WO2019159641A1 - 表示装置およびその製造方法 - Google Patents

表示装置およびその製造方法 Download PDF

Info

Publication number
WO2019159641A1
WO2019159641A1 PCT/JP2019/002315 JP2019002315W WO2019159641A1 WO 2019159641 A1 WO2019159641 A1 WO 2019159641A1 JP 2019002315 W JP2019002315 W JP 2019002315W WO 2019159641 A1 WO2019159641 A1 WO 2019159641A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
display device
light emitting
emitting element
Prior art date
Application number
PCT/JP2019/002315
Other languages
English (en)
French (fr)
Inventor
公啓 新屋
山本 篤志
兼作 前田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US16/968,824 priority Critical patent/US20210005688A1/en
Priority to JP2020500362A priority patent/JP7245220B2/ja
Priority to CN201980012376.5A priority patent/CN111699756A/zh
Publication of WO2019159641A1 publication Critical patent/WO2019159641A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • G02B3/0068Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between arranged in a single integral body or plate, e.g. laminates or hybrid structures with other optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B2003/0093Simple or compound lenses characterised by the shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • This technology relates to a display device.
  • it is related with a display apparatus provided with a light emitting element, and its manufacturing method.
  • a self light emitting element such as an organic electroluminescence (EL) element
  • a condensing lens that condenses light emitted from a light emitting element
  • a reflective layer that covers the condensing lens
  • a light absorption layer that covers the reflective layer
  • This technology was created in view of such a situation, and aims to improve light extraction efficiency and luminance viewing angle characteristics.
  • the present technology has been made to solve the above-described problems.
  • the first aspect of the present technology includes a light-emitting element, a condensing lens that condenses light emitted from the light-emitting element, and the light-collecting element.
  • the display device includes a scattering lens that scatters light collected by the lens. Thereby, the light is collected by the condenser lens, and the collected light is scattered by the scattering lens to improve the light extraction efficiency and the luminance viewing angle characteristics.
  • a plurality of pixels are arranged on a plane, and at least a part of the plurality of pixels includes a set of the light emitting element, the condenser lens, and the scattering lens. Also good. This brings about the effect of improving the light extraction efficiency and the luminance viewing angle characteristics in at least some of the plurality of pixels.
  • a partition may be further provided around the pixel. This brings about the effect of preventing color mixing with other pixels.
  • the partition wall may reflect the light in the pixel or may absorb the light in the pixel.
  • the set of the light emitting element, the condenser lens, and the scattering lens may be provided only for a pixel of a specific color.
  • the pixel of the specific color may be a white pixel. This brings about the effect
  • a light absorbing layer that absorbs light around the condenser lens or the scattering lens may be further provided.
  • the light absorption layer may cover a part of the condenser lens or the scattering lens.
  • a light reflection layer that reflects light may be further provided under the light absorption layer. This brings about the effect of further improving the light extraction efficiency.
  • a light reflecting layer that reflects light around the light emitting element may be further provided. This brings about the effect of further improving the light extraction efficiency.
  • the light reflecting layer may have a divergence angle in the direction of the condenser lens.
  • the condensing lens may include a color change layer. This brings about the effect
  • the scattering lens may include a color change layer. This brings about the effect that the color change layer and the scattering lens are integrally formed.
  • a counter substrate may be further provided between the scattering lens and the condenser lens.
  • the scattering lens and the condenser lens may be provided at a position displaced from the central axis of the light emitting element by a predetermined distance. This brings about the effect of tilting the direction of light from the light emitting element in an arbitrary direction.
  • the second aspect of the present technology includes a procedure for forming an electrode on a substrate, a procedure for forming a light emitting element on the electrode, a procedure for forming a protective layer covering the light emitting element, and the protection.
  • a method for manufacturing a display device comprising: a procedure for forming a curved shape on a layer; a procedure for forming a condenser lens along the curved shape; and a procedure for forming a scattering lens on the surface of the condenser lens. .
  • the light is collected by the condenser lens, and the collected light is scattered by the scattering lens to produce a display device that improves light extraction efficiency and luminance viewing angle characteristics.
  • Embodiment 2 modes for carrying out the present technology (hereinafter referred to as embodiments) will be described. The description will be made in the following order. 1. Embodiment 2. FIG. Modified example 2. Application examples
  • FIG. 1 is a diagram illustrating an example of an overall configuration of a display device 100 according to an embodiment of the present technology.
  • the display device 100 includes, for example, a pixel array unit 102 and a drive unit that drives the pixel array unit 102.
  • the drive unit includes a horizontal selector 103, a write scanner 104, and a power scanner 105.
  • the pixel array unit 102 includes a plurality of pixel circuits 101 arranged in a matrix.
  • a power supply line DSL and a scanning line WSL are provided corresponding to each row of the plurality of pixel circuits 101.
  • a signal line DTL is provided corresponding to each column of the plurality of pixel circuits 101.
  • the write scanner 104 sequentially supplies a control signal to each of the scanning lines WSL, and scans the pixel circuit 101 line by line.
  • the power supply scanner 105 supplies a power supply voltage to each of the power supply lines DSL in accordance with line sequential scanning.
  • the horizontal selector 103 supplies a signal potential and a reference potential serving as a video signal to the column-shaped signal line DTL in accordance with line sequential scanning.
  • FIG. 2 is a diagram illustrating a circuit configuration example of the pixel circuit 101 according to the embodiment of the present technology.
  • the pixel circuit 101 includes, for example, a light emitting element 14 such as an organic EL element, a sampling transistor 11, a driving transistor 12, and a storage capacitor 13.
  • the sampling transistor 11 has a gate connected to the corresponding scanning line WSL, one of the source and the drain connected to the corresponding signal line DTL, and the other of the source and the drain connected to the gate of the driving transistor 12.
  • the driving transistor 12 has a source connected to the anode of the light emitting element 14 and a drain connected to the corresponding power supply line DSL.
  • the cathode of the light emitting element 14 is connected to the ground wiring 15.
  • the ground wiring 15 is wired in common to all the pixel circuits 101.
  • the storage capacitor 13 is connected between the source and gate of the drive transistor 12.
  • the holding capacitor 13 holds the signal potential of the video signal supplied from the signal line DTL.
  • FIG. 3 is a diagram illustrating an example of a schematic cross-sectional structure of the light emitting module portion of the display device 100 according to the embodiment of the present technology.
  • the pixel in this embodiment includes an electrode 120, a light emitting element 130, a protective layer 140, a color filter 150, a lens 160, and a light absorption layer 170 on a substrate 110.
  • the electrode 120 is an anode electrode of the light emitting element 130.
  • an AlCu alloy a metal such as tin (Ti), a transparent electrode such as indium tin oxide (ITO) is assumed.
  • the light-emitting element 130 is the above-described light-emitting element 14 that converts an electric signal into an optical signal.
  • an organic layer is formed between the cathode electrode and the electrode 120.
  • a transparent electrode of MgAg alloy or indium tin oxide (ITO) is assumed.
  • the protective layer 140 is a barrier layer that covers the light emitting element 130 and prevents deterioration of the light emitting element 130.
  • a material of the protective layer 140 for example, silicon nitride (SiN) is assumed.
  • the color filter 150 is a color change member that changes the color of light from the light emitting element 130.
  • the color filter 150 is formed, for example, by performing photolithography by mixing an organic pigment with an organic material such as a photoresist.
  • the color filter 150 has a color arrangement such as a Bayer array.
  • the color of the pixel may be white.
  • the color filter 150 is a transparent filter that allows all colors to pass therethrough and does not change the color of light.
  • the color filter 150 has a curved shape at the interface with the protective layer 140. Thereby, the color filter 150 has a function as a condensing lens which condenses the light emitted from the light emitting element.
  • the lens 160 is an optical element provided on the color filter 150.
  • the lens 160 has a function as a scattering lens that scatters the light collected by the condenser lens of the color filter 150.
  • Both the color filter 150 and the lens 160 are made of resin, and the same material can also be used. However, the lens 160 needs to be a transparent material.
  • the light absorption layer 170 is a layer that is provided around the lens 160 on the color filter 150 and absorbs the light collected by the condenser lens of the color filter 150.
  • FIG. 4 is a diagram illustrating an example of an optical path in the embodiment of the present technology.
  • the light emitted from the light emitting element 130 is collected by the condenser lens of the color filter 150 and scattered by the scattering lens of the lens 160 as shown by the solid line in FIG.
  • the condensing lens and the scattering lens By combining the condensing lens and the scattering lens, the light extraction efficiency of the light emitted from the light emitting element 130 is improved. Further, the luminance viewing angle can be widened by light scattering by the scattering lens.
  • the external light from the front of the lens 160 is scattered by the scattering lens of the lens 160 as shown by the dotted line in FIG. Thereby, reflection of external light at the light emitting element 130 can be reduced.
  • FIG. 5 is a diagram illustrating an example of a manufacturing process of the light emitting module part of the display device 100 according to the embodiment of the present technology.
  • an electrode 120 is formed on a substrate 110 as shown in FIG.
  • the electrode 120 is formed by lithography.
  • the electrode 120 is formed by depositing a material to be the electrode 120, patterning, masking with a resist, shaving unnecessary portions by etching, and removing the resist on the mask.
  • the light emitting element 130 is formed on the electrode 120.
  • the light emitting element 130 is formed by vapor deposition. That is, it is formed by depositing a thin film of a material to be the light emitting element 130 in the gas phase.
  • the protective layer 140 is formed on the substrate surface on which the light emitting element 130 is formed.
  • the protective layer 140 is formed by chemical vapor deposition (CVD: Chemical Vapor Deposition). At this time, a curved shape is formed on the surface of the protective layer 140 using a resist.
  • CVD chemical vapor deposition
  • a color filter 150 is formed.
  • the color filter 150 is formed along the curved shape of the surface of the protective layer 140 and has a function as a condenser lens.
  • the color filter 150 is formed by lithography or chemical vapor deposition.
  • This lens 160 has a function as a scattering lens.
  • the lens 160 is formed by lithography.
  • the light absorption layer 170 is formed around the lens 160.
  • This light absorption layer 170 is formed by lithography.
  • the concave condensing lens is integrally formed on the lower surface of the color filter 150, and a separate lens 160 is provided on the upper surface of the color filter 150 as a convex scattering lens.
  • the functions as the condensing lens and the scattering lens can be adjusted by the refractive index of the material in addition to the uneven shape.
  • FIG. 6 is a diagram illustrating a first modification of the light emitting module part according to the embodiment of the present technology.
  • the concave scattering lens is integrally formed on the upper surface of the color filter 150 without providing the lens 160 in the above-described embodiment as a separate body. Thereby, it is possible to omit the step of forming the lens 160 by providing the color filter 150 with the functions of both the condenser lens and the scattering lens.
  • a partition wall 180 is provided around the pixel.
  • the partition wall 180 is a wall made of a color change member or a light reflection layer and separated from other pixels. Thereby, color mixing with other adjacent pixels can be prevented.
  • FIG. 7 is a diagram illustrating a second modification example of the light emitting module part according to the embodiment of the present technology.
  • a convex condenser lens is integrally formed on the lower surface of the color filter 150. That is, the concave / convex shape of the condenser lens is different from that of the above-described embodiment, and other structures are the same as those of the above-described embodiment.
  • FIG. 8 is a diagram illustrating a third modification example of the light emitting module portion according to the embodiment of the present technology.
  • a concave scattering lens is integrally formed on the upper surface of the color filter 150, and a concave condensing lens is integrally formed on the lower surface of the color filter 150. That is, the concavity and convexity of the condenser lens integrally formed on the lower surface of the color filter 150 is different from the first modification described above, and the other structures are the same as those of the first modification described above.
  • FIG. 9 is a diagram illustrating a fourth modification example of the light emitting module part according to the embodiment of the present technology.
  • a convex condenser lens is integrally formed on the lower surface of the color filter 150, and a partition wall 180 is provided around the pixel. That is, the partition wall 180 is provided in the above-described second modification.
  • FIG. 10 is a diagram illustrating a fifth modification example of the light emitting module part according to the embodiment of the present technology.
  • the light absorption layer 170 in the above-described embodiment is not provided around the lens 160 but around the condenser lens of the color filter 150. That is, this light absorption layer 170 may be provided around any one of the condensing lens and the scattering lens.
  • FIG. 11 is a diagram illustrating a sixth modification example of the light emitting module portion according to the embodiment of the present technology.
  • the light absorption layer 170 in the first modification described above is provided not around the lens 160 but around the condenser lens of the color filter 150.
  • Other structures are the same as those of the first modification described above.
  • FIG. 12 is a diagram illustrating a seventh modification example of the light emitting module part according to the embodiment of the present technology.
  • the light absorbing layer 170 in the above-described embodiment is removed. That is, the light absorption layer 170 is an arbitrary structure for enhancing the effect, and the effect as the embodiment of the present technology can be achieved by providing a combination of the condenser lens and the scattering lens.
  • FIG. 13 is a diagram illustrating an eighth modification example of the light emitting module portion according to the embodiment of the present technology.
  • the light absorption layer 170 in the first modification example or the sixth modification example described above is removed. That is, as described above, the light absorption layer 170 is an arbitrary structure for enhancing the effect, and an effect as an embodiment of the present technology can be achieved by providing a combination of a condenser lens and a scattering lens. .
  • FIG. 14 is a diagram illustrating a ninth modification example of the light emitting module portion according to the embodiment of the present technology.
  • the light absorption layer 170 in the above-described embodiment is provided as a partition. That is, the light absorption layer 170 is not a film-like structure around either the condensing lens or the scattering lens, but is provided as a partition wall that is separated from other pixels in the color filter 150. Thereby, color mixing with other adjacent pixels can be prevented.
  • FIG. 15 is a diagram illustrating a tenth modification of the light emitting module part according to the embodiment of the present technology.
  • the light absorption layer 170 in the first modification or the sixth modification described above is provided as a partition. That is, the light absorption layer 170 is not a film-like structure around either the condenser lens or the scattering lens, but is provided as a partition having a light absorption function instead of the partition 180 described above.
  • FIG. 16 is a diagram illustrating an eleventh modification example of the light emitting module portion according to the embodiment of the present technology.
  • the light reflection layer 190 is provided below the light absorption layer 170 in the above-described embodiment. Thereby, the light extraction efficiency can be further improved by reflecting the light deviated to the periphery of the pixel into the pixel.
  • FIG. 17 is a diagram illustrating a twelfth modification of the light emitting module portion according to the embodiment of the present technology.
  • the light absorption layer 170 and the light reflection layer 190 in the eleventh modification are configured to cover a part of the lens 160. Thereby, reflection of external light can be further reduced.
  • FIG. 18 is a diagram illustrating a thirteenth modification of the light emitting module portion according to the embodiment of the present technology.
  • a structure is provided in which a counter substrate made of glass 220 is provided on the upper surface of the color filter 150 in the above-described embodiment with a sealing material 210 interposed therebetween, and a lens 160 is provided thereon. That is, at least a part of the condenser lens and the scattering lens may be formed on the counter substrate.
  • FIG. 19 is a diagram illustrating a fourteenth modification of the light emitting module portion according to the embodiment of the present technology.
  • the scattering lens of the lens 160 and the condensing lens of the color filter 150 are provided at positions shifted from the central axis of the light emitting element 130 by a predetermined distance. Therefore, the color filter 151 of the adjacent pixel appears in FIG. Thereby, the direction of the light from the light emitting element 130 can be tilted in an arbitrary direction (right direction in the figure) as needed, instead of directly in front (vertical direction).
  • FIG. 20 is a diagram illustrating a fifteenth modification example of the light emitting module part according to the embodiment of the present technology.
  • the light reflecting layer 190 is provided on the side wall of the light emitting element 130 in the above embodiment.
  • the light extraction efficiency can be further improved by reflecting the light deviated to the periphery of the pixel into the pixel.
  • the reflection efficiency can be increased by adopting a reflector structure having a divergence angle in the direction of the condenser lens of the color filter 150.
  • FIG. 21 is a diagram illustrating an appearance of a smartphone 401 that is a first application example of the embodiment of the present technology.
  • the smartphone 401 includes an operation unit 403 that receives an operation input from a user, and a display unit 405 that displays various types of information.
  • the display unit 405 can be configured by the display device of the above-described embodiment.
  • FIG. 22 is a diagram illustrating an appearance viewed from the front (subject side) of a digital camera 411 which is a second application example of the embodiment of the present technology.
  • FIG. 23 is a diagram illustrating an appearance of a digital camera 411 that is a second application example of the embodiment of the present technology as viewed from the rear.
  • the digital camera 411 includes a main body (camera body) 413, an interchangeable lens unit 415, and a grip 417 held by a user at the time of shooting.
  • the digital camera 411 includes a monitor 419 that displays various types of information, and an EVF (electronic viewfinder) 421 that displays a through image observed by the user at the time of shooting.
  • the monitor 419 and the EVF 421 can be configured by the display device of the above-described embodiment.
  • FIG. 24 is a diagram illustrating an appearance of an HMD 431 that is a third application example of the embodiment of the present technology.
  • the HMD (Head-Mounted Display) 431 includes a glasses-type display unit 433 that displays various types of information, and an ear hook unit 435 that is hooked to the user's ear when worn.
  • the display unit 433 can be configured by the display device of the above-described embodiment.
  • electronic devices to which the display device according to each embodiment can be applied are not limited to those exemplified above, and this display device is a television device, an electronic book, a PDA, a notebook PC, a video camera, or
  • the present invention can be applied to display devices mounted on electronic devices in various fields that perform display based on image signals input from the outside or image signals generated internally, such as game machines.
  • this technique can also take the following structures.
  • a light emitting element A condensing lens that condenses the light emitted from the light emitting element;
  • a display device comprising: a scattering lens that scatters the light collected by the condenser lens.
  • (2) Arranging a plurality of pixels on a plane, The display device according to (1), wherein at least some of the plurality of pixels include a set of the light emitting element, the condenser lens, and the scattering lens.
  • the display device according to (2) further including a partition wall around the pixel.
  • the partition wall reflects light in the pixel.
  • the partition wall absorbs light in the pixel.
  • the display device according to any one of (1) to (10), further including a light reflecting layer that reflects light around the light emitting element. (12) The display device according to (11), wherein the light reflecting layer has a divergence angle in a direction of the condenser lens. (13) The display device according to any one of (1) to (12), wherein the condenser lens includes a color change layer. (14) The display device according to any one of (1) to (13), wherein the scattering lens includes a color change layer. (15) The display device according to any one of (1) to (14), further including a counter substrate between the scattering lens and the condenser lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

発光素子を備える表示装置において、光取り出し効率および輝度視野角特性を向上させる。 表示装置は、発光素子と、集光レンズと、散乱レンズとを備える。発光素子は、光を発する素子である。集光レンズは、発光素子から発光された光を集光するレンズである。散乱レンズは、集光レンズによって集光された光を散乱させるレンズである。集光レンズおよび散乱レンズを組み合わせることにより、光取り出し効率および輝度視野角特性を向上させる。

Description

表示装置およびその製造方法
 本技術は、表示装置に関する。詳しくは、発光素子を備える表示装置およびその製造方法に関する。
 画像を表示させるための発光モジュールにおいては、有機エレクトロルミネッセンス(EL:Electro-Luminescence)素子などの自発光素子からの光を、集光レンズにより集光して、表示している。例えば、発光素子が発する光を集光する集光レンズと、集光レンズを覆う反射層と、反射層を覆う光吸収層とを備える表示装置が提案されている(例えば、特許文献1参照。)。
特開2011-100715号公報
 上述の従来技術では、光取り出し効率を維持しながら外光反射を抑制していた。しかしながら、取り出された光は正面への指向性が高いため、輝度視野角特性が劣化するという問題があった。また、レンズ正面からの光については外光反射を抑制することができないという問題があった。
 本技術はこのような状況に鑑みて生み出されたものであり、光取り出し効率および輝度視野角特性を向上させることを目的とする。
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、発光素子と、上記発光素子から発光された光を集光する集光レンズと、上記集光レンズによって集光された光を散乱させる散乱レンズとを具備する表示装置である。これにより、集光レンズにより光を集光するとともに、集光された光を散乱レンズにより散乱させて光取り出し効率および輝度視野角特性を向上させるという作用をもたらす。
 また、この第1の側面において、複数の画素を平面上に配置し、上記複数の画素の少なくとも一部の画素は、上記発光素子、上記集光レンズおよび上記散乱レンズの組を備えるようにしてもよい。これにより、複数の画素の少なくとも一部の画素において、光取り出し効率および輝度視野角特性を向上させるという作用をもたらす。
 また、この第1の側面において、上記画素の周囲に隔壁をさらに具備してもよい。これにより、他の画素との混色を防止するという作用をもたらす。この場合において、上記隔壁は、上記画素内の光を反射するものであってもよく、また、上記画素内の光を吸収するものであってもよい。
 また、この第1の側面において、上記発光素子、上記集光レンズおよび上記散乱レンズの組は、特定の色の画素にのみ設けられるようにしてもよい。この場合において、上記特定の色の画素は、白色画素であってもよい。これにより、必要に応じて外光の反射を低減するという作用をもたらす。
 また、この第1の側面において、上記集光レンズまたは上記散乱レンズの周囲において光を吸収する光吸収層をさらに具備してもよい。この場合において、上記光吸収層は、上記集光レンズまたは上記散乱レンズの一部を覆うようにしてもよい。また、この場合において、上記光吸収層の下に光を反射する光反射層をさらに具備してもよい。これにより、光取り出し効率をさらに向上させるという作用をもたらす。
 また、この第1の側面において、上記発光素子の周囲において光を反射する光反射層をさらに具備してもよい。これにより、光取り出し効率をさらに向上させるという作用をもたらす。この場合において、上記光反射層は、上記集光レンズの方向に拡がり角を備えてもよい。
 また、この第1の側面において、上記集光レンズは、色変化層を備えてもよい。これにより、色変化層と集光レンズを一体化して形成させるという作用をもたらす。
 また、この第1の側面において、上記散乱レンズは、色変化層を備えてもよい。これにより、色変化層と散乱レンズを一体化して形成させるという作用をもたらす。
 また、この第1の側面において、上記散乱レンズと上記集光レンズとの間に対向基板をさらに具備してもよい。
 また、この第1の側面において、上記散乱レンズおよび上記集光レンズは、上記発光素子の中心軸から所定の距離ずれた位置に設けられてもよい。これにより、発光素子からの光の方向を任意の方向に傾けるという作用をもたらす。
 また、本技術の第2の側面は、基板の上に電極を形成する手順と、上記電極の上に発光素子を形成する手順と、上記発光素子を覆う保護層を形成する手順と、上記保護層の上に湾曲形状を形成する手順と、上記湾曲形状に沿って集光レンズを形成する手順と、上記集光レンズの表面に散乱レンズを形成する手順とを備える表示装置の製造方法である。これにより、集光レンズにより光を集光するとともに、集光された光を散乱レンズにより散乱させて光取り出し効率および輝度視野角特性を向上させる表示装置を製造するという作用をもたらす。
 本技術によれば、光取り出し効率および輝度視野角特性を向上させることができるという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の実施の形態における表示装置100の全体構成の一例を示す図である。 本技術の実施の形態における画素回路101の回路構成例を示す図である。 本技術の実施の形態における表示装置100の発光モジュール部分の概略断面構造の一例を示す図である。 本技術の実施の形態における光路の一例を示す図である。 本技術の実施の形態における表示装置100の発光モジュール部分の製造工程の一例を示す図である。 本技術の実施の形態における発光モジュール部分の第1の変形例を示す図である。 本技術の実施の形態における発光モジュール部分の第2の変形例を示す図である。 本技術の実施の形態における発光モジュール部分の第3の変形例を示す図である。 本技術の実施の形態における発光モジュール部分の第4の変形例を示す図である。 本技術の実施の形態における発光モジュール部分の第5の変形例を示す図である。 本技術の実施の形態における発光モジュール部分の第6の変形例を示す図である。 本技術の実施の形態における発光モジュール部分の第7の変形例を示す図である。 本技術の実施の形態における発光モジュール部分の第8の変形例を示す図である。 本技術の実施の形態における発光モジュール部分の第9の変形例を示す図である。 本技術の実施の形態における発光モジュール部分の第10の変形例を示す図である。 本技術の実施の形態における発光モジュール部分の第11の変形例を示す図である。 本技術の実施の形態における発光モジュール部分の第12の変形例を示す図である。 本技術の実施の形態における発光モジュール部分の第13の変形例を示す図である。 本技術の実施の形態における発光モジュール部分の第14の変形例を示す図である。 本技術の実施の形態における発光モジュール部分の第15の変形例を示す図である。 本技術の実施の形態の第1の適用例であるスマートフォン401の外観を示す図である。 本技術の実施の形態の第2の適用例であるデジタルカメラ411の前方(被写体側)から眺めた外観を示す図である。 本技術の実施の形態の第2の適用例であるデジタルカメラ411の後方から眺めた外観を示す図である。 本技術の実施の形態の第3の適用例であるHMD431の外観を示す図である。
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.実施の形態
 2.変形例
 3.適用例
 <1.実施の形態>
 [表示装置の構成]
 図1は、本技術の実施の形態における表示装置100の全体構成の一例を示す図である。
 この表示装置100は、例えば、画素アレイ部102と、これを駆動する駆動部とを備える。駆動部は、水平セレクタ103と、ライトスキャナ104と、電源スキャナ105とを備える。
 画素アレイ部102は、行列状に配置された複数の画素回路101を備える。複数の画素回路101の各行に対応して、電源線DSLおよび走査線WSLが設けられる。また、複数の画素回路101の各列に対応して、信号線DTLが設けられる。
 ライトスキャナ104は、走査線WSLの各々に順次、制御信号を供給して、画素回路101を行単位で線順次走査するものである。電源スキャナ105は、線順次走査に合わせて、電源線DSLの各々に電源電圧を供給するものである。水平セレクタ103は、線順次走査に合わせて、列状の信号線DTLに、映像信号となる信号電位および基準電位を供給するものである。
 図2は、本技術の実施の形態における画素回路101の回路構成例を示す図である。
 画素回路101は、例えば、有機EL素子などの発光素子14と、サンプリングトランジスタ11と、駆動トランジスタ12と、保持容量13とを備える。
 サンプリングトランジスタ11は、ゲートが対応する走査線WSLに接続され、ソースおよびドレインの一方が対応する信号線DTLに接続され、ソースおよびドレインの他方が駆動トランジスタ12のゲートに接続される。
 駆動トランジスタ12は、ソースが発光素子14のアノードに接続され、ドレインが対応する電源線DSLに接続される。発光素子14のカソードは接地配線15に接続される。なお、この接地配線15は全ての画素回路101に対して共通に配線される。
 保持容量13は、駆動トランジスタ12のソースとゲートの間に接続される。保持容量13は、信号線DTLから供給される映像信号の信号電位を保持するものである。
 [画素構造]
 図3は、本技術の実施の形態における表示装置100の発光モジュール部分の概略断面構造の一例を示す図である。
 この実施の形態における画素は、基板110上に、電極120と、発光素子130と、保護層140と、カラーフィルタ150と、レンズ160と、光吸収層170とを備える。
 電極120は、発光素子130のアノード電極であり、例えば、AlCu合金、錫(Ti)などの金属、酸化インジウム錫(ITO:Indium Tin Oxide)の透明電極などが想定される。
 発光素子130は、電気信号を光信号に変換する上述の発光素子14であり、例えば、有機EL素子が想定される。この場合、カソード電極と電極120との間に有機層が形成される。カソード電極の材料は、例えば、MgAg合金や酸化インジウム錫(ITO)の透明電極などが想定される。
 保護層140は、発光素子130を覆い、発光素子130の劣化を防ぐためのバリア層である。この保護層140の材料は、例えば、窒化シリコン(SiN)が想定される。
 カラーフィルタ150は、発光素子130からの光の色を変化させる色変化部材である。このカラーフィルタ150は、例えば、フォトレジストなどの有機材料に有機顔料を混合してフォトリソグラフィを行うことにより形成される。このカラーフィルタ150は、例えばベイヤー配列などの色配置を備える。画素の色は白色であってもよく、その場合には、このカラーフィルタ150は、全ての色を通過させる透明なフィルタであり、光の色を変化させない。
 この実施の形態においては、このカラーフィルタ150は、保護層140との間の境界面において湾曲形状を有する。これにより、カラーフィルタ150は、発光素子から発光された光を集光する集光レンズとしての機能を有する。
 レンズ160は、カラーフィルタ150の上に設けられた光学素子である。このレンズ160は、カラーフィルタ150の集光レンズによって集光された光を散乱させる散乱レンズとしての機能を有する。カラーフィルタ150およびレンズ160は、ともに樹脂を材料とし、同一材料を用いることもできる。ただし、レンズ160は透明な材料である必要がある。
 光吸収層170は、カラーフィルタ150の上のレンズ160の周囲に設けられ、カラーフィルタ150の集光レンズによって集光された光を吸収する層である。
 [光路]
 図4は、本技術の実施の形態における光路の一例を示す図である。
 発光素子130から発光された光は、同図の実線に示すように、カラーフィルタ150の集光レンズによって集光され、レンズ160の散乱レンズによって散乱される。集光レンズおよび散乱レンズを組み合わせることにより、発光素子130から発光された光の光取り出し効率は向上する。また、散乱レンズによる光の散乱によって輝度視野角を広げることができる。
 一方、レンズ160の正面からの外光は、同図の点線に示すように、レンズ160の散乱レンズによって散乱され、発光素子130に到達し難くなる。これにより、外光の発光素子130における反射を低減することができる。
 [製造工程]
 図5は、本技術の実施の形態における表示装置100の発光モジュール部分の製造工程の一例を示す図である。
 まず、同図におけるaに示されるように、基板110の上に電極120が形成される。この電極120は、リソグラフィにより形成される。すなわち、電極120となる材料を成膜した後にパターニングをし、レジストでマスクしてエッチングにより不要部分を削り、マスクのレジストを除去することにより、電極120が形成される。
 そして、同図におけるbに示されるように、電極120の上に発光素子130が形成される。この発光素子130は、蒸着により形成される。すなわち、気相中で発光素子130となる材料の薄膜を堆積することにより形成される。
 そして、同図におけるcに示されるように、発光素子130が形成された基板表面に、保護層140が形成される。この保護層140は、化学気相成長(CVD:Chemical Vapor Deposition)により形成される。このとき、保護層140の表面において、レジストを用いて湾曲形状が形成される。
 そして、同図におけるdに示されるように、カラーフィルタ150が形成される。このカラーフィルタ150は、保護層140の表面の湾曲形状に沿って形成され、集光レンズとしての機能を有する。このカラーフィルタ150は、リソグラフィまたは化学気相成長により形成される。
 そして、同図におけるeに示されるように、レンズ160が形成される。このレンズ160は、散乱レンズとしての機能を有する。このレンズ160は、リソグラフィにより形成される。
 そして、同図におけるfに示されるように、レンズ160の周囲に光吸収層170が形成される。この光吸収層170は、リソグラフィにより形成される。
 このように、本技術の実施の形態によれば、集光レンズおよび散乱レンズを組み合わせることにより、光取り出し効率および輝度視野角特性を向上させ、外光の反射を低減することができる。外光反射は白色の画素において特に問題になるため、白色の画素にこの実施の形態を適用すると特に有用である。
 <2.変形例>
 上述の実施の形態では、カラーフィルタ150の下面において凹状の集光レンズを一体形成するとともに、カラーフィルタ150の上面には別体のレンズ160を凸状の散乱レンズとして設けていた。ただし、集光レンズおよび散乱レンズとしての機能は、凹凸形状以外にも、材料の屈折率によっても調整可能である。以下では、レンズの形状の他、光の吸収または反射を実現するための様々な変形例について説明する。
 [第1の変形例]
 図6は、本技術の実施の形態における発光モジュール部分の第1の変形例を示す図である。
 この第1の変形例では、上述の実施の形態におけるレンズ160を別体として設けずに、カラーフィルタ150の上面に凹状の散乱レンズを一体形成する。これにより、カラーフィルタ150に集光レンズおよび散乱レンズの両者の機能をもたせて、レンズ160を形成する工程を省くことができる。
 また、この第1の変形例では、画素の周囲に隔壁180を備える。この隔壁180は、色変化部材または光反射層からなり、他の画素と隔てる壁である。これにより、隣接する他の画素との混色を防止することができる。
 [第2の変形例]
 図7は、本技術の実施の形態における発光モジュール部分の第2の変形例を示す図である。
 この第2の変形例では、カラーフィルタ150の下面において凸状の集光レンズを一体形成する。すなわち、集光レンズの凹凸形状において上述の実施の形態とは異なっており、他の構造については上述の実施の形態と同様である。
 [第3の変形例]
 図8は、本技術の実施の形態における発光モジュール部分の第3の変形例を示す図である。
 この第3の変形例では、カラーフィルタ150の上面において凹状の散乱レンズを一体形成するとともに、カラーフィルタ150の下面において凹状の集光レンズを一体形成する。すなわち、カラーフィルタ150の下面に一体形成される集光レンズの凹凸形状において上述の第1の変形例と異なっており、他の構造については上述の第1の変形例と同様である。
 [第4の変形例]
 図9は、本技術の実施の形態における発光モジュール部分の第4の変形例を示す図である。
 この第4の変形例では、カラーフィルタ150の下面において凸状の集光レンズを一体形成するとともに、画素の周囲に隔壁180を備える。すなわち、上述の第2の変形例に隔壁180を設けた構造になっている。
 [第5の変形例]
 図10は、本技術の実施の形態における発光モジュール部分の第5の変形例を示す図である。
 この第5の変形例では、上述の実施の形態における光吸収層170を、レンズ160の周囲ではなく、カラーフィルタ150の集光レンズの周囲に設けた構造になっている。すなわち、この光吸収層170は、集光レンズまたは散乱レンズの何れの周囲に設けてもよい。
 [第6の変形例]
 図11は、本技術の実施の形態における発光モジュール部分の第6の変形例を示す図である。
 この第6の変形例では、上述の第1の変形例における光吸収層170を、レンズ160の周囲ではなく、カラーフィルタ150の集光レンズの周囲に設けた構造になっている。他の構造については上述の第1の変形例と同様である。
 [第7の変形例]
 図12は、本技術の実施の形態における発光モジュール部分の第7の変形例を示す図である。
 この第7の変形例では、上述の実施の形態における光吸収層170を取り除いた構造になっている。すなわち、光吸収層170は、効果を高めるための任意の構造であり、集光レンズおよび散乱レンズの組合せを設けることにより本技術の実施の形態としての効果を奏することができる。
 [第8の変形例]
 図13は、本技術の実施の形態における発光モジュール部分の第8の変形例を示す図である。
 この第8の変形例では、上述の第1の変形例または第6の変形例における光吸収層170を取り除いた構造になっている。すなわち、上述のように、光吸収層170は、効果を高めるための任意の構造であり、集光レンズおよび散乱レンズの組合せを設けることにより本技術の実施の形態としての効果を奏することができる。
 [第9の変形例]
 図14は、本技術の実施の形態における発光モジュール部分の第9の変形例を示す図である。
 この第9の変形例では、上述の実施の形態における光吸収層170を隔壁として設けた構造になっている。すなわち、光吸収層170は、集光レンズまたは散乱レンズの何れかの周囲における膜状の構造ではなく、カラーフィルタ150において他の画素と隔てる隔壁として設けられている。これにより、隣接する他の画素との混色を防止することができる。
 [第10の変形例]
 図15は、本技術の実施の形態における発光モジュール部分の第10の変形例を示す図である。
 この第10の変形例では、上述の第1の変形例または第6の変形例における光吸収層170を隔壁として設けた構造になっている。すなわち、光吸収層170は、集光レンズまたは散乱レンズの何れかの周囲における膜状の構造ではなく、上述の隔壁180に代えて光吸収機能を有する隔壁として設けられている。
 [第11の変形例]
 図16は、本技術の実施の形態における発光モジュール部分の第11の変形例を示す図である。
 この第11の変形例では、上述の実施の形態における光吸収層170の下に光反射層190を設けた構造になっている。これにより、画素の周辺に逸れた光を画素内に反射させることにより、光取り出し効率をさらに向上させることができる。
 [第12の変形例]
 図17は、本技術の実施の形態における発光モジュール部分の第12の変形例を示す図である。
 この第12の変形例では、上述の第11の変形例における光吸収層170および光反射層190がレンズ160の一部を覆う構造となっている。これにより、外光の反射をさらに低減することができる。
 [第13の変形例]
 図18は、本技術の実施の形態における発光モジュール部分の第13の変形例を示す図である。
 この第13の変形例では、上述の実施の形態におけるカラーフィルタ150の上面に、封止材210を挟んでガラス220による対向基板を設け、その上にレンズ160を設けた構造になっている。すなわち、集光レンズおよび散乱レンズの少なくとも一部は対向基板に形成されていてもよい。
 [第14の変形例]
 図19は、本技術の実施の形態における発光モジュール部分の第14の変形例を示す図である。
 この第14の変形例では、レンズ160の散乱レンズおよびカラーフィルタ150の集光レンズが、発光素子130の中心軸から所定の距離ずれた位置に設けられた構造になっている。そのため、同図では隣接する画素のカラーフィルタ151が表れている。これにより、発光素子130からの光の方向を真正面(垂直方向)ではなく、必要に応じて任意の方向(同図では右方向)に傾けることができる。
 [第15の変形例]
 図20は、本技術の実施の形態における発光モジュール部分の第15の変形例を示す図である。
 この第15の変形例では、上述の実施の形態における発光素子130の側壁に光反射層190を設けた構造になっている。これにより、画素の周辺に逸れた光を画素内に反射させることにより、光取り出し効率をさらに向上させることができる。この構造においては、同図に示すように、カラーフィルタ150の集光レンズの方向に拡がり角を備えるリフレクタ構造を採用することにより、反射効率を高めることができる。
 <3.適用例>
 以下では、上述の実施の形態の表示装置が適用され得る電子機器の例について説明する。
 図21は、本技術の実施の形態の第1の適用例であるスマートフォン401の外観を示す図である。このスマートフォン401は、ユーザからの操作入力を受け付ける操作部403と、各種の情報を表示する表示部405とを備える。この表示部405が、上述の実施の形態の表示装置によって構成され得る。
 図22は、本技術の実施の形態の第2の適用例であるデジタルカメラ411の前方(被写体側)から眺めた外観を示す図である。図23は、本技術の実施の形態の第2の適用例であるデジタルカメラ411の後方から眺めた外観を示す図である。このデジタルカメラ411は、本体部(カメラボディ)413と、交換式のレンズユニット415と、撮影時にユーザによって把持されるグリップ部417とを備える。また、このデジタルカメラ411は、各種の情報を表示するモニタ419と、撮影時にユーザによって観察されるスルー画を表示するEVF(電子ビューファインダ)421とを備える。このモニタ419およびEVF421が、上述の実施の形態の表示装置によって構成され得る。
 図24は、本技術の実施の形態の第3の適用例であるHMD431の外観を示す図である。このHMD(Head Mounted Display)431は、各種の情報を表示する眼鏡型の表示部433と、装着時にユーザの耳に掛止される耳掛け部435とを備える。この表示部433が、上述の実施の形態の表示装置によって構成され得る。
 以上、各実施の形態に係る表示装置が適用され得る電子機器のいくつかの例について説明した。なお、各実施の形態に係る表示装置が適用され得る電子機器は上に例示したものに限定されず、この表示装置は、テレビジョン装置、電子ブック、PDA、ノート型PC、ビデオカメラ、または、ゲーム機器等、外部から入力された画像信号または内部で生成した画像信号に基づいて表示を行うあらゆる分野の電子機器に搭載される表示装置に適用することが可能である。
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。
 なお、本技術は以下のような構成もとることができる。
(1)発光素子と、
 前記発光素子から発光された光を集光する集光レンズと、
 前記集光レンズによって集光された光を散乱させる散乱レンズと
を具備する表示装置。
(2)複数の画素を平面上に配置し、
 前記複数の画素の少なくとも一部の画素は、前記発光素子、前記集光レンズおよび前記散乱レンズの組を備える
前記(1)に記載の表示装置。
(3)前記画素の周囲に隔壁をさらに具備する前記(2)に記載の表示装置。
(4)前記隔壁は、前記画素内の光を反射する
前記(3)に記載の表示装置。
(5)前記隔壁は、前記画素内の光を吸収する
前記(3)に記載の表示装置。
(6)前記発光素子、前記集光レンズおよび前記散乱レンズの組は、特定の色の画素にのみ設けられる
前記(2)から(5)のいずれかに記載の表示装置。
(7)前記特定の色の画素は、白色画素である
前記(6)に記載の表示装置。
(8)前記集光レンズまたは前記散乱レンズの周囲において光を吸収する光吸収層をさらに具備する前記(1)から(7)のいずれかに記載の表示装置。
(9)前記光吸収層は、前記集光レンズまたは前記散乱レンズの一部を覆う
前記(8)に記載の表示装置。
(10)前記光吸収層の下に光を反射する光反射層をさらに具備する前記(8)または(9)に記載の表示装置。
(11)前記発光素子の周囲において光を反射する光反射層をさらに具備する前記(1)から(10)のいずれかに記載の表示装置。
(12)前記光反射層は、前記集光レンズの方向に拡がり角を備える
前記(11)に記載の表示装置。
(13)前記集光レンズは、色変化層を備える
前記(1)から(12)のいずれかに記載の表示装置。
(14)前記散乱レンズは、色変化層を備える
前記(1)から(13)のいずれかに記載の表示装置。
(15)前記散乱レンズと前記集光レンズとの間に対向基板をさらに具備する前記(1)から(14)のいずれかに記載の表示装置。
(16)前記散乱レンズおよび前記集光レンズは、前記発光素子の中心軸から所定の距離ずれた位置に設けられる
前記(1)から(15)のいずれかに記載の表示装置。
(17)基板の上に電極を形成する手順と、
 前記電極の上に発光素子を形成する手順と、
 前記発光素子を覆う保護層を形成する手順と、
 前記保護層の上に湾曲形状を形成する手順と、
 前記湾曲形状に沿って集光レンズを形成する手順と、
 前記集光レンズの表面に散乱レンズを形成する手順と
を備える表示装置の製造方法。
 11 サンプリングトランジスタ
 12 駆動トランジスタ
 13 保持容量
 14 発光素子
 15 接地配線
 100 表示装置
 101 画素回路
 102 画素アレイ部
 103 水平セレクタ
 104 ライトスキャナ
 105 電源スキャナ
 110 基板
 120 電極
 130 発光素子
 140 保護層
 150、151 カラーフィルタ
 160 レンズ
 170 光吸収層
 180 隔壁
 190 光反射層
 210 封止材
 220 ガラス

Claims (17)

  1.  発光素子と、
     前記発光素子から発光された光を集光する集光レンズと、
     前記集光レンズによって集光された光を散乱させる散乱レンズと
    を具備する表示装置。
  2.  複数の画素を平面上に配置し、
     前記複数の画素の少なくとも一部の画素は、前記発光素子、前記集光レンズおよび前記散乱レンズの組を備える
    請求項1記載の表示装置。
  3.  前記画素の周囲に隔壁をさらに具備する請求項2記載の表示装置。
  4.  前記隔壁は、前記画素内の光を反射する
    請求項3記載の表示装置。
  5.  前記隔壁は、前記画素内の光を吸収する
    請求項3記載の表示装置。
  6.  前記発光素子、前記集光レンズおよび前記散乱レンズの組は、特定の色の画素にのみ設けられる
    請求項2記載の表示装置。
  7.  前記特定の色の画素は、白色画素である
    請求項6記載の表示装置。
  8.  前記集光レンズまたは前記散乱レンズの周囲において光を吸収する光吸収層をさらに具備する請求項1記載の表示装置。
  9.  前記光吸収層は、前記集光レンズまたは前記散乱レンズの一部を覆う
    請求項8記載の表示装置。
  10.  前記光吸収層の下に光を反射する光反射層をさらに具備する請求項8記載の表示装置。
  11.  前記発光素子の周囲において光を反射する光反射層をさらに具備する請求項1記載の表示装置。
  12.  前記光反射層は、前記集光レンズの方向に拡がり角を備える
    請求項11記載の表示装置。
  13.  前記集光レンズは、色変化層を備える
    請求項1記載の表示装置。
  14.  前記散乱レンズは、色変化層を備える
    請求項1記載の表示装置。
  15.  前記散乱レンズと前記集光レンズとの間に対向基板をさらに具備する請求項1記載の表示装置。
  16.  前記散乱レンズおよび前記集光レンズは、前記発光素子の中心軸から所定の距離ずれた位置に設けられる
    請求項1記載の表示装置。
  17.  基板の上に電極を形成する手順と、
     前記電極の上に発光素子を形成する手順と、
     前記発光素子を覆う保護層を形成する手順と、
     前記保護層の上に湾曲形状を形成する手順と、
     前記湾曲形状に沿って集光レンズを形成する手順と、
     前記集光レンズの表面に散乱レンズを形成する手順と
    を備える表示装置の製造方法。
PCT/JP2019/002315 2018-02-16 2019-01-24 表示装置およびその製造方法 WO2019159641A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/968,824 US20210005688A1 (en) 2018-02-16 2019-01-24 Display device and manufacturing method thereof
JP2020500362A JP7245220B2 (ja) 2018-02-16 2019-01-24 表示装置およびその製造方法
CN201980012376.5A CN111699756A (zh) 2018-02-16 2019-01-24 显示装置及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-025634 2018-02-16
JP2018025634 2018-02-16

Publications (1)

Publication Number Publication Date
WO2019159641A1 true WO2019159641A1 (ja) 2019-08-22

Family

ID=67619272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002315 WO2019159641A1 (ja) 2018-02-16 2019-01-24 表示装置およびその製造方法

Country Status (4)

Country Link
US (1) US20210005688A1 (ja)
JP (1) JP7245220B2 (ja)
CN (1) CN111699756A (ja)
WO (1) WO2019159641A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111101A1 (ja) * 2018-11-30 2020-06-04 ソニー株式会社 表示装置
US20210193968A1 (en) * 2019-12-19 2021-06-24 Lg Display Co., Ltd. Display Device
JP7486980B2 (ja) 2020-02-28 2024-05-20 キヤノン株式会社 発光装置、表示装置、露光システム、及び表示撮像装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113178529B (zh) * 2021-04-07 2022-04-01 武汉华星光电半导体显示技术有限公司 显示面板
CN113471267B (zh) * 2021-06-30 2024-02-09 合肥维信诺科技有限公司 一种显示面板
CN113707825B (zh) * 2021-08-03 2023-07-25 武汉华星光电半导体显示技术有限公司 显示面板及移动终端
CN114284454B (zh) * 2021-12-23 2024-02-02 云谷(固安)科技有限公司 显示面板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228229A (ja) * 2010-04-23 2011-11-10 Seiko Epson Corp 有機エレクトロルミネッセンス装置
US20140339509A1 (en) * 2013-05-16 2014-11-20 Samsung Display Co., Ltd. Organic light-emitting display apparatus
JP2015069700A (ja) * 2013-09-26 2015-04-13 株式会社ジャパンディスプレイ 表示装置
JP2015128003A (ja) * 2013-12-27 2015-07-09 ソニー株式会社 表示装置および電子機器
US20160064694A1 (en) * 2014-09-01 2016-03-03 Samsung Display Co., Ltd. Organic light-emitting diode (oled) display
US20160087018A1 (en) * 2014-09-19 2016-03-24 Samsung Display Co., Ltd. Organic light emitting diode device
JP2017111363A (ja) * 2015-12-18 2017-06-22 セイコーエプソン株式会社 虚像表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3984183B2 (ja) * 2003-03-20 2007-10-03 株式会社 日立ディスプレイズ 有機el表示装置
JP3931989B2 (ja) * 2004-11-01 2007-06-20 シャープ株式会社 表示装置
JP2009080357A (ja) * 2007-09-27 2009-04-16 Toppan Printing Co Ltd 光制御シート及びそれを用いたバックライトユニット、ディスプレイ装置
JP2012109213A (ja) 2010-10-27 2012-06-07 Canon Inc 表示装置
JP2012109214A (ja) * 2010-10-27 2012-06-07 Canon Inc 表示装置
JP2012134128A (ja) * 2010-11-30 2012-07-12 Canon Inc 表示装置
KR102141691B1 (ko) * 2013-11-05 2020-08-05 엘지디스플레이 주식회사 유기전계발광표시장치 및 그 제조방법
KR102455483B1 (ko) * 2017-06-30 2022-10-19 삼성전자주식회사 Led 장치 및 그 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228229A (ja) * 2010-04-23 2011-11-10 Seiko Epson Corp 有機エレクトロルミネッセンス装置
US20140339509A1 (en) * 2013-05-16 2014-11-20 Samsung Display Co., Ltd. Organic light-emitting display apparatus
JP2015069700A (ja) * 2013-09-26 2015-04-13 株式会社ジャパンディスプレイ 表示装置
JP2015128003A (ja) * 2013-12-27 2015-07-09 ソニー株式会社 表示装置および電子機器
US20160064694A1 (en) * 2014-09-01 2016-03-03 Samsung Display Co., Ltd. Organic light-emitting diode (oled) display
US20160087018A1 (en) * 2014-09-19 2016-03-24 Samsung Display Co., Ltd. Organic light emitting diode device
JP2017111363A (ja) * 2015-12-18 2017-06-22 セイコーエプソン株式会社 虚像表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111101A1 (ja) * 2018-11-30 2020-06-04 ソニー株式会社 表示装置
JP7444070B2 (ja) 2018-11-30 2024-03-06 ソニーグループ株式会社 表示装置
US20210193968A1 (en) * 2019-12-19 2021-06-24 Lg Display Co., Ltd. Display Device
JP7486980B2 (ja) 2020-02-28 2024-05-20 キヤノン株式会社 発光装置、表示装置、露光システム、及び表示撮像装置

Also Published As

Publication number Publication date
JPWO2019159641A1 (ja) 2021-03-11
CN111699756A (zh) 2020-09-22
US20210005688A1 (en) 2021-01-07
JP7245220B2 (ja) 2023-03-23

Similar Documents

Publication Publication Date Title
WO2019159641A1 (ja) 表示装置およびその製造方法
US11005076B2 (en) Flexible display device
US9661694B2 (en) Organic EL device having a convex portion, method of manufacturing organic EL device having a convex portion, and electronic apparatus having an organic EL device having a convex portion
US9978824B2 (en) Organic light emitting display device
WO2016056364A1 (ja) 表示装置、表示装置の製造方法および電子機器
KR102589750B1 (ko) 표시 장치 및 표시 장치의 제조 방법
KR102261610B1 (ko) 유기 발광 표시 장치
US11393879B2 (en) Light-emitting device, display device, photoelectric conversion device, electronic apparatus, illumination device, and mobile body
JP7111793B2 (ja) 画素アレイ基板およびこれを備えるディスプレイ装置
US20210265431A1 (en) Display device and method for processing image signal thereof
JP2024069643A (ja) 発光素子
US20220158135A1 (en) Electro-optical device and electronic apparatus
US20210359047A1 (en) Display apparatus and method of manufacturing the same
CN111492271B (zh) 发光模块、显示装置以及制造发光模块和显示装置的方法
US20200358033A1 (en) Organic el display device and electronic apparatus
CN114725163A (zh) 显示装置
KR20220042888A (ko) 표시 장치
CN218831198U (zh) 显示面板和显示设备
US20240074292A1 (en) Display device and electronic apparatus
KR20230074370A (ko) 표시 장치
CN116709838A (zh) 显示面板、其制造方法及包括显示面板的电子装置
CN113658981A (zh) 电光装置和电子设备
CN113658978A (zh) 电光装置和电子设备
CN113658983A (zh) 电光装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19755248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500362

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19755248

Country of ref document: EP

Kind code of ref document: A1