WO2019163843A1 - 位相差フィルムの製造方法及び製造装置 - Google Patents

位相差フィルムの製造方法及び製造装置 Download PDF

Info

Publication number
WO2019163843A1
WO2019163843A1 PCT/JP2019/006390 JP2019006390W WO2019163843A1 WO 2019163843 A1 WO2019163843 A1 WO 2019163843A1 JP 2019006390 W JP2019006390 W JP 2019006390W WO 2019163843 A1 WO2019163843 A1 WO 2019163843A1
Authority
WO
WIPO (PCT)
Prior art keywords
retardation
liquid crystal
film
coating film
ultraviolet rays
Prior art date
Application number
PCT/JP2019/006390
Other languages
English (en)
French (fr)
Inventor
佑記 大井
諭史 長野
昌孝 長谷川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020501005A priority Critical patent/JP6938758B2/ja
Publication of WO2019163843A1 publication Critical patent/WO2019163843A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present disclosure relates to a method for manufacturing a retardation film and a manufacturing apparatus.
  • a retardation film used for a liquid crystal display or the like a retardation film provided with an alignment layer and a liquid crystal layer is known.
  • Japanese Patent Application Laid-Open No. 2007-52049 discloses “a first step of forming at least one optically anisotropic layer on a continuously running long film; A second step of winding a long film on which at least one optically anisotropic layer is formed, and after the first step, before the second step, at least one layer of optical anisotropic Discloses a method for producing an optical compensation sheet, wherein the retardation of a long film having a conductive layer is continuously measured.
  • Japanese Patent Laid-Open No. 2014-199321 discloses that a transparent belt-like support having a photoreactive alignment film coated on its surface is continuously conveyed, and the alignment film is alternately conveyed with a constant width in the width direction during the conveyance. Repeated and applied in a series of multiple line-shaped pattern exposures in the transport direction to apply a resin layer that exhibits polarization characteristics to the alignment film, and then the resin layer is irradiated with light to be cured.
  • the support is continuously conveyed with a tension such that the shrinkage in the width direction is 0.02% or less after the pattern exposure is applied until the curing process is completed, and the curing process is started.
  • the retardation film In the retardation film, retardation is the most important physical property. In recent years, a retardation film having a small retardation in-plane distribution has been desired. In order to improve productivity, the retardation film is produced by a continuous process using a roll-to-roll method using a continuous film support. More specifically, the retardation film is a coating film obtained by applying and drying a liquid crystal layer-forming material containing a liquid crystal compound on an alignment layer of a continuous film support having an alignment layer (hereinafter referred to as “ It is manufactured by a method in which the alignment of the liquid crystal compound is fixed by applying ultraviolet rays to the “liquid crystal layer coating film”.
  • Another problem to be solved by another embodiment of the present invention is to provide an apparatus for producing a retardation film having a small in-plane distribution of retardation while using a roll-to-roll continuous process. is there.
  • Means for solving the above problems include the following embodiments. ⁇ 1> a first step of forming an alignment layer having an alignment regulating force for a liquid crystal compound on a continuous film support that is continuously conveyed; A second step of forming a coating film by applying and drying a liquid crystal layer-forming material containing a liquid crystal compound on the alignment layer; A third step of irradiating the coating film with ultraviolet rays; A fourth step of measuring the retardation along the width direction of the continuous film support for the coating film irradiated with ultraviolet rays, and obtaining the width direction distribution of the measured value of the retardation; UV light that irradiates the coating film in the width direction corresponding to the measurement position of the measured value out of the predetermined range when there is a measurement value out of the predetermined range in the distribution in the width direction of the measured value of the obtained retardation; A fifth step of adjusting the illuminance of A method for producing a retardation film having:
  • the coating film is irradiated with an adjustment amount obtained in advance from the relationship between the illuminance of ultraviolet rays irradiated to the coating film and the retardation value of the coating film irradiated with ultraviolet rays.
  • the method for producing a retardation film according to ⁇ 1> which is a step of adjusting the illuminance of ultraviolet rays.
  • ⁇ 3> The phase difference according to ⁇ 1> or ⁇ 2>, wherein the third step is performed by a module light source in which a plurality of units each including a plurality of light emitting diode elements are arranged in parallel along the width direction of the continuous film support.
  • a method for producing a film is performed by a module light source in which a plurality of units each including a plurality of light emitting diode elements are arranged in parallel along the width direction of the continuous film support.
  • ⁇ 4> The method for producing a retardation film according to any one of ⁇ 1> to ⁇ 3>, wherein the application of the liquid crystal layer forming material in the second step is performed by a curtain coating method or a die coating method.
  • ⁇ 5> The method according to any one of ⁇ 1> to ⁇ 4>, further including a sixth step of irradiating the coating film irradiated with ultraviolet rays with a high-pressure mercury light source or a metal halide light source after the fourth step.
  • a method for producing a retardation film A method for producing a retardation film.
  • An alignment layer forming means for forming an alignment layer having an alignment regulating force for a liquid crystal compound on a continuous film support that is continuously conveyed;
  • a coating means for coating a liquid crystal layer forming material containing a liquid crystal compound on the alignment layer; Drying means for drying the liquid crystal layer forming material after coating to form a coating film;
  • Ultraviolet irradiation means for irradiating the coating film with ultraviolet rays;
  • Retardation measuring means for measuring retardation along the width direction of the continuous film support for the coating film irradiated with ultraviolet rays, The width corresponding to the measurement position of the measured value out of the predetermined range when there is a measured value out of the predetermined range in the distribution in the width direction of the measured value of retardation obtained from the measured value of the measured retardation.
  • Control means for performing control to adjust the illuminance of ultraviolet rays irradiated to the coating film in the direction position;
  • the control means irradiates the coating film with an adjustment amount obtained in advance from the relationship between the illuminance of ultraviolet rays irradiated to the coating film and the retardation value of the coating film irradiated with ultraviolet rays.
  • the ultraviolet irradiation means is a module light source in which a plurality of units each having a plurality of light emitting diode elements are arranged in parallel along the width direction of the continuous film support. Manufacturing equipment.
  • ⁇ 9> The retardation film manufacturing apparatus according to any one of ⁇ 6> to ⁇ 8>, wherein the coating means is a means using a curtain coating method or a die coating method.
  • the ultraviolet irradiation means there is another ultraviolet irradiation means for irradiating the coating film with ultraviolet light by a high-pressure mercury light source or a metal halide light source on the downstream side in the transport direction of the continuous film support, according to ⁇ 6> to ⁇ 9>
  • a method for producing a retardation film having a small in-plane distribution of retardation while using a roll-to-roll continuous process there is provided a method for producing a retardation film having a small in-plane distribution of retardation while using a roll-to-roll continuous process.
  • an apparatus for producing a retardation film having a small in-plane distribution of retardation is provided while using a roll-to-roll continuous process.
  • FIG. 1 is a schematic view showing each step of a method for producing a retardation film according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a main part showing an example when irradiating polarized ultraviolet rays in the method for producing a retardation film of one embodiment of the present invention.
  • FIG. 3 is a plan view showing the arrangement of the wire grid of the wire grid polarizer.
  • FIG. 4 is a diagram for explaining the irradiation angle when irradiating polarized ultraviolet rays.
  • FIG. 5A is a schematic diagram illustrating an example for explaining the measurement of retardation.
  • FIG. 5B is a schematic diagram illustrating another example for explaining the measurement of retardation.
  • a numerical range indicated by using “to” means a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • an upper limit value or a lower limit value described in a numerical range may be replaced with an upper limit value or a lower limit value in another numerical range.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the values shown in the examples.
  • the elements in the drawings shown in the present disclosure are not necessarily to scale, and focus is placed on clearly illustrating the principles of the present disclosure, and some points are emphasized.
  • the inventors of the present invention have studied a method for producing a retardation film in a continuous process by a roll-to-roll method. By adjusting the illuminance of ultraviolet rays applied to a coating film for a liquid crystal layer, the retardation is adjusted. Focusing on the fact that the retardation value of the film changes, the inventors have found a method of suppressing retardation unevenness of the retardation film by the following method. That is, first, after the ultraviolet ray is irradiated on the coating film for the liquid crystal layer, the retardation is measured in the width direction of the continuous film support, and the distribution in the width direction of the measured value of the retardation is obtained.
  • the liquid crystal layer coating at the width direction position corresponding to the measured position of the measured value outside the predetermined range adjusts the illuminance of ultraviolet rays applied to the film (for example, increase or decrease the illuminance of ultraviolet rays).
  • the coating film for the liquid crystal layer at the position in the width direction corresponding to the measurement position refers to the coating film for the liquid crystal layer that has not been irradiated with the ultraviolet rays being transported in the width direction of the continuous film support corresponding to the measurement position. means.
  • the method for producing a retardation film employing the above method there is a retardation measurement position on the downstream side with respect to the transport direction of the continuous film support, and an ultraviolet irradiation position on the upstream side of the measurement position. is there. Then, at the ultraviolet irradiation position, as described above, the illuminance of the ultraviolet light applied to the liquid crystal layer coating film at the position in the width direction corresponding to the measurement position of the measurement value out of the predetermined range can be adjusted.
  • a retardation film having a small in-plane retardation distribution can be obtained by using the measurement result of retardation for adjusting the illuminance of ultraviolet rays with respect to the coating film for liquid crystal layer.
  • the produced retardation film there is a retardation measurement position on the front end side, and a position in which the illuminance of ultraviolet rays is adjusted on the end side of the measurement position.
  • a retardation film having a small in-plane retardation distribution can be obtained.
  • the method for producing a retardation film of one embodiment includes a first step of forming an alignment layer having an alignment regulating force for a liquid crystal compound on a continuous film support that is continuously conveyed, and an alignment layer A liquid crystal layer-forming material containing a liquid crystal compound is applied and dried to form a coating film (that is, a liquid crystal layer coating film), a third process of irradiating the coating film with ultraviolet light, and ultraviolet light irradiation.
  • the manufacturing method of the retardation film of one embodiment is performed by the manufacturing apparatus of the retardation film of one embodiment shown below, for example.
  • An apparatus for producing a retardation film of one embodiment comprises an alignment layer forming means for forming an alignment layer having an alignment regulating force for a liquid crystal compound on a continuous film support that is continuously conveyed, and a liquid crystal compound on the alignment layer.
  • the coating means for applying the liquid crystal layer forming material, the drying means for drying the coated liquid crystal layer forming material to form a coating film, and the coating film (that is, the coating film for liquid crystal layer) is irradiated with ultraviolet rays.
  • the ultraviolet ray irradiation means the retardation measuring means for measuring the retardation along the width direction of the continuous film support for the coating film irradiated with ultraviolet rays, and the retardation obtained from the measured value of the measured retardation
  • the coating film in the width direction position corresponding to the measurement position of the measured value outside the predetermined range that is, the liquid crystal layer coating film
  • the manufacturing method of the retardation film of one Embodiment has a 1st process of forming the orientation layer provided with the orientation control power with respect to a liquid crystal compound on the continuous film support body conveyed continuously.
  • the method for forming the alignment layer having the alignment regulating force for the liquid crystal compound is not particularly limited, and a rubbing method or a photo alignment method may be used.
  • the rubbing method is a method in which a roll around which a rubbing cloth is wound is pressed against a coating film containing an alignment layer forming material while rotating at a constant pressure to give the coating film an alignment regulating force for the liquid crystal compound. is there.
  • the photo-alignment method is a method in which the coating film of the alignment layer forming material is irradiated with polarized light (for example, polarized ultraviolet rays) to give the coating film an alignment regulating force for the liquid crystal compound.
  • polarized light for example, polarized ultraviolet rays
  • the first step a photo-alignment method that does not require friction of the coating film is adopted. It is preferable to do.
  • the first step using the photo-alignment method will be described.
  • the alignment layer forming material is applied by the alignment layer forming material application means 1, and then, The alignment layer forming material is dried in a drying region by the drying means 2.
  • a coating film obtained by applying and drying the alignment layer forming material (hereinafter also referred to as “coating film for alignment layer”) is formed on the continuous film support.
  • the alignment layer coating film is irradiated with polarized ultraviolet rays to form an alignment layer having an alignment regulating force. Specifically, as shown in FIG.
  • the photo-alignment is performed in the region where the continuous film support F is wound around the backup roll 3b.
  • the apparatus 3a irradiates the alignment layer coating film with polarized ultraviolet rays.
  • Continuous film support A polymer film is preferably used as the continuous film support.
  • polymeric film materials used as continuous film supports include cellulose acylate (eg, cellulose triacetate (triacetylcellulose, refractive index 1.48), cellulose diacetate, cellulose acetate butyrate, cellulose acetate propionate.
  • Polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polyethylene naphthalate, acrylic resins such as polyethersulfone and polymethylmethacrylate, polyurethane, polycarbonate, polysulfone, polyether, polymethylpentene, polyetherketone, poly ( (Meth) acrylonitrile, polymer having alicyclic structure (for example, norbornene resin (trade name “Arton (registered trademark)”, JSR Corporation) , Amorphous polyolefins (for example, trade name "ZEONEX (registered trademark)", Nippon Zeon Co., Ltd.)), and the like.
  • polyesters such as polyethylene terephthalate and polyethylene naphthalate
  • acrylic resins such as polyethersulfone and polymethylmethacrylate, polyurethane, polycarbonate, polysulfone, polyether, polymethylpentene, polyetherketone, poly ( (Meth) acrylon
  • triacetyl cellulose from the viewpoint of low optical anisotropy and the like, triacetyl cellulose, polyethylene terephthalate (that is, PET), and a polymer having an alicyclic structure are preferable, and triacetyl cellulose is particularly preferable.
  • the thickness of the continuous film support is preferably in the range of 10 ⁇ m to 250 ⁇ m.
  • the thickness of the continuous film support is more preferably 15 ⁇ m or more, and even more preferably 30 ⁇ m or more, from the viewpoint of high applicability to winding on a backup roll.
  • the thickness of the continuous film support is preferably 150 ⁇ m or less, more preferably 120 ⁇ m or less from the viewpoint of material cost.
  • an alignment layer forming material used for forming an alignment layer applied to the photo-alignment method for example, JP 2006-285197 A, JP 2007-76839 A, JP 2007-138138 A, JP JP 2007-94071, JP 2007-121721, JP 2007-140465, JP 2007-156439, JP 2007-133184, JP 2009-109831, JP 3883848.
  • JP 2002-265541 Alkenyl-substituted nadiimide compound, JP 2002-317013 A
  • Examples thereof include compounds capable of photodimerization (in particular, cinnamate compounds, chalcone compounds, or coumarin compounds) described in WO2010 / 150748, JP2013-177561A, and JP2014-12823A.
  • particularly preferable examples include the azo compound described in the above publication, the photocrosslinkable polyimide, polyamide, or ester thereof described in the above publication, the cinnamate compound described in the above publication, or the chalcone compound.
  • a known coating apparatus is applied to the coating means 1 for the alignment layer forming material. Specifically, as coating equipment, curtain coating method, dip coating method, spin coating method, printing coating method, spray coating method, slot coating method, roll coating method, slide coating method, blade coating method, gravure coating method, wire An apparatus using the bar method or the like can be mentioned.
  • a known drying means is applied to the drying means 2 for the alignment layer forming material.
  • the drying means include an oven, a warm air machine, an infrared (IR) heater, and the like.
  • the configuration may be such that warm air is applied from the surface opposite to the surface on which the alignment layer forming material of the continuous film support is applied, and the surface of the applied alignment layer forming material is heated. It is good also as a structure which installed the diffusion plate so that it may not flow.
  • the drying conditions may be determined according to the type of the alignment layer forming material used, the coating amount, the conveyance speed, and the like. For example, it is preferably performed in the range of 30 ° C. to 140 ° C. for 10 seconds to 10 minutes.
  • the film thickness of the formed alignment layer coating film is preferably 0.1 ⁇ m to 5 ⁇ m, more preferably 0.2 ⁇ m to 1 ⁇ m.
  • the coating for alignment layer formed on the continuous film support F is irradiated with polarized ultraviolet rays.
  • the alignment layer coating film is irradiated with polarized ultraviolet rays by the photo-alignment device 3a in a region where the continuous film support F on which the alignment layer coating film is formed is wound around the backup roll 3b. .
  • the irradiation with polarized ultraviolet rays can be performed on the continuous film support stretched along the shape of the backup roll 3b, and It is preferable from the viewpoint of easy temperature control of the continuous film support F by the backup roll 3b.
  • the irradiation of polarized ultraviolet rays in the first step is not limited to a mode in which the back surface of the continuous film support F (that is, the surface opposite to the surface on which the coating film for the alignment layer is formed) is supported by the backup roll 3b. You may carry out in the form which supports the back surface of the continuous film support body F with a flat belt or a flat guide.
  • the irradiation of the polarized ultraviolet rays in the first step may not be a flat belt or a flat guide that supports the back surface of the continuous film support F, as long as the flatness of the alignment layer coating film can be secured.
  • the optical alignment device 3 a includes a rod-shaped light source 10, a concave reflecting mirror 11 that efficiently reflects light from the rod-shaped light source 10 in the vertical direction toward the wire grid polarizer 30, and the length of the rod-shaped light source 10.
  • the louver 20 includes a plurality of parallel plates 21 arranged in a direction, and a wire grid polarizer 30 that linearly polarizes light parallelized by the louver 20. And the polarization ultraviolet-ray emitted through the wire grid polarizer 30 is irradiated to the coating film for alignment layers.
  • the rod-shaped light source 10 for example, a tungsten lamp, a halogen lamp, a xenon lamp, a xenon flash lamp, a mercury lamp, a mercury xenon lamp, a carbon arc lamp, various lasers (eg, semiconductor laser, helium neon laser) , Argon ion laser, helium cadmium laser, YAG (Yttrium Aluminum Garnet) laser), light emitting diode, cathode ray tube, and the like.
  • the peak wavelength of ultraviolet rays emitted from the rod-shaped light source 10 is preferably 200 nm to 400 nm.
  • the louver 20 has parallel plates 21 arranged at equal intervals in the longitudinal direction X of the backup roll 3b (that is, the circumferential direction of the backup roll 3b). It arrange
  • FIG. By installing the louver 20, the light from the rod-shaped light source 10 can be converted into parallel light, the spread of the light incident on the wire grid polarizer 30 can be suppressed, and the light from the front can be made to the backup roll.
  • the parallel plate 21 is arrange
  • the parallel plate 21 can adjust the pitch and angle by an interlocking mechanism (not shown).
  • louver 20 consists of a parallel plate arranged in the longitudinal direction of the backup roll 3b
  • the structure of the louver 20 is not restricted to this.
  • the louver 20 may be configured by a plurality of cylindrical portions having a polygonal or circular cross section, and the central axis of the cylinder may be arranged in a direction perpendicular to the central axis of the backup roll. You may have the non-reflective film in the surface to comprise.
  • the louver 20 be installed as close as possible to the rod-shaped light source 10 so that no light leaks from the louver 20.
  • the louver 20 and the rod-shaped light source 10 may be brought into contact with each other, or the gap may be shielded with another member. The same applies to the gap between the louver 20 and the wire grid polarizer 30.
  • a heat resistant material such as stainless steel or aluminum can be used.
  • the surface of the louver 20 may be smoothed to improve the reflectance in order to increase the irradiation efficiency of irradiation light.
  • the louver 20 may be provided with irregularities on the surface or covered with a non-reflective film to reduce the reflectance in order to improve the straightness of irradiation light.
  • a light absorbing member is provided on the surface of the parallel plate 21 of the louver 20.
  • the wire grid polarizer 30 includes a plurality of wire grid polarization elements 32 held by a frame 31.
  • Each wire grid polarization element 32 has a wire grid 34 made of a plurality of linear electric conductors arranged on a substrate 33.
  • the wire grid polarization element 32 reflects the polarization (polarization) component parallel to the longitudinal direction of the wire grid 34 and passes the orthogonal polarization (polarization) component.
  • the direction passing through orthogonal polarization components is called the transmission axis.
  • Examples of the electric conductor include metal wires such as chromium and aluminum.
  • the arrangement angle ⁇ of the wire grid 34 satisfies 0 ° ⁇ ⁇ 90 ° with respect to the orthogonal direction of the longitudinal direction X of the backup roll 3b (that is, the direction indicated by the dotted line in FIG. 3). It is preferable. That is, the arrangement angle ⁇ of the wire grid 34 is preferably an angle that is not orthogonal or parallel to the longitudinal direction X of the backup roll 3b.
  • a line that passes through the axial center O of the backup roll 3b and is perpendicular to the substrate surface 38 of the wire grid polarizer 30 is defined as a reference line L1.
  • the angle formed by the line L1 and the line L2 connecting the axial center O of the backup roll 3b and the upstream end M in the transport direction of the polarized ultraviolet irradiation region A on the continuous film support F is ⁇ 1, and the reference line L1 and the backup line
  • ⁇ 2 is an angle formed by the line L3 connecting the axial center O of the roll 3b and the downstream end N in the transport direction of the irradiation region A of polarized ultraviolet rays on the continuous film support F,
  • 0 °.
  • the backup roll 3b is not particularly limited and a known one can be used.
  • a surface whose surface is hard chrome plated can be preferably used.
  • the thickness of the plating is preferably 40 ⁇ m to 60 ⁇ m from the viewpoint of ensuring conductivity and strength.
  • the surface roughness of the backup roll 3b is preferably 0.1 ⁇ m or less in terms of the surface roughness Ra from the viewpoint of reducing variation in frictional force between the continuous film support F and the backup roll 3b.
  • the temperature of the backup roll 3b is preferably maintained at 25 ° C to 100 ° C, more preferably 25 ° C to 50 ° C. By maintaining the backup roll 3b at the above temperature, the temperature of the continuous film support F to be wound can be controlled.
  • the backup roll 3b preferably detects the surface temperature, and the surface temperature of the backup roll 3b is maintained by temperature control means for controlling the surface temperature based on the temperature.
  • the temperature control means of the backup roll 3b includes a heating means and a cooling means.
  • the heating means induction heating, water heating, oil heating or the like is used, and as the cooling means, cooling water is used.
  • the diameter of the backup roll 3b is preferably 100 mm to 1000 mm, more preferably 100 mm to 800 mm, from the viewpoint of easy winding of the continuous film support, easy irradiation of polarized ultraviolet rays, and the manufacturing cost of the backup roll 3b. 200 mm to 700 mm is more preferable.
  • the continuous film support F on which the backup roll 3b is wound is applied.
  • tension is preferably applied in the longitudinal direction.
  • the width (referred to as Fw2) of the continuous film support F when the tension is applied is smaller than the width (referred to as Fw1) of the continuous film support F when no tension is applied.
  • the shrinkage ratio of the width of the continuous film support F on the backup roll 3b is obtained from the following formula (1), and is preferably 0.05% to 1.00%, preferably 0.07% to 0.00. More preferably, it is 30%.
  • Shrinkage rate (%) (Fw1-Fw2) / Fw1 ⁇ 100 (Fw1 indicates the width of the continuous film support when tension is not applied, and Fw2 indicates the width of the continuous film support when tension is applied on the backup roll.) What is necessary is just to apply tension
  • the tension applied to the continuous film support F on the backup roll 3b in order to achieve the shrinkage rate is preferably 100 N / m to 600 N / m.
  • the conveyance speed of the continuous film support F on the backup roll 3b is preferably 10 m / min or more and 100 m / min or less from the viewpoint of ensuring productivity and improving the accuracy of irradiation with polarized ultraviolet rays. 20 m / min or more and 60 m / min or less is preferable.
  • the wrap angle of the continuous film support F with respect to the backup roll 3b is preferably 60 ° or more, and more preferably 90 ° or more.
  • the wrap angle refers to the conveying direction of the continuous film support F when the continuous film support F contacts the backup roll 3b, and the continuous film support F when the continuous film support F separates from the backup roll 3b. The angle formed by the transport direction.
  • a liquid crystal layer-forming material containing a liquid crystal compound is applied and dried on the alignment layer to form a coating film (that is, a liquid crystal layer coating film). It has a 2nd process.
  • An example of the second step will be described with reference to FIG.
  • the liquid crystal layer forming material containing the liquid crystal compound is subsequently applied by the application means 4 of the liquid crystal layer forming material. Is then applied and dried in a drying region by the drying means 5 for the liquid crystal layer forming material.
  • a liquid crystal layer coating film is formed on the alignment layer of the continuous film support.
  • the liquid crystal layer-forming material contains a rod-like liquid crystal compound or a disk-like liquid crystal compound, and other known components such as a polymerizable compound, a crosslinkable compound, a chiral agent, an alignment controller, a polymerization initiator, and an alignment aid. May be contained.
  • -Rod-like liquid crystal compounds As rod-like liquid crystal compounds, azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted compounds Phenylpyrimidines, phenyldioxanes, tolanes, and alkenylcyclohexylbenzonitriles are preferably used. In addition to the above low-molecular liquid crystalline molecules, high-molecular liquid crystalline molecules can also be used.
  • the rod-like liquid crystal compound is more preferably fixed in orientation by polymerization, and therefore, a rod-like liquid crystal compound having a polymerizable group is preferably used.
  • Examples of the rod-like liquid crystal compound having polymerizability include Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. Nos. 4,683,327, 5,622,648 and 5,770,107, International Publication Nos. 95/22586, 95 No. / 24455, No. 97/00600, No. 98/23580, No. 98/52905, JP-A-1-272551, No. 6-16616, No. 7-110469, No.
  • rod-like liquid crystal compound for example, those described in JP-T-11-513019, JP-A-2007-279688 and the like can be preferably used.
  • discotic liquid crystal compound for example, those described in JP-A-2007-108732, JP-A-2010-244038 and the like can be preferably used.
  • the liquid crystal layer forming material can be applied and dried by the same method as the application and drying in the first step, detailed description thereof is omitted here.
  • the application of the liquid crystal layer forming material in the second step is preferably performed by a curtain coating method or a die coating method. Even when such a coating method is adopted, a retardation film having a small in-plane distribution of retardation can be obtained due to the following fourth and fifth steps.
  • the solid content concentration of the liquid crystal layer forming material containing the liquid crystal compound used in the second step is preferably 5% by mass to 40% by mass.
  • the viscosity at 25 ° C. of the liquid crystal layer-forming material containing a liquid crystal compound is preferably 0.5 mPa ⁇ s to 10 mPa ⁇ s.
  • the alignment treatment can be performed by drying at room temperature or by heating.
  • the liquid crystal formed by the alignment treatment can generally be transferred by a change in temperature or pressure.
  • it can be transferred also by a composition ratio such as the amount of solvent.
  • the temperature region in which the nematic phase develops is usually higher than the temperature region in which the rod-like liquid crystal compound develops a smectic phase. Therefore, the rod-like liquid crystal compound is heated to a temperature range where the rod-like liquid crystal compound develops a nematic phase, and then the heating temperature is lowered to a temperature region where the rod-like liquid crystal compound develops a smectic phase, thereby bringing the rod-like liquid crystal compound into a nematic phase. To a smectic phase. By setting it as a smectic phase by such a method, a liquid crystal in which liquid crystal compounds are aligned with a high degree of order can be obtained.
  • the heating time is preferably 10 seconds to 5 minutes, more preferably 10 seconds to 3 minutes, and most preferably 10 seconds to 2 minutes.
  • the heating time is preferably 10 seconds to 5 minutes, more preferably 10 seconds to 3 minutes, and most preferably 10 seconds to 2 minutes.
  • the alignment of the liquid crystal compound may be performed by drying in the second step. That is, both drying of the liquid crystal layer forming material applied on the alignment layer and alignment of the liquid crystal compound may be performed by drying in the second step. Of course, the alignment of the liquid crystal compound may be performed separately from the drying in the second step. In that case, a drying means or a heating means for aligning the liquid crystal compound may be provided on the downstream side in the transport direction of the continuous film support F of the drying means 5 shown in FIG.
  • the manufacturing method of the retardation film of one Embodiment has a 3rd process of irradiating a coating film for liquid crystal layers with an ultraviolet-ray after a 2nd process.
  • the liquid crystal compound in the coating film for the liquid crystal layer is aligned, the alignment is fixed, and the liquid crystal layer is formed.
  • An example of the third step will be described with reference to FIG.
  • the ultraviolet light irradiation means 6 irradiates the liquid crystal layer coating film with ultraviolet rays. By this ultraviolet irradiation, the orientation of the liquid crystal compound in the coating film for the liquid crystal layer is fixed to form a liquid crystal layer.
  • the orientation of the liquid crystal compound in the coating film for the liquid crystal layer is fixed.
  • the alignment of the liquid crystal compound can be fixed by thermal polymerization or polymerization by active energy rays, and can be performed by appropriately selecting a polymerizable group or polymerization initiator of the liquid crystal compound suitable for the polymerization.
  • a polymerization reaction by ultraviolet rays irradiated from the ultraviolet irradiation means 6 as shown in FIG. 1 can be preferably used.
  • the irradiation conditions depend on the formulation of the material for forming the liquid crystal layer and the thickness of the coating film for the liquid crystal layer, but the UV irradiation amount is preferably 50 mJ / cm 2 to 1000 mJ / cm 2 , and 100 mJ / cm 2 to 500 mJ / cm 2 is more preferred.
  • the liquid crystal layer coating film (that is, the formed liquid crystal layer) irradiated with ultraviolet rays in the third step is lettered along the width direction of the continuous film support.
  • the control unit 8 Based on the measurement value measured by the retardation measuring device 7, the control unit (that is, the control means) 8 obtains the distribution in the width direction of the measurement value of retardation.
  • the width direction distribution of the measured values of retardation indicates a set of measured values of retardation measured along the width direction of the continuous film support.
  • the retardation measuring device 7 which is a retardation measuring means is not particularly limited, and the retardation of the coating film for liquid crystal layer (liquid crystal layer) on the continuous film support F being conveyed is determined by the width of the continuous film support F. Anything that can be measured along the direction is acceptable.
  • an automatic birefringence meter (KOBRA-21ADH) manufactured by Oji Scientific Instruments, AxoScan manufactured by Axometrics, or the like can be used as the retardation measuring device 7.
  • the measurement of retardation may be performed by a plurality of retardation measuring devices 7a arranged in parallel along the width direction Z of the continuous film support F (10 in FIG. 5A).
  • the measurement of retardation may be performed while moving one retardation measuring device 7b along the width direction Z of the continuous film support F as shown in FIG. 5B.
  • a plurality of retardation measurement points P in FIG. 5A
  • a plurality of retardation measurement points P in FIG.
  • FIGS. 5A and 5B have an angle with respect to the transport direction Y of the continuous film support F when the continuous film support F is viewed from above.
  • the continuous film support F is arranged in the width direction Z with a certain interval.
  • P indicates a measurement point measured by the retardation measuring device
  • Q indicates a measurement target point that will be measured by the retardation measuring device.
  • the measurement target point Q may be determined by the measurement interval (that is, Da in FIG. 5A or Db in FIG. 5B).
  • the measurement target point Q corresponds to a place where a distance Da is provided on the upstream side in the transport direction Y of the continuous film support F with respect to the measurement point P of retardation.
  • the measurement target points Q in FIG. 5A are arranged in parallel along the width direction Z of the continuous film support F.
  • the measurement target point Q corresponds to a place where a distance Db is provided on the upstream side in the transport direction Y of the continuous film support F with respect to the measurement point P of retardation. Therefore, when the continuous film support F is viewed from above, the measurement target point Q in FIG. 5B is also at an angle with respect to the transport direction Y of the continuous film support F and at a certain interval in the width direction of the continuous film support F. It will be lined up in Z.
  • the number of the measurement points of the retardation in the width direction Z of the continuous film support body F is ten, it is not limited to this.
  • the number of retardation measurement points in the width direction of the continuous film support F depends on the size of the retardation measuring device, the width of the continuous film support F, the adjustable width of the ultraviolet illuminance described later, and the like. It only has to be decided. Further, the number of measurement points of retardation in the longitudinal direction of the continuous film support F may be one as shown in FIGS. 5A and 5B or may be plural. When the number of retardation measurement points in the longitudinal direction of the continuous film support F is plural, for example, five, the average value of the five values is used to obtain the distribution of the retardation measurement values in the width direction. Find it.
  • Measured measurement values are stored in the control unit 8. And the control part 8 calculates
  • the measurement of retardation in the fourth step is preferably performed at a constant interval (for example, Da in FIG. 5A or Db in FIG. 5B) with respect to the transport distance of the continuous film support F.
  • the shorter the interval the easier it is to reduce the in-plane distribution of retardation of the retardation film.
  • it is the transport distance of the continuous film support F that is, Da in FIG. 5A or Db in FIG. 5B
  • it is preferably performed every 10 to 100 m from the viewpoint of productivity and the like. More preferably, it is performed every 1 m to 1 m.
  • the measurement of retardation may be automatic measurement controlled by the control unit 8, or manual measurement by a manufacturer, an operator, or the like.
  • [Fifth step] In the manufacturing method of the retardation film of one embodiment, when there is a measurement value out of the predetermined range in the width direction distribution of the measurement value of retardation obtained in the fourth step, the measurement out of the predetermined range is performed.
  • an illumination intensity unit: mW / cm ⁇ 2 >
  • the ultraviolet irradiation amount unit: mJ / cm ⁇ 2 >
  • the control unit 8 when the control unit 8 obtains the width direction distribution of the measurement values of retardation, the control unit 8 similarly has a measurement value out of a predetermined range in the width direction distribution. It is judged whether or not.
  • the ultraviolet irradiation means 6 takes the measurement value at the measurement position outside the predetermined range.
  • the illuminance of ultraviolet rays applied to the liquid crystal layer coating film in the corresponding width direction position is adjusted.
  • the illuminance in the irradiation of ultraviolet rays in the third step is adjusted by the fifth step.
  • the adjusted illuminance in the third step is then maintained until the illuminance is adjusted in the fifth step.
  • the “predetermined range” may be determined according to the tolerance of retardation unevenness required for the retardation film and the productivity. Specifically, the predetermined range preferably refers to ⁇ 1.5% or less from the target value, more preferably ⁇ 0.5% or less from the target value in the distribution in the width direction of the measured value of retardation. More preferably, it means ⁇ 0.25% or less from the target value. That is, in the fifth step, for example, it is determined whether or not there is a measured value exceeding ⁇ 1.5% from the target value in the distribution in the width direction of the measured value of retardation.
  • the target value corresponds to a retardation value required for a retardation film to be produced.
  • the control unit 8 controls the ultraviolet irradiation means 6 to change the measurement position of the measured value out of the predetermined range. Adjusts the illuminance of ultraviolet rays applied to the liquid crystal layer coating film.
  • the light source used for the ultraviolet irradiation means 6 is not limited as long as the ultraviolet irradiation amount described in the third step can be achieved.
  • a light emitting diode LED
  • a xenon lamp a xenon lamp
  • an ultrahigh pressure mercury lamp a metal halide lamp
  • a short arc lamp is preferable.
  • the light source used for the ultraviolet irradiation means 6 is a module light source (hereinafter referred to as a plurality of light emitting diode elements) arranged in parallel along the width direction of the continuous film support. , Also referred to as “LED module”).
  • a unit including a plurality of LED elements refers to a unit in which a plurality of (for example, 10 to 20) LED elements are combined.
  • the illuminance can be adjusted for each unit.
  • ⁇ n birefringence
  • the alignment of the liquid crystal compound is fixed by ultraviolet irradiation in the third step.
  • the alignment is fixed by ultraviolet irradiation in a state where the alignment property of the liquid crystal compound is high, retardation unevenness due to variations in the thickness of the coating film for the liquid crystal layer occurs. Therefore, in this step, the liquid crystal compound is slightly distorted by adjusting the illuminance of ultraviolet rays, ⁇ n is changed to fix the orientation of the liquid crystal compound, and the retardation value is controlled.
  • the liquid crystal layer for the position in the width direction corresponding to the measured position of the measured value is used. Increase the illuminance of the ultraviolet rays that irradiate the coating.
  • the liquid crystal layer coating film at the width direction position corresponding to the measurement position of the measurement value is irradiated. Reduce the illuminance of ultraviolet rays.
  • the illuminance adjustment amount may be a predetermined adjustment amount such as increasing or decreasing the UV irradiation amount by 1.0 mJ / cm 2 or deviating from the predetermined range of the measured value of retardation.
  • An adjustment amount corresponding to the value may be used.
  • the adjustment amount determined in advance includes an adjustment amount based on the experience of the manufacturer, the operator, etc., and a minimum adjustment amount of the ultraviolet irradiation means 6.
  • the adjustment amount of illuminance is preferably an adjustment amount according to a value outside the predetermined range of the measured value of retardation.
  • the coating film is irradiated with an adjustment amount obtained in advance from the relationship between the illuminance of ultraviolet rays irradiated to the coating film and the retardation value of the coating film irradiated with ultraviolet rays. It is preferably a step of adjusting the illuminance of ultraviolet rays. Specifically, the relationship between the illuminance of ultraviolet rays applied to the liquid crystal layer coating film and the retardation value of the coating film irradiated with ultraviolet rays is acquired in advance. Based on this relationship, an illuminance adjustment amount determined in accordance with a value outside the predetermined range of the measured value of retardation is employed. A more specific method for determining the adjustment amount of illuminance will be described in an embodiment.
  • the illuminance adjustment described above is performed by the control unit 8.
  • the control unit 8 includes a ROM (Read Only Memory) that stores various programs necessary for performing the fourth step and the fifth step, and a RAM (Random Access Memory) that temporarily stores data. ), And a CPU (Central Processing Unit) that executes various programs necessary for performing the fourth step and the fifth step.
  • the controller 8 may control a part of the operation of the retardation film manufacturing apparatus, or may control the operation of the entire retardation film manufacturing apparatus.
  • the adjustment of the illuminance is not necessarily performed by the control unit 8, and may be manually performed by a manufacturer, an operator, or the like.
  • the fourth step and the fifth step “determining whether or not there is a measurement value out of a predetermined range in the distribution in the width direction of the measurement value of retardation”.
  • the treatment is performed sequentially or continuously during the continuous conveyance of the continuous film support until the end of the continuous film support passes through the third step. Then, when it is determined that there is a measurement value out of the predetermined range in the distribution in the width direction of the measurement value of the retardation, the illuminance of ultraviolet rays irradiated to the liquid crystal layer coating film at the measurement position of the measurement value out of the predetermined range Is adjusted.
  • the retardation unevenness due to the coating thickness unevenness of the coating film for the liquid crystal layer can be reduced. Therefore, according to the method for producing a retardation film of one embodiment, the in-plane distribution of retardation is small. A retardation film is obtained.
  • the ultraviolet irradiation condition in the sixth step depends on the formulation of the material for forming the liquid crystal layer and the thickness of the coating film for the liquid crystal layer, the ultraviolet irradiation amount is preferably 100 mJ / cm 2 to 1000 mJ / cm 2 , 200 mJ / Cm 2 to 500 mJ / cm 2 is more preferable.
  • a liquid crystal layer is formed through the fifth step or the sixth step.
  • the film thickness of the formed liquid crystal layer is, for example, preferably 1 ⁇ m to 4 ⁇ m, and more preferably 2 ⁇ m to 3 ⁇ m.
  • the retardation film is manufactured by the retardation film manufacturing method and manufacturing apparatus according to the embodiment.
  • the produced retardation film preferably has an in-plane retardation distribution of less than 3%, more preferably less than 0.5%.
  • the in-plane distribution of retardation is obtained as follows. An arbitrary portion in the longitudinal direction of the retardation film is cut out at 1000 mm ⁇ 1000 mm so as to include the center in the width direction. The cut sample is divided into 11 parts at equal intervals in the longitudinal direction and 11 parts at equal intervals in the width direction. Retardation is measured at 100 intersections of the divided portions. For the measurement of retardation, an automatic birefringence meter (KOBRA-21ADH, Oji Scientific Instruments) is used.
  • the retardation film produced preferably has a retardation of 50 nm to 300 nm, and more preferably 100 nm to 200 nm.
  • a method for producing a retardation film having a retardation value as described above the method for producing a retardation film and the production apparatus of the above-described embodiment are suitable.
  • Example 1 (First step: formation of coating film for alignment layer) An alignment layer-forming material having the following composition was applied to one side of a continuous film support made of a cellulose triacetate film TD80UL (Fuji Film) having a length of 1000 m and a width of 1000 mm with a wire bar. Thereafter, the applied alignment layer forming material was dried with warm air at 60 ° C. for 60 seconds and further with warm air at 100 ° C. for 120 seconds to form a coating film for alignment layer having a thickness of 0.5 ⁇ m.
  • TD80UL cellulose triacetate film
  • the illuminance of ultraviolet rays was set to 100 mW / cm 2 in the UV (ultra-violet) -A region (integration of wavelengths 380 nm to 320 nm), and the irradiation amount was set to 1000 mJ / cm 2 in the UV-A region. Further, the shrinkage ratio of the width of the continuous film support on the backup roll was 0.10%.
  • liquid crystal layer forming material having the following composition was prepared.
  • the solid content concentration of the liquid crystal layer forming material was 15% by mass, and the viscosity of the liquid crystal layer forming material at 25 ° C. was 2.0 mPa ⁇ s.
  • a liquid crystal layer forming material was applied on the alignment layer using a curtain coating method.
  • the applied liquid crystal layer forming material was heated at a film surface temperature of 100 ° C. for 60 seconds to form a liquid crystal layer coating film and cooled to 70 ° C.
  • the LED module used is a unit in which 10 elements with a peak wavelength of 365 nm of Nichia Corporation are arranged in the width direction of the continuous film support, and this unit is 10 in the width direction of the continuous film support. It was something in parallel.
  • the fourth step and the fifth step are as follows.
  • an automatic birefringence meter KOBRA-21ADH (Oji Scientific Instruments) was used (hereinafter referred to as a measuring instrument).
  • the width of the continuous film support was divided by the number of LED module units (that is, 10 divisions), and the retardation was measured by sequentially moving the measuring device in the width direction of the continuous film support at the center of the divided area. . That is, the retardation was measured by moving the measuring device at 100 mm intervals in the width direction of the continuous film support.
  • the first retardation measurement was performed for the central part of the divided region at one end in the width direction of the continuous film support.
  • the measurement time of one point of retardation was 2 seconds, and the measurement value during this period (measurement was repeated five times in the conveying direction of the continuous film support while the measuring device was stationary) was averaged to calculate the measurement value of retardation. .
  • the time taken to move to the next measurement position was 1 second, and the same measurement time was taken after the movement to obtain a measured value of retardation.
  • a total of 10 measurements were performed from one end to the other end in the width direction of the continuous film support (this is one cycle). After measuring the retardation of a total of 10 points, the measuring device was moved to the measurement position of the first retardation to be in a standby state for the second cycle.
  • the illuminance of ultraviolet rays with respect to the coating film for the liquid crystal layer was adjusted by the LED module.
  • the output of the unit in the LED module is 10% so that the ultraviolet ray irradiation amount is 90 mJ / cm 2. I made it smaller.
  • the adjustment of the illuminance of ultraviolet rays in the fifth step was not performed.
  • the retardation measurement of the 4th process was continued for every fixed time, and the judgment whether the measured value of retardation was in the predetermined range was performed repeatedly. The above operation was repeated for the length of the continuous film support.
  • a retardation film having a liquid crystal layer with a thickness of 2.5 ⁇ m was obtained.
  • the obtained retardation film was wound up in a roll shape.
  • the slow axis direction of the liquid crystal layer was orthogonal to the polarized light irradiation direction (that is, orthogonal to the absorption axis of the polarizing plate). Were orthogonally oriented).
  • UV light irradiation to the coating film for the liquid crystal layer is a light source in which 10 high-pressure mercury lamps (Short Arc Lamp, Ushio Electric Co., Ltd.) are arranged in parallel along the width direction of the continuous film support.
  • a retardation film was produced in the same manner as in Example 1 except that it was also replaced with “high pressure mercury module”.
  • the retardation was measured along the width direction of the continuous film support with respect to the coating film for the liquid crystal layer, and the width direction distribution of the measured values of the retardation was obtained. (4th process). Then, when there was a measurement value out of the predetermined range in the distribution of the obtained retardation measurement values in the width direction, the illuminance of ultraviolet rays was adjusted (fifth step).
  • the fourth step and the fifth step are as follows.
  • an automatic birefringence meter KOBRA-21ADH (Oji Scientific Instruments) was used (hereinafter referred to as a measuring instrument).
  • Divide the width of the continuous film support by the number of high-pressure mercury lamps arranged in parallel (that is, 10 divisions), and move the measuring instrument sequentially in the width direction of the continuous film support at the center of the divided area to measure the retardation. went. That is, the retardation was measured by moving the measuring device at 100 mm intervals in the width direction of the continuous film support.
  • the first retardation measurement was performed for the central part of the divided region at one end in the width direction of the continuous film support.
  • the measurement time of one point of retardation was 2 seconds, and the measurement value during this period (measurement was repeated five times in the conveying direction of the continuous film support while the measuring device was stationary) was averaged to calculate the measurement value of retardation. .
  • the time taken to move to the next measurement position was 1 second, and the same measurement time was taken after the movement to obtain a measured value of retardation.
  • a total of 10 measurements were performed from one end to the other end in the width direction of the continuous film support (this is one cycle). After measuring the retardation of a total of 10 points, the measuring device was moved to the measurement position of the first retardation to be in a standby state for the second cycle.
  • the high-pressure mercury module adjusted the illuminance of ultraviolet rays to the liquid crystal layer coating film. For example, for the coating film for the liquid crystal layer at the position in the width direction corresponding to the position where the deviation of 2% occurs in the retardation, the output of the high-pressure mercury lamp in the high-pressure mercury module is set so that the ultraviolet ray irradiation amount is 90 mJ / cm 2. 10% smaller.
  • the fourth step More than the time required for the continuous film support that has passed through the third step to reach the retardation measurement position in the fourth step after changing the illuminance of ultraviolet rays (here, 1 minute, 20 m at the transport distance)
  • retardation was measured again (second cycle).
  • the illuminance of ultraviolet rays corresponding to the deviation amount was adjusted again.
  • the measuring device was moved again to the measurement position of the first retardation, and after standing for 1 minute, the measurement for the third cycle was performed.
  • the adjustment of the illuminance of ultraviolet rays in the fifth step was not performed.
  • the retardation measurement of the 4th process was continued for every fixed time, and the judgment whether the measured value of retardation was in the predetermined range was performed repeatedly. The above operation was repeated for the length of the continuous film support.
  • Example 1 A phase difference was obtained in the same manner as in Example 1 except that the ultraviolet ray irradiation on the liquid crystal layer coating film was changed from “Acroedge LED Module” to “1500 mm long air-cooled metal halide lamp (Eye Graphics)”. A film was prepared. In Comparative Example 1, after irradiation with ultraviolet rays by an air-cooled metal halide lamp, the retardation of the liquid crystal layer coating film was measured along the width direction of the continuous film support, and the width direction distribution of the measured values of the retardation was determined. Obtained (fourth step).
  • the illuminance is controlled in the width direction of the continuous film support by changing the output of the entire lamp.
  • the retardation was adjusted (also referred to as step A).
  • the details of the measurement of retardation and the adjustment of the illuminance of ultraviolet rays are as follows.
  • an automatic birefringence meter KOBRA-21ADH (Oji Scientific Instruments) was used (hereinafter referred to as a measuring instrument).
  • the width of the continuous film support was divided into ten equal parts, and the retardation was measured by moving the measuring device sequentially in the width direction of the continuous film support at the center of the divided area. That is, the retardation was measured by moving the measuring device at 100 mm intervals in the width direction of the continuous film support.
  • the first retardation measurement was performed for the central part of the divided region at one end in the width direction of the continuous film support.
  • the measurement time of one point of retardation was 2 seconds, and the measurement value during this period (measurement was repeated five times in the conveying direction of the continuous film support while the measuring device was stationary) was averaged to calculate the measurement value of retardation. .
  • the time taken to move to the next measurement position was 1 second, and the same measurement time was taken after the movement to obtain a measured value of retardation.
  • a total of 10 measurements were performed from one end to the other end in the width direction of the continuous film support (this is one cycle). After measuring the retardation of a total of 10 points, the measuring device was moved to the measurement position of the first retardation to be in a standby state for the second cycle.
  • the coating for the liquid crystal layer of the corresponding air-cooled metal halide lamp in the third step was performed.
  • the illuminance of ultraviolet rays on the film was adjusted. For example, when the average retardation value is 1% off the target value, the output of the air-cooled metal halide lamp is reduced by 5% so that the ultraviolet ray irradiation amount to the coating film for the liquid crystal layer becomes 95 mJ / cm 2. did.
  • Step A the illuminance of ultraviolet rays was adjusted again according to the deviation amount. Subsequently, the measuring device was moved again to the measurement position of the first retardation, and after standing for 1 minute, the measurement for the third cycle was performed.
  • Step A the illuminance of ultraviolet rays was adjusted again according to the deviation amount. The above operation was repeated for the length of the continuous film support.
  • Example 2 A retardation film was produced in the same manner as in Example 1 except that “retardation measurement and illuminance adjustment” were not performed.
  • a portion 1 m from the end of the obtained retardation film (that is, the end on the winding end side) was cut out at 1000 mm ⁇ 1000 mm so as to include the center in the width direction of the retardation film.
  • the cut sample is divided into 11 parts at equal intervals in the longitudinal direction and 11 parts at equal intervals in the width direction.
  • Retardation was measured at 100 intersections of the divided portions.
  • an automatic birefringence meter (KOBRA-21ADH, Oji Scientific Instruments) was used.
  • the maximum value Re max , the minimum value Re min , and the average value Re ave were obtained, and the in-plane distribution of retardation was calculated using the following formula.
  • In-plane distribution of retardation (%) (Re max ⁇ Re min ) / Re ave ⁇ 100
  • In-plane distribution of retardation is less than 0.5%

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

連続搬送される連続フィルム支持体上に、液晶化合物に対する配向規制力を備えた配向層を形成する第1工程と、配向層上に液晶化合物を含む液晶層形成用材料を塗布及び乾燥して塗膜を形成する第2工程と、塗膜に紫外線を照射する第3工程と、紫外線が照射された塗膜に対し、連続フィルム支持体の幅方向に沿ってレターデーションを測定し、レターデーションの測定値の幅方向分布を求める第4工程と、求められたレターデーションの測定値の幅方向分布の中に所定範囲から外れた測定値があったとき、所定範囲から外れた測定値の測定位置に相当する幅方向位置の塗膜に照射する紫外線の照度を調整する第5工程と、を有する位相差フィルムの製造方法及び製造装置。

Description

位相差フィルムの製造方法及び製造装置
 本開示は、位相差フィルムの製造方法及び製造装置に関するものである。
 液晶ディスプレイ等に用いられる位相差フィルムとして、支持体上に配向層及び液晶層が設けられたものが知られている。
 位相差フィルムの製造方法の1例として、特開2007-52049号公報には、「連続走行する長尺状フィルムの上に少なくとも1層の光学異方性層を形成する第1の工程と、少なくとも1層の光学異方性層が形成された長尺状フィルムを巻き取る第2の工程とを含み、第1の工程の後、第2の工程の前に、少なくとも1層の光学異方性層を有する長尺フィルムのレターデーションを連続して測定することを特徴とする光学補償シートの製造方法」が開示されている。
 また、特開2014-199321号公報には、表面に光反応性の配向膜が塗布された透明な帯状の支持体を連続搬送し、その搬送中に配向膜に幅方向では一定幅で交互に繰り替えされ、搬送方向では一連となる複数本のライン状のパターン露光を与えて配向膜に偏光特性を発現する樹脂層を塗布した後、樹脂層に光照射を行って硬化処理が行われるパターン位相差フィルムの製造方法において、パターン露光を与えてから硬化処理を終了するまでの間、支持体を幅方向の収縮率が0.02%以下となる張力で一連に搬送するとともに、硬化処理の開始時から終了時までの期間中に光照射の強度を変化させ、樹脂層に付与された偏光特性を所望数値範囲内に収めつつライン状パターンの変動を所望数値範囲内に抑える温度履歴を与えることを特徴とするパターン位相差フィルムの製造方法が開示されている。
 位相差フィルムにおいて、レターデーションは最も重要とされる物性である。近年、レターデーションの面内分布が小さい位相差フィルムが望まれている。
 位相差フィルムは、生産性向上のため、連続フィルム支持体を用い、ロールトゥロール(Roll to Roll)方式での連続プロセスによって製造される。
 より具体的には、位相差フィルムは、配向層を備えた連続フィルム支持体の配向層上に、液晶化合物を含む液晶層形成用材料を塗布及び乾燥して得られた塗膜(以降、「液晶層用塗膜」ともいう)に対し、紫外線をあてて液晶化合物の配向を固定化する、という方法にて製造される。
 液晶化合物を含む液晶層形成用材料の塗布の際、連続フィルム支持体の幅方向に、ごく僅かではあるが塗布厚みのムラが生じてしまう。特に、カーテンコーティング法等の塗布手段を用いる場合には、塗布厚みのムラは、搬送方向に継続してしまうことが多い。
 そして、この塗布厚みのムラが、主として、位相差フィルムのレターデーションのムラの要因となる。
 なお、特開2007-52049号公報では、レターデーションの測定結果を元に、目標値にくるように、塗布工程及び加熱工程における条件での微調整をおこなっているが、この方法では、位相差フィルムの幅方向におけるレターデーションの調整は困難であり、レターデーションの面内分布を小さくするのには限界がある。
 また、特開2014-199321号公報では、位相差フィルムのレターデーションの調整は行っていない。
 そこで、本発明の一実施形態が解決しようとする課題は、上記事情に鑑みてなされたものであり、ロールトゥロール方式での連続プロセスを用いつつも、レターデーションの面内分布が小さい位相差フィルムの製造方法を提供することにある。
 また、本発明の別の一実施形態が解決しようとする課題は、ロールトゥロール方式での連続プロセスを用いつつも、レターデーションの面内分布が小さい位相差フィルムの製造装置を提供することにある。
 上記課題を解決するための手段は、以下の実施形態を含む。
<1> 連続搬送される連続フィルム支持体上に、液晶化合物に対する配向規制力を備えた配向層を形成する第1工程と、
 配向層上に液晶化合物を含む液晶層形成用材料を塗布及び乾燥して塗膜を形成する第2工程と、
 塗膜に紫外線を照射する第3工程と、
 紫外線が照射された塗膜に対し、連続フィルム支持体の幅方向に沿ってレターデーションを測定し、レターデーションの測定値の幅方向分布を求める第4工程と、
 求められたレターデーションの測定値の幅方向分布の中に所定範囲から外れた測定値があったとき、所定範囲から外れた測定値の測定位置に相当する幅方向位置の塗膜に照射する紫外線の照度を調整する第5工程と、
を有する位相差フィルムの製造方法。
<2> 第5工程が、事前に取得した、塗膜に照射する紫外線の照度と紫外線が照射された塗膜のレターデーションの値との関係から得られた調整量にて、塗膜に照射する紫外線の照度を調整する工程である、<1>に記載の位相差フィルムの製造方法。
<3> 第3工程が、複数個の発光ダイオード素子を備えるユニットを連続フィルム支持体の幅方向に沿って複数個並列したモジュール光源により行われる、<1>又は<2>に記載の位相差フィルムの製造方法。
<4> 第2工程における液晶層形成用材料の塗布が、カーテンコーティング法又はダイコーティング法により行われる、<1>~<3>のいずれか1に記載の位相差フィルムの製造方法。
<5> 第4工程後に、紫外線が照射された塗膜に対し、高圧水銀光源又はメタルハライド光源により更に紫外線を照射する第6工程を有する、<1>~<4>のいずれか1に記載の位相差フィルムの製造方法。
<6> 連続搬送される連続フィルム支持体上に、液晶化合物に対する配向規制力を備えた配向層を形成する配向層形成手段と、
 配向層上に液晶化合物を含む液晶層形成用材料を塗布する塗布手段と、
 塗布後の液晶層形成用材料を乾燥して塗膜を形成する乾燥手段と、
 塗膜に紫外線を照射する紫外線照射手段と、
 紫外線が照射された塗膜に対し、連続フィルム支持体の幅方向に沿ってレターデーションを測定するレターデーション測定手段と、
 測定されたレターデーションの測定値から求められたレターデーションの測定値の幅方向分布の中に所定範囲から外れた測定値があったとき、所定範囲から外れた測定値の測定位置に相当する幅方向位置の塗膜に照射する紫外線の照度を調整する制御を行う制御手段と、
を有する位相差フィルムの製造装置。
<7> 制御手段が、事前に取得した、塗膜に照射する紫外線の照度と紫外線が照射された塗膜のレターデーションの値との関係から得られた調整量にて、塗膜に照射する紫外線の照度を調整する制御を行う、<6>に記載の位相差フィルムの製造装置。
<8> 紫外線照射手段が、複数個の発光ダイオード素子を備えるユニットを連続フィルム支持体の幅方向に沿って複数個並列したモジュール光源である、<6>又は<7>に記載の位相差フィルムの製造装置。
<9> 塗布手段が、カーテンコーティング法又はダイコーティング法を用いた手段である、<6>~<8>のいずれか1に記載の位相差フィルムの製造装置。
<10> 紫外線照射手段に対し、連続フィルム支持体の搬送方向下流側に、高圧水銀光源又はメタルハライド光源により塗膜に紫外線を照射する別の紫外線照射手段を有する、<6>~<9>のいずれか1に記載の位相差フィルムの製造装置。
 本発明の一実施形態によれば、ロールトゥロール方式での連続プロセスを用いつつも、レターデーションの面内分布が小さい位相差フィルムの製造方法が提供される。
 本発明の別の一実施形態によれば、ロールトゥロール方式での連続プロセスを用いつつも、レターデーションの面内分布が小さい位相差フィルムの製造装置が提供される。
図1は、本発明の一実施形態の位相差フィルムの製造方法の各工程を示す概略図である。 図2は、本発明の一実施形態の位相差フィルムの製造方法における偏光紫外線を照射する際の一例を示す要部拡大図である。 図3は、ワイヤーグリッド偏光子のワイヤーグリッドの配置を示す平面図である。 図4は、偏光紫外線を照射する際の照射角度を説明する図である。 図5Aは、レターデーションの測定を説明するための一例を示す概略図である。 図5Bは、レターデーションの測定を説明するための別の一例を示す概略図である。
 以下、本発明の位相差フィルムの製造方法及び製造装置の一実施形態について説明する。但し、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示にて示す各図面における各要素は必ずしも正確な縮尺ではなく、本開示の原理を明確に示すことに主眼が置かれており、強調がなされている箇所もある。
 また、各図面において、同一機能を有する構成要素には同一符号を付し、重複する説明は省略する。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
≪位相差フィルムの製造方法及び製造装置≫
 本発明者らは、ロールトゥロール方式での連続プロセスでの位相差フィルムの製造方法について検討を行ったところ、液晶層用塗膜に対して照射する紫外線の照度を調整することで、位相差フィルムのレターデーションの値が変化することに着目し、以下の方法にて、位相差フィルムのレターデーションのムラを抑制する方法を見出した。
 即ち、まず、液晶層用塗膜に対して紫外線が照射された後、連続フィルム支持体の幅方向についてレターデーションを測定し、レターデーションの測定値の幅方向分布を求める。そして、求められたレターデーションの測定値の幅方向分布の中に所定範囲から外れた測定値があったとき、所定範囲から外れた測定値の測定位置に相当する幅方向位置の液晶層用塗膜に照射する紫外線の照度を調整する(例えば、紫外線の照度を上げる又は下げる)。
 ここで、「測定位置に相当する幅方向位置の液晶層用塗膜」は、測定位置に相当する連続フィルム支持体の幅方向における位置を搬送されている紫外線未照射の液晶層用塗膜を意味する。そのため、上記の方法を採用する位相差フィルムの製造方法では、連続フィルム支持体の搬送方向に対し、下流側にレターデーションの測定位置があり、その測定位置よりも上流側に紫外線の照射位置がある。そして、この紫外線の照射位置では、上記のように、所定範囲から外れた測定値の測定位置に相当する幅方向位置の液晶層用塗膜に照射する紫外線の照度を調整することができる。
 このように、レターデーションの測定結果を、液晶層用塗膜に対する紫外線の照度の調整に用いることで、レターデーションの面内分布が小さい位相差フィルムを得ることができる。
 なお、製造された位相差フィルムにおいては、先端側にレターデーションの測定位置があり、その測定位置よりも末端側に紫外線の照度を調整された位置が存在するということになる。
 この方法により、レターデーションの面内分布が小さい位相差フィルムが得られる。
 以上のことから、一実施形態の位相差フィルムの製造方法は、連続搬送される連続フィルム支持体上に、液晶化合物に対する配向規制力を備えた配向層を形成する第1工程と、配向層上に液晶化合物を含む液晶層形成用材料を塗布及び乾燥して塗膜(即ち、液晶層用塗膜)を形成する第2工程と、塗膜に紫外線を照射する第3工程と、紫外線が照射された塗膜に対し、連続フィルム支持体の幅方向に沿ってレターデーションを測定し、レターデーションの測定値の幅方向分布を求める第4工程と、求められたレターデーションの測定値の幅方向分布の中に所定範囲から外れた測定値があったとき、所定範囲から外れた測定値の測定位置に相当する幅方向位置の塗膜(即ち、液晶層用塗膜)に照射する紫外線の照度を調整する第5工程と、を有する。
 一実施形態の位相差フィルムの製造方法は、例えば、以下に示す、一実施形態の位相差フィルムの製造装置により行われる。
 一実施形態の位相差フィルムの製造装置は、連続搬送される連続フィルム支持体上に、液晶化合物に対する配向規制力を備えた配向層を形成する配向層形成手段と、配向層上に液晶化合物を含む液晶層形成用材料を塗布する塗布手段と、塗布後の液晶層形成用材料を乾燥して塗膜を形成する乾燥手段と、塗膜(即ち、液晶層用塗膜)に紫外線を照射する紫外線照射手段と、紫外線が照射された塗膜に対し、連続フィルム支持体の幅方向に沿ってレターデーションを測定するレターデーション測定手段と、測定されたレターデーションの測定値から求められたレターデーションの測定値の幅方向分布の中に所定範囲から外れた測定値があったとき、所定範囲から外れた測定値の測定位置に相当する幅方向位置の塗膜(即ち、液晶層用塗膜)に照射する紫外線の照度を調整する制御を行う制御手段と、を有する。
 以下、一実施形態の位相差フィルムの製造方法の詳細について、一実施形態の位相差フィルムの製造装置と合わせて説明する。
〔第1工程〕
 一実施形態の位相差フィルムの製造方法は、連続搬送される連続フィルム支持体上に、液晶化合物に対する配向規制力を備えた配向層を形成する第1工程を有する。
 第1工程において、液晶化合物に対する配向規制力を備えた配向層を形成する方法は、特に制限はなく、ラビング方式を用いてもよいし、光配向方式を用いてもよい。
 ここで、ラビング方式とは、配向層形成用材料を含む塗膜に対してラビング布を巻いたロールを一定圧力で押し込みながら回転移動させて、塗膜に液晶化合物に対する配向規制力を与える方式である。
 また、光配向方式とは、配向層形成用材料の塗膜に対し偏光(例えば、偏光紫外線)を照射して、塗膜に液晶化合物に対する配向規制力を与える方式である。
 近年は、塗膜の摩擦によって、微細な粉塵が生じたり、静電気が発生したりすることが問題視されることがあるため、第1工程では、塗膜の摩擦が必要ない光配向方式を採用することが好ましい。
 以下、光配向方式を用いた第1工程について説明する。
 第1工程の一例について、図1を参照して説明する。
 図1に示すように、巻回された連続フィルム支持体Fは、その先端が送り出されると、まず、配向層形成用材料の塗布手段1により配向層形成用材料の塗布が行われ、その後、配向層形成用材料の乾燥手段2による乾燥領域にて乾燥される。こうして、連続フィルム支持体上には、配向層形成用材料を塗布及び乾燥して得られる塗膜(以降、「配向層用塗膜」ともいう)が形成される。
 続いて、バックアップロールに連続フィルム支持体を巻き掛けた領域にて、配向層用塗膜に偏光紫外線を照射して、配向規制力を備えた配向層を形成する。
 具体的には、図1に示すように、連続フィルム支持体F上に配向層用塗膜が形成された後は、連続フィルム支持体Fをバックアップロール3bに巻き掛けた領域にて、光配向装置3aにより配向層用塗膜に偏光紫外線が照射される。
-連続フィルム支持体-
 連続フィルム支持体としては、ポリマーフィルムを用いることが好ましい。
 連続フィルム支持体として用いられるポリマーフィルムの材料の例には、セルロースアシレート(例えば、セルローストリアセテート(トリアセチルセルロース、屈折率1.48)、セルロースジアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート)、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエーテルスルホン、ポリメチルメタクリレート等のアクリル樹脂、ポリウレタン、ポリカーボネート、ポリスルホン、ポリエーテル、ポリメチルペンテン、ポリエーテルケトン、ポリ(メタ)アクリルニトリル、脂環式構造を有するポリマー(例えば、ノルボルネン系樹脂(商品名「アートン(登録商標)」、JSR社)、非晶質ポリオレフィン(例えば、商品名「ゼオネックス(登録商標)」、日本ゼオン社))などが挙げられる。
 このうち、光学異方性の低さ等の観点から、トリアセチルセルロース、ポリエチレンテレフタレート(即ち、PET)、及び脂環式構造を有するポリマーが好ましく、特にトリアセチルセルロースが好ましい。
 連続フィルム支持体の厚みとしては、10μm~250μmの範囲が好ましい。連続フィルム支持体の厚みは、バックアップロールへの巻き掛けに対する適用性が高い観点等から、15μm以上がより好ましく、30μm以上が更に好ましい。連続フィルム支持体の厚みは、材料コストの観点からは、150μm以下が好ましく、120μm以下がより好ましい。
-配向層形成用材料-
 光配向方式に適用される配向層の形成に用いられる配向層形成用材料としては、例えば、特開2006-285197号公報、特開2007-76839号公報、特開2007-138138号公報、特開2007-94071号公報、特開2007-121721号公報、特開2007-140465号公報、特開2007-156439号公報、特開2007-133184号公報、特開2009-109831号公報、特許第3883848号、特許第4151746号に記載のアゾ化合物、特開2002-229039号公報に記載の芳香族エステル化合物、特開2002-265541号公報に記載の光配向性を示す構成単位を有する多官能マレイミド誘導体とアルケニル置換ナジイミド化合物、特開2002-317013号公報に記載の光配向性基と重合性マレイミド基とを有する重合性単量体、特許第4205195号、特許第4205198号に記載の光架橋性シラン誘導体、特表2003-520878号公報、特表2004-529220号公報、特許第4162850号に記載の光架橋性ポリイミド、ポリアミド酸、又はこれらのエステル、特開平9-118717号公報、特表平10-506420号公報、特表2003-505561号公報、国際公開第2010/150748号、特開2013-177561号公報、特開2014-12823号公報に記載の光二量化可能な化合物(特に、シンナメート化合物、カルコン化合物、又はクマリン化合物)等が挙げられる。
 これらの中でも特に好ましい例としては、上記公報に記載のアゾ化合物、上記公報に記載の光架橋性ポリイミド、ポリアミド、又はこれらエステル、上記公報に記載のシンナメート化合物、又はカルコン化合物等が挙げられる。
-塗布方法-
 配向層形成用材料の塗布手段1には、公知の塗布装置が適用される。
 塗布装置として、具体的には、カーテンコーティング法、ディップコーティング法、スピンコーティング法、印刷コーティング法、スプレーコーティング法、スロットコーティング法、ロールコーティング法、スライドコーティング法、ブレードコーティング法、グラビアコーティング法、ワイヤーバー法等を利用した装置が挙げられる。
-乾燥方法-
 配向層形成用材料の乾燥手段2には、公知の乾燥手段が適用される。
 乾燥手段として、具体的には、オーブン、温風機、赤外線(IR)ヒーター等を用いる方法が挙げられる。
 温風機による乾燥においては、連続フィルム支持体の配向層形成用材料が塗布された面とは反対の面から温風を当てる構成でもよく、塗布された配向層形成用材料の表面が温風にて流動しないよう、拡散板を設置した構成としてもよい。
 乾燥条件は、用いた配向層形成用材料の種類、塗布量、搬送速度等に応じて決定されればよく、例えば、30℃~140℃の範囲で、10秒~10分間行うことが好ましい。
 以上のようにして、配向層用塗膜が形成される。
 形成された配向層用塗膜の膜厚は、0.1μm~5μmが好ましく、0.2μm~1μmがより好ましい。
-偏光紫外線の照射及び光配向装置-
 続いて、連続フィルム支持体Fに形成された配向層用塗膜に対し、偏光紫外線を照射する。
 図1によれば、バックアップロール3bに、配向層用塗膜が形成された連続フィルム支持体Fを巻き掛けた領域にて、光配向装置3aにより配向層用塗膜に偏光紫外線が照射される。
 バックアップロール3bにて連続フィルム支持体Fを支える形態での、偏光紫外線の照射は、バックアップロール3bの形状に沿って張架した状態の連続フィルム支持体に対して行うことができる観点、及び、バックアップロール3bによる連続フィルム支持体Fの温調がし易い観点から好ましい。
 なお、第1工程における偏光紫外線の照射は、連続フィルム支持体Fの裏面(即ち、配向層用塗膜が形成される面とは反対の面)をバックアップロール3bにて支える形態のみならず、連続フィルム支持体Fの裏面を平面ベルト又は平面ガイドにて支える形態で行われてもよい。
 また、第1工程における偏光紫外線の照射は、配向層用塗膜の平面性が確保できていれば、連続フィルム支持体Fの裏面を支える平面ベルト又は平面ガイドがなくともよい。
 以下、偏光紫外線の照射に用いられる光配向装置の一例について、図2~図4を参照して説明する。
 図2に示すように、光配向装置3aは、棒状光源10と、棒状光源10からの光を垂直方向に効率良くワイヤーグリッド偏光子30側へ反射させる凹面反射鏡11と、棒状光源10の長手方向に配列された複数の平行板21からなるルーバー20と、ルーバー20によって平行光化された光を直線偏光するワイヤーグリッド偏光子30と、から構成される。
 そして、ワイヤーグリッド偏光子30を通して発せられる偏光紫外線が配向層用塗膜に照射される。
・棒状光源
 棒状光源10としては、例えば、タングステンランプ、ハロゲンランプ、キセノンランプ、キセノンフラッシュランプ、水銀ランプ、水銀キセノンランプ、カーボンアークランプ等のランプ、各種のレーザー(例、半導体レーザー、ヘリウムネオンレーザー、アルゴンイオンレーザー、ヘリウムカドミウムレーザー、YAG(Yttrium Aluminum Garnet)レーザー)、発光ダイオード、陰極線管等を挙げることができる。
 棒状光源10から発せられる紫外線のピーク波長は、200nm~400nmが好ましい。
・ルーバー
 ルーバー20は、図2に示すように、平行板21はバックアップロール3bの長手方向X(即ち、バックアップロール3bの周方向)に、等間隔で配列されており、棒状光源10とワイヤーグリッド偏光子30との間に配置される。ルーバー20を設置することによって、棒状光源10からの光を平行光化して、ワイヤーグリッド偏光子30に入射する光の広がりを抑え、バックアップロールに対して真正面からの光にすることができる。
 また、平行板21は、図2では、バックアップロールの長手方向Xに直交する角度で配置されているが、直交に限らず斜め方向に平行して配置されていてもよい。平行板21は、不図示の連動機構によって、ピッチと角度とを調整することができる。
 なお、図2では、ルーバー20が、バックアップロール3bの長手方向に配列された平行板からなる場合を示したが、ルーバー20の構成はこれに限られない。ルーバー20の別の構成としては、例えば、断面が多角形又は円形である複数の筒部から構成され、筒の中心軸がバックアップロールの中心軸に垂直な方向に配置したものでもよく、筒を構成する面に無反射膜を有していてもよい。
 また、ルーバー20は棒状光源10とできるだけ近接させて、ルーバー20からの光漏れがないように設置するのが好ましい。光漏れを抑止するには、ルーバー20と棒状光源10を接触させてもよいし、隙間を他の部材で遮蔽してもよい。
 また、ルーバー20とワイヤーグリッド偏光子30との隙間についても同様である。
 ルーバー20の材質は、ステンレス又はアルミニウムのような耐熱性のある材料を用いることができる。
 ルーバー20の表面は、照射光の照射効率を高めるために、平滑化して反射率を向上させたものであってもよい。また、ルーバー20は、照射光の直進性を高めるために、表面に凹凸を付与する、又は無反射膜で覆って反射率を低減させてもよい。ルーバー20の表面の反射率を低減させる場合は、ルーバー20の平行板21の表面には、光吸収部材が設けられていることが好ましい。
・ワイヤーグリッド偏光子
 図2及び図3に示すように、ワイヤーグリッド偏光子30は、複数のワイヤーグリッド偏光素子32が枠31に保持されてなる。
 そして、各ワイヤーグリッド偏光素子32は、基板33上に複数の直線状の電気導体からなるワイヤーグリッド34が配列されている。
 ワイヤーグリッド偏光素子32は、ワイヤーグリッド34の長手方向と平行な偏波(偏光)成分は反射し、直交する偏波(偏光)成分は通過する。直交する偏波成分を通過する方向を透過軸という。
 電気導体としては、クロム、アルミニウム等の金属線が挙げられる。
 ワイヤーグリッド34の配列角度θは、図3に示すように、バックアップロール3bの長手方向Xの直交方向(即ち、図3中の点線で示す方向)に対して0°<θ<90°を満たすことが好ましい。つまり、ワイヤーグリッド34の配列角度θは、バックアップロール3bの長手方向Xに対して直交又は平行ではない角度が好ましいということになる。
・光配向装置による偏光紫外線の照射角度
 次に、バックアップロール3b上での偏光紫外線の照射角度について図4を用いて説明する。
 図4に示すように、バックアップロール3bの軸中心Oに垂直な面内において、バックアップロール3bの軸中心Oを通りワイヤーグリッド偏光子30の基板面38に垂直な線を基準線L1とし、基準線L1と、バックアップロール3bの軸中心Oと連続フィルム支持体F上における偏光紫外線の照射領域Aの搬送方向上流端Mとを結ぶ線L2とがなす角度をθ1とし、基準線L1と、バックアップロール3bの軸中心Oと連続フィルム支持体F上における偏光紫外線の照射領域Aの搬送方向下流端Nとを結ぶ線L3とがなす角度をθ2としたときに、|θ1-θ2|<10°を満たすことが好ましい。
 より好ましくは、|θ1-θ2|<7°であり、更に好ましくは、|θ1-θ2|=0°である。
 |θ1-θ2|<10°とすることにより、バックアップロール3bの曲面に対し、真正面から偏光紫外線を照射することができ、液晶化合物の配向軸のバラツキを低減させることができる。
-バックアップロール-
 バックアップロール3bは、特に制限無く、公知のものを用いることができる。
 バックアップロール3bとしては、例えば、表面が、ハードクロムメッキされたものを好ましく用いることができる。
 メッキの厚みは、導電性と強度とを確保する観点から40μm~60μmが好ましい。
 また、バックアップロール3bの表面粗さは、連続フィルム支持体Fとバックアップロール3bとの摩擦力のバラツキを低減させる観点から、表面粗さRaにて0.1μm以下が好ましい。
 バックアップロール3bの温度は、25℃~100℃に維持されることが好ましく、25℃~50℃がより好ましい。
 バックアップロール3bを上記の温度に維持することで、巻き掛けられる連続フィルム支持体Fの温度制御を行うことができる。
 バックアップロール3bは、表面温度を検知し、その温度に基づいて表面温度の制御を行う温度制御手段によってバックアップロール3bの表面温度が維持されることが好ましい。
 バックアップロール3bの温度制御手段には、加熱手段及び冷却手段がある。加熱手段としては、誘導加熱、水加熱、油加熱等が用いられ、冷却手段としては、冷却水が用いられる。
 バックアップロール3bの直径としては、連続フィルム支持体が巻き掛け易い観点、偏光紫外線の照射が容易な観点、及び、バックアップロール3bの製造コストの観点から、100mm~1000mmが好ましく、100mm~800mmがより好ましく、200mm~700mmがより好ましい。
 第1工程では、偏光紫外線の照射を張架した状態の連続フィルム支持体Fに対して行うため、図1に示すように、例えば、バックアップロール3bが巻き掛けられた連続フィルム支持体Fに対して長手方向にテンションが掛けられていることが好ましい。
 テンションが掛かっているときの連続フィルム支持体Fの幅(Fw2とする)は、テンションが掛かっていないときの連続フィルム支持体Fの幅(Fw1とする)に比べて小さくなる。
 バックアップロール3b上での連続フィルム支持体Fの幅の縮み率は、以下の式(1)から求められ、0.05%~1.00%であることが好ましく、0.07%~0.30%であることがより好ましい。
 式(1)  縮み率(%)=(Fw1-Fw2)/Fw1×100
(Fw1は、テンションが掛かっていないときの連続フィルム支持体の幅を示し、Fw2は、バックアップロール上でテンションが掛かっているときの連続フィルム支持体の幅を示す。)
 上記のような縮み率になるよう、バックアップロール3b上では連続フィルム支持体Fに対しテンションを掛ければよい。具体的には、上記の縮み率を達成するため、バックアップロール3b上で連続フィルム支持体Fに掛けるテンションとしては、100N/m~600N/mが好ましい。
 バックアップロール3b上での連続フィルム支持体Fの搬送速度は、生産性の確保の観点、及び、偏光紫外線の照射の正確性を高める観点から、10m/min以上100m/min以下であることが好ましく、20m/min以上60m/min以下であることが好ましい。
 また、バックアップロール3bに対する連続フィルム支持体Fのラップ角は、60°以上が好ましく、90°以上がより好ましい。
 なお、ラップ角とは、連続フィルム支持体Fがバックアップロール3bに接触するときの連続フィルム支持体Fの搬送方向と、バックアップロール3bから連続フィルム支持体Fが離間するときの連続フィルム支持体Fの搬送方向と、からなる角度をいう。
 以上のようにして、配向層用塗膜に偏光紫外線を照射することで、配向層形成用材料に光反応を生じさせ、その結果、液晶化合物に対する配向規制力を備えた配向層が形成される。
〔第2工程〕
 一実施形態の位相差フィルムの製造方法は、第1工程後、配向層上に液晶化合物を含む液晶層形成用材料を塗布及び乾燥して塗膜(即ち、液晶層用塗膜)を形成する第2工程を有する。
 第2工程の一例について、図1を参照して説明する。
 図1に示すように、バックアップロール3b上での配向層用塗膜に対する偏光紫外線の照射が終了すると、続いて、液晶層形成用材料の塗布手段4にて液晶化合物を含む液晶層形成用材料の塗布が行われ、その後、液晶層形成用材料の乾燥手段5による乾燥領域にて乾燥される。
 こうして、連続フィルム支持体の配向層上には液晶層用塗膜が形成される。
-液晶層形成用材料-
 液晶層形成用材料は、棒状液晶化合物又は円盤状液晶化合物を含有し、更に、重合性化合物、架橋性化合物、キラル剤、配向制御剤、重合開始剤、配向助剤等の公知のその他の成分を含有していてもよい。
・棒状液晶化合物
 棒状液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、及びアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。
 以上のような低分子液晶性分子だけではなく、高分子液晶性分子も用いることができる。
 棒状液晶化合物は、重合によって配向を固定することがより好ましく、そのため、重合性基を有する棒状液晶化合物を用いることが好ましい。
 重合性を有する棒状液晶化合物としては、Makromol. Chem., 190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許4683327号公報、同5622648号公報、同5770107号公報、国際公開第95/22586号、同第95/24455号、同第97/00600号、同第98/23580号、同第98/52905号、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、及び特開2001-328973号公報などに記載の化合物が挙げられる。
 更に、棒状液晶化合物としては、例えば、特表平11-513019号公報、特開2007-279688号公報等に記載のものも好ましく用いることができる。
・円盤状液晶化合物
 円盤状液晶化合物としては、例えば、特開2007-108732号公報、特開2010-244038号公報等に記載のものを好ましく用いることができる。
-塗布方法及び乾燥方法-
 液晶層形成用材料の塗布及び乾燥には、第1工程における塗布及び乾燥と同様の方法を用いることができるため、ここでは、詳細な説明は省略する。
 但し、第2工程における液晶層形成用材料の塗布は、カーテンコーティング法又はダイコーティング法により行われることが好ましい。
 このような塗布の方法を採用した場合であっても、後述の第4工程及び第5工程があることで、レターデーションの面内分布の小さな位相差フィルムが得られる。
 ここで、第2工程に用いられる液晶化合物を含む液晶層形成用材料(即ち、上述の塗布に適用する塗布液)の固形分濃度は、5質量%~40質量%であることが好ましい。
 また、液晶化合物を含む液晶層形成用材料(即ち、上述の塗布に適用する塗布液)の25℃における粘度としては、0.5mPa・s~10mPa・sであることが好ましい。
-液晶化合物の配向-
 後述する第3工程において、液晶化合物の配向を固定する前には、液晶層用塗膜中の液晶化合物の配向処理を行うことが好ましい。
 配向処理は、室温等により乾燥させる、又は加熱することにより行うことができる。
 配向処理で形成される液晶は、サーモトロピック性をもつ液晶化合物の場合、一般に温度又は圧力の変化により転移させることができる。また、リオトロピック性をもつ液晶化合物の場合には、溶媒量等の組成比によっても転移させることができる。
 棒状液晶化合物がスメクチック相を発現する場合、ネマチック相を発現する温度領域の方が、棒状液晶化合物がスメクチック相を発現する温度領域よりも高いことが普通である。従って、棒状液晶化合物がネマチック相を発現する温度領域まで棒状液晶化合物を加熱し、次に、加熱温度を棒状液晶化合物がスメクチック相を発現する温度領域まで低下させることにより、棒状液晶化合物をネマチック相からスメクチック相に転移させることができる。このような方法でスメクチック相とすることで、液晶化合物が高秩序度で配向した液晶が得られる。
 棒状液晶化合物がネマチック相を発現する温度領域では、棒状液晶化合物がモノドメインを形成するまで一定時間加熱する必要がある。加熱時間は、10秒間~5分間が好ましく、10秒間~3分間が更に好ましく、10秒間~2分間が最も好ましい。
 棒状液晶化合物がスメクチック相を発現する温度領域では、棒状液晶化合物がスメクチック相を発現するまで一定時間加熱する必要がある。加熱時間は、10秒間~5分間が好ましく、10秒間~3分間が更に好ましく、10秒間~2分間が最も好ましい。
 液晶化合物の配向は、第2工程における乾燥にて行われてもよい。つまり、第2工程における乾燥にて、配向層上に塗布された液晶層形成用材料の乾燥と液晶化合物の配向との両方を行ってもよい。
 勿論、液晶化合物の配向を、第2工程における乾燥とは別に行ってもよい。その場合、図1に示す乾燥手段5の連続フィルム支持体Fの搬送方向下流側に、液晶化合物の配向のための乾燥手段又は加熱手段を備えていればよい。
〔第3工程〕
 一実施形態の位相差フィルムの製造方法は、第2工程の後、液晶層用塗膜に紫外線を照射する第3工程を有する。
 第3工程により、液晶層用塗膜中の液晶化合物を配向させ、配向を固定して液晶層を形成する。
 第3工程の一例について、図1を参照して説明する。
 図1に示すように、連続フィルム支持体Fの配向層上に液晶層用塗膜が形成された後、この液晶層用塗膜に対し、紫外線照射手段6にて紫外線の照射を行う。この紫外線の照射により、液晶層用塗膜中の液晶化合物の配向を固定して液晶層を形成する。
-液晶化合物の配向の固定-
 第3工程では、液晶層用塗膜中の液晶化合物の配向を固定する。
 液晶化合物の配向の固定は、熱重合又は活性エネルギー線による重合で行うことができ、その重合に適した、液晶化合物が有する重合性基又は重合開始剤を適宜選択することで行うことができる。
 製造適性等を考慮すると、図1に示すような、紫外線照射手段6から照射された紫外線による重合反応を好ましく用いることができる。
 重合性を有する液晶化合物を用いる場合、紫外線の照射量が少ないと、未重合の液晶化合物が残存し、光学特性の温度変化、経時劣化等の起きる原因となる。そのため、残存する未重合の液晶化合物の割合が5%以下になるように照射条件を決めることが好ましい。
 照射条件としては、液晶層形成用材料の処方、及び液晶層用塗膜の厚みにもよるが、紫外線照射量は、50mJ/cm~1000mJ/cmが好ましく、100mJ/cm~500mJ/cmがより好ましい。
 その他、液晶層及びその形成方法の詳細は、特開2008-225281号公報及び特開2008-026730号公報の記載を参酌できる。
〔第4工程〕
 一実施形態の位相差フィルムの製造方法は、第3工程にて紫外線が照射された液晶層用塗膜(即ち、形成された液晶層)に対し、連続フィルム支持体の幅方向に沿ってレターデーションを測定し、レターデーションの測定値の幅方向分布を求める第4工程を有する。
 第4工程の一例について、図1を参照して説明する。
 図1に示すように、紫外線照射手段6にて紫外線の照射された液晶層用塗膜(液晶層)に対し、レターデーション測定装置7にて、連続フィルム支持体Fの幅方向に沿ってレターデーションを測定する。そして、レターデーション測定装置7にて測定された測定値に基づいて、制御部(即ち、制御手段)8にて、レターデーションの測定値の幅方向分布を求める。
 ここで、レターデーションの測定値の幅方向分布とは、連続フィルム支持体の幅方向に沿って測定したレターデーションの測定値の集合を指す。
 レターデーション測定手段であるレターデーション測定装置7としては、特に制限はなく、搬送中の連続フィルム支持体F上の液晶層用塗膜(液晶層)のレターデーションを、連続フィルム支持体Fの幅方向に沿って測定できるものであればよい。
 レターデーション測定装置7として具体的には、王子計測機器社の自動複屈折率計(KOBRA-21ADH)、Axometrics社のAxoScan等を用いることができる。
 レターデーションの測定は、図5Aに示すように、連続フィルム支持体Fの幅方向Zにそって複数個(図5A中では10個)並列したレターデーション測定装置7aにて行ってもよい。また、レターデーションの測定は、図5Bに示すように、1つのレターデーション測定装置7bを連続フィルム支持体Fの幅方向Zに沿って移動させつつ行ってもよい。
 レターデーション測定装置7aの場合、複数あるレターデーションの測定点(図5A中のP)は、連続フィルム支持体Fの幅方向Zにそって並列することとなる。
 また、レターデーション測定装置7bの場合、複数あるレターデーションの測定点(図5B中のP)は、連続フィルム支持体Fを上面視した場合、連続フィルム支持体Fの搬送方向Yに対し角度をもって、一定の間隔を空けて連続フィルム支持体Fの幅方向Zに並ぶことになる。
 ここで、図5A及び図5B中、Pは、レターデーション測定装置にて測定された測定点を指し、Qは、レターデーション測定装置にて測定されるであろう測定目標点を指す。
 測定目標点Qは、測定の間隔(即ち、図5A中のDa又は図5B中のDb)によって決定されればよい。例えば、図5Aであれば、測定目標点Qは、レターデーションの測定点Pに対し、連続フィルム支持体Fの搬送方向Yの上流側に間隔Daを空けた箇所に該当する。そのため、図5Aにおける測定目標点Qは、連続フィルム支持体Fの幅方向Zにそって並列することとなる。また、図5Bであれば、測定目標点Qは、レターデーションの測定点Pに対し、連続フィルム支持体Fの搬送方向Yの上流側に間隔Dbを空けた箇所に該当する。そのため、図5Bにおける測定目標点Qも、連続フィルム支持体Fを上面視した場合、連続フィルム支持体Fの搬送方向Yに対し角度をもって、一定の間隔を空けて連続フィルム支持体Fの幅方向Zに並ぶことになる。
 図5A及び図5Bでは、連続フィルム支持体Fの幅方向Zにおけるレターデーションの測定点の数を10個としているが、これに限定されない。連続フィルム支持体Fの幅方向におけるレターデーションの測定点の数は、レターデーションの測定装置の大きさ、連続フィルム支持体Fの幅、後述する紫外線の照度の調整可能な幅等に応じて、決定されればよい。
 また、連続フィルム支持体Fの長手方向におけるレターデーションの測定点の数は、図5A及び図5Bに示すように1個であってもよいし、複数個であってもよい。連続フィルム支持体Fの長手方向におけるレターデーションの測定点の数が複数個、例えば、5個である場合、その5個の値の平均値を用いて、レターデーションの測定値の幅方向分布を求めればよい。
 測定された測定値は、制御部8内に格納される。そして、制御部8は、測定された測定値を用いてレターデーションの測定値の幅方向分布を求める。
 第4工程におけるレターデーションの測定は、連続フィルム支持体Fの搬送距離に対し一定の間隔(例えば、図5A中のDa又は図5B中のDb)で行うことが好ましい。
 間隔が短いほど、位相差フィルムのレターデーションの面内分布をより少なくし易い。
 例えば、連続フィルム支持体Fの搬送距離(即ち、図5A中のDa又は図5B中のDb)であれば、生産性等の点から、10m~100mの範囲内毎に行うことが好ましく、0.1m~1mの範囲内毎に行うことがより好ましい。
 なお、レターデーションの測定は、制御部8により制御された自動計測であってもよいし、製造者、作業者等による手動計測であってもよい。
〔第5工程〕
 一実施形態の位相差フィルムの製造方法は、第4工程にて求められたレターデーションの測定値の幅方向分布の中に所定範囲から外れた測定値があったとき、所定範囲から外れた測定値の測定位置に相当する幅方向位置の液晶層用塗膜に照射する紫外線の照度を調整する第5工程を有する。
 つまり、第5工程では、第4工程にて求められたレターデーションの測定値の幅方向分布の中に所定範囲から外れた測定値がなければ、紫外線の照度の調整は行われない。
 なお、照度(単位:mW/cm)は、液晶層用塗膜に対する紫外線照射量(単位:mJ/cm)を制御することで調整されることが好ましい。
 第5工程の一例について、図1を参照して説明する。
 図1に示すように、制御部8にて、レターデーションの測定値の幅方向分布が求められると、同じく、制御部8にて、幅方向分布の中に所定範囲から外れた測定値があるかどうかが判断される。そして、制御部8が、レターデーションの測定値の幅方向分布の中に所定範囲から外れた測定値があったと判断したとき、紫外線照射手段6において、所定範囲から外れた測定値の測定位置に相当する幅方向位置の液晶層用塗膜に照射する紫外線の照度を調整する。
 このように、第5工程により、第3工程での紫外線の照射における照度が調整される。そして、第3工程の調整された照度は、次に、第5工程にて照度の調整が行われるまで維持される。
 ここで、「所定範囲」としては、位相差フィルムに求められるレターデーションのムラの許容値、及び、生産性に応じて決定されればよい。
 具体的には、所定範囲とは、レターデーションの測定値の幅方向分布において、好ましくは、目標値から±1.5%以下をいい、より好ましくは、目標値から±0.5%以下をいい、更に好ましくは、目標値から±0.25%以下をいう。
 つまり、第5工程では、例えば、レターデーションの測定値の幅方向分布において、目標値から±1.5%を超えた測定値があるかどうかが判断される。
 ここで、目標値とは、製造される位相差フィルムに求められるレターデーションの値に相当する。
 制御部8は、レターデーションの測定値の幅方向分布の中に所定範囲から外れた測定値があった判断したとき、紫外線照射手段6を制御し、所定範囲から外れた測定値の測定位置の液晶層用塗膜に照射する紫外線の照度を調整する。
 紫外線照射手段6に用いる光源としては、第3工程に記載の紫外線照射量が達成できれば制限はなく、例えば、発光ダイオード(light emitting diode:LED)、キセノンランプ、超高圧水銀ランプ、メタルハライドランプ等のショートアークランプが好ましいものとして挙げられる。中でも、紫外線の照度を調整し易い点から、発光ダイオードを用いることが好ましい。
 より細かな照度の調整を可能とするため、紫外線照射手段6に用いる光源としては、複数個の発光ダイオード素子を備えるユニットを連続フィルム支持体の幅方向に沿って複数個並列したモジュール光源(以降、「LEDモジュール」ともいう)であることが好ましい。
 複数個のLED素子を備えるユニットとは、複数個(例えば、10個~20個)のLED素子をまとめてユニット化したものを指す。
 この複数個のLED素子を備えるユニットを複数個(例えば、5個~15個)並列したモジュール光源は、ユニット毎に照度の調整が可能である。
 具体的な照度の調整方法について、以下に説明する。
 位相差フィルムのレターデーション(Re)は、Re=Δn×液晶層用塗膜の膜厚の関係を満たす(Δnは複屈折)。
 そのため、液晶層用塗膜の膜厚が大きい箇所はレターデーションの値が大きくなる傾向があるため、紫外線の照度を上げて(即ち、液晶層用塗膜の温度を上げて)Δnを小さくすればよい。
 また、液晶層用塗膜の膜厚が小さい箇所は、レターデーションの値が小さくなる傾向があるため、紫外線の照度を下げて(温度を下げて)Δnを大きくすればよい。
 なお、Δn(複屈折)が温度で変わるのは、液晶化合物の配向のゆらぎが起因する。
 前述したように、液晶層用塗膜は、液晶化合物の配向がなされた後に、第3工程での紫外線照射にて、液晶化合物の配向が固定化される。この際、液晶化合物の配向性が高い状態で紫外線照射にて配向が固定化されてしまうと、液晶層用塗膜の膜厚のバラツキに起因するレターデーションのムラが生じる。
 そこで、本工程では、紫外線の照度の調整により、僅かに液晶化合物をゆらがせて、Δnを変化させて液晶化合物の配向を固定化し、レターデーションの値の制御を行う。
 照度の調整としては、レターデーションの測定値の幅方向分布の中に所定範囲からプラスの方向に外れた測定値があったときには、その測定値の測定位置に対応する幅方向位置の液晶層用塗膜に照射する紫外線の照度を上げる。
 一方、レターデーションの測定値の幅方向分布の中に所定範囲からマイナスの方向に外れた測定値があったときには、その測定値の測定位置に対応する幅方向位置の液晶層用塗膜に照射する紫外線の照度を下げる。
 照度の調整量としては、例えば、紫外線照射量を1.0mJ/cm上げる又は下げるといったように、予め決めておいた調整量であってもよいし、レターデーションの測定値の所定範囲から外れた値に応じた調整量であってもよい。
 前者の場合、予め決めておいた調整量としては、製造者、作業者等の経験に基づく調整量、紫外線照射手段6の最少調整量等が挙げられる。
 レターデーションの面内分布をより少なくするためには、照度の調整量は、レターデーションの測定値の所定範囲から外れた値に応じた調整量であることが好ましい。
 つまり、第5工程は、事前に取得した、塗膜に照射する紫外線の照度と紫外線が照射された塗膜のレターデーションの値との関係から得られた調整量にて、塗膜に照射する紫外線の照度を調整する工程である、ことが好ましい。
 具体的には、事前に、液晶層用塗膜に照射する紫外線の照度と紫外線が照射された塗膜のレターデーションの値との関係を取得しておく。そして、この関係に基づいて、レターデーションの測定値の所定範囲から外れた値に応じて決定された照度の調整量を採用する。
 より具体的な照度の調整量の決定方法については、実施例にて説明する。
 上述した照度の調整は、制御部8にて行われる。
 制御部8は、第4工程及び第5工程を行うに際し必要な各種プログラムなどを記憶したROM(Read Only Memory、読み出し専用メモリ)、データを一時的に記憶するRAM(Random Access Memory、書き換え可能メモリ)、及び、第4工程及び第5工程を行うに際し必要な各種プログラムを実行するCPU(Central Processing Unit、中央演算素子)等を有している。
 なお、制御部8としては、位相差フィルムの製造装置の一部の動作を制御するものであっても良いし、位相差フィルムの製造装置全体の動作を制御するものであってもよい。
 但し、照度の調整は、必ずしも制御部8にて行われる必要はなく、製造者、作業者等が手動で行ってもよい。
 一実施形態の位相差フィルムの製造方法では、第4工程、及び、第5工程における「レターデーションの測定値の幅方向分布の中に所定範囲から外れた測定値があるかどうかが判断する」処理は、連続フィルム支持体の連続搬送中、連続フィルム支持体に終端が第3工程を通過するまで、逐次的又は連続的に行われる。そして、レターデーションの測定値の幅方向分布の中に所定範囲から外れた測定値があったと判断したとき、所定範囲から外れた測定値の測定位置の液晶層用塗膜に照射する紫外線の照度が調整される。
 このようにして、液晶層用塗膜の塗布厚みムラに起因するレターデーションのムラを小さくしうることから、一実施形態の位相差フィルムの製造方法によれば、レターデーションの面内分布が少ない位相差フィルムが得られる。
〔第6工程〕
 一実施形態の位相差フィルムの製造方法では、第4工程において紫外線が照射された液晶層用塗膜に対し、高圧水銀光源又はメタルハライド光源により更に紫外線を照射する第6工程を有することが好ましい。
 第6工程の一例について、図1を参照して説明する。
 図1に示すように、紫外線照射手段6により、紫外線が照射された液晶層用塗膜に対し、紫外線照射手段9にて更に紫外線を照射する。
 第6工程を行うことで、位相差フィルムとして十分な膜強度が得られる。
 第6工程における紫外線の照射条件としては、液晶層形成用材料の処方、及び液晶層用塗膜の厚みにもよるが、紫外線照射量は、100mJ/cm~1000mJ/cmが好ましく、200mJ/cm~500mJ/cmがより好ましい。
 第5工程又は第6工程を経て液晶層が形成される。
 形成された液晶層の膜厚は、例えば、1μm~4μmが好ましく、2μm~3μmがより好ましい。
〔位相差フィルム〕
 以上のようにして、一実施形態の位相差フィルムの製造方法及び製造装置により、位相差フィルムが製造される。
 製造された位相差フィルムとしては、レターデーションの面内分布が3%未満であることが好ましく、0.5%未満がより好ましい。
 ここで、レターデーションの面内分布は、以下のようにして求める。
 位相差フィルムの長手方向の任意の箇所を、幅方向の中心を含むように1000mm×1000mmで切り出す。
 切り出したサンプルを、長手方向に等間隔で11分割し、幅方向にも等間隔で11分割する。分割箇所の交差点100点について、レターデーションを測定する。レターデーションの測定には、自動複屈折率計(KOBRA-21ADH、王子計測機器社)を用いる。
 測定した100点について、最大値Remax、最小値Remin、及び平均値Reaveを求め、以下の式を用いてレターデーションの面内分布を算出する。
 レターデーションの面内分布(%)=(Remax-Remin)/Reave×100
 製造された位相差フィルムは、レターデーションが50nm~300nmであることが好ましく、100nm~200nmであることがより好ましい。
 上記のようなレターデーションの値を有する位相差フィルムを製造する方法として、前述の一実施形態の位相差フィルムの製造方法及び製造装置が好適である。
 以下に、実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
[実施例1]
(第1工程:配向層用塗膜の形成)
 長さ1000m、幅1000mmのセルローストリアセテートフィルムTD80UL(富士フイルム社)からなる連続フィルム支持体の片面に、下記の組成の配向層形成材料をワイヤーバーで塗布した。その後、塗布された配向層形成材料を60℃の温風で60秒、更に100℃の温風で120秒乾燥し、膜厚0.5μmの配向層用塗膜を形成した。
-配向層形成用材料の組成-
 光配向用素材P-1               1.0質量部
 ブトキシエタノール                33質量部
 プロピレングリコールモノメチルエーテル      33質量部
 水                        33質量部
Figure JPOXMLDOC01-appb-C000001
(第1工程:偏光紫外線の照射)
 次に、配向層用塗膜が形成された連続フィルム支持体を、バックアップロール(直径600mm、材質ステンレス)に巻き掛け(図2参照)、大気下にて空冷メタルハライドランプ(アイグラフィックス社)を用いた光配向装置(図2と同様の構成)により偏光紫外線を照射した。このとき、ワイヤーグリッド偏光子(Moxtek社、ProFlux UVT300A)におけるワイヤーグリッドの配列角度θを45°にし、また、|θ1-θ2|=0°として、偏光紫外線の照射を行い、配向層を形成した。
 この際、紫外線の照度は、UV(ultra-violet)-A領域(波長380nm~320nmの積算)において100mW/cm、照射量はUV-A領域において1000mJ/cmとした。
 また、バックアップロール上の連続フィルム支持体の幅の縮み率は0.10%であった。
(第2工程:液晶層用塗膜の形成)
 続いて、下記の組成の液晶層形成用材料を調製した。
 液晶層形成用材料の固形分濃度は15質量%であり、液晶層形成用材料の25℃における粘度は2.0mPa・sであった。
-液晶層形成用材料の組成-
 逆波長分散液晶性化合物 R-3         100質量部
 光重合開始剤                  3.0質量部
 (イルガキュア819、BASF社)
 含フッ素化合物A                0.8質量部
 架橋性ポリマー O-2             0.3質量部
 クロロホルム                  588質量部
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 配向層上に液晶層形成用材料を、カーテンコーティング法を用いて塗布した。
 塗布された液晶層形成用材料を膜面温度100℃にて60秒間加熱して、液晶層用塗膜を形成し、70℃まで冷却した。
(第3工程:紫外線の照射)
 続いて、空気下にて、アクロエッジ社のLEDモジュールを用いて、100mJ/cmの紫外線を照射して、その配向状態を固定化し、液晶層を形成した。
 使用したLEDモジュールは、日亜化学工業社のピーク波長365nmの素子を連続フィルム支持体の幅方向に10個並べたものを一つのユニットとし、このユニットを連続フィルム支持体の幅方向に10個並列したもの、であった。
(第4工程及び第5工程:レターデーションの測定と照度の調整)
 続いて、上記LEDモジュールを含む光源による紫外線の照射後、液晶層用塗膜に対し、連続フィルム支持体の幅方向に沿ってレターデーションを測定し、レターデーションの測定値の幅方向分布を求めた(第4工程)。そして、求められたレターデーションの測定値の幅方向分布の中に所定範囲から外れた測定値があったとき、紫外線の照度を調整した(第5工程)。
 第4工程及び第5工程の詳細は、以下の通りである。
 レターデーションの測定には、自動複屈折計KOBRA-21ADH(王子計測機器社)を用いた(以降、測定器という)。
 連続フィルム支持体の幅をLEDモジュールのユニット数で分割し(つまり、10分割)、分割領域の中心部について、測定器を連続フィルム支持体の幅方向に順次動かし、レターデーションの測定を行った。つまり、連続フィルム支持体の幅方向に対し、100mm間隔で測定器を動かし、レターデーションの測定を行った。
 1点目のレターデーションの測定は、連続フィルム支持体の幅方向の一方の端部にある分割領域の中心部について行った。1点のレターデーションの測定時間は2秒間で、この間の測定値(測定器は静止したまま、連続フィルム支持体の搬送方向に5回繰り返し測定)を平均し、レターデーションの測定値を算出した。次の測定位置(即ち、隣接する分割領域の中心部)に移動するのにかかる時間は1秒で、移動後に同様の測定時間をかけ、レターデーションの測定値を得た。この測定操作を繰り返すことで、連続フィルム支持体の幅方向の一端から他端まで計10点の測定を実施した(これを1サイクルとする)。計10点のレターデーションの測定を実施した後、測定器を1点目のレターデーションの測定位置まで移動させ、2サイクル目の待機状態とした。
 1サイクル目の測定の結果、目標値(目標のレターデーション値)から±0.5%を超えるズレがある測定値があったため、この測定値に相当する幅方向位置について、対応する第3工程のLEDモジュールにより、液晶層用塗膜に対する紫外線の照度を調整した。例えば、レターデーションに2%のズレが生じた位置に相当する幅方向位置の液晶層用塗膜については、紫外線照射量が90mJ/cmになるよう、LEDモジュール内のユニットの出力を10%小さくした。
 紫外線の照度を変更した後、第3工程を通過した連続フィルム支持体が、第4工程のレターデーションの測定位置に到達するまでにかかる時間以上(ここでは、1分間とした、搬送距離では20mに相当)が経過した後、第4工程にて、再度レターデーションを測定した(2サイクル目)。
 2サイクル目の結果、測定された10個の測定値すべてが、目標値から±0.5%以下の範囲に入っていたため、第5工程における紫外線の照度の調整は実施しなかった。
 続いて、測定器を再び1点目のレターデーションの測定位置へ移動し、1分間おいた後、3サイクル目の測定を行った。
 以降、レターデーションの測定値はいずれも目標値から±0.5%以下の範囲に入っていたため、第5工程における紫外線の照度の調整は実施しなかった。
 なお、第4工程のレターデーション測定は一定時間ごとに続け、レターデーションの測定値が所定範囲に入っているかどうかの判断は繰り返し行った。
 以上の作業を、連続フィルム支持体の長さ分だけ繰り返した。
(第6工程:紫外線の照射)
 なお、LEDモジュールによる露光後には、高圧水銀光源(アイグラフィクス社)にて、300mJ/cmの紫外線を照射した。
 以上のようにして、膜厚2.5μmの液晶層を有する位相差フィルムが得られた。得られた位相差フィルムは、ロール状に巻き取られた。
 得られた位相差フィルムにおいて、液晶層は、偏光照射方向に対し遅相軸方向が直交(すなわち、偏光板の吸収軸とも直交)であった(逆波長分散液晶性化合物が偏光照射方向に対して直交に配向していた)。
[実施例2]
 液晶層用塗膜に対する紫外線の照射を、「アクロエッジ社のLEDモジュール」から「高圧水銀灯(ショートアークランプ、ウシオ電機株式会社)を連続フィルム支持体の幅方向に沿って10個並列した光源(以降、高圧水銀モジュールともいう)」に代えた以外は、実施例1と同様にして、位相差フィルムを作製した。
 なお、実施例2では、上記光源による紫外線の照射後、液晶層用塗膜に対し、連続フィルム支持体の幅方向に沿ってレターデーションを測定し、レターデーションの測定値の幅方向分布を求めた(第4工程)。そして、求められたレターデーションの測定値の幅方向分布の中に所定範囲から外れた測定値があったとき、紫外線の照度を調整した(第5工程)。
 第4工程及び第5工程の詳細は、以下の通りである。
 レターデーションの測定には、自動複屈折計KOBRA-21ADH(王子計測機器社)を用いた(以降、測定器という)。
 連続フィルム支持体の幅を高圧水銀灯を並列させた数で分割し(つまり、10分割)、分割領域の中心部について、測定器を連続フィルム支持体の幅方向に順次動かし、レターデーションの測定を行った。つまり、連続フィルム支持体の幅方向に対し、100mm間隔で測定器を動かし、レターデーションの測定を行った。
 1点目のレターデーションの測定は、連続フィルム支持体の幅方向の一方の端部にある分割領域の中心部について行った。1点のレターデーションの測定時間は2秒間で、この間の測定値(測定器は静止したまま、連続フィルム支持体の搬送方向に5回繰り返し測定)を平均し、レターデーションの測定値を算出した。次の測定位置(即ち、隣接する分割領域の中心部)に移動するのにかかる時間は1秒で、移動後に同様の測定時間をかけ、レターデーションの測定値を得た。この測定操作を繰り返すことで、連続フィルム支持体の幅方向の一端から他端まで計10点の測定を実施した(これを1サイクルとする)。計10点のレターデーションの測定を実施した後、測定器を1点目のレターデーションの測定位置まで移動させ、2サイクル目の待機状態とした。
 1サイクル目の測定の結果、目標値(目標のレターデーション値)から±0.5%を超えるズレがある測定値があったため、この測定値に相当する幅方向位置について、対応する第3工程の高圧水銀モジュールにより、液晶層用塗膜に対する紫外線の照度を調整した。例えば、レターデーションに2%のズレが生じた位置に相当する幅方向位置の液晶層用塗膜については、紫外線照射量が90mJ/cmになるよう、高圧水銀モジュール内の高圧水銀灯の出力を10%小さくした。
 紫外線の照度を変更した後、第3工程を通過した連続フィルム支持体が、第4工程のレターデーションの測定位置に到達するまでにかかる時間以上(ここでは、1分間とした、搬送距離では20mに相当)が経過した後、第4工程にて、再度レターデーションを測定した(2サイクル目)。
 2サイクル目の結果、目標値から±0.5%を超えるズレがある測定値があったため、第5工程にて、ズレ量に応じた紫外線の照度の調整を再度行った。
 続いて、測定器を再び1点目のレターデーションの測定位置へ移動し、1分間おいた後、3サイクル目の測定を行った。
 以降、レターデーションの測定値はいずれも目標値から±0.5%以下の範囲に入っていたため、第5工程における紫外線の照度の調整は実施しなかった。
 なお、第4工程のレターデーション測定は一定時間ごとに続け、レターデーションの測定値が所定範囲に入っているかどうかの判断は繰り返し行った。
 以上の作業を、連続フィルム支持体の長さ分だけ繰り返した。
[比較例1]
 液晶層用塗膜に対する紫外線の照射を、「アクロエッジ社のLEDモジュール」から「長さ1500mm空冷メタルハライドランプ(アイグラフィックス社)」に代えた以外は、実施例1と同様にして、位相差フィルムを作製した。
 なお、比較例1では、空冷メタルハライドランプによる紫外線の照射後、液晶層用塗膜に対し、連続フィルム支持体の幅方向に沿ってレターデーションを測定し、レターデーションの測定値の幅方向分布を求めた(第4工程)。そして、求められたレターデーションの測定値の幅方向分布の中に所定範囲から外れた測定値があったとき、ランプ全体の出力を変更することで照度を連続フィルム支持体の幅方向で一括して変更し、レターデーションの調整を行った(A工程ともいう)。
 レターデーションの測定及び紫外線の照度の調整の詳細は、以下の通りである。
 レターデーションの測定には、自動複屈折計KOBRA-21ADH(王子計測機器社)を用いた(以降、測定器という)。
 連続フィルム支持体の幅を10等分に分割し、分割領域の中心部について、測定器を連続フィルム支持体の幅方向に順次動かし、レターデーションの測定を行った。つまり、連続フィルム支持体の幅方向に対し、100mm間隔で測定器を動かし、レターデーションの測定を行った。
 1点目のレターデーションの測定は、連続フィルム支持体の幅方向の一方の端部にある分割領域の中心部について行った。1点のレターデーションの測定時間は2秒間で、この間の測定値(測定器は静止したまま、連続フィルム支持体の搬送方向に5回繰り返し測定)を平均し、レターデーションの測定値を算出した。次の測定位置(即ち、隣接する分割領域の中心部)に移動するのにかかる時間は1秒で、移動後に同様の測定時間をかけ、レターデーションの測定値を得た。この測定操作を繰り返すことで、連続フィルム支持体の幅方向の一端から他端まで計10点の測定を実施した(これを1サイクルとする)。計10点のレターデーションの測定を実施した後、測定器を1点目のレターデーションの測定位置まで移動させ、2サイクル目の待機状態とした。
 1サイクル目の測定の結果、測定値の平均値が目標値(目標のレターデーション値)から±0.25%を超えるズレがあったため、対応する第3工程の空冷メタルハライドランプの液晶層用塗膜に対する紫外線の照度を調整した。例えば、レターデーションの平均値が目標値から1%のズレが生じた場合には、液晶層用塗膜への紫外線照射量が95mJ/cmになるよう、空冷メタルハライドランプの出力を5%小さくした。
 紫外線の照度を変更した後、第3工程を通過した連続フィルム支持体が、第4工程のレターデーションの測定位置に到達するまでにかかる時間以上(ここでは、1分間とした、搬送距離では20mに相当)が経過した後、第4工程にて、再度レターデーションを測定した(2サイクル目)。
 2サイクル目の結果、レターデーションの平均値が目標値から±0.25%を超えるズレがあったため、A工程にて、ズレ量に応じた紫外線の照度の調整を再度行った。
 続いて、測定器を再び1点目のレターデーションの測定位置へ移動し、1分間おいた後、3サイクル目の測定を行った。
 3サイクル目の測定以降も、レターデーションの平均値が目標値から±0.25%を超えるズレがあったため、A工程にて、ズレ量に応じた紫外線の照度の調整を再度行った。
 以上の作業を、連続フィルム支持体の長さ分だけ繰り返した。
[比較例2]
 「レターデーションの測定と照度の調整」を行わなかった以外は、実施例1と同様にして、位相差フィルムを作製した。
[レターデーションの面内分布の測定]
 上記実施例及び比較例で作製した位相差フィルムについて、レターデーションの面内分布を、下記方法及び評価基準に基づいて評価した。結果を表1に示す。
 得られた位相差フィルムの末端(即ち、巻き終わり側の端部)から1mの箇所を、位相差フィルムの幅方向の中心を含むように1000mm×1000mmで切り出した。
 切り出したサンプルを、長手方向に等間隔で11分割し、幅方向にも等間隔で11分割する。分割箇所の交差点100点について、レターデーションを測定した。レターデーションの測定には、自動複屈折率計(KOBRA-21ADH、王子計測機器社)を用いた。
 測定した100点について、最大値Remax、最小値Remin、及び平均値Reaveを求め、以下の式を用いてレターデーションの面内分布を算出した。
 レターデーションの面内分布(%)=(Remax-Remin)/Reave×100
-評価基準-
A:レターデーションの面内分布が0.5%未満である
B:レターデーションの面内分布が0.5%以上3%未満である
C:レターデーションの面内分布が3%以上5%未満である
D:レターデーションの面内分布が5%以上である
Figure JPOXMLDOC01-appb-T000005
 表1に明らかなように、実施例1及び2にて得らえた位相差フィルムは、レターデーションの面内分布が3%未満に抑えられてことが分かる。
 比較例1によれば、レターデーションの調整方法がメタルハライドランプによる幅方向一括である場合は、レターデーションの面内分布の低減が不十分であることが分かる。
 比較例2によれば、レターデーションの測定及び調整が行われないと、レターデーションの面内分布が大きいことが分かる。
 2018年2月26日に出願された日本出願2018-032153の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (10)

  1.  連続搬送される連続フィルム支持体上に、液晶化合物に対する配向規制力を備えた配向層を形成する第1工程と、
     配向層上に液晶化合物を含む液晶層形成用材料を塗布及び乾燥して塗膜を形成する第2工程と、
     塗膜に紫外線を照射する第3工程と、
     紫外線が照射された塗膜に対し、連続フィルム支持体の幅方向に沿ってレターデーションを測定し、レターデーションの測定値の幅方向分布を求める第4工程と、
     求められたレターデーションの測定値の幅方向分布の中に所定範囲から外れた測定値があったとき、所定範囲から外れた測定値の測定位置に相当する幅方向位置の塗膜に照射する紫外線の照度を調整する第5工程と、
    を有する位相差フィルムの製造方法。
  2.  第5工程が、事前に取得した、塗膜に照射する紫外線の照度と紫外線が照射された塗膜のレターデーションの値との関係から得られた調整量にて、塗膜に照射する紫外線の照度を調整する工程である、請求項1に記載の位相差フィルムの製造方法。
  3.  第3工程が、複数個の発光ダイオード素子を備えるユニットを連続フィルム支持体の幅方向に沿って複数個並列したモジュール光源により行われる、請求項1又は請求項2に記載の位相差フィルムの製造方法。
  4.  第2工程における液晶層形成用材料の塗布が、カーテンコーティング法又はダイコーティング法により行われる、請求項1~請求項3のいずれか1項に記載の位相差フィルムの製造方法。
  5.  第4工程後に、紫外線が照射された塗膜に対し、高圧水銀光源又はメタルハライド光源により更に紫外線を照射する第6工程を有する、請求項1~請求項4のいずれか1項に記載の位相差フィルムの製造方法。
  6.  連続搬送される連続フィルム支持体上に、液晶化合物に対する配向規制力を備えた配向層を形成する配向層形成手段と、
     配向層上に液晶化合物を含む液晶層形成用材料を塗布する塗布手段と、
     塗布後の液晶層形成用材料を乾燥して塗膜を形成する乾燥手段と、
     塗膜に紫外線を照射する紫外線照射手段と、
     紫外線が照射された塗膜に対し、連続フィルム支持体の幅方向に沿ってレターデーションを測定するレターデーション測定手段と、
     測定されたレターデーションの測定値から求められたレターデーションの測定値の幅方向分布の中に所定範囲から外れた測定値があったとき、所定範囲から外れた測定値の測定位置に相当する幅方向位置の塗膜に照射する紫外線の照度を調整する制御を行う制御手段と、
    を有する位相差フィルムの製造装置。
  7.  制御手段が、事前に取得した、塗膜に照射する紫外線の照度と紫外線が照射された塗膜のレターデーションの値との関係から得られた調整量にて、塗膜に照射する紫外線の照度を調整する制御を行う、請求項6に記載の位相差フィルムの製造装置。
  8.  紫外線照射手段が、複数個の発光ダイオード素子を備えるユニットを連続フィルム支持体の幅方向に沿って複数個並列したモジュール光源である、請求項6又は請求項7に記載の位相差フィルムの製造装置。
  9.  塗布手段が、カーテンコーティング法又はダイコーティング法を用いた手段である、請求項6~請求項8のいずれか1項に記載の位相差フィルムの製造装置。
  10.  紫外線照射手段に対し、連続フィルム支持体の搬送方向下流側に、高圧水銀光源又はメタルハライド光源により塗膜に紫外線を照射する別の紫外線照射手段を有する、請求項6~請求項9のいずれか1項に記載の位相差フィルムの製造装置。
PCT/JP2019/006390 2018-02-26 2019-02-20 位相差フィルムの製造方法及び製造装置 WO2019163843A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020501005A JP6938758B2 (ja) 2018-02-26 2019-02-20 位相差フィルムの製造方法及び製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-032153 2018-02-26
JP2018032153 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019163843A1 true WO2019163843A1 (ja) 2019-08-29

Family

ID=67688376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006390 WO2019163843A1 (ja) 2018-02-26 2019-02-20 位相差フィルムの製造方法及び製造装置

Country Status (2)

Country Link
JP (1) JP6938758B2 (ja)
WO (1) WO2019163843A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000343596A (ja) * 1999-06-09 2000-12-12 Teijin Ltd 延伸フィルムの製造設備および製造方法
JP2006301570A (ja) * 2005-03-22 2006-11-02 Fuji Photo Film Co Ltd 透明フィルム、透明フィルムの製造方法、光学補償フィルム、偏光板および液晶表示装置
JP2007052049A (ja) * 2005-08-15 2007-03-01 Fujifilm Corp 光学補償シート及びその製造方法
JP2010085503A (ja) * 2008-09-29 2010-04-15 Fujifilm Corp 偏光板の製造方法および偏光板の製造装置
JP2012150107A (ja) * 2010-12-27 2012-08-09 Nippon Zeon Co Ltd 光学異方性膜の評価方法、光学異方性膜の光学特性の測定装置および光学異方性膜の製造方法
JP2014026098A (ja) * 2012-07-26 2014-02-06 Toppan Printing Co Ltd 位相差素子の製造方法および位相差素子
JP2018017952A (ja) * 2016-07-29 2018-02-01 ウシオ電機株式会社 光照射装置および光照射方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000343596A (ja) * 1999-06-09 2000-12-12 Teijin Ltd 延伸フィルムの製造設備および製造方法
JP2006301570A (ja) * 2005-03-22 2006-11-02 Fuji Photo Film Co Ltd 透明フィルム、透明フィルムの製造方法、光学補償フィルム、偏光板および液晶表示装置
JP2007052049A (ja) * 2005-08-15 2007-03-01 Fujifilm Corp 光学補償シート及びその製造方法
JP2010085503A (ja) * 2008-09-29 2010-04-15 Fujifilm Corp 偏光板の製造方法および偏光板の製造装置
JP2012150107A (ja) * 2010-12-27 2012-08-09 Nippon Zeon Co Ltd 光学異方性膜の評価方法、光学異方性膜の光学特性の測定装置および光学異方性膜の製造方法
JP2014026098A (ja) * 2012-07-26 2014-02-06 Toppan Printing Co Ltd 位相差素子の製造方法および位相差素子
JP2018017952A (ja) * 2016-07-29 2018-02-01 ウシオ電機株式会社 光照射装置および光照射方法

Also Published As

Publication number Publication date
JPWO2019163843A1 (ja) 2020-12-03
JP6938758B2 (ja) 2021-09-22

Similar Documents

Publication Publication Date Title
JP5391692B2 (ja) 円偏光分離シートの製造方法および塗膜形成装置
JP7449363B2 (ja) 組成物、光学フィルムの製造方法、光学フィルム
KR102422067B1 (ko) 위상차 필름의 제조 방법
JP6708580B2 (ja) 位相差フィルムの製造方法
WO2019163843A1 (ja) 位相差フィルムの製造方法及び製造装置
JP6789164B2 (ja) 位相差フィルムの製造方法
WO2019159973A1 (ja) 位相差フィルムの製造方法及び位相差フィルムの製造装置
KR100964963B1 (ko) 편광판 및 이를 포함하는 편광조사장치
JPWO2019103143A1 (ja) 長尺液晶フィルム、長尺偏光板、画像表示装置、および、長尺液晶フィルムの製造方法
JP6840248B2 (ja) 位相差フィルムの製造方法
KR102350418B1 (ko) 광학 필름의 제조 방법
JP6694407B2 (ja) 位相差フィルムの製造方法
WO2020066918A1 (ja) 偏光モジュール、偏光光照射装置、及び光学フィルムの製造方法
JP7358064B2 (ja) 光学フィルムの製造方法及び光学フィルムの製造装置
WO2019098215A1 (ja) 長尺液晶フィルム、長尺偏光板、画像表示装置、および、長尺液晶フィルムの製造方法
JP6977152B2 (ja) 光学フィルムの製造方法
WO2020066528A1 (ja) 光学フィルムの製造方法
KR20210134697A (ko) 콜레스테릭 액정막의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757857

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501005

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757857

Country of ref document: EP

Kind code of ref document: A1