス200との間に液体90を挟むための構造部の第6例を示した図である。図47に示すように、片凹レンズ43の周囲に形成した平坦な外縁部43eに、液体90を排出する溝43yを形成してもよい。溝43yは、窪み43xと連通している。
 液体90を窪み43xに滴下し、強化ガラス200を載せると、窪み43x内に泡が残ることがある。窪み43xの周囲に液体90を排出する溝43yを設けることにより、液体90を窪み43xに滴下し、強化ガラス200を載せる際に、溝43yから液体90と共に泡も排出されるため、窪み43x内に泡を残り難くできる。
 図48に示すように、光供給部材40の強化ガラス200と接する側の面に、窪み43xと連通する溝40yを形成してもよい。図47の場合と同様に、窪み40xの周囲に液体90を排出する溝40yを設けることにより、液体90を窪み40xに滴下し、強化ガラス200を載せる際に、溝40yから液体90と共に泡も排出されるため、窪み40x内に泡を残り難くできる。
 なお、図43~図48において、窪み40xや43x内に描かれた交差する曲線や、片凹レンズ43の側面に描かれた縦線は、図面を視易くするために便宜上描いたものであり、実在する線(細い溝や突起等)を示すものではない。
 又、以上では、窪み40xや43xを球面状の窪みとして説明したが、窪み40xや43xは球面状には限定されず、湾曲している部分を備えた面であれば良い。窪み40xや43xは、例えば、非球面状等の窪みであっても構わない。又、溝40yや43yの溝形状や個数は、任意に設定して構わない。
 〈第4の実施の形態〉
 第4の実施の形態では、強化ガラスの屈折率を考慮した評価方法の例を示す。なお、第4の実施の形態において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
 レーザ光の深さDにおける偏光位相差Rtから応力Stを求める式は、強化ガラスの光弾性定数をC、レーザ光の強化ガラス200の表面210とのなす角、すなわち入射余角(屈折角)をΨとすると、下記の式8(数8)のようになる。
Figure JPOXMLDOC01-appb-M000015
 式8において、最後のΨの項は、応力による複屈折のレーザ光への寄与分の補正である。すなわち、強化ガラス200の強化による内部応力は表面210と平行であり、一方レーザ光は表面210に対し斜めに入射する。そのため、応力による複屈折のレーザ光への寄与分の補正が必要であり、式8の最後のΨの項が補正分となる。なお、この式でStを用いているが、式1とは応力分布の座標系が異なるため、便宜上別の記号を用いている。
 図49は、レーザ光Lが強化ガラス200内に入射されていることを説明する図である。図49では、光供給部材40の上面に強化ガラス200の表面が接しており、光供給部材40の上面及び光供給部材40の上面と接する強化ガラス200の表面をXZ平面とするxyz座標に位置している。そして、レーザ光Lが光供給部材40の入射端面に入射し、光供給部材40の上面と強化ガラス200の表面の境界を通り、強化ガラス200内に入射されている。撮像素子60は斜め45°下からレーザ軌跡(レーザ光Lの軌跡)を撮影している。
 図50は、図49の撮像素子60の位置から撮影したレーザ軌跡の画像を説明する図である。撮像素子60が撮影した画像上のレーザ軌跡をCpass、長さをPc、レーザ軌跡の画像上の角度をχ、画像上の横方向の距離をLx、画像上の縦方向の距離をVとする。評価装置1では、レーザ光L(正しくはレーザ光Lからの散乱光)の撮像素子60からの画像から画像解析をして最終的に強化ガラス200中の応力を測定する。
 しかし、撮像素子60の取得する画像は斜め45°下からの画像であるため、画像上のレーザ軌跡Cpassの長さPcと、レーザ光Lの実際の長さとは同じとは限らず、また画像上の角χも、実際の入射余角Ψではない。そのため、レーザ光Lの画像から、式8を使って応力を求めるためには、実際のレーザ光Lの距離Pや、入射余角Ψを求める換算式が必要である。
 図51は、図49の光供給部材40或いは強化ガラス200内のレーザ光の角度、長さの定義を説明する図である。ここでは、頂点がabcdefghである直方体を考える。辺bfの長さをLx、辺abの長さをH、辺fgの長さをDとする。Dは、光供給部材40或いは強化ガラス200の深さと同じである。図51では、レーザ光Lは頂点cから頂点eへ進んでおり、Passはレーザ光Lの軌跡を示している。
 上面abfeは、図49の光供給部材40の上面、及び強化ガラス200の表面と平行であるとする。レーザ光の軌跡Passの長さceをPとし、Ψは強化ガラス200の表面に対する入射余角とする。又、面acgeはレーザ光Lの入射面と同等である。
 図52は、図51の上面図、正面図、側面図である。レーザ光Lの上面から見た軌跡をUpass、長さをPu、正面から見た軌跡をFpass、長さをPf、側面から見た軌跡をLpass、長さをPlとする。側面から見たレーザ光Lの軌跡Lpassの角度ωはレーザ光Lの入射面角となる。φはレーザ光LのZ軸回転角、θはY軸回転角である。
 図51で、H=Dの場合、ωは45°となり、レーザ光Lの入射面は45°となる。H=Dの場合、図52でレーザ光LのZ軸回転角φとY軸回転角θとは等しいので、強化ガラス200中でのレーザ光Lの入射面を45°にするためには、レーザ光LのZ軸及びY軸の回転角を等しくすれば良いことが分かる。
 又、レーザ光の軌跡Passの長さPは、下記の式9(数9)となる。
Figure JPOXMLDOC01-appb-M000016
 又、Lxを単位長さ、例えば1とすると、φ、θより、D、H、Puは求まり、レーザ光の強化ガラス表面に対する入射余角ΨはPassとUpassの角であるので、これらより、レーザ光Lの長さP、強化ガラス200の表面に対する入射余角Ψは容易に求まる。
 (光供給部材の屈折率np=強化ガラスの屈折率ngの場合)
 光供給部材40の屈折率npと強化ガラス200の屈折率ngが同じであれば、光供給部材40中、強化ガラス200中も、これらのレーザの角度や、その関係は同じである。例えば、光供給部材40中、或いは強化ガラス200中のレーザのY軸回転角θ=15°、Z軸回転角φ=15°、強化ガラス200の屈折率ng=1.516で、光供給部材40の屈折率も強化ガラスと同じnp=1.516であれば、強化ガラス200中の入射面角ω=45°となり、入射余角Ψ=14.5°である。
 図50より、入射面が45°であれば、画像は入射面に垂直に見た画像となり、図50に示すレーザの軌跡Cpassの距離Pcは実際のレーザの軌跡Passの距離Pと同じになり、画像上の深さVから実際の深さDは、下記の式10(数10)により求めることができる。
Figure JPOXMLDOC01-appb-M000017
 これらより、レーザ光の撮像素子60の画像より、強化ガラスの応力を算出可能である。
 (光供給部材40の屈折率np≠強化ガラス200の屈折率ngの場合)
 以上の説明は、光供給部材40と強化ガラス200が同じ屈折率の場合であり、光供給部材40と強化ガラス200との境界面で屈折せずにレーザ光が進み、光供給部材40と強化ガラス200の中のレーザ光は平行である。しかし、実際には必ずしも光供給部材40と強化ガラス200の屈折率は同じではない。
 光供給部材40と強化ガラス200の屈折率が異なると、レーザ光のZ軸回転角は変わらず、Y軸回転角のみが変わる。そのため、光供給部材40と強化ガラス200の屈折率が同じ条件の時に強化ガラス200中のレーザ光の入射面が45°であっても、強化ガラス200の屈折率が光供給部材40の屈折率と異なると、強化ガラス200のレーザ光の入射面は45°からずれる。そうすると、図50に示すレーザの軌跡Cpassの距離Pcは実際のレーザの軌跡Passの距離Pと異なり(Pc≠P)、又、式10も成り立たない。
 強化ガラス中のレーザ光の入射余角Ψ、入射面角ωを直接測定することは困難である。そこで、光供給部材40の屈折率np、強化ガラス200の屈折率ngが異なる場合の、レーザ光の軌跡を考えてみる。
 又、レーザ光は空気中から光供給部材40に入射するために、レーザ光の光供給部材40へ入射する前の角度と光供給部材40のレーザ光が入射する入射端面のレーザ光となす角により、レーザ光は屈折し、光供給部材40に入射する。そのため、レーザ光の光供給部材40に入射する前の入射余角、光供給部材40の入射端面の角も考慮し、必要な強化ガラス200中のレーザ光の入射余角、入射面角を考える。
 図52のφ、θを、強化ガラス200中と分けるため、強化ガラス200中をφg、θg、光供給部材40中をφp、θp、光供給部材40に入射する前をφL、θLとする。又、光供給部材40のレーザが入射する入射端面のZ軸回転角β、Y軸回転角αとする。又、光供給部材40の屈折率をnp、強化ガラス200の屈折率をngとする。
 npとngが異なる、或いは、β、αがφL、θLと異なる場合は、Z軸回転角、φL、φp、β、及び、φp、φg、Y軸回転角、θL、θp、α、及び、θp、θgは、それぞれ、スネルの法則が成り立ち、レーザ光の光供給部材40に入射する前の角度、φL、θL、光供給部材40の入射端面の角度、α、β、屈折率ng、npが、予め既知であれば、測定に必要なパラメータである、強化ガラス200中のレーザ光の回転角、φg、θg及び、入射余角Ψ、入射面角ωを容易に計算できる。
 ここで、レーザ光の光供給部材40の入射する前の回転角φL、θL、光供給部材40のレーザ光が入射する入射端面の回転角β、α、光供給部材40の屈折率npは、装置設計で決まり、既知である。強化ガラス200の屈折率は、一般的な屈折率測定装置により知ることが可能である。
 そこで、他の手段により測定した、強化ガラス200の屈折率と、装置設計で決まる、φL、θL、α、β、npと、強化ガラス200の屈折率から強化ガラス200中のレーザ光のφg、θg及び、入射余角Ψ、入射面角ωを求め、レーザ光の撮像素子60の画像のPc、χから、強化ガラス200中のレーザ光の入射余角Ψ、入射面角ωへの換算式を得て、式8より強化ガラス内の応力分布を測定可能である。以下に具体例を示す。
 図53は、光供給部材及び強化ガラス中を進むレーザ光の概念図である。なお、実際は3次元的な角度になっているが、図53では便宜上2次元的に示している。図54は、強化ガラス中を進むレーザ光の概念図であり、215は撮像素子60から観測される観測面を梨地模様で模式的に示している。
 図53及び54において、θLはレーザ光源10より光供給部材40に入射するレーザ光と光供給部材40の入射面40aの法線となす角(レーザ側)である。又、θP1はレーザ光源10より光供給部材40に入射するレーザ光と光供給部材40の入射面40aの法線となす角(光供給部材40側)、θP2は光供給部材40から強化ガラス200に入射するレーザ光と光供給部材40の出射面40bの法線となす角(光供給部材40側)である。なお、光供給部材40の入射面40aと光供給部材40の出射面40bは実際には直角ではないため、θP1+θP2=90°とは限らない。
 又、θgは光供給部材40から強化ガラス200に入射するレーザ光と光供給部材40の出射面40bの法線となす角(強化ガラス200側)、Ψは強化ガラス200の表面210(評価面)と強化ガラス200中のレーザ光とのなす入射余角(90-θg)である。又、χは撮像素子60から観測されるレーザ光の傾きである。なお、θやΨ等を3次元で考えるときは、図52に示したように分けて考えて良い。
 入射余角Ψは、例えば、図55に示すフローチャートに従って求めることができる。すなわち、まず、ステップS701において、θLとnpからθP1を導出する。θP1は、θLとnpからスネルの式により求めることができる。
 次に、ステップS702において、θP1からθP2を導出する。θP2は、光供給部材40の形状に基づいてθP1から求めることができる。次に、ステップS703において、θP2、np、ngからθgを導出する。θgは、θP2、np、ngからスネルの式により求めることができる。
 次に、ステップS704において、θgからΨを導出する。Ψは、幾何学的な計算によりθgから求めることができる。すなわち、Ψ=90-θgである。
 光供給部材40の屈折率npと強化ガラス200の屈折率ngは同じにすることが理想であるが、強化ガラスは多種あり、屈折率が異なる。しかし、光供給部材40を形成する光学ガラスは、必ずしも強化ガラスと全く同じ屈折率のガラスではない。
 例えば、一番多く使われる光学ガラスS-BSL7(オハラ社製)はnp=1.516で、下はS-FSL5(オハラ社製)のnp=1.487、上はS-TIL6(オハラ社製)のnp=1.5317等が入手できる。
 そのため、ある範囲の屈折率の強化ガラスを測定する場合、その範囲に近い屈折率の光学ガラスで形成された光供給部材40を用いて測定する必要がある。例えば、強化ガラスの屈折率ng=1.51の場合、強化ガラス中の入射余角Ψは13.7°、入射面角ωは43°となる。これから、換算式を得て、式8により、正確な応力を求めることができる。
 又、撮像素子60のレーザ画像の角度χから、逆に強化ガラス200の屈折率ngを算出することも可能である。すなわち、強化ガラス200の屈折率ngは、撮像素子60で取得したレーザ光の画像に基づいて導出してもよい。
 具体的には、まず、図56に示すフローチャートのステップS711において、図54に示す入射余角Ψと角度χとの関係を導出する。入射余角Ψと角度χとの関係は、幾何学的な計算により求めることができる。次に、ステップS712において、撮像素子60(カメラ)で角度χを測定する。
 次に、ステップS713において、ステップS712で測定した角度χを用いてステップS711で導出した関係から入射余角Ψを求める。更に、θg=90-Ψを求め、既知のθP2、np、θgからスネルの式によりngを導出できる。
 このように、撮像素子60のレーザ画像の角度χより、強化ガラス200の屈折率ngを求め、その強化ガラス200の屈折率ngを元に、換算式を得て、強化ガラス200の応力分布を測定することも可能である。
 但し、光供給部材40に強化ガラス200を搭載する際の傾き等により、図56の方法で導出した強化ガラス200の屈折率ngの値には誤差が生じる。そのため、強化ガラス内の応力分布を高い精度で安定的に測定したい場合には、強化ガラス200の屈折率ngを他の方法(屈折率測定装置での測定等)で予め測定しておくことが好ましい。
 又、撮像素子60のレーザ画像の角度χより、入射余角Ψを校正することも可能である。例えば、図57に示すフローチャートのステップS711において図56の場合と同様にして入射余角Ψと角度χとの関係を導出し、ステップS712において図56の場合と同様にして撮像素子60で角度χを測定する。そして、ステップS714において、ステップS712で測定した角度χを用いてステップS711で導出した関係から入射余角Ψを導出する。ステップS714で導出した入射余角Ψを式8に適用することで、正確な応力を求めることができる。
 又、予め強化ガラス200の屈折率ngの値が既知である場合、強化ガラス200の屈折率ngの値を考慮して、最適な光供給部材40を設計することも有効である。
 強化ガラス200中の入射余角Ψや入射面角ωは計算により知ることができるが、強化ガラス200の屈折率ngと光供給部材40の屈折率npとの差が大きくなると、入射面角Ψの45°からのずれが多くなる。これにより、撮像素子60のレンズの焦点深度を超えると、ピントがずれ、空間分解が下がり、正しい応力分布を測定できなくなる。
 例えば、強化ガラス200の屈折率ng=1.49の場合、強化ガラス200中のレーザ光の入射余角Ψは10.3°、入射面角ωは35°となる。この場合、入射余角Ψに対しては計算で補正できるが、入射面角ωは45°から10°もずれており、計算での補正だけでは、測定精度維持ができない。
 そこで、強化ガラス200に入射するレーザ光の入射面が強化ガラス200の表面に対して45±5°になるように、光供給部材40のレーザ光が入射する面の角度を設定することが好ましい。
 例えば、レーザ軌跡の距離が300μmの場合、入射面角ωが10°ずれると、撮像素子60から強化ガラス200中のレーザ光への距離の差は52μmにもなり、撮像素子60に像を結ぶレンズの焦点深度を超え、撮像素子60に撮像されるレーザ軌跡の全距離でピントが均一で合わなくなり、測定精度を劣化させる。
 そこで、例えば、図58に示すフローチャートのステップS721において、対象の強化ガラス200の屈折率ngの値を得る。次に、ステップS722において、強化ガラス200の屈折率ngと光供給部材40の屈折率npを固定し、レーザ光が通る面と観測面が変わらないθLを求める。
 例えば、強化ガラス200の屈折率ng=1.49の場合、レーザ光のY回転角θL=15°、Z回転角φL=15°は同じで、光供給部材40の入射端面の回転角β=15°、Z回転角α=24.5°に形成すれば、強化ガラス200中では、レーザ光は入射余角14.4°、入射面角44.8°と、ほぼ設計通りの角度にできる。そのため、測定精度を劣化させることがない。
 この仕様の光供給部材40を作製し、レーザ光源10の設置はそのままで、光供給部材40のみを交換するだけで、光供給部材40の屈折率npと大きく異なる屈折率ngの強化ガラス200の応力分布を正確に測定可能となる。又、レーザ光源10への戻り光をなくすために、強化ガラス200と、レーザ光が光供給部材40に入射する面を若干(0.5~1°程度)ずらす場合、式8で補正可能である。
 〈第5の実施の形態〉
 第5の実施の形態では、ガラス厚みを測定する機能を備えた評価装置の例を示す。なお、第5の実施の形態において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
 薄い板状の強化ガラスでは、強化のために表面に圧縮応力を形成する。そうすると、全体として、応力バランスをとるために、内部では引っ張り応力が発生する。
 図59は、強化ガラスの深さ方向の応力分布を例示する図である。表面に形成された圧縮応力に対して、中心部分では引っ張り応力が発生し、原理的に、全体として、応力は0となる。すなわち、深さ方向に表面から裏面まで、応力分布の積分値(応力エネルギー)は0となる。
 別な表現を使えば、表面の圧縮応力の積分値(圧縮エネルギー)と、中心部の引っ張り応力の積分値(引張りエネルギー)は等しくなる。又、通常、化学強化工程では、ガラスの両面の化学強化が同条件で行われるため、応力分布はガラスの中心に対して、対称となっている。そのため、深さ方向に表面からガラス中点までの積分も0となる。
 評価装置1では、ガラス深さと散乱光輝度の変化の位相値(例えば、図7)の微分値と光弾性定数により応力値を求める(第1の実施の形態参照)。そのため、図7のガラス深さと散乱光輝度の変化の位相は、応力値の積分値と同じである。すなわち、図7において、強化ガラスの中心点と、強化ガラスの最表面の位相値は同じである。
 評価装置1では、レーザ光が強化ガラスの最表面で乱反射し、乱反射光が発生すると、強化ガラスの最表面の散乱光輝度変化の位相値を正しく測定できない欠点がある。
 そこで、強化ガラスの中心点の位相値を使い、最表面の散乱光輝度変化の位相値、或いはその補正に使用する。これにより、例えば、強化ガラス最表面及び最表面付近の応力値、並びに応力分布を正確に測定可能である。又、測定された位相値が強化ガラスの中心まで達していない場合、測定された位相値を強化ガラスの中心まで外挿し、強化ガラスの中心の位相値としても良い。
 このように、強化ガラスの厚みが既知である場合、算出された応力分布及び強化ガラスの厚みに基づいて、応力バランスがとれるような強化ガラスの最表面の位相変化量を推定し、表面応力値を補正できる。
 図60は、ガラス厚み測定装置を設置した評価装置を例示する図である。図60に示す評価装置3は、評価装置1にガラス厚み測定装置120を設置した構成である。
 ガラス厚み測定装置120は、図示しないレーザ光源と受光部と演算部とを有している。ガラス厚み測定装置120のレーザ光源から出射されたレーザ光Lgは、強化ガラス200の表面210及び裏面220で反射し、ガラス厚み測定装置120の受光部により受光される。ガラス厚み測定装置120の演算部は、受光部で受光した光に基づいて、強化ガラス200の厚みを測定する。ガラス厚み測定装置120としては、例えば、市販のガラス厚み計を用いることができる。
 評価装置3では、レーザ光源10からのレーザ光による強化ガラス200中の散乱光輝度変化から、強化ガラス200中の表面から深さ方向に位相値を評価装置1により測定できる。それと同時に、評価装置3では、強化ガラス200の厚みをガラス厚み測定装置120により測定できる。
 ガラス厚み測定装置120で測定された強化ガラス200の厚みと深さ方向の位相値から、強化ガラス200の中心の位相値を測定、或いは外挿により得ることができる。そして、その位相値に基づいて、強化ガラス200の最表面の位相値にする、或いは補正をし、最表面が補正された深さ方向の位相値から、応力分布を求めることができる。
 このように、強化ガラスの厚みを測定する手段を備えた評価装置3では、応力分布及び強化ガラスの厚みを測定し、測定した強化ガラスの厚みに基づいて、強化ガラスの最表面の位相変化量を推定できる。
 〈位相値の決定についての変形例〉
 最表面の散乱光輝度変化の位相値の決定について、下記のような変形が可能である。
 上記したように、評価装置1では、レーザ光が強化ガラス200の最表面で乱反射し、乱反射光が発生すると、強化ガラス200の最表面の散乱光輝度変化の位相値を正しく測定できない欠点がある。その欠点を補うために、以下のような手法を更に用いてもよい。
 第1に、レーザ光源10と、偏光部材20と、偏光位相差可変部材30とを2組準備し、レーザ光LとL’を、異なる2つの角度θs1及び角度θ’s1から入射させてもよい。その際、レーザ光Lからの散乱光と、レーザ光L’からの散乱光は別々に測定するようにする。2組のレーザ光の内、より小さい角度から入射したレーザ光を用いた方は、強化ガラス200の表面の乱反射の影響による強化ガラス200の最表面の位相値の誤差は、より少なくなる一方、強化ガラス200の深部までの測定ができない場合がある。従って、より小さい角度から入射したレーザ光を用いた測定で強化ガラス200の最表面の位相値を決定し、その結果を、より大きい角度から入射したレーザ光を用いた測定の最表面の位相値とすることで、測定精度が上がり、かつ強化ガラス200の深部まで測定できる場合がある。
 第2に、レーザ光が強化ガラス200の最表面で乱反射するのを抑制するために、ステップS601の前に、強化ガラス200の表面を清浄システムで清浄化するステップを有してもよい。清浄システムは、湿式又は乾式の洗浄機による洗浄や、払拭等の作業でもよい。
 第3に、DOL_zeroの値を算出する手段を備えている場合は、強化ガラス200の表面210側のDOL_zero(表面)と、裏面220側のDOL_zero(裏面)を用いて、以下のようにして強化ガラス200の表面210側の最表面の位相を推定してもよい。
 すなわち、DOL_zero(表面)とDOL_zero(裏面)の和は強化ガラス200の厚みとなるので、その中点はガラス中点となる。強化ガラスの最表面からこの中点までの応力の積分値はゼロとなるので、強化ガラスの中心点と、強化ガラスの最表面の位相値は同じである。このようにして、ガラス最表面の位相値は、ガラス板厚を別に測定せずに求めてもよい。又、位相の原点の位置は、強化ガラスの最表面がガラス中点の位相となるように外挿して算出してもよい。
 なお、DOL_zero(裏面)は、裏面220側の応力値がゼロになる点を、強化ガラス200の表面210側から測った長さである。又、DOL_zero(裏面)を精度よく測定するために、裏面220側に液体90を設置してもよい。このようにすることで、裏面220側の表面での乱反射が抑制される。又、裏面側からの光が入らないように、遮光板等による遮光機能をガラスとカメラの間に持たせても良い。
 第4に、第5の実施の形態において、DOL_zeroの値を算出する手段を更に備えている場合は、ガラス表面210側のDOL_zero(表面)と、裏面220側のDOL_zero(裏面)を用いて、以下のようにしてガラス表面210側の最表面の位相を推定してもよい。すなわち、DOL_zero(表面)とDOL_zero(裏面)の和はガラス厚みとなるので、この和がガラス厚み測定装置で測定した値と一致するように最表面の位置を決定することで、全体の応力分布が高精度で求められる。最表面の位相は、この最表面の位置まで位相を外挿して推定する。
 第5に、位相変化算出工程(S405)の後に、算出された位相変化の原点位置が妥当かどうかを評価する工程を有してもよい。その際、ディスプレイを用いて、S405で算出された位相変化の原点位置を、撮像工程(S403)で得られた画像の対応する位置に表示し、測定者が目視評価する方法としてもよい。このようにすることで、測定時のノイズや、ごみ、泡、外乱光等による光散乱によって、位相変化の原点位置が大きくずれた場合、簡便に再測定の判断が可能になる。なお、外乱光が原因の場合、レーザ光源の位置を移動させてもよい。
 以上、好ましい実施の形態について詳説したが、上述した実施の形態に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態に種々の変形及び置換を加えることができる。
 例えば、上記の各実施の形態では、評価装置1及び2において、光源を構成要素として説明したが、評価装置1及び2は光源を有していない構成としてもよい。光源は、評価装置1及び2の使用者が適宜なものを用意して使用できる。
 本国際出願は2018年2月26日に出願した日本国特許出願2018-031579号に基づく優先権を主張するものであり、日本国特許出願2018-031579号の全内容を本国際出願に援用する。
 1、1A、1B、1C、1D、1E、2、3 評価装置
 10、11、12 レーザ光源
 15 光源
 20、55 偏光部材
 25、40、41 光供給部材
 30、30A 偏光位相差可変部材
 35、42 光取出し部材
 40a 光供給部材の入射面
 40b 光供給部材の出射面
 40x、43x 窪み
 40y、43y 溝
 43 片凹レンズ
 43e 外縁部
 44 支持体
 45、50、50A 光変換部材
 60、60A、65 撮像素子
 70、75 演算部
 80、80A、81、82 光波長選択部材
 90 液体
 100 ランド部材
 120 ガラス厚み測定装置
 200 強化ガラス
 210 強化ガラスの表面
 215 観測面
 220 強化ガラスの裏面
 250 レーザ光の入射面
 301 デジタルデータ記憶回路
 302 クロック信号発生回路
 303 DAコンバータ
 304 電圧増幅回路
 310 偏光位相差発生材料
 311、313 固定治具
 312 ピエゾ素子
 701 輝度変化測定手段
 702 位相変化算出手段
 703 応力分布算出手段
 704 物理量測定手段
 751 位置測定手段
 752 応力分布算出手段
 753 合成手段

Claims (55)

  1.  レーザ光の偏光位相差を、前記レーザ光の波長に対して1波長以上可変する偏光位相差可変部材と、
     前記偏光位相差を可変されたレーザ光が強化ガラスに入射されたことにより発する散乱光を、所定の時間間隔で複数回撮像し、複数の画像を取得する撮像素子と、
     前記複数の画像を用いて前記散乱光の周期的な輝度変化を測定し、前記輝度変化の位相変化を算出し、前記位相変化に基づき前記強化ガラスの表面からの深さ方向の応力分布を算出すると共に、前記複数の画像を用いて前記強化ガラスの強度にかかわる物理量を測定する演算部と、を有することを特徴とする、強化ガラスの評価装置。
  2.  前記演算部は、前記物理量として、前記散乱光の輝度を測定することを特徴とする、請求項1に記載の強化ガラスの評価装置。
  3.  前記複数の画像は、スペックルパターンを備え、
     前記演算部は、前記物理量として、前記スペックルパターンの輝度の分散値を測定することを特徴とする、請求項1に記載の強化ガラスの評価装置。
  4.  前記演算部は、前記物理量として、前記強化ガラスの屈折率を測定することを特徴とする、請求項1に記載の強化ガラスの評価装置。
  5.  前記レーザ光の波長の透過率が相対的に高い第1の光波長選択部材と、前記レーザ光の波長の透過率が相対的に低い第2の光波長選択部材とが、前記レーザ光が前記撮像素子に入射する光路上に切り替え可能に挿入され、
     前記演算部は、前記物理量として、前記第1の光波長選択部材が前記光路上に挿入された場合の前記散乱光の第1の輝度と、前記第2の光波長選択部材が前記光路上に挿入された場合の前記散乱光の第2の輝度と、を測定し、前記第1の輝度と前記第2の輝度との比率を計算することを特徴とする、請求項1乃至4の何れか一項に記載の強化ガラスの評価装置。
  6.  第1の波長帯域のレーザ光を透過する第1の光波長選択部材と、第2の波長帯域の光を透過する第2の光波長選択部材とが、前記第1の波長帯域のレーザ光が入射される場合には前記第1の光波長選択部材が選択され、前記第2の波長帯域のレーザ光が入射される場合には前記第2の光波長選択部材が選択されるように、前記レーザ光が前記撮像素子に入射する光路上に切り替え可能に挿入され、
     前記演算部は、前記物理量として、前記第1の波長帯域のレーザ光が入射され前記第1の光波長選択部材が前記光路上に挿入された場合の前記散乱光の第1の輝度と、前記第2の波長帯域のレーザ光が入射され前記第2の光波長選択部材が前記光路上に挿入された場合の前記散乱光の第2の輝度と、を測定することを特徴とする、請求項1乃至4の何れか一項に記載の強化ガラスの評価装置。
  7.  前記演算部は、前記強化ガラスの表面から深さ方向の複数の領域において、前記物理量を測定することを特徴とする、請求項1乃至6の何れか一項に記載の強化ガラスの評価装置。
  8.  前記偏光位相差可変部材が液晶素子であることを特徴とする、請求項1乃至7の何れか一項に記載の強化ガラスの評価装置。
  9.  前記偏光位相差可変部材は、光弾性定数とヤング率とを乗じた値が0.1以上であって、加圧により前記偏光位相差を発生する透明部材であることを特徴とする、請求項1乃至7の何れか一項に記載の強化ガラスの評価装置。
  10.  前記透明部材は、石英ガラス又はポリカーボネートであることを特徴とする、請求項9に記載の強化ガラスの評価装置。
  11.  前記レーザ光の最小ビーム径の位置は、前記強化ガラスのイオン交換層内にあり、
     前記最小ビーム径は、20μm以下であることを特徴とする、請求項1乃至10の何れか一項に記載の強化ガラスの評価装置。
  12.  前記強化ガラスに入射する前記レーザ光の入射面が前記強化ガラスの表面に対して45±5°であることを特徴とする、請求項1乃至11の何れか一項に記載の強化ガラスの評価装置。
  13.  前記偏光位相差が可変された前記レーザ光を、被測定体である強化ガラス内にガラス表面に対して斜めに入射させる光供給部材を有し、
     前記強化ガラスに入射する前記レーザ光の入射面が前記強化ガラスの表面に対して45±5°になるように、前記光供給部材の前記レーザ光が入射する面の角度を設定したことを特徴とする、請求項12に記載の強化ガラスの評価装置。
  14.  前記偏光位相差が可変された前記レーザ光を、被測定体である強化ガラス内にガラス表面に対して斜めに入射させる光供給部材を有し、
     前記光供給部材と前記強化ガラスとの間に、前記強化ガラスの屈折率との屈折率差が0.03以下である液体を備え、
     前記液体の厚みは、10μm以上500μm以下であることを特徴とする、請求項1乃至13の何れか一項に記載の強化ガラスの評価装置。
  15.  前記光供給部材の前記強化ガラスに接する面には、深さが10μm以上500μm以下の窪みが形成され、
     前記窪み内に前記液体が充填されていることを特徴とする、請求項14に記載の強化ガラスの評価装置。
  16.  前記光供給部材の表面に、前記強化ガラスと接する突起部が設けられ、
     前記突起部は、前記光供給部材を介して前記強化ガラス内に入射する前記レーザ光の光路の一部となり、
     前記突起部の前記強化ガラスに接する側には、深さが10μm以上500μm以下の窪みが形成され、
     前記窪み内に前記液体が充填されていることを特徴とする、請求項14に記載の強化ガラスの評価装置。
  17.  前記突起部は、前記光供給部材の表面に交換自在に保持されていることを特徴とする、請求項16に記載の強化ガラスの評価装置。
  18.  前記窪みの周囲に平坦な外縁部が形成され、前記平坦な外縁部が前記強化ガラスと接する面となることを特徴とする、請求項16又は17に記載の強化ガラスの評価装置。
  19.  前記窪みは、湾曲している部分を備えた面からなることを特徴とする、請求項15乃至18の何れか一項に記載の強化ガラスの評価装置。
  20.  前記窪みの周囲に前記液体を排出する溝が形成されていることを特徴とする、請求項15乃至19の何れか一項に記載の強化ガラスの評価装置。
  21.  前記光供給部材の屈折率と前記強化ガラスの屈折率とが異なる場合、
     前記強化ガラスの屈折率を取得し、
     前記強化ガラスの屈折率に基づいて求めた前記強化ガラス中の前記レーザ光の軌跡と、前記撮像素子で取得した前記レーザ光の画像との関係から、前記レーザ光が前記強化ガラスに入射する際の入射余角を導出し、
     前記入射余角の値に基づいて、前記強化ガラスの表面からの深さ方向の応力分布を補正することを特徴とする、請求項15乃至20の何れか一項に記載の強化ガラスの評価装置。
  22.  前記強化ガラスの屈折率は、前記撮像素子で取得した前記レーザ光の画像に基づいて導出することを特徴とする、請求項21に記載の強化ガラスの評価装置。
  23.  前記強化ガラスの厚みが既知である場合、算出された前記応力分布及び前記強化ガラスの厚みに基づいて、応力バランスがとれるような前記強化ガラスの最表面の位相変化量を推定し、表面応力値を補正することを特徴とする、請求項1乃至22の何れか一項に記載の強化ガラスの評価装置。
  24.  前記強化ガラスの厚みを測定する手段を備え、
     前記応力分布及び前記強化ガラスの厚みを測定し、測定した前記強化ガラスの厚みに基づいて、前記強化ガラスの最表面の位相変化量を推定することを特徴とする、請求項1乃至23の何れか一項に記載の強化ガラスの評価装置。
  25.  前記強化ガラスの前記レーザ光の出射側において、前記強化ガラス中の前記レーザ光が全反射の条件を満たしていることを特徴とする、請求項1乃至24の何れか一項に記載の強化ガラスの評価装置。
  26.  前記強化ガラスの圧縮応力層を有する表面層内に、第2の光源からの光を入射させる第2の光供給部材と、
     前記表面層内を伝播した光を、前記強化ガラスの外へ出射させる光取出し部材と、
     前記光取出し部材を介して出射した光に含まれる、前記強化ガラスと前記光取出し部材との境界面に対して平行及び垂直に振動する二種の光成分を、夫々が2本以上の輝線を有する二種の輝線列に変換する光変換部材と、
     前記二種の輝線列を撮像する第2の撮像素子と、
     前記第2の撮像素子で得られた画像から前記二種の輝線列の夫々の2本以上の輝線の位置を測定する位置測定手段と、を有し、
     前記演算部は、前記位置測定手段の測定結果に基づいて算出した前記二種の光成分に対応した前記強化ガラスの表面から深さ方向にわたる第1の領域の応力分布と、前記位相変化に基づいて算出した前記第1の領域以外の応力分布と、を合成することを特徴とする、請求項1乃至25の何れか一項に記載の強化ガラスの評価装置。
  27.  レーザ光の偏光位相差を、前記レーザ光の波長に対して1波長以上可変する偏光位相差可変工程と、
     前記偏光位相差を可変されたレーザ光が強化ガラスに入射されたことにより発する散乱光を、所定の時間間隔で複数回撮像し、複数の画像を取得する撮像工程と、
     前記複数の画像を用いて前記散乱光の周期的な輝度変化を測定し、前記輝度変化の位相変化を算出し、前記位相変化に基づき前記強化ガラスの表面からの深さ方向の第1の応力分布を算出すると共に、前記複数の画像を用いて前記強化ガラスの強度にかかわる物理量を測定する演算工程と、を有することを特徴とする、強化ガラスの評価方法。
  28.  前記演算工程では、前記物理量として、前記散乱光の輝度を測定することを特徴とする、請求項27に記載の強化ガラスの評価方法。
  29.  前記複数の画像は、スペックルパターンを備え、
     前記演算工程では、前記物理量として、前記スペックルパターンの輝度の分散値を測定することを特徴とする、請求項27に記載の強化ガラスの評価方法。
  30.  前記演算工程では、前記物理量として、前記強化ガラスの屈折率を測定することを特徴とする、請求項27に記載の強化ガラスの評価方法。
  31.  前記レーザ光の波長の透過率が相対的に高い第1の光波長選択部材と、前記レーザ光の波長の透過率が相対的に低い第2の光波長選択部材とが、前記レーザ光が前記撮像工程で用いる撮像素子に入射する光路上に切り替え可能に挿入され、
     前記演算工程では、前記物理量として、前記第1の光波長選択部材が前記光路上に挿入された場合の前記散乱光の第1の輝度と、前記第2の光波長選択部材が前記光路上に挿入された場合の前記散乱光の第2の輝度と、を測定し、前記第1の輝度と前記第2の輝度との比率を計算することを特徴とする、請求項27乃至30の何れか一項に記載の強化ガラスの評価方法。
  32.  第1の波長帯域のレーザ光を透過する第1の光波長選択部材と、第2の波長帯域の光を透過する第2の光波長選択部材とが、前記第1の波長帯域のレーザ光が入射される場合には前記第1の光波長選択部材が選択され、前記第2の波長帯域のレーザ光が入射される場合には前記第2の光波長選択部材が選択されるように、前記レーザ光が前記撮像工程で用いる撮像素子に入射する光路上に切り替え可能に挿入され、
     前記演算工程では、前記物理量として、前記第1の波長帯域のレーザ光が入射され前記第1の光波長選択部材が前記光路上に挿入された場合の前記散乱光の第1の輝度と、前記第2の波長帯域のレーザ光が入射され前記第2の光波長選択部材が前記光路上に挿入された場合の前記散乱光の第2の輝度と、を測定することを特徴とする、請求項27乃至30の何れか一項に記載の強化ガラスの評価方法。
  33.  前記演算工程では、前記強化ガラスの表面から深さ方向の複数の領域において、前記物理量を測定することを特徴とする、請求項27乃至32の何れか一項に記載の強化ガラスの評価方法。
  34.  偏光位相差可変工程では、液晶素子により前記偏光位相差を可変することを特徴とする、請求項27乃至33の何れか一項に記載の強化ガラスの評価方法。
  35.  P偏光及びS偏光の輝線の位置に基づいて各々の屈折率分布を算出し、前記P偏光と前記S偏光の屈折率分布差と強化ガラスの光弾性定数とに基づいて第2の応力分布を求める工程を備えたことを特徴とする、請求項27乃至34の何れか一項に記載の強化ガラスの評価方法。
  36.  同じ製造工程で作られた複数の強化ガラスのうち、少なくとも1枚以上の強化ガラスについて、請求項35に記載の強化ガラスの評価方法で求めた前記第1の応力分布と前記第2の応力分布を合成して応力分布を得、残りの強化ガラスについて、前記第1の応力分布及び前記第2の応力分布の何れか一方のみを測定して応力分布を得ることを特徴とする、強化ガラスの評価方法。
  37.  レーザ光の偏光位相差を、前記レーザ光の波長に対して1波長以上可変する偏光位相差可変工程と、前記偏光位相差を可変されたレーザ光が強化ガラスに入射されたことにより発する散乱光を、所定の時間間隔で複数回撮像し、複数の画像を取得する撮像工程と、前記複数の画像を用いて前記散乱光の周期的な輝度変化を測定し、前記輝度変化の位相変化を算出し、前記位相変化に基づき前記強化ガラスの表面からの深さ方向の第1の応力分布を算出すると共に、前記複数の画像を用いて前記強化ガラスの強度にかかわる物理量を測定する演算工程と、を有する強化ガラスの評価方法で得られた応力値から特性値を求め、特性値が管理値内に入っているか確認してから出荷判断をすることを特徴とする、強化ガラスの製造方法。
  38.  前記偏光位相差可変工程では、液晶素子により前記偏光位相差を可変することを特徴とする、請求項37に記載の強化ガラスの製造方法。
  39.  P偏光及びS偏光の輝線の位置に基づいて各々の屈折率分布を算出し、前記P偏光と前記S偏光の屈折率分布差と強化ガラスの光弾性定数とに基づいて第2の応力分布を求める工程を備えたことを特徴とする、請求項37又は38に記載の強化ガラスの製造方法。
  40.  同じ製造工程で作られた複数の強化ガラスのうち、少なくとも1枚以上の強化ガラスについて、前記評価方法で求めた前記第1の応力分布と前記第2の応力分布を合成して応力分布を得、残りの強化ガラスについて、前記第1の応力分布及び前記第2の応力分布の何れか一方のみを測定して応力分布を得ることを特徴とする、請求項39に記載の強化ガラスの製造方法。
  41.  リチウム含有ガラスを強化した強化ガラスを作製して該強化ガラスの出荷判断を行う強化工程を2回以上含み、
     前記各強化工程は、前記評価方法で得られた前記第1の応力分布に基づいて前記出荷判断を行うことを特徴とする、請求項37又は38に記載の強化ガラスの製造方法。
  42.  最終回の前記強化工程では、前記評価方法がP偏光及びS偏光の輝線の位置に基づいて各々の屈折率分布を算出し、前記P偏光と前記S偏光の屈折率分布差と強化ガラスの光弾性定数とに基づいて第2の応力分布を求める工程を備え、前記評価方法で得られた第2の応力分布に基づいて出荷判断を行うことを特徴とする、請求項41に記載の強化ガラスの製造方法。
  43.  最終回を除く前記強化工程では、前記第1の応力分布から導出したガラス最深部における応力値(CT)、及び応力値がゼロになるガラス深さ(DOL_zero)に基づいて、前記出荷判断を行うことを特徴とする、請求項42に記載の強化ガラスの製造方法。
  44.  最終回の前記強化工程では、前記第2の応力分布を関数近似して、前記出荷判断を行うことを特徴とする、請求項42又は43に記載の強化ガラスの製造方法。
  45.  前記関数近似を下記の式(2)で行うことを特徴とする、請求項44に記載の強化ガラスの製造方法。
    Figure JPOXMLDOC01-appb-M000001
     但し、σf(x)は第2の応力分布、aは傾き、CS2は最表面の応力値である。
  46.  前記関数近似を下記の式(3)で行うことを特徴とする、請求項44に記載の強化ガラスの製造方法。
    Figure JPOXMLDOC01-appb-M000002
     但し、σf(x)は第2の応力分布、aは傾き、CS2は最表面の応力値、erfcは誤差関数である。
  47.  最終回を除く前記強化工程では、該強化工程で得られた第2の応力分布と、強化ガラスの板厚tと、事前に測定した同一条件の強化ガラスの第1の応力分布とを用いて、前記第1の応力分布と前記第2の応力分布を合成し、合成後の応力分布からガラス最深部における応力値(CT)を見つけて特性値を導出し、特性値が許容範囲に入っているか否かにより前記出荷判断を行うことを特徴とする、請求項42乃至46の何れか一項に記載の強化ガラスの製造方法。
  48.  最終回を除く前記強化工程では、該強化工程で得られた第2の応力分布と、強化ガラスの板厚tと、事前に測定した同一条件の強化ガラスの第1の応力分布とを用いて、前記第1の応力分布と前記第2の応力分布を合成し、合成後の応力分布の積分値がゼロになるガラス最深部における応力値(CT)を見つけて特性値を導出し、特性値が許容範囲に入っているか否かにより前記出荷判断を行うことを特徴とする、請求項42乃至47の何れか一項に記載の強化ガラスの製造方法。
  49.  最終回を除く前記強化工程では、該強化工程で得られた第2の応力分布と、強化ガラスの板厚tと、事前に測定した同一条件の強化ガラスの第1の応力分布とを用いて、前記第1の応力分布と前記第2の応力分布を合成し、合成後の応力分布を下記の式(5)で近似し、σ(x)の積分値(x=0~t/2)がゼロになるガラス最深部における応力値(CT)を見つけて特性値を導出し、特性値が許容範囲に入っているか否かにより前記出荷判断を行うことを特徴とする、請求項42乃至47の何れか一項に記載の強化ガラスの製造方法。
    Figure JPOXMLDOC01-appb-M000003
     但し、σ(x)は合成後の応力分布、σf(x)は第2の応力分布、tは強化ガラスの板厚、CS及びcは第1の応力分布に基づいて導出されるパラメータである。
  50.  前記CS及びcを、事前に測定した同一条件の強化ガラスの第1の応力分布に基づいて導出することを特徴とする、請求項49に記載の強化ガラスの製造方法。
  51.  前記CS及びcを、最終回の1回前の強化工程で得られた前記第1の応力分布から導出したCS0’及びc’並びに下記の式(6)及び式(7)に基づいて導出することを特徴とする、請求項49に記載の強化ガラスの製造方法。
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
     但し、A1及びA2は比例定数である。
  52.  A1及びA2は、事前に測定した同一条件の強化ガラスの第1の応力分布に基づいて導出することを特徴とする、請求項51に記載の強化ガラスの製造方法。
  53.  請求項37乃至52の何れか一項に記載の強化ガラスの製造方法で製造されたことを特徴とする、強化ガラス。
  54.  リチウムが2wt%以上含まれるガラスが化学強化されたことを特徴とする、請求項53に記載の強化ガラス。
  55.  風冷強化された後に化学強化されて製造されたことを特徴とする、請求項53に記載の強化ガラス。
PCT/JP2019/007083 2018-02-26 2019-02-25 強化ガラスの評価装置、強化ガラスの評価方法、強化ガラスの製造方法、強化ガラス WO2019163989A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020501084A JP6995324B2 (ja) 2018-02-26 2019-02-25 強化ガラスの評価装置、強化ガラスの評価方法、強化ガラスの製造方法、強化ガラス
CN201980014816.0A CN111801557B (zh) 2018-02-26 2019-02-25 强化玻璃的评价装置、强化玻璃的评价方法、强化玻璃的制造方法及强化玻璃
KR1020207023708A KR102659463B1 (ko) 2018-02-26 2019-02-25 강화 유리의 평가 장치, 강화 유리의 평가 방법, 강화 유리의 제조 방법, 강화 유리

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-031579 2018-02-26
JP2018031579 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019163989A1 true WO2019163989A1 (ja) 2019-08-29

Family

ID=67687252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007083 WO2019163989A1 (ja) 2018-02-26 2019-02-25 強化ガラスの評価装置、強化ガラスの評価方法、強化ガラスの製造方法、強化ガラス

Country Status (4)

Country Link
JP (1) JP6995324B2 (ja)
KR (1) KR102659463B1 (ja)
CN (1) CN111801557B (ja)
WO (1) WO2019163989A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102234541B1 (ko) * 2019-10-04 2021-03-31 (주)파이버피아 강화유리의 불량 검출장치 및 방법
WO2021108352A1 (en) * 2019-11-26 2021-06-03 Corning Incorporated Prism-coupling systems and methods using different wavelengths
JP2021131320A (ja) * 2020-02-20 2021-09-09 有限会社折原製作所 強化ガラスの応力測定装置、強化ガラスの応力測定方法
KR20220159273A (ko) 2021-05-25 2022-12-02 에이지씨 가부시키가이샤 추론 방법, 품질 관리 방법, 화학 강화 유리, 추론 프로그램, 기억 매체, 추론 장치 및 화학 강화 유리의 제조 방법
CN115791701A (zh) * 2022-11-24 2023-03-14 吉水县海天钢化玻璃有限公司 一种钢化或半钢化玻璃应力斑强度量化检验方法
US11860090B2 (en) 2021-04-01 2024-01-02 Corning Incorporated Light source intensity control systems and methods for improved light scattering polarimetry measurements

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9442028B2 (en) * 2013-06-17 2016-09-13 Corning Incorporated Prism coupling methods with improved mode spectrum contrast for double ion-exchanged glass
WO2017115811A1 (ja) * 2015-12-28 2017-07-06 有限会社折原製作所 表面屈折率測定方法、及び、それを利用した表面応力測定方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1185472A (en) * 1966-09-13 1970-03-25 Triplex Safety Glass Co Testing Toughened Glass.
JPS5937451B2 (ja) 1977-05-04 1984-09-10 株式会社東芝 化学強化ガラスの表面応力測定装置
IT1175776B (it) * 1984-02-13 1987-07-15 Siv Soc Italiana Vetro Apparecchiatura per la misurazione automatica di tensioni in un corpo trasparente mediante luce diffusa
KR900007133B1 (ko) * 1988-06-10 1990-09-29 한국과학기술원 레이저 주사용 f-θ 렌즈계
CN103043900A (zh) 2008-08-08 2013-04-17 康宁股份有限公司 强化的玻璃制品及其制造方法
CN102589759B (zh) * 2012-02-20 2013-10-23 浙江大学 基于压阻式和电容式组合的仿生柔性触觉传感阵列
CN102589769A (zh) * 2012-02-29 2012-07-18 西安邮电学院 基于散射体应变的高灵敏度应力传感检测系统
CN103674360B (zh) * 2013-12-27 2016-01-20 深圳市斯尔顿科技有限公司 一种镜片应力检测方法
CN103940537A (zh) * 2014-04-10 2014-07-23 中国科学院半导体研究所 材料的微区应力测试系统
KR101675576B1 (ko) 2014-09-23 2016-11-14 주식회사 맥사이언스 하나의 광원으로 태양전지의 변환 효율 및 양자 효율을 측정하는 장치 및 방법
US9534981B2 (en) * 2014-12-23 2017-01-03 Corning Incorporated Prism-coupling systems and methods for characterizing ion-exchanged waveguides with large depth-of-layer
JP6419595B2 (ja) 2015-01-30 2018-11-07 有限会社折原製作所 表面応力測定方法、表面応力測定装置
CN105424242A (zh) * 2015-12-18 2016-03-23 苏州精创光学仪器有限公司 玻璃内应力自动测量仪
JP6642246B2 (ja) * 2016-04-27 2020-02-05 Agc株式会社 強化ガラス板

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9442028B2 (en) * 2013-06-17 2016-09-13 Corning Incorporated Prism coupling methods with improved mode spectrum contrast for double ion-exchanged glass
WO2017115811A1 (ja) * 2015-12-28 2017-07-06 有限会社折原製作所 表面屈折率測定方法、及び、それを利用した表面応力測定方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102234541B1 (ko) * 2019-10-04 2021-03-31 (주)파이버피아 강화유리의 불량 검출장치 및 방법
WO2021108352A1 (en) * 2019-11-26 2021-06-03 Corning Incorporated Prism-coupling systems and methods using different wavelengths
JP2021131320A (ja) * 2020-02-20 2021-09-09 有限会社折原製作所 強化ガラスの応力測定装置、強化ガラスの応力測定方法
JP7284512B2 (ja) 2020-02-20 2023-05-31 有限会社折原製作所 強化ガラスの応力測定装置、強化ガラスの応力測定方法
US11860090B2 (en) 2021-04-01 2024-01-02 Corning Incorporated Light source intensity control systems and methods for improved light scattering polarimetry measurements
KR20220159273A (ko) 2021-05-25 2022-12-02 에이지씨 가부시키가이샤 추론 방법, 품질 관리 방법, 화학 강화 유리, 추론 프로그램, 기억 매체, 추론 장치 및 화학 강화 유리의 제조 방법
CN115791701A (zh) * 2022-11-24 2023-03-14 吉水县海天钢化玻璃有限公司 一种钢化或半钢化玻璃应力斑强度量化检验方法
CN115791701B (zh) * 2022-11-24 2024-05-24 吉水县海天钢化玻璃有限公司 一种钢化或半钢化玻璃应力斑强度量化检验方法

Also Published As

Publication number Publication date
CN111801557B (zh) 2022-03-01
CN111801557A (zh) 2020-10-20
KR102659463B1 (ko) 2024-04-23
JPWO2019163989A1 (ja) 2021-03-04
JP6995324B2 (ja) 2022-01-14
KR20200121810A (ko) 2020-10-26

Similar Documents

Publication Publication Date Title
WO2018056121A1 (ja) 強化ガラスの応力測定装置、強化ガラスの応力測定方法、強化ガラスの製造方法、強化ガラス
WO2019163989A1 (ja) 強化ガラスの評価装置、強化ガラスの評価方法、強化ガラスの製造方法、強化ガラス
CN1200245C (zh) 利用全息图和凹形表面测量非球面的装置和方法
CN108700511B (zh) 表面折射率测定方法及利用了该方法的表面应力测定方法
CN101464209A (zh) 镜片折射率变化量的测量方法及其装置
WO2019169683A1 (zh) 准直镜头
JP2001091223A (ja) 面間隔測定方法及び装置
CN107543605B (zh) 校正由线偏振光引起的测量误差的亮度色度计
CN108726894B (zh) 化学强化玻璃
JP7284512B2 (ja) 強化ガラスの応力測定装置、強化ガラスの応力測定方法
CN114112131A (zh) 强化玻璃的应力测定装置、强化玻璃的应力测定方法、强化玻璃
JP7437750B2 (ja) 強化ガラスの表面屈折率測定装置及び表面屈折率測定方法、強化ガラスの表面応力測定装置及び表面応力測定方法
CN113358574B (zh) 一种光学玻璃弹光系数的测量系统及方法
CN216621553U (zh) 一种应力偏振分光检测装置
JP7458005B2 (ja) ガラス評価装置、ガラス評価方法
JP7158017B2 (ja) 応力測定装置、応力測定方法
US11207870B2 (en) Refractive-index matching optical window
JPH10227624A (ja) 平行複屈折板の平行度測定方法
JP2022039955A (ja) 強化ガラスの応力測定装置、強化ガラスの応力測定方法、強化ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501084

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757159

Country of ref document: EP

Kind code of ref document: A1