WO2019158115A1 - 冲击工具 - Google Patents

冲击工具 Download PDF

Info

Publication number
WO2019158115A1
WO2019158115A1 PCT/CN2019/075129 CN2019075129W WO2019158115A1 WO 2019158115 A1 WO2019158115 A1 WO 2019158115A1 CN 2019075129 W CN2019075129 W CN 2019075129W WO 2019158115 A1 WO2019158115 A1 WO 2019158115A1
Authority
WO
WIPO (PCT)
Prior art keywords
impact
mode
ram
tool
torque
Prior art date
Application number
PCT/CN2019/075129
Other languages
English (en)
French (fr)
Inventor
谢明健
李佶
钟红风
张士松
毋宏兵
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2019158115A1 publication Critical patent/WO2019158115A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D16/00Portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D16/00Portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit
    • B25D16/003Clutches specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D16/00Portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit
    • B25D16/006Mode changers; Mechanisms connected thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F3/00Associations of tools for different working operations with one portable power-drive means; Adapters therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for

Definitions

  • the invention relates to the technical field of power tools, and in particular to an impact tool.
  • the traditional impact tool is provided with a function switching mechanism, which can respectively realize a working mode such as a drilling mode, a screwdriver (torque adjustment) mode, and an impact drill mode.
  • Chinese patent CN103182703B discloses a hand tool device that drives a hammer drive mechanism 50(a) by changing the operating state of the planetary gear transmission stages (104a, 104b, 104c), which utilizes whether the tool spindle 38a is depressed to change the planetary gears.
  • the operating state of the transmission stage enables switching of the impact mode.
  • the planetary gear transmission stage has a complicated structural design and a complicated mode switching scheme.
  • An impact tool comprising at least two modes of operation, an impact mode and a non-impact mode, comprising: a housing; a motor disposed in the housing and providing power; a tool spindle for receiving the tool head, having a central axis; and an impact mechanism Provided in the housing, comprising: a ram, a guiding member, a first guiding member disposed on the ram, a second guiding member disposed on the guiding member, and abutting the ram
  • the energy storage element in the impact mode, the ram is rotated relative to the guiding member, and the first guiding member can drive the ram through the second guiding member to overcome the force of the energy storage element Moving along the central axis in a first direction, the energy storage element is capable of driving the ram to move along the central axis in a second direction opposite the first direction to impact the tool spindle; non-impact mode
  • the ram is not rotated relative to the guide member; a transmission mechanism for transmitting power of the motor to at least one
  • the impact tool changes the relative motion state of the ram and the guide through the mode adjustment mechanism, thereby providing a simple mode switching scheme.
  • the impact mechanism further includes an impact structure shaft driven by the transmission mechanism, and when the mode adjustment mechanism is in the first state, one of the guide member and the ram is fixed relative to the housing. The other of the two is driven to rotate by the impact structure shaft; when the mode adjusting mechanism is in the second state, the fixing of one of the guide member and the ram is released relative to the housing and is in the first guiding member and the first guiding member Under the action of the two guiding members, the other one rotates.
  • the mode adjustment mechanism includes a mode adjuster and an impact switch, the mode adjuster being operatively movable between a first position and a second position to enable the impact switch to be
  • the guiding member is engaged or disengaged, and when the impact switching member is engaged with the guiding member, the guiding member is fixed relative to the housing; when the impact switching member is separated from the guiding member, the guiding member is rotatable relative to the housing.
  • the mode switching member is disposed to rotate relative to the housing and is axially moved by rotationally driving the impact switching member.
  • the impact switching member is provided with a first fixed tooth
  • the guiding member is provided with a second fixed tooth
  • the mode adjusting member rotationally drives the impact switching member along the center line with respect to the housing The axis moves to engage or disengage the first fixed tooth with the second fixed tooth.
  • the first fixed tooth and the second fixed tooth are respectively provided as ratchet teeth having an abutting surface, and when the first fixed tooth and the second fixed tooth are engaged, the first fixed tooth The abutting surface abuts against the abutting surface of the second fixed tooth, and the first fixed tooth restricts the rotation of the guiding member only in one direction.
  • the mode adjusting member is provided with a mode guiding portion
  • the impact switching member is provided with a mode matching portion
  • the mode adjusting mechanism further comprises an elastic member abutting against the impact switching member.
  • the elastic member provides the impact switching member with a driving force for moving the guiding member to engage with the guiding member, and the mode guiding portion overcomes the function of the elastic member when the mode adjusting member is moved from the first position to the second position.
  • the force drive mode mating portion moves to separate the impact switching member from the guide member.
  • the guiding member is sleeved on the outer side of the ram, the second guiding member is disposed on the inner circumferential surface of the guiding member, and the first guiding member is disposed on the collision The outer peripheral surface of the hammer.
  • the first guiding member is a ball movably disposed on the ram
  • the second guiding member includes a plurality of climbing sections and a falling section when the balls pass through
  • the ball drives the ram to move in a first direction against the force of the energy storage element; when the ball passes the falling section, the energy storage element drives the ram
  • the second direction opposite to the first direction is moved to achieve an impact.
  • the impact tool further includes a torque adjustment mechanism including a torque adjustment disk, and a torque adjustment member, the impact tool including an inner ring gear, the mode adjustment member being operatively The second position is moved to the third position, and the torque adjustment disk is axially abutted from the mode adjustment member to be axially separated, so that the torque adjustment disk is movable along the central axis and moves away from the inner ring gear. And the torque adjustment member operatively changes the force of the torque adjustment disk to the inner ring gear to effect adjustment of the torque output of the tool spindle.
  • a torque adjustment mechanism including a torque adjustment disk, and a torque adjustment member, the impact tool including an inner ring gear, the mode adjustment member being operatively The second position is moved to the third position, and the torque adjustment disk is axially abutted from the mode adjustment member to be axially separated, so that the torque adjustment disk is movable along the central axis and moves away from the inner ring gear.
  • the torque adjustment member operatively changes the force of the torque
  • the inner surface of the mode adjusting member is provided with an inwardly protruding blocking portion
  • the torque adjusting disk is provided with a protrusion extending in the direction of the mode adjusting member, and the mode adjusting member is in the second In the position, the protrusion abuts against the blocking portion, and when the mode adjusting member is in the third position, the protrusion is axially separated from the blocking portion.
  • the impact tool further includes a torque adjustment mechanism including a torque adjustment disk, and a torque adjustment member, the impact tool including an inner ring gear, when the mode adjustment member moves to the first In one position, the torque adjustment disk is axially disengaged from the mode adjustment member such that the torque adjustment disk is movable along a central axis in a direction away from the inner ring gear, and the torque adjustment member is operatively The force of the torque adjustment disk on the inner ring gear is used to achieve adjustment of the torque output of the tool spindle.
  • a torque adjustment mechanism including a torque adjustment disk, and a torque adjustment member, the impact tool including an inner ring gear
  • the inner surface of the mode adjusting member is provided with an inwardly protruding blocking portion, and the torque regulating disk is provided with a protrusion extending in the direction of the mode adjusting member, when the mode adjusting member is moved to In the first position, the projection is axially separated from the barrier.
  • the guide member and the impact switching member when the first fixed tooth is engaged with the second fixed tooth, partially overlap in the axial direction of the tool spindle.
  • An impact tool having at least two modes of operation, an impact mode and a non-impact mode, including:
  • a motor disposed within the housing and providing power
  • a tool spindle for receiving a tool head having a central axis
  • An impact mechanism disposed in the housing, includes: a ram, a guiding member, a first guiding member disposed on the ram, a second guiding member disposed on the guiding member, and the ram Abutting energy storage element; in the impact mode, the ram is rotated relative to the guiding member, and the ram can overcome the storage under the guidance of the first guiding member and the second guiding member The force of the energy element moves along the central axis in a first direction, and the energy storage element is configured to drive the ram to move along the central axis in a second direction opposite the first direction to impact the Tool spindle
  • a transmission mechanism for transmitting power of the motor to at least one of the ram and the guide
  • the impact tool further includes a mode adjustment mechanism for switching between an impact mode and a non-impact mode, the mode adjustment mechanism being operative to switch between the first state and the second state, in the first state, the The ram can be rotated relative to the guide, the impact tool is in an impact mode; in the second state, the ram is rotated synchronously with the guide, the impact tool being in a non-impact mode.
  • An impact tool that includes:
  • a tool spindle having a central axis for receiving a tool head
  • the impact mechanism has a ram, a guide, a curved guide provided on one of the ram and the guide, a conversion member disposed on the other of the ram and the guide, and a storage axially abutting the ram Energy component
  • a torque adjustment mechanism including a torque adjustment member that is movably disposed relative to the housing;
  • the ram and the guide member are rotatable relative to each other, and the curved surface guide portion drives the ram through the conversion member to overcome the urging force of the energy storage mechanism to move in a first direction; the energy storage mechanism drives the ram Moving in a second direction opposite the first direction to impact the tool spindle; the torque adjustment member operatively varying the output torque of the tool spindle.
  • the impact tool is provided with an impact screwdriver mode, the tool spindle can be reciprocated for impact movement and the torque is adjustable, and the impact force of the tool spindle can be used to smoothly screw the screw into the target and perform screwing operation without the operator applying Large downforce.
  • the impact force of the tool spindle can be used to keep the tool head in contact with the target without requiring the operator to apply a large downforce, so as to avoid the tool head appearing due to insufficient downforce.
  • the slip phenomenon reduces the wear of the tool head, and the effect is particularly obvious when the tool head is a cross type or a letter type.
  • the impact mechanism includes an output ring gear
  • the impact tool further includes a mode adjustment mechanism including a mode adjustment member movably disposed relative to the housing, and an impact driven by the mode adjustment member a torque adjustment mechanism further comprising: a torque adjustment disk; the mode adjustment member operatively movable between the first position and the second position, the mode adjustment member and the torque adjustment when the mode adjustment member is moved to the first position
  • the disc is axially disengaged such that the torque adjustment disk is movable in a direction away from the output ring gear along a central axis, and the torque adjustment member operatively changes the force of the torque adjustment disk to the output ring gear to achieve
  • the adjustment of the output torque of the tool spindle, the impact switching member is engaged with the guide member to fix the guide member relative to the housing, and the ram is rotated relative to the guide member.
  • the mode adjuster is axially disengaged from the torque adjustment disk when the mode adjuster is moved to the second position, such that the torque adjuster operatively changes the effect of the torque adjustment disk on the output ring gear Force to adjust the output torque of the tool spindle; the impact switching member is separated from the guide member to rotate the guide member relative to the housing, so that the ram and the guide member rotate synchronously with respect to the housing The ram cannot axially impact the tool spindle.
  • the mode adjusting member when the mode adjusting member is operatively moved to the third position, the mode adjusting member axially abuts the torque adjusting disk, and the torque adjusting disk is restricted in movement along the tool spindle axis; Separating the switching member from the guide member causes the guide member to rotate relative to the housing such that the ram and the guide member rotate synchronously with respect to the housing, the ram being unable to axially impact the tool spindle.
  • the mode adjuster when the mode adjuster is operatively moved to the fourth position, the mode adjuster axially abuts the torque adjustment disk, the movement of the torque adjustment disk along the tool center axis is limited;
  • the impact switching member engages with the guide member to fix the guide member relative to the housing, and the ram is rotated relative to the guide member.
  • the mode adjuster is rotatably disposed relative to the housing, the mode adjuster being capable of driving the impact switching to move along the central axis.
  • the impact switching member is provided with a first fixing tooth
  • the guiding member is provided with a second fixing tooth
  • the first fixing tooth and the second fixing tooth are respectively provided with ratchet teeth having an abutting surface
  • the guiding member is sleeved on the outer side of the ram, the second guiding member is disposed on the inner circumferential surface of the guiding member, and the first guiding member is disposed on the collision The outer peripheral surface of the hammer.
  • the first guiding member is a ball movably disposed on the ram
  • the second guiding member includes a plurality of climbing sections and a falling section when the balls pass through
  • the ball drives the ram to move in a first direction against the force of the energy storage mechanism; when the ball passes the falling section, the energy storage mechanism drives the ram Move in the second direction to achieve impact.
  • the guide member and the impact switching member when the first fixed tooth is engaged with the second fixed tooth, partially overlap in the axial direction of the tool spindle.
  • FIG. 1 is a schematic cross-sectional view of an impact tool in an impact mode in accordance with an embodiment of the present invention
  • FIG. 2 is an exploded view of an impact tool in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of the impact tool in a non-impact mode in accordance with an embodiment of the present invention
  • FIG. 4 is a schematic view showing a tool spindle and an impact structure shaft being integrally disposed according to another embodiment
  • FIG. 5 is a schematic structural view of a guide member of an impact tool according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of an impact switching member of an impact tool according to an embodiment of the present invention.
  • Figure 7 is a schematic cross-sectional view showing the impact switching member engaged with the guide member in the impact mode
  • Figure 8 is a schematic structural view of the impact switching member separated from the guide member in the impact mode
  • Figure 9 is a schematic cross-sectional view showing the impact switching member engaged with the guide member in the impact mode
  • Figure 10 is a schematic structural view of the impact switching member separated from the guide member in the impact mode
  • FIG. 11 is a schematic structural view of a mode adjusting member according to an embodiment of the present invention.
  • Figure 12 is a schematic structural view of a torque adjustment disk according to an embodiment of the present invention.
  • Figure 13 is a schematic structural view of a torque adjustment ring according to an embodiment of the present invention.
  • FIG. 14 is a partial structural schematic view of an impact tool in an impact drill mode according to an embodiment of the present invention.
  • Figure 15 is a partial structural view showing the impact tool in a drilling mode according to an embodiment of the present invention.
  • 16 is a partial structural view showing a hammer tool in a screwdriver mode according to an embodiment of the present invention
  • Figure 17 is a partial structural view showing the impact tool in an impact screwdriver mode according to an embodiment of the present invention.
  • Figure 18 is a partial cross-sectional view showing an impact tool according to an embodiment of the present invention.
  • Figure 19 is a schematic structural view of a ram of an impact tool according to an embodiment of the present invention.
  • Figure 20 is a schematic view of the moment adjusting disk crimped to the inner ring gear
  • Figure 21 is a schematic structural view of an impact switching member according to another embodiment of the invention.
  • Figure 22 is a schematic structural view of a mode adjusting member according to another embodiment of the invention.
  • Figure 23 is a partial structural view showing another embodiment of the impact tool in an impact screwdriver mode
  • Figure 24 is a partial structural view showing another embodiment of the impact tool in a drilling mode
  • Fig. 25 is a partial structural view showing the impact tool of another embodiment in the screwdriver mode.
  • an impact tool includes at least an impact mode and a non-impact mode.
  • the impact tool includes a housing 10, a transmission mechanism 20 disposed in the housing 10, and is disposed in the housing 10 and A motor 30 that supplies power to the transmission mechanism 20, an impact mechanism 40 that is driven by the transmission mechanism 20, a tool spindle 50, and a mode switching mechanism 60.
  • the tool spindle 50 is for receiving the tool head 200 with a central axis X. In the impact mode, the tool spindle 50 reciprocates along its central axis X. In the non-impact mode, the tool spindle 50 does not reciprocate.
  • the mode switching mechanism 60 is used to switch the impact tool between the impact mode and the non-impact mode. This is described in further detail below.
  • the impact mechanism 40 includes a ram 410, a guiding member 420, and an energy storage element 431 abutting against the ram 410.
  • the ram 410 is provided with a first guiding member 432
  • the guiding member 420 is provided with a second guiding member 433. .
  • the ram 410 rotates relative to the guide 420 such that the first guide 432 can drive the ram 410 through the second guide 433 to overcome the urging force of the energy storage element 431 to move along the central axis X toward the first direction A.
  • the energy storage element 431 is capable of driving the ram 410 to move along the central axis X in a second direction B opposite to the first direction A to impact the tool spindle 50; in the non-impact mode, the ram 410 and the guide 420 are not relatively rotated.
  • the first direction A is horizontal to the right and the second direction B is horizontal to the left.
  • the transmission mechanism 20 is for transmitting power of the motor 30 to at least one of the ram 410 and the guide 420.
  • the mode adjustment mechanism 60 is operatively switchable between a first state in which the ram 410 is rotatable relative to the guide 420 and an impact tool in an impact mode; in the second state, the guide 420 can be
  • the motor 30 drives the rotation, but the ram 410 does not rotate relative to the guide 420 and the impact tool is in a non-impact mode.
  • the mode adjusting mechanism 60 the impact tool can be switched between the impact mode and the non-impact mode, and the switching is convenient, enriching the function of the impact tool.
  • the operational mode adjustment mechanism 60 can vary the relative motion state of the ram 410 and the guide 420 in a variety of ways.
  • the impact mechanism 40 further includes an impact structure shaft 434 that is driven to rotate by the transmission mechanism 20.
  • the mode adjustment mechanism 60 When the mode adjustment mechanism 60 is in the first state, one of the guide member 420 and the ram 410 is opposite to the housing. 10 fixed, the other one is driven to rotate by the impact structure shaft 434; when the mode adjusting mechanism 60 is in the second state, the fixing of one of the guiding member 420 and the ram 410 relative to the housing is released and in the first guide The other of the two is rotated by the action of the lead member 432 and the second guiding member 433.
  • the ram 410 and the guide 420 are both driven to rotate by the impact structure shaft 434.
  • the guide member 420 is restricted from rotating to be fixed relative to the housing 10, such that when the ram 410 is driven to rotate by the impact structure shaft 434, the energy storage member 431 can drive the ram 410 along the central axis X. Moving in the second direction B to impact the tool spindle 50.
  • the guiding member 420 can be driven to rotate by the motor 30, and at this time, the ram 410 is also synchronously rotated, so that the guiding member 420 and the ram 410 are not rotated relative to each other, and the ram 410 has no axial reciprocating motion.
  • the mode adjustment mechanism 60 when the mode adjustment mechanism 60 is in the first state, it may be the opposite situation, that is, the ram 410 is restricted from rotating, and the guide 420 is rotated. At this time, the energy storage element 431 can be driven. The ram 410 moves along the central axis X toward the second direction B to impact the tool spindle 50.
  • the mode adjusting mechanism 60 When the mode adjusting mechanism 60 is in the second state, the guiding member 420 and the ram 410 rotate synchronously, and there is no relative rotation between the two, and the ram 410 has no axial reciprocating motion.
  • both the ram 410 and the guide 420 are rotated. Specifically, at this time, the ram 410 and the guide 420 have a difference in rotational speed such that there is a relative rotational motion therebetween, and the ram 410 can impact the tool spindle 50.
  • the impact structure shaft 434 and the tool spindle 50 are separately disposed. However, the impact structure shaft 434 and the tool spindle 50 may also be integrally provided.
  • the left end of the tool spindle 50 is for receiving the tool head 200, the middle portion is for driving the ram 410 and the guide member 420, and the right end is coupled to the transmission mechanism 20 to receive the power of the motor 30.
  • the energy storage element 431 can move the ram 410 axially.
  • the guiding member 420 is sleeved on the outer side of the ram 410
  • the second guiding member 433 is disposed on the inner circumferential surface of the guiding member 420
  • the first guiding member 432 is disposed on the outer circumferential surface of the ram 420 .
  • the first guiding member 432 is a ball movably disposed on the ram 410
  • the second guiding member 433 includes a plurality of climbing sections 4331 and a falling section 4332.
  • the highest vertex of the climbing section 4331 is connected to the highest vertex of the falling section 4332.
  • the climbing section 4331 may be in a spiral shape
  • the falling section 4332 may be in a straight line shape
  • the falling section 4332 extends along the central axis X of the tool spindle 50.
  • the climbing section 4331 has a climbing height in the axial direction of more than 3 mm and less than or equal to 15 mm, preferably, the climbing height is greater than It is equal to 4 mm and less than or equal to 12 mm, and more preferably, the climbing height is 10 mm.
  • the “climbing height” refers to the axial distance between the two ends of the climbing section 4331 on the central axis X of the tool spindle 50.
  • the first guiding member 432 falls from the highest vertex of the climbing section 4331, it may fall to the bottom of the next climbing section 4331 along the falling section 4332, or may be a parabolic way of moving without falling through the falling section 4332.
  • the falling section 4332 may also be provided as a discontinuous portion disposed between the climbing section 4331 and the climbing section 4331.
  • the ram 410 is sleeved on the outside of the impact structure shaft 434
  • the guide member 420 is sleeved on the outside of the ram 410.
  • the impact mechanism 40 further includes a support seat 435 fixed in the housing 10.
  • the support seat 434 and the guide member 420 are further provided with a support guide member when the guide member 420 rotates. 420 steel ball 436.
  • the impact structure shaft 434 is sleeved with a baffle 4341, that is, the baffle 4341 is sheathed on the outer peripheral wall of the impact structure shaft 434, and the energy storage element 431 is located at the ram 410 and the baffle 4341. Between the ends of the element 431 away from the ram 410 can be engaged with the baffle 4341. When the ram 410 is moved a certain distance toward the energy storage element 431, the ram 410 and the baffle 4341 can compress the energy storage element 431. Thereby, the energy storage element 431 can form a urging force against the ram 410.
  • the energy storage element 431 can be a spring and one end of the spring is mounted in a cavity formed in the ram 410.
  • the second guiding member 433 is a cam groove fixedly disposed on the guiding member 420.
  • the balls are helically moved in the cam grooves to effect reciprocation of the ram 410 in the axial direction of the tool spindle 50.
  • the ram 410 may be fitted outside the guide 420, and the first guide 432 is disposed on the inner peripheral surface of the ram 410.
  • the second guiding member 433 functions as a curved guide portion so that the ram 410 can move along the curved guiding portion when rotated relative to the guiding member 420.
  • the first guiding member 432 is a conversion member for moving the ram 410.
  • the mode adjustment mechanism 60 includes an impact switch 610 and a mode adjuster 620.
  • the mode adjustment member 620 is operatively movable between the first position and the second position to enable the impact switch 610 to engage or disengage the guide member 420.
  • FIG. 7 and FIG. 8 when the mode adjusting member 620 is in the first position, the impact switching member 610 is engaged with the guiding member 420, and the guiding member 420 is fixed relative to the housing 10, and the impact tool enters the impact mode; as shown in FIG. 9 and FIG.
  • the mode adjustment member 620 is moved to the second position, the impact switching member 610 is separated from the guide member 420, and the guide member 420 is rotatable relative to the housing 10, and the impact tool enters the non-impact mode.
  • the mode switching member 620 is rotatably provided with respect to the housing 10, and is axially moved by rotationally driving the impact switching member 610. In this way, the operation space of the mode switching member 620 can be reduced. In this manner, when switching between the second position and the first position, the mode switching member 620 is rotated by a certain angle to achieve position switching.
  • the mode switching member 620 can also be moved axially relative to the housing 10 to change position, thereby driving the impact switching member 610 to move axially.
  • the impact switching member 610 is provided with a first fixed tooth 611
  • the guiding member 420 is provided with a second fixed tooth 421
  • the mode adjusting member 620 rotates relative to the housing 10 and drives the impact switching member 610 along the center line.
  • the axis X is moved to engage or disengage the first fixed tooth 611 with the second fixed tooth 421.
  • the impact switching member 610 can define the movement of the guide member 420, and the guide member 420 is fixed relative to the housing 10, and the impact tool enters the impact mode.
  • the guide member 420 is rotatable relative to the housing 10, and the impact tool enters the non-impact mode.
  • first fixed tooth 611 and the second fixed tooth 421 are respectively provided as ratchet teeth having an abutting surface, and when the first fixed tooth 611 and the second fixed tooth 421 are engaged, the first abutting surface 6111 of the first fixed tooth 611
  • the second abutting faces 4211 of the second fixed teeth 421 abut each other, and the first fixed teeth 611 restrict the rotation of the guides 420 only in one direction.
  • the impact switching member 610 can only restrict the one-way rotation of the guide member 420. That is, from FIG. 5, it is assumed that the impact switching member 610 can restrict the guide member 420 from rotating clockwise.
  • the first guide member climbs along the climbing portion 4331 when moving to climb.
  • the ram 410 can be moved axially; when the impact structure shaft 434 rotates counterclockwise, the first guiding The member 432 is unable to move from the lowest point of one of the climbing sections 4331 to the highest point of the other climbing section 4331, the first guiding member 432 is stuck at the falling section 4332, and the impact switching member 610 cannot restrict the guiding member 420.
  • the guiding member 420 rotates together with the ram 410, and the ram 410 rotates without relative rotation with respect to the guiding member 420, so that the first guiding member 432 is not stuck at the guiding member 420, that is, the motor can be prevented from being blocked when the motor is reversed.
  • the guide member 420 and the impact switching member 610 partially overlap in the axial direction of the tool spindle 50.
  • the position of the second fixed tooth 421 on the guide member 420 is close to the center in the axial direction of the guide member 420, so that, as shown in FIG. 8, the first fixed tooth 611 and the second fixed tooth are as shown in FIG.
  • the direction member 420 and the impact switching member 610 partially overlap in the axial direction of the tool spindle 50.
  • the guide member 420 has a guide body 422.
  • the guide body 422 has an outer peripheral surface 4221.
  • the first fixed tooth 611 protrudes from the outer peripheral surface 4221 of the guide body 422, and the first fixed tooth 611 has a space from the end of the outer peripheral surface 421 near the impact switching member 610.
  • the impact switching member 610 can be moved toward the guide member 420 under the support of the outer peripheral surface 4221 until it is engaged with or separated from the second fixed tooth 421 to ensure smooth and stable reciprocating movement of the guide member 420.
  • the impact switching member 610 is further provided with a mode matching portion 613.
  • the mode adjusting member 620 is provided with a mode guiding portion 623. Referring to FIGS.
  • the mode adjustment mechanism further includes an elastic member 630 abutting against the impact switching member 610, and the elastic member 630 provides the impact switching member 610 with a driving force for moving the guiding member 420 to a position where the guiding member 420 is engaged.
  • the mode adjusting member 620 is rotated from the first position in FIG. 7 to the second position in FIG. 9, the mode guiding portion 623 is moved against the force of the elastic member 630 to drive the mode mating portion 613 to move the impact switching member 610 with The guides 420 are separated.
  • the impact tool of the embodiment of the present invention further includes a torque adjustment mechanism 70.
  • the torque adjustment mechanism 70 includes a torque adjustment disk 710 that is movable along a central axis X, and a torque adjustment ring 720 that drives the torque adjustment disk 710 to move axially.
  • the torque adjustment disk 710 is locked or unlocked by the mode adjustment member 620 such that the torque adjustment disk 710 can be moved axially to effect adjustment of the torque output of the tool spindle 50.
  • the torque adjusting disk 710 can be axially moved, thereby achieving adjustment of the torque output of the tool spindle 50, and the impact tool enters the torque adjustment mode.
  • the torque adjusting disk 710 cannot move axially, and the torque adjusting disk 710 cannot realize the adjustment of the torque output of the tool spindle 50, and the impact tool enters the torqueless adjustment mode.
  • the impact tool can further realize the torque adjustment mode and the non-torque adjustment mode at least in the non-impact mode, wherein the drilling mode can be realized when the torque is not adjusted, and the screwdriver mode can be realized when the torque adjustment is performed. .
  • the mode adjusting member 620 when the mode adjusting member 620 is in the second position shown in FIG. 9, the impact tool is in the non-impact mode, and as shown in FIG. 15, the mode adjusting member 620 is axially abutted against the torque adjusting disk 710, and the impact tool is in the drilling. mode.
  • the operation mode adjusting member 620 when the operation mode adjusting member 620 is moved from the second position to the third position, the torque adjusting disk 710 and the mode adjusting member 620 are changed from the axial abutting to the axially separated torque adjusting disk 710 which can be along the tool spindle 50. Move axially and the impact tool enters the screwdriver mode.
  • the mode adjusting member 620 When the operation mode adjusting member 620 is rotated relative to the housing rotation 10, the mode adjusting member 620 is rotated by a certain angle when it is moved from the second position to the third position. Specifically, as shown in FIGS. 11 and 12, the inner surface of the mode adjusting member 620 is provided with an inwardly protruding blocking portion 622, and the torque adjusting plate 710 is provided with a protrusion 712 extending in the direction of the mode adjusting member, and the mode adjusting member is provided. When the 620 is in the second position, as shown in FIG.
  • the protrusion 712 is axially abutted against the blocking portion 622, the torque adjustment disk 710 cannot move axially, and the impact tool is in the no-torque adjustment mode, at which time the drilling mode is entered;
  • the adjusting member 620 is in the third position, as shown in FIG. 16, the protrusion 712 is axially separated from the blocking portion 622, the torque adjusting plate 710 is axially movable, and the impact tool enters the torque adjustment mode to realize the screwdriver function.
  • the torque adjustment mechanism 70 can also realize the torque adjustment mode and the non-torque adjustment mode in the impact mode at the same time, wherein the impact drill mode can be realized when the torque is not adjusted, and the impact screwdriver mode can be realized when the torque adjustment is performed. .
  • the impact tool enters the impact mode at this time.
  • the torque adjustment disk 710 cannot move axially, and the impact tool is in the torque-free adjustment mode, and enters the impact drill mode.
  • the torque adjustment disk 710 can move axially, and the impact tool enters the torque adjustment mode, and the impact screwdriver mode can be realized.
  • the mode adjusting member 620 when the mode adjusting member 620 is moved to the first position, the impact tool enters the impact mode, and the operating mode adjusting member 620 can axially abut or separate the protrusion 712 from the blocking portion 622. Can achieve impact drill mode or impact screwdriver mode.
  • the torque adjusting plate 710 when the mode adjusting member 620 is moved to the first position, the torque adjusting plate 710 is axially separated from the mode adjusting member 620, so that when the impact tool is switched to the impact mode, the impact screwdriver mode is directly entered, and the impact is instantaneous.
  • the tool has only three modes of operation, namely drill mode, screwdriver mode and impact screwdriver mode.
  • four modes of operation can be switched by using the impact switching member 610 and the mode adjusting member 620, and the order is the impact screwdriver mode (a), the screwdriver mode (b), the drilling mode (c), and the impact drilling mode. (d).
  • the guiding block 621 of the mode adjusting member 620 has a first inclined surface portion 6211, a second inclined surface portion 6212, and a platform portion 6213 therebetween, wherein the platform portion 6213 is used for axially resisting
  • a mating block 612 of the impact switch 610 is attached.
  • the first inclined surface portion 6211 first comes into contact with the side portion of the guiding block 621.
  • the impact switching member 610 is kept in cooperation with the guiding member 420, the guiding member 420 cannot be rotated, and the blocking portion of the mode adjusting member 620 is blocked.
  • the 622 is not axially abutted against the projection 712 of the torque adjustment disk 710.
  • the torque adjustment can be performed, so that the impact tool can be in the impact screwdriver mode (a).
  • the platform portion 6213 moves to a position axially abutting the mating block 612 of the impact switching member 610, and the impact switching member 610 is axially away from the guiding member 420, at which time the guiding member 420 can be rotated, and the impact mechanism 40 is absent.
  • the impact output at this time, the blocking portion 622 of the mode adjusting member 620 is not axially abutted against the projection 712 of the torque adjustment disk 710.
  • the torque adjustment can be performed, so that the impact tool enters the screwdriver mode (b).
  • the rotation of the mode adjusting member 620 is continued, and the platform portion 6213 is rotated at a certain angle but still axially abuts against the mating block 612 of the impact switching member 610.
  • the guiding member 420 can be rotated, and the impact mechanism 40 has no impact output.
  • the blocking portion 622 is moved to a position axially abutting against the projection 712 of the torque adjustment disk 710, as shown in Fig. 15, the torque adjustment cannot be performed, so the tool is impacted and enters the drilling mode (c).
  • the platform portion 6213 is offset from the mating block 612 of the impact switching member 610 in the circumferential direction, the second inclined surface portion 621 is in contact with the side portion of the guiding block 621, and the impact switching member 610 is axially approached to the guiding member 420.
  • the guiding member 420 is not rotatable, and the impact mechanism 40 has an impact output.
  • the blocking portion 622 of the mode adjusting member 620 is still axially abutted to the position of the protrusion 712 of the torque adjusting disk 710, as shown in FIG. Torque adjustment is performed and the impact tool enters the impact drill mode (d).
  • the structure of the guiding block 621 and the mating block 622 of the mode adjusting member 620 may be different, and switching of the four working modes may still be implemented, but the order is different from the above embodiment.
  • a platform portion 6213 is provided at each side of the guiding block 621, and a slope portion is provided between the two platform portions.
  • the impact mechanism 40 has no impact output, and the mode adjusting member 620 is disposed such that the blocking portion 622 is not axially abutted against the torque adjusting disk.
  • the protrusion 712 of the 710 can be adjusted by the torque, so that the screwdriver mode can be realized.
  • the rotation of the mode adjusting member 620 is continued to shift the first platform portion 6213 and the engaging block 612 in the circumferential direction, and the inclined surface portion moves to a position in contact with the side portion of the guiding block 621, and the impact mechanism 40 has an impact output.
  • the blocking portion 622 of the member 620 is still not axially abutted against the projection 712 of the torque adjustment disk 710, and the torque adjustment can be performed, so that the impact screwdriver mode can be realized.
  • the bevel portion is in contact with the side of the guiding block 621, the impact mechanism 40 has an impact output, and the blocking portion 622 of the mode adjusting member 620 axially abuts against the protrusion 712 of the torque adjusting disk 710. Torque adjustment is not possible and the impact drill mode can be achieved.
  • the rotation of the mode adjusting member 620 is continued such that the second platform portion 6213 axially abuts the mating block 612 of the impact switching member 610.
  • the impact mechanism 40 has no impact output, and the blocking portion 622 of the mode adjusting member 620 is still axially abutted.
  • the protrusion 712 of the torque adjustment disk 710 cannot be adjusted by the torque, so the drilling mode can be realized.
  • the four functions of the screwdriver, the impact screwdriver, the impact drill and the drill can be realized, and the order of the four working modes is: the screwdriver mode, the impact screwdriver mode, the impact drill mode, the drilling mode. .
  • the end surface of the impact switching member 610' is provided with a first fixed tooth 611', and the outer circumference is provided with a mating block 612'.
  • the inner circumference of the mode adjusting member 620' is provided with a guiding block 621' and a blocking portion 622'.
  • the guiding block 621' has only one slope portion 6211' and has a platform portion 6213'.
  • the slope portion 6211' and the platform portion 6213' may be transitioned by a straight surface, or the slope portion 6211' may directly extend to engage with the platform portion 6213'.
  • the impact switching member 610' is kept in cooperation with the guiding member 420, and the guiding member 420 cannot be rotated.
  • the impact mechanism 40 has a torque output; as shown in FIG. 23, the blocking portion 622' of the mode adjusting member 620' is not axially abutted against the protrusion 712 of the torque adjustment disk 710, and the torque adjustment can be performed, so the impact tool is in the impact screwdriver mode.
  • the rotation of the mode adjusting member 620 ′ is continued such that the platform portion 6213 ′ axially abuts the mating block 612 ′ of the impact switching member 610 ′.
  • the impact switching member 610 is axially away from the guiding member 420 , and the guiding member 420 can be rotated at this time, and the impact mechanism 40 can be rotated.
  • the platform portion 6213' continues to axially abut the mating block 612' of the impact switching member 610'.
  • the guiding member 420 can be rotated, and the impact mechanism 40 has no impact output;
  • the blocking portion 622 of the mode adjusting member 620 does not axially abut against the protrusion 712 of the torque adjusting disk 710, and the torque adjustment can be performed at this time, so that the tool screwdriver mode is impacted.
  • the three working modes that can be implemented are: impact screwdriver mode, drill mode, and screwdriver mode, that is, three functions of impact screwdriver, drill, and screwdriver.
  • the impact tool is capable of implementing an impact screwdriver mode.
  • the tool spindle 50 can perform a reciprocating impact motion and its torque is adjustable. Therefore, when performing the stapling operation, the impact force of the tool spindle 50 can be used to smoothly screw the screw into the target and screw the screw. The operation does not require the operator to apply a large downforce.
  • the impact force of the tool spindle 50 can still be utilized during the screwing of the screw, so that the tool head 200 can always be in contact with the target without requiring the operator to apply a large downforce, thereby avoiding Insufficient downforce causes the tool head 200 to slip, which reduces the wear of the tool head 200, and is particularly effective when the tool head 200 is of a cross type or a letter type.
  • the impact of the tool spindle 50 can be used to smoothly screw the screw into the target, and the tool head can be prevented during the screwing process. 200 has slipped.
  • the adjustment of the output torque of the tool spindle 50 can be achieved when the torque adjustment disk 710 is axially moved.
  • the torque adjustment disk 710 when the torque adjustment disk 710 is moved, its positional relationship with the transmission mechanism 20 changes, and then the torque acting on the tool spindle 50 by the transmission mechanism 20 is changed.
  • the transmission mechanism 20 includes an inner ring gear 210 rotatably disposed within the housing 10, and a drive wheel 220 that meshes with the inner ring gear 210 to transmit torque of the motor 30 to the impact structure shaft 434.
  • the torque adjustment mechanism 70 includes a torque adjustment member. The torque adjusting member is used to adjust the resistance moment when the ring gear 210 rotates, so that the ring gear 210 rotates against different resistances, so that the torque transmitted from the driving wheel 220 to the impact structure shaft 434 is adjusted, and the output to the tool spindle 50 is realized. Torque adjustment.
  • the torque adjusting disk 710 can move in the direction away from the ring gear 210 along the central axis X of the tool spindle 50, and the torque The adjustment member operatively changes the force of the torque adjustment disk 710 to the inner ring gear 210 to effect adjustment of the output torque of the tool spindle 50.
  • the torque adjustment member includes a torque adjustment ring 720.
  • the torque adjustment ring 720 is coupled to the housing 10 in an axially movable but non-rotatable manner and can vary the force of the torque adjustment disk 710 on the inner ring gear 210.
  • the torque adjustment ring 720 and the housing 10 are not rotatable relative to each other, and the two are relatively stationary.
  • the torque adjustment ring 720 is movable relative to the housing 10.
  • the housing 10 may be provided with a guiding block extending in the axial direction of the impact structure shaft 434.
  • the torque adjusting ring 720 is provided with a sliding groove corresponding to the guiding block, and the movement of the torque adjusting ring 720 is guided by the cooperation of the guiding block and the sliding groove.
  • Torque adjustment mechanism 70 also includes a compression spring 730 located between torque adjustment disk 710 and torque adjustment ring 720.
  • One end of the torque adjustment disk 710 facing the torque adjustment ring 720 is provided with a first positioning post 711, and one end of the torque adjustment ring 720 facing the torque adjustment disk 710 is provided with a second positioning post 721.
  • Both ends of the compression spring 730 are respectively sleeved on the first positioning post 711 and the second positioning post 721.
  • the compression spring 730 is compressed, and the larger the compression amount of the compression spring 730, the greater the axial pressure applied to the ring gear 210 by the torque adjustment disk 710, the inner ring gear The greater the rotational resistance of 210, the greater the rotational resistance torque that is received.
  • the ring gear 210 is restricted from rotating relative to the housing 10, the ring gear 210 corresponds to a portion of the housing 10, at which time the drive wheel 220 is transmitted to
  • the impact structure shaft 434 has the highest torque and the impact tool is in the torqueless adjustment mode. As shown in FIG.
  • one end of the torque adjustment disk 710 facing away from the torque adjustment ring 720 is provided with a crimping post 713.
  • a ball 714 is disposed between the crimping post 713 and the end surface of the ring gear 210.
  • the crimping post 713 of the torque adjustment disk 710 is pressed against the end face of the inner ring gear 210 by the ball 714 to provide axial pressure to the ring gear 210 while not affecting the rotation of the ring gear 210.
  • the torque adjustment mechanism 70 further includes a torsion cover 740 for the user to operate to drive the torque adjustment ring 720 to move.
  • the torsion shield 740 is rotatably disposed relative to the housing 10 and is configured to drive the torque adjustment ring 720 for axial movement.
  • a threaded connection may be employed between the torsion shield 740 and the torque adjustment ring 720.
  • the torsion cover 740 is rotatably sleeved on the outside of the torque adjustment ring 720, wherein the inner circle of the torsion cover 740 is internally threaded and the outer circumference of the torque adjustment ring 720 is externally threaded.
  • the torque adjustment ring 720 is driven to move in the axial direction of the impact structure shaft 434, thereby adjusting the axial pressure applied to the ring gear 210 by the torque adjustment disk 710.
  • the impact tool is in the impact mode.
  • the impact switching member 610 of the mode adjustment mechanism 60 restricts the rotation of the guide sleeve 420, so that the ram 410 of the impact mechanism 40 can move in the axial direction of the impact structure shaft 434.
  • the impact structure shaft 434 can be struck.
  • the rotating torque cover 740, the torque adjusting ring 720 is driven to move in the axial direction of the impact structure shaft 434, thereby adjusting the resistance moment when the inner ring gear 210 is rotated, and realizing the torque adjustment of the impact mode, that is, the impact tool is Work in impact screw mode. If the torque adjustment disk 71 is crushed, that is, the ring gear 210 cannot be rotated in the rotational direction, the impact tool is switched to operate in the hammer drill mode.
  • the mode switch knob 620 of the mode adjustment mechanism 60 is first operated to cause the impact tool to enter the non-impact mode as shown in FIG. 3.
  • the ram 410 and the guide sleeve 420 can be together. Rotating, the ram 410 cannot move in the axial direction of the impact structure shaft 434 and cannot impact the impact structure shaft 434.
  • the torsion cover 740 is rotated to adjust the axial pressure applied to the ring gear 210 by the torque adjustment disk 710 and the torque adjustment ring 720, so that the impact tool operates in the torque adjustment state, that is, in the screwdriver mode; or makes the impact The tool works without torque adjustment, ie in drill mode.
  • the operating mode switching sequence of the impact tool is not limited to the above, and it is related to the working mode in which the impact tool is currently located and the switching intention of the operator.
  • the torque adjustment disk 710 presses the inner ring gear 210 to the inner ring gear regardless of the hammer drill mode or the drill mode. 210 cannot be rotated, and the operator hopes that this state can be reliably guaranteed.
  • the ram 410 does not produce a hammering action, that is, when the machine is turned on but not in operation, it is desirable that the impact tool is in a relatively quiet state.
  • the impact mechanism 40 is also provided with a clutch mechanism 440.
  • the clutch mechanism 440 is used to transmit power between the impact structure shaft 434 and the ram 410.
  • the clutch mechanism 440 can engage the impact structure shaft 434 with the ram 410, and can also disengage the impact structure shaft 434 from the ram 410.
  • the clutch mechanism 440 can engage the impact structure shaft 434 with the ram 410, the rotational motion of the impact structure shaft 434 is transmitted to the ram 410, and the impact structure shaft 434 drives the ram 410 to rotate when the clutch mechanism 440 disengages the two.
  • the engagement relationship between the clutch mechanism 440 and the ram 410 is released, and the impact structure shaft 434 is not rotated relative to the ram 410, and the ram 20 is stationary relative to the guide 420.
  • the clutch mechanism 440 is configured to be closed by a force transmitted via the tool spindle 50. That is, whether there is a mating relationship between the clutch mechanism 440 and the ram 410 can be controlled by the tool spindle 50, and the tool spindle 50 can apply an external force to the clutch mechanism 440 to change the relationship between the clutch mechanism 440 and the ram 410, such as a tool head or
  • the clutch mechanism 440 is closed, the ram 410 is driven, and further, when the ram 410 can be in the axial direction of the impact structure shaft 434 When the direction reciprocates, the impact tool can perform the impact action.
  • the clutch mechanism 440 includes a clutch member 441, a recess 4342 disposed on the impact structure shaft 434 for receiving the clutch member 441, and a slot 510 disposed on the tool spindle 50.
  • the slot 510 includes an abutting portion 511.
  • the clutch member 441 is moved by the tool spindle 50 in the axial direction of the impact structure shaft 434, and is selectively engaged with the slope portion 411 in the circumferential direction to transmit torque or disengage.
  • the impact structure shaft 434 can drive the ram 410 through the clutch member 441, and vice versa, when the clutch member 441 is separated from the slope portion 411, The impact structure shaft 434 does not drive the ram 410 to rotate, thereby achieving the cutting of the kinetic power of the ram 410.
  • one end of the tool spindle 50 extends into the impact structure shaft 434, and the tool spindle 50 is provided with an abutting portion 511 for driving the movement of the clutch member 441.
  • the abutting portion 511 has a certain height in the radial direction of the tool spindle 50 to drive the clutch member 441 to move when the tool spindle 50 moves axially.
  • one end of the impact structure shaft 434 away from the motor 30 is provided with a cavity 4343 having an opening.
  • the tool spindle is disposed coaxially with the impact structure shaft 434, and one end of the tool spindle near the motor extends into the cavity 4343 and is coupled to the drive shaft in a relatively axially movable but non-rotatable manner.
  • the inner wall of the cavity 4343 and the outer wall of the connecting end of the tool spindle 30 are splined by axially extending so that the tool spindle 50 can move axially relative to the impact structure shaft 434 and can rotate with the impact structure shaft 434.
  • a portion of the tool spindle 50 that projects into the cavity 4343 is provided with an abutment portion 510.
  • the abutting portion 511 is at least partially located on a side of the clutch member 441 in the radial direction of the impact structure shaft 434 to axially abut the clutch member 441.
  • the ram 410 is sleeved on the outside of the impact structure shaft 434.
  • the inclined surface portion 411 is disposed on an inner circular surface of the ram opposite to the impact structure shaft 434.
  • the inclined surface portion 411 is a curved surface extending in the circumferential direction to block the rotation of the clutch member 441 following the transmission shaft in the circumferential direction.
  • the clutch member 441 is preferably provided in a spherical or columnar shape and has a rounded outer surface, and the rounded outer surface has a small frictional force during the movement, thereby facilitating the state switching of the clutch member 441.
  • the bottom of the cavity 4343 is provided with a reset member 4344 axially abutting against the tool spindle 50.
  • the reset member 4344 provides an elastic force that moves the tool spindle 50 away from the impact structure shaft 434.
  • the clutch mechanism 410 When the tool spindle 50 is moved to the second position against the resistance of the reset member 4344 under the axial load, the clutch mechanism 410 is in the engaged state, and the clutch member 441 abuts the slope portion 411 in the circumferential direction, and the impact structure shaft The 434 drive ram 410 rotates. Therefore, when the impact tool of the embodiment of the present invention is in the impact mode, the impact hammer is generated only when the tool spindle 50 is subjected to the axial load. When the tool is not loaded, the hammer 410 does not rotate and does not cause hammering. The noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Percussive Tools And Related Accessories (AREA)
  • Portable Power Tools In General (AREA)

Abstract

一种冲击工具至少具有冲击模式和非冲击模式两种工作模式,该冲击工具包括壳体(10);马达(30),刀具主轴(50)、冲击机构(40)及传动机构(20),冲击机构包括可相对旋转的撞锤(410)和导向件(420),撞锤可相对导向件旋转时可轴向冲击刀具主轴,该冲击工具还包括用于在冲击模式和非冲击模式之间转换的模式调节机构(60),该模式调节机构可操作地在第一状态和第二状态之间切换,第一状态下,该撞锤能够相对所述导向件旋转,该冲击工具处于冲击模式;第二状态下,该导向件能够由马达驱动旋转,该冲击工具处于非冲击模式。通过模式调节机构来改变撞锤与导向件的相对运动状态,从而提供了一种结构简单的模式切换方案。

Description

冲击工具 技术领域
本发明涉及电动工具技术领域,特别是涉及一种冲击工具。
背景技术
传统的冲击工具提供有功能切换机构,能够分别实现钻模式、螺丝批(扭力调节)模式、冲击钻模式等工作模式。
中国专利CN103182703B公开了一种手持工具装置,其通过改变行星齿轮变速器级(104a,104b,104c)的运行状态来驱动锤子驱动机构50(a),其利用工具主轴38a是否下压来改变行星齿轮变速器级的运行状态,实现冲击模式的切换。然而这种方式,行星齿轮变速器级的结构设计复杂,模式切换方案复杂。
发明内容
基于此,有必要针对传统冲击工具的模式切换结构设计复杂的问题,提供一种冲击工具。
一种冲击工具,至少包括冲击模式和非冲击模式两种工作模式,包括:壳体;马达,设置于所述壳体内并提供动力;刀具主轴,用于接收工具头,具有中心轴线;冲击机构,设置于所述壳体内,包括:撞锤,导向件,设置在所述撞锤上的第一导引件,设置在导向件上的第二导引件,以及与所述撞锤抵接的蓄能元件;冲击模式下,所述撞锤相对所述导向件旋转,所述第一导引件通过所述第二导引件能驱动所述撞锤克服所述蓄能元件的作用力沿所述中心轴线朝第一方向运动,所述蓄能元件能够驱动所述撞锤沿所述中心轴线朝与所述第一方向相反的第二方向运动以冲击所述刀具主轴;非冲击模式下,所述撞锤与所 述导向件无相对旋转;传动机构,用于将马达的动力传递至所述撞锤和导向件两者中的至少一个;所述冲击工具还包括用于在冲击模式和非冲击模式之间转换的模式调节机构,所述模式调节机构可操作地在第一状态和第二状态之间切换,第一状态下,所述撞锤能够相对所述导向件旋转,所述冲击工具处于冲击模式;第二状态下,所述导向件能够由马达驱动旋转,所述冲击工具处于非冲击模式。
上述冲击工具通过模式调节机构来改变撞锤能与导向件的相对运动状态,从而提供了一种结构简单的模式切换方案。
在其中一个实施例中,所述冲击机构还包括由所述传动机构驱动旋转的冲击结构轴,模式调节机构处于第一状态时,所述导向件和撞锤二者之一相对于壳体固定,二者之另一由所述冲击结构轴驱动旋转;模式调节机构处于第二状态时,导向件和撞锤二者之一相对于壳体的固定被解除且在第一导引件和第二导引件的作用下随二者之另一转动。
在其中一个实施例中,所述模式调节机构包括模式调节件和冲击切换件,所述模式调节件可操作地在第一位置及第二位置间运动以使所述冲击切换件能够与所述导向件啮合或分离,冲击切换件与导向件啮合时,导向件相对壳体固定;冲击切换件与导向件分离时,导向件相对壳体可旋转。
在其中一个实施例中,所述模式切换件以相对于壳体转动的方式设置,并通过转动驱动冲击切换件进行轴向移动。
在其中一个实施例中,所述冲击切换件设有第一固定齿,所述导向件设有第二固定齿,所述模式调节件相对壳体旋转驱动所述冲击切换件沿所述中心线轴线移动以使所述第一固定齿与第二固定齿啮合或分离。
在其中一个实施例中,所述第一固定齿和第二固定齿分别设置成具有抵挡面 的棘齿,当所述第一固定齿和第二固定齿啮合时,所述第一固定齿的抵挡面与所述第二固定齿的抵挡面相互抵接,所述第一固定齿仅在单向上限制导向件的转动。
在其中一个实施例中,所述模式调节件上设置有模式导引部,所述冲击切换件上设有模式配接部,所述模式调节机构还包括与冲击切换件抵接的弹性元件,所述弹性元件给所述冲击切换件提供向导向件移动至与导向件啮合的驱动力,当模式调节件由第一位置运动到第二位置时,所述模式导引部克服弹性元件的作用力驱动模式配接部运动至使冲击切换件与导向件分离。
在其中一个实施例中,所述导向件套设于所述撞锤外侧,所述第二导引件设置于所述导向件的内周面,所述第一导引件设置于所述撞锤的外周面。
在其中一个实施例中,所述第一导引件为可活动地设置于所述撞锤的滚珠,所述第二导引件包括若干个爬坡段和跌落段,当所述滚珠经过所述爬坡段时,所述滚珠驱动所述撞锤克服所述蓄能元件的作用力朝第一方向运动;当所述滚珠经过所述跌落段时,所述蓄能元件驱动所述撞锤朝与第一方向相反的第二方向运动从而实现冲击。
在其中一个实施例中,所述冲击工具还包括扭矩调节机构,所述扭矩调节机构包括扭矩调节盘,以及扭矩调节件,所述冲击工具包括内齿圈,所述模式调节件可操作地从第二位置运动至第三位置,所述扭矩调节盘与所述模式调节件由轴向抵接转变为轴向分离,从而所述扭矩调节盘可沿中心轴线移动向远离内齿圈的方向移动,且所述扭矩调节件可操作地改变所述扭矩调节盘对内齿圈的作用力以实现对所述刀具主轴的扭矩输出的调节。
在其中一个实施例中,所述模式调节件的内表面设置有向内突出的阻挡部,所述扭矩调节盘上设置有向模式调节件方向延伸的凸起,所述模式调节件在第 二位置时,所述凸起与阻挡部轴向抵接,所述模式调节件在第三位置时,所述凸起与阻挡部轴向分离。
在其中一个实施例中,所述冲击工具还包括扭矩调节机构,所述扭矩调节机构包括扭矩调节盘,以及扭矩调节件,所述冲击工具包括内齿圈,当所述模式调节件运动至第一位置时,所述扭矩调节盘与所述模式调节件轴向分离,从而所述扭矩调节盘可沿中心轴线移动向远离内齿圈的方向移动,且所述扭矩调节件可操作地改变所述扭矩调节盘对内齿圈的作用力以实现对所述刀具主轴的扭矩输出的调节。
在其中一个实施例中,所述模式调节件的内表面设置有向内突出的阻挡部,所述扭矩调节盘上设置有向模式调节件方向延伸的凸起,当所述模式调节件运动至第一位置时,所述凸起与阻挡部轴向分离。
在其中一个实施例中,所述第一固定齿与第二固定齿啮合时,所述导向件和冲击切换件在所述刀具主轴的轴向上部分地重叠。
一种冲击工具,至少具有冲击模式和非冲击模式两种工作模式,包括:
壳体;
马达,设置于所述壳体内并提供动力;
刀具主轴,用于接收工具头,具有中心轴线;
冲击机构,设置于所述壳体内,包括:撞锤,导向件,设置在所述撞锤上的第一导引件,设置在导向件上的第二导引件,以及与所述撞锤抵接的蓄能元件;冲击模式下,所述撞锤相对所述导向件旋转,所述撞锤在所述第一导引件和所述第二导引件的引导下能克服所述蓄能元件的作用力沿所述中心轴线朝第一方向运动,且所述蓄能元件能够驱动所述撞锤沿所述中心轴线朝与所述第一方向相反的第二方向运动以冲击所述刀具主轴;
传动机构,用于将马达的动力传递至所述撞锤和导向件两者中的至少一个;
所述冲击工具还包括用于在冲击模式和非冲击模式之间转换的模式调节机构,所述模式调节机构可操作地在第一状态和第二状态之间切换,第一状态下,所述撞锤能够相对所述导向件旋转,所述冲击工具处于冲击模式;第二状态下,所述撞锤与所述导向件同步转动,所述冲击工具处于非冲击模式。
一种冲击工具,包括:
壳体;
马达,设置于所述壳体内;
刀具主轴,具有中心轴线,用于接收工具头;
冲击机构,具有撞锤、导向件、设置于撞锤和导向件之一的曲面引导部、设置于撞锤和导向件之另一的转换件、以及与所述撞锤轴向抵接的蓄能元件;
传动机构,用于将马达的动力传递至冲击机构;
扭矩调节机构,包括相对壳体活动设置的扭矩调节件;
在冲击模式下,所述撞锤和导向件能够相对旋转,所述曲面引导部通过转换件驱动撞锤克服蓄能机构的作用力朝第一方向运动;所述蓄能机构驱动所述撞锤朝与第一方向相反的第二方向运动从而冲击所述刀具主轴;所述扭矩调节件可操作地改变所述刀具主轴的输出扭矩。
上述冲击工具,设有冲击螺丝批模式,刀具主轴能够作往复作冲击运动且其扭矩可调,利用刀具主轴的冲击力使螺钉能顺利的钉入目标并进行拧螺钉操作,不需要操作人员施加较大的下压力。
此外,上述冲击工具,在拧螺钉的过程中,利用刀具主轴的冲击力,可以使工具头与目标始终保持接触而不需要操作人员施加较大的下压力,避免因下压力不够导致工具头出现打滑现象,减轻工具头的磨损,当工具头为十字型或一字型时效果尤为明显。
在其中一个实施例中,所述冲击机构包括输出齿圈,所述冲击工具还包括模式调节机构,所述模式调节机构包括相对壳体活动设置的模式调节件、以及由模式调节件驱动的冲击切换件;所述扭矩调节机构还包括扭矩调节盘;所述模式调节件可操作地在第一位置及第二位置间运动,当模式调节件运动至第一位置时,模式调节件与扭矩调节盘轴向分离,从而所述扭矩调节盘可沿中心轴线向远离输出齿圈的方向移动,且所述扭矩调节件可操作地改变所述扭矩调节盘对输出齿圈的作用力以实现对所述刀具主轴的输出扭矩的调节,所述冲击切换件与所述导向件啮合从而使所述导向件相对壳体固定,所述撞锤相对导向件旋转。
在其中一个实施例中,当模式调节件运动至第二位置时,模式调节件与扭矩调节盘轴向分离,从而所述扭矩调节件可操作地改变所述扭矩调节盘对输出齿圈的作用力以实现对所述刀具主轴的输出扭矩的调节;所述冲击切换件与所述导向件分离使所述导向件相对壳体旋转,从而所述撞锤和所述导向件相对壳体同步转动,所述撞锤不能够轴向冲击刀具主轴。
在其中一个实施例中,所述模式调节件可操作地运动至第三位置时,模式调节件与扭矩调节盘轴向抵接,所述扭矩调节盘沿刀具主轴轴线运动被限制;所述冲击切换件与所述导向件分离使所述导向件相对壳体旋转,从而所述撞锤和所述导向件相对壳体同步转动,所述撞锤不能够轴向冲击刀具主轴。
在其中一个实施例中,所述模式调节件可操作地运动至第四位置时,模式调节件与扭矩调节盘轴向抵接,所述扭矩调节盘沿刀具中心轴线的运动被限制;所述冲击切换件与所述导向件啮合从而使所述导向件相对壳体固定,所述撞锤相对导向件旋转。
在其中一个实施例中,所述模式调节件相对壳体转动地设置,所述模式调 节件能够驱动冲击切换沿所述中心轴线移动。
在其中一个实施例中,所述冲击切换件设有第一固定齿,所述导向件设有第二固定齿,所述第一固定齿和第二固定齿分别设置成具有抵挡面的棘齿,当所述第一固定齿和第二固定齿啮合时,所述第一固定齿的抵挡面与所述第二固定齿的抵挡面相互抵接,所述第一固定齿仅在单向上限制导向件的转动。
在其中一个实施例中,所述导向件套设于所述撞锤外侧,所述第二导引件设置于所述导向件的内周面,所述第一导引件设置于所述撞锤的外周面。
在其中一个实施例中,所述第一导引件为可活动地设置于所述撞锤的滚珠,所述第二导引件包括若干个爬坡段和跌落段,当所述滚珠经过所述爬坡段时,所述滚珠驱动所述撞锤克服所述蓄能机构的作用力朝第一方向运动;当所述滚珠经过所述跌落段时,所述蓄能机构驱动所述撞锤朝第二方向运动从而实现冲击。
在其中一个实施例中,所述第一固定齿与第二固定齿啮合时,所述导向件和冲击切换件在所述刀具主轴的轴向上部分地重叠。
附图说明
图1为根据本发明实施例的冲击工具处于冲击模式时的示意剖视图;
图2为根据本发明实施例的冲击工具的爆炸图;
图3为根据本发明实施例的冲击工具处于非冲击模式时的示意剖视图;
图4为根据另一实施例中刀具主轴与冲击结构轴为一体设置时的示意图;
图5为根据本发明实施例的冲击工具的导向件的结构示意图;
图6为根据本发明实施例的冲击工具的冲击切换件的结构示意图;
图7为冲击模式下,冲击切换件与导向件啮合时的示意剖视图;
图8为冲击模式下,冲击切换件与导向件分离时的示意结构图;
图9为冲击模式下,冲击切换件与导向件啮合时的示意剖视图;
图10为冲击模式下,冲击切换件与导向件分离时的示意结构图;
图11为根据本发明实施例的模式调节件的结构示意图;
图12据本发明实施例的扭矩调节盘的结构示意图;
图13据本发明实施例的扭矩调节环的结构示意图;
图14为根据本发明实施例的冲击工具处于冲击钻模式时的局部结构示意图;
图15为根据本发明实施例的冲击工具处于钻模式时的局部结构示意图;
图16为根据本发明实施例的击工具处于螺丝批模式时的局部结构示意图;
图17为根据本发明实施例的冲击工具处于冲击螺丝批模式时的局部结构示意图;
图18根据本发明实施例的冲击工具的局部剖视示意图;
图19根据本发明实施例的冲击工具的撞锤的结构示意图抵接部;
图20矩调节盘压接于内齿圈的示意图;
图21发明另一实施例的冲击切换件的结构示意图;
图22发明另一实施例的模式调节件的结构示意图;
图23发明另一实施例的冲击工具处于冲击螺丝批模式时的局部结构示意图;
图24发明另一实施例的冲击工具处于钻模式时的局部结构示意图;
图25发明另一实施例的冲击工具处于螺丝批模式时的局部结构示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以 便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
参考图1至图3,本发明一实施例的冲击工具,至少包括冲击模式和非冲击模式,冲击工具包括壳体10、设置在壳体10内的传动机构20、设置于壳体10内并向传动机构20提供动力的马达30、由传动机构20驱动工作的冲击机构40、刀具主轴50和模式切换机构60。
刀具主轴50用于接收工具头200,具有中心轴线X。冲击模式下,刀具主轴50沿其中心轴线X往复运动。非冲击模式下,刀具主轴50不作往复运动。模式切换机构60则用以使冲击工具在冲击模式和非冲击模式之间转换。下面进一步详细描述。
冲击机构40包括撞锤410、导向件420、与撞锤410抵接的蓄能元件431,撞锤410上设置有第一导引件432、设置在导向件420设置有第二导引件433。冲击模式下,撞锤410相对导向件420旋转,使得第一导引件432通过第二导引件433能驱动撞锤410克服蓄能元件431的作用力沿中心轴线X朝第一方向A运动,蓄能元件431能够驱动撞锤410沿中心轴线X朝与第一方向A相反的第 二方向B运动以冲击刀具主轴50;非冲击模式下,撞锤410与导向件420无相对旋转。图1所示的实施例中,第一方向A为水平向右,第二方向B为水平向左。
传动机构20用于将马达30的动力传递至撞锤410和导向件420两者中的至少一个。模式调节机构60可操作地在第一状态和第二状态之间切换,第一状态下,撞锤410能够相对导向件420旋转,冲击工具处于冲击模式;第二状态下,导向件420能够由马达30驱动旋转,但撞锤410与导向件420无相对旋转,冲击工具处于非冲击模式。由此,通过操作模式调节机构60,能够使冲击工具在冲击模式和非冲击模式之间转换,切换方便,丰富了冲击工具的功能。
操作模式调节机构60使撞锤410与导向件420的相对运动状态改变可以有多种的实现方式。
如,参图3所示,冲击机构40还包括由传动机构20驱动旋转的冲击结构轴434,模式调节机构60处于第一状态时,导向件420和撞锤410二者之一相对于壳体10固定,二者之另一由冲击结构轴434驱动旋转;模式调节机构60处于第二状态时,导向件420和撞锤410二者之一相对于壳体的固定被解除且在第一导引件432和第二导引件433的作用下随二者之另一转动。
具体的,本实施例中,撞锤410及导向件420均由冲击结构轴434驱动旋转。模式调节机构60处于第一状态时,导向件420被限制旋转以相对于壳体10固定,如此撞锤410由冲击结构轴434驱动旋转时,蓄能元件431能够驱动撞锤410沿中心轴线X朝第二方向B运动以冲击刀具主轴50。模式调节机构60处于第二状态时,导向件420能够被马达30驱动旋转,此时撞锤410也同步转动,故导向件420和撞锤410无相对旋转,撞锤410无轴向往复运动。
在另一实施例中,模式调节机构60处于第一状态时,也可以是刚好相反的 情形,即撞锤410被限制旋转,而导向件420旋转,此时同样地,蓄能元件431能够驱动撞锤410沿中心轴线X朝第二方向B运动以冲击刀具主轴50。而当模式调节机构60处于第二状态时,导向件420和撞锤410同步转动,二者之间无相对旋转,撞锤410无轴向往复运动。
在又一实施例中,模式调节机构60处于第一状态时,撞锤410和导向件420均旋转。具体的,此时撞锤410和导向件420具有旋转速度差,使得二者之间存在相对旋转运动,进而撞锤410能够冲击刀具主轴50。
图3所示的实施例中,冲击结构轴434与刀具主轴50为分体设置。然而,冲击结构轴434与刀具主轴50也可以为一体设置。如图4所示的另一实施例中,刀具主轴50的左端用于接收工具头200,中部用于驱动撞锤410和导向件420,右端与传动机构20配合,以接收马达30的动力。
撞锤410与导向件420能够相对转动时,蓄能元件431可以使撞锤410轴向运动。具体的,如图3所示,导向件420套设于撞锤410外侧,第二导引件433设置于导向件420的内周面,第一导引件432设置于撞锤420的外周面。如图5和图6所示,第一导引件432为可活动地设置于撞锤410的滚珠,所述第二导引件433包括若干个爬坡段4331和跌落段4332。当滚珠经过爬坡段4331时,滚珠驱动撞锤410克服蓄能元件431的作用力朝第一方向A运动;当滚珠经过跌落段4332时,蓄能元件431驱动撞锤410朝与第一方向A相反的第二方向B运动从而实现冲击。
本实施例中,优选地,爬坡段4331的最高顶点与跌落段4332的最高顶点连接。进一步地,爬坡段4331可以呈螺旋线型,跌落段4332可以呈直线型,且跌落段4332沿刀具主轴50的中心轴线X延伸。优选地,为了保证撞锤410对刀具主轴50形成足够的冲击力,且冲击工具的体积紧凑,爬坡段4331在轴向 方向爬坡高度大于3mm且小于等于15mm,优选地,爬坡高度大于等于4mm且小于等于12mm,更为优选地,爬坡高度为10mm。需要说明的是,“爬坡高度”指的是爬坡段4331的两端之间的在刀具主轴50的中心轴线X上的轴向距离。当第一导引件432自爬坡段4331最高顶点跌落时,可以沿着跌落段4332跌至下一个爬坡段4331的底部,也可以是运动轨迹为抛物线的方式不经过跌落段4332直接跌至下一个爬坡段4331的底部,换句话说,跌落段4332也可以设置成设置在爬坡段4331与爬坡段4331之间的间断部分。
本实施例中,将撞锤410套在冲击结构轴434的外部,导向件420套在撞锤410外部。为了实现导向件420与撞锤410的相对旋转,冲击机构40还包括固定在壳体10内的支撑座435,支撑座434与导向件420之间还设置有在导向件420转动时支撑导向件420的钢球436。这样,导向件420能够旋转时,导向件420与支撑座435之间摩擦力较小。
本实施例中,如图3所示,冲击结构轴434上套设有挡板4341,也即挡板4341外套于冲击结构轴434的外周壁,蓄能元件431位于撞锤410与挡板4341之间,元件431远离撞锤410的一端可以与挡板4341配合。当撞锤410朝向蓄能元件431移动一定距离后,撞锤410与挡板4341可以压缩蓄能元件431。由此,蓄能元件431可以对撞锤410形成推动力。蓄能元件431可以采用弹簧,且弹簧的一端安装在撞锤410上开设的空腔中。
在其他的实施例中,第二导引件433为固定地设置于导向件420的凸轮槽。滚珠在凸轮槽中螺旋运动,从而实现撞锤410在刀具主轴50的轴向上的往复运动。此时,撞锤410可以套在导向件420的外部,第一导引件432设置在撞锤410的内周面。
上述实施例中,第二导引件433起到曲面引导部的作用,使得撞锤410相对 导向件420旋转时能够沿曲面引导部运动。第一导引件432则为撞锤410运动的转换件。
参考图1和图2,模式调节机构60包括冲击切换件610和模式调节件620。模式调节件620可操作地在第一位置及第二位置间运动以使冲击切换件610能够与导向件420啮合或分离。如图7和图8所示,模式调节件620处于第一位置时,冲击切换件610与导向件420啮合,导向件420相对壳体10固定,冲击工具进入冲击模式;如图9和图10所示,模式调节件620运动至第二位置时,冲击切换件610与导向件420分离,导向件420相对壳体10可旋转,冲击工具进入非冲击模式。
本实施例中,模式切换件620以相对于壳体10可转动的方式设置,并通过转动驱动冲击切换件610进行轴向移动。这样,可以减小模式切换件620的操作空间。这种方式下,在第二位置与第一位置之间切换时,模式切换件620是转动一定的角度的方式实现位置切换。当然,模式切换件620也可以是相对壳体10轴向运动以改变位置,进而驱动冲击切换件610进行轴向移动。
如图5和图6所示,冲击切换件610设有第一固定齿611,导向件420设有第二固定齿421,模式调节件620相对壳体10旋转并驱动冲击切换件610沿中心线轴线X移动以使第一固定齿611与第二固定齿421啮合或分离。如图8所示,当第一固定齿611与第二固定齿421啮合时,冲击切换件610可以限定导向件420的运动,导向件420相对壳体10固定,冲击工具进入冲击模式。如图10所示,第一固定齿611与第二固定齿421分离时,导向件420相对壳体10可旋转,冲击工具进入非冲击模式。
进一步地,第一固定齿611和第二固定齿421分别设置成具有抵挡面的棘齿,当第一固定齿611和第二固定齿421啮合时,第一固定齿611的第一抵挡 面6111与第二固定齿421的第二抵挡面4211相互抵接,且第一固定齿611仅在单向上限制导向件420的转动。这样,当第一固定齿611与第二固定块421配合连接时,冲击切换件610只能限制导向件420的单向转动。也就是说,从图5看,假设冲击切换件610能限制导向件420顺时针转动,当冲击结构轴434顺时针转动时,第一导引件沿爬坡段4331爬坡,当运动至爬坡段4331的最高点处时,从跌落段4332跌落至下一个爬坡段的最低点处,如此反复,撞锤410可轴向运动;当冲击结构轴434逆时针转动时,第一导引件432不能够从一个爬坡段4331的最低点运动至另一个爬坡段4331的最高点,第一导引件432会卡死在跌落段4332处,冲击切换件610不能限制导向件420,则导向件420跟随撞锤410一起旋转,撞锤410相对于导向件420无相对旋转,因此第一导向件432不会卡死在导向件420处,也即可以防止马达反转时堵死。
进一步地,本实施例中,第一固定齿611与第二固定齿421啮合时,所述导向件420和冲击切换件610在刀具主轴50的轴向上部分地重叠。具体的,如图5所示,第二固定齿421在导向件420上的位置靠近导向件420的轴向上的中心,这样,如图8所示,第一固定齿611与第二固定齿421啮合时,向件420和冲击切换件610在刀具主轴50的轴向上部分地重叠。如此设计,可减小导向件420和冲击切换件610在刀具主轴50的轴向上所需要的运动空间,使结构紧凑。
更进一步地,导向件420具有一个导向本体422。导向本体422具有一个外周面4221。第一固定齿611凸设于导向本体422的外周面4221,且第一固定齿611与外周面421的靠近冲击切换件610的端部之间具有间隔。如此,冲击切换件610可在外周面4221的支撑下朝向导向件420移动直到与第二固定齿421啮合或与第二固定齿421分离,以保证导向件420往复移动平顺且稳定。参考图6, 冲击切换件610上还设有模式配接部613。参考图11,模式调节件620上设置有模式导引部623。参考图1和图2,模式调节机构还包括与冲击切换件610抵接的弹性元件630,弹性元件630给冲击切换件610提供向导向件420移动至与导向件420啮合的位置的驱动力,当模式调节件620由图7中的第一位置转动到图9中的第二位置时,模式导引部623克服弹性元件630的作用力驱动模式配接部613运动至使冲击切换件610与导向件420分离。
参考图1和图2,本发明实施例的冲击工具还还包括扭矩调节机构70。扭矩调节机构70包括可沿中心轴线X移动的扭矩调节盘710,以及驱动扭矩调节盘710轴向移动的扭矩调节环720。本发明的实施例中,通过模式调节件620锁定或解锁扭矩调节盘710,使得扭矩调节盘710可以沿轴向移动以实现对刀具主轴50的扭矩输出的调节。更具体的,当模式调节件620与扭矩调节盘710轴向分离时,扭矩调节盘710可以轴向移动,进而实现对刀具主轴50的扭矩输出的调节,冲击工具进入扭力调节模式。当模式调节件620与扭矩调节盘710轴向抵接时,扭矩调节盘710不可以轴向移动,扭矩调节盘710不能实现对刀具主轴50的扭矩输出的调节,冲击工具进入无扭力调节模式。
利用扭矩调节机构70,冲击工具至少可以在非冲击模式下,进一步实现有扭力调节模式和无扭力调节模式,其中无扭力调节时,可实现钻模式;而有扭力调节时,可实现螺丝批模式。
具体的,当模式调节件620处于图9所示的第二位置时,冲击工具处于非冲击模式,且如图15所示模式调节件620与扭矩调节盘710轴向抵接,冲击工具处于钻模式。此时,操作模式调节件620使其由第二位置运动至第三位置时,扭矩调节盘710与模式调节件620由轴向抵接转变为轴向分离扭矩调节盘710可以沿刀具主轴50的轴向移动,冲击工具进入螺丝批模式。操作模式调节件620 相对壳体转10转动设置时,模式调节件620使其由第二位置运动至第三位置时为转动一定角度。具体的,如图11和12所示,模式调节件620的内表面设置有向内突出的阻挡部622,扭矩调节盘710的上设置有向模式调节件方向延伸的凸起712,模式调节件620在第二位置时,如图15所示,凸起712与阻挡部622轴向抵接,扭矩调节盘710不能轴向移动,冲击工具处于无扭力调节模式,此时进入钻模式;当模式调节件620在第三位置时,如图16所示,凸起712与阻挡部622轴向分离,扭矩调节盘710能够轴向移动,冲击工具进入扭力调节模式,可实现螺丝批功能。
此外,利用扭矩调节机构70,还可以同时在冲击模式下也实现扭力调节模式和无扭力调节模式,其中无扭力调节时,可实现冲击钻模式,而有扭力调节时,可实现冲击螺丝批模式。
具体的,当模式调节件620运动至第一位置时,此时冲击工具进入冲击模式。如图14所示,凸起712与阻挡部622轴向抵接时,扭矩调节盘710不能轴向移动,冲击工具处于无扭力调节模式,此时进入冲击钻模式。如图17所示,凸起712与阻挡部622轴向分离时,扭矩调节盘710能够轴向移动,冲击工具进入扭力调节模式,可实现冲击螺丝批模式。
上述实施例中,当所述模式调节件620运动至第一位置时,此时冲击工具进入冲击模式,操作模式调节件620,可使得凸起712与阻挡部622轴向抵接或分离,进而能实现冲击钻模式或冲击螺丝批模式。在另一实施例中,当模式调节件620运动至第一位置时,扭矩调节盘710与模式调节件620轴向分离,因此冲击工具切换为冲击模式时直接进入冲击螺丝批模式,此时冲击工具仅具有三种工作模式,即钻模式、螺丝批模式和冲击螺丝批模式。
本实施例中,利用冲击切换件610和模式调节件620可实现四种工作模式 的切换,顺序为冲击螺丝批模式(a)、螺丝批模式(b)、钻模式(c)、冲击钻模式(d)。
具体的,参考图6所示,模式调节件620的导引块621具有第一斜面部6211、第二斜面部6212及位于二者之间的平台部6213,其中平台部6213用于轴向抵接冲击切换件610的配合块612。模式调节件620转动过程中,第一斜面部6211先与导引块621的侧部接触,此时冲击切换件610与导向件420保持配合,导向件420不能转动,模式调节件620的阻挡部622未轴向抵接到扭矩调节盘710的凸起712,如图17所示,可以进行扭力调节,故冲击工具可处于冲击螺丝批模式(a)。
继续转动模式调节件620,平台部6213运动到轴向抵接冲击切换件610的配合块612的位置,冲击切换件610轴向远离导向件420,此时导向件420可以转动,冲击机构40无冲击输出,此时模式调节件620的阻挡部622未轴向抵接到扭矩调节盘710的凸起712,如图16所示,可以进行扭力调节,故冲击工具进入螺丝批模式(b)。
继续转动模式调节件620,平台部6213转动一定角度但仍轴向抵接冲击切换件610的配合块612,此时导向件420可以转动,冲击机构40无冲击输出,此时模式调节件620的阻挡部622运动到轴向抵接到扭矩调节盘710的凸起712的位置,如图15所示,不能进行扭力调节,故冲击工具且进入钻模式(c)。
继续转动模式调节件620,平台部6213与冲击切换件610的配合块612周向上错开,第二斜面部621与导引块621的侧部接触,冲击切换件610轴向向靠近导向件420的方向移动,导向件420不可转动,冲击机构40有冲击输出,此时模式调节件620的阻挡部622仍轴向抵接到扭矩调节盘710的凸起712的位置,如图14所示,不能进行扭力调节,冲击工具进入冲击钻模式(d)。
在另一实施例中,当模式调节件620的导引块621及配合块622的结构可以不同,且仍可以实现四种工作模式的切换,但顺序与上述实施例有所不同。
例如,导引块621的两侧分别设置一处的平台部6213,两个平台部之间则为斜面部。这样,当第一个平台部6213向抵接冲击切换件610的配合块612时,,冲击机构40无冲击输出,此时模式调节件620设置为阻挡部622未轴向抵接到扭矩调节盘710的凸起712,可以进行扭力调节,故可实现螺丝批模式。
继续转动模式调节件620,使第一个平台部6213与配合块612在周向上错开,斜面部运动到与导引块621的侧部接触的位置,冲击机构40有冲击输出,此时模式调节件620的阻挡部622仍未轴向抵接到扭矩调节盘710的凸起712,可以进行扭力调节,故可实现冲击螺丝批模式。
继续转动模式调节件620,仍是斜面部与导引块621的侧部接触,冲击机构40有冲击输出,模式调节件620的阻挡部622轴向抵接到扭矩调节盘710的凸起712,不能进行扭力调节,可实现冲击钻模式。
继续转动模式调节件620,使第二个平台部6213轴向抵接冲击切换件610的的配合块612,冲击机构40无冲击输出,,模式调节件620的阻挡部622仍轴向抵接到扭矩调节盘710的凸起712,不能进行扭力调节,故可实现钻模式
由此,另一实施例中,可以实现螺丝批、冲击螺丝批、冲击钻及钻四种功能,四种工作模式的顺序依次为:螺丝批模式、冲击螺丝批模式、冲击钻模式、钻模式。
如图21和22所示,分别示意了冲击切换件及模式调节件的另一个实施例的结构,可以实现三种工作模式的切换,冲击工具具备三种功能。
具体的,另一个实施例中,如图21所示,冲击切换件610’的端面设有第一固定齿611',外圆周设有配合块612'。如图22所示,模式调节件620'的内 圆面设有导引块621'和阻挡部622’。导引块621'仅具有一个斜面部6211’,及具有平台部6213'。斜面部6211’与平台部6213'之间可以通过直面过渡,也可以是斜面部6211’直接延伸至与平台部6213'衔接。
模式调节件620'转动过程中,当模式调节件620'转动至斜面部6211’与导引块621'接触时,此时冲击切换件610'与导向件420保持配合,导向件420不能转动,冲击机构40有扭矩输出;如图23所示,模式调节件620'的阻挡部622'未轴向抵接到扭矩调节盘710的凸起712,可以进行扭力调节,故冲击工具处于冲击螺丝批模式。
继续转动模式调节件620',使得平台部6213'轴向抵接冲击切换件610'的配合块612',冲击切换件610轴向远离导向件420,此时导向件420可以转动,冲击机构40无冲击输出;如图25所示,此时模式调节件620的阻挡部622轴向抵接到扭矩调节盘710的凸起712,此时不能进行扭力调节,故冲击工具处于钻模式。
继续转动模式调节件620',平台部6213'继续轴向抵接冲击切换件610'的配合块612',此时导向件420可以转动,冲击机构40无冲击输出;此时如图20所示,此时模式调节件620的阻挡部622未轴向抵接到扭矩调节盘710的凸起712,此时可以进行扭力调节,故冲击工具螺丝批模式。
由此,另一实施例中,可以实现的三种工作模式依次为:冲击螺丝批模式、钻模式、螺丝批模式,即实现冲击螺丝批、钻及螺丝批三种功能。
以上所有的实施例中,冲击工具能够实现冲击螺丝批模式。在冲击螺丝批模式下,刀具主轴50能够作往复作冲击运动且其扭矩可调,因此,当执行订螺钉作业时,利用刀具主轴50的冲击力使螺钉能顺利的钉入目标并进行拧螺钉操作,不需要操作人员施加较大的下压力。
此外,当螺钉钉入目标后,在拧螺钉的过中,仍可以利用刀具主轴50的冲击力,可以使工具头200与目标始终保持接触而不需要操作人员施加较大的下压力,避免因下压力不够导致工具头200出现打滑现象,减轻工具头200的磨损,当工具头200为十字型或一字型时效果尤为明显。
综上,利用冲击螺丝批模式,在不同性质的目标(如木头、墙壁)上作业时,均可以利用刀具主轴50的冲击力使螺钉顺利钉入目标,及在拧螺钉的过程中防止工具头200出现打滑现象。
以上所有的实施例中,扭矩调节盘710轴向运动时,可实现对刀具主轴50输出扭矩的调节。其中,当扭矩调节盘710移动时,其与传动机构20的位置关系发生变化,继而改变传动机构20作用于刀具主轴50的扭矩。
具体的,传动机构20包括可旋转地设置在壳体10内的内齿圈210、与内齿圈210啮合以将马达30的扭矩传递给冲击结构轴434的驱动轮220。扭矩调节机构70包括扭矩调节件。扭矩调节件用以调节内齿圈210转动时的阻力力矩,使得内齿圈210克服不同的阻力转动,进而使得驱动轮220传递至冲击结构轴434的扭矩得以调节,实现对刀具主轴50的输出扭矩的调节。具体的,当模式调节件620与扭矩调节盘710由轴向抵接变为轴向分离时,扭矩调节盘710可以沿刀具主轴50的中心轴线X向远离内齿圈210的方向移动,且扭矩调节件可操作地改变扭矩调节盘710对内齿圈210的作用力,以实现对刀具主轴50的输出扭矩的调节。
在一些实施例中,扭矩调节件包括扭矩调节环720。扭矩调节环720与壳体10以可轴向运动但不可相对转动方式配接,并可改变扭矩调节盘710对内齿圈210的作用力。换言之,在冲击结构轴434的圆周方向上,扭矩调节环720与壳体10不能够相对转动,二者是相对静止的。但在冲击结构轴434的轴向方向上, 扭矩调节环720相对于壳体10可以移动。例如,壳体10上可以设置沿冲击结构轴434的轴向方向延伸的导向块,扭矩调节环720对应导向块设置滑槽,通过导向块与滑槽的配合引导扭矩调节环720的运动轨迹。
例如,如图1至图3、图8、图9及图20,在一些实施例中,扭矩调节盘710与内齿圈210端面接触,并施加轴向压力于内齿圈210的端面,因此通过调节扭矩调节盘710的转动阻力力矩,就可以调节内齿圈210的转动阻力力矩。扭矩调节机构70还包括位于扭矩调节盘710以及扭矩调节环720之间的压簧730。扭矩调节盘710的面对扭矩调节环720的一端设有第一定位柱711,而扭矩调节环720的面对扭矩调节盘710的一端设有第二定位柱721。压簧730的两端分别套在第一定位柱711和第二定位柱721上。当扭矩调节环720被驱动朝向扭矩调节盘710移动时,压簧730被压缩,压簧730的压缩量越大,扭矩调节盘710施加给内齿圈210的轴向压力越大,内齿圈210的旋转阻力越大,承受的转动阻力力矩越大,当内齿圈210被限制不能够相对壳体10转动时,内齿圈210相当于壳体10的一部分,此时驱动轮220传递至冲击结构轴434的扭矩最大,冲击工具处于无扭力调节模式。如图20所示,扭矩调节盘710的背对扭矩调节环720的一端设有压接柱713。压接柱713与内齿圈210的端面之间设有球体714。扭矩调节盘710的压接柱713通过球体714压在内齿圈210的端面上,以能够提供轴向压力于内齿圈210,同时由不影响内齿圈210的转动。当扭矩调节环720被驱动远离扭矩调节盘710移动时,压簧730的压缩量减小,扭矩调节盘710施加给内齿圈210的轴向压力减小,内齿圈210的旋转阻力减小,使刀具主轴50的输出扭矩减小,从而实现对刀具主轴50的输出扭矩的调节。
进一步地,扭矩调节机构70还包括扭力罩740,用以供使用者操作以驱动扭矩调节环720移动。
在一些实施例中,扭力罩740相对于所述壳体10可转动设置并用以驱动扭矩调节环720轴向运动。例如,扭力罩740与扭矩调节环720之间可以采用螺纹连接。例如,扭力罩740可转动地套在扭矩调节环720的外部,其中扭力罩740的内圆设有内螺纹,而扭矩调节环720的外圆则设有外螺纹。如此,当扭力罩740旋转时,扭矩调节环720被驱动沿冲击结构轴434的轴向方向移动,进而调节扭矩调节盘710施加给内齿圈210的轴向压力。
下面结合附图,简要说明本发明实施例的四种工作模式的切换。
如图2所示,冲击工具处于冲击模式,此时模式调节机构60的冲击切换件610限制导向套420转动,故冲击机构40的撞锤410能沿冲击结构轴434的轴向方向运动,以能够撞击冲击结构轴434。此时,旋转扭力罩740,扭矩调节环720被驱动沿冲击结构轴434的轴向方向移动,进而调节内齿圈210的转动时的阻力力矩,实现冲击模式的扭力调节,即使得冲击工具在冲击螺丝模式下工作。如果扭矩调节盘71被压死,也即内齿圈210在旋转方向上不能转动,则冲击工具切换为在冲击钻模式下工作。
而如果要调节为钻模式或者螺丝批模式,则首先操作模式调节机构60的模式切换钮620使冲击工具进入如图3所示的非冲击模式,此时,撞锤410与导向套420能够一起转动,撞锤410不能够在冲击结构轴434的轴向方向上运动,不能够撞击冲击结构轴434。然后,通过旋转扭力罩740来调节扭矩调节盘710以及扭矩调节环720施加给内齿圈210的轴向压力,使得冲击工具在扭力调节状态下工作,即在螺丝批模式下工作;或使得冲击工具在无扭力调节状态下工作,即在钻模式下工作。
显然地,可以理解,冲击工具的工作模式切换顺序不限于上文所述,其与冲击工具当前所处的工作模式及操作者的切换意图有关系。
进一步地,在无扭力调节状态下,即马达30传递最大扭矩至冲击结构轴434的工况下,无论冲击钻模式或钻模式下,扭矩调节盘710将内齿圈210压紧使内齿圈210不能旋转,操作者希望这种状态能够可靠地得到保证。
另外,实际工作中,当冲击工具切换至冲击模式后,也并不是所有的工况都希望撞锤410执行锤击动作。例如,操作者希望工具头或刀具主轴30未受到来自工况的负载时,撞锤410不产锤击动作,即开机但未作业时,希望冲击工具是在一个较为安静的状态下待机。
为此,在本发明的一些实施例中,如图18所示,冲击机构40还设置有离合机构440。换言之,离合机构440用以在冲击结构轴434与撞锤410之间传递动力。离合机构440可以使冲击结构轴434与撞锤410配合,也可以使冲击结构轴434与撞锤410脱开。当离合机构440可以使冲击结构轴434与撞锤410配合时,冲击结构轴434的旋转运动传递给撞锤410,冲击结构轴434带动撞锤410转动,当离合机构440使二者脱开时,离合机构440与撞锤410之间的配合关系解除,冲击结构轴434不带动相对于撞锤410旋转,撞锤20相对于导向件420静止。
在本发明的一些实施例中,离合机构440设置为通过一经由刀具主轴50传递的力闭合。即离合机构440与撞锤410之间是否存在配合关系可以通过刀具主轴50控制,刀具主轴50可以对离合机构440施加外力,以改变离合机构440与撞锤410之间的关系,如工具头或刀具主轴50抵接在工况时(也即刀具主轴50受到一轴向负载时),离合机构440闭合,撞锤410被驱动,进一步地,当撞锤410能够在冲击结构轴434的轴向方向上往复运动时,冲击工具即能执行冲击动作。
参考图18、图19,一些实施例中,离合机构440包括离合件441,设置在冲 击结构轴434上用以容纳所述离合件441的凹槽4342,设置在刀具主轴50上的开槽510,其中开槽510包括抵接部511。离合件441由刀具主轴50带动沿冲击结构轴434的轴向方向运动,并选择地与斜面部411在圆周方向上相卡定以传递扭矩或脱离。可以理解,当离合件441运动到斜面部411在圆周方向上相卡定的位置时,冲击结构轴434能够通过离合件441带动撞锤410,反之,当离合件441与斜面部411分离后,冲击结构轴434不带动撞锤410旋转,由此实现撞锤410的运动动力的切断。
如图18,刀具主轴50的一端伸入冲击结构轴434内,刀具主轴50上设有用以驱动离合件441运动的抵接部511。抵接部511在刀具主轴50的径向上具有一定高度,以在刀具主轴50轴向运动时能够带动离合件441运动。本实施例中,冲击结构轴434远离马达30的一端设有具有开口的空腔4343。刀具主轴与冲击结构轴434同轴设置,刀具主轴的靠近马达的一端部伸入空腔4343中,与传动轴以可相对轴向移动但不可旋转的方式连接。例如,空腔4343的内壁和刀具主轴30连接端的外壁通过沿轴向延伸的花键配合,以使刀具主轴50可相对于冲击结构轴434轴向移动并能够随冲击结构轴434一起转动。继续参考图18,刀具主轴50的伸入空腔4343部分上设置有抵接部510。抵接部511在冲击结构轴434的径向上至少部分地位于离合件441的一侧以轴向抵接离合件441。
进一步地,撞锤410套在冲击结构轴434的外部。斜面部411设置在所述撞锤的与冲击结构轴434相对的内圆面上。具体地,斜面部411为一个沿圆周方向延伸的弧面,可在圆周方向上阻挡离合件441跟随传动轴转动。离合件441优先设置为球状或柱状,且具有圆滑的外表面,圆滑的外表面在活动过程中具有较小的摩擦力,从而易于离合件441的状态切换。
进一步地,如图18所示,空腔4343底部设有轴向抵接于刀具主轴50的复 位件4344。复位件4344提供使刀具主轴50远离冲击结构轴434运动的弹性力。当刀具主轴50未承受轴向负载的作用时,刀具主轴50处于其第一位置,离合机构40处于脱开状态,冲击结构轴434不向撞锤410传递动力,撞锤410不能够旋转。当刀具主轴50在轴向负载的作用下克服复位件4344阻力朝向马达30运动到第二位置时,离合机构410处于啮合状态,离合件441在圆周方向上与斜面部411相抵接,冲击结构轴434驱动撞锤410转动。由此,本发明实施例的冲击工具,在冲击模式下时,只有当刀具主轴50承受轴向负载时撞锤410才产生冲击动作,空载时,撞锤410不转动,不会产生锤击的噪音。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种冲击工具,至少具有冲击模式和非冲击模式两种工作模式,其特征在于,包括:
    壳体;
    马达,设置于所述壳体内并提供动力;
    刀具主轴,用于接收工具头,具有中心轴线;
    冲击机构,设置于所述壳体内,包括:撞锤,导向件,设置在所述撞锤上的第一导引件,设置在导向件上的第二导引件,以及与所述撞锤抵接的蓄能元件;冲击模式下,所述撞锤相对所述导向件旋转,所述第一导引件与所述第二导引件配合能驱动所述撞锤克服所述蓄能元件的作用力沿所述中心轴线朝第一方向运动,所述蓄能元件能够驱动所述撞锤沿所述中心轴线朝与所述第一方向相反的第二方向运动以冲击所述刀具主轴;非冲击模式下,所述撞锤与所述导向件无相对旋转;
    所述冲击工具还包括传动机构,所述传动机构用于将马达的动力传递至所述撞锤和导向件两者中的至少一个;所述冲击工具还包括用于在冲击模式和非冲击模式之间转换的模式调节机构,所述模式调节机构可操作地在第一状态和第二状态之间切换,第一状态下,所述撞锤能够相对所述导向件旋转,所述冲击工具处于冲击模式;第二状态下,所述导向件能够由马达驱动旋转,所述冲击工具处于非冲击模式。
  2. 根据权利要求1所述的冲击工具,其特征在于,所述冲击机构还包括由由所述传动机构驱动旋转的冲击结构轴,模式调节机构处于第一状态时,所述导向件和撞锤二者之一相对于壳体固定,二者之另一由所述冲击结构轴驱动旋转;模式调节机构处于第二状态时,导向件和撞锤二者之一相对于壳体的固定被解除且在第一导引件和第二导引件的作用下随二者之另一转动。
  3. 根据权利要求2所述的冲击工具,其特征在于,所述模式调节机构包括模式调节件和冲击切换件,所述模式调节件可操作地在第一位置及第二位置间 运动以使所述冲击切换件能够与所述导向件啮合或分离,冲击切换件与导向件啮合时,导向件相对壳体固定;冲击切换件与导向件分离时,导向件相对壳体可旋转。
  4. 根据权利要求3所述的冲击工具,其特征在于,所述模式切换件以相对于壳体转动的方式设置,并通过转动驱动冲击切换件进行轴向移动。
  5. 根据权利要求3所述的冲击工具,其特征在于,所述冲击切换件设有第一固定齿,所述导向件设有第二固定齿,所述模式调节件相对壳体旋转驱动所述冲击切换件沿所述中心线轴线移动以使所述第一固定齿与第二固定齿啮合或分离。
  6. 根据权利要求5所述的冲击工具,其特征在于,所述第一固定齿和第二固定齿分别设置成具有抵挡面的棘齿,当所述第一固定齿和第二固定齿啮合时,所述第一固定齿的抵挡面与所述第二固定齿的抵挡面相互抵接,所述第一固定齿仅在单向上限制导向件的转动。
  7. 根据权利要求3所述的冲击工具,其特征在于,所述模式调节件上设置有模式导引部,所述冲击切换件上设有模式配接部,所述模式调节机构还包括与冲击切换件抵接的弹性元件,所述弹性元件给所述冲击切换件提供向导向件移动至与导向件啮合的驱动力,当模式调节件由第一位置运动到第二位置时,所述模式导引部克服弹性元件的作用力驱动模式配接部运动至使冲击切换件与导向件分离。
  8. 根据权利要求1所述的冲击工具,其特征在于,所述导向件套设于所述撞锤外侧,所述第二导引件设置于所述导向件的内周面,所述第一导引件设置于所述撞锤的外周面。
  9. 根据权利要求8所述的冲击工具,其特征在于,所述第一导引件为可活 动地设置于所述撞锤的滚珠,所述第二导引件包括若干个爬坡段和跌落段,当所述滚珠经过所述爬坡段时,所述滚珠驱动所述撞锤克服所述蓄能机构的作用力朝第一方向运动;当所述滚珠经过所述跌落段时,所述蓄能机构驱动所述撞锤朝第二方向运动从而实现冲击。
  10. 根据权利要求3所述的冲击工具,其特征在于,所述冲击工具还包括扭矩调节机构,所述扭矩调节机构包括扭矩调节盘,以及扭矩调节件,所述冲击工具包括内齿圈,所述模式调节件可操作地从第二位置运动至第三位置,所述扭矩调节盘与所述模式调节件由轴向抵接转变为轴向分离,从而所述扭矩调节盘可沿中心轴线移动向远离内齿圈的方向移动,且所述扭矩调节件可操作地改变所述扭矩调节盘对内齿圈的作用力以实现对所述刀具主轴的扭矩输出的调节。
  11. 根据权利要求10所述的冲击工具,其特征在于,所述模式调节件的内表面设置有向内突出的阻挡部,所述扭矩调节盘上设置有向模式调节件方向延伸的凸起,所述模式调节件在第二位置时,所述凸起与阻挡部轴向抵接,所述模式调节件在第三位置时,所述凸起与阻挡部轴向分离。
  12. 根据权利要求3所述的冲击工具,其特征在于,所述冲击工具还包括扭矩调节机构,所述扭矩调节机构包括扭矩调节盘,以及扭矩调节件,所述冲击工具包括内齿圈,当所述模式调节件运动至第一位置时,所述扭矩调节盘与所述模式调节件轴向分离,从而所述扭矩调节盘可沿中心轴线移动向远离内齿圈的方向移动,且所述扭矩调节件可操作地改变所述扭矩调节盘对内齿圈的作用力以实现对所述刀具主轴的扭矩输出的调节。
  13. 根据权利要求12所述的冲击工具,其特征在于,所述模式调节件的内表面设置有向内突出的阻挡部,所述扭矩调节盘上设置有向模式调节件方向延伸的凸起,当所述模式调节件运动至第一位置时,所述凸起与阻挡部轴向分离。
  14. 根据权利要求5所述的冲击工具,其特征在于,所述第一固定齿与第二固定齿啮合时,所述导向件和冲击切换件在所述刀具主轴的轴向上部分地重叠。
  15. 一种冲击工具,至少具有冲击模式和非冲击模式两种工作模式,其特征在于,包括:
    壳体;
    马达,设置于所述壳体内并提供动力;
    刀具主轴,用于接收工具头,具有中心轴线;
    冲击机构,设置于所述壳体内,包括:撞锤,导向件,设置在所述撞锤上的第一导引件,设置在导向件上的第二导引件,以及与所述撞锤抵接的蓄能元件;冲击模式下,所述撞锤相对所述导向件旋转,所述撞锤在所述第一导引件和所述第二导引件的引导下能克服所述蓄能元件的作用力沿所述中心轴线朝第一方向运动,且所述蓄能元件能够驱动所述撞锤沿所述中心轴线朝与所述第一方向相反的第二方向运动以冲击所述刀具主轴;
    传动机构,用于将马达的动力传递至所述撞锤和导向件两者中的至少一个;
    所述冲击工具还包括用于在冲击模式和非冲击模式之间转换的模式调节机构,所述模式调节机构可操作地在第一状态和第二状态之间切换,第一状态下,所述撞锤能够相对所述导向件旋转,所述冲击工具处于冲击模式;第二状态下,所述撞锤与所述导向件同步转动,所述冲击工具处于非冲击模式。
PCT/CN2019/075129 2018-02-14 2019-02-14 冲击工具 WO2019158115A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810151559 2018-02-14
CN201810151559.2 2018-02-14

Publications (1)

Publication Number Publication Date
WO2019158115A1 true WO2019158115A1 (zh) 2019-08-22

Family

ID=67618886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075129 WO2019158115A1 (zh) 2018-02-14 2019-02-14 冲击工具

Country Status (2)

Country Link
CN (3) CN210589103U (zh)
WO (1) WO2019158115A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110153960A (zh) * 2018-02-14 2019-08-23 苏州宝时得电动工具有限公司 冲击工具

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112476353A (zh) * 2019-09-12 2021-03-12 苏州宝时得电动工具有限公司 冲击工具
CN112894724A (zh) * 2019-12-04 2021-06-04 苏州宝时得电动工具有限公司 电动工具及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1853869A (zh) * 2005-04-21 2006-11-01 创科实业有限公司 用于冲击式驱动器的模式选择器机构
CN102284938A (zh) * 2005-09-13 2011-12-21 创科电动工具科技有限公司 冲击转动工具
CN102909700A (zh) * 2011-08-06 2013-02-06 苏州宝时得电动工具有限公司 手持式电动工具及用于该手持式电动工具的操作方法
CN102909681A (zh) * 2011-08-05 2013-02-06 株式会社牧田 电动工具
CN103687700A (zh) * 2011-07-21 2014-03-26 日立工机株式会社 电动工具

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004058809A1 (de) * 2004-12-07 2006-06-08 Robert Bosch Gmbh Handwerkzeugmaschine mit einer Drehmomentbegrenzungseinheit
EP2815850B1 (en) * 2007-02-23 2016-02-03 Robert Bosch Gmbh Rotary power tool operable in either an impact mode or a drill mode
DE102009029055A1 (de) * 2009-09-01 2011-03-10 Robert Bosch Gmbh Bohr- und/oder Meißelhammervorrichtung
US8875804B2 (en) * 2010-01-07 2014-11-04 Black & Decker Inc. Screwdriving tool having a driving tool with a removable contact trip assembly
DE102010063200A1 (de) * 2010-10-28 2012-05-03 Robert Bosch Gmbh Handwerkzeugmaschine mit einem mechanischen Schlagwerk
JP2012152838A (ja) * 2011-01-25 2012-08-16 Panasonic Eco Solutions Power Tools Co Ltd 電池電源型可搬式機器
DE102011089910A1 (de) * 2011-12-27 2013-06-27 Robert Bosch Gmbh Handwerkzeugvorrichtung
JP3175818U (ja) * 2012-03-09 2012-05-31 慶騰精密科技股▲ふん▼有限公司 手動及び自動変速可能な電動工具
CN104786199B (zh) * 2014-11-07 2016-06-29 江苏东成机电工具有限公司 一种模式切换装置
TWM526469U (zh) * 2016-03-31 2016-08-01 Trinity Prec Technology Co Ltd 輸出模式切換裝置
CN210589103U (zh) * 2018-02-14 2020-05-22 苏州宝时得电动工具有限公司 冲击工具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1853869A (zh) * 2005-04-21 2006-11-01 创科实业有限公司 用于冲击式驱动器的模式选择器机构
CN102284938A (zh) * 2005-09-13 2011-12-21 创科电动工具科技有限公司 冲击转动工具
CN103687700A (zh) * 2011-07-21 2014-03-26 日立工机株式会社 电动工具
CN102909681A (zh) * 2011-08-05 2013-02-06 株式会社牧田 电动工具
US20130033217A1 (en) * 2011-08-05 2013-02-07 Makita Corporation Electric power tool
CN102909700A (zh) * 2011-08-06 2013-02-06 苏州宝时得电动工具有限公司 手持式电动工具及用于该手持式电动工具的操作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110153960A (zh) * 2018-02-14 2019-08-23 苏州宝时得电动工具有限公司 冲击工具

Also Published As

Publication number Publication date
CN110153961A (zh) 2019-08-23
CN110153960A (zh) 2019-08-23
CN210589103U (zh) 2020-05-22
CN110153961B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
US8122971B2 (en) Impact rotary tool with drill mode
WO2019158115A1 (zh) 冲击工具
US7886841B2 (en) Power tool torque overload clutch
EP1574294B1 (en) Impact driver
US7806198B2 (en) Hybrid impact tool
US7383893B2 (en) Electric hammer drill
US4487272A (en) Impacting drill
US8316959B2 (en) Hand-held power tool, in particular cordless power tool
US9494200B2 (en) Clutch for power tool
US11318596B2 (en) Power tool having hammer mechanism
US8684105B2 (en) Power tool
GB2424249A (en) Power tool with overload clutch mounted in cavity in gear-cog
US20060086215A1 (en) Tightening tool
CN212497582U (zh) 手持工具
CN210790852U (zh) 手持工具和夹头附件
CN210996649U (zh) 手持式动力工具
JPH02284881A (ja) ハンマードリル
EP3812097B1 (en) Rotary hammer
CN215395054U (zh) 一种冲击钻功能切换结构
CN112207758B (zh) 动力工具
US11780070B2 (en) Electric power tool
US20230143261A1 (en) Clutch mechanism and power tool having same
TWM644755U (zh) 傳動機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754020

Country of ref document: EP

Kind code of ref document: A1