WO2019159630A1 - 制御装置、インバータ装置、モータ駆動システム - Google Patents

制御装置、インバータ装置、モータ駆動システム Download PDF

Info

Publication number
WO2019159630A1
WO2019159630A1 PCT/JP2019/002250 JP2019002250W WO2019159630A1 WO 2019159630 A1 WO2019159630 A1 WO 2019159630A1 JP 2019002250 W JP2019002250 W JP 2019002250W WO 2019159630 A1 WO2019159630 A1 WO 2019159630A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
low
side switch
drive circuit
capacitor
Prior art date
Application number
PCT/JP2019/002250
Other languages
English (en)
French (fr)
Inventor
秀寿 池田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2019159630A1 publication Critical patent/WO2019159630A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state

Definitions

  • the present invention relates to a control device, an inverter device, and a motor drive system.
  • Patent Document 1 describes a gate drive circuit for an upper arm IGBT and a lower arm IGBT. This gate drive circuit drives the PMOS transistor and the NMOS transistor alternately during a period in which bootstrap charging is not possible.
  • the power supply capacitor can be charged by a charge pump operation in which charging from the power supply to the auxiliary capacitor and discharging from the auxiliary capacitor to the power supply capacitor are repeated.
  • the pulse width of the control signal for the low-side switch and the high-side switch is adjusted based on the detection signal of the Hall sensor that detects the position of the rotor of the motor.
  • the discharge period of the bootstrap capacitor (hereinafter referred to as “bootstrap capacitor”) becomes long.
  • the capacity of the bootstrap capacitor is small, the voltage across the bootstrap capacitor is greatly reduced, and the high-side switch may not be kept on during the discharge period.
  • the rotation speed of the motor is high, the charging period of the bootstrap capacitor is shortened. Therefore, when the capacity of the bootstrap capacitor is large, the bootstrap capacitor cannot be sufficiently charged during the charging period, and the high-side driver cannot be turned on after that. From the above, the conventional control may limit the number of rotations of the motor. *
  • an object of the present invention is to enable the motor to operate in a wide rotational speed range when the motor is controlled by switching the high side switch and the low side switch.
  • An exemplary first invention of the present application is a control device for controlling a motor by performing a switching operation of a high-side switch and a low-side switch, the high-side drive circuit unit driving the high-side switch, and the low-side switch
  • a low-side drive circuit unit that drives the output terminal of the high-side drive circuit unit, a first terminal connected to a control terminal of the high-side switch, and an output terminal of the low-side drive circuit unit, A second terminal connected to a control terminal of the low-side switch; a third terminal connected to an intermediate node between the high-side switch and the low-side switch; a power supply terminal of the high-side drive circuit; and the third terminal
  • a bootstrap circuit unit including a capacitor connected between the first and second motors according to the number of rotations of the motor.
  • a control unit for changing the volume of Yapashita the.
  • the motor when the motor is controlled by switching the high side switch and the low side switch, the motor can be operated in a wide rotational speed range.
  • FIG. 1 It is a figure which shows the system configuration
  • a motor drive system of an embodiment it is a figure showing an example of relation with capacity of a bootstrap capacitor to motor number of rotations.
  • FIG. 1 is a diagram illustrating a system configuration of a motor drive system 1 according to an embodiment.
  • the motor drive system 1 includes an inverter device 2 and a three-phase AC motor M.
  • the inverter device 2 includes a three-phase voltage generator 10, a control device 20, and a DC / DC converter 25, generates three-phase AC power, and supplies it to the three-phase AC motor M.
  • the three-phase AC motor M is provided with a hall sensor 100 for each phase for detecting the position of the rotor.
  • the three-phase AC power is an example of a multi-phase AC power. *
  • the three-phase voltage generator 10 of the inverter device 2 includes high-side NMOS transistors 11H to 13H and low-side NMOS transistors 11L to 13L, and each MOS transistor is provided with a feedback diode. ing.
  • the high side switch and the low side switch are not limited to MOS transistors, but bipolar transistors or IGBTs may be applied. *
  • the NMOS transistor 11H and the NMOS transistor 11L are provided for the U phase of the three-phase AC power supplied to the three-phase AC motor M.
  • a U-phase voltage Vu that is an output voltage of the U-phase is generated.
  • the NMOS transistor 12H and the NMOS transistor 12L are provided for the V phase of the three-phase AC power supplied to the three-phase AC motor M.
  • the NMOS transistor 12H and the NMOS transistor 12L perform a switching operation to generate a V-phase voltage Vv that is a V-phase output voltage.
  • the NMOS transistor 13H and the NMOS transistor 13L are provided for the W phase of the three-phase AC power supplied to the three-phase AC motor M.
  • the NMOS transistor 13H and the NMOS transistor 13L perform a switching operation to generate a W-phase voltage Vw, which is a W-phase output voltage.
  • the drain terminals of the NMOS transistors 11H to 13H are connected to the input voltage VIN of the inverter device 2.
  • the source terminals of the NMOS transistors 11L to 13L are set to the ground potential GND.
  • the source (node N11) of the U-phase NMOS transistor 11H is connected to one end of a U-phase winding (not shown) of the three-phase AC motor M.
  • the source (node N12) of the V-phase NMOS transistor 12H is connected to one end of a V-phase winding (not shown) of the three-phase AC motor M, and the source (node N13) of the W-phase NMOS transistor 13H.
  • the control device 20 controls the three-phase AC motor M by switching the NMOS transistors 11H to 13H that are high-side switches and the NMOS transistors 11L to 13L that are low-side switches.
  • the control device 20 performs the above-described switching operation of the NMOS transistors 11H to 13H and the NMOS transistors 11L to 13L so that the U-phase voltage Vu, the V-phase voltage Vv, and the W-phase voltage Vw are generated with a phase difference of 120 degrees, respectively. Control.
  • the control device 20 Based on signals Hu, Hv, and Hw indicating the detected values of the respective phases of the Hall sensor 100 that detects the position of the rotor of the three-phase AC motor M, the control device 20 performs NMOS transistors 11H to 13H and NMOS transistors 11L to 13L. The above-described switching operation is controlled.
  • the signals Hu, Hv, and Hw are sine wave signals having a phase difference of 120 degrees in order. *
  • the speed control of the three-phase AC motor M is performed by controlling the magnitude of the DC input voltage VIN input to the three-phase voltage generator 10 (PAM: pulse amplitude modulation). . Therefore, the amplitude of the voltage VIN input to the drain terminals of the NMOS transistors 11H to 13H as the high-side switches of the three-phase voltage generator 10 is determined by a chopper circuit (not shown).
  • the control device 20 adjusts the ratio of the ON period and the OFF period of the switch element of the chopper circuit based on the command value of the rotation speed of the three-phase AC motor M (that is, by performing PWM control), the voltage V Adjust the amplitude of IN .
  • the control device 20 includes gate drive units 21 to 23 and a control unit 27.
  • the gate drive unit 21 is provided for driving the U-phase MOS transistors 11H and 11L
  • the gate drive unit 22 is provided for driving the V-phase MOS transistors 12H and 12L
  • the gate drive unit 23 is provided for the W-phase MOS transistors 11H and 11L.
  • the control unit 27 is mainly composed of a microcontroller, controls the gate driving units 21 to 23, and controls the three-phase AC motor M to have a desired rotation speed.
  • control unit 27 controls the switching element of the chopper circuit (not shown) to adjust the amplitude of the voltage VIN input to the drain terminals of the NMOS transistors 11H to 13H. Thereby, the amplitudes of the U-phase voltage Vu, V-phase voltage Vv, and W-phase voltage Vw supplied to the three-phase AC motor M are adjusted, and the three-phase AC motor M has a desired rotation speed.
  • the DC / DC converter 25 converts the voltage VIN into a predetermined DC voltage V DD suitable for operating gate drive units 21 to 23 described later.
  • FIG. 2 is a diagram illustrating a configuration of the gate driving unit 21 in the control device 20 of the present embodiment. Note that the gate driving units 22 and 23 have the same configuration as the gate driving unit 21, and thus the description thereof is omitted. *
  • the gate drive unit 21 includes a high side driver 210H, a low side driver 210L, a level shifter 212, a diode 213, capacitors C0 to Cn, and switches SW1 to SWn.
  • the diode 213, the capacitors C0 to Cn, and the switches SW1 to SWn connected to the high side driver 210H constitute a bootstrap circuit.
  • the high side driver 210H has a four-terminal configuration including a control terminal H1, a power supply terminal H2, a low voltage side terminal H3, and an output terminal H4.
  • the low-side driver 210L has a four-terminal configuration including a control terminal L1, a power supply terminal L2, a low-voltage side terminal L3, and an output terminal L4.
  • the power supply terminal of each driver is a high voltage side terminal for operating each driver based on the potential of the low voltage side terminal.
  • the high side driver 210H (an example of a high side drive circuit unit) drives the NMOS transistor 11H as a high side switch.
  • the low-side driver 210L (an example of a low-side drive circuit unit) drives the NMOS transistor 11L as a low-side switch.
  • the gate drive unit 21 is supplied with a high-side pulse signal INH and a low-side pulse signal INL from the control unit 27.
  • the controller 27 controls the conduction timing of the NMOS transistor 11H and the NMOS transistor 11L by generating the high-side pulse signal INH and the low-side pulse signal INL based on the detection value of the Hall sensor 100.
  • the specific processing is as follows. As shown in FIG.
  • the control unit 27 sequentially acquires a signal Hu (a sine wave signal) indicating a detection value of the U-phase Hall sensor 100, and synchronizes with the signal Hu to generate the high-side pulse signal INH and A low-side pulse signal INL is generated.
  • the period of the sine wave of the signal Hu is long when the motor speed is low and short when the motor speed is high. Therefore, the pulse widths of the high-side pulse signal INH and the low-side pulse signal are long when the motor speed is low, and are short when the motor speed is high.
  • a low-side pulse signal INL is input to the control terminal L1 of the low-side driver 210L.
  • the low voltage side terminal L3 of the low side driver 210L is set to the ground potential GND, and the power supply terminal L2 of the low side driver 210L is set to the voltage VDD generated by the DC / DC converter 25.
  • the output terminal L4 of the low side driver 210L is connected to the gate terminal (control terminal) of the NMOS transistor 11L as the low side switch, that is, the terminal T2.
  • the voltage (output voltage) of the output terminal L4 of the low side driver 210L is low level (GND) when the low side pulse signal INL is low level, and is high level (VDD) when the low side pulse signal INL is high level. Become.
  • a signal obtained by increasing the voltage of the high-side pulse signal INH by the level shifter 212 is input to the control terminal H1 of the high-side driver 210H.
  • the low voltage side terminal H3 of the high side driver 210H is connected to the node N11 of the three-phase voltage generation unit 10 through the terminal T3. That is, the terminal T3 is connected to the intermediate node N11 between the NMOS transistor 11H and the NMOS transistor 11L.
  • the voltage at the power supply terminal H2 of the high side driver 210H is supplied by a bootstrap circuit.
  • the output terminal H4 of the high side driver 210H is connected to the gate terminal (control terminal) of the NMOS transistor 11H as a high side switch, that is, the terminal T1.
  • the bootstrap circuit of this embodiment includes capacitors C0 to Cn connected in parallel between a power supply terminal H2 and a terminal T3 (or node N11) of a high side driver 210H (an example of a high side drive circuit unit).
  • the capacitors C1 to Cn are connected in series with the switches SW1 to SWn, respectively, and the conduction state of each switch is determined by the control signals s1 to sn supplied from the control unit 27 to each switch.
  • the conduction states of the switches SW1 to SWn can be individually controlled by the control signals s1 to sn.
  • the capacitors C1 to Cn determined by the conduction states of the switches SW1 to SWn are collectively referred to as a bootstrap capacitor Cb.
  • the NMOS transistor 11L is off, the NMOS transistor 11H is turned on, since the node N11 becomes the voltage V IN, the power supply terminal H2 of the high-side driver 210H, the voltage across the bootstrap capacitor Cb is plus voltage V IN Thus, the voltage becomes V DD -V F + V IN , and this voltage becomes the gate voltage of the NMOS transistor 11H. Therefore, the gate-source voltage V GS of the NMOS transistor 11H becomes V DD ⁇ V F , so that the NMOS transistor 11H is kept on. At this time, the diode 213 is in a non-conductive state, and a floating power supply for the high side driver 210H is configured.
  • the bootstrap capacitor Cb While the high side driver 210H is on, the bootstrap capacitor Cb is discharged by the high side driver 210H. As described above, the bootstrap capacitor Cb is discharged when the high-side pulse signal INH is at a high level, and the bootstrap capacitor Cb is charged when the low-side driver 210L is at a high level.
  • FIG. 3 is a diagram illustrating an example of the relationship between the motor rotation speed and the capacity of the bootstrap capacitor Cb in the motor drive system 1 of the present embodiment.
  • the control unit 27 when the rotational speed of the three-phase AC motor M is smaller than the first threshold TH1, the control unit 27 is more than when the rotational speed of the three-phase AC motor M is equal to or higher than the first threshold TH1.
  • the capacity of the bootstrap capacitor Cb is increased (in FIG. 3, Cb1 is the total capacity of the capacitors C0 to Cn).
  • the reason for adopting such a control method is as follows.
  • the control unit 27 sequentially acquires signals Hu, Hv, Hw (sine wave signals) indicating the detection values of the Hall sensor 100, and in synchronization with the signals Hu, Hv, Hw, pulses for the high side corresponding to each phase. A signal INH and a low-side pulse signal INL are generated.
  • the charging period and the discharging period of the bootstrap capacitor Cb become long. If the capacity of the bootstrap capacitor Cb is small, the discharge period is long, so that the amount of decrease in the voltage across the bootstrap capacitor Cb during the discharge period is large, and the voltage at the power supply terminal H2 of the high side driver 210H becomes low. In some cases, the high-side switch (that is, the NMOS transistor 11H) cannot be kept on during the period. Therefore, in this embodiment, when the motor rotation speed is low, the amount of decrease in the voltage across the bootstrap capacitor Cb during the discharge period is suppressed by performing control to increase the capacity of the bootstrap capacitor Cb. *
  • the control unit 27 boots more than when the rotational speed of the three-phase AC motor M is equal to or smaller than the second threshold TH2.
  • the charging period is short, so the amount of increase in the voltage across the bootstrap capacitor Cb during the charging period is small, and the voltage at the power supply terminal H2 of the high-side driver 210H remains at the end of the charging period.
  • the NMOS transistor 11H does not operate normally after being sufficiently high. Therefore, in the present embodiment, when the motor speed is high, the control of reducing the capacity of the bootstrap capacitor Cb is performed, thereby promoting the increase in the voltage across the bootstrap capacitor Cb during the charging period.
  • FIG. 4 is an exemplary timing chart of voltages at various parts when the rotation speed of the three-phase AC motor M is low in the motor drive system 1 of the present embodiment.
  • FIG. 5 is an exemplary timing chart of voltages at various parts when the rotation speed of the three-phase AC motor M is high in the motor drive system 1 of the present embodiment.
  • Each timing chart shows only the U-phase, but the V-phase and the W-phase are different in that the phases are shifted by 120 degrees in order, and the basic operation is the same as the U-phase. *
  • Vb means a voltage across the bootstrap capacitor Cb (that is, the bootstrap capacitor Cb controlled by the control method) of the present embodiment.
  • VC1 is different from the present embodiment, and the voltage across the bootstrap capacitor is shown with reference to the case where the capacity of the bootstrap capacitor is a fixed value and relatively small.
  • VC2 is shown with reference to the voltage across the bootstrap capacitor when the capacity of the bootstrap capacitor is a fixed value and relatively large.
  • the signal Hu indicating the detection value of the U-phase Hall sensor 100 is, for example, a sine wave signal having one cycle in the period from time t1 to time t5.
  • the control unit 27 rises from the low level to the high level in synchronization with the time t1, and falls from the high level to the low level at the timing when the phase of 120 degrees advances from the time t1, A high-side pulse signal INH is generated.
  • the control unit 27 rises from the low level to the high level in synchronization with the time t3, and falls from the high level to the low level at a timing when the phase of 120 degrees advances from the time t3.
  • the low-side pulse signal INL is generated.
  • the high-side pulse signal INH is at a high level
  • the low-side pulse signal INL is at a low level
  • the NMOS transistor 11H is turned on
  • the NMOS transistor 11L is turned off.
  • Discharge operation for example, from time t3 to t4, the high side pulse signal INH is at the low level, the low side pulse signal INL is at the high level, the NMOS transistor 11H is turned off, and the NMOS transistor 11L is turned on.
  • Cb is a charging operation.
  • time t2 to t3 and time t4 to t5 are phase switching timings, and the back electromotive force stored in the coil of the three-phase AC motor M is generated immediately after switching. *
  • the voltage VC2 across the bootstrap capacitor decreases, for example, from the start time t1 of the discharge period.
  • the capacity is large, the decrease amount of the both-end voltage VC2 during the discharge period is not large, and the both-end voltage VC2 is maintained higher than the threshold V TH for turning on the NMOS transistor 11H in the second half of the discharge period.
  • the bootstrap capacitor Cb of the present embodiment is controlled by the control unit 27 so as to increase the capacity when the motor rotation speed is low. For this reason, the voltage Vb across the bootstrap capacitor Cb is maintained higher than the threshold V TH for turning on the NMOS transistor 11H in the latter half of the discharge period, similarly to VC2.
  • the bootstrap capacitor when the capacity of the bootstrap capacitor is a fixed value and relatively small, the bootstrap capacitor can be charged in a short charging period. Therefore, the voltage VC1 across the bootstrap capacitor becomes sufficiently high during the charging period, and the NMOS transistor 11H can be normally operated in the next discharging period.
  • the bootstrap capacitor Cb of the present embodiment is controlled by the control unit 27 so that the capacity decreases when the motor rotation speed is high. Therefore, the voltage Vb across the bootstrap capacitor Cb can be made sufficiently high during the charging period, similarly to VC1, and the NMOS transistor 11H can be operated normally during the next discharging period.
  • the capacity of the bootstrap capacitor is set according to the motor rotation speed. I changed it. Therefore, it is possible to operate the three-phase AC motor M in a wide rotation speed range.
  • the switches SW1 to SWn and the capacitors C0 to Cn shown in FIG. 2 do not have to be configured by discrete circuits, and may be mounted on a semiconductor (that is, on a chip).
  • the entire gate driver 21 shown in FIG. 2 (high side driver 210H, low side driver 210L, switches SW1 to SWn and capacitors C0 to Cn, level shifter 212, diode 213) may be mounted on the same chip. Thereby, the entire control device 20 can be reduced in size.
  • the capacitors C0 to Cn may use MIM (Metal-Insulator-Metal) capacitance or MOS gate oxide film capacitance formed between the wiring layer on the semiconductor and the insulating layer. *
  • MIM Metal-Insulator-Metal
  • the relationship between the motor speed and the bootstrap capacitor Cb shown in FIG. 3 is merely an example, and can be changed as appropriate.
  • the bootstrap capacitor Cb may not be constant when the motor rotation speed is equal to or lower than the threshold value TH1 or higher than the threshold value TH2.
  • the motor rotation speed and the bootstrap capacitor Cb do not have to be linearly inversely proportional, but may be curved.
  • the Hall sensor is used to detect the position of the rotor
  • a Hall IC may be used instead of the Hall sensor.
  • the signals Hu, Hv, Hw are not sine waves but pulses.
  • the rotation speed of the motor may be calculated from the position information and time information of the Hall sensor or Hall IC, or a speed sensor such as an encoder may be used. Alternatively, the rotational speed of the motor may be estimated without using a sensor, or motor speed information may be obtained from another system.
  • the on / off control of the high-side switch and the low-side switch is performed by 120-degree energization based on the position information of the Hall sensor is described, but the present invention is not limited thereto.
  • the on / off control method for the high-side switch and the low-side switch other energization control methods such as 180-degree energization may be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本発明の一実施形態に係る制御装置は、ハイサイドスイッチを駆動するハイサイド駆動回路部と、ローサイドスイッチを駆動するローサイド駆動回路部と、ハイサイド駆動回路部の出力端子であって、ハイサイドスイッチの制御端子に接続される第1端子と、ローサイド駆動回路部の出力端子であって、ローサイドスイッチの制御端子に接続される第2端子と、ハイサイドスイッチとローサイドスイッチの間の中間ノードに接続される第3端子と、ハイサイド駆動回路の電源端子と第3端子との間に接続されたキャパシタを含むブートストラップ回路部と、モータの回転数に応じてキャパシタの容量を変化させる制御部と、を備える。

Description

制御装置、インバータ装置、モータ駆動システム
本発明は、制御装置、インバータ装置、およびモータ駆動システムに関する。
従来、3相交流モータを駆動するためのインバータ装置として、ローサイドスイッチのON期間に、ローサイドスイッチを通してハイサイドスイッチに対する電源用キャパシタを充電するブートストラップ方式のインバータ装置が知られている。 例えば引用文献1には、上アーム用のIGBTおよび下アーム用のIGBTに対するゲート駆動回路が記載されている。このゲート駆動回路は、ブートストラップ充電ができない期間において、PMOSトランジスタとNMOSトランジスタを交互に駆動する。そして、電源から補助キャパシタへの充電と、この補助キャパシタから電源用キャパシタへの放電とを繰り返すチャージポンプ動作により電源用コンデンサの充電を可能にした、とされている。
日本国公開公報:特開2004-304527号公報
ところで、インバータ装置によってモータを駆動する場合、インバータ装置に印加する電圧を可変とすることによってモータの回転数を変化させるパルス振幅変調(PAM:Pulse Amplitude Modulation)方式を用いる場合、従来の制御ではモータの回転数が制限される虞があった。その理由は以下のとおりである。 
パルス振幅変調によってモータの回転数を制御する場合、モータの回転子の位置を検出するホールセンサの検出信号に基づいてローサイドスイッチおよびハイサイドスイッチに対する制御信号のパルス幅を調整する。このとき、モータの回転数が低い場合には、ブートストラップ用のキャパシタ(以下、「ブートストラップキャパシタ」という。)の放電期間が長くなる。そのため、ブートストラップキャパシタの容量が小さい場合には、ブートストラップキャパシタの両端電圧が大きく低下し、放電期間中にハイサイドスイッチをオンし続けられない場合がある。 他方、モータの回転数が高い場合には、ブートストラップキャパシタの充電期間が短くなる。そのため、ブートストラップキャパシタの容量が大きい場合には、充電期間の間にブートストラップキャパシタを十分に充電できず、その後にハイサイドドライバをオンさせることができない場合がある。以上から、従来の制御ではモータの回転数が制限される虞があった。 
そこで、本発明は、ハイサイドスイッチおよびローサイドスイッチをスイッチング動作させてモータを制御する場合に、モータを広い回転数域で動作可能とすることを目的とする。
本願の例示的な第1発明は、ハイサイドスイッチおよびローサイドスイッチをスイッチング動作させてモータを制御するための制御装置であって、前記ハイサイドスイッチを駆動するハイサイド駆動回路部と、前記ローサイドスイッチを駆動するローサイド駆動回路部と、前記ハイサイド駆動回路部の出力端子であって、前記ハイサイドスイッチの制御端子に接続される第1端子と、前記ローサイド駆動回路部の出力端子であって、前記ローサイドスイッチの制御端子に接続される第2端子と、前記ハイサイドスイッチと前記ローサイドスイッチの間の中間ノードに接続される第3端子と、前記ハイサイド駆動回路の電源端子と前記第3端子との間に接続されたキャパシタを含むブートストラップ回路部と、前記モータの回転数に応じて前記キャパシタの容量を変化させる制御部と、を備える。
本発明によれば、ハイサイドスイッチおよびローサイドスイッチをスイッチング動作させてモータを制御する場合に、モータを広い回転数域で動作可能となる。
実施形態のモータ駆動システムのシステム構成を示す図である。 実施形態の制御装置においてゲート駆動部の構成を示す図である。 実施形態のモータ駆動システムにおいて、モータ回転数に対するブートストラップキャパシタの容量との関係の一例を示す図である。 実施形態のモータ駆動システムにおいて、モータの回転数が低い場合の各部の電圧の例示的なタイミングチャートである。 実施形態のモータ駆動システムにおいて、モータの回転数が高い場合の各部の電圧の例示的なタイミングチャートである。
以下、本発明のモータ駆動システムの複数の実施形態について図面を参照して説明する。 図1は、実施形態のモータ駆動システム1のシステム構成を示す図である。モータ駆動システム1は、インバータ装置2および3相交流モータMを備える。 インバータ装置2は、3相電圧生成部10、制御装置20、および、DC/DCコンバータ25を備え、3相交流電力を発生させて3相交流モータMに供給する。3相交流モータMには、回転子の位置を検出する相ごとのホールセンサ100が取り付けられている。 本実施形態において3相交流電力は、複数相交流電力の一例である。 
(1)インバータ装置2の構成 以下、インバータ装置2の構成を詳細に説明する。 図1に示すように、インバータ装置2の3相電圧生成部10は、ハイサイドのNMOSトランジスタ11H~13H、および、ローサイドのNMOSトランジスタ11L~13Lを備え、各MOSトランジスタには帰還ダイオードが設けられている。 ハイサイドスイッチおよびローサイドスイッチとしてMOSトランジスタに限定するものではなく、バイポーラトランジスタあるいはIGBTを適用してもよい。 
本実施形態では、NMOSトランジスタ11HとNMOSトランジスタ11Lは、3相交流モータMに供給される3相交流電力のU相に対して設けられる。NMOSトランジスタ11HとNMOSトランジスタ11Lとがスイッチング動作を行うことによりU相の出力電圧であるU相電圧Vuが生成される。 同様に、NMOSトランジスタ12HとNMOSトランジスタ12Lは、3相交流モータMに供給される3相交流電力のV相に対して設けられる。NMOSトランジスタ12HとNMOSトランジスタ12Lとがスイッチング動作を行うことによりV相の出力電圧であるV相電圧Vvが生成される。NMOSトランジスタ13HとNMOSトランジスタ13Lは、3相交流モータMに供給される3相交流電力のW相に対して設けられる。NMOSトランジスタ13HとNMOSトランジスタ13Lとがスイッチング動作を行うことによりW相の出力電圧であるW相電圧Vwが生成される。 
NMOSトランジスタ11H~13Hのドレイン端子は、インバータ装置2の入力電圧VINに接続されている。NMOSトランジスタ11L~13Lのソース端子は、グランド電位GNDに設定されている。 
U相のNMOSトランジスタ11Hのソース(ノードN11)は、3相交流モータMのU相の巻線(図示せず)の一端に接続される。同様に、V相のNMOSトランジスタ12Hのソース(ノードN12)は、3相交流モータMのV相の巻線(図示せず)の一端に接続され、W相のNMOSトランジスタ13Hのソース(ノードN13)は、3相交流モータMのW相の巻線(図示せず)の一端に接続される。 
制御装置20は、ハイサイドスイッチであるNMOSトランジスタ11H~13HおよびローサイドスイッチであるNMOSトランジスタ11L~13Lをスイッチング動作させて、3相交流モータMを制御する。 制御装置20は、U相電圧Vu、V相電圧Vv、およびW相電圧Vwがそれぞれ120度の位相差で発生するように、NMOSトランジスタ11H~13HおよびNMOSトランジスタ11L~13Lの上述のスイッチング動作を制御する。 制御装置20は、3相交流モータMの回転子の位置を検出するホールセンサ100の各相の検出値を示す信号Hu,Hv,Hwに基づいて、NMOSトランジスタ11H~13HおよびNMOSトランジスタ11L~13Lの上述のスイッチング動作を制御する。なお、信号Hu,Hv,Hwは、順に120度ずつ位相差がある正弦波信号である。 
本実施形態のモータ駆動システム1では、3相電圧生成部10に入力される直流入力電圧VINの大きさを制御することで3相交流モータMの速度制御を行う(PAM:パルス振幅変調)。そのため、3相電圧生成部10のハイサイドスイッチとしてのNMOSトランジスタ11H~13Hのドレイン端子に入力される電圧VINの振幅は、図示しないチョッパ回路によって決定される。制御装置20は、3相交流モータMの回転数の指令値に基づき、当該チョッパ回路のスイッチ素子のオン期間とオフ期間の比率を調整することで(つまり、PWM制御を行うことで)電圧VINの振幅を調整する。 
(2)制御装置20の構成 以下、制御装置20の構成についてさらに詳しく説明する。 図1に示すように、制御装置20は、ゲート駆動部21~23および制御部27を備える。 ゲート駆動部21はU相のMOSトランジスタ11H,11Lを駆動するために設けられ、ゲート駆動部22はV相のMOSトランジスタ12H,12Lを駆動するために設けられ、ゲート駆動部23はW相のMOSトランジスタ13H,13Lを駆動するために設けられている。 制御部27は、マイクロコントローラを主体として構成されており、ゲート駆動部21~23を制御するとともに、3相交流モータMが所望の回転数となるように制御する。すなわち、制御部27は、上述したように、図示しないチョッパ回路のスイッチ素子を制御してNMOSトランジスタ11H~13Hのドレイン端子に入力される電圧VINの振幅を調整する。それによって、3相交流モータMに供給されるU相電圧Vu、V相電圧Vv、およびW相電圧Vwの振幅が調整されて、3相交流モータMが所望の回転数となる。 なお、DC/DCコンバータ25は、電圧VINを後述するゲート駆動部21~23を動作させるのに適切な所定の直流電圧VDDに変換する。
次に、図2を参照して、本実施形態の制御装置20のゲート駆動部について説明する。図2は、本実施形態の制御装置20においてゲート駆動部21の構成を示す図である。 なお、ゲート駆動部22,23は、ゲート駆動部21と同一の構成であるため、説明を省略する。 
図2に示すように、ゲート駆動部21は、ハイサイドドライバ210H、ローサイドドライバ210L、レベルシフタ212、ダイオード213、キャパシタC0~Cn、および、スイッチSW1~SWnを備える。ハイサイドドライバ210Hに接続されているダイオード213、キャパシタC0~Cn、および、スイッチSW1~SWnは、ブートストラップ回路を構成する。
ハイサイドドライバ210Hは、制御端子H1、電源端子H2、低圧側端子H3、および、出力端子H4の4端子構成である。ローサイドドライバ210Lは、制御端子L1、電源端子L2、低圧側端子L3、および、出力端子L4の4端子構成である。 なお、各ドライバの電源端子は、低圧側端子の電位を基準として各ドライバを動作させるための高圧側の端子である。 
ハイサイドドライバ210H(ハイサイド駆動回路部の例)は、ハイサイドスイッチとしてのNMOSトランジスタ11Hを駆動する。ローサイドドライバ210L(ローサイド駆動回路部の例)は、ローサイドスイッチとしてのNMOSトランジスタ11Lを駆動する。ゲート駆動部21には、制御部27からハイサイド用パルス信号INHおよびローサイド用パルス信号INLが供給される。 制御部27は、ホールセンサ100の検出値に基づいてハイサイド用パルス信号INHおよびローサイド用パルス信号INLを生成することによって、NMOSトランジスタ11HおよびNMOSトランジスタ11Lの導通タイミングを制御する。具体的な処理は以下のとおりである。図1に示したように、制御部27は、U相のホールセンサ100の検出値を示す信号Hu(正弦波の信号)を逐次取得し、信号Huに同期してハイサイド用パルス信号INHおよびローサイド用パルス信号INLを生成する。信号Huの正弦波の周期は、モータ回転数が低い場合には長く、モータの回転数が高い場合には短い。そのため、ハイサイド用パルス信号INHおよびローサイド用パルス信号のパルス幅は、モータ回転数が低い場合には長く、モータの回転数が高い場合には短くなる。
ローサイドドライバ210Lの制御端子L1には、ローサイド用パルス信号INLが入力される。ローサイドドライバ210Lの低圧側端子L3はグランド電位GNDに設定され、ローサイドドライバ210Lの電源端子L2は、DC/DCコンバータ25によって生成された電圧VDDに設定されている。 ローサイドドライバ210Lの出力端子L4は、ローサイドスイッチとしてのNMOSトランジスタ11Lのゲート端子(制御端子)、すなわち端子T2に接続されている。 ローサイドドライバ210Lの出力端子L4の電圧(出力電圧)は、ローサイド用パルス信号INLがローレベルのときにローレベル(GND)となり、ローサイド用パルス信号INLがハイレベルのときにハイレベル(VDD)となる。
ハイサイドドライバ210Hの制御端子H1には、ハイサイド用パルス信号INHをレベルシフタ212によって高圧化した信号が入力される。ハイサイドドライバ210Hの低圧側端子H3は、端子T3を通して3相電圧生成部10のノードN11に接続されている。すなわち、端子T3は、NMOSトランジスタ11HとNMOSトランジスタ11Lの間の中間ノードN11に接続されている。 ハイサイドドライバ210Hの電源端子H2の電圧は、ブートストラップ回路によって供給される。 ハイサイドドライバ210Hの出力端子H4は、ハイサイドスイッチとしてのNMOSトランジスタ11Hのゲート端子(制御端子)、すなわち端子T1に接続されている。 
本実施形態のブートストラップ回路は、ハイサイドドライバ210H(ハイサイド駆動回路部の例)の電源端子H2と端子T3(あるいはノードN11)との間に並列に接続されたキャパシタC0~Cnを含む。キャパシタC1~CnはそれぞれスイッチSW1~SWnと直列に接続されており、各スイッチの導通状態は制御部27から供給される各スイッチに対する制御信号s1~snによって決定される。スイッチSW1~SWnの各々の導通状態は、制御信号s1~snによって個別に制御可能である。 以下の説明では、スイッチSW1~SWnの各々の導通状態によって決定されるキャパシタC1~Cnを総称して、ブートストラップキャパシタCbという。スイッチSW1~SWnがすべてオフのときにブートストラップキャパシタCbの容量が最小値となり、その容量は、キャパシタC0の容量である。スイッチSW1~SWnがすべてオンのときにブートストラップキャパシタCbの容量が最大値となり、その容量は、キャパシタC0~Cnの容量の総和である。 
NMOSトランジスタ11Lがオン、NMOSトランジスタ11Hがオフのときには、ノードN11の電圧はグランドレベルとなる。そのため、DC/DCコンバータ25の出力端子(電圧VDDとなる端子)からノードN11(グランドレベル)に向かって流れる電流によって、ブートストラップキャパシタCbが充電される。このときのブートストラップキャパシタCbの両端電圧をVbとすると、Vb=VDD-V(V:ダイオード213の順方向電圧降下)となる。 次いで、NMOSトランジスタ11Lがオフ、NMOSトランジスタ11Hがオンになると、ノードN11が電圧VINとなるため、ハイサイドドライバ210Hの電源端子H2は、電圧VINにブートストラップキャパシタCbの両端電圧が上乗せされて、VDD-V+VINの電圧となり、この電圧がNMOSトランジスタ11Hのゲート電圧となる。そのため、NMOSトランジスタ11Hのゲート・ソース間電圧VGSは、VDD-Vとなることから、NMOSトランジスタ11Hがオンの状態が維持される。このとき、ダイオード213は非導通状態であり、ハイサイドドライバ210Hに対するフローティング電源が構成される。ハイサイドドライバ210Hがオンの間、ブートストラップキャパシタCbは、ハイサイドドライバ210Hによって放電される。 上述したようにして、ハイサイド用パルス信号INHがハイレベルであるときにブートストラップキャパシタCbは放電し、ローサイドドライバ210LがハイレベルであるときにブートストラップキャパシタCbは充電する。 
(3)ブートストラップキャパシタCbの制御方法 次に、図3を参照して、制御部27によるブートストラップキャパシタCbの好ましい制御方法について説明する。 制御部27は、3相交流モータMの回転数に応じてブートストラップキャパシタCbの容量を変化させる。より具体的な制御方法の一例を図3に示す。図3は、本実施形態のモータ駆動システム1において、モータ回転数に対するブートストラップキャパシタCbの容量との関係の一例を示す図である。 
図3に示すように、制御部27は、3相交流モータMの回転数が第1閾値TH1より小さい場合には、3相交流モータMの回転数が第1閾値TH1以上である場合よりもブートストラップキャパシタCbの容量を増大させる(図3では、Cb1はキャパシタC0~Cnの容量の総和)。このような制御方法を採る理由は以下のとおりである。 制御部27は、ホールセンサ100の検出値を示す信号Hu,Hv,Hw(正弦波の信号)を逐次取得し、信号Hu,Hv,Hwに同期して、各相に対応するハイサイド用パルス信号INHおよびローサイド用パルス信号INLを生成する。ここで、モータ回転数が低い場合には、ブートストラップキャパシタCbの充電期間および放電期間が長くなる。仮にブートストラップキャパシタCbの容量が小さい場合、放電期間が長いために放電期間におけるブートストラップキャパシタCbの両端電圧の低下量が大きく、ハイサイドドライバ210Hの電源端子H2の電圧が低くなることから、放電期間中にハイサイドスイッチ(つまり、NMOSトランジスタ11H)をオンし続けられない場合がある。 そこで、本実施形態では、モータ回転数が低い場合にはブートストラップキャパシタCbの容量を増大させる制御を行うことで、放電期間中のブートストラップキャパシタCbの両端電圧の低下量を抑制する。 
図3に示すように制御部27は、3相交流モータMの回転数が第2閾値TH2より大きい場合には、3相交流モータMの回転数が第2閾値TH2以下である場合よりもブートストラップキャパシタCbの容量を低下させてもよい(図3では、Cb2=キャパシタC0の容量)。このような制御方法を採る理由は以下のとおりである。 モータ回転数が高い場合には、ブートストラップキャパシタCbの充電期間および放電期間が短くなる。仮にブートストラップキャパシタCbの容量が大きい場合、充電期間が短いために充電期間におけるブートストラップキャパシタCbの両端電圧の増加量が小さく、充電期間の最後においてもハイサイドドライバ210Hの電源端子H2の電圧が十分に高くならず、その後にNMOSトランジスタ11Hが正常に動作しない場合がある。 そこで、本実施形態では、モータ回転数が高い場合にはブートストラップキャパシタCbの容量を低下させる制御を行うことで、充電期間中のブートストラップキャパシタCbの両端電圧の増加を促進させる。
(4)モータ駆動システム1の動作 次に、図4および図5を参照して、本実施形態のモータ駆動システム1の動作について説明する。 図4は、本実施形態のモータ駆動システム1において、3相交流モータMの回転数が低い場合の各部の電圧の例示的なタイミングチャートである。図5は、本実施形態のモータ駆動システム1において、3相交流モータMの回転数が高い場合の各部の電圧の例示的なタイミングチャートである。 各タイミングチャートは、U相のみを示しているが、V相およびW相は順に120度ずつ位相がずれている点が異なるのみであり、基本的な動作はU相と同じである。 
なお、図4および図5において、Vbは、本実施形態のブートストラップキャパシタCb(つまり、上記制御方法によって制御されたブートストラップキャパシタCb)の両端電圧を意味する。 図4および図5において、VC1は、本実施形態とは異なり、仮にブートストラップキャパシタの容量が固定値であって比較的小さい場合の、当該ブートストラップキャパシタの両端電圧を参考に示してある。VC2は、本実施形態とは異なり、仮にブートストラップキャパシタの容量が固定値であって比較的大きい場合の、当該ブートストラップキャパシタの両端電圧を参考に示してある。 
図4および図5に示すように、U相のホールセンサ100の検出値を示す信号Huは、例えば時刻t1~t5の期間で1周期となる正弦波信号である。 制御部27は、信号Huを受信すると、時刻t1に同期してローレベルからハイレベルに立上り、かつ時刻t1から120度の位相が進んだタイミングでハイレベルからローレベルに立ち下がるようにして、ハイサイド用パルス信号INHを生成する。また、制御部27は、信号Huを受信すると、時刻t3に同期してローレベルからハイレベルに立上り、かつ時刻t3から120度の位相が進んだタイミングでハイレベルからローレベルに立ち下がるようにして、ローサイド用パルス信号INLを生成する。 
例えば時刻t1~t2では、ハイサイド用パルス信号INHがハイレベルであり、ローサイド用パルス信号INLがローレベルであり、NMOSトランジスタ11Hがオンし、NMOSトランジスタ11Lがオフするため、ブートストラップキャパシタCbは放電動作となる。 また、例えば時刻t3~t4では、ハイサイド用パルス信号INHがローレベルであり、ローサイド用パルス信号INLがハイレベルであり、NMOSトランジスタ11Hがオフし、NMOSトランジスタ11Lがオンするため、ブートストラップキャパシタCbは充電動作となる。 例えば時刻t2~t3、時刻t4~t5は、相の切替タイミングであり、切替直後に3相交流モータMのコイルに蓄えられた逆起電力が発生する。 
(4-1)3相交流モータMの回転数が低い場合(図4) ブートストラップキャパシタの容量が固定値であって比較的小さい場合には、当該ブートストラップキャパシタの両端電圧VC1は、例えば放電期間の開始時刻t1から低下していく。ここで、図4に示すように、3相交流モータMの回転数が低い場合には、ブートストラップキャパシタの放電期間が長い。そのため、両端電圧VC1は、放電期間の後半ではNMOSトランジスタ11Hをオンさせるための閾値VTHよりも低くなる場合がある。 
他方、ブートストラップキャパシタの容量が固定値であって比較的大きい場合であっても、当該ブートストラップキャパシタの両端電圧VC2は、例えば放電期間の開始時刻t1から低下していく。しかし、容量が大きい場合には放電期間中の両端電圧VC2の低下量が大きくなく、両端電圧VC2は、放電期間の後半においてNMOSトランジスタ11Hをオンさせるための閾値VTHよりも高い状態が維持される。 
本実施形態のブートストラップキャパシタCbは、図3に示したように、モータ回転数が低い場合には、容量が大きくなるように制御部27によって制御されている。そのため、ブートストラップキャパシタCbの両端電圧Vbは、VC2と同様に、放電期間の後半においてNMOSトランジスタ11Hをオンさせるための閾値VTHよりも高い状態が維持される。 
(4-2)3相交流モータMの回転数が高い場合(図5) 図5に示すように、3相交流モータMの回転数が高い場合には、ブートストラップキャパシタの充電期間が短い。そのため、ブートストラップキャパシタの容量が固定値であって比較的大きい場合には、当該ブートストラップキャパシタを短い充電期間の中で十分に充電することができない。そのため、当該ブートストラップキャパシタの両端電圧VC2は、充電期間の最後においても低い状態のままであり、次の放電期間においてNMOSトランジスタ11Hの動作に支障を来たす虞がある。 
他方、ブートストラップキャパシタの容量が固定値であって比較的小さい場合には、当該ブートストラップキャパシタを短い充電期間の中で充電することが可能となる。そのため、当該ブートストラップキャパシタの両端電圧VC1は、充電期間中に十分に高くなり、次の放電期間においてNMOSトランジスタ11Hを正常に動作させることができる。 
本実施形態のブートストラップキャパシタCbは、図3に示したように、モータ回転数が高い場合には、容量が小さくなるように制御部27によって制御されている。そのため、ブートストラップキャパシタCbの両端電圧Vbを、VC1と同様に、充電期間中に十分に高くすることができ、次の放電期間においてNMOSトランジスタ11Hを正常に動作させることができる。
以上説明したように、本実施形態のモータ駆動システム1では、ハイサイドスイッチおよびローサイドスイッチをスイッチング動作させて3相交流モータMを制御する場合に、モータ回転数に応じてブートストラップキャパシタの容量を変化させるようにした。そのため、3相交流モータMを広い回転数域で動作させることが可能である。 
以上、本発明のモータ駆動システムの実施形態について詳細に説明したが、本発明の範囲は上記の実施形態に限定されない。また、上記の実施形態は、本発明の主旨を逸脱しない範囲において、種々の改良や変更が可能である。
例えば、図2に示したスイッチSW1~SWnおよびキャパシタC0~Cnはディスクリート回路で構成する必要はなく、半導体上で(すなわちチップ上)で実装されてもい。例えば、図2のゲート駆動部21全体(ハイサイドドライバ210H、ローサイドドライバ210L、スイッチSW1~SWnおよびキャパシタC0~Cn、レベルシフタ212、ダイオード213)が同一チップ上で実装されていてもよい。それによって、制御装置20全体を小型化することができる。その場合、キャパシタC0~Cnは、半導体上の配線層と絶縁層の間に形成されるMIM(Metal-Insulator-Metal)容量やMOSゲート酸化膜容量を利用してもよい。 
上述した実施形態では、3相交流モータの場合を例に挙げて説明したが、その限りではない。複数相の交流モータであればよく、その相の数は問わない。例えば、2相交流モータを適用してもよい。
図3で示したモータ回転数とブートストラップキャパシタCbの関係は一例に過ぎず、適宜変更可能である。例えば、モータ回転数が閾値TH1以下または閾値TH2以上である場合に、ブートストラップキャパシタCbは一定でなくてもよい。モータ回転数が閾値TH1~TH2の範囲において、モータ回転数とブートストラップキャパシタCbは直線的な反比例関係でなくてもよく、曲線的な関係であってもよい。 
上述した実施形態では、回転子の位置を検出するためにホールセンサを用いた場合について記載したが、ホールセンサに代えてホールICを用いてもよい。その場合には、信号Hu、Hv、Hwは正弦波ではなくパルスとなる。 上述した実施形態では、モータの回転数を検出するためにホールセンサによって回転子の位置を検出する例を示したが、その限りではない。モータの回転数は、ホールセンサまたはホールICの位置情報と時間情報とから算出されてもよいし、エンコーダ等の速度センサを用いてもよい。あるいは、センサを用いずにモータの回転数を推定してもよいし、他のシステムからモータの速度情報を取得してもよい。 
上述した実施形態では、ハイサイドスイッチおよびローサイドスイッチのオン・オフ制御が、ホールセンサの位置情報に基づく120度通電によって行われる場合について説明したが、その限りではない。ハイサイドスイッチおよびローサイドスイッチのオン・オフ制御法は、180度通電等の他の通電制御方法を適用してもよい。          

Claims (16)

  1. ハイサイドスイッチおよびローサイドスイッチをスイッチング動作させてモータを制御するための制御装置であって、

     前記ハイサイドスイッチを駆動するハイサイド駆動回路部と、

     前記ローサイドスイッチを駆動するローサイド駆動回路部と、

     前記ハイサイド駆動回路部の出力端子であって、前記ハイサイドスイッチの制御端子に接続される第1端子と、

     前記ローサイド駆動回路部の出力端子であって、前記ローサイドスイッチの制御端子に接続される第2端子と、

     前記ハイサイドスイッチと前記ローサイドスイッチの間の中間ノードに接続される第3端子と、

     前記ハイサイド駆動回路の電源端子と前記第3端子との間に接続されたキャパシタを含むブートストラップ回路部と、

     前記モータの回転数に応じて前記キャパシタの容量を変化させる制御部と、

     を備えた制御装置。
  2. 前記制御部は、前記モータの回転数が第1閾値より小さい場合には、前記モータの回転数が前記第1閾値以上である場合よりも前記キャパシタの容量を増大させる、

     請求項1に記載された制御装置。
  3. 前記制御部は、前記モータの回転数が第2閾値より大きい場合には、前記モータの回転数が前記第2閾値以下である場合よりも前記キャパシタの容量を低下させる、

     請求項1または2に記載された制御装置。
  4. 前記キャパシタは、互いに並列に接続された複数のキャパシタを有し、

    前記制御部は、前記複数のキャパシタの各々に直列接続されたスイッチの導通状態を個別に制御する、

    請求項1から3のいずれか1項に記載された制御装置。
  5. 前記ハイサイド駆動回路部、前記ローサイド駆動回路部、前記複数のキャパシタ、および、前記複数のキャパシタの各々に直列接続されたスイッチが同一チップ上に実装されている、

     請求項4に記載された制御装置。
  6. 複数相交流電力の相ごとに設けられたハイサイドスイッチおよびローサイドスイッチと、

     前記ハイサイドスイッチおよび前記ローサイドスイッチをスイッチング動作させる制御装置と、

     を備え、前記複数相交流電力をモータに供給するインバータ装置であって、

     前記制御装置は、

      前記ハイサイドスイッチを駆動するハイサイド駆動回路部と、

      前記ローサイドスイッチを駆動するローサイド駆動回路部と、

      前記ハイサイド駆動回路の電源端子と、前記ハイサイドスイッチと前記ローサイドスイッチの間の中間ノードとの間に接続されたキャパシタを含むブートストラップ回路部と、

      前記モータの回転数に応じて前記キャパシタの容量を変化させる制御部と、を備えた、

     インバータ装置。
  7. 前記制御部は、前記モータの回転数が第1閾値より小さい場合には、前記モータの回転数が前記第1閾値以上である場合よりも前記キャパシタの容量を増大させる、

     請求項6に記載されたインバータ装置。
  8. 前記制御部は、前記モータの回転数が第2閾値より大きい場合には、前記モータの回転数が前記第2閾値以下である場合よりも前記キャパシタの容量を低下させる、

     請求項6または7に記載されたインバータ装置。
  9. 前記キャパシタは、互いに並列に接続された複数のキャパシタを有し、

    前記制御部は、前記複数のキャパシタの各々に直列接続されたスイッチの導通状態を個別に制御する、

    請求項6から8のいずれか1項に記載されたインバータ装置。
  10. 前記ハイサイド駆動回路部、前記ローサイド駆動回路部、前記複数のキャパシタ、および、前記複数のキャパシタの各々に直列接続されたスイッチが同一チップ上に実装されている、

     請求項9に記載されたインバータ装置。
  11. モータと、

    複数相交流電力の相ごとに設けられたハイサイドスイッチおよびローサイドスイッチを含み、前記複数相交流電力を前記モータに供給するインバータ装置と、

    前記ハイサイドスイッチおよび前記ローサイドスイッチをスイッチング動作させる制御装置と、

    を備えたモータ駆動システムであって、

    前記制御装置は、

    前記ハイサイドスイッチを駆動するハイサイド駆動回路部と、

    前記ローサイドスイッチを駆動するローサイド駆動回路部と、

    前記ハイサイド駆動回路の電源端子と、前記ハイサイドスイッチと前記ローサイドスイッチの間の中間ノードとの間に接続されたキャパシタを含むブートストラップ回路部と、

    前記モータの回転数に応じて前記キャパシタの容量を変化させる制御部と、を備えた、

    モータ駆動システム。
  12. 前記制御部は、前記モータの回転数が第1閾値より小さい場合には、前記モータの回転数が前記第1閾値以上である場合よりも前記キャパシタの容量を増大させる、

     請求項11に記載されたモータ駆動システム。
  13. 前記制御部は、前記モータの回転数が第2閾値より大きい場合には、前記モータの回転数が前記第2閾値以下である場合よりも前記キャパシタの容量を低下させる、

     請求項11または12に記載されたモータ駆動システム。
  14. 前記キャパシタは、互いに並列に接続された複数のキャパシタを有し、

    前記制御部は、前記複数のキャパシタの各々に直列接続されたスイッチの導通状態を個別に制御する、

    請求項11から13のいずれか1項に記載されたモータ駆動システム。
  15. 前記ハイサイド駆動回路部、前記ローサイド駆動回路部、前記複数のキャパシタ、および、前記複数のキャパシタの各々に直列接続されたスイッチが同一チップ上に実装されている、

     請求項14に記載されたモータ駆動システム。
  16. 前記モータの回転子の位置を検出するセンサを備え、

    前記制御部は、前記センサの検出値に基づいて前記ハイサイドスイッチおよび前記ローサイドスイッチの導通タイミングを制御する、

    請求項11から15のいずれか1項に記載されたモータ駆動システム。
PCT/JP2019/002250 2018-02-13 2019-01-24 制御装置、インバータ装置、モータ駆動システム WO2019159630A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018022751 2018-02-13
JP2018-022751 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019159630A1 true WO2019159630A1 (ja) 2019-08-22

Family

ID=67619389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002250 WO2019159630A1 (ja) 2018-02-13 2019-01-24 制御装置、インバータ装置、モータ駆動システム

Country Status (1)

Country Link
WO (1) WO2019159630A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1118442A (ja) * 1997-06-30 1999-01-22 Matsushita Electric Ind Co Ltd インバータ装置の駆動回路
JP2009284719A (ja) * 2008-05-26 2009-12-03 Toyota Motor Corp インバータの制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1118442A (ja) * 1997-06-30 1999-01-22 Matsushita Electric Ind Co Ltd インバータ装置の駆動回路
JP2009284719A (ja) * 2008-05-26 2009-12-03 Toyota Motor Corp インバータの制御装置

Similar Documents

Publication Publication Date Title
US6528968B2 (en) Brushless-motor driver in PWM mode
JP3304129B2 (ja) モータ駆動装置及び方法
KR101198566B1 (ko) 다상 인버터 및 그 제어 방법, 및 송풍기 및 다상 전류출력 시스템
KR101240905B1 (ko) 모터 구동 회로
US8390241B2 (en) Motor drive based on III-nitride devices
US10063167B2 (en) Motor drive controller and method for controlling motor
US9614471B2 (en) Motor controller and method for controlling motor
CN104901576A (zh) 逆变器装置以及空调机
CN112448623A (zh) 马达驱动电路及方法
US6323609B1 (en) Alternate high-side/low-side PWM operation of brushless motors
JP3716702B2 (ja) ブートストラップキャパシタの充電方法
JP2004201453A (ja) 直流3相ブラシレスモータの駆動装置
JP2005020919A (ja) 電動機の制御装置
JP5896564B2 (ja) インバータ装置
WO2019159630A1 (ja) 制御装置、インバータ装置、モータ駆動システム
JP2020025435A (ja) 集積回路及びモータ装置
JP2003348880A (ja) モータの制御装置およびその制御方法
JP6939087B2 (ja) 集積回路装置
JP3607057B2 (ja) 駆動回路
US20220173734A1 (en) Drive circuit and drive system
JP3039591B2 (ja) インバータ回路
JP2012005295A (ja) モータ駆動回路
EP3493394A1 (en) Motor controller
JP6476890B2 (ja) スイッチング素子の駆動装置
JP2002136150A (ja) インバータ回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP