WO2019163748A1 - 光ファイバの製造方法および光ファイバ - Google Patents

光ファイバの製造方法および光ファイバ Download PDF

Info

Publication number
WO2019163748A1
WO2019163748A1 PCT/JP2019/006034 JP2019006034W WO2019163748A1 WO 2019163748 A1 WO2019163748 A1 WO 2019163748A1 JP 2019006034 W JP2019006034 W JP 2019006034W WO 2019163748 A1 WO2019163748 A1 WO 2019163748A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fiber
resin layer
coating layer
layer
Prior art date
Application number
PCT/JP2019/006034
Other languages
English (en)
French (fr)
Inventor
早織 久原
卓 高崎
修平 豊川
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US16/970,685 priority Critical patent/US11360260B2/en
Priority to CN201980013957.0A priority patent/CN111727394A/zh
Priority to DK19757729.9T priority patent/DK3757635T3/da
Priority to JP2020501769A priority patent/JP7266789B2/ja
Priority to EP19757729.9A priority patent/EP3757635B1/en
Publication of WO2019163748A1 publication Critical patent/WO2019163748A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2558Reinforcement of splice joint
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/245Removing protective coverings of light guides before coupling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2552Splicing of light guides, e.g. by fusion or bonding reshaping or reforming of light guides for coupling using thermal heating, e.g. tapering, forming of a lens on light guide ends

Definitions

  • the present disclosure relates to an optical fiber manufacturing method and an optical fiber.
  • This application claims priority based on Japanese Patent Application No. 2018-028092 filed on Feb. 20, 2018, and incorporates all the contents described in the above Japanese application.
  • Such a long optical fiber is usually formed by fusion-connecting a plurality of optical fibers.
  • Patent Document 1 the shape of the fiber coating layer when coated is tapered, and the protective resin that is covered with the fiber coating layer is thickened to prevent the protective resin from peeling or cracking. Is disclosed.
  • OSNR optical signal-to-noise ratio
  • Patent Document 2 discloses that, in order to reduce the loss, the optical fiber coating layer has a two-layer structure, and a resin having a low Young's modulus (soft) is used for the primary resin layer on the center side. .
  • JP 2011-102915 A Japanese Patent Laying-Open No. 2015-219271
  • the method of manufacturing an optical fiber according to the present disclosure includes a step of removing a fiber coating layer at an end on a side where a pair of optical fibers are connected to expose the glass fiber, a step of fusion-bonding end surfaces of the glass fibers,
  • An optical fiber manufacturing method comprising a step of recoating a protective resin around an exposed portion of the glass fiber, wherein the fiber coating layer has a Young's modulus of a primary resin layer on the inner circumferential side of 0.5 MPa or less and a Young's modulus It is composed of a secondary resin layer on the outer peripheral side of 800 MPa or more, and the exposing step has a taper that narrows the shape of the fiber coating layer including the primary resin layer and the secondary resin layer toward the end side. It is a step of forming a shape, and the step of re-coating is a step of coating the protective resin so as to include the coating.
  • the fiber coating layer at the end on the side where the pair of optical fibers is connected is removed, the end faces of the glass fibers are fusion-bonded, and the glass fiber is fused around the fused portion.
  • An optical fiber provided with a protective resin wherein the fiber coating layer includes an outer peripheral secondary resin layer and an inner peripheral primary resin layer having a Young's modulus of 0.15 MPa to 0.5 MPa, and the end of the optical fiber.
  • the shape at the time of covering the primary resin layer and the secondary resin layer of the portion is a tapered shape that becomes thinner toward the end side, the protective resin is provided so as to include the covering time, and the taper
  • the axial length of the optical fiber is 280 ⁇ m or more.
  • FIG. 5 is a diagram showing a configuration of a connection portion of a conventional optical fiber having a coating layer having a two-layer structure, and includes a glass fiber 10, a primary resin layer 21 on the center side around the glass fiber 10, and a secondary on the outer peripheral side.
  • Optical fibers provided with a two-layer fiber coating layer 20 made of a resin layer 22 are connected to each other. The fiber coating layer 20 is removed from the end portions of the respective optical fibers, and the exposed glass fibers 10 are fusion-connected at the fusion-bonding portion 2.
  • the coating layer is removed in a tapered shape so that the diameter decreases toward the fusion splice portion 2 side.
  • the coating layer is removed in a tapered shape so that the diameter decreases toward the fusion splice portion 2 side.
  • the primary resin layer 21 is soft and the primary resin layer 21 is deformed and cannot be ground well
  • the secondary resin layer 22 is tapered and the primary resin layer 21 is tapered. The case where the layer 21 is not tapered is shown.
  • the protective resin 30 is molded and recoated so as to cover the fusion splicing portion 2 and the entire removal portion of the fiber coating layer 20.
  • the coating of the end portions of the short fibers is removed and fusion-bonded, and the protective resin 30 is recoated on the connecting portion.
  • the secondary resin layer 22 is not easily deformed in the axial direction of the fiber.
  • the layer 21 is easily deformed in the axial direction of the fiber. For this reason, there is a problem that crack X tends to occur in the covering portion of the fused portion, starting from the boundary portion between the primary resin layer and the secondary resin layer.
  • the Young's modulus of the primary resin layer 21 When the Young's modulus of the primary resin layer 21 is large, cracks are unlikely to occur in the protective resin 30, so it was not necessary to process the primary resin layer 21 into a tapered shape. However, when the Young's modulus of the primary resin layer 21 is small, the inventor removes the fiber coating layer so as to have a taper shape including the primary resin layer region in order to crack the protective resin. It was found that the occurrence of cracks can be suppressed by doing so. That is, it is desirable that the primary resin layer 21 and the secondary resin layer 22 after being removed from the fiber coating layer be formed as a taper (near the boundary).
  • An object of the present invention is to provide an optical fiber manufacturing method and an optical fiber which have a large communication capacity and can be transmitted over a long distance.
  • a method of manufacturing an optical fiber according to the present disclosure includes a step of removing a fiber coating layer at an end on a side where a pair of optical fibers are connected to expose a glass fiber, and fusion bonding the end faces of the glass fiber
  • a method of manufacturing an optical fiber comprising a step of re-coating a protective resin around an exposed portion of the glass fiber, wherein the fiber coating layer is a primary resin layer on the inner peripheral side having a Young's modulus of 0.5 MPa or less And the secondary resin layer on the outer peripheral side having a Young's modulus of 800 MPa or more, and the exposing step narrows the shape of the fiber coating layer including the primary resin layer and the secondary resin layer toward the end side.
  • the step of forming the taper shape, and the step of re-coating is a step of coating the protective resin so as to include the covering.
  • the covering (near the boundary) between the primary resin layer and the secondary resin layer after the coating layer is removed is formed as a taper.
  • the stress applied to the protective resin at the boundary between the primary resin layer and the secondary resin layer can be reduced. For this reason, it is possible to prevent the occurrence of cracks in the protective resin covering the removed portion of the coating layer and the exposed portion of the glass fiber at the connecting portion of the optical fiber, and an optical fiber having a large communication capacity and capable of long-distance transmission is obtained. be able to.
  • the optical fiber manufacturing method according to the present disclosure is the optical fiber manufacturing method according to (1) described above, in which the fiber coating layer in the portion to be removed is irradiated with ultraviolet rays before the exposing step. And a step of increasing the Young's modulus of the primary resin layer, and the exposing step is a step of forming a taper shape when the fiber coating layer is coated.
  • the fiber coating layer can be cured before the fiber coating layer is removed. It can be easily processed into a shape. For this reason, when removing a fiber coating layer using tools, such as a grindstone and a razor, the dispersion
  • the optical fiber manufacturing method according to the present disclosure is the above-described optical fiber manufacturing method according to (1), wherein the primary resin layer is formed by cooling the portion of the fiber to be removed before the exposing step.
  • a step of increasing the Young's modulus of the fiber coating layer, and the exposing step is a step of forming a taper shape when the fiber coating layer is coated.
  • the fiber coating layer can be cured before the fiber coating layer is removed. It can be easily processed into a shape. For this reason, when removing a fiber coating layer using tools, such as a grindstone and a razor, the dispersion
  • the fiber coating layer at the end on the side where the pair of optical fibers is connected is removed, the end faces of the glass fibers are fusion-bonded, and the periphery of the fused portion of the glass fibers
  • An optical fiber provided with a protective resin wherein the fiber coating layer includes an outer peripheral secondary resin layer and an inner peripheral primary resin layer having a Young's modulus of 0.15 MPa to 0.5 MPa,
  • the shape of the end portion when the primary resin layer and the secondary resin layer are covered is a tapered shape that becomes narrower toward the end portion side, and the protective resin is provided so as to include the covering portion.
  • the length of the optical fiber in the axial direction is 280 ⁇ m or more.
  • the covering (near the boundary) of the primary resin layer and the secondary resin layer after removal of the coating layer has a predetermined length. Since it is formed as a taper, the stress applied to the protective resin at the boundary between the primary resin layer and the secondary resin layer can be reduced. For this reason, it is possible to prevent the occurrence of cracks in the protective resin covering the removed portion of the coating layer and the exposed portion of the glass fiber at the connecting portion of the optical fiber, and an optical fiber having a large communication capacity and capable of long-distance transmission is obtained. be able to.
  • the taper angle at the time of the coating is 10 degrees or less.
  • FIG. 1A is a cross-sectional view along an axial direction of a connection portion of an optical fiber manufactured according to the present disclosure
  • FIG. 1B is a cross-sectional view in a radial direction at a portion other than the connection portion of the optical fiber manufactured according to the present disclosure.
  • FIG. 2 is a diagram showing a main part of the connection portion of the optical fiber of FIG.
  • the optical fiber manufactured according to the present disclosure is formed by fusion-connecting a plurality of short optical fibers 1.
  • the optical fiber 1 of the present embodiment includes a glass fiber 10 serving as an optical transmission body including a core 11 and a clad 12, and a fiber coating layer 20 including a primary (primary) resin layer 21 and a secondary (secondary) resin layer 22. I have.
  • the glass fiber 10 is a glass member and is made of, for example, SiO 2 glass.
  • the glass fiber 10 transmits an optical signal introduced into the optical fiber 1.
  • the core 11 is provided in a region including the central axis of the glass fiber 10.
  • the core 11 contains GeO 2 and may further contain a fluorine element.
  • the clad 12 is provided in a region surrounding the core 11.
  • the clad 12 has a refractive index lower than that of the core 11.
  • Cladding 12 may be composed of pure SiO 2 glass, it may be made of SiO 2 glass which fluorine element is added.
  • the fiber coating layer 20 at the ends of the pair of optical fibers 1 connected to each other is removed, and the glass fiber 10 is exposed. Then, the end surfaces of the glass fibers 10 that have been bare by removing the fiber coating layer 20 are butted together, and the butted end surfaces are connected as the fusion splicing portion 2 by arc discharge or the like. Since the fusion splicing portion 2 and the bare glass fiber 10 in the vicinity thereof are easily damaged and mechanically weak, they are recoated with the protective resin 30.
  • the protective resin 30 is made of the same type of ultraviolet curable resin as the fiber coating layer.
  • the coating of the protective resin 30 can be formed by injecting a resin using a predetermined mold.
  • the fiber coating layer 20 of the optical fiber 1 is less susceptible to side pressure during bobbin winding, which causes an increase in the loss of the optical fiber 1.
  • a low resin of 0.5 MPa or less is used.
  • the secondary resin layer 22 on the outer peripheral side uses a resin having a Young's modulus higher than that of the primary resin layer 21 and having a Young's modulus of 800 MPa or more.
  • the Young's modulus of the protective resin 30 is larger than that of the primary resin layer 21 and smaller than that of the secondary resin layer 22. That is, the protective resin 30 has a cured Young's modulus between the Young's modulus of the primary resin layer 21 and the Young's modulus of the secondary resin layer 22.
  • a resin having a Young's modulus after curing of 10 MPa to 500 MPa is used.
  • both-end reactive oligomer for example, H- (I-polypropylene glycol A ) 2 -IH H- (I-polypropylene glycol B ) 2 -IH H- (I-polypropylene glycol C ) 2 -IH Is mentioned.
  • H shows the residue of hydroxyethyl acrylate
  • I shows the residue of isophorone diisocyanate
  • X shows methanol
  • polypropylene glycol AC shows the residue of the following polypropylene glycol, respectively.
  • polypropylene glycol A is ACL AIM 4200 (molecular weight: 4,000, unsaturation: 0.003 meq / g)
  • polypropylene glycol B is XS-3020C (molecular weight: 3,000, unsaturation: 0.03 meq / g)
  • Polypropylene glycol C represents a residue having EXCENOL 3020 (molecular weight: 3,000, unsaturation: 0.09 meq / g).
  • the urethane oligomer is represented by H- (I-propylene glycol) 2 -IH.
  • the both-end reactive oligomer and the one-end reactive oligomer are not limited to the above materials.
  • the molecular weight is 1,000 to 13,000, preferably 2,000 to 8,000, and the degree of unsaturation is less than 0.01 meq / g, preferably 0.0001 to 0.00. It may be a polypropylene glycol or polypropylene glycol / ethylene glycol copolymer of 009 meq / g.
  • the oligomer include those obtained by reacting a polyol compound, a polyisocyanate compound, and a hydroxyl group-containing acrylate compound.
  • the polyol compound include polytetramethylene glycol and polypropylene glycol.
  • the polyisocyanate compound include 2,4-tolylene diisocyanate and isophorone diisocyanate.
  • the hydroxyl group-containing acrylate compound include 2-hydroxyethyl acrylate, 2-hydroxybutyl acrylate, 1,6-hexanediol monoacrylate, and tripropylene glycol diacrylate.
  • the monomer examples include N-vinyl monomers having a cyclic structure, for example, N-vinylcaprolactam. The inclusion of these monomers is preferable because the curing rate is improved.
  • monofunctional monomers such as isobornyl acrylate, benzyl acrylate, 2-hydroxyethyl acrylate, phenoxyethyl acrylate, polypropylene glycol monoacrylate, polyethylene glycol diacrylate, polypropylene glycol diacrylate, or bisphenol A / ethylene oxide addition diol di
  • a polyfunctional monomer such as acrylate is used.
  • a taper T having a coating diameter reduced toward the end is formed. ing. That is, the taper T is formed so as to include at least the boundary A between the primary resin layer 21 and the secondary resin layer 22.
  • the protective resin 30 is molded so as to cover the tapered fiber coating layer 20 and the bare glass fiber 10. With this configuration, the end face when the fiber coating layer 20 is coated is covered and is not exposed. Further, since the coating of the fiber coating layer 20 is tapered, the overlapping portion of the protective resin 30 covering the fiber coating layer 20 can be thickened, and the adhesion area at this portion can be increased to protect the fiber coating layer 20. The adhesive force with the resin 30 can be increased. Further, as will be described later, the internal stress acting on the protective resin 30 can be reduced by setting the length of the taper T to a predetermined length or more.
  • the portion of the fiber coating layer 20 to be removed is irradiated with ultraviolet rays to increase the Young's modulus of the primary resin layer 21, and then the fiber coating layer 20 It is desirable to process at the time of coating into a tapered shape.
  • the fiber coating layer 20 around the glass fiber 10 is applied around the glass fiber and hardened by irradiation with ultraviolet rays when the optical fiber 1 is manufactured. However, before the fusion splicing, the fiber coating layer 20 is further removed. By irradiating with ultraviolet rays, the Young's modulus of the primary resin layer 21 can be increased.
  • the Young's modulus of the primary resin layer 21 is increased by cooling the optical fiber 1 at the portion to be removed, and then the fiber coating layer 20 is coated. It is good also as a taper shape. In this case, it is desirable to cool the optical fiber 1 at around minus 10 ° C., for example. In order to remove the fiber coating layer 20 and form the taper T, a tool such as a grindstone or a razor can be used. In addition, when the Young's modulus of the primary resin layer 21 is increased by cooling the optical fiber 1, it is desirable to use a razor because heat is generated when the fiber coating layer 20 is removed with a grindstone.
  • FIG. 3 is a chart showing specifications of the optical fiber used as an example of the simulation relating to the optical fiber connecting portion of the present disclosure.
  • 4A and 4B are diagrams showing the magnitude of the maximum stress acting on the protective resin when the taper angle and the taper length are changed using the optical fiber shown in the specifications of FIG. .
  • the two types of optical fibers of Examples 1 and 2 were targeted.
  • the optical fibers of Examples 1 and 2 are the same except for the Young's modulus of the primary resin layer and the secondary resin layer.
  • the outer diameter of the glass fiber is 125 ⁇ m
  • the outer diameter of the primary resin layer is 200 ⁇ m
  • the outer diameter of the secondary resin layer is 245 ⁇ m
  • the outer diameter of the protective resin provided at the connection portion is 260 ⁇ m.
  • the Young's modulus was 74500 MPa.
  • the Young's modulus of the primary resin layer was 0.15 MPa
  • the Young's modulus of the primary resin layer was 0.45 MPa.
  • the maximum internal stress of the protective resin 30 when the angle ⁇ of the taper T shown in FIG. 2 and the axial length L of the optical fiber of the taper T are changed.
  • the change in value was examined.
  • the axial length L of the optical fiber with the taper T is a length obtained by projecting the length from the starting point of the taper T of the secondary resin layer 22 to the end point of the taper T of the primary resin layer 21 in the axial direction of the optical fiber. It is.
  • the angle ⁇ of the taper T since a taper of 5 to 10 degrees is used in consideration of actual workability, the angle ⁇ of the taper T is set to 5 degrees and 10 degrees in the simulation.
  • FIGS. 4A and 4B are diagrams showing the results for the optical fibers of Example 1 and Example 2, respectively.
  • the horizontal axis indicates the taper axial length L
  • the vertical axis indicates the maximum value of the internal stress of the protective resin.
  • the maximum value of the internal stress tends to decrease as the taper axial length L increases, regardless of whether the taper angle ⁇ is 10 degrees or 5 degrees.
  • the taper angle is 5 degrees
  • the change in the maximum value of the internal stress with respect to the change in the axial length L of the taper is larger. Further, it was found that the maximum value of internal stress was larger in the case of Example 1 in which a softer resin than Example 2 was used for the primary resin layer 21.
  • the result of an experiment using an actual optical fiber revealed that the maximum value of the internal stress acting on the protective resin. It was found that cracks occur when the pressure exceeds 15 MPa. Therefore, when the characteristic of the shape of the taper T in which the maximum value of the internal stress is equal to or less than the threshold value of 15 MPa is obtained from the simulation results, if the axial length L of the taper is 280 ⁇ m or more at the normally used taper angle, It was confirmed that the maximum value of the stress was below the threshold value of 15 MPa. When the taper having an axial length L of 280 ⁇ m or more is formed, the taper T is formed including the boundary A between the primary resin layer 21 and the secondary resin layer 22 in any case. Further, the taper T may not reach the glass fiber 10.
  • the Young's modulus of the primary resin layer is desirably 0.5 MPa or less.
  • Example 2 Although the case where the Young's modulus of the primary resin layer was 0.45 MPa was shown, even if the Young's modulus is 0.5 MPa or less, by setting the axial length L of the taper to 280 ⁇ m, The maximum value of the internal stress of the protective resin can be set to a threshold value of 15 MPa or less. Further, if the Young's modulus of the secondary resin layer is 800 MPa or more, there is little influence on the maximum value of the internal stress of the protective resin, and the maximum length of the internal stress of the protective resin is set by setting the axial length L of the taper to 280 ⁇ m. The value can be below the threshold value of 15 MPa.
  • SYMBOLS 1 Optical fiber, 2 ... Fusion splicing part, 10 ... Glass fiber, 11 ... Core, 12 ... Cladding, 20 ... Fiber coating layer, 21 ... Primary resin layer, 22 ... Secondary resin layer, 30 ... Protection resin

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

一対の光ファイバの接続する側の端部のファイバ被覆層を除去してガラスファイバを露出する工程、該ガラスファイバの端面同士を融着接続する工程、前記ガラスファイバの露出部分の周囲に保護樹脂を再被覆して保護する工程を有する、光ファイバの製造方法であって、前記ファイバ被覆層はヤング率0.5MPa以下の内周側のプライマリ樹脂層とヤング率800MPa以上の外周側のセカンダリ樹脂層からなり、前記露出する工程は、前記プライマリ樹脂層と前記セカンダリ樹脂層を含む前記ファイバ被覆層の被覆際の形状を前記端部側に向けて細くなるテーパの形状とする工程であり、前記再被覆する工程は、前記被覆際を含むように前記保護樹脂を被覆する工程である。

Description

光ファイバの製造方法および光ファイバ
 本開示は、光ファイバの製造方法および光ファイバに関する。
 本出願は、2018年2月20日出願の日本出願第2018-028092号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 光ファイバは、ユーザからの要求に応じて、例えば、海底ケーブルのように数十kmに及ぶ長尺の光ファイバが製造される。このような長尺の光ファイバは、通常、複数本の光ファイバを融着接続して形成される。この場合、接続部を保護する保護樹脂と元の被覆樹脂との界面に剥離や割れが生じないことが求められる。例えば、特許文献1には、ファイバ被覆層の被覆際の形状をテーパ状とし、ファイバ被覆層際に被さる部分の保護樹脂を厚くすることによって、保護樹脂の剥がれや割れが生じるのを抑制することが開示されている。
 一方、100Gbit/s以上の伝送速度に対応する光伝送ネットワークにおいて、光ファイバのコアあたりの通信容量を拡大するために、より高い光信号対雑音比(Optical Signal-to-Noise Ratio:OSNR)が要求される。OSNRを改善する一つの方法として、光ファイバの非線形性を低く抑えることが挙げられる。そのためには、光ファイバの実効断面積Aeffを大きくするとともに、光ファイバの伝送損失を抑える必要がある。
 光ファイバの非線形屈折率をn2とし、光ファイバの実効断面積をAeffとすると、光ファイバの非線形性はn2/Aeffによって規定される。実効断面積Aeffが大きいほどコアへの光パワー密度の集中が避けられるので、非線形性は低減される。しかし、実効断面積Aeffが大きくなると、側圧に対して弱くなり、ボビン巻時の損失が大きくなってしまう。さらに、ボビン巻き状態での損失が大きく、また緩和速度が遅いことから、ボビン巻き状態での損失の大きさから光ファイバ本来の損失(例えば光ファイバ束状態での損失)の大きさに変化するまでに長時間を要する。そのため、特許文献2には、低損失化のためには光ファイバの被覆層を2層構造とし、中心側のプライマリ樹脂層にヤング率の低い(柔らかい)樹脂を使用することが開示されている。
特開2011-102915号公報 特開2015-219271号公報
 本開示に係る光ファイバの製造方法は、一対の光ファイバの接続する側の端部のファイバ被覆層を除去してガラスファイバを露出する工程、該ガラスファイバの端面同士を融着接続する工程、前記ガラスファイバの露出部分の周囲に保護樹脂を再被覆する工程を有する、光ファイバの製造方法であって、前記ファイバ被覆層はヤング率0.5MPa以下の内周側のプライマリ樹脂層とヤング率800MPa以上の外周側のセカンダリ樹脂層からなり、前記露出する工程は、前記プライマリ樹脂層と前記セカンダリ樹脂層を含む前記ファイバ被覆層の被覆際の形状を前記端部側に向けて細くなるテーパの形状とする工程であり、前記再被覆する工程は、前記被覆際を含むように前記保護樹脂を被覆する工程である。
 また、本開示に係る光ファイバは、一対の光ファイバの接続する側の端部のファイバ被覆層が除去され、ガラスファイバの端面同士が融着接続され、前記ガラスファイバの融着部分の周囲に保護樹脂を設けた光ファイバであって、前記ファイバ被覆層は外周側のセカンダリ樹脂層と、ヤング率0.15MPa以上0.5MPa以下の内周側のプライマリ樹脂層からなり、前記光ファイバの端部の前記プライマリ樹脂層と前記セカンダリ樹脂層の被覆際の形状が前記端部側に向けて細くなるテーパの形状とされ、前記被覆際を含むように前記保護樹脂が設けられ、前記テーパの前記光ファイバの軸方向の長さが280μm以上である。
本開示によって製造される光ファイバの接続部の軸方向に沿った断面図である。 本開示によって製造される光ファイバの接続部以外の箇所における径方向の断面図である。 図1Aの光ファイバの接続部の要部を示す図である。 本開示の光ファイバの接続部に係るシミュレーションの実施例として用いた光ファイバの諸元を示す図表である。 図3の諸元で示す実施例1の光ファイバを用いて、テーパの角度とテーパの長さをそれぞれ変えた際の、保護樹脂に作用する最大応力の大きさを示す図である。 図3の諸元で示す実施例2の光ファイバを用いて、テーパの角度とテーパの長さをそれぞれ変えた際の、保護樹脂に作用する最大応力の大きさを示す図である。 2層構造の被覆層を有する従来の光ファイバの接続部の構成を示す図である。
[本開示が解決しようとする課題]
 2層構造の被覆層を有する光ファイバを用いた海底ケーブルでは、接続部の保護樹脂に亀裂が発生する場合がある。図5は、2層構造の被覆層を有する従来の光ファイバの接続部の構成を示す図であり、ガラスファイバ10と、ガラスファイバ10の周囲に中心側のプライマリ樹脂層21と外周側のセカンダリ樹脂層22からなる2層構造のファイバ被覆層20を設けた光ファイバ同士を接続したものである。それぞれの光ファイバの端部はファイバ被覆層20が除去され、露出したガラスファイバ10同士が融着接続部2で融着接続される。
 図5に示す光ファイバの接続部では、被覆層は融着接続部2側に向かって小径となるようにテーパ形状に除去されている。例えば、砥石により被覆層を研削する方法では、プライマリ樹脂層21が柔らかいとプライマリ樹脂層21が変形して研削がうまくできないため、図5では、セカンダリ樹脂層22のみにテーパが形成されてプライマリ樹脂層21にはテーパが形成されていない場合を示している。そして、融着接続部2とファイバ被覆層20の除去部全体を覆うように、保護樹脂30がモールドされて再被覆されている。
 このように、従来の接続部では、短尺ファイバ同士の端部の被覆を除去して融着接続し、接続部に保護樹脂30を再被覆している。そして、プライマリ樹脂層21が柔らかく、セカンダリ樹脂層22が固い光ファイバの融着においては、融着後に光ファイバが引っ張られると、セカンダリ樹脂層22はファイバの軸方向に変形しにくい一方、プライマリ樹脂層21はファイバの軸方向に変形しやすい。このため、融着部分の被覆部分において、プライマリ樹脂層とセカンダリ樹脂層の境界部分を起点にクラックXが発生しやすいという問題があった。
 プライマリ樹脂層21のヤング率が大きい場合は保護樹脂30にクラックが発生しにくいことから、プライマリ樹脂層21までテーパ状に加工する必要はなかった。しかしながら、プライマリ樹脂層21のヤング率が小さい場合は、保護樹脂にクラックが発生するという問題に対して、発明者は、プライマリ樹脂層の領域まで含めてテーパ形状となるようにファイバ被覆層を除去することによって、クラックの発生を抑制できることを見出した。すなわち、ファイバ被覆層除去後のプライマリ樹脂層21とセカンダリ樹脂層22との被覆際(境界付近)がテーパとして形成されていることが望ましい。
 本開示は、これらの実情に鑑みてなされたものであり、光ファイバの接続部においてファイバ被覆層の除去部分とガラスファイバの露出部分を覆う保護樹脂でのクラックの発生を防止することができ、通信容量が大きく長距離伝送が可能な光ファイバの製造方法および光ファイバを提供することを、その目的とする。
[本開示の効果]
 本開示によれば、光ファイバの接続部において被覆層の除去部分とガラスファイバの露出部分を覆う保護樹脂でのクラックの発生を防止することができ、通信容量が大きく長距離伝送が可能な光ファイバの製造方法および光ファイバを提供することができる。
[本開示の実施態様の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示に係る光ファイバの製造方法は、一対の光ファイバの接続する側の端部のファイバ被覆層を除去してガラスファイバを露出する工程、該ガラスファイバの端面同士を融着接続する工程、前記ガラスファイバの露出部分の周囲に保護樹脂を再被覆する工程を有する、光ファイバの製造方法であって、前記ファイバ被覆層はヤング率0.5MPa以下の内周側のプライマリ樹脂層とヤング率800MPa以上の外周側のセカンダリ樹脂層からなり、前記露出する工程は、前記プライマリ樹脂層と前記セカンダリ樹脂層を含む前記ファイバ被覆層の被覆際の形状を前記端部側に向けて細くなるテーパの形状とする工程であり、前記再被覆する工程は、前記被覆際を含むように前記保護樹脂を被覆する工程である。
 本態様によれば、ファイバ被覆層のプライマリ樹脂層に柔らかい樹脂を用いたとしても、被覆層除去後のプライマリ樹脂層とセカンダリ樹脂層との被覆際(境界付近)がテーパとして形成されているため、プライマリ樹脂層とセカンダリ樹脂層の境界で保護樹脂にかかる応力を小さくすることができる。このため、光ファイバの接続部において被覆層の除去部分とガラスファイバの露出部分を覆う保護樹脂でのクラックの発生を防止することができ、通信容量が大きく長距離伝送が可能な光ファイバを得ることができる。
 また、(2)本開示に係る光ファイバの製造方法は、上記(1)の光ファイバの製造方法において、前記露出する工程の前に、除去する部分の前記ファイバ被覆層に紫外線を照射して前記プライマリ樹脂層のヤング率を増加させる工程を有し、前記露出する工程が、前記ファイバ被覆層の前記被覆際をテーパの形状とする工程である。
 本態様によれば、ファイバ被覆層のプライマリ樹脂層に柔らかい樹脂を用いたとしても、ファイバ被覆層を除去する前に、ファイバ被覆層を硬化させることができるため、ファイバ被覆層の被覆際をテーパの形状に加工することが容易に行える。このため、砥石や剃刀などの工具を用いてファイバ被覆層を除去する際に、スキルの差による形状のばらつきが発生しにくく、製造した光ファイバケーブルの品質を保つことができる。
 また、(3)本開示に係る光ファイバの製造方法は、上記(1)の光ファイバの製造方法において、前記露出する工程の前に、除去する部分の前記ファイバを冷却して前記プライマリ樹脂層のヤング率を増加させる工程を有し、前記露出する工程が、前記ファイバ被覆層の前記被覆際をテーパの形状とする工程である。
 本態様によれば、ファイバ被覆層のプライマリ樹脂層に柔らかい樹脂を用いたとしても、ファイバ被覆層を除去する前に、ファイバ被覆層を硬化させることができるため、ファイバ被覆層の被覆際をテーパの形状に加工することが容易に行える。このため、砥石や剃刀などの工具を用いてファイバ被覆層を除去する際に、スキルの差による形状のばらつきが発生しにくく、製造した光ファイバケーブルの品質を保つことができる。
 (4)本開示に係る光ファイバは、一対の光ファイバの接続する側の端部のファイバ被覆層が除去され、ガラスファイバの端面同士が融着接続され、前記ガラスファイバの融着部分の周囲に保護樹脂を設けた光ファイバであって、前記ファイバ被覆層は外周側のセカンダリ樹脂層と、ヤング率0.15MPa以上0.5MPa以下の内周側のプライマリ樹脂層からなり、前記光ファイバの端部の前記プライマリ樹脂層と前記セカンダリ樹脂層の被覆際の形状が前記端部側に向けて細くなるテーパの形状とされ、前記被覆際を含むように前記保護樹脂が設けられ、前記テーパの前記光ファイバの軸方向の長さが280μm以上である。
 本態様によれば、ファイバ被覆層のプライマリ樹脂層に柔らかい樹脂を用いたとしても、被覆層除去後のプライマリ樹脂層とセカンダリ樹脂層との被覆際(境界付近)が、所定の長さを有するテーパとして形成されているため、プライマリ樹脂層とセカンダリ樹脂層の境界で保護樹脂にかかる応力を小さくすることができる。このため、光ファイバの接続部において被覆層の除去部分とガラスファイバの露出部分を覆う保護樹脂でのクラックの発生を防止することができ、通信容量が大きく長距離伝送が可能な光ファイバを得ることができる。
 また、本開示に係る光ファイバは、上記(4)の光ファイバにおいて、前記被覆際の前記テーパの角度が10度以下である。
 本態様によれば、光ファイバの接続部において被覆層の除去部分とガラスファイバの露出部分を覆う保護樹脂でのクラックの発生をより確実に防止することができる。
[本開示の実施形態の詳細]
 本開示に係る光ファイバの製造方法および光ファイバの具体例を、以下に図面を参照しながら説明する。なお、本発明は以下の例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。また、複数の実施形態について組み合わせが可能である限り、本発明は任意の実施形態を組み合わせたものを含む。なお、以下の説明において、異なる図面においても同じ符号を付した構成は同様のものであるとして、その説明を省略する場合がある。
 図1Aは、本開示によって製造される光ファイバの接続部の軸方向に沿った断面図であり、図1Bは、本開示によって製造される光ファイバの接続部以外の箇所における径方向の断面図である。また、図2は、図1の光ファイバの接続部の要部を示す図である。本開示によって製造される光ファイバは、複数本の短尺の光ファイバ1を融着接続して形成される。本実施形態の光ファイバ1は、コア11およびクラッド12を含む光伝送体となるガラスファイバ10と、プライマリ(一次)樹脂層21とセカンダリ(二次)樹脂層22を含むファイバ被覆層20とを備えている。
 ガラスファイバ10は、ガラス製の部材であって、例えばSiOガラスからなる。ガラスファイバ10は、光ファイバ1に導入された光信号を伝送する。コア11は、例えばガラスファイバ10の中心軸線を含む領域に設けられている。コア11は、GeOを含み、さらにフッ素元素を含んでいてもよい。クラッド12は、コア11を囲む領域に設けられている。クラッド12は、コア11の屈折率より低い屈折率を有する。クラッド12は、純SiOガラスから成ってもよいし、フッ素元素が添加されたSiOガラスから成っていてもよい。
 光ファイバ1の融着接続は、互いに接続される一対の光ファイバ1の端部のファイバ被覆層20が除去されて、ガラスファイバ10が露出される。そして、ファイバ被覆層20の除去により裸にされたガラスファイバ10の端面同士が突き合わされ、アーク放電等により、突き合わせた端面が融着接続部2として接続される。融着接続部2とその近傍の裸のガラスファイバ10は、傷が付きやすく機械的に弱い状態にあるため、保護樹脂30により再被覆される。保護樹脂30には、ファイバ被覆層と同種の紫外線硬化型樹脂が用いられる。保護樹脂30の被覆は、所定の成形用型を用いて樹脂を注入することによって形成することができる。
 本実施形態では、光ファイバ1のファイバ被覆層20として、光ファイバ1の損失増加の要因となるボビン巻時の側圧の影響を受けにくくするため、中心側のプライマリ樹脂層21には、ヤング率が0.5MPa以下の低い樹脂を使用している。また、外周側のセカンダリ樹脂層22には、プライマリ樹脂層21よりもヤング率が高いヤング率800MPa以上の樹脂を用いている。また、保護樹脂30のヤング率の大きさは、プライマリ樹脂層21の樹脂よりも大きく、セカンダリ樹脂層22の樹脂よりも小さい。すなわち、保護樹脂30は硬化後のヤング率が、プライマリ樹脂層21のヤング率とセカンダリ樹脂層22のヤング率との間のものを用いる。好ましくは、例えば、硬化後のヤング率が10MPaから500MPaの樹脂を用いる。
 プライマリ樹脂層21を構成する樹脂としては、両末端反応性オリゴマーおよび片末端反応性オリゴマーの双方若しくはいずれか一方を組成に含むものが好適である。また、片末端反応性オリゴマーが50%以上含まれていれば、側圧に対する強さを十分に確保することができる。両末端反応性オリゴマーとしては、例えば、
H-(I-ポリプロピレングリコールA2-I-H
H-(I-ポリプロピレングリコールB2-I-H
H-(I-ポリプロピレングリコールC2-I-H
が挙げられる。また、片末端反応性オリゴマーとしては、例えば
H-(I-ポリプロピレングリコールA2-I-X
H-(I-ポリプロピレングリコールB2-I-X
H-(I-ポリプロピレングリコールC2-I-X
が挙げられる。但し、Hはヒドロキシエチルアクリレートの残基を示し、Iはイソホロンジイソシアネートの残基を示し、Xはメタノールを示し、ポリプロピレングリコールA-Cはそれぞれ次のポリプロピレングリコールの残基を示す。すなわち、ポリプロピレングリコールAはACCLAIM 4200(分子量:4,000、不飽和度:0.003meq/g)、ポリプロピレングリコールBはXS-3020C(分子量:3,000、不飽和度:0.03meq/g)、ポリプロピレングリコールCはEXCENOL 3020(分子量:3,000、不飽和度:0.09meq/g)の残基を示す。ウレタンオリゴマーは、H-(I-プロピレングリコール)2-I-Hで示される。
 なお、両末端反応性オリゴマーおよび片末端反応性オリゴマーは上記の材料に限られない。上記以外に例えば分子量が1,000~13,000、好ましくは、2,000~8,000であり、かつその不飽和度が、0.01meq/g未満、好ましくは、0.0001~0.009meq/gであるポリプロピレングリコールまたはポリプロピレングリコール・エチレングリコールの共重合体であってよい。また、必要に応じて、これと少なくとも1種の他のポリオールとの混合物に由来する少なくとも1種の(メタ)アクリレート基を有するウレタン化合物を含有するものであってもよい。
 また、セカンダリ樹脂層22を構成する樹脂としては、例えば次のものが挙げられる。オリゴマーとしては、ポリオール化合物、ポリイソシアネート化合物、水酸基含有アクリレート化合物を反応させて得られるものが挙げられる。
 ポリオール化合物としては、ポリテトラメチレングリコール、ポリプロピレングリコールなどが挙げられる。ポリイソシアネート化合物としては、2,4-トリレンジイソシアネート、イソホロンジイソシアネートなどが挙げられる。水酸基含有アクリレート化合物としては、2-ヒドロキシエチルアクリレート、2-ヒドロキシブチルアクリレート、1,6-ヘキサンジオールモノアクリレート、トリプロピレングリコールジアクリレートなどが挙げられる。
 モノマーとしては、環状構造を有するN-ビニルモノマー、例えば、N-ビニルカプロラクタムが挙げられる。これらのモノマーを含むと硬化速度が向上するので好ましい。この他、イソボルニルアクリレート、ベンジルアクリレート、2-ヒドロキシエチルアクリレート、フェノキシエチルアクリレート、ポリプロピレングリコールモノアクリレートなどの単官能モノマーや、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレートまたはビスフェノールA・エチレンオキサイド付加ジオールジアクリレートなどの多官能モノマーが用いられる。
 本実施形態においては、光ファイバ1の端部におけるプライマリ樹脂層21とセカンダリ樹脂層22を含むファイバ被覆層20の被覆際は、端部側に向かって被覆径が小さくされたテーパTが形成されている。すなわち、テーパTは、少なくともプライマリ樹脂層21とセカンダリ樹脂層22との境界Aの箇所を含んで形成されている。そして、保護樹脂30は、このテーパ形状にされたファイバ被覆層20の部分と裸のガラスファイバ10に被さるように成形される。この構成により、ファイバ被覆層20の被覆際の端面が覆われ、露出することがない。また、ファイバ被覆層20の被覆際がテーパ形状とされていることから、被覆際の保護樹脂30がファイバ被覆層20に被さる重なり部分を厚くできるとともに、この部分での接着面積を増加させ、保護樹脂30との接着力を高めることができる。また、後述するように、テーパTの長さを所定の長さ以上とすることによって、保護樹脂30に作用する内部応力を小さくすることができる。
 本実施形態では、プライマリ樹脂層21にヤング率が0.5MPa以下の柔らかい樹脂を使用しているため、内周側のプライマリ樹脂層21に達するまでテーパを形成することは難しい。このため、光ファイバ端部のファイバ被覆層20を除去する前に、除去する部分のファイバ被覆層20に紫外線を照射してプライマリ樹脂層21のヤング率を増加させた後に、ファイバ被覆層20の被覆際をテーパの形状に加工することが望ましい。ガラスファイバ10の周囲のファイバ被覆層20は、光ファイバ1の製造時に、ガラスファイバの周囲に塗布され紫外線の照射によって硬化するが、融着接続前に、除去する部分のファイバ被覆層20にさらに紫外線を照射することによって、プライマリ樹脂層21のヤング率を増すことができる。
 また、ファイバ被覆層20を除去する部分の硬度を増すために、除去する部分の光ファイバ1を冷却することによってプライマリ樹脂層21のヤング率を増加させた後、ファイバ被覆層20の被覆際をテーパの形状としてもよい。この場合、光ファイバ1の冷却は、例えばマイナス10°C前後で行うことが望ましい。ファイバ被覆層20を除去してテーパTを形成するためには、砥石や剃刀などの工具を用いることができる。なお、光ファイバ1を冷却することによって、プライマリ樹脂層21のヤング率を増加させた場合は、砥石によってファイバ被覆層20を除去する際に発熱するため、剃刀を使用することが望ましい。
 次に、ファイバ被覆層20に形成するテーパTの長さと角度θを変化させた場合に、保護樹脂30に作用する内部応力の最大値のシミュレーション結果について説明する。
 図3は、本開示の光ファイバの接続部に係るシミュレーションの実施例として用いた光ファイバの諸元を示す図表である。図4A、図4Bは、図3の諸元で示す光ファイバを用いて、テーパの角度とテーパの長さをそれぞれ変えた際の、保護樹脂に作用する最大応力の大きさを示す図である。
 シミュレーションでは、実施例1、2の2種類の光ファイバを対象とした。実施例1、2の光ファイバは、プライマリ樹脂層とセカンダリ樹脂層のヤング率が異なるだけで、他の諸元は同じである。具体的には、両者とも、ガラスファイバの外径を125μm、プライマリ樹脂層の外径を200μm、セカンダリ樹脂層の外径を245μm、接続部に設けた保護樹脂の外径を260μmとし、ガラスファイバのヤング率を74500MPaとした。そして、実施例1の光ファイバでは、プライマリ樹脂層のヤング率を0.15MPa、実施例2の光ファイバでは、プライマリ樹脂層のヤング率を0.45MPaとした。
 シミュレーションでは、実施例1、2の光ファイバについて、図2で示すテーパTの角度θと、テーパTの光ファイバの軸方向長さLを変化させた際の、保護樹脂30の内部応力の最大値の変化について調べた。ここで、テーパTの光ファイバの軸方向長さLは、セカンダリ樹脂層22のテーパTの起点からプライマリ樹脂層21のテーパTの終点までの長さを光ファイバの軸方向に投影した長さである。また、テーパTの角度θについては、実際の作業性を考慮して、5~10度のテーパが用いられるため、シミュレーションにおいてはテーパTの角度θは5度と10度とした。
 図4Aおよび図4Bは、それぞれ実施例1および実施例2の光ファイバについての結果を示す図であり、横軸にテーパの軸方向長さLを、縦軸に保護樹脂の内部応力の最大値をプロットしたものであり、テーパの角度θが10度の場合を丸印、5度の場合を四角印でプロットしている。
 実施例1および実施例2の光ファイバにおいて、テーパの角度θが10度の場合も5度の場合も、テーパの軸方向長さLが長くなるほど、内部応力の最大値は減少する傾向があり、テーパ角度が小さい5度の場合の方がテーパの軸方向長さLの変化に対する内部応力の最大値の変化が大きくなっている。また、プライマリ樹脂層21に実施例2より柔らかい樹脂を用いた実施例1の場合の方が、内部応力の最大値が大きくなることが分かった。
 次に、保護樹脂に作用する内部応力の最大値の大きさとクラックXの発生の関係を求めるために、実際の光ファイバを用いて実験を行った結果、保護樹脂に作用する内部応力の最大値が15MPaを超えるとクラックが発生することが分かった。
 したがって、内部応力の最大値が、15MPaの閾値以下となるテーパTの形状の特徴を、シミュレーション結果から求めると、通常用いられるテーパ角度において、テーパの軸方向長さLが280μm以上あれば、内部応力の最大値が、15MPaの閾値以下となることが確認できた。なお、テーパの軸方向長さLが280μm以上のテーパを形成した場合は、いずれの場合においても、テーパTはプライマリ樹脂層21とセカンダリ樹脂層22との境界Aを含んで形成される。また、テーパTはガラスファイバ10まで達していなくてもよい。
 プライマリ樹脂層のヤング率が大きいほど保護樹脂の内部応力の最大値は小さくなるため、クラックの発生を防止することができる。しかし、プライマリ樹脂層のヤング率を大きくすると、先述したように、ボビン巻時の損失が大きくなってしまう。このため、ボビン巻時の損失を考慮した場合、プライマリ樹脂層のヤング率は0.5MPa以下が望ましい。そして、実施例2では、プライマリ樹脂層のヤング率が0.45MPaの場合を示したが、ヤング率が0.5MPa以下であっても、テーパの軸方向長さLを280μmとすることによって、保護樹脂の内部応力の最大値を15MPaの閾値以下とすることができる。また、セカンダリ樹脂層のヤング率は800MPa以上であれば、保護樹脂の内部応力の最大値への影響は少なく、テーパの軸方向長さLを280μmとすることによって、保護樹脂の内部応力の最大値を15MPaの閾値以下とすることができる。
1…光ファイバ、2…融着接続部、10…ガラスファイバ、11…コア、12…クラッド、20…ファイバ被覆層、21…プライマリ樹脂層、22…セカンダリ樹脂層、30…保護樹脂。

Claims (5)

  1.  一対の光ファイバの接続する側の端部のファイバ被覆層を除去してガラスファイバを露出する工程、
     該ガラスファイバの端面同士を融着接続する工程、
     前記ガラスファイバの露出部分の周囲に保護樹脂を再被覆する工程を有する、光ファイバの製造方法であって、
     前記ファイバ被覆層はヤング率0.5MPa以下の内周側のプライマリ樹脂層とヤング率800MPa以上の外周側のセカンダリ樹脂層からなり、
     前記露出する工程は、前記プライマリ樹脂層と前記セカンダリ樹脂層を含む前記ファイバ被覆層の被覆際の形状を前記端部側に向けて細くなるテーパの形状とする工程であり、
     前記再被覆する工程は、前記被覆際を含むように前記保護樹脂を被覆する工程である、光ファイバの製造方法。
  2.  前記露出する工程の前に、除去する部分の前記ファイバ被覆層に紫外線を照射して前記プライマリ樹脂層のヤング率を増加させる工程を有し、
     前記露出する工程が、前記ファイバ被覆層の前記被覆際をテーパの形状とする工程である、請求項1に記載の光ファイバの製造方法。
  3.  前記露出する工程の前に、除去する部分の前記光ファイバを冷却して前記プライマリ樹脂層のヤング率を増加させる工程を有し、
     前記露出する工程が、前記ファイバ被覆層の前記被覆際をテーパの形状とする工程である、請求項1に記載の光ファイバの製造方法。
  4.  一対の光ファイバの接続する側の端部のファイバ被覆層が除去され、ガラスファイバの端面同士が融着接続され、前記ガラスファイバの融着部分の周囲に保護樹脂を設けた光ファイバであって、
     前記ファイバ被覆層は外周側のセカンダリ樹脂層と、ヤング率0.15MPa以上0.5MPa以下の内周側のプライマリ樹脂層からなり、
     前記光ファイバの端部の前記プライマリ樹脂層と前記セカンダリ樹脂層の被覆際の形状が前記端部側に向けて細くなるテーパの形状とされ、
     前記被覆際を含むように前記保護樹脂が設けられ、
     前記テーパの前記光ファイバの軸方向の長さが280μm以上である、光ファイバ。
  5.  前記被覆際の前記テーパの角度が10度以下である、請求項4に記載の光ファイバ。
PCT/JP2019/006034 2018-02-20 2019-02-19 光ファイバの製造方法および光ファイバ WO2019163748A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/970,685 US11360260B2 (en) 2018-02-20 2019-02-19 Optical fiber manufacturing method and optical fiber
CN201980013957.0A CN111727394A (zh) 2018-02-20 2019-02-19 光纤的制造方法及光纤
DK19757729.9T DK3757635T3 (da) 2018-02-20 2019-02-19 Fremgangsmåde til fremstilling af optisk fiber
JP2020501769A JP7266789B2 (ja) 2018-02-20 2019-02-19 光ファイバの製造方法および光ファイバ
EP19757729.9A EP3757635B1 (en) 2018-02-20 2019-02-19 Optical fiber manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018028092 2018-02-20
JP2018-028092 2018-02-20

Publications (1)

Publication Number Publication Date
WO2019163748A1 true WO2019163748A1 (ja) 2019-08-29

Family

ID=67686761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006034 WO2019163748A1 (ja) 2018-02-20 2019-02-19 光ファイバの製造方法および光ファイバ

Country Status (6)

Country Link
US (1) US11360260B2 (ja)
EP (1) EP3757635B1 (ja)
JP (1) JP7266789B2 (ja)
CN (1) CN111727394A (ja)
DK (1) DK3757635T3 (ja)
WO (1) WO2019163748A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264848A (ja) * 1992-03-19 1993-10-15 Sumitomo Electric Ind Ltd 光ファイバ接続部の補強方法
US20030039440A1 (en) * 2001-03-13 2003-02-27 3M Innovative Properties Company Refractive index grating manufacturing process
JP2004331431A (ja) * 2003-05-01 2004-11-25 Fujikura Ltd 光ファイバ素線のリコート部の形成方法、モールド用型部材および光ファイバ部品
JP2008527420A (ja) * 2004-12-30 2008-07-24 コーニング インコーポレイテッド 被覆光ファイバおよび光ファイバの被覆に好適な硬化性組成物
JP2011102915A (ja) 2009-11-11 2011-05-26 Sumitomo Electric Ind Ltd 光ファイバの製造方法および光ファイバ
JP2013186243A (ja) * 2012-03-07 2013-09-19 Fujikura Ltd 光ファイバ素線および光ファイバ素線の製造方法と製造装置
WO2013153734A1 (ja) * 2012-04-09 2013-10-17 パナソニック株式会社 ファイバー部品及びレーザ装置
JP2015182912A (ja) * 2014-03-24 2015-10-22 住友電気工業株式会社 光ファイバ
JP2015219271A (ja) 2014-05-14 2015-12-07 住友電気工業株式会社 光ファイバ
JP2016070966A (ja) * 2014-09-26 2016-05-09 住友電気工業株式会社 光ファイバ心線及び光ファイバテープ心線
JP2018028092A (ja) 2011-12-30 2018-02-22 ダウ アグロサイエンシィズ エルエルシー キャノーラ加工中のdha保持

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1161459A (zh) * 1994-12-01 1997-10-08 康宁股份有限公司 光纤涂履层的剥离方法和装置
US6481903B1 (en) * 1998-08-07 2002-11-19 Tycom (U.S.) Inc. Optical fiber splice protector and method for applying same
JP2002131558A (ja) * 2000-10-20 2002-05-09 Sumitomo Electric Ind Ltd 光ファイバ素子およびその製造方法
JP4134723B2 (ja) 2000-12-22 2008-08-20 住友電気工業株式会社 被覆光ファイバ及びその製造方法
JP3748065B2 (ja) * 2002-02-14 2006-02-22 住友電気工業株式会社 光ファイバアレイ
US20060072890A1 (en) * 2002-08-22 2006-04-06 Shiraishi Keiko Optical fiber core wire, method of removing coating from optical fiver core wire and process for producing optical fiber part
US7481588B2 (en) * 2006-11-21 2009-01-27 Kvh Industries, Inc. Optical fiber composite, devices, and methods of making same
CN101549962B (zh) * 2009-05-15 2012-01-11 长飞光纤光缆有限公司 一种光纤拉丝过程中除去涂层固化挥发物的方法及装置
KR101494057B1 (ko) 2009-10-09 2015-02-16 디에스엠 아이피 어셋츠 비.브이. 슈퍼코팅으로 코팅된 단일-모드 광섬유
WO2011118293A1 (ja) * 2010-03-23 2011-09-29 株式会社フジクラ 光ファイバ型光学素子、レーザダイオードモジュール、及びファイバレーザ
JP2012053121A (ja) 2010-08-31 2012-03-15 Sumitomo Electric Ind Ltd 光ファイバ心線及びそれを備えた光電気複合ケーブル
US9057817B2 (en) 2013-04-15 2015-06-16 Corning Incorporated Low diameter optical fiber
JP2015229609A (ja) 2014-06-04 2015-12-21 住友電気工業株式会社 光ファイバ及びその製造方法
JP6620749B2 (ja) 2014-12-03 2019-12-18 住友電気工業株式会社 光ファイバ心線及び光ファイバテープ心線
WO2016205309A1 (en) 2015-06-17 2016-12-22 Corning Incorporated Re-coated optical fibers and methods of re-coating optical fibers

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264848A (ja) * 1992-03-19 1993-10-15 Sumitomo Electric Ind Ltd 光ファイバ接続部の補強方法
US20030039440A1 (en) * 2001-03-13 2003-02-27 3M Innovative Properties Company Refractive index grating manufacturing process
JP2004331431A (ja) * 2003-05-01 2004-11-25 Fujikura Ltd 光ファイバ素線のリコート部の形成方法、モールド用型部材および光ファイバ部品
JP2008527420A (ja) * 2004-12-30 2008-07-24 コーニング インコーポレイテッド 被覆光ファイバおよび光ファイバの被覆に好適な硬化性組成物
JP2011102915A (ja) 2009-11-11 2011-05-26 Sumitomo Electric Ind Ltd 光ファイバの製造方法および光ファイバ
JP2018028092A (ja) 2011-12-30 2018-02-22 ダウ アグロサイエンシィズ エルエルシー キャノーラ加工中のdha保持
JP2013186243A (ja) * 2012-03-07 2013-09-19 Fujikura Ltd 光ファイバ素線および光ファイバ素線の製造方法と製造装置
WO2013153734A1 (ja) * 2012-04-09 2013-10-17 パナソニック株式会社 ファイバー部品及びレーザ装置
JP2015182912A (ja) * 2014-03-24 2015-10-22 住友電気工業株式会社 光ファイバ
JP2015219271A (ja) 2014-05-14 2015-12-07 住友電気工業株式会社 光ファイバ
JP2016070966A (ja) * 2014-09-26 2016-05-09 住友電気工業株式会社 光ファイバ心線及び光ファイバテープ心線

Also Published As

Publication number Publication date
US11360260B2 (en) 2022-06-14
US20200379170A1 (en) 2020-12-03
EP3757635B1 (en) 2023-10-25
EP3757635A1 (en) 2020-12-30
JPWO2019163748A1 (ja) 2021-02-04
CN111727394A (zh) 2020-09-29
JP7266789B2 (ja) 2023-05-01
EP3757635A4 (en) 2021-11-03
DK3757635T3 (da) 2023-11-27

Similar Documents

Publication Publication Date Title
US7085459B2 (en) Optical fiber ribbons with subunits having preferential tear portions
US8554039B2 (en) Buffered large core fiber
US20080080822A1 (en) Fiber optic ribbons having one or more predetermined fracture regions
JP6459215B2 (ja) 光ファイバ及び光ファイバの評価方法
US6907175B2 (en) Coated optical fiber, optical fiber tape core using it and optical fiber unit
US9733425B2 (en) Optical fiber and process for producing the same
JPH07215737A (ja) 被覆光ファイバー
TWI703358B (zh) 光纖及光纖帶心線
JP6620749B2 (ja) 光ファイバ心線及び光ファイバテープ心線
US6748148B2 (en) Optical fiber ribbons having a non-uniform thickness and/or preferential tear portions
JP4664300B2 (ja) 優先引裂部分を有する光ファイバリボン
KR20170068482A (ko) 광섬유 심선 및 광섬유 테이프 심선
US20060133749A1 (en) Optical fiber ribbons having a preferential tear portion formed by curing and methods therefor
JP2016210651A (ja) 光ファイバ心線
CN109562989B (zh) 光纤以及光纤的制造方法
WO2019163748A1 (ja) 光ファイバの製造方法および光ファイバ
CN115728860A (zh) 光纤
JP5983584B2 (ja) 光ファイバ心線
US7274846B1 (en) Fiber optic ribbon subunits having ends with different shapes
JPH0766091B2 (ja) 光ファイバの融着接続方法
JP2017044890A (ja) テープ心線及び光ケーブル
JP2001100067A (ja) 光ファイバテープ心線及び光ファイバケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757729

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020501769

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019757729

Country of ref document: EP

Effective date: 20200921