WO2019163950A1 - 水処理槽及び脱硫装置 - Google Patents

水処理槽及び脱硫装置 Download PDF

Info

Publication number
WO2019163950A1
WO2019163950A1 PCT/JP2019/006809 JP2019006809W WO2019163950A1 WO 2019163950 A1 WO2019163950 A1 WO 2019163950A1 JP 2019006809 W JP2019006809 W JP 2019006809W WO 2019163950 A1 WO2019163950 A1 WO 2019163950A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
seawater
water
downstream
overflow wall
Prior art date
Application number
PCT/JP2019/006809
Other languages
English (en)
French (fr)
Inventor
真成 飯野
貴司 川野
川根 浩
櫻井 秀明
直行 神山
良三 佐々木
哲 牛久
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to US16/971,600 priority Critical patent/US20200398215A1/en
Priority to CN201990000483.1U priority patent/CN213679990U/zh
Publication of WO2019163950A1 publication Critical patent/WO2019163950A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • B01D53/185Liquid distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23121Diffusers having injection means, e.g. nozzles with circumferential outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • B01F23/2341Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere
    • B01F23/23411Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere by cascading the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • B01F33/821Combinations of dissimilar mixers with consecutive receptacles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/48Sulfur dioxide; Sulfurous acid
    • C01B17/50Preparation of sulfur dioxide
    • C01B17/60Isolation of sulfur dioxide from gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • B01D2252/1035Sea water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1481Removing sulfur dioxide or sulfur trioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/305Treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents

Definitions

  • a power generation plant or the like is provided with a desulfurization device because it is necessary to absorb and remove sulfur dioxide (SO 2 ) from exhaust gas discharged from a coal-fired boiler or the like.
  • SO 2 sulfur dioxide
  • the desulfurization apparatus absorbs SO 2 in the exhaust gas in seawater in the desulfurization absorption tower and oxidizes the used seawater in contact with a large amount of air in the oxidation tank.
  • a dam (overflow wall) is provided in the water channel to convert the water over the dam into a waterfall. ing.
  • fine air bubbles are supplied to the seawater to promote oxidation (for example, see Patent Document 1).
  • the water treatment tank is introduced with a tank body having a bottom surface extending in the horizontal direction of the water treatment tank and treated water in which sulfur content is absorbed from exhaust gas in the tank body.
  • An overflow wall partitioned into an upstream tank and a downstream tank into which the treated water overflowed from the upstream tank is introduced, and provided between the bottom surface and the overflow wall in the downstream tank, And an inclined portion that is inclined downward as it goes from the overflow wall toward the downstream side in the downstream tank and is connected to the bottom surface.
  • the water treatment tank may have a perforated plate in which a main surface has a plate shape arranged along the bottom surface and a plurality of through holes are formed.
  • the water treatment tank may include a bubble generator provided below the perforated plate and supplying bubbles to the downstream tank.
  • the water treatment tank includes a tank body having a bottom surface extending in the horizontal direction in the water treatment tank, and an upstream in which treated water is introduced from the outside water area in the tank body.
  • An overflow wall partitioned into a tank and a downstream tank into which the treated water overflowed from the upstream tank is introduced, and is provided between the bottom surface and the overflow wall in the downstream tank.
  • an inclined portion that inclines downward from the flow wall toward the downstream side in the downstream tank and is connected to the bottom surface.
  • the water treatment tank may include a bypass flow path that connects the upstream tank and the downstream tank so that the treated water in the upstream tank flows along the bottom surface of the downstream tank.
  • the water treatment tank may have an air supply device for supplying ambient air into the treated water using the pressure of the treated water over the overflow wall or the falling water near the water surface.
  • the amount of bubbles supplied to the treated water can be increased.
  • the desulfurization apparatus is discharged from any one of the water treatment tanks, a desulfurization absorption tower that absorbs and removes SO 2 in the exhaust gas by seawater, and the desulfurization absorption tower. And a drainage line for introducing the used seawater into the water treatment tank.
  • oxygen can be efficiently supplied to the used seawater.
  • a water treatment tank can be reduced in size.
  • the treated water that has passed over the overflow wall falls and collides with the water surface, thereby generating fine bubbles.
  • the treated water that has flowed into the downstream tank collides with the inclined portion together with the generated bubbles, and flows downstream along the bottom surface due to the inclination of the inclined surface. Thereby, bubbles can be kept in the treated water longer in the downstream tank.
  • a plant 100 having a desulfurization apparatus 1 according to this embodiment includes a coal-fired or heavy oil-fired boiler 101 and a desulfurization apparatus 1.
  • the desulfurization apparatus 1 includes a desulfurization absorption tower 2 that removes SO 2 (sulfur content) in exhaust gas EG discharged from the boiler 101 by absorbing it into seawater SW (treated water), and a use that is discharged from the desulfurization absorption tower 2. And a water treatment tank 3 including an oxidation tank 7 for oxidizing the seawater SW2.
  • the boiler 101 includes a steam turbine that is driven by steam generated by the boiler 101, a generator that generates power by driving the steam turbine, and the like.
  • the water treatment tank 3 includes a tank body 10 having a bottom surface 10a extending in the horizontal direction, and a plurality of overflow walls 13, 6a, 7a, 8a that define the tank body 10.
  • the water treatment tank 3 is introduced with a seawater intake tank 5 into which the seawater SW is introduced, a seawater SW overflowing from the seawater intake tank 5 and a used seawater SW2 that has absorbed SO 2 in the desulfurization absorption tower 2 through the overflow wall.
  • the tank 6 is divided into a mixing tank 6, an oxidation tank 7 (aeration tank) that oxidizes the seawater SW by contacting the seawater SW with a large amount of air, and a finishing tank 8 (dilution tank) disposed downstream of the oxidation tank 7. Yes.
  • the height of the bottom surface 10 a of the water treatment tank 3 is the same throughout the length, but the height of the bottom surface 10 a of the water treatment tank 3 is lower in the downstream tank.
  • These tanks are arranged so that the seawater intake tank 5, the mixing tank 6, the oxidation tank 7, and the finishing tank 8 are adjacent to each other in this order from the upstream side. These tanks are configured such that seawater SW overflowed from a more upstream tank is received by an adjacent downstream tank.
  • the seawater intake tank 5 includes a tank body 10, a seawater intake tank overflow wall 13 that partitions the seawater intake tank 5 into a seawater intake upstream tank 11 and a seawater intake downstream tank 12, and a seawater intake downstream of the seawater intake tank 5.
  • a mixing tank overflow wall 6a that is divided into a tank 12 and a mixing tank 6; and a seawater intake tank inclined portion 14 provided between the bottom surface 10a of the seawater intake downstream tank 12 and the seawater intake tank overflow wall 13 doing.
  • Seawater SW is introduced into the seawater intake upstream tank 11 through the seawater introduction line 15 from the sea which is an external water area.
  • the seawater introduction line 15 is provided with a pump 16.
  • the seawater SW overflowed from the seawater intake upstream tank 11 is introduced and flows.
  • the seawater SW over the seawater intake tank overflow wall 13 turns into a waterfall.
  • the seawater intake downstream tank 12 is provided with a desulfurization seawater line 17 and a pump 18 for sending a part of the seawater SW to the desulfurization absorption tower 2.
  • the seawater intake tank inclined portion 14 is inclined downward and connected to the bottom surface 10a from the seawater intake tank overflow wall 13 toward the downstream side in the seawater intake downstream tank 12.
  • the seawater intake tank inclined portion 14 is provided at a position where the seawater SW overflowed from the seawater intake upstream tank 11 collides.
  • the seawater intake tank inclined portion 14 has a flat inclined surface 14a.
  • the bottom surface 10a and the slope 14a intersect so as to form an obtuse angle.
  • the seawater intake tank overflow wall 13 and the slope 14a intersect so as to form an obtuse angle.
  • the angle ⁇ formed by the bottom surface 10a and the inclined surface 14a is preferably, for example, 25 ° to 45 °, and more preferably 28 ° to 35 °.
  • a plurality of spray nozzles 20 are provided in the desulfurization absorption tower 2 for bringing the seawater SW into the gas-liquid contact with the exhaust gas as an absorption liquid.
  • the exhaust gas outlet 21 of the desulfurization absorption tower 2 is provided with a chimney 22 for releasing the desulfurized exhaust gas to the atmosphere.
  • a drain line 23 for sending the used seawater SW2 that has absorbed SO 2 discharged from the desulfurization absorption tower 2 to the mixing tank 6 is laid.
  • the mixing tank 6 has a tank body 10, a mixing tank overflow wall 6 a, and an oxidation tank overflow wall 7 a that partitions the tank body 10 into a mixing tank 6 and an oxidation tank 7.
  • the mixing tank 6 is configured to receive the seawater SW overflowed from the seawater intake tank 5 and to introduce the used seawater SW2 discharged from the desulfurization absorption tower 2.
  • the oxidation tank 7 includes a tank body 10, an oxidation tank overflow wall 7a, a finishing tank overflow wall 8a that partitions the tank body 10 into an oxidation tank 7 and a finishing tank 8, a bottom surface 10a of the tank body 10, and an oxidation tank. It has the oxidation tank inclination part 28 provided ranging between the overflow walls 7a.
  • the oxidation tank 7 is configured to receive the seawater SW including the used seawater SW2 that has overflowed from the mixing tank 6, and the seawater SW flows from one end to the other end.
  • the oxidation tank 7 has a bubble generating device 24 that supplies bubbles (air) to the seawater SW in the oxidation tank 7.
  • the bubble generating device 24 has an air line 25 disposed at the bottom of the oxidation tank 7 and a plurality of bubble blowing nozzles 26 that are provided in the air line 25 and blow bubbles in multiple stages in the flow direction of the seawater SW. doing.
  • the air line 25 is provided with a compressor 27 for oxidized air that sends air in the atmosphere to the bubble blowing nozzle 26.
  • the configuration of the oxidation tank inclined portion 28 is the same as that of the seawater intake tank inclined portion 14. That is, the oxidation tank inclined portion 28 is provided at a position where the seawater SW overflowed from the mixing tank 6 collides.
  • the oxidation tank inclined portion 28 has a flat slope.
  • the bottom surface 10a10a and the slope intersect with each other so as to form an obtuse angle.
  • the oxidation tank overflow wall 7a and the slope intersect each other at an obtuse angle.
  • the angle ⁇ formed by the bottom surface 10a and the inclined surface is, for example, preferably 25 ° to 45 °, and more preferably 28 ° to 35 °.
  • the finishing tank 8 has a tank body 10, a finishing tank overflow wall 8a, and a finishing tank inclined portion 30 provided between the bottom surface 10a and the finishing tank overflow wall 8a.
  • the finishing tank 8 is configured to receive the used seawater SW2 overflowing from the oxidation tank 7 and to receive the seawater SW for diluting the used seawater SW2 via the dilution seawater line 31.
  • a discharge port 32 for discharging the seawater SW is provided at the downstream end of the finishing tank 8.
  • the configuration of the finishing tank inclined part 30 is the same as that of the seawater intake tank inclined part 14 and the oxidation tank inclined part 28. That is, the finishing tank inclined portion 30 is provided at a position where the seawater SW overflowed from the oxidation tank 7 collides.
  • the finishing tank inclined portion 30 has a flat slope.
  • the bottom surface 10a10a and the slope intersect with each other so as to form an obtuse angle.
  • the finishing tank overflow wall 8a and the slope intersect each other at an obtuse angle.
  • the angle ⁇ formed by the bottom surface 10a and the inclined surface is, for example, preferably 25 ° to 45 °, and more preferably 28 ° to 35 °.
  • a steam turbine is driven using steam and power is generated by a generator.
  • the exhaust gas EG from the boiler 101 is introduced into the desulfurization absorption tower 2, and the heated seawater SW is sprayed on the exhaust gas EG as an absorption liquid.
  • SO 2 in the exhaust gas EG is absorbed by the seawater SW, and sulfites such as sulfite (H 2 SO 3 ), bisulfite ion (HSO 3 ⁇ ), and sulfite ion (SO 3 2 ⁇ ) in the seawater SW. It becomes.
  • the exhaust gas EG from which SO 2 has been removed is released from the chimney 22 to the atmosphere.
  • the used seawater SW 2 that has absorbed SO 2 is discharged from the desulfurization absorption tower 2 and introduced into the mixing tank 6 through the drain line 23.
  • the seawater SW is introduced into the seawater intake tank 5 disposed on the uppermost stream side of the water treatment tank 3 through the seawater introduction line 15.
  • the seawater SW is supplied to the desulfurization absorption tower 2 via the desulfurization seawater line 17.
  • the seawater SW overflowed from the seawater intake tank 5 and the used seawater SW2 discharged from the desulfurization absorption tower 2 are mixed and diluted.
  • the spent seawater SW2 discharged from the desulfurization absorption tower 2 usually has a low pH. Therefore, by diluting in the mixing tank 6, the pH can be increased to a value (for example, pH 6 or more) at which the oxidation reaction proceeds rapidly by aeration.
  • a value for example, pH 6 or more
  • the used seawater SW2 discharged from the desulfurization absorption tower 2 usually has a high SO 3 2 ⁇ concentration. Therefore, by this dilution, the SO 3 2 ⁇ concentration in the used seawater SW2 can be lowered to a value (eg, 1.2 mmol / liter or less) at which SO 2 does not diffuse into the gas phase.
  • the mixed used seawater SW2 is introduced into the oxidation tank 7 by overflowing from the mixing tank 6.
  • seawater SW used seawater SW2
  • oxidation treatment aneration treatment
  • seawater SW is introduced into the used seawater SW2 flowing in the finishing tank 8 via the seawater line 31 for dilution, and the seawater SW is diluted. Thereby, pH of seawater SW can be improved. Finally, the seawater SW whose SO 3 2 ⁇ concentration has fallen below the discharge standard is discharged from the discharge port 32.
  • seawater intake tank 5 bubbles are generated when the seawater SW that has overflowed the seawater intake tank overflow wall 13 collides with the water surface of the seawater intake downstream tank 12.
  • the flowing seawater SW collides with the seawater intake tank inclined portion 14 together with the generated bubbles, and flows downstream along the bottom surface 10a due to the inclination of the inclined surface 14a. That is, after the bubble collides with the bottom surface 10a, it does not rise as it is, remains on the bottom surface 10a, and flows so as to spread throughout. Thereby, the dissolved oxygen amount (DO) of the seawater SW in the seawater intake downstream tank 12 is likely to be saturated.
  • DO dissolved oxygen amount
  • bubbles are generated when the seawater SW overflowing the oxidation tank overflow wall 7 a collides with the water surface of the oxidation tank 7.
  • the flowing seawater SW collides with the oxidation tank inclined portion 28 together with the generated bubbles, and flows downstream along the bottom surface 10a due to the inclination of the inclined surface. Thereby, the oxidation in the oxidation tank 7 is promoted.
  • the seawater SW overflowing the finishing tank overflow wall 8 a collides with the water surface and generates bubbles.
  • the flowing seawater SW collides with the finishing tank inclined portion 30 together with the generated bubbles, and flows downstream along the bottom surface 10a due to the inclination of the inclined surface. This promotes finish oxidation prior to discharge.
  • the seawater SW over the overflow walls 13, 6a, 7a, 8a falls and collides with the water surface, thereby generating fine bubbles.
  • the seawater SW flowing into the downstream tank collides with the inclined portions 14, 28 and 30 together with the generated bubbles, and flows downstream along the bottom surface 10a due to the inclination of the inclined surface.
  • bubbles can be kept longer in the downstream tank.
  • the oxidation tank 7 can be made compact.
  • the seam intake tank overflow wall 13, the oxidation tank overflow wall 7a, and the finishing tank overflow wall 8a are provided with the inclined portions 14, 28, 30.
  • all these overflow walls are provided. It is not necessary to provide an inclined portion, and an overflow wall having an inclined portion can be selected as necessary.
  • the perforated plate 33 is disposed so as to cover the bubble blowing nozzle 26 of the bubble generating device 24 when viewed from above.
  • the perforated plate 33 does not need to be parallel to the bottom surface 10a, and may be inclined with respect to the bottom surface 10a as long as it is arranged along the bottom surface 10a.
  • the porous plate 33 does not need to cover the entire bottom surface 10a (bubble blowing nozzle 26), and the porous plate 33 may be disposed only on the upstream side of the oxidation tank 7.
  • the upstream end of the perforated plate 33 is arranged at a position where it does not interfere with the oxidation tank inclined portion 28.
  • a plurality of through holes 34 are formed in the porous plate 33.
  • the through holes 34 are preferably arranged regularly.
  • the perforated plate 33 can be formed of, for example, a punching metal or a metal mesh.
  • the desulfurization apparatus of 3rd embodiment of this invention is demonstrated in detail with reference to drawings.
  • the desulfurization apparatus of this embodiment is formed in the seawater intake tank inclined portion 14, and the seawater SW flows in the seawater intake upstream tank 11 along the bottom surface 10 a of the seawater intake downstream tank 12. It has a bypass channel 35 connecting the intake water upstream tank 11 and the seawater intake tank inclined portion 14.
  • the bypass channel 35 includes a bypass channel inlet 36 formed in the bottom surface 11 a of the seawater intake upstream tank 11, a bypass channel outlet 37 formed in the seawater intake tank inclined portion 14, and a bypass channel inlet 36. And a bypass channel main body 38 that connects the bypass channel outlet 37.
  • the bypass flow path outlet 37 is formed in the lower part of the seawater intake tank inclined portion 14.
  • a plurality of bypass passages 35 are provided across the width direction of the seawater intake tank inclined portion 14 (direction perpendicular to the paper surface of FIG. 4).
  • the desulfurization apparatus 1 of this embodiment has the partition plate 39 formed so that a main surface may follow a vertical direction and at least one part may interfere with seawater SW in the seawater intake downstream tank 12. ing.
  • the partition plate 39 is disposed such that the lower end of the partition plate 39 is higher than the bypass channel outlet 37 of the bypass channel 35.
  • the partition plate 39 is disposed slightly downstream of the seawater intake tank inclined portion 14.
  • the upper end of the partition plate 39 is formed to be lower than the water surface of the seawater SW. Note that the partition plate 39 does not have to be formed along the vertical direction, and may be formed so as to reduce the flow of the seawater SW that flows back upstream from the partition plate 39.
  • the seawater SW in the vicinity of the seawater intake tank inclined portion 14 is pushed downstream by the bypass flow F flowing through the bypass flow path 35, and the force by which bubbles are pushed downstream by this flow can be increased. it can. Thereby, a bubble can be kept in seawater SW longer. Moreover, the water level of the falling part can be lowered by the bypass flow F.
  • the flow of the seawater SW flowing backward to the falling water portion can be reduced by the partition plate 39, and the water level lowered by the bypass flow F can be maintained.
  • the falling water height can be earned.
  • an air bubble can be made easy to entrain by becoming a drawing-in flow.
  • the partition plate 39 of the said embodiment is formed so that the upper end of the partition plate 39 may become lower than the water surface of seawater SW, it is not restricted to this.
  • the partition plate 39B it is possible to further reduce the flow of the seawater SW that flows back to the upstream side.
  • the bypass flow path outlet 37 of the bypass flow path 35 of this embodiment is formed in the seawater intake tank inclined part 14, it is not restricted to this, The bypass flow path discharge opening 37 is formed in the bottom face 10a. May be.
  • the bypass channel 35 and the partition plate 39 of the present embodiment may be provided not only before and after the seawater intake tank overflow wall 13 but also before and after the oxidation tank overflow wall 7a and the finishing tank overflow wall 8a. .
  • the desulfurization apparatus of 4th embodiment of this invention is demonstrated in detail with reference to drawings.
  • the differences from the first embodiment described above will be mainly described, and the description of the same parts will be omitted.
  • the desulfurization apparatus of the present embodiment is divided between the upper end of the seawater intake tank overflow wall 13 and the water surface SWf of the seawater SW that overflows the seawater intake tank overflow wall 13.
  • a plate 41 is provided.
  • the dividing plate 41 divides the seawater SW that overflows the seawater intake tank overflow wall 13 into a small flow sidestream SS (first falling water) and a large flow mainstream MS (second falling water).
  • a small flow sidestream SS first falling water
  • a large flow mainstream MS second falling water
  • the seawater SW flowing between the dividing plate 41 and the upper end of the seawater intake tank overflow wall 13 becomes the secondary flow SS
  • the seawater SW flowing above the dividing plate 41 becomes the mainstream MS.
  • the substream SS falls to the upstream side
  • the mainstream MS falls to the downstream side.
  • the flow rate of the main flow MS can be twice the flow rate of the sub flow SS.
  • the falling water can be divided to increase the number of collision points with the water surface after falling, increase the generation of bubbles and increase the intake of air into the seawater SW. Further, by making the flow rate of the main flow MS larger than the flow rate of the sub flow SS, bubbles generated in the sub flow SS can be carried farther by the flow of the main flow MS.
  • the falling water falling to the upstream side is the substream SS and the falling water falling to the downstream side is the mainstream MS.
  • the present invention is not limited to this, and the falling water falling to the upstream side is the mainstream. It is good also as MS and the falling water which falls downstream is good also as substream SS. Further, the main flow MS and the sub flow SS may have the same flow rate. Furthermore, it is good also as a structure which arrange
  • the dividing plate 41 is provided above the seawater intake tank overflow wall 13. However, the dividing plate 41 is provided above the oxidation tank overflow wall 7a and the finishing tank overflow wall 8a. May be.
  • the desulfurization apparatus of 5th embodiment of this invention uses a flow of seawater SW that passes over the seawater intake tank overflow wall 13, and a pipe 43 (air supply apparatus) that supplies ambient air into the seawater SW. have.
  • the pipe 43 is disposed inside the water stream immediately before the water falls.
  • the pipe 43 includes an air suction part 44 that takes air into the pipe 43 and an air ejection part 45 that ejects air taken from the air suction part 44.
  • air may be supplied by a compressor or the like.
  • the installation position of the pipe 43 is not limited to the above position.
  • the pipe 43 may be arranged in a portion where the velocity gradient immediately after falling water is large. By arranging the pipe 43 at such a position and increasing the air entrainment amount after dropping, the air mixing amount can be increased.
  • air is mixed by ejecting air by the ejector effect, and the dissolved oxygen amount of seawater SW can be improved effectively.
  • the amount of air can be increased by increasing the amount of air in the falling water stream.
  • air can be supplied without providing a power source such as a blower.
  • the water treatment tank 3 having the inclined portion is applied to the seawater type desulfurization apparatus, but the present invention is not limited to this, and can be applied to the water treatment tank 3 using fresh water.
  • the present invention relates to a water treatment tank and a desulfurization apparatus. According to the present invention, bubbles can be kept in the treated water for a longer time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

この水処理槽は、水平方向に延びる底面(10a)を有する槽本体(10)と、槽本体内を、排気ガスから硫黄分を吸収した処理水が導入される上流槽(11)と、上流槽から越流した処理水が導入されて流れる下流槽(12)とに区画する越流壁(13)と、下流槽における槽本体の底面と越流壁との間にわたって設けられて、越流壁から下流槽内の下流側に向かうにしたがって下方に傾斜して槽本体の底面に接続される傾斜部(14)とを備える。

Description

水処理槽及び脱硫装置
 本発明は、水処理槽及び脱硫装置に関する。本願は、2018年2月23日に出願された特願2018-030609号に対して優先権を主張しその内容をここに援用する。
 一般に、発電プラントなどには、石炭焚きボイラなどから排出される排気ガスから二酸化硫黄(SO)を吸収除去する必要があるため、脱硫装置が設けられている。脱硫装置は、脱硫吸収塔で排気ガス中のSOを海水に吸収させるとともに、使用済み海水を酸化槽で大量の空気と接触させることにより酸化処理している。
 脱硫装置としては、酸化槽に投入された使用済み海水により多くの空気を供給するために、水路内に堰(越流壁)を設けて、堰を乗り越えた水を滝化するものが知られている。酸化槽に投入される海水を滝化することにより、海水に微細な空気の気泡が供給されて酸化が促進される(例えば、特許文献1参照)。
特開2012-115764号公報
 ところで、水路内に堰を設け、海水を滝化することにより空気を供給する場合、十分な落差を確保する必要があるが、落差を大きくすることなく更に酸化を強める方法が求められている。特に、酸化を進める上では、気泡をより長い時間海水中に留まらせる必要がある。
 この発明は、越流する処理水によって発生する気泡をより長く処理水中に留めることができる水処理槽、及び脱硫装置を提供することを目的とする。
 本発明の第一の態様によれば、水処理槽は、水処理槽水平方向に延びる底面を有する槽本体と、前記槽本体内を、排気ガスから硫黄分を吸収した処理水が導入される上流槽と、前記上流槽から越流した前記処理水が導入されて流れる下流槽とに区画する越流壁と、前記下流槽における前記底面と前記越流壁との間にわたって設けられて、前記越流壁から前記下流槽内の下流側に向かうにしたがって下方に傾斜して前記底面に接続される傾斜部とを備える。
 このような構成によれば、越流壁を乗り越えた処理水が滝化し、水面に衝突することにより、微細な気泡が発生する。下流槽に流れ込んだ処理水が発生した気泡とともに傾斜部に衝突し、斜面の傾斜により底面に沿って下流側に流れる。これにより、下流槽内に気泡をより長く処理水中に留めることができる。
 上記水処理槽において、主面が前記底面に沿うように配置された板状をなし、複数の貫通孔が形成された多孔板を有してよい。
 このような構成によれば、多孔板により気泡の上昇を抑制して、気泡をより長く処理水中に留めることができる。
 上記水処理槽において、前記多孔板の下方に設けられ、気泡を前記下流槽に供給する気泡発生装置を有してよい。
 このような構成によれば、多孔板により越流壁により発生した気泡のみならず、気泡発生装置にて発生した気泡の上昇を抑制して、気泡をより長く処理水中に留めることができる。
 本発明の第二の態様によれば、水処理槽は、上記水処理槽において、水平方向に延びる底面を有する槽本体と、前記槽本体内を、外部の水域から処理水が導入される上流槽と、前記上流槽から越流した前記処理水が導入されて流れる下流槽とに区画する越流壁と、前記下流槽における前記底面と前記越流壁との間にわたって設けられて、前記越流壁から前記下流槽内の下流側に向かうにしたがって下方に傾斜して前記底面に接続される傾斜部とを備える。
 上記水処理槽において、前記上流槽内の処理水を前記下流槽の底面に沿って流すように前記上流槽と前記下流槽とを接続するバイパス流路を有してよい。
 このような構成によれば、バイパス流路を流れるバイパス流により、傾斜部近傍の処理水が下流側に押し流され、この流れによって気泡が下流側に押される力を強めることができる。これにより、気泡をより長く処理水中に留めることができる。また、バイパス流により、落水部の水位を下げることができる。
 上記水処理槽において、少なくとも一部が前記下流槽内の処理水と干渉するように配置された仕切板であって、仕切板よりも上流側に逆流する処理水の流れを低減する仕切板を有してよい。
 このような構成によれば、仕切板により落水部に逆流する処理水の流れを低減し、バイパス流により低下した水位を保持することができる。
 上記水処理槽において、前記越流壁の上端と、前記越流壁を越流する処理水の水面との間に配置され、前記処理水を上流側に落下する第一の落下水と、下流側に落下する第二の落下水とに分割する分割板を有してよい。
 このような構成によれば、落水が分割されることで落水後の水面との衝突箇所を増やし、気泡の発生を増加させて処理水への空気の取り込みを増加させることができる。
 上記水処理槽において、越流壁を乗り越える処理水、又は、水面近傍の落水の圧力を利用して、処理水中に周囲の空気を供給する空気供給装置を有してよい。
 このような構成によれば、処理水に供給される気泡の量を増加させることができる。
 本発明の第三の態様によれば、脱硫装置は、上記いずれかの水処理槽と、排気ガス中のSOを海水に吸収させて除去する脱硫吸収塔と、前記脱硫吸収塔から排出される使用済み海水を前記水処理槽に導入する排水ラインとを備える。
 このような構成によれば、使用済み海水に効率よく酸素を供給することができる。これにより、水処理槽をコンパクト化することができる。
 本発明によれば、越流壁を乗り越えた処理水が滝化し、水面に衝突することにより、微細な気泡が発生する。下流槽に流れ込んだ処理水が発生した気泡とともに傾斜部に衝突し、斜面の傾斜により底面に沿って下流側に流れる。これにより、下流槽内に気泡をより長く処理水中に留めることができる。
本発明の第一実施形態の脱硫装置の概略構成図である。 本発明の第一実施形態の海水取水槽の断面図である。 本発明の第二実施形態の酸化槽の断面図である。 本発明の第三実施形態の海水取水槽の断面図である。 本発明の第三実施形態の変形例の海水取水槽の断面図である。 本発明の第四実施形態の海水取水槽の断面図である。 本発明の第五実施形態の海水取水槽に設けられたパイプの断面図である。 本発明の第五実施形態の変形例の海水取水槽の断面図である。
(第一実施形態)
 以下、本発明の第一実施形態の脱硫装置について図面を参照して詳細に説明する。
 図1に示すように、本実施形態の脱硫装置1を有するプラント100は、石炭焚き又は重油焚きのボイラ101と、脱硫装置1とを備えている。
 脱硫装置1は、ボイラ101から排出される排気ガスEG中のSO(硫黄分)を海水SW(処理水)に吸収させて除去する脱硫吸収塔2と、脱硫吸収塔2から排出される使用済み海水SW2を酸化処理する酸化槽7などからなる水処理槽3とを有している。
 ボイラ101は、ボイラ101で生成した蒸気で駆動する蒸気タービンと、蒸気タービンの駆動により発電を行う発電機などを有している。
 水処理槽3は、水平方向に延びる底面10aを有する槽本体10と、槽本体10を区画する複数の越流壁13,6a,7a,8aとを有している。水処理槽3は、越流壁によって、海水SWが導入される海水取水槽5と、海水取水槽5から溢れた海水SWと脱硫吸収塔2においてSOを吸収した使用済み海水SW2とが導入される混合槽6と、海水SWを大量の空気と接触させることにより酸化する酸化槽7(曝気槽)と、酸化槽7の後段に配置された仕上げ槽8(希釈槽)とに区画されている。
 なお、図1においては、水処理槽3の底面10aの高さは全長にわたって同じにされているが、水処理槽3の底面10aの高さは下流側の槽ほど低くなっている。
 これらの槽は上流側より順に、海水取水槽5、混合槽6、酸化槽7、仕上げ槽8の順に互いに隣り合うように配置されている。これらの槽は、より上流側の槽から越流した海水SWが、隣り合う下流側の槽に受け入れられるように構成されている。
 海水取水槽5は、槽本体10と、海水取水槽5内を海水取水上流槽11と海水取水下流槽12とに区画する海水取水槽越流壁13と、海水取水槽5内を海水取水下流槽12と混合槽6とに区画する混合槽越流壁6aと、海水取水下流槽12における底面10aと海水取水槽越流壁13との間にわたって設けられた海水取水槽傾斜部14とを有している。
 海水取水上流槽11には、外部の水域である海から海水導入ライン15を介して海水SWが導入される。海水導入ライン15には、ポンプ16が設けられている。海水取水下流槽12には、海水取水上流槽11から越流した海水SWが導入されて流れる。海水取水槽越流壁13を乗り越えた海水SWは滝化する。
 海水取水下流槽12には、海水SWの一部を脱硫吸収塔2に送る脱硫用海水ライン17及びポンプ18が設けられている。
 図2に示すように、海水取水槽傾斜部14は、海水取水槽越流壁13から海水取水下流槽12内の下流側に向かうにしたがって下方に傾斜して底面10aに接続されている。海水取水槽傾斜部14は、海水取水上流槽11から越流した海水SWが衝突する位置に設けられている。海水取水槽傾斜部14は、平面状の斜面14aを有している。底面10aと斜面14aとは、鈍角をなすように交差している。海水取水槽越流壁13と斜面14aとは鈍角をなすように交差している。底面10aと斜面14aとのなす角θは、例えば、25°~45°とすることが好ましく、28°~35°とすることが更に好ましい。
 図1に示すように、脱硫吸収塔2内には、海水SWを吸収液として排気ガスと気液接触させるための噴霧ノズル20が複数設けられている。脱硫吸収塔2の排気ガス出口21には、脱硫処理された排気ガスを大気に放出する煙突22が設けられている。脱硫吸収塔2と混合槽6との間には、脱硫吸収塔2から排出されるSOを吸収した使用済み海水SW2を、混合槽6に送る排水ライン23が敷設されている。
 混合槽6は、槽本体10と、混合槽越流壁6aと、槽本体10を混合槽6と酸化槽7とに区画する酸化槽越流壁7aとを有している。混合槽6は、海水取水槽5から越流した海水SWを受け入れるとともに、脱硫吸収塔2から排出される使用済み海水SW2が導入されるように構成されている。
 酸化槽7は、槽本体10と、酸化槽越流壁7aと、槽本体10を酸化槽7と仕上げ槽8とに区画する仕上げ槽越流壁8aと、槽本体10の底面10aと酸化槽越流壁7aとの間にわたって設けられた酸化槽傾斜部28とを有している。酸化槽7は、混合槽6から越流した使用済み海水SW2を含んだ海水SWを受け入れ、この海水SWが一端から他端まで流れるように構成されている。
 酸化槽7は、酸化槽7内の海水SWに気泡(空気)を供給する気泡発生装置24を有している。気泡発生装置24は、酸化槽7の底部に配置された空気ライン25と、空気ライン25に設けられ、海水SWの流れ方向に対して気泡を多段階に吹き込む複数の気泡吹込ノズル26とを有している。空気ライン25には、大気中の空気を気泡吹込ノズル26へと送る酸化空気用コンプレッサ27が設置されている。
 酸化槽傾斜部28の構成は、海水取水槽傾斜部14と同様である。即ち、酸化槽傾斜部28は、混合槽6から越流した海水SWが衝突する位置に設けられている。酸化槽傾斜部28は、平面状の斜面を有している。底面10a10aと斜面とは、鈍角をなすように交差している。酸化槽越流壁7aと斜面とは鈍角をなすように交差している。底面10aと斜面とのなす角θは、例えば、25°~45°とすることが好ましく、28°~35°とすることが更に好ましい。
 仕上げ槽8は、槽本体10と、仕上げ槽越流壁8aと、底面10aと仕上げ槽越流壁8aとの間にわたって設けられた仕上げ槽傾斜部30とを有している。仕上げ槽8は、酸化槽7から溢れ出た使用済み海水SW2を受け入れるとともに、希釈用海水ライン31を介して使用済み海水SW2を希釈するための海水SWが投入されるように構成されている。仕上げ槽8の下流側端部には、海水SWを放出するための放出口32が設けられている。
 仕上げ槽傾斜部30の構成は、海水取水槽傾斜部14及び酸化槽傾斜部28と同様である。即ち、仕上げ槽傾斜部30は、酸化槽7から越流した海水SWが衝突する位置に設けられている。仕上げ槽傾斜部30は、平面状の斜面を有している。底面10a10aと斜面とは、鈍角をなすように交差している。仕上げ槽越流壁8aと斜面とは鈍角をなすように交差している。底面10aと斜面とのなす角θは、例えば、25°~45°とすることが好ましく、28°~35°とすることが更に好ましい。
 次に、本実施形態の脱硫装置1の作用について説明する。
 ボイラ101では、蒸気を用いて蒸気タービンを駆動し、発電機で発電を行う。ボイラ101からの排気ガスEGは、脱硫吸収塔2に導入され、加熱された海水SWが吸収液として排気ガスEGに対して噴霧される。これにより、排気ガスEG中のSOは海水SWに吸収されて海水SW中で亜硫酸(HSO)、重亜硫酸イオン(HSO )、及び亜硫酸イオン(SO 2-)といった亜硫酸類となる。SOが除去された排気ガスEGは、煙突22から大気へ開放される。SOを吸収した使用済み海水SW2は、脱硫吸収塔2から排出され、排水ライン23を介して混合槽6に導入される。
 一方、海水SWが、海水導入ライン15を介して水処理槽3の最上流側に配置された海水取水槽5に導入される。海水SWは、脱硫用海水ライン17を介して脱硫吸収塔2に供給される。
 混合槽6においては、海水取水槽5から越流した海水SWと、脱硫吸収塔2から排出された使用済み海水SW2とが混合・希釈される。
 脱硫吸収塔2から排出される使用済み海水SW2は、通常、pHが低い。よって、混合槽6で希釈されることにより、pHを曝気により迅速に酸化反応が進行する値(例えばpH6以上)にまで上げることができる。
 また、脱硫吸収塔2から排出される使用済み海水SW2は、通常、SO 2-濃度が高い。よって、この希釈により使用済み海水SW2中のSO 2-濃度を、SOが気相に放散しない値(例えば1.2mmol/リットル以下)にまで下げることができる。混合された使用済み海水SW2は、混合槽6から越流することで酸化槽7に導入される。
 次に、酸化槽7内を流れる海水SW(使用済み海水SW2)中に、気泡発生装置24の気泡吹込ノズル26から気泡(空気)を吹き込み、酸化処理(曝気処理)を行う。これにより使用済み海水SW2中のSO 2-をSO 2-に酸化し、化学的に無害化する。酸化槽7において酸化された海水SWは、酸化槽7から越流することで仕上げ槽8に導入される。
 次に、仕上げ槽8内を流れる使用済み海水SW2中に希釈用海水ライン31を介して海水SWを投入し、海水SWの希釈を行う。これにより、海水SWのpHを向上させることができる。最後に、放出口32よりSO 2-濃度が排出基準未満までに下がった海水SWが放出される。
 海水取水槽5では、海水取水槽越流壁13を越流した海水SWが海水取水下流槽12の水面と衝突した際に気泡が発生する。流れこんだ海水SWは、発生した気泡とともに海水取水槽傾斜部14に衝突し、斜面14aの傾斜により、底面10aに沿って下流側に流れる。即ち、気泡が底面10aに衝突した後、そのまま上昇することなく、底面10aに留まり、全体に広がるように流れる。これにより、海水取水下流槽12内の海水SWの溶存酸素量(DO)が飽和状態になりやすくなる。
 酸化槽7では、酸化槽越流壁7aを越流した海水SWが酸化槽7の水面と衝突した際に気泡が発生する。流れこんだ海水SWは、発生した気泡とともに酸化槽傾斜部28に衝突し、斜面の傾斜により、底面10aに沿って下流側に流れる。これにより、酸化槽7内の酸化が促進される。
 仕上げ槽8においても、酸化槽7と同様に、仕上げ槽越流壁8aを越流した海水SWが水面に衝突して気泡が発生する。流れこんだ海水SWは、発生した気泡とともに仕上げ槽傾斜部30に衝突し、斜面の傾斜により、底面10aに沿って下流側に流れる。これにより、放流前の仕上げ酸化が促進される。
 上記実施形態によれば、越流壁13,6a,7a,8aを乗り越えた海水SWが滝化し、水面に衝突することにより、微細な気泡が発生する。下流側の槽に流れ込んだ海水SWが発生した気泡とともに傾斜部14,28,30に衝突し、斜面の傾斜により底面10aに沿って下流側に流れる。これにより、下流側の槽内に気泡をより長く留めることができる。
 また、海水に効率よく酸素を供給することができるため、酸化槽7をコンパクト化することができる。
 なお、上記実施形態では、海水取水槽越流壁13、酸化槽越流壁7a、及び仕上げ槽越流壁8aに傾斜部14,28,30を設ける構成としたが、これら全ての越流壁に傾斜部を設ける必要はなく、必要に応じて傾斜部を設ける越流壁を選択することができる。
(第二実施形態)
 以下、本発明の第二実施形態の脱硫装置について図面を参照して詳細に説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図3に示すように、本実施形態の酸化槽7は、底面10aと平行に配置された板状の多孔板33を有している。多孔板33の形状は、底面10a(酸化槽7)の形状に対応しており、主面は、底面10aと平行である。多孔板33は、上方から見て底面10aを覆うように形成されている。多孔板33は、上方からみて、気泡発生装置24の気泡吹込ノズル26を覆うように配置されている。なお、多孔板33は、底面10aと平行である必要はなく、底面10aに沿うように配置されていれば、底面10aに対して傾いていてもよい。また、多孔板33は、底面10a(気泡吹込ノズル26)の全面を覆う必要はなく、多孔板33を酸化槽7の上流側のみに配置してもよい。
 多孔板33の上流側の端部は、酸化槽傾斜部28と干渉しない位置に配置されている。
 多孔板33には、複数の貫通孔34が形成されている。貫通孔34は、規則的に配置されていることが好ましい。多孔板33は、例えば、パンチングメタルや、金網によって形成することができる。
 上記実施形態によれば、多孔板33により酸化槽越流壁7aにより発生した気泡、及び、気泡発生装置24にて発生した気泡の上昇を抑制して、気泡をより長く海水SW中に留めることができる。
 なお、上記実施形態では、酸化槽7に多孔板33を設ける構成としたが、これに限ることはなく、傾斜部を有する他の槽に多孔板33を設けて、気泡の上昇を抑制する構成としてもよい。
(第三実施形態)
 以下、本発明の第三実施形態の脱硫装置について図面を参照して詳細に説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図4に示すように、本実施形態の脱硫装置は、海水取水槽傾斜部14に形成され、海水取水上流槽11内の海水SWを海水取水下流槽12の底面10aに沿って流すように海水取水上流槽11と海水取水槽傾斜部14とを接続するバイパス流路35を有している。
 バイパス流路35は、海水取水上流槽11の底面11aに形成されたバイパス流路導入口36と、海水取水槽傾斜部14に形成されたバイパス流路排出口37と、バイパス流路導入口36とバイパス流路排出口37とを接続するバイパス流路本体38とを有している。
 バイパス流路排出口37は、海水取水槽傾斜部14の下部に形成されている。バイパス流路35は、海水取水槽傾斜部14の幅方向(図4の紙面に垂直な方向)にわたって複数設けられている。
 また、本実施形態の脱硫装置1は、主面が鉛直方向に沿うように形成され、少なくとも一部が海水取水下流槽12内の海水SWと干渉するように配置された仕切板39を有している。
 仕切板39は、仕切板39の下端がバイパス流路35のバイパス流路排出口37よりも高くなるように配置されている。仕切板39は、海水取水槽傾斜部14のやや下流側に配置されている。仕切板39の上端は、海水SWの水面よりも低くなるように形成されている。
 なお、仕切板39は、鉛直方向に沿うように形成する必要はなく、仕切板39よりも上流側に逆流する海水SWの流れを低減するように形成されていればよい。
 上記実施形態によれば、バイパス流路35を流れるバイパス流Fにより、海水取水槽傾斜部14近傍の海水SWが下流側に押し流され、この流れによって気泡が下流側に押される力を強めることができる。これにより、気泡をより長く海水SW中に留めることができる。また、バイパス流Fにより、落水部の水位を下げることができる。
 また、仕切板39により落水部に逆流する海水SWの流れを低減し、バイパス流Fにより低下した水位を保持することができる。落水部の水位を低下させることによって、落水高さを稼ぐことができる。また、引込み流れとなることで、空気泡を巻込みやすくすることができる。
 なお、上記実施形態の仕切板39は、仕切板39の上端が海水SWの水面よりも低くなるように形成されているが、これに限ることはない。例えば、図5に示すように、仕切板39Bの上端が海水SWの水面よりも高くなるように形成してもよい。この仕切板39Bによれば、上流側に逆流する海水SWの流れをより低減することができる。
 また、本実施形態のバイパス流路35のバイパス流路排出口37は、海水取水槽傾斜部14に形成されているがこれに限ることはなく、バイパス流路排出口37を底面10aに形成してもよい。
 また、本実施形態のバイパス流路35及び仕切板39は、海水取水槽越流壁13の前後のみならず、酸化槽越流壁7aや、仕上げ槽越流壁8aの前後に設けてもよい。
(第四実施形態)
 以下、本発明の第四実施形態の脱硫装置について図面を参照して詳細に説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図6に示すように、本実施形態の脱硫装置は、海水取水槽越流壁13の上端と、海水取水槽越流壁13を越流する海水SWの水面SWfとの間に配置された分割板41を有している。
 分割板41は、海水取水槽越流壁13を越流する海水SWを、小流量の副流SS(第一の落下水)と、大流量の主流MS(第二の落下水)とに分割するように配置されている。本実施形態の分割板41は、分割板41と海水取水槽越流壁13の上端との間に流れる海水SWが副流SSとなり、分割板41の上方を流れる海水SWが主流MSとなるように配置されている。これにより、副流SSは上流側に落下し、主流MSは下流側に落下する。例えば、主流MSの流量は、副流SSの流量の2倍とすることができる。
 上記実施形態によれば、落水が分割されることで落水後の水面との衝突箇所を増やし、気泡の発生を増加させて海水SWへの空気の取り込みを増加させることができる。
 また、主流MSの流量を副流SSの流量よりも多くすることによって、副流SSで発生させた気泡を、主流MSの流れでより遠くまで運ぶことができる。
 なお、上記実施形態では、上流側に落下する落下水を副流SSとし、下流側に落下する落下水を主流MSとしたが、これに限ることはなく、上流側に落下する落下水を主流MSとし、下流側に落下する落下水を副流SSとしてもよい。また、主流MSと副流SSの流量を同じにしてもよい。さらに、複数の分割板41を配置して、落下水を3つ以上に分割する構成としてもよい。
 また、上記実施形態では、海水取水槽越流壁13の上方に分割板41を設ける構成としたが、分割板41は、酸化槽越流壁7aや、仕上げ槽越流壁8aの上方に設けてもよい。
(第五実施形態)
 以下、本発明の第五実施形態の脱硫装置について図面を参照して詳細に説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図7に示すように、本実施形態の脱硫装置は、海水取水槽越流壁13を乗り越える海水SWの流れを利用して、海水SW中に周囲の空気を供給するパイプ43(空気供給装置)を有している。パイプ43は、落水直前の水流内部に配置されている。
 パイプ43は、パイプ43内に空気を取り込む空気吸引部44と、空気吸引部44から取り込まれた空気を噴出する空気噴出部45とを有している。その他、コンプレッサなどで空気を供給してもよい。
 また、パイプ43の設置位置は、上記位置に限ることはない。例えば、図8に示すように、パイプ43を落水直後の速度勾配が大きな部分に配置してもよい。
 パイプ43をこのような位置に配置して、落下した後の空気巻き込み量を増加させることにより、空気混入量を増加させることができる。
 上記実施形態によれば、エゼクタ効果により空気が噴出されることで空気が混ざり、効果的に海水SWの溶存酸素量を向上させることができる。特に、落水する水流中の空気量を多くすることによって、空気混入量を増加させることができる。
 また、エゼクタ効果を用いることによって、ブロア等の動力源を設けることなく空気を供給することができる。
 以上、本発明の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 なお、上記実施形態では、海水方式の脱硫装置に傾斜部を有する水処理槽3を適用したがこれに限ることはなく、淡水を用いる水処理槽3にも適用が可能である。
 本発明は、水処理槽及び脱硫装置に関する。本発明によれば、気泡をより長く処理水中に留めることができる。
 1 脱硫装置
 2 脱硫吸収塔
 3 水処理槽
 5 海水取水槽
 6 混合槽
 6a 混合槽越流壁
 7 酸化槽
 7a 酸化槽越流壁
 8 仕上げ槽
 8a 仕上げ槽越流壁
 10 槽本体
 10a 底面
 11 海水取水上流槽
 12 海水取水下流槽
 13 海水取水槽越流壁
 14 海水取水槽傾斜部
 14a 斜面
 15 海水導入ライン
 16 ポンプ
 17 脱硫用海水ライン
 18 ポンプ
 20 噴霧ノズル
 21 排気ガス出口
 22 煙突
 23 排水ライン
 24 気泡発生装置
 25 空気ライン
 26 気泡吹込ノズル
 27 酸化空気用コンプレッサ
 28 酸化槽傾斜部
 30 仕上げ槽傾斜部
 31 希釈用海水ライン
 32 放出口
 33 多孔板
 34 貫通孔
 35 バイパス流路
 36 バイパス流路導入口
 37 バイパス流路排出口
 38 バイパス流路本体
 39,39B 仕切板
 41 分割板
 43 パイプ
 44 空気吸引部
 45 空気噴出部
 100 プラント
 101 ボイラ
 MS 主流
 SS 副流
 SW 海水
 SW2 使用済み海水

Claims (10)

  1.  水平方向に延びる底面を有する槽本体と、
     前記槽本体内を、排気ガスから硫黄分を吸収した処理水が導入される上流槽と、前記上流槽から越流した前記処理水が導入されて流れる下流槽とに区画する越流壁と、
     前記下流槽における前記底面と前記越流壁との間にわたって設けられて、前記越流壁から前記下流槽内の下流側に向かうにしたがって下方に傾斜して前記底面に接続される傾斜部とを備える水処理槽。
  2.  主面が前記底面と沿うように配置された板状をなし、複数の貫通孔が形成された多孔板を有する請求項1に記載の水処理槽。
  3.  前記多孔板の下方に設けられ、気泡を前記下流槽に供給する気泡発生装置を有する請求項2に記載の水処理槽。
  4.  水平方向に延びる底面を有する槽本体と、
     前記槽本体内を、外部の水域から処理水が導入される上流槽と、前記上流槽から越流した前記処理水が導入されて流れる下流槽とに区画する越流壁と、
     前記下流槽における前記底面と前記越流壁との間にわたって設けられて、前記越流壁から前記下流槽内の下流側に向かうにしたがって下方に傾斜して前記底面に接続される傾斜部とを備える水処理槽。
  5.  主面が前記底面に沿うように配置された板状をなし、複数の貫通孔が形成された多孔板を有する請求項4に記載の水処理槽。
  6.  前記上流槽内の処理水を前記下流槽の底面に沿って流すように前記上流槽と前記下流槽とを接続するバイパス流路を有する請求項1から請求項5のいずれか一項に記載の水処理槽。
  7.  少なくとも一部が前記下流槽内の処理水と干渉するように配置された仕切板であって、仕切板よりも上流側に逆流する処理水の流れを低減する仕切板を有する請求項6に記載の水処理槽。
  8.  前記越流壁の上端と、前記越流壁を越流する処理水の水面との間に配置され、前記処理水を上流側に落下する第一の落下水と、下流側に落下する第二の落下水とに分割する分割板を有する請求項1から請求項7のいずれか一項に記載の水処理槽。
  9.  越流壁を乗り越える処理水、又は、水面近傍の落水の圧力を利用して、処理水中に周囲の空気を供給する空気供給装置を有する請求項1から請求項8のいずれか一項に記載の水処理槽。
  10.  請求項1から請求項9のいずれか一項に記載の水処理槽と、
     排気ガス中のSOを海水に吸収させて除去する脱硫吸収塔と、
     前記脱硫吸収塔から排出される使用済み海水を前記水処理槽に導入する排水ラインとを備える脱硫装置。
PCT/JP2019/006809 2018-02-23 2019-02-22 水処理槽及び脱硫装置 WO2019163950A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/971,600 US20200398215A1 (en) 2018-02-23 2019-02-22 Water treatment tank and desulfurization device
CN201990000483.1U CN213679990U (zh) 2018-02-23 2019-02-22 水处理槽以及脱硫装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018030609A JP7094117B2 (ja) 2018-02-23 2018-02-23 水処理槽及び脱硫装置
JP2018-030609 2018-02-23

Publications (1)

Publication Number Publication Date
WO2019163950A1 true WO2019163950A1 (ja) 2019-08-29

Family

ID=67687249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006809 WO2019163950A1 (ja) 2018-02-23 2019-02-22 水処理槽及び脱硫装置

Country Status (4)

Country Link
US (1) US20200398215A1 (ja)
JP (1) JP7094117B2 (ja)
CN (1) CN213679990U (ja)
WO (1) WO2019163950A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117298943A (zh) * 2023-11-29 2023-12-29 山西杰克科技有限公司 一种减水剂生产反应釜及其生产方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4032863A1 (en) * 2021-01-21 2022-07-27 Uponor Infra Oy Apparatus and method for treating municipal clean water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975994A (ja) * 1995-09-19 1997-03-25 Hitachi Plant Eng & Constr Co Ltd 生物学的廃水処理装置
JPH1034180A (ja) * 1996-07-23 1998-02-10 Souwa Eng:Kk 廃水の生物処理装置
JP2012115764A (ja) * 2010-11-30 2012-06-21 Mitsubishi Heavy Ind Ltd 海水脱硫装置の排水水路及び海水排煙脱硫システム
JP2014180656A (ja) * 2013-03-21 2014-09-29 Babcock-Hitachi Co Ltd 排煙脱硫装置
WO2016186038A1 (ja) * 2015-05-15 2016-11-24 三菱日立パワーシステムズ株式会社 海水脱硫排水の水質改質装置及び海水排煙脱硫システム
CN206253001U (zh) * 2016-11-22 2017-06-16 首钢京唐钢铁联合有限责任公司 一种具备余能回收功能的海水脱硫系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019141817A (ja) 2018-02-23 2019-08-29 三菱日立パワーシステムズ株式会社 水処理槽及び脱硫装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975994A (ja) * 1995-09-19 1997-03-25 Hitachi Plant Eng & Constr Co Ltd 生物学的廃水処理装置
JPH1034180A (ja) * 1996-07-23 1998-02-10 Souwa Eng:Kk 廃水の生物処理装置
JP2012115764A (ja) * 2010-11-30 2012-06-21 Mitsubishi Heavy Ind Ltd 海水脱硫装置の排水水路及び海水排煙脱硫システム
JP2014180656A (ja) * 2013-03-21 2014-09-29 Babcock-Hitachi Co Ltd 排煙脱硫装置
WO2016186038A1 (ja) * 2015-05-15 2016-11-24 三菱日立パワーシステムズ株式会社 海水脱硫排水の水質改質装置及び海水排煙脱硫システム
CN206253001U (zh) * 2016-11-22 2017-06-16 首钢京唐钢铁联合有限责任公司 一种具备余能回收功能的海水脱硫系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117298943A (zh) * 2023-11-29 2023-12-29 山西杰克科技有限公司 一种减水剂生产反应釜及其生产方法
CN117298943B (zh) * 2023-11-29 2024-02-06 山西杰克科技有限公司 一种减水剂生产反应釜及其生产方法

Also Published As

Publication number Publication date
CN213679990U (zh) 2021-07-13
US20200398215A1 (en) 2020-12-24
JP7094117B2 (ja) 2022-07-01
JP2019141818A (ja) 2019-08-29

Similar Documents

Publication Publication Date Title
JP4688801B2 (ja) ガスから二酸化硫黄を分離する方法及び装置
WO2014156985A1 (ja) 海水排煙脱硫装置とその運用方法
JP2015174025A (ja) 海水排煙脱硫装置とその運用方法
WO2002040137A1 (fr) Procede et appareil de desulfuration des gaz de combustion de type sature
JP2012115764A (ja) 海水脱硫装置の排水水路及び海水排煙脱硫システム
WO2019163950A1 (ja) 水処理槽及び脱硫装置
JP2014180656A (ja) 排煙脱硫装置
JP5437151B2 (ja) 排煙脱硫装置及びこれを備えた酸素燃焼装置と方法
JP5186396B2 (ja) 海水脱硫装置
KR102061276B1 (ko) 습식배연 탈황장치
JP2007296447A (ja) 二室型湿式排煙脱硫装置
TW201503948A (zh) 海水脫硫裝置及海水脫硫系統
US20070134141A1 (en) Apparatus for treating flue gas using single-stage gas dispersing tray
JP2002253925A (ja) 湿式排煙脱硫装置
US20200391156A1 (en) Water treatment tank and desulfurization device
JP3805783B2 (ja) 二室型湿式排煙脱硫装置及び方法
JP2004237258A (ja) 湿式排煙脱硫装置
JP5535817B2 (ja) エアレーション装置及びこれを備えた海水排煙脱硫装置、エアレーション装置の加湿方法
JP2017013048A (ja) 傾斜曝気と混合自動回復を備える海水プラント
JP3883745B2 (ja) 二室型湿式排煙脱硫装置及び方法
JP3904771B2 (ja) 二室型湿式排煙脱硫装置
JP4014073B2 (ja) 二室型湿式排煙脱硫装置
JP3842706B2 (ja) 湿式排煙脱硫装置と方法
JPH11207145A (ja) 排煙脱硫装置の空気吹込み装置
KR102130840B1 (ko) 습식배연 탈황장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757979

Country of ref document: EP

Kind code of ref document: A1