WO2019159286A1 - 経路制御装置及び中継装置 - Google Patents

経路制御装置及び中継装置 Download PDF

Info

Publication number
WO2019159286A1
WO2019159286A1 PCT/JP2018/005278 JP2018005278W WO2019159286A1 WO 2019159286 A1 WO2019159286 A1 WO 2019159286A1 JP 2018005278 W JP2018005278 W JP 2018005278W WO 2019159286 A1 WO2019159286 A1 WO 2019159286A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
mobile communication
session
path
upf
Prior art date
Application number
PCT/JP2018/005278
Other languages
English (en)
French (fr)
Inventor
宏司 坪内
榑林 亮介
アシック カーン
賢二 福井
アナラ ゾリーグ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2018/005278 priority Critical patent/WO2019159286A1/ja
Publication of WO2019159286A1 publication Critical patent/WO2019159286A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/20Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/14Backbone network devices

Definitions

  • the present invention relates to a route control device and a relay device for relaying packets of a mobile communication network.
  • UPF User Plane Function
  • DN data network
  • a packet is sent to a UPF different from a UPF designated as a normal transfer destination or an LDN (local DN) that is an external network dispersed in a region.
  • UL CL Uplink Classifier
  • UL CL is set for each UPF.
  • LDN can be used to return communication. If communication is looped back by LDN, the moving distance of the packet can be shortened, that is, communication can be optimized as compared with the case of looping communication by DN.
  • the present invention has been made in view of the above, and provides a path control device and a relay device capable of reliably delivering a packet to a mobile communication terminal while shortening the moving distance of the packet in a mobile communication network
  • the purpose is to do.
  • a route control device is a route control device included in a mobile communication network including a plurality of relay devices, and is located in a mobile communication network.
  • Basics for generating a communication path for transmitting and receiving packets between a predetermined external network and the mobile communication terminal connected to the mobile communication network to any of a plurality of relay devices with respect to the communication terminal For the route generation unit and the mobile communication terminal, generate an extended communication route that is a communication route for transmitting packets to the mobile communication terminal to a relay device other than the relay device on the communication route generated by the basic route generation unit A stretching path generating unit.
  • the relay apparatus in addition to the communication path for transmitting and receiving packets between the mobile communication terminal and the external network, the relay apparatus other than the relay apparatus on the communication path, A communication path for transmitting a packet to the mobile communication terminal, that is, an extended communication path that is a downlink communication path is generated. Therefore, even when a relay device other than the relay device on the communication path receives a packet addressed to the mobile communication terminal, the packet can be transmitted to the mobile communication terminal through the extended communication path. Therefore, according to the route control device according to the embodiment of the present invention, in the mobile communication network, the packet can be surely delivered to the mobile communication terminal after the moving distance of the packet is shortened.
  • the extended route generation unit includes a relay device that relays a packet transmitted in the mobile communication network, and the mobile communication terminal of the destination according to the destination of the packet. It is good also as producing
  • a relay apparatus is a relay apparatus in which a communication path for a mobile communication terminal is generated by the above-described path control apparatus, and a relay unit that relays a packet according to the communication path and a relay unit that receives the packet
  • a determination unit that determines whether or not a communication path for the mobile communication terminal that is the destination of the received packet has been generated in the self-device, and notifies the mobile communication terminal that is the destination of the packet to the path control device according to the determination of the determination unit A notification unit.
  • route control device and relay device it is possible to generate an appropriate extended communication route according to the packet transmitted in the mobile communication network.
  • the packet even when a relay device other than the relay device on the communication path receives a packet addressed to the mobile communication terminal, the packet is transmitted to the mobile communication terminal through the extended communication path. be able to. Therefore, according to one embodiment of the present invention, in the mobile communication network, the packet can be reliably delivered to the mobile communication terminal after the packet moving distance is shortened.
  • FIG. 1 shows an SMF (Session Management Function) 10 which is a path control device according to the present embodiment.
  • the SMF 10 is included in the mobile communication network N.
  • the mobile communication network N is a communication network that provides the UE 30 with a mobile communication function.
  • the mobile communication network N according to the present embodiment is, for example, a 5G mobile communication network.
  • the mobile communication network is not necessarily a 5G mobile network and may be a mobile communication network having a framework conforming to the present embodiment.
  • the SMF 10 is a node that performs session management in the mobile communication network N.
  • the UPF 40 is a relay device that relays user data that is a packet transmitted and received by the UE 30 in the mobile communication network N.
  • the UPF 40 is connected to another preset UPF 40 and transmits / receives a packet to / from another connected UPF 40 or the like to relay the packet.
  • the gNB 50 is a node having a base station function.
  • the gNB 50 is connected to any one of the plurality of UPFs 40 and relays a packet transmitted / received by the UE 30 under its control with the UPF 40.
  • the UPF 40 and the gNB 50 are usually provided for each position in the communication area of the mobile communication network N. Packets transmitted and received by the UE 30 are relayed by the gNB 50 close to the position of the UE 30 and the UPF 40 connected to the gNB 50.
  • the SMF 10 and the UPF 40 are directly or indirectly connected, and can transmit and receive information to and from each other.
  • the SMF 10 may normally have functions provided by the SMF.
  • the SMF 10 includes a basic route generation unit 11, a transfer control unit 12, and an extension route generation unit 13.
  • the basic path generation unit 11 connects the UE 30 located in the mobile communication network N to any one of the plurality of UPFs 40 and is connected to the mobile communication network N and between the external network set in advance and the UE 30. Is a functional unit that generates a communication path for transmitting and receiving packets.
  • one UPF 40 (“UPF0” in FIG. 1) among a plurality of UPFs 40 is connected to a DN (data network) 60 that is an external network outside the mobile communication network N.
  • DN data network
  • the UE 30 transmits a packet via the mobile communication network N
  • the packet is once transmitted from the mobile communication network N to the DN 60. Therefore, in the mobile communication network N, a session including a communication path related to the UE 30 is generated between the UE 30 and the DN 60.
  • the basic route generation unit 11 detects a UE 30 that is a generation target of a session, and generates a session for the UE 30.
  • the UE 30 for which a session is to be generated is, for example, a UE 30 that is newly located in the mobile communication network N, or a UE 30 in which a previous session becomes unavailable due to movement within a communication area or the like. Detection of the UE 30 as a session generation target and generation of a session can be performed in the same manner as in the conventional SMF.
  • the basic route generation unit 11 notifies the transfer control unit 12 and the extension route generation unit 13 of information related to the generated session.
  • Session will be provided on UPF40.
  • session information (route information, tunnel end point information) SI1 related to the session is generated in the UPF 40 and gNB 50 constituting the session.
  • the session S1 up to the DN 60 of “UE1” is connected to the gNB 50 that places “UE1” under control, “UPF1” and “UPF1” connected to the gNB50. It is generated via “UPF0”.
  • a packet from “UE1” is transmitted to DN 60 via UPF 40 having this session S1 (UPF 40 on the communication path formed by session S1), and a packet to “UE1” is transmitted from DN 60. That is, in the mobile communication network N, tree-based routing is performed with “UPF0” connected to the DN 60 as an anchor.
  • a router (not shown) included in the DN 60 stores information of the route table shown in FIG. 4 in advance.
  • the routing table associates a packet destination with a next hop that is information indicating a node to which the router next transmits the packet.
  • the destination is, for example, the IP address of the UE 30 that is the destination of the packet, or a subnet address indicating the range of the IP address.
  • the next hop is the IP address of the above node.
  • the router of the DN 60 shown in FIGS. 1 and 3 stores the route table shown in FIG.
  • the route table shown in FIG. 4A indicates that a packet addressed to any UE 30 located in the mobile communication network N is transmitted to “UPF0”.
  • the router of the DN 60 receives the packet from the mobile communication network N from “UPF0” and transmits it according to the route table. Therefore, the router of the DN 60 transmits a packet addressed to any UE 30 located in the mobile communication network N to “UPF0” according to the route table.
  • the above-described loopback is not performed for packets destined for other than the UE 30 located in the mobile communication network N, and is transferred to another network or the like according to the destination.
  • the transfer control unit 12 causes the UPF 40 having the session S1 generated by the basic route generation unit 11 to transfer the packet from the UE 30 to an external network connected to the UPF 40 and different from the DN 60 according to the destination of the packet. It is a functional part to control as follows.
  • the UPF 40 since the UPF 40 is usually provided for each communication area of the mobile communication network N, if the packet is transmitted to the DN 60 and turned back, the moving distance of the packet may become long.
  • the above-described UL CL is used.
  • the UL CL sends a packet that satisfies certain conditions to the UPF 40 to a transfer destination different from the communication path described in the session S1 (that is, a transfer destination different from the UPF 40 or the like designated as a normal transfer destination). It is for making it happen.
  • a packet addressed to another UE 30 located in the mobile communication network N is transmitted to an LDN (local DN) 70 that is an external network dispersed in a region rather than in a direction toward the DN 60.
  • LDN local DN
  • UL CL is information describing a rule for transferring a packet. For example, as shown in FIG. 5, UL CL associates a packet destination with a next hop that is information indicating a node to which the UPF 40 transmits the packet next.
  • the destination is, for example, the IP address of the UE 30 that is the destination of the packet, or a subnet address indicating the range of the IP address.
  • the next hop is the IP address of the above node.
  • UL CL is set in the UPF 40 having the session S1 of the UE 30 for each UE 30.
  • the UPF 40 closest to the gNB 50 in the communication path formed by the session (the UPF 40 connected to the gNB 50) is set.
  • UL CL for transmitting a packet addressed to an arbitrary UE 30 located in the mobile communication network N to “LDN1” is set in “UPF1”.
  • the UL CL has priority over the session. That is, when the received packet meets the conditions set in the UL CL, the UPF 40 transmits the packet to the destination set in the UL CL instead of the destination specified by the session.
  • the transfer control unit 12 receives a notification of information related to the session generated from the basic route generation unit 11.
  • the transfer control unit 12 performs the above-described control by setting the UL CL in the UPF 40 having the session S1.
  • the setting of UL CL can be performed in the same manner as the conventional SMF.
  • the transfer control unit 12 stores in advance the UPF 40 to which UL CL is to be set and the UL CL to be set, and among those UPFs 40, the UPF 40 having the session S1 generated by the basic route generation unit 11 is UL.
  • Set CL The UPF 40 that should set the UL CL is, for example, the UPF 40 connected to the LDN 70.
  • the route table is stored in the router similarly to the DN 60, and the packet is transferred according to the route table. Even in the LDN 70, the packet between the UEs 30 located in the mobile communication network N is returned as in the DN 60.
  • the router of “LDN1” connected to “UPF1” stores the route table shown in FIG. 4B in advance, and the packet is returned according to the route table. As described above, since the packet is folded by the LDN 70 instead of the DN 60, the moving distance of the packet can be shortened.
  • the extension path generation unit 13 transmits a packet (that is, a downlink packet in the downlink direction) to the UE 30 to the UPF 40 other than the UPF 40 having the session S1 generated by the basic path generation unit 11 for the UE 30. It is a functional unit that generates a stretching communication path, that is, a stretching session.
  • the session S1 generated by the basic route generation unit 11 is for relaying both the packet transmitted from the UE 30 and the packet transmitted to the UE 30, but the extension session relays the packet transmitted to the UE 30. If it is to do. That is, the session S1 generated by the basic route generation unit 11 is in both the uplink and downlink directions, but the extension session only needs to be in the downlink direction. However, the stretching session may be in both upward and downward directions.
  • the extension route generation unit 13 receives a notification of information related to the session generated from the basic route generation unit 11.
  • the extended path generation unit 13 generates an extended session so that a packet reaches each UPF 40 having the session S1 generated by the basic path generation unit 11 from each LDN 70 connected to the mobile communication network N.
  • the extension path generation unit 13 stores topology information indicating a connection relationship between the UPF 40, the DN 60, and the LDN 70 in advance, and generates an extension session as described above based on the topology information.
  • the extension path generation unit 13 generates the extension session for each UPF 40 that previously places the UE 30 under control (the UPF 40 closest to the UE 30 on the communication path formed by the session of the UE 30) (the UPF 40 that accommodates the UE 30). May be stored.
  • the UPF 40 in which the extension session is generated may be all the UPFs 40 other than the UPF 40 having the UE 30 session, or may be all the UPFs 40 connected to the LDN 70 among the UPFs 40 other than the UPF 40 having the UE 30 session.
  • the generation of the extension session is the same as the generation of the conventional session, except that the session is a downlink session and the UPF 40 has any session S1 generated by the basic route generation unit 11. Can be done.
  • the session information SI2 is stored in “UPF2” so that the packet from “LDN2” reaches “UPF1” having the session S1 generated by the basic route generation unit 11.
  • the stretching session S2 is generated.
  • the session information SI2 is generated in “UPF3” and the extended session S2 is generated so that the packet from “LDN3” reaches “UPF1” having the session S1 generated by the basic route generation unit 11. .
  • the packet addressed to the UE 30 is returned from the LDN 70 other than the LDN 70 connected to the UPF 40 having the session S1 generated by the basic path generation unit 11 (that is, the LDN 70 other than the nearest LDN 70) by the extension session S2,
  • the packet can be transferred to the UE 30.
  • the mobile communication network N may transmit the packet to the UE 30. Cannot (packet loss). For example, when “UE2” under “UPF2” illustrated in FIG. 3 transmits a packet to “UE1” under “UPF1”, the packet is returned from “LDN2” to “UPF2”. Since the session S1 generated by the basic route generation unit 11 is not provided on the UPF 2, the mobile communication network N cannot transmit a packet to “UE1”.
  • “UPF2” can transmit the packet to “UPF1” having the session S1 generated by the basic route generation unit 11 by the extension session S2, and the mobile communication network N The packet can be sent to “UE1”.
  • the basic route generation unit 11 When the UE 30 becomes under the control of another UPF 40 due to the movement of the UE 30, the basic route generation unit 11 generates a new session S1 for the new UPF 40, and the transfer control unit 12 sets a new UL CL.
  • the extension path generation unit 13 generates a new extension session S2. That is, the session is moved to a new UPF 40 as the UE 30 moves.
  • the old session S1, UL CL, and extension session S2 for the UE 30 are deleted.
  • the above is the function according to the present embodiment of the SMF 10.
  • the basic route generation unit 11 detects a UE 30 that is a generation target of a session (S01). Subsequently, the basic path generation unit 11 generates a session S1 between the UE 30 and the DN 60 for the UE 30 (S02). Subsequently, UL CL is set in the UPF 40 having the session S1 by the transfer control unit 12 (S03). Subsequently, the stretching route generation unit 13 generates a stretching session S2 in the UPF 40 other than the UPF 40 having the session S1 (S04). In the mobile communication network N, packets are relayed based on the generated session and the set UL CL. The above is the processing executed by the SMF 10 according to the present embodiment.
  • a session for transmitting a packet to the UE 30 to the UPF 40 other than the UPF 40 having the session S1, that is, An extension session S2, which is a downstream session, is generated. Therefore, even when the UPF 40 other than the UPF 40 having the session S1 receives the packet addressed to the UE 30 by the loopback from the LDN 70, the packet can be transmitted to the UE 30 by the extension session S2. Therefore, according to the present embodiment, in the mobile communication network N, it is possible to reliably reach the UE 30 after shortening the moving distance of the packet.
  • the UPF 40 in which the extension session S2 is generated may be all UPFs 40 other than the UPF 40 having the UE 30 session, or is connected to the LDN 70 among the UPFs 40 other than the UPF 40 having the UE 30 session. All UPF40s may be used. According to this configuration, when there are a large number of UPFs 40 in the mobile communication network N, the number of UPFs 40 that generate the extension session S2 increases accordingly, and there is a risk of excessive consumption of resources of the mobile communication network N. .
  • the extension route generation unit 13 assigns the extension session S2 to the UPF 40 having a preset positional relationship with the UPF 40 having the session S1 among the UPFs 40 other than the UPF 40 having the session S1 generated by the basic route generation unit 11. It is good also as not producing
  • the extended session S2 is placed in the UPF 40 that is geographically close to the UPF 40 that is placed under the UE 30 and connected to the LDN 70 (for example, “UPF 1” for “UE 1” in FIG. 3). It may be generated.
  • the extension session S2 may be generated in the UPF 40 that is adjacent to the UPF 40 in which the UE 30 is placed (directly connected UPF 40) and connected to the LDN 70.
  • the extension path generation unit 13 may specify the UPF 40 adjacent to the UPF 40 from the previously stored topology information or may store it in advance. For example, for “UE1” in FIG. 3, the extension session S2 is generated in “UPF2” adjacent to “UPF1”, and the extension session S2 is not generated in “UPF3” adjacent to “UPF1”.
  • the extension session S2 may be generated only in a limited range as described above. Packets are relayed appropriately.
  • the UL CL generated by the transfer control unit 12 may be set so that the packet can be relayed without any packet loss. Specifically, the UL CL transmits to the LDN 70 only packets addressed to the UE 30 in which the session S1 or the extension session S2 is set in the UPF 40 in which the UL CL is set.
  • the transfer control unit 12 controls to transfer a packet depending on whether the packet to be transferred is a packet addressed to the UE 20 in which the session S1 or the extension session S2 is generated in the UPF 40 that performs the transfer. Therefore, for each UPF 40 connected to the LDN 70, the transfer control unit 12 has a UE 30 under the UPF 40 (that is, a UE 30 in which the session S1 is generated in the UPF 40) and a UPF 40 adjacent to the UPF 40.
  • the UE 30 (that is, the UE 30 in which the extension session S2 is generated in the UPF 40 adjacent to the UPF 40) is listed. The list can be generated by the mobility management function of the UE 30 in the mobile communication network N.
  • the transfer control unit 12 sets a UL CL that transmits packets addressed to the UE 30 corresponding to the list to the LDN 70, and transmits other packets addressed to the UE 30 to the DN 60 without transmitting to the LDN 70.
  • UE30-UE30 communication (communication between UE30) is optimized for UE30 in the list, and communication is not optimized for UE30 that is not in the list, but communication is returned by DN 60 at the anchor destination.
  • the packet is relayed via the DN 60.
  • the packet can be delivered to the UE 30.
  • the extension route generation unit 13 is generated for a preset UE 30 (not the UE 30 that is the generation target of the extension session S2) among the UPFs 40 other than the UPF 40 having the session S1 generated by the basic route generation unit 11.
  • the stretching session S2 may be generated in the UPF 40 having the session S1.
  • the extension path generation unit 13 stores in advance a list of UEs 30 that perform UE30-UE30 communication, places the UE 30 in the list under control, and generates an extension session S2 in the UPF 40 connected to the LDN 70. Also good.
  • the extension path generation unit 13 can grasp the UPF 40 under which the UE 30 is placed by the mobility management function of the UE 30 in the mobile communication network N.
  • generation part 13 is good also as producing
  • the extension path generation unit 13 regenerates the extension session S2 of the UE 30 in the list other than the moved UE 30 (also the extension session S2). Move together).
  • the unnecessary extension session S2 is not generated in the UPF 40 that is not under the control of the UE 30 that performs UE 30-UE 30 communication, so resources of the mobile communication network N can be saved.
  • the UL CL generated by the transfer control unit 12 may be set so that the packet can be relayed without any packet loss. Specifically, the UL CL transmits only packets addressed to the UE 30 in the list to the LDN 70.
  • the transfer control unit 12 controls to transfer a packet according to whether or not the packet to be transferred is a preset packet addressed to the UE 30.
  • the transfer control unit 12 sets a UL CL that transmits packets addressed to the UE 30 corresponding to the list to the LDN 70, and transmits other packets addressed to the UE 30 to the DN 60 without transmitting to the LDN 70.
  • UE30-UE30 communication (communication between UE30) is optimized for UE30 in the list, and communication is not optimized for UE30 that is not in the list, but communication is returned by DN 60 at the anchor destination. Is possible. That is, for the UE 30 that cannot transfer the packet when the packet is returned by the LDN 70, the packet can be relayed via the DN 60 to reach the UE 30.
  • the stretching session S2 is generated when the session S1 is generated.
  • an extension session S2 required when a packet is transmitted is generated.
  • the necessary extension session S2 is generated, so that resource consumption of the mobile communication network N can be suppressed.
  • the apparatus configuration according to the present embodiment is the same as the apparatus configuration according to the first embodiment.
  • the functions of the SMF 10 and the UPF 40 are different from those of the first embodiment, and only different points will be described. Points that are not particularly described are the same as in the first embodiment.
  • FIG. 7 shows the SMF 110 and the UPF 140 according to this embodiment.
  • the UPF 140 according to the present embodiment is a UPF 140 connected to the LDN 70 (corresponding to “UPF1”, “UPF2”, and “UPF3” in the example of FIG. 1).
  • the UPF 140 includes a relay unit 141, a determination unit 142, and a notification unit 143.
  • the relay unit 141 is a functional unit that relays a packet according to the session S1 or the extension session S2 generated in the own device. If UL CL is set in the own device 140, the packet is transmitted according to UL CL. The packet relay according to the session S1 or the extension session S2 and the packet transmission according to the UL CL are performed in the same manner as before. In addition, when the received relay target packet is an uplink packet, that is, a packet received from the UE 30 via the gNB 50, the relay unit 141 outputs the packet to the determination unit 142.
  • the determination unit 142 is a functional unit that determines whether or not the session S1 or the extension session S2 for the destination UE 30 of the packet received by the relay unit 141 is generated in the own device 140.
  • the determination unit 142 receives a packet from the relay unit 141.
  • the determination unit 142 performs the above determination by confirming whether or not the session information SI1 and SI2 for the UE 30 that is the destination of the input packet is held in the own device 140. For example, in FIG. 8, when a packet addressed to “UE2” is transmitted from “UE1”, it is determined whether the session S1 or the extension session S2 of “UE2” is generated in “UPF1”.
  • the determination unit 142 determines that the session S1 or the extension session S2 for the UE 30 that is the destination of the packet is generated in the own device 140, the determination unit 142 instructs the relay unit 141 to relay the packet.
  • the relay unit 141 relays the packet.
  • the relay unit 141 transmits a packet transmitted from the UE 30 to the UE 30 to the LDN 70 by UL CL as described above.
  • the relay unit 141 relays the packet returned from the LDN 70 through the session S1 or the extension session S2 for the UE 30.
  • the determination unit 142 determines that the session S1 or the extension session S2 for the UE 30 that is the destination of the packet is not generated in the own device 140, the determination unit 142 notifies the notification unit 143 of the UE 30 that is the destination of the packet. For example, in FIG. 8, when a packet addressed to “UE2” is transmitted from “UE1”, “UE2” is determined to be “UE2” if it is determined that “UE2” session S1 or extension session S2 is not generated in “UPF1”. Be notified.
  • the notification unit 143 is a functional unit that notifies the SMF 110 of the UE 30 that is the destination of the packet in accordance with the determination of the determination unit 142.
  • the notification unit 143 receives the notification of the UE 30 from the determination unit 142.
  • the notification unit 143 transmits information indicating the notified UE 30 to the SMF 110 and notifies the SMF 110 of the destination UE 30 of the packet.
  • the SMF 110 includes a basic route generation unit 111, a transfer control unit 112, and an extended route generation unit 113.
  • the basic route generation unit 111 and the transfer control unit 112 have the same functions as the basic route generation unit 11 and the transfer control unit 12 of the first embodiment, respectively.
  • the extension path generation unit 113 generates an extension session S2 for the destination UE 30 according to the UPF 140 that relays the packet transmitted in the mobile communication network N and the destination of the packet.
  • the extension path generation unit 113 receives notification of the packet destination UE 30 from the UPF 140.
  • the extension path generation unit 113 generates an extension session S2 for transmitting a packet (downlink packet) to the UE 30 from the notified UPF 140.
  • the extension path generation unit 13 can grasp the UPF 40 under which the UE 30 is placed by the mobility management function of the UE 30 in the mobile communication network N.
  • the extension session S2 allows the UPF 140 to relay the packet addressed to the UE 30 that is returned from the LDN 70. For example, in FIG. 8, when “UE2” is notified from “UPF1”, an extension session S2 from “UPF1” to “UE2” is generated (in FIG. 8, session S1 is omitted). .
  • the stretching route generation unit 113 notifies the UPF 140 that it has generated the stretching session S2.
  • the relay unit 141 Upon receiving the notification in the UPF 140, the relay unit 141 relays the packet.
  • the relay unit 141 transmits a packet transmitted from the UE 30 to another UE 30 to the LDN 70 by UL CL as described above.
  • the relay unit 141 relays the packet returned from the LDN 70 through the generated extension session S2.
  • the extension route generation unit 113 may generate an extension session S2 for the UE 30 that is the transmission source of the packet.
  • the notification unit 143 of the UPF 140 notifies the SMF 110 of the packet transmission source UE 30 together with the packet destination UE 30.
  • the extension path generation unit 113 receives a notification from the UE 30 that is a packet transmission source from the UPF 140.
  • the extension path generation unit 113 transmits a packet (downlink packet) from the UPF 40 returned from the LDN 70 to the source UE 30 when transmitting a packet from the notified destination UE 30 to the source UE 30.
  • a stretching session S2 is generated. By the extension session S2, the UPF 140 can relay the packet addressed to the source UE 30 that is returned from the LDN 70.
  • This extension session S2 is not used for relaying the packet that triggered the generation of the extension session S2. However, after that, when another packet is transmitted from the destination of the packet to the transmission source of the packet (that is, in the reverse direction), it is used for relaying the other packet.
  • the above is the function of the SMF 110 and the UPF 140 according to the present embodiment.
  • the packet is received by the relay unit 141 (S11).
  • the determination unit 142 determines whether or not the session S1 or the extension session S2 for the UE 30 that is the destination of the packet is generated in the device 140 (S12).
  • the relay unit 141 relays the packet (sent to the LDN 70), and the session S1 or the extension session S2 Thus, the packet is transmitted to the destination UE 30 (not shown).
  • the UE 30 that is the packet destination is notified from the notification unit 143 to the SMF 110 (S13).
  • the extension path generation unit 113 receives the notification, and generates an extension session S2 for the destination UE 30 according to the UPF 140 that relays the packet and the destination of the packet (S14).
  • the UPF 140 is notified from the extension path generation unit 113 to that effect.
  • the UPF 140 relays the packet by the relay unit 141 (transmits to the LDN 70), and transmits the packet to the destination UE 30 by the generated extension session S2 (S16).
  • the above is the processing executed by the SMF 110 and UPF 140 according to the present embodiment.
  • the extended session S2 is generated according to the packet transmitted as described above, only the minimum extended session S2 necessary for communication can be generated. As a result, consumption of resources of the mobile communication network N can be suppressed.
  • the necessary extension session S2 can be generated collectively. .
  • the extension path generation unit 113 may generate an extension session for the destination UE 30 of the packet according to the transmission source of the packet that has triggered the generation of the extension session S2. Specifically, the extension path generation unit 113 stores a combination of the transmission source UE 30 and the destination UE 30 of the packet related to the extension session S2 generated as described above. For example, the extension path generation unit 113 stores UE-UE correspondence information indicating a combination of UEs 30 in the table shown in FIG.
  • the extension path generation unit 113 When one UE 30 in the combination moves under another UPF 40, the extension path generation unit 113 newly generates an extension session S2 of both UEs 30 in the combination.
  • the extended path generation unit 113 generates an extended session S ⁇ b> 2 for transmitting a packet (downlink packet) to the moved UE 30 from the UPF 40 that has the UE 30 that has not moved for the moved UE 30.
  • an extension session S2 for transmitting a packet (downlink packet) to the UE 30 that has not moved is generated from the new UPF 40 that has the moved UE 30 under its control.
  • the extension path generation unit 113 deletes the old extension session S2.
  • a session S1 is also newly generated.
  • a packet addressed to “UE2” is transmitted from “UE1”, and an extension session S2 toward “UPF2” is transmitted to “UPF1” for “UE2”, and “UPF2” is transmitted to “UE1”. It is assumed that an extension session S2 toward “UPF1” is generated, and then “UE1” moves and is subordinated to “UPF3”. In this case, as shown in FIG. 11, an extension session S2 toward “UPF2” is generated for “UE2” and an extension session S2 toward “UPF3” is generated for “UE1”.
  • extension session S2 of both UEs 30 is newly generated (moved) as one UE 30 moves, so that an appropriate extension session S2 corresponding to the movement can be obtained.
  • the relay unit 141 of the UPF 140 may monitor the usage state of the extension session S2 generated in the own device 140 and delete the extension session S2 according to the monitored usage state.
  • the extension path generation unit 113 sets a no-communication monitoring timer as session information when generating an extension session for the UE 30.
  • the relay unit 141 of the UPF 140 monitors the usage state of the extension session S2 of the own device 140 by a non-communication monitoring timer. When there is no communication in which the extension session S2 is used for a preset period, the relay unit 141 deletes the extension session S2.
  • extension session S2 is deleted according to the usage state as described above, the consumption of resources of the mobile communication network N can be further suppressed.
  • the route control device is the SMF 10, 110
  • a device other than the SMF 10, 110 included in the mobile communication network N may be used as the route control device.
  • the relay devices in the mobile communication network N are UPFs 40 and 140. However, other than the UPFs 40 and 140 may be relay devices.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • the SMF 10, 110 and UPF 140 may function as a computer that performs processing of the SMF 10, 110 and UPF 140 according to the present embodiment.
  • FIG. 12 is a diagram illustrating an example of a hardware configuration of the SMFs 10 and 110 and the UPF 140 (a server device that realizes them) according to the present embodiment.
  • the above-described SMF 10, 110 and UPF 140 (a server device in which the SMF is realized) physically includes a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. It may be configured as.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the SMF 10, 110 and UPF 140 may be configured to include one or a plurality of the devices illustrated in the figure, or may be configured not to include some devices. May be.
  • Each function in the SMFs 10, 110 and UPF 140 reads predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs an operation, performs communication by the communication device 1004, and the memory 1002 and This is realized by controlling reading and / or writing of data in the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • each functional unit of the SMFs 10 and 110 and the UPF 140 may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, and data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • a software module software module
  • data data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • the program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the functional units of the SMFs 10 and 110 and the UPF 140 may be realized by a control program stored in the memory 1002 and operating on the processor 1001.
  • the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from a network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the method according to the embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • a network device for example, the functional units of the SMFs 10 and 110 and the UPF 140 described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the SMF 10, 110 and UPF 140 are a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable). Gate Array) may be included, and a part or all of each functional block may be realized by the hardware.
  • the processor 1001 may be implemented by at least one of these hardware.
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
  • the specific operation performed by a specific device in this specification may be performed by its upper node in some cases.
  • a specific device is a base station
  • various operations performed for communication with a terminal in a network including one or a plurality of network nodes (network nodes) having the base station are: It is clear that this can be done by the base station and / or other network nodes other than the base station (for example, but not limited to MME or S-GW).
  • MME Mobility Management Entity
  • S-GW network nodes
  • Information etc. can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information or the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • the channel and / or symbol may be a signal.
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, or the like.
  • system and “network” used in this specification are used interchangeably.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by an index.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). When the base station accommodates a plurality of cells, the entire coverage area of the base station can be divided into a plurality of smaller areas, and each smaller area can be divided into a base station subsystem (for example, an indoor small base station RRH: Remote).
  • a communication service can also be provided by Radio Head).
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage. Further, the terms “base station”, “eNB”, “cell”, and “sector” may be used interchangeably herein.
  • a base station may also be called in terms such as a fixed station (fixed station), a NodeB, an eNodeB (eNB), an access point (access point), a femto cell, and a small cell.
  • a mobile communication terminal is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, It may also be referred to as a wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
  • determining may encompass a wide variety of actions. “Judgment” and “decision” are, for example, judgment, calculation, calculation, processing, derivation, investigating, searching (looking up) (for example, table , Searching in a database or another data structure), considering ascertaining as “determining”, “deciding”, and the like.
  • determination and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as "determined” or "determined”.
  • determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • connection means any direct or indirect connection or coupling between two or more elements and It can include the presence of one or more intermediate elements between two “connected” or “coupled” elements.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples
  • electromagnetic energy such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to the element does not generally limit the quantity or order of the elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, a reference to the first and second elements does not mean that only two elements can be employed there, or that in some way the first element must precede the second element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

移動体通信網において、パケットの移動距離を短くした上で確実にパケットを移動通信端末に届かせる。 SMF10は、複数の中継装置であるUPF40を含む移動体通信網Nに含まれる経路制御装置であって、移動体通信網Nに在圏するUE(移動通信端末)30について、複数のUPF40の何れかに、当該移動体通信網Nに接続されると共に予め設定された外部ネットワークであるDN60と当該30との間でパケットを送受信するための通信経路であるセッションを生成する基本経路生成部11と、UE30について、生成されたセッションを持つUPF40以外のUPF40に、当該UE30にパケットを送信するための通信経路である延伸セッションを生成する延伸経路生成部13とを備える。

Description

経路制御装置及び中継装置
 本発明は、移動体通信網のパケットの中継に係る経路制御装置及び中継装置に関する。
 第5世代移動通信システム(5G)では、コアネットワーク内に設けられる複数の中継装置であるUPF(User Plane Function)がパケットを中継することで通信が行われる。5Gの移動体通信網において、UE(User Equipment、移動通信端末)が別の装置と通信を行う際には、通常、コアネットワーク外部のネットワークであるDN(データネットワーク)にパケットが出力されるルーティングが行われる。即ち、UEとDNとの間に設けられたUPFに、当該UEについてのセッションが設けられる。
 5Gでは、アップリンクパケット(上り方向のパケット)の宛先アドレスに応じて、通常の転送先として指定されているUPFとは異なるUPF又は地域分散された外部ネットワークであるLDN(ローカルDN)にパケットを転送するためのUL CL(Uplink Classifier)が規定されている(例えば、非特許文献1参照)。UL CLは、各UPFに設定される。移動体通信網のUE宛のパケットについてUPFから最寄りのLDNに転送するUL CLを設定しておくことで、移動体通信網のUEから当該移動体通信網の別のUEにパケットを送信する場合、LDNで通信を折り返すことができる。LDNで通信を折り返すこととすれば、DNで通信を折り返す場合に比べて、パケットの移動距離を短くする、即ち、通信の適切化を図ることができる。
3GPP 23.501 V15.0.0
 上述したUL CLを単純に用いた方法では、通信を行うUE同士が同一のUPFの配下におらず、折り返されたUPFにパケットの宛先のUEのセッションが設けられていない場合には、パケットを宛先のUEに届けることができない(パケットロスする)。
 本発明は、上記に鑑みてなされたものであり、移動体通信網において、パケットの移動距離を短くした上で確実にパケットを移動通信端末に届かせることができる経路制御装置及び中継装置を提供することを目的とする。
 上記目的を達成するために、本発明の一実施形態に係る経路制御装置は、複数の中継装置を含む移動体通信網に含まれる経路制御装置であって、移動体通信網に在圏する移動通信端末について、複数の中継装置の何れかに、当該移動体通信網に接続されると共に予め設定された外部ネットワークと当該移動通信端末との間でパケットを送受信するための通信経路を生成する基本経路生成部と、移動通信端末について、基本経路生成部によって生成された通信経路上の中継装置以外の中継装置に、当該移動通信端末にパケットを送信するための通信経路である延伸通信経路を生成する延伸経路生成部と、を備える。
 本発明の一実施形態に係る経路制御装置によれば、移動通信端末と外部ネットワークとの間でパケットを送受信するための通信経路に加えて、当該通信経路上の中継装置以外の中継装置に、当該移動通信端末にパケットを送信するための通信経路、即ち、下りの通信経路である延伸通信経路が生成される。従って、通信経路上の中継装置以外の中継装置が当該移動通信端末宛のパケットを受信した場合であっても、延伸通信経路によって当該移動通信端末にパケットを送信することができる。よって本発明の一実施形態に係る経路制御装置によれば、移動体通信網において、パケットの移動距離を短くした上で確実にパケットを移動通信端末に届かせることができる。
 また、本発明の一実施形態に係る経路制御装置では、延伸経路生成部は、移動体通信網において送信されたパケットを中継する中継装置及び当該パケットの宛先に応じて、当該宛先の移動通信端末について、延伸通信経路を生成することとしてもよい。
 本発明の一実施形態に係る中継装置は、上記の経路制御装置によって移動通信端末についての通信経路が生成される中継装置であって、通信経路に従ってパケットを中継する中継部と、中継部によって受信されたパケットの宛先の移動通信端末についての通信経路が自装置に生成されているか否かを判断する判断部と、判断部の判断に応じてパケットの宛先の移動通信端末を経路制御装置に通知する通知部と、を備える。
 上記の経路制御装置及び中継装置によれば、移動体通信網において送信されたパケットに応じて、適切な延伸通信経路を生成することができる。
 本発明の一実施形態によれば、通信経路上の中継装置以外の中継装置が当該移動通信端末宛のパケットを受信した場合であっても、延伸通信経路によって当該移動通信端末にパケットを送信することができる。よって本発明の一実施形態によれば、移動体通信網において、パケットの移動距離を短くした上で確実にパケットを移動通信端末に届かせることができる。
本発明の実施形態に係る経路制御装置であるSMFを含む移動体通信網等の構成を示す図である。 本発明の第1実施形態に係る経路制御装置であるSMFの機能構成を示す図である。 本発明の実施形態において生成されるセッションの例を示す図である。 DN又はLDNのルータに記憶される経路表を示す図である。 UPFに設定されるUL CLを示す図である。 本発明の第1実施形態に係る経路制御装置であるSMFで実行される処理を示すフローチャートである。 本発明の第2実施形態に係る経路制御装置であるSMF及び中継装置であるUPFの機能構成を示す図である。 第2実施形態において生成される延伸セッションを示す図である。 本発明の第2実施形態に係る経路制御装置であるSMF及び中継装置であるUPFで実行される処理を示すシーケンス図である。 第2実施形態でSMFに記憶されるUE-UE対応情報を示す図である。 第2実施形態において生成される延伸セッションを示す図である。 本発明の実施形態に係る経路制御装置であるSMF及び中継装置であるUPFのハードウェア構成を示す図である。
 以下、図面と共に本発明に係る経路制御装置及び中継装置の実施形態について詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。
<第1実施形態>
 図1に本実施形態に係る経路制御装置であるSMF(Session Management Function)10を示す。SMF10は、移動体通信網Nに含まれる。移動体通信網Nは、UE30に移動体通信の機能を提供する通信網である。本実施形態に係る移動体通信網Nは、例えば、5Gの移動体通信網である。但し、必ずしも5Gの移動体通信網である必要はなく、本実施形態に準拠する枠組みの移動体通信網であればよい。
 移動体通信網Nは、コアネットワークの構成要素として、SMF10と複数のUPF40とを含む。移動体通信網Nは、無線アクセスネットワークの構成として、複数のgNB(gNodeB)50を含む。SMF10、UPF40及びgNB50等の移動体通信網Nのノードは、移動体通信網Nのネットワークインフラである物理サーバ上に実現される仮想マシンにおいて動作する仮想サーバによって実現されることとしてもよい。移動体通信網Nは、上記以外の通常の移動体通信網に含まれる装置及びノード等を含むこととしてもよい。
 SMF10は、移動体通信網Nにおいてセッション管理を行うノードである。UPF40は、移動体通信網NにおいてUE30によって送受信されるパケットであるユーザデータを中継する中継装置である。UPF40は、予め設定された別のUPF40と接続されており、接続された別のUPF40等との間でパケットを送受信してパケットを中継する。gNB50は、基地局の機能を有するノードである。gNB50は、複数のUPF40のうちの何れかのUPF40に接続されており、自身の配下のUE30によって送受信されるパケットを当該UPF40との間で中継する。UPF40及びgNB50は、通常、移動体通信網Nの通信エリアの位置毎に設けられる。UE30の位置に近いgNB50及び当該gNB50に接続されたUPF40によって、UE30によって送受信されるパケットが中継される。
 引き続いて、SMF10の本実施形態に係る機能を説明する。SMF10とUPF40とは、直接的又は間接的に接続されており、互いに情報の送受信を行うことができる。なお、SMF10は、以下に示す本実施形態に係る機能以外にも、通常、SMFが備える機能を備えていてもよい。
 図2に示すようにSMF10は、基本経路生成部11と、転送制御部12と、延伸経路生成部13とを備えて構成される。基本経路生成部11は、移動体通信網Nに在圏するUE30について、複数のUPF40の何れかに、当該移動体通信網Nに接続されると共に予め設定された外部ネットワークと当該UE30との間でパケットを送受信するための通信経路を生成する機能部である。
 図1に示すように、複数のUPF40のうち1つのUPF40(図1では、「UPF0」)は、移動体通信網Nの外部にある外部ネットワークであるDN(データネットワーク)60に接続されている。UE30が、移動体通信網Nを介してパケットを送信する場合、当該パケットは一旦、移動体通信網NからDN60に送信される。そのため、移動体通信網Nでは、UE30とDN60との間には、当該UE30に関する通信経路を含むセッションが生成される。基本経路生成部11は、セッションの生成対象のUE30を検知して、当該UE30についてのセッションを生成する。セッションの生成対象のUE30は、例えば、新たに移動体通信網Nに在圏するUE30、又は通信エリア内の移動等によってそれまでのセッションが利用できなくなったUE30である。セッションの生成対象のUE30の検知及びセッションの生成は、従来のSMFと同様に行われ得る。基本経路生成部11は、生成したセッションに係る情報を転送制御部12及び延伸経路生成部13に通知する。
 セッションは、UPF40上に設けられる。具体的には、セッションを構成するUPF40及びgNB50に当該セッションに係るセッション情報(経路情報、トンネル端点情報)SI1が生成される。例えば、図1の例では、図3に示すように「UE1」のDN60迄のセッションS1は、「UE1」を配下に置くgNB50、当該gNB50に接続された「UPF1」及び「UPF1」に接続された「UPF0」を経由して生成される。このセッションS1を持つUPF40(セッションS1により形成される通信経路上のUPF40)を経由して、「UE1」からのパケットはDN60に送信され、「UE1」へのパケットはDN60から送信される。即ち、移動体通信網Nでは、DN60に接続された「UPF0」をアンカーとしたツリーベースのルーティングが行われる。
 移動体通信網Nに在圏しているUE30の間でパケットの送受信が行われる場合には、DN60でパケット(通信)が折り返される。具体的には、パケットの折り返しは、次のように行われる。DN60に含まれるルータ(図示せず)は、予め図4に示す経路表の情報を記憶している。経路表は、パケットの宛先と、ルータが当該パケットを次に送信するノードを示す情報である次ホップとを対応付けたものである。宛先は、例えば、パケットの宛先のUE30のIPアドレス、又は当該IPアドレスの範囲を示すサブネットアドレスである。次ホップは、上記のノードのIPアドレスである。
 例えば、図1及び図3に示すDN60のルータは、図4(a)に示す経路表を記憶している。図4(a)に示す経路表は、移動体通信網Nに在圏している任意のUE30宛のパケットを「UPF0」に送信することを示している。DN60のルータは、移動体通信網Nからのパケットを「UPF0」から受信して、経路表に従って送信する。従って、DN60のルータは、経路表に従って、移動体通信網Nに在圏している任意のUE30宛のパケットを「UPF0」に送信する。なお、移動体通信網Nに在圏しているUE30以外を宛先とするパケットについては、上記の折り返しは行われず、宛先に応じて別のネットワーク等への転送が行われる。
 転送制御部12は、基本経路生成部11によって生成されたセッションS1を持つUPF40に、パケットの宛先に応じて、当該UPF40に接続されると共にDN60とは異なる外部ネットワークにUE30からのパケットを転送させるように制御する機能部である。
 上述したように通常、UPF40は、移動体通信網Nの通信エリア毎に設けられているため、パケットがDN60に送信されて折り返されると、パケットの移動距離が長くなってしまうことがある。パケットの移動距離を短くするため、上述したUL CLが用いられる。UL CLは、UPF40に、一定の条件を満たすパケットを、セッションS1に記述された通信経路とは異なる転送先(即ち、通常の転送先として指定されているUPF40等とは異なる転送先)に送信させるためのものである。例えば、移動体通信網Nに在圏する別のUE30宛のパケットを、DN60に向かう方向ではなく地域分散された外部ネットワークであるLDN(ローカルDN)70に送信させるためのものである。
 UL CLは、パケットを転送するためのルールが記載された情報である。例えば、図5に示すようにUL CLは、パケットの宛先と、UPF40が当該パケットを次に送信するノードを示す情報である次ホップとを対応付けたものである。宛先は、例えば、パケットの宛先のUE30のIPアドレス、又は当該IPアドレスの範囲を示すサブネットアドレスである。次ホップは、上記のノードのIPアドレスである。
 UL CLは、UE30毎に当該UE30のセッションS1を持つUPF40に設定される。例えば、セッションにより形成される通信経路における最もgNB50に近いUPF40(gNB50に接続されるUPF40)に設定される。図3に示す「UE1」のセッションであれば、「UPF1」に、移動体通信網Nに在圏している任意のUE30宛のパケットを「LDN1」に送信するUL CLが設定される。パケットの転送の際、UL CLは、セッションよりも優先される。即ち、UPF40は、受信したパケットがUL CLに設定された条件に合う場合、セッションによって指定された送信先ではなく、UL CLに設定された送信先にパケットを送信する。
 転送制御部12は、基本経路生成部11から生成したセッションに係る情報の通知を受ける。転送制御部12は、当該通知を受けると(基本経路生成部11によってセッションS1が生成される際に)、セッションS1を持つUPF40にUL CLの設定を行うことで、上記の制御を行う。UL CLの設定は、従来のSMFと同様に行われ得る。例えば、転送制御部12は、予めUL CLの設定を行うべきUPF40及び設定すべきUL CLを記憶しており、そのUPF40のうち、基本経路生成部11によって生成されるセッションS1を持つUPF40にUL CLを設定する。UL CLの設定を行うべきUPF40は、例えば、LDN70に接続されたUPF40である。
 パケットが送信されたLDN70では、DN60と同様にルータに経路表が記憶されており、経路表に従ったパケットの転送が行われる。LDN70でも、DN60と同様に移動体通信網Nに在圏しているUE30間のパケットは、折り返される。例えば、「UPF1」に接続された「LDN1」のルータには、図4(b)に示す経路表が予め記憶されており、当該経路表に従ったパケットの折り返しが行われる。上記のようにDN60ではなく、LDN70によるパケットの折り返しが行われることで、パケットの移動距離を短くすることができる。
 延伸経路生成部13は、UE30について、基本経路生成部11によって生成されたセッションS1を持つUPF40以外のUPF40に、当該UE30にパケット(即ち、下り方向のダウンリンクパケット)を送信するための通信経路である延伸通信経路、即ち、延伸セッションを生成する機能部である。
 基本経路生成部11によって生成されたセッションS1は、UE30から送信されるパケット及びUE30に送信されるパケットの両方を中継するためのものであるが、延伸セッションは、UE30に送信されるパケットを中継するためのものであればよい。即ち、基本経路生成部11によって生成されたセッションS1は、上り下り両方向のものであるが、延伸セッションは、下り方向のみのものであればよい。但し、延伸セッションは、上り下り両方向のものであってもよい。
 延伸経路生成部13は、基本経路生成部11から生成したセッションに係る情報の通知を受ける。延伸経路生成部13は、移動体通信網Nに接続された各LDN70から、基本経路生成部11によって生成されたセッションS1を持つ何れかのUPF40にパケットが届くように延伸セッションを生成する。例えば、延伸経路生成部13は、予め、UPF40、DN60及びLDN70間の接続関係を示すトポロジ情報を記憶しており、当該トポロジ情報に基づいて、上記のように延伸セッションを生成する。あるいは、延伸経路生成部13は、予めUE30を配下に置くUPF40(当該UE30のセッションにより形成される通信経路上、最もUE30に近いUPF40)(UE30を収容するUPF40)毎に延伸セッションを生成するUPF40を記憶しておいてもよい。
 延伸セッションが生成されるUPF40は、UE30のセッションを持つUPF40以外の全てのUPF40としてもよいし、UE30のセッションを持つUPF40以外のUPF40のうち、LDN70に接続されている全てのUPF40としてもよい。なお、下りのセッションであること、及び基本経路生成部11によって生成されたセッションS1を持つ何れかのUPF40までのものであることを除けば、延伸セッションの生成は、従来のセッションの生成と同様に行われ得る。
 例えば、図3の例では、「UE1」について、「LDN2」からのパケットが、基本経路生成部11によって生成されたセッションS1を持つ「UPF1」に届くように、「UPF2」にセッション情報SI2が生成されて、延伸セッションS2が生成される。また、「LDN3」からのパケットが、基本経路生成部11によって生成されたセッションS1を持つ「UPF1」に届くように、「UPF3」にセッション情報SI2が生成されて、延伸セッションS2が生成される。
 延伸セッションS2によって、UE30宛のパケットが、基本経路生成部11によって生成されたセッションS1を持つUPF40に接続されたLDN70以外のLDN70(即ち、最寄りのLDN70以外のLDN70)から折り返された場合でも、UE30にパケットを転送することができる。
 延伸セッションS2が設けられていない場合、即ち、LDN70からパケットが折り返されたUPF40にパケットの宛先のUE30に係るセッションが設けられていない場合、移動体通信網NはパケットをUE30に送信することができない(パケットロスする)。例えば、図3に示す「UPF2」配下の「UE2」が、「UPF1」配下の「UE1」にパケットを送信する場合、「LDN2」から「UPF2」にパケットが折り返される。基本経路生成部11によって生成されたセッションS1は、UPF2上には設けられていないため、移動体通信網Nはパケットを「UE1」に送信することができない。
 延伸セッションS2が設けられていれば、延伸セッションS2によって「UPF2」は、基本経路生成部11によって生成されたセッションS1を持つ「UPF1」にパケットを送信することができ、移動体通信網Nはパケットを「UE1」に送信することができる。
 UE30の移動によって、UE30が別のUPF40の配下になった場合、新たなUPF40に対して、基本経路生成部11は新たなセッションS1を生成し、転送制御部12は新たなUL CLを設定し、延伸経路生成部13は、新たな延伸セッションS2を生成する。即ち、UE30の移動に伴って新たなUPF40にセッションを移動する。当該UE30についての古いセッションS1、UL CL及び延伸セッションS2は削除される。以上が、SMF10の本実施形態に係る機能である。
 引き続いて、図6のフローチャートを用いて、本実施形態に係るSMF10で実行される処理(SMF10が行う動作方法)を説明する。まず、SMF10では、基本経路生成部11によって、セッションの生成対象のUE30が検知される(S01)。続いて、基本経路生成部11によって、当該UE30について、UE30とDN60との間のセッションS1が生成される(S02)。続いて、転送制御部12によって、セッションS1を持つUPF40にUL CLが設定される(S03)。続いて、延伸経路生成部13によって、セッションS1を持つUPF40以外のUPF40に延伸セッションS2が生成される(S04)。移動体通信網Nでは、生成されたセッション及び設定されたUL CLに基づいてパケットの中継が行われる。以上が、本実施形態に係るSMF10で実行される処理である。
 本実施形態によれば、UE30とDN60との間でパケットを送受信するためのセッションS1に加えて、当該セッションS1を持つUPF40以外のUPF40に、当該UE30にパケットを送信するためのセッション、即ち、下りのセッションである延伸セッションS2が生成される。従って、LDN70からの折り返しによってセッションS1を持つUPF40以外のUPF40が当該UE30宛のパケットを受信した場合であっても、延伸セッションS2によって当該UE30にパケットを送信することができる。よって本実施形態によれば、移動体通信網Nにおいて、パケットの移動距離を短くした上で確実にパケットをUE30に届かせることができる。
 引き続いて、本実施形態に係る変形例を示す。上述した実施形態では、延伸セッションS2が生成されるUPF40は、UE30のセッションを持つUPF40以外の全てのUPF40としてもよいし、UE30のセッションを持つUPF40以外のUPF40のうち、LDN70に接続されている全てのUPF40としてもよいとした。この構成によれば、移動体通信網Nに数多くのUPF40がある場合には、それに応じて延伸セッションS2を生成するUPF40も多くなり、移動体通信網Nの資源を過剰に消費するおそれがある。
 そこで、延伸経路生成部13は、基本経路生成部11によって生成されたセッションS1を持つUPF40以外のUPF40のうち、当該セッションS1を持つUPF40と予め設定された位置関係を有するUPF40に延伸セッションS2を生成し、それ以外のUPF40には延伸セッションS2を生成しないこととしてもよい。例えば、セッションS1を持つUPF40のうち、UE30を配下に置くと共にLDN70に接続されたUPF40(例えば、図3の「UE1」に対しては「UPF1」)と地理的に近いUPF40に延伸セッションS2を生成することとしてもよい。具体的には、UE30を配下に置くUPF40と隣接する(直接接続されたUPF40)と共にLDN70に接続されたUPF40に延伸セッションS2を生成することとしてもよい。延伸経路生成部13は、UPF40と隣接するUPF40を、予め記憶した上記のトポロジ情報から特定してもよいし、予め記憶しておいてもよい。例えば、図3の「UE1」に対しては、「UPF1」に隣接する「UPF2」に延伸セッションS2を生成し、「UPF1」に隣接する「UPF3」には延伸セッションS2を生成しない。
 移動体通信網NにおけるUE30間の通信が地理的に狭い範囲でしか行われない場合(例えば、車車間通信)、上記のように限られた範囲のみに延伸セッションS2を生成することとしても、適切にパケットの中継が行われる。
 また、この場合、転送制御部12によって生成されるUL CLは、パケットロスなくパケットの中継が行えるように設定されてもよい。具体的には、UL CLは、UL CLが設定されているUPF40にセッションS1又は延伸セッションS2が設定されているUE30宛のパケットのみをLDN70に送信するものとする。
 転送制御部12は、転送対象のパケットが、転送を行うUPF40にセッションS1又は延伸セッションS2が生成されているUE20宛のパケットであるか否かに応じて、パケットを転送させるように制御する。そのため、転送制御部12は、LDN70に接続されているUPF40毎に、当該UPF40の配下のUE30(即ち、当該UPF40にセッションS1が生成されているUE30)、及び当該UPF40に隣接するUPF40の配下のUE30(即ち、当該UPF40に隣接するUPF40に延伸セッションS2が生成されているUE30)をリスト化する。当該リストは、移動体通信網NにおけるUE30の移動管理機能によって生成することができる。転送制御部12は、当該リストに該当するUE30宛のパケットについてはLDN70に送信し、それ以外のUE30宛のパケットについてはLDN70に送信せずDN60に向けて送信するUL CLを設定する。
 上記のUL CLの設定によって、リストにあるUE30についてはUE30-UE30通信(UE30同士の通信)が最適化され、リストにないUE30についても通信は最適化されないがアンカー先のDN60で通信を折り返すことが可能となる。即ち、LDN70でパケットが折り返された場合にパケットの転送が可能ではないUE30(折り返されたUPF40にセッションS1又は延伸セッションS2が設定されていないUE30)については、DN60経由でパケットの中継を行ってUE30にパケットを届かせることができる。
 また、延伸経路生成部13は、基本経路生成部11によって生成されたセッションS1を持つUPF40以外のUPF40のうち、(延伸セッションS2の生成対象のUE30ではない)予め設定されたUE30について生成されたセッションS1を持つUPF40に延伸セッションS2を生成することとしてもよい。例えば、延伸経路生成部13は、UE30-UE30通信を行うUE30のリストを予め記憶しておき、当該リストにあるUE30を配下に置くと共にLDN70に接続されたUPF40に延伸セッションS2を生成することとしてもよい。延伸経路生成部13は、移動体通信網NにおけるUE30の移動管理機能によって、UE30を配下に置くUPF40を把握することができる。また、延伸経路生成部13は、リストにあるUE30についてのみ、延伸セッションS2を生成することとしてもよい。
 なお、リストにあるUE30の移動によって、別のUPF40配下となった場合には、延伸経路生成部13は、移動したUE30以外のリストにあるUE30の延伸セッションS2を生成し直す(延伸セッションS2もあわせて移動する)。
 この構成によれば、UE30-UE30通信を行うUE30が配下にいないUPF40には、不要な延伸セッションS2が生成されないため、移動体通信網Nのリソースを節約することができる。
 また、この場合、転送制御部12によって生成されるUL CLは、パケットロスなくパケットの中継が行えるように設定されてもよい。具体的には、UL CLは、リストにあるUE30宛のパケットのみをLDN70に送信するものとする。
 転送制御部12は、転送対象のパケットが、予め設定されたUE30宛のパケットであるか否かに応じて、パケットを転送させるように制御する。転送制御部12は、当該リストに該当するUE30宛のパケットについてはLDN70に送信し、それ以外のUE30宛のパケットについてはLDN70に送信せずDN60に向けて送信するUL CLを設定する。
 上記のUL CLの設定によって、リストにあるUE30についてはUE30-UE30通信(UE30同士の通信)が最適化され、リストにないUE30についても通信は最適化されないがアンカー先のDN60で通信を折り返すことが可能となる。即ち、LDN70でパケットが折り返された場合にパケットの転送が可能ではないUE30については、DN60経由でパケットの中継を行ってUE30にパケットを届かせることができる。
 上記の変形例のように延伸セッションS2を生成するUPF40、及びUL CLを設定することで、移動体通信網Nの資源の消費を抑えると共にパケットの移動距離を短くすることができる。
<第2実施形態>
 上述した第1実施形態では、延伸セッションS2は、セッションS1が生成される際にあわせて生成されていた。本実施形態では、パケットが送信される際に必要な延伸セッションS2が生成される。本実施形態に係る構成によれば、必要な延伸セッションS2を生成することから、移動体通信網Nの資源の消費を抑えることができる。
 本実施形態に係る装置構成は、第1実施形態に係る装置構成と同様である。本実施形態では、第1実施形態とSMF10及びUPF40の機能が異なり、異なる点のみ説明する。特に説明がない点については、第1実施形態と同様である。
 図7に本実施形態に係るSMF110及びUPF140を示す。本実施形態に係るUPF140は、LDN70に接続されたUPF140(図1の例では、「UPF1」、「UPF2」及び「UPF3」に相当)である。図7に示すようにUPF140は、中継部141と、判断部142と、通知部143とを備えて構成される。
 中継部141は、自装置に生成されたセッションS1又は延伸セッションS2に従ってパケットを中継する機能部である。また、自装置140にUL CLが設定されている場合には、UL CLに従ってパケットを送信する。セッションS1若しくは延伸セッションS2に従ったパケットの中継、並びにUL CLに従ったパケットの送信自体は、従来と同様に行われる。また、中継部141は、受信した中継対象のパケットが、アップリンクパケット、即ち、gNB50を介してUE30から受信したパケットであったら、当該パケットを判断部142に出力する。
 判断部142は、中継部141によって受信されたパケットの宛先のUE30についてのセッションS1又は延伸セッションS2が自装置140に生成されているか否かを判断する機能部である。判断部142は、中継部141からパケットを入力する。判断部142は、例えば、入力したパケットの宛先のUE30についてのセッション情報SI1,SI2が自装置140に保持されているかを確認することで上記の判断を行う。例えば、図8において、「UE1」から「UE2」宛のパケットが送信された場合、「UPF1」において「UE2」のセッションS1又は延伸セッションS2が生成されているかが判断される。
 判断部142は、パケットの宛先のUE30についてのセッションS1又は延伸セッションS2が自装置140に生成されていると判断したら、中継部141に当該パケットを中継するように指示する。中継部141は、当該指示を受けると当該パケットの中継を行う。中継部141は、UE30からUE30への送信されるパケットを、上述したようにUL CLによってLDN70に送信する。中継部141は、LDN70から折り返されたパケットをUE30についてのセッションS1又は延伸セッションS2によって中継する。
 判断部142は、パケットの宛先のUE30についてのセッションS1又は延伸セッションS2が自装置140に生成されていないと判断したら、当該パケットの宛先のUE30を通知部143に通知する。例えば、図8において、「UE1」から「UE2」宛のパケットが送信された場合、「UPF1」において「UE2」のセッションS1又は延伸セッションS2が生成されていないと判断されると「UE2」が通知される。
 通知部143は、判断部142の判断に応じてパケットの宛先のUE30をSMF110に通知する機能部である。通知部143は、判断部142からUE30の通知を受ける。通知部143は、通知されたUE30を示す情報をSMF110に送信して、パケットの宛先のUE30をSMF110に通知する。
 図7に示すように、SMF110は、基本経路生成部111と、転送制御部112と、延伸経路生成部113とを備えて構成される。基本経路生成部111及び転送制御部112は、それぞれ第1実施形態の基本経路生成部11及び転送制御部12と同様の機能を有する。
 延伸経路生成部113は、移動体通信網Nにおいて送信されたパケットを中継するUPF140及び当該パケットの宛先に応じて、当該宛先のUE30について、延伸セッションS2を生成する。延伸経路生成部113は、UPF140からパケットの宛先のUE30の通知を受ける。延伸経路生成部113は、通知を受けたUPF140から、当該UE30にパケット(ダウンリンクパケット)を送信するための延伸セッションS2を生成する。なお、延伸経路生成部13は、移動体通信網NにおけるUE30の移動管理機能によって、UE30を配下に置くUPF40を把握することができる。
 当該延伸セッションS2によって、UPF140では、LDN70から折り返された当該UE30宛のパケットを中継できるようになる。例えば、図8において、「UPF1」から「UE2」が通知された場合には、「UPF1」から「UE2」への延伸セッションS2が生成される(図8では、セッションS1は省略している)。
 延伸経路生成部113は、延伸セッションS2を生成するとその旨をUPF140に通知する。UPF140では当該通知を受けると、中継部141が、当該パケットの中継を行う。中継部141は、UE30から別のUE30へ送信されるパケットを、上述したようにUL CLによってLDN70に送信する。中継部141は、LDN70から折り返されたパケットを、生成された延伸セッションS2によって中継する。
 延伸経路生成部113は、パケットの送信元のUE30についての延伸セッションS2を生成することとしてもよい。この場合、UPF140の通知部143は、パケットの宛先のUE30とあわせて、パケットの送信元のUE30をSMF110に通知する。延伸経路生成部113は、UPF140からパケットの送信元のUE30の通知を受ける。延伸経路生成部113は、通知を受けた宛先のUE30から、送信元のUE30にパケットを送信した場合に、LDN70から折り返されるUPF40から、当該送信元のUE30にパケット(ダウンリンクパケット)を送信するための延伸セッションS2を生成する。当該延伸セッションS2によって、UPF140では、LDN70から折り返された当該送信元のUE30宛のパケットを中継できるようになる。
 例えば、図8において、「UE1」から「UE2」宛のパケットが送信された場合、パケットの宛先として「UE2」が、パケットの送信元として「UE1」が通知される。「UE2」から「UE1」にパケットを送信したとすると、「UE2」のセッションS1を持つ「UPF2」から「LDN2」にパケットが送信されて、折り返される。従って、「UPF2」から「UE1」への延伸セッションS2が生成される。
 この延伸セッションS2は、延伸セッションS2生成のトリガとなったパケットの中継には用いられない。しかしながら、その後、当該パケットの宛先から当該パケットの送信元に(即ち、逆向きに)別のパケットが送信された場合に、当該別のパケットの中継に用いられる。以上が、本実施形態に係るSMF110及びUPF140の機能である。
 引き続いて、図9のシーケンス図を用いて、本実施形態に係るSMF110及びUPF140で実行される処理(SMF110及びUPF140が行う動作方法)を説明する。まず、UPF140では、中継部141によってパケットが受信される(S11)。続いて、判断部142によって、当該パケットの宛先のUE30についてのセッションS1又は延伸セッションS2が自装置140に生成されているか否かが判断される(S12)。パケットの宛先のUE30についてのセッションS1又は延伸セッションS2が自装置140に生成されていると判断されたら、中継部141によって当該パケットが中継され(LDN70に送信され)、当該セッションS1又は延伸セッションS2によって、宛先のUE30にパケットが送信される(図示せず)。
 パケットの宛先のUE30についてのセッションS1又は延伸セッションS2が自装置140に生成されていないと判断されたら、パケットの宛先のUE30が、通知部143からSMF110に通知される(S13)。
 SMF110では、延伸経路生成部113によって、当該通知が受け付けられて、パケットを中継するUPF140及び当該パケットの宛先に応じて、当該宛先のUE30について、延伸セッションS2が生成される(S14)。延伸セッションが生成されると、その旨が、延伸経路生成部113からUPF140に通知される。当該通知を受けたUPF140では、中継部141によって当該パケットが中継され(LDN70に送信され)、生成された延伸セッションS2によって、宛先のUE30にパケットが送信される(S16)。以上が、本実施形態に係るSMF110及びUPF140で実行される処理である。
 上述したように送信されたパケットに応じて、延伸セッションS2を生成することとすれば、通信に必要な最低限の延伸セッションS2のみを生成することができる。これによって、移動体通信網Nの資源の消費を抑えることができる。また、一方の方向のパケットの送信が行われた場合、逆の方向のパケットの送信が行われる可能性が高い。従って、上述したようにパケットの宛先のUE30についての延伸セッションS2に加えて、パケットの送信元のUE30についての延伸セッションS2を生成することで、必要な延伸セッションS2をまとめて生成することができる。
 また、延伸経路生成部113は、延伸セッションS2生成のトリガとなったパケットの送信元に応じて、当該パケットの宛先のUE30について、延伸セッションを生成することとしてもよい。具体的には、延伸経路生成部113は、上述したように生成した延伸セッションS2に係るパケットの送信元のUE30と宛先のUE30との組み合わせを記憶しておく。延伸経路生成部113は、例えば、図10に示すテーブルにUE30の組み合わせを示すUE-UE対応情報を格納して記憶しておく。
 延伸経路生成部113は、組み合わせの一方のUE30が別のUPF40の配下に移動した場合、組み合わせの双方のUE30の延伸セッションS2を新たに生成する。延伸経路生成部113は、移動したUE30については、移動していないUE30を配下に持つUPF40から、移動したUE30にパケット(ダウンリンクパケット)を送信するための延伸セッションS2を生成する。移動していないUE30については、移動したUE30を配下に持つ新たなUPF40から、移動していないUE30にパケット(ダウンリンクパケット)を送信するための延伸セッションS2を生成する。延伸経路生成部113は、古い延伸セッションS2を削除する。また、上述した第1実施形態と同様に移動したUE30については、セッションS1も新たに生成される。
 例えば、図8に示すように、「UE1」から「UE2」宛のパケットが送信されて、「UE2」について「UPF1」に「UPF2」に向かう延伸セッションS2が、「UE1」について「UPF2」に「UPF1」に向かう延伸セッションS2が、それぞれ生成され、その後、「UE1」が移動して、「UPF3」の配下になったとする。この場合、図11に示すように「UE2」について「UPF3」に「UPF2」に向かう延伸セッションS2が、「UE1」について「UPF2」に「UPF3」に向かう延伸セッションS2が、それぞれ生成される。
 上記のようにUE-UE対応情報に示される組み合わせのUE30(互いに通信を行っているUE30)であれば、一方のUE30が移動した場合には、双方のUE30の延伸セッションS2が新たに生成される(延伸セッションS2が移動する)。
 上記のように一方のUE30の移動に伴って、双方のUE30の延伸セッションS2を新たに生成する(移動する)ことで、移動に応じた適切な延伸セッションS2とすることができる。
 また、UPF140の中継部141は、自装置140に生成された延伸セッションS2の利用状態を監視し、監視した利用状態に応じて当該延伸セッションS2を削除することとしてもよい。延伸経路生成部113は、UE30についての延伸セッションの生成時、セッション情報として無通信監視用タイマを設定する。UPF140の中継部141は、無通信監視用タイマによって、自装置140の延伸セッションS2の利用状態を監視する。中継部141は、予め設定された期間、延伸セッションS2が用いられた通信がない場合には、当該延伸セッションS2を削除する。
 上記のように利用状態に応じて延伸セッションS2を削除することとすれば、移動体通信網Nの資源の消費を更に抑えることができる。
 なお、本実施形態に係る経路制御装置は、SMF10,110であることとしたが、移動体通信網Nに含まれるSMF10,110以外の装置を経路制御装置としてもよい。また、本実施形態では、移動体通信網Nにおける中継装置はUPF40,140としたが、UPF40,140以外が中継装置であってもよい。
 なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施の形態におけるSMF10,110及びUPF140(が実現されるサーバ装置)などは、本実施形態のSMF10,110及びUPF140の処理を行うコンピュータとして機能してもよい。図12は、本実施形態に係るSMF10,110及びUPF140(が実現されるサーバ装置)のハードウェア構成の一例を示す図である。上述のSMF10,110及びUPF140(が実現されるサーバ装置)は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。SMF10,110及びUPF140(が実現されるサーバ装置)のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 SMF10,110及びUPF140における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、並びにメモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、SMF10,110及びUPF140の各機能部は、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール及びデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、SMF10,110及びUPF140の各機能部は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述のSMF10,110及びUPF140の各機能部は、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、SMF10,110及びUPF140(が実現されるサーバ装置)は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
 以上、本実施形態について詳細に説明したが、当業者にとっては、本実施形態が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本実施形態は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本実施形態に対して何ら制限的な意味を有するものではない。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において特定の装置によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。例えば、特定の装置が基地局であった場合においては、当該基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局および/または基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。
 情報等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。
 本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的なものではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 基地局は、1つまたは複数(例えば、3つ)の(セクタとも呼ばれる)セルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、および/または基地局サブシステムのカバレッジエリアの一部または全体を指す。さらに、「基地局」「eNB」、「セル」、および「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 移動通信端末は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で「第1の」、「第2の」などの呼称を使用した場合においては、その要素へのいかなる参照も、それらの要素の量または順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1および第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 「含む(include)」、「含んでいる(including)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本明細書において、文脈または技術的に明らかに1つのみしか存在しない装置である場合以外は、複数の装置をも含むものとする。本開示の全体において、文脈から明らかに単数を示したものではなければ、複数のものを含むものとする。
 10,110…SMF、11,111…基本経路生成部、12,112…転送制御部、13,113…延伸経路生成部、30…UE、40,140…UPF、141…中継部、142…判断部、143…通知部、50…gNB、60…DN、70…LDN、N…移動体通信網、1001…プロセッサ、1002…メモリ、1003…ストレージ、1004…通信装置、1005…入力装置、1006…出力装置、1007…バス。

Claims (10)

  1.  複数の中継装置を含む移動体通信網に含まれる経路制御装置であって、
     前記移動体通信網に在圏する移動通信端末について、前記複数の中継装置の何れかに、当該移動体通信網に接続されると共に予め設定された外部ネットワークと当該移動通信端末との間でパケットを送受信するための通信経路を生成する基本経路生成部と、
     前記移動通信端末について、前記基本経路生成部によって生成された通信経路上の中継装置以外の中継装置に、当該移動通信端末にパケットを送信するための通信経路である延伸通信経路を生成する延伸経路生成部と、
    を備える経路制御装置。
  2.  前記延伸経路生成部は、前記基本経路生成部によって生成された通信経路上の中継装置以外の中継装置のうち、当該通信経路上の中継装置と予め設定された位置関係を有する中継装置に延伸通信経路を生成する請求項1に記載の経路制御装置。
  3.  前記延伸経路生成部は、前記基本経路生成部によって生成された通信経路上の中継装置以外の中継装置のうち、予め設定された移動通信端末について生成された通信経路上の中継装置に延伸通信経路を生成する請求項1又は2に記載の経路制御装置。
  4.  前記基本経路生成部によって生成された通信経路上の中継装置に、パケットの宛先に応じて、当該中継装置に接続されると共に前記外部ネットワークとは異なる外部ネットワークに前記移動通信端末からのパケットを転送させるように制御する転送制御部を、更に備える請求項1~3の何れか一項に記載の経路制御装置。
  5.  前記転送制御部は、転送対象のパケットが、転送を行う中継装置に通信経路が生成されている移動通信端末宛のパケットであるか否かに応じて、パケットを転送させるように制御する請求項4に記載の経路制御装置。
  6.  前記転送制御部は、転送対象のパケットが、予め設定された移動通信端末宛のパケットであるか否かに応じて、パケットを転送させるように制御する請求項4又は5に記載の経路制御装置。
  7.  前記延伸経路生成部は、前記移動体通信網において送信されたパケットを中継する中継装置及び当該パケットの宛先に応じて、当該宛先の移動通信端末について、延伸通信経路を生成する請求項1~6の何れか一項に記載の経路制御装置。
  8.  前記延伸経路生成部は、前記移動体通信網において送信されたパケットの送信元に応じて、当該パケットの宛先の移動通信端末について、延伸通信経路を生成する請求項7に記載の経路制御装置。
  9.  請求項7又は8に記載の経路制御装置によって移動通信端末についての通信経路が生成される中継装置であって、
     前記通信経路に従ってパケットを中継する中継部と、
     前記中継部によって受信されたパケットの宛先の移動通信端末についての通信経路が自装置に生成されているか否かを判断する判断部と、
     前記判断部の判断に応じて前記パケットの宛先の移動通信端末を前記経路制御装置に通知する通知部と、
    を備える中継装置。
  10.  前記中継部は、自装置に生成された延伸通信経路の利用状態を監視し、監視した利用状態に応じて当該延伸通信経路を削除する請求項9に記載の中継装置。
PCT/JP2018/005278 2018-02-15 2018-02-15 経路制御装置及び中継装置 WO2019159286A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/005278 WO2019159286A1 (ja) 2018-02-15 2018-02-15 経路制御装置及び中継装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/005278 WO2019159286A1 (ja) 2018-02-15 2018-02-15 経路制御装置及び中継装置

Publications (1)

Publication Number Publication Date
WO2019159286A1 true WO2019159286A1 (ja) 2019-08-22

Family

ID=67619197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005278 WO2019159286A1 (ja) 2018-02-15 2018-02-15 経路制御装置及び中継装置

Country Status (1)

Country Link
WO (1) WO2019159286A1 (ja)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ETRI: "23.501: Network function selection in 5G", 3GPP TSG SA WG2#118B S2-170345, 10 January 2017 (2017-01-10), XP051205778 *
HUAWEI ET AL.: "Session binding mechanism for non-IP PDU session", 3GPP TSG SA WG2#125 S2-180317, 16 January 2018 (2018-01-16), XP051389750 *
NOKIA ET AL.: "Transfer from TR conclusions (SS 8.4) to clause 5.3 on SM/Part 2: single PDU session with one N6 interface to the data network + Single PDU session with multiple N6 interfaces to the data network + Multiple PDU sessions", 3GPP TSG SA WG2#118B S 2-170149, 10 January 2017 (2017-01-10), XP051205591 *

Similar Documents

Publication Publication Date Title
JPWO2017195471A1 (ja) ユーザ装置及び基地局
JP2021141618A (ja) ユーザ装置
JP6777451B2 (ja) 基地局
JP6366886B2 (ja) 通信方法
JP2018056857A (ja) ユーザ装置、基地局及びコアネットワーク
WO2018030545A1 (ja) コアネットワーク及び基地局
JPWO2017170117A1 (ja) ユーザ装置
CN112690039B (zh) 网络节点
WO2020031310A1 (ja) 無線アクセスシステム及び通信装置
JP7018884B2 (ja) 通信方法
JP7300371B2 (ja) 通信制御装置
JP6898937B2 (ja) 通信制御方法および通信システム
WO2018008239A1 (ja) 無線通信システム
US20240129818A1 (en) Radio base station and terminal
JP2019036873A (ja) 基地局
WO2019159286A1 (ja) 経路制御装置及び中継装置
JPWO2018084115A1 (ja) 無線端末装置及び通信方法
JP2018191148A (ja) 制御方法
JP2018170713A (ja) 通信端末
WO2019159452A1 (ja) 転送制御システム、網側装置及び位置管理装置
WO2019193764A1 (ja) 基地局装置および通信システム
WO2020031328A1 (ja) スライス運用装置、通信システムおよびスライス運用方法
WO2017026531A1 (ja) 基地局、管理装置及び接続方法
US20220361045A1 (en) Communication device and communication method
US20220303832A1 (en) Communication device and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP