WO2019157913A1 - 一种发送资源预留消息的方法及装置 - Google Patents

一种发送资源预留消息的方法及装置 Download PDF

Info

Publication number
WO2019157913A1
WO2019157913A1 PCT/CN2019/072641 CN2019072641W WO2019157913A1 WO 2019157913 A1 WO2019157913 A1 WO 2019157913A1 CN 2019072641 W CN2019072641 W CN 2019072641W WO 2019157913 A1 WO2019157913 A1 WO 2019157913A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource reservation
message
transmitting
receiving device
transmission
Prior art date
Application number
PCT/CN2019/072641
Other languages
English (en)
French (fr)
Inventor
杜振国
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810713886.2A external-priority patent/CN110167077A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19754688.0A priority Critical patent/EP3720180A4/en
Priority to US16/964,576 priority patent/US11564131B2/en
Publication of WO2019157913A1 publication Critical patent/WO2019157913A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and an apparatus for transmitting a resource reservation message.
  • NR-U NR-Unlicense
  • unlicensed bands such as 2.4 GHz and 5 GHz bands can be used.
  • the unlicensed frequency band belongs to the shared frequency band, and various communication systems may work on these frequency bands, such as wireless-fidelity (Wi-Fi), Bluetooth, LAA, eLAA, NR-U, etc., coexisting with the same frequency.
  • Wi-Fi wireless-fidelity
  • Bluetooth Bluetooth
  • LAA eLAA
  • NR-U NR-U
  • different communication systems may not have the ability to coordinate with each other, which leads to serious interference in different communication systems and even in the same communication system, resulting in low spectrum utilization.
  • the carrier sensing mechanism to be followed by devices using unlicensed bands is a listen before talk (LBT) mechanism, that is, the device needs to listen to the channel before sending the information.
  • LBT listen before talk
  • the device After the LBT mechanism determines that the channel is idle, after the LBT process ends, the device starts to contend for the channel.
  • the device as the sending device may send a resource reservation request message, and the resource reservation request message is used to request to send data, and the device as the receiving device receives the device.
  • the resource reservation response message may be replied, and the resource reservation response message is used to confirm that the data can be received.
  • the device as the sending device may send data (data).
  • LAA/eLAA only works at low frequencies, such as unlicensed bands below 6 GHz, while NR-U may use high frequency unlicensed bands in addition to low frequencies. Communication is performed in an unlicensed band such as 28/37/60 GHz.
  • LBT Low-power Bluetooth
  • data transmission processes after the end of LBT. Since the frequency of the low frequency band is not high, that is, the wavelength is large, the omnidirectional transmission mode is usually adopted when transmitting data.
  • the omnidirectional transmission is used when transmitting data, the coverage of the transmission is too small, so it may be considered in the high-frequency system.
  • a beam is transmitted for transmission.
  • the transmitting device A determines that the channel is idle through the LBT mechanism, after the LBT process ends, the transmitting device A may send a resource reservation request message through the beam,
  • the direction of the beam is generally the potential transmission direction of the transmitting device A, that is, the direction in which the sending device A sends data, and other devices that are not in the direction of the beam cannot receive the resource reservation request message, and other devices if
  • the LBT process is executed, other devices determine that the channel is idle during the LBT process, so that data is transmitted as usual after the LBT process ends, but the data transmission process of other devices may be interfered with by the data transmission process of the transmitting device A, which may result in data. The transfer failed. This problem occurs because the transmitting device A becomes a hidden node that cannot be discovered by other devices, and interferes with the data transmission process of other devices.
  • the data transmission starts after the device performs the LBT mechanism in the high frequency system, and the data transmission failure of the device may be caused due to the existence of the hidden node.
  • the embodiment of the present application provides a method and an apparatus for transmitting a resource reservation message, which are used to reduce the probability of a hidden node appearing in a high frequency system during data transmission.
  • a method for reserving a transmission resource comprising:
  • the transmitting device determines a first direction, where the first direction includes at least a direction of the first beam, the first beam is a beam in a direction opposite to the second beam, and the second beam is a potential transmission of data sent by the sending device
  • first direction includes at least a direction of the first beam
  • first beam is a beam in a direction opposite to the second beam
  • second beam is a potential transmission of data sent by the sending device
  • the sending device sends a resource reservation request message in the first direction.
  • the transmitting device sends the RRQ in the opposite direction to the potential transmission direction, which is beneficial to eliminate hidden nodes, thereby reducing the probability of interference and improving transmission performance.
  • the method after the sending device sends the resource reservation request message in the first direction, the method includes:
  • the transmitting device transmits data to the receiving device in the second beam direction.
  • the purpose of the transmitting device to send the RRQ is to send data in the potential transmission direction.
  • the sending device sends data to the receiving device in the second beam direction.
  • the method includes:
  • the sending device receives the resource reservation response message sent by the receiving device in the second beam direction.
  • the sending device receives the RRS returned by the receiving device, indicating that the link between the two devices is unobstructed, and the sending device can send data to the receiving device.
  • the RRQ sent by the sending device should be received by the receiving device to trigger the receiving device to reply to the RRS.
  • the direction in which the potential transmission direction is opposite is the two directions that are most prone to interference. Therefore, the RRQ in the potential transmission direction can be received by both the receiving device and the hidden node.
  • the first direction further comprises a direction of a predefined range around the first beam.
  • the beam range of the transmitting device transmitting the RRQ should be appropriately larger than the range of the reverse beam.
  • a method for reserving a transmission resource comprising:
  • the receiving device determines a second direction, where the first direction includes at least a third beam direction and a direction of a fourth beam, and the fourth beam is a beam in a direction opposite to the third beam;
  • the receiving device sends a resource reservation response message in the second direction.
  • the receiving device After receiving the RRQ, the receiving device sends the RRS in the opposite direction to its potential transmission, which helps to eliminate hidden nodes, thereby reducing the probability of interference and improving transmission performance.
  • the method after the receiving device sends the resource reservation response message in the second direction, the method includes:
  • the receiving device receives data sent by the sending device in the third beam direction.
  • the purpose of the RRQ/RRS interaction between the receiving device and the transmitting device is to receive the data sent by the transmitting device in the potential transmission direction of the receiving device.
  • the second direction further comprising a direction of a predefined range around the fourth beam.
  • the beam range in which the receiving device transmits the RRS should be appropriately larger than the range of the reverse beam.
  • a transmitting device comprising:
  • the transceiver is configured to receive and send data
  • the memory is configured to store an instruction
  • the processor configured to execute the instructions in the memory, to perform the method of any of embodiments 1-5.
  • the transceiver comprising:
  • the receiver is configured to receive, by using the terminal device, the resource reservation response detailed according to any one of Embodiments 1-5;
  • the transmitter is configured to send the resource reservation request message and the data as described in any of embodiments 1-5.
  • a receiving device comprising:
  • the transceiver is configured to receive and send data
  • the memory is for storing instructions
  • the processor is operative to execute the instructions in the memory, and the method of any of embodiments 6-8 is performed.
  • the transceiver comprising:
  • the receiver is configured to receive, by the network device, the resource reservation request message and the data according to any one of Embodiments 6-8;
  • the transmitter is configured to send a resource reservation response message as described in any of Embodiments 6-8.
  • a computer program product comprising a computer program which, when executed on a computer unit, causes the computer unit to implement the method of any of embodiments 1-5.
  • a computer program product comprising a computer program which, when executed on a computer unit, causes the computer unit to implement the method of any of embodiments 6-8.
  • a computer program which, when executed on a computer unit, causes the computer unit to implement the method of any of embodiments 1-5.
  • a computer program which, when executed on a computer unit, causes the computer unit to implement the method of any of embodiments 6-8.
  • a network device configured to perform the method of any of embodiments 1-5.
  • a terminal device configured to perform the method of any of embodiments 6-8.
  • a computer readable storage medium having stored thereon a computer program that, when executed on a computer, causes the computer to implement the method of any of embodiments 1-5.
  • a computer readable storage medium having stored thereon a computer program that, when executed on a computer, causes the computer to implement the method of any of embodiments 6-8.
  • a communication system comprising the terminal device of any of embodiments 1-5 and the network device of any of embodiments 6-8.
  • An apparatus comprising: a processing module and a communication interface, the processing module being operative to perform the communication method of any of embodiments 1-5.
  • the device can be a chip or chip system.
  • the device of embodiment 22 the device further comprising a storage module, the storage module for storing instructions, the processing module for executing instructions stored by the storage module, and for the storage module Execution of the stored instructions causes the processing module to perform the communication method of any of embodiments 1-5.
  • An apparatus comprising: a processing module and a communication interface, the processing module for performing the communication method of any of embodiments 6-8.
  • the device can be a chip or chip system.
  • the device further comprising a storage module, the storage module is configured to store an instruction, the processing module is configured to execute an instruction stored by the storage module, and is in the storage module Execution of the stored instructions causes the processing module to perform the communication method of any of embodiments 6-8.
  • a method for transmitting a resource reservation message comprising:
  • the communication device determines at least one beam for transmitting a resource reservation message, the at least one beam comprising a first beam, the direction of the first beam is opposite to a direction of the second beam, and the direction of the second beam is the The potential transmission direction of the communication device to send information;
  • the communication device sends the resource reservation message by using the at least one beam, where the resource reservation message includes a resource reservation request message or a resource reservation response message, where the resource reservation request message is used to request a reserved transmission A resource, the resource reservation response message is used to determine a reserved transmission resource.
  • the communications apparatus may send the resource reservation request message by using at least one beam, and the direction of the first beam included in the at least one beam is the second.
  • the direction of the beam is opposite, and the direction of the second beam is a potential transmission direction of the data transmitted by the communication device, that is, the communication device can also send a resource reservation request message in a direction opposite to its potential transmission direction, and then Other devices in the opposite direction of the potential transmission direction of the communication device can also receive the resource reservation request message sent by the communication device, thereby reducing the probability that the communication device becomes a hidden node of these devices, and these devices can no longer be associated with
  • the communication device contends for the channel to maximize the success rate of subsequent transmission of data by the communication device and other devices.
  • the communication device also transmits the resource reservation message through the second beam.
  • the sending device sends a resource reservation request message through the second beam, so that the receiving device opposite to the sending device can receive the resource reservation request message, thereby preparing for receiving data from the sending device.
  • the receiving device sends a resource reservation response message by using the second beam, so that the sending device opposite to the receiving device can receive the resource reservation response message, thereby determining that the data can be sent to the receiving device.
  • the communication device may select a beam with an angle between the direction and the direction of the second beam that is greater than 0° and less than 180°. And transmitting a resource reservation message with a beam having an angle greater than 180° and less than 360° between the direction and the direction of the second beam, thereby achieving the purpose of suppressing transmission of devices within a certain range of the periphery of the first beam, and minimizing Small interference.
  • the communication device simultaneously transmits the resource reservation message through each of the at least one beam;
  • the communication device transmits the resource reservation message in a time-sharing manner by each of the at least one beam.
  • the communication device can simultaneously transmit the resource reservation message through each of the at least one beam, which can improve the transmission efficiency, but requires high hardware facilities of the communication device, or the communication device can pass each of the at least one beam.
  • the beam time-sharing sends a resource reservation message, which is not very demanding on the hardware facilities of the communication device, and helps to reduce the cost of the device.
  • the communication device transmits data through the second beam after transmitting the resource reservation request message.
  • the transmitting device sends data to the receiving device in addition to the resource reservation message. Therefore, after transmitting the resource reservation request message, the communication device can also send data through the second beam. Thereby completing the data transfer.
  • the communication device receives a resource reservation request message from a transmitting device.
  • the resource reservation request message sent by the sending device is likely to be received before the receiving device sends the resource reservation response message, which is equivalent to triggering the receiving device to send the resource reservation response message.
  • the receiving device does not necessarily receive the resource reservation request message sent by the sending device, so this is just an example.
  • a communication device comprising:
  • a processor configured to determine at least one beam for transmitting a resource reservation message, where the at least one beam includes a first beam, a direction of the first beam is opposite to a direction of the second beam, and a direction of the second beam Is a potential transmission direction of the information transmitted by the communication device;
  • a transceiver configured to send the resource reservation message by using the at least one beam, where the resource reservation message includes a resource reservation request message or a resource reservation response message, where the resource reservation request message is used to request a reservation And transmitting a resource, where the resource reservation response message is used to determine a reserved transmission resource.
  • transceiver is further configured to:
  • the at least one beam further comprises at least one of the following beams:
  • transceiver is specifically configured to:
  • the communication device according to any one of embodiments 7 to 10, wherein the communication device is a transmitting device, the resource reservation message is the resource reservation request message, and the transceiver is further configured to:
  • a resource reservation request message is received from the transmitting device before the processor determines the at least one beam.
  • a communication device comprising:
  • a processing module configured to determine at least one beam for transmitting a resource reservation message, where the at least one beam includes a first beam, a direction of the first beam is opposite to a direction of the second beam, and a direction of the second beam Is a potential transmission direction of the information transmitted by the communication device;
  • a transceiver module configured to send the resource reservation message by using the at least one beam, where the resource reservation message includes a resource reservation request message or a resource reservation response message, where the resource reservation request message is used to request a reservation And transmitting a resource, where the resource reservation response message is used to determine a reserved transmission resource.
  • the transceiver module further configured to:
  • transceiver module is specifically configured to:
  • the communication device according to any one of the embodiments 13 to 16, wherein the communication device is a transmitting device, the resource reservation message is the resource reservation request message, and the transceiver module is further configured to:
  • the communication device according to any one of the embodiments 13 to 16, wherein the communication device is a receiving device, the resource reservation message is the resource reservation response message, and the transceiver module is further configured to:
  • a communication device comprising: at least one processor, a memory; and communication between the at least one processor and the memory;
  • the memory is for storing instructions
  • the at least one processor is operative to execute the instructions in the memory, and the method of any one of embodiments 1 to 6 is performed.
  • the communication device may be a chip (such as a system on chip (SoC)) in the terminal device or the network device, so that the terminal device or the network device performs the method as described in any of Embodiments 1-6. method.
  • SoC system on chip
  • a communication device for use in a terminal device or a network device, the communication device being configured to perform the method of any of embodiments 1-6.
  • the communication device may be a chip (such as a system on chip (SoC)) in the terminal device or the network device, so that the terminal device or the network device performs the method as described in any of Embodiments 1-6. method.
  • SoC system on chip
  • a computer readable storage medium comprising instructions which, when run on a computer, cause the computer to perform the method of any of embodiments 1-6.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any of embodiments 1-6.
  • other devices located in a direction opposite to the potential transmission direction of the communication device can also receive the resource reservation request message sent by the communication device, so that the devices can no longer compete with the communication device. Channel, try to increase the success rate of subsequent transmission of data by the communication device and other devices.
  • FIG. 1 is a schematic diagram of a carrier sensing process of a Wi-Fi system
  • 2A is a schematic diagram of RTS/CTS transmission of 802.11ad
  • 2B is a schematic diagram of a carrier sensing process of a high frequency communication system according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a first application scenario according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a second application scenario according to an embodiment of the present application.
  • FIG. 5 is a flowchart of a first method for sending a resource reservation message according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a method for transmitting a resource reservation message according to an embodiment of the present application, and performing transmission in a first application scenario;
  • FIG. 7A is a schematic diagram of a first method for transmitting a resource reservation message according to an embodiment of the present application, and performing transmission in a first application scenario;
  • FIG. 7B is a schematic diagram of a method for transmitting a resource reservation message according to an embodiment of the present application, and performing transmission in a first application scenario;
  • FIG. 8 is a flowchart of a second method for sending information according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a method for transmitting a resource reservation message according to an embodiment of the present application, and performing transmission in a second application scenario;
  • FIG. 10A is a schematic diagram of a method for transmitting a second resource reservation message according to an embodiment of the present application, and performing transmission in a second application scenario;
  • FIG. 10B is a schematic diagram of a method for transmitting a second resource reservation message according to an embodiment of the present application, and performing transmission in a second application scenario;
  • FIG. 11 is a flowchart of a third method for sending a resource reservation message according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIGS. 13A to 13B are schematic diagrams showing two structures of a communication device according to an embodiment of the present application.
  • a terminal device including a device that provides voice and/or data connectivity to a user, for example, may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN) to exchange voice and/or data with the RAN.
  • the terminal device may include a user equipment (UE), a wireless terminal device, a mobile terminal device, a subscriber unit, a subscriber station, a mobile station, a mobile station, and a remote station.
  • Remote station access point (AP), remote terminal, access terminal, user terminal, user agent, or user Equipment (user device) and so on.
  • a mobile phone or "cellular" phone
  • a computer with a mobile terminal device a portable, pocket, handheld, computer built-in or in-vehicle mobile device, smart wearable device, and the like.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • restricted devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing capabilities. Examples include information sensing devices such as bar code, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning system
  • the terminal device may also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are more than just a hardware device, but they also implement powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-size, non-reliable smartphones for full or partial functions, such as smart watches or smart glasses, and focus on only one type of application, and need to work with other devices such as smartphones. Use, such as various types of smart bracelets for smart signs monitoring, smart helmets, smart jewelry, etc.
  • a network device for example comprising a base station (e.g., an access point), may refer to a device in the access network that communicates over the air interface with the wireless terminal device over one or more cells.
  • the network device can be used to convert the received air frame to an Internet Protocol (IP) packet as a router between the terminal device and the rest of the access network, wherein the remainder of the access network can include an IP network.
  • IP Internet Protocol
  • Network devices can also coordinate attribute management of air interfaces.
  • the network device may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in the LTE system or LTE-A, or may also include a next generation node B in the 5G NR system.
  • the gNB may also include a centralized unit (CU) and a distributed ynit (DU) in a cloud access network (CloudRAN) system, which is not limited in the embodiment of the present application.
  • CU evolved base station
  • DU distributed ynit
  • Beam transmission means that a group of antennas are used for transmission, and different antennas are multiplied by different weighting coefficients (generally complex numbers), so that the signals transmitted by the antennas are enhanced in some directions after being superimposed in space, and Other directions are weakened by signal cancellation to achieve directional transmission.
  • Beam transmission is also commonly referred to as beamforming or spatial filter.
  • the beam of the UE is also called a spatial domain transmission/reception filter.
  • the (UL) beam can also be described by a sounding reference indicator (SRS).
  • SRS sounding reference indicator
  • the downlink (DL) beam is identified by a reference signal indication associated with the beam, for example, using channel state information (CSI) reference signal resource indication (CRI), or synchronization signal SS block resource indicator (SSBRI), or CSI-RS configuration/quasi-collocation/quasi-co-location (QCL) type (Type) D/target cell identity (TCI)/link weight Link reconfiguration to identify.
  • CSI channel state information
  • CRI channel state information
  • SSBRI synchronization signal SS block resource indicator
  • QCL CSI-RS configuration/quasi-collocation/quasi-co-location
  • Type D/target cell identity
  • TCI target cell identity
  • the transmit beam is actually a directional transmission, which lies in its transmission direction and beamwidth.
  • the narrower the beamwidth the further the transmission distance and the greater the ability to suppress interference from other directions.
  • the receiving end can also use the Beam beam for directional reception, thereby enhancing the reception performance in a specific direction and suppressing or eliminating interference from other directions.
  • the implementation principle of the receive beam is similar to that of the transmit beam, except that it is used for signal reception.
  • the receive beam is actually a directional reception that is fundamentally the direction and width of its receive beam. For the purpose of description, such directional transmission or reception is described in the present application by a beam.
  • High frequency and low frequency wherein the high frequency may refer to a frequency band having a frequency greater than 6 GHz, and the high frequency corresponding to a high frequency may be a frequency band having a frequency less than 6 GHz.
  • the high frequency described in this article is mainly based on a frequency band larger than 28 GHz, such as a frequency band of 37 GHz, or a frequency band of 60 GHz, or a frequency band larger than 60 GHz. of course.
  • the high frequency described in the embodiments of the present application is not limited to these frequency bands, as long as it is greater than 6 GHz.
  • a communication system operating at high frequencies is also referred to as a high frequency communication system or a high frequency system.
  • NR-U is a high frequency system
  • a communication system operating at a low frequency is called a low frequency communication system or
  • Low frequency systems such as 802.11b are a low frequency system.
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • Multiple means two or more.
  • a plurality can also be understood as “at least two” in the embodiment of the present application.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • the 802.11 standard was developed by the Institute of Electrical and Electronics Engineers (IEEE) 802.11 working group and its trade name is Wi-Fi.
  • 802.11b/802.11g operates in the 2.4 GHz band
  • 802.11a/802.11ac/802.11ax operates in the 5 GHz band
  • 802.11n operates in the 2.4 & 5 GHz band.
  • the carrier sensing mechanism of the Wi-Fi system operating in the 2.4 GHz band and the 5 GHz band is the same, including physical carrier sensing and virtual carrier sensing.
  • the physical carrier sensing is also called clear channel assessment (CCA), that is, the device determines the channel busy/idle according to the comparison result between the received signal power and the threshold through the listening channel, and the channel is busy.
  • CCA clear channel assessment
  • the channel can be idle to start competing channels.
  • the CCA result is that the channel is busy, otherwise the channel is determined to be idle.
  • the virtual carrier sensing solves the received Wi-Fi frame and sets the network allocation vector according to the remaining time of the transmission opportunity (TXOP) carried in the Wi-Fi frame (usually carried in the duration field).
  • the allocation vector (NAV), NAV is a back-off timer maintained by the device. Before the NAV retreats to 0, the device considers that the channel is busy and does not contend for the channel. When the NAV falls back to 0, the virtual carrier is idle. The device can start competing for the channel. In general, both physical carrier sensing and virtual carrier sensing are performed simultaneously.
  • channel idle means that both physical carrier sensing and virtual carrier sensing result are idle.
  • FIG. 1 also includes a data transmission process after carrier sensing ends.
  • carrier sensing is first performed on the channel.
  • DIFS distributed coordination function interframe space
  • the transmitting device performs The backoff process, that is, the transmitting device randomly takes a value in the predetermined range for setting the backoff timer, and then the backoff timer starts the reverse timing.
  • the transmitting device continuously detects the channel.
  • the sending device sends a resource reservation request message, where the sending device sends a resource reservation request message, which is a process that occurs after the carrier sensing ends, and the resource reservation request
  • the message is, for example, a request to send (RTS) frame, which includes a duration field for indicating the remaining time of the current transmission process (ie, TXOP), that is, the duration from the end of the RTS frame transmission to the end of the current TXOP.
  • RTS request to send
  • TXOP the remaining time of the current transmission process
  • the receiving device After receiving the RTS, the receiving device returns a resource reservation response message by using a short interframe space (SIFS) duration, and the resource reservation response message is, for example, a clear to send (CTS) frame, which also includes a duration field.
  • SIFS short interframe space
  • CTS clear to send
  • the value is the value of the duration field in the RTS frame minus the duration of the SIFS and the CTS, that is, the duration from the end of the CTS frame transmission to the end of the current TXOP.
  • the transmitting device After receiving the CTS frame, the transmitting device sends a data (data) frame at intervals SIFS, and the receiving device sends an acknowledgment (ACK) at the interval SIFS after receiving the data frame.
  • the third-party device can set its own NAV according to the field after receiving the RTS/CTS. Before the NAV retreats to 0, the third-party device does not contend for the channel, thereby preventing the third-party device from transmitting data to interfere with the transmission between the transmitting device and the receiving device.
  • the information is usually transmitted in an omnidirectional manner.
  • high-frequency systems such as NR-U
  • omnidirectional transmission the coverage of transmission is too small, so beams may be considered for transmission in high-frequency systems. In this way, the data transmission process after the carrier sensing mechanism established for the low frequency band cannot be fully applied to the high frequency system.
  • Wi-Fi systems operate at high frequencies, such as 802.11ad and 802.11ay, all operating in the 60 GHz band (for high frequency bands).
  • the carrier sense mechanism and the subsequent data transmission process are different from 802.11 operating in the 2.4/5 GHz band (for the low frequency band).
  • the transmission of the resource reservation message adopts directional transmission, that is, the transmitting device uses the beam to send a resource reservation request (such as RTS) in the potential transmission direction, and the receiving device receives The beam is then used to transmit a resource reservation response (such as CTS) in the opposite direction, as shown in Figure 2A.
  • the potential transmission direction refers to the beam direction of the data to be transmitted, as shown in the figure, the direction of the beam from the transmitting device to the receiving device.
  • the 802.11ay standard is in the process of being developed, and its physical carrier sensing may adopt omnidirectional CCA, but it is also proposed to adopt directional CCA, that is, the transmitting device performs physical carrier sensing in the potential transmission direction through the receiving beam.
  • the transmission of the resource reservation message (such as RTS/CTS) of the transmitting device or the receiving device adopts directional transmission, which is substantially the same as 802.11ad.
  • the resource reservation request (such as RTS) of the transmitting device can be transmitted in multiple potential communication directions, and different potential communication directions correspond to different beams, pointing to different receiving devices.
  • the resource reservation request messages are sent in different beam directions, and are transmitted in different beam directions in turn by scanning, that is, by time division.
  • the disadvantage of omnidirectional CCA is that the transmission of the device is suppressed by the transmission of the exposed node, the transmission opportunity is reduced, and the system throughput is reduced.
  • the disadvantage of directional transmission resource reservation message is that some hidden nodes around may not receive the resource reservation message of directional transmission, causing these hidden nodes to continue to send messages or data, thereby causing interference to the ongoing transmission of the transmitting device. The throughput is reduced. It can be seen that although 802.11ad and 802.11ay provide a solution for high frequency system carrier sensing and subsequent data transmission processes, there are still drawbacks.
  • NR-U has not yet determined how the data transmission process after the carrier sensing mechanism is implemented.
  • the embodiment of the present application provides an implementation manner of a data transmission process after a carrier sensing mechanism in a high frequency system. It should be noted that all embodiments of the present application can be applied to a communication system operating in a high frequency unlicensed frequency band, such as an NR-U system, or a wireless local area networks (WLAN) system, or 802.11ay, or Other communication systems.
  • a communication system operating in a high frequency unlicensed frequency band such as an NR-U system, or a wireless local area networks (WLAN) system, or 802.11ay, or Other communication systems.
  • directional transmission and directional reception are mostly used in high-frequency communication systems because the high-frequency signal has a small wavelength. When the device size is limited, more antennas can be accommodated on the device, and the more antennas, the more likely it is to achieve. A narrower width beam.
  • directional transmission and reception are easier to achieve in high frequency systems due to hardware implementation limitations.
  • this does not mean that the low frequency system cannot use beam transmission. Therefore, all the embodiments of the present application can be applied to a communication system of any frequency as long as the communication system adopts directional transmission, but only in the following, the embodiment of the present application is applied to a high frequency communication system as an example.
  • an RTS/CTS mechanism similar to that used in the low frequency 802.11 is introduced for the high frequency communication system (the RTS/CTS process is the data transmission process after the carrier sensing mechanism, or is understood to be carrier sensing). Part of the process of data transmission after the mechanism), to reserve the channel resources.
  • the RTS may also be referred to as a reservation request (RRQ)
  • the CTS may also be referred to as a reservation response (RRS).
  • the RRQ and the RRS may be collectively referred to as a resource reservation message.
  • the RRQ/RRS may include the remaining time of the current transmission process (ie, TXOP).
  • the following DL is a specific introduction to the preparation stage of the above DL.
  • the following UL is a specific introduction to the preparation stage of the above UL.
  • the LBT and RRQ corresponding to the following DL are the above.
  • the DL corresponds to the box in the preparation phase, so "/" is added to these boxes.
  • the LBT and RRS corresponding to the UL below are the boxes corresponding to the above UL in the preparation phase, so they are added in these boxes. " ⁇ ", because the above box is relatively small, so I will make a clearer explanation below.
  • the channel is first LBT.
  • the sending device sends a resource reservation request message, for example, the RRQ, and the receiving device receives After the RRQ, the channel is LBT after a period of time.
  • the receiving device replies with a resource reservation response message, for example, the RRS, and then enters the data transmission phase.
  • the process shown in FIG. 2B is different from the RTS/CTS in 802.11 in that the transmission of the CTS in the 802.11 does not require the LBT, that is, the transmitting device does not need to listen to the channel before responding to the CTS and determines whether the channel is intercepted according to the channel listening result.
  • the CTS is transmitted, but can be sent directly, and in the process shown in FIG. 2B, the LBT needs to be performed before the RRS is transmitted.
  • the beam may be considered for transmission, then, as shown in FIG. 2B.
  • the transmission mechanism it may be considered to transmit RRQ/RRS and data by means of beam transmission.
  • hidden nodes may occur, causing interference in the transmission process.
  • the NR-U is introduced with the transmission resource reservation mechanism, and the RRQ/RRS transmission mechanism shown in Figure 2B is adopted. That is, the transmitting device sends the RRQ. The message, the receiving device replies to the RRS message.
  • the receiving device may not need to reply to the RRS.
  • the receiving device may not need to reply to the RRS.
  • the receiving device may not need to reply to the RRS.
  • the device should maintain a backoff timer. Before the backoff timer is returned to 0, the device does not You should go to the competition channel and send data to avoid interference with other devices.
  • the backoff timer is similar to the NAV in 802.11, and may be referred to as a resource reservation timer in the embodiment of the present application.
  • the transmitting device After the LBT, the transmitting device sends the RRQ in a potential transmission direction (ie, the transmission direction of the transmitting device to the receiving device), and the receiving device replies to the RRQ in a direction opposite to the direction, wherein the receiving device can also reply to the direction of the RRQ.
  • a potential transmission direction of the receiving device that is, the transmission direction of the transmitting device by the receiving device.
  • the transmitting device 1 has data to be transmitted to the receiving device 1
  • the transmitting device 2 has data to be transmitted to the receiving device 2.
  • the transmission of the transmitting device 1 and the receiving device 1 starts first, and the transmitting device 1 transmits an RRQ to the receiving device 1 on the beam 1, and receives the RRS transmitted by the receiving device 1 through the beam 2, and then the transmitting device 1 transmits the device 1 to the receiving device 1 on the beam 1. send data. Since the RRQ transmitted by the transmitting device 1 is directionally transmitted through the beam 1, the transmitting device 2 does not receive the RRQ. Therefore, the transmitting device 2 will still transmit to the receiving device 2, but is interfered by the transmission of the transmitting device 1 on the beam 1, and it is almost impossible for the receiving device 2 to correctly receive the transmission of the transmitting device 2.
  • the transmission of the RRQ and the RRS may not be necessary, that is, the transmitting device 2 may also directly transmit data to the receiving device 2, and the data transmission is obviously disturbed by the transmission of the transmitting device 1 on the beam 1. .
  • This situation occurs because the RRQ transmitted by the transmitting device 1 in the directional manner cannot be received by the transmitting device 2, and the transmitting device 1 becomes the hidden node of the transmitting device 2.
  • the transmitting device 1 has data to be transmitted to the receiving device 1
  • the transmitting device 2 has data to be transmitted to the receiving device 2.
  • the transmissions of the transmitting device 1 and the receiving device 1 start first, the transmitting device 1 transmits an RRQ to the receiving device 1 on the beam 1, and receives the RRS transmitted by the receiving device 1 through the beam 2, and then the transmitting device 1 is on the beam 1.
  • the data is transmitted to the receiving device 1. Since the RRS transmitted by the receiving device 1 to the transmitting device 1 is directionally transmitted through the beam 2, it cannot be received by the transmitting device 2, and therefore, the transmitting device 2 still transmits the RRQ or data to the receiving device 2 through the beam 3, and receives the receiving device.
  • the RRS or HARQ-ACK may interfere with the reception of the receiving device 1 on the beam 2, The probability causes the reception of beam 2 to fail. This situation occurs because the RRS transmitted by the receiving device 1 in the directional manner cannot be received by the receiving device 2, causing the receiving device 1 to become a hidden node of the transmitting device 2.
  • HARQ hybrid automatic repeat request
  • ACK acknowledgenowledgement
  • the technical solution provided by the embodiment of the present application can better solve the problem of hidden nodes involved in the first two scenarios.
  • the sending device before sending the RRQ, the sending device should first listen to the channel, and when the channel is judged to be idle according to the channel listening result, the RRQ can be sent.
  • an implementation method is that the transmitting device adopts omnidirectional listening, that is, the transmitting device listens for signals in all directions. This method is the most conservative, with few transmission opportunities, but the probability of missing peripheral signals is minimal, and the probability of transmission causing interference to other devices is small.
  • the second implementation method is that the transmitting device listens to the potential transmission direction. This method is more aggressive, and the device has many transmission opportunities, but may miss the signals of some surrounding devices, thereby causing interference to the ongoing transmission.
  • the transmitting device listens for the direction of at least one beam, and at least one beam will be defined in the following embodiments.
  • the direction in which the transmitting device listens may include the potential transmission direction of the transmitting device in addition to the direction of the at least one beam.
  • the third implementation method can be regarded as a compromise between the first implementation method and the second implementation method. The embodiment of the present application does not limit the method for performing the channel sensing on the implementation method.
  • channel interception may or may not be required. If channel interception is required, one of the three implementation methods used by the foregoing sending device may also be used, and details are not described herein. The embodiment of the present application is not limited to the method for performing the channel sensing on the receiving device.
  • the same device transmits and receives in the same direction by using the same beam.
  • the transmitting device 1 sends the RRQ to the receiving device 1 through the beam 1.
  • the RRS is also received from the receiving device 1 through the beam 1.
  • the transmit and receive beams of the device are symmetric in direction.
  • the device may have a situation in which the transmit beam and the receive beam are asymmetric.
  • the transmitting device 1 in FIG. 3 may send the RRQ to the receiving device 1 through the beam 1, but may pass another The beam receives the RRS from the receiving device 1, the direction of the other beam and beam 1 may not be exactly the same.
  • the potential transmission direction of the transmitting device may include multiple physical beams.
  • the beam 1 when the transmitting device 1 transmits data through the beam 1, the beam 1 may include a plurality of physical beams whose directions are substantially uniform, that is, substantially the same as the direction of the beam 1.
  • sending device and the “receiving device” described in the embodiments of the present application are all types of communication devices, that is, the communication device may include a transmitting device, and may also include a receiving device.
  • sending device can be understood as a device that transmits data
  • receiving device can be understood as a device that receives data, visible, “sending device” and “receiving device”, etc., but only relative concepts, not absolute, for example The same device can be called a receiving device when receiving data, and can also be called a transmitting device when transmitting data.
  • the resource reservation message involved in the present disclosure may include a resource reservation request message or a resource reservation response message, where the resource reservation request message is used to request a reserved transmission resource, and the resource reservation response message is used to determine the reserved transmission resource.
  • FIG. 5 is a flowchart of a first method for sending a resource reservation message according to an embodiment of the present disclosure.
  • the method may be used to solve the technical problem existing in the scenario shown in FIG. 3 .
  • the method can be implemented by the communication device.
  • the communication device is used as a transmitting device. Therefore, it can also be understood that the method can be performed by the receiving device and the communication device.
  • the transmitting device can also be understood as one of the communication devices.
  • the method is performed by a communication device as a transmitting device and a communication device as a receiving device.
  • the technical problems existing in the scene shown in FIG. 4 will be solved in the other embodiments which will be described later.
  • the sending device determines at least one beam used to send a resource reservation message, where the at least one beam includes a first beam, a direction of the first beam is opposite to a direction of the second beam, and a direction of the second beam is The potential transmission direction of the information sent by the sending device;
  • the sending device sends a resource reservation message by using the at least one beam, where the device in the at least one beam direction receives the resource reservation message.
  • the resource reservation message includes a resource reservation request message for requesting to reserve the transmission resource.
  • the first device and the second device in FIG. 5 may be regarded as a device capable of receiving a resource reservation request message, for example, the first device and the second device are devices in a direction of two beams in the at least one beam, Or, for example, the first device is a device in a direction of one of the at least one beam, the beam is, for example, a first beam, and the second device is a device in a second beam direction, which is not limited in detail.
  • FIG. 5 is only an example in which two devices can receive the resource reservation request message, and is not limited to this in practical applications.
  • the transmitting device in this embodiment is, for example, the transmitting device 1 in the scenario shown in FIG. 3, and may of course be the transmitting device 2, which is not limited in this embodiment.
  • the present embodiment can also be applied to other scenarios, such as the scenario shown in FIG. 4, and the transmitting device in this embodiment is, for example, the transmitting device 1 or the transmitting device 2 in the scenario shown in FIG. .
  • the direction of the second beam is a potential transmission direction of the information sent by the sending device, where the “information” may refer to “data”, that is, the direction of the second beam may be a potential transmission direction of the sending device, or It is understood to be the direction in which the transmitting device points to the receiving device.
  • the direction of the second beam is the direction from the transmitting device 1 to the receiving device 1.
  • the direction of the first beam included in at least one of the beams is opposite to the direction of the second beam.
  • the direction of the first beam and the direction of the second beam may be just opposite. For example, the angle between the direction of the first beam and the direction of the second beam is 180°.
  • the angle between the direction of one beam and the direction of another beam may refer to an angle at which the other beam rotates in a counterclockwise direction to reach a position coincident with the one beam.
  • the angle between the direction of the first beam and the direction of the second beam may be an angle at which the first beam and the second beam are overlapped after the second beam is rotated in the counterclockwise direction, for example, the first beam and
  • the angle between the directions of the second beam is 180°. It can be understood that after the second beam is rotated 180° in the counterclockwise direction, the second beam coincides with the first beam.
  • the angle between the directions of the two beams can also be understood in a clockwise manner.
  • the angle between the direction of one beam and the direction of the other beam can mean that the other beam is clockwise.
  • the angle between the direction of the first beam and the direction of the second beam may be an angle at which the first beam and the second beam are overlapped after the second beam is rotated in a clockwise direction, for example, the first beam and The angle between the directions of the second beam is 180°. It can be understood that after the second beam is rotated 180° in the clockwise direction, the second beam coincides with the first beam.
  • the transmitting device only needs to determine such a first beam, the angle between the direction of the first beam and the direction of the second beam is 180°, and the transmitting device sends the resource reservation request message through the first beam, It is thus possible to make the transmitting device no longer a hidden node of the device located in the opposite direction to the second beam.
  • the transmitting device 1 determines a first beam, and the angle between the direction of the first beam and the direction of the second beam is 180, for example, the first beam is the beam 5 in FIG.
  • the transmitting device 1 transmits the RRQ on the beam 5, and the beam 5 points to the transmitting device 2. Therefore, the transmitting device 2 can receive the RRQ sent by the transmitting device 1, so that the transmitting device 2 does not send the signal to the receiving device 2, thereby solving the problem of the hidden node. .
  • the interference beam may interfere with the reception of the receiving beam.
  • FIG. 7A the transmission scenario is the same as FIG. 3
  • the transmission of the beam 1 still causes interference to the beam 4 due to sidelobe leakage and the like.
  • the transmitting device only determines one first beam, the angle between the direction of the first beam and the direction of the second beam is 180°, for example, the first beam is FIG. 7A.
  • the transmitting device 1 transmits the RRQ on the beam 5.
  • the transmitting device 2 Since the beam 5 does not point to the transmitting device 2, the transmitting device 2 does not receive the RRQ of the transmitting device 1 (but the transmitting device 2 may detect the interference of the beam 5 leakage) The signal), so the transmitting device 2 will still transmit to the receiving device 2, and the reception of the receiving device 2 is almost impossible to succeed due to the interference of the beam 1, which causes a waste of transmission resources.
  • the sending device may further select an angle between a beam and/or a direction with an angle between the direction and the direction of the second beam that is less than 180° and a direction of the second beam is greater than 180.
  • the beam of ° that is to say, in this embodiment, at least one beam may include at least one of the following beams in addition to the first beam:
  • the at least one beam determined by the transmitting device may include a beam having a direction substantially opposite to a direction of the second beam, in addition to the first beam that may include a direction opposite to the direction of the second beam, for example,
  • the direction between the directions of the second beam greater than 0° and less than 180° and/or the angle between the direction of the second beam greater than 180° and less than 360° may be regarded as the second The directions of the beams are roughly opposite.
  • At least one beam determined by the transmitting device includes a beam 5, a beam 6 and a beam 7, wherein the beam 5 is a first beam with an angle of 180[deg.] between the direction and the direction of the second beam, beam 6 A beam having an angle between the direction and the direction of the second beam that is less than 180°, and beam 7 is a beam having an angle between the direction and the direction of the second beam that is greater than 180°.
  • the transmitting device 1 transmits not only the RRQ in the beam 5 direction but also the RRQ on the beam 6 and the beam 7, and the beam 6 and the beam 7 are beams adjacent in the direction of the beam 5.
  • devices within a certain range around the direction of the beam 5 can receive the RRQ transmitted by the transmitting device 1, thereby achieving the purpose of suppressing transmission of these devices.
  • the embodiment can also treat at least one beam as a wide beam.
  • the beam 5 to the beam 7 in FIG. 7B can be regarded as a wide beam, and the transmitting device can transmit the RRQ through the wide beam.
  • the angular width of each of the at least one beam may be the same, and may be equal to the angular width of the second beam.
  • the angular width of each of the at least one beam may also be different, and wherein the angular width of the beam may be the same as the angular width of the second beam, and it is also possible that the angular width of the at least one beam and the angular width of the second beam are both Not the same.
  • the angular width of each of the at least one beam may be predefined by a standard, or may be determined by the transmitting device itself, or may be specified to be related to the angular width of the second beam, for example, according to the angular width of the second beam. Obtained, the specific is not limited. However, if at least one beam is considered to be a wide beam, the angular width of the wide beam may be greater than the angular width of the second beam.
  • the angular width of the wide beam may be predefined by a standard, or may be determined by the transmitting device itself, or may be specified to be related to the angular width of the second beam, for example, according to the angular width of the second beam. limit.
  • the resource reservation request message may be sent by using at least one beam.
  • the resource reservation request message is, for example, an RRQ, and the device located in the at least one beam direction may receive the RRQ sent by the sending device.
  • the transmitting device can simultaneously transmit the RRQ through each of the at least one beam, which can improve the transmission efficiency, but the hardware requirements of the transmitting device are relatively higher.
  • the transmitting device may also send the RRQ by using each of the at least one beam in a time division manner.
  • the RRQ is sent first through one of the at least one beam, and after the beam is sent, the at least one beam is passed.
  • the other beam transmits the RRQ.
  • the specific sending mode is used by the sending device when sending the resource reservation request message through the at least one beam, which may be predefined by the protocol, or may be selected by the sending device, or may be a certain sending mode for different sending devices. The embodiment is not limited.
  • the device in the at least one beam direction After the device in the at least one beam direction receives the RRQ sent by the sending device, and knows that the transmitting device is to perform data transmission, the device in at least one beam direction does not transmit any time, thereby reducing the transmission.
  • the transmission of the device causes the possibility of data transmission failure of the device in at least one beam direction, which reduces the waste of resources and improves the success rate of data transmission. It can be considered that, for a device in at least one beam direction, the transmitting device is no longer a hidden node, thereby solving the problem of the hidden node, and ensuring that the data transmission of the transmitting device and other devices can be successful.
  • the transmitting device may send the resource reservation request message through the second beam in addition to the resource reservation request message by using at least one beam, that is, the sending device may select to send by using at least one beam.
  • the resource reservation request message may be selected, or the resource reservation request message may be sent through at least one beam and the second beam.
  • the sending device may also choose to send the resource reservation request message only through the second beam.
  • the sending device sends the resource reservation request message through the second beam, so that the receiving device opposite to the sending device can receive the resource reservation request message, so as to prepare for receiving data from the sending device.
  • the receiving device opposite to the sending device that is, the receiving device that is to receive the data sent by the sending device, is exemplified by FIG. 3, and if the sending device is the transmitting device 1, the receiving device is opposite to the transmitting device 1. Is the receiving device 1 among them.
  • the transmitting device may simultaneously send the RRQ through the second beam and each of the at least one beam, so that Improve transmission efficiency, but the hardware requirements of the transmitting device are high.
  • the transmitting device may send the RRQ by using at least one beam and the second beam. For example, the RRQ is sent first through one of the at least one beam, and after the beam is sent, the other beam is sent through the other beam of the at least one beam.
  • the sending device may adopt a sending mode, which may be predefined by the protocol, or may be selected by the sending device, or may be different.
  • the device is cured in a certain transmission mode, which is not limited in this embodiment.
  • the sending device may also send data to the receiving device through the second beam.
  • the receiving device may send the RRS to the sending device, and the sending device may The receiving device receives the RRS, and after receiving the RRS, the transmitting device sends data to the receiving device. However, it is also possible that the receiving device does not send the RRS to the sending device.
  • the receiving device does not receive the resource reservation request message sent by the sending device, or the receiving device receives the resource reservation request message sent by the sending device, but the RRS transmission fails, or Although the receiving device receives the resource reservation request message sent by the sending device, the receiving device does not send the RRS to the sending device, etc., in these cases, the transmitting device may not receive the RRS sent by the receiving device, and then the sending device also Data can be sent to the receiving device.
  • the sending device may send the resource reservation request message in a direction opposite to the potential transmission direction, and the other device located in a direction opposite to the potential transmission direction of the sending device can also receive the resource reservation request. Messages, so that these devices can no longer compete with the transmitting device for the channel, try to increase the success rate of the subsequent sending data of the sending device, and reduce the probability of data transmission failure of these devices, which is equivalent to reducing the sending device to become a hidden node of these devices. The possibility.
  • FIG. 5 can also be understood as:
  • the transmitting device determines a first direction, where the first direction includes at least a direction of the first beam, the first beam is a beam in a direction opposite to the second beam, and the second beam is a potential transmission of data sent by the sending device
  • first direction includes at least a direction of the first beam
  • first beam is a beam in a direction opposite to the second beam
  • second beam is a potential transmission of data sent by the sending device
  • the sending device sends a resource reservation request message in the first direction.
  • the transmitting device determines at least one beam, and can also be understood that the transmitting device determines the first direction, and the direction of the first beam in the at least one beam can be understood as the direction of the first beam included in the first direction.
  • beam 1 is the potential transmission direction of the transmitting device 1, and beam 1 can be understood as the second beam.
  • the transmitting device 1 transmits in the first direction, and the first direction includes at least the direction of the beam 5, as shown in FIG. 6.
  • the first direction only includes the direction of the beam 5, that is, the first direction only includes the direction of the first beam, that is, the transmitting device 1 transmits only in the direction of the beam 5 (ie, at the beam 1)
  • the direction is not transmitted), that is, the transmitting device 1 transmits the resource reservation request message only on at least one beam without transmitting the resource reservation request message on the second beam.
  • the first direction includes the direction of the beam 1 and the direction of the beam 5, that is, the transmitting device 1 transmits in both the direction of the beam 1 and the beam 5, that is, the direction of the first beam includes the direction of the first beam.
  • the transmitting device 1 transmits a resource reservation request message on the first beam in the second beam and the at least one beam.
  • the transmitting device 1 can simultaneously transmit the RRQ in the direction of the beam 1 and the beam 5, which has high requirements on the hardware of the transmitting device 1; or the transmitting device 1 can also sequentially perform the beam directions of the beam 1 and the beam 5
  • the RRQ is sent, for example, in the direction of the beam 1 and then in the direction of the beam 5.
  • the width of the potential transmission direction (such as beam 1) may be equal to the width of the first direction (such as beam 5), that is, the width of the second beam may be equal to the width of each beam in at least one beam, or The width of the second beam is not equal to the width of each of the at least one beam, or the width of the second beam is equal to the width of the partial beam in the at least one beam.
  • the sending device may also send data to the receiving device in the second beam direction, that is, send data to the receiving device through the second beam.
  • the sending device may further receive the resource reservation sent by the receiving device in the second beam direction.
  • the response message that is, the receiving device may send a resource reservation response message to the sending device after receiving the resource reservation request message, of course, the receiving device may not send the resource reservation response message to the sending device, or although the receiving device A resource reservation response message is sent, but the sending device does not receive it, and the specific one is not limited.
  • the transmitting device transmits the RRQ in the first direction
  • the first direction includes a direction opposite to the potential transmission direction of the transmitting device, in this embodiment.
  • the direction in which the potential transmission direction of the transmitting device is opposite not only the direction opposite to the potential transmission beam of the transmitting device (also referred to as the reverse beam of the transmitting device, that is, the first beam) direction, but also the reverse direction
  • the beam direction around the beam, or the first direction includes the direction of the predefined range of the first beam, that is, the direction of the predefined range around the first beam, that is, the at least one beam determined by the transmitting device includes not only the first beam but also the first beam.
  • the transmitting device 1 transmits not only the RRQ in the direction of the beam 5 but also the RRQ on the beam 6 and the beam 7, and the beam 6 and the beam 7 are beams adjacent in the direction of the beam 5.
  • devices such as the transmitting device 2 within a certain range around the direction of the beam 5 can receive the RRQ transmitted by the transmitting device 1, thereby achieving the purpose of suppressing the transmission of these devices.
  • the transmitting device 1 may or may not transmit the RRQ in the direction of the beam 1.
  • the transmitting device 1 can simultaneously transmit the RRQ in the direction of the beam 1 (if transmitted) and the direction of the beam 5 to the beam 7, which has high requirements on the hardware of the transmitting device 1; it is also possible to sequentially transmit RRQs in the beam directions, for example, It is transmitted first in the direction of beam 1 and then in the direction of beam 5 to beam 7 in sequence.
  • the directions of the beams 5 to 7 can be combined to be regarded as one wide beam, and the RRQ is transmitted through the wide beam.
  • the angular width of the potential transmission direction (such as beam 1) may be smaller than the angular width of beam 5 to beam 7.
  • the specific size of the angular width of the first direction may be standard pre-defined, determined by the transmitting device, or may be a function of the potential transmission direction.
  • FIG. 5 solves the technical problem existing in the scenario shown in FIG. 3. Another embodiment will be described below, which can be used to solve the technical problems existing in the scenario shown in FIG. 3.
  • the embodiment of the present application provides a second method for sending a resource reservation message, which can solve the technical problem existing in the scenario shown in FIG. 4 .
  • the method can be implemented by the communication device.
  • the communication device is used as a receiving device. Therefore, it can also be understood that the method can be performed by the transmitting device and the communication device.
  • the transmitting device can also be understood as one of the communication devices.
  • the method is performed by a communication device as a transmitting device and a communication device as a receiving device. The flow of this method is described below.
  • the sending device sends a resource reservation request message to the receiving device, where the receiving device receives the resource reservation request message from the sending device.
  • the receiving device determines at least one beam, where the at least one beam includes a first beam, a direction of the first beam is opposite to a direction of a second beam, and a direction of the second beam is sent by the receiving device. Potential transmission direction;
  • the receiving device sends a resource reservation message by using the at least one beam, where the device in the at least one beam direction receives the resource reservation message.
  • the resource reservation message includes a resource reservation response message for determining the reserved transmission resource.
  • the receiving device in this embodiment is, for example, the receiving device 1 in the scenario shown in FIG. 4, and may of course be the receiving device 2, which is not limited in this embodiment.
  • the present embodiment can be applied to other scenarios, for example, the scenario shown in FIG. 3, and the receiving device in this embodiment is, for example, the receiving device 1 or the receiving device 2 in the scenario shown in FIG. .
  • the direction of the second beam is a potential transmission direction of the information sent by the receiving device, where the “information” is, for example, a resource reservation response message, that is, the second direction is a direction in which the receiving device points to the sending device, to receive the device.
  • the direction of the second beam is the direction from the receiving device 1 to the transmitting device 1.
  • the direction of the first beam included in the at least one beam is opposite to the direction of the second beam.
  • the direction of the first beam and the direction of the second beam may be just opposite.
  • the angle between the direction of the first beam and the direction of the second beam is 180°.
  • the receiving device only needs to determine such a first beam, the angle between the direction of the first beam and the direction of the second beam is 180°, and the receiving device sends the resource reservation response message by using the first beam. It is possible to make the receiving device no longer a hidden node of the device located in the opposite direction to the second beam.
  • at least one beam includes a first beam, and an angle between a direction of the first beam and a direction of the second beam is 180°, and the first beam is, for example, the beam 5 in FIG. 9 .
  • the receiving device 1 transmits the RRS on the beam 5, and the beam 5 points to the transmitting device 2, so the transmitting device 2 can receive the RRS sent by the receiving device 1, so the transmitting device 2 does not send a message or data to the receiving device 2, thereby solving the hiding. Node problem.
  • the interference beam may interfere with the reception of the receiving beam.
  • FIG. 10A the transmission scenario is the same as FIG. 4
  • the transmission of the beam 4 still causes interference to the beam 2 due to sidelobe leakage and the like.
  • an angle between a direction of the first beam and a direction of the second beam is 180°, and the first beam is, for example, FIG. 10A.
  • the receiving device 1 transmits the RRS on the beam 5, since the beam 5 does not point to the transmitting device 2, the transmitting device 2 does not receive the RRS of the receiving device 1 (but the transmitting device 2 may detect the interference of the beam 5 leakage) Signal), so the transmitting device 2 will still transmit to the receiving device 2, and thus may interfere with the receiving device 1 receiving data through the beam 2.
  • the receiving device may further select an angle between a beam and/or a direction with an angle between the direction and the direction of the second beam that is less than 180° and a direction of the second beam is greater than 180.
  • the beam of ° that is to say, in this embodiment, at least one beam may include at least one of the following beams in addition to the first beam:
  • the at least one beam determined by the receiving device may include a beam having a direction substantially opposite to a direction of the second beam, in addition to the first beam that may include a direction opposite to the direction of the second beam, for example,
  • the direction between the directions of the second beam greater than 0° and less than 180° and/or the angle between the direction of the second beam greater than 180° and less than 360° may be regarded as the second The directions of the beams are roughly opposite.
  • At least one beam determined by the receiving device includes a beam 5, a beam 6 and a beam 7, wherein the beam 5 is a beam having an angle of 180[deg.] between the direction and the direction of the second beam, that is, the first The beam, beam 6 is a beam with an angle between the direction and the direction of the second beam that is less than 180°, and beam 7 is a beam with an angle between the direction and the direction of the second beam that is greater than 180°.
  • the receiving device 1 transmits not only the RRS in the beam 5 direction but also the RRS on the beam 6 and the beam 7, and the beam 6 and the beam 7 are beams adjacent in the direction of the beam 5. In this way, devices within a certain range around the direction of the beam 5 (such as the transmitting device 2 in FIG. 10B) can receive the RRS transmitted by the receiving device 1, thereby achieving the purpose of suppressing the transmission of these devices.
  • the beams included in at least one beam are respectively regarded as separate beams.
  • the beams 5 to 7 are regarded as three separate beams.
  • the present embodiment can also treat at least one beam as a wide beam.
  • the beam 5 to the beam 7 in FIG. 10B can be regarded as a wide beam, and the receiving device can transmit the RRQ through the wide beam.
  • the angular width of each of the at least one beam may be the same, and may be equal to the angular width of the second beam.
  • the angular width of each of the at least one beam may also be different, and wherein the angular width of the beam may be the same as the angular width of the second beam, and it is also possible that the angular width of the at least one beam and the angular width of the second beam are both Not the same.
  • the angular width of each of the at least one beam may be predefined by a standard, or may be determined by the transmitting device itself, or may be specified to be related to the angular width of the second beam, for example, according to the angular width of the second beam. Obtained, the specific is not limited. However, if at least one beam is considered to be a wide beam, the angular width of the wide beam may be greater than the angular width of the second beam.
  • the angular width of the wide beam may be predefined by a standard, or may be determined by the transmitting device itself, or may be specified to be related to the angular width of the second beam, for example, according to the angular width of the second beam. limit.
  • the resource reservation response message may be sent by using at least one beam, where the resource reservation response message is, for example, an RRS, and the device located in the at least one beam direction may receive the RRS sent by the receiving device.
  • the receiving device can simultaneously transmit the RRS through each of the at least one beam, thereby improving transmission efficiency, but the hardware requirements of the receiving device are relatively high.
  • the receiving device may also send the RRS by using each of the at least one beam, for example, sending the RRS through one of the at least one beam, and after passing the beam, passing through at least one of the beams. The other beam transmits the RRS.
  • the specific receiving mode is used by the receiving device when transmitting the resource reservation response message through the at least one beam, which may be predefined by the protocol, or may be selected by the receiving device, or may be a certain sending mode for different devices. There are no restrictions on the case.
  • the device in the at least one beam direction After the device in the at least one beam direction receives the RRS sent by the receiving device, and knows that the receiving device is to perform data transmission, the device in at least one beam direction does not transmit any time, thereby reducing at least The transmission of a device in a beam direction causes the receiving device to fail to receive data, which reduces the waste of resources and improves the success rate of data transmission. It can be considered that for at least one device in the beam direction, the receiving device is no longer a hidden node, thereby solving the problem of hidden nodes.
  • the receiving device may send the resource reservation response message through the second beam in addition to the resource reservation response message by using at least one beam, that is, the receiving device may select to send by using at least one beam.
  • the resource reservation response message may alternatively send the resource reservation response message through the at least one beam and the second beam.
  • the receiving device may also choose to send the resource reservation response message only through the second beam.
  • the receiving device sends the resource reservation response message through the second beam, so that the sending device opposite to the receiving device can receive the resource reservation response message, thereby determining that the data can be sent to the receiving device.
  • the sending device opposite to the receiving device that is, the device that is to send data to the receiving device, is exemplified by FIG. 4, and if the receiving device is the receiving device 1, the transmitting device opposite to the receiving device 1 is Sending device 1.
  • the transmitting device may simultaneously send the RRS through the second beam and each of the at least one beam, such that The transmission efficiency can be improved, but the hardware facilities of the receiving device are required to be high.
  • the receiving device may send the RRS by using at least one beam and the second beam, for example, sending the RRS through one of the at least one beam, and transmitting the other beam in the at least one beam after the beam is sent.
  • the receiving device may adopt a sending manner, which may be predefined by a protocol, or may be selected by the receiving device, or may be a different device.
  • a certain transmission mode is hardened, which is not limited in this embodiment.
  • the receiving device sends the resource reservation response message by using at least one beam
  • the third device may be a device capable of receiving the resource reservation response message sent by the receiving device through one of the at least one beam.
  • the fourth device may also be a device capable of receiving a resource reservation response message sent by the receiving device through one of the at least one beam, and one of the beams corresponding to the third device and the fourth device may be the first beam, and another One is a beam other than the first beam in at least one beam, or it may be that the beams corresponding to the two devices are not the first beam, but two beams other than the first beam in at least one beam .
  • FIG. 8 the third device capable of receiving the resource reservation response message sent by the receiving device through one of the at least one beam.
  • the fourth device may also be a device capable of receiving a resource reservation response message sent by the receiving device through one of the at least one beam, and one of the beams corresponding to the third device and the fourth device may be the first beam, and another One is a beam other than the
  • the third device may also be the sending device described in S81. Then, in FIG. 8, the receiving device sends a resource reservation response message to the third device, which may also be sent through the second beam.
  • the sending device described in S81 can send data to the receiving device, and the receiving device can receive the data normally. Because the receiving device sends the resource reservation response message through at least one beam, the transmission of the peripheral device is suppressed, so the probability that the receiving device interferes with the transmission of other devices in the process of receiving the data is reduced, and the probability is improved. The data transmission success rate of the device.
  • FIG. 8 can also be understood as:
  • the second direction includes at least a direction of a third beam and a direction of a fourth beam, where the fourth beam is a beam in a direction opposite to the third beam;
  • the receiving device sends a resource reservation response message in the second direction.
  • the receiving device can receive the resource reservation request message sent by the sending device on the third beam in S81.
  • the receiving device determines at least one beam. It can also be understood that the receiving device determines the second direction.
  • the direction of the first beam in the at least one beam can be understood as the direction of the third beam included in the second direction.
  • the second direction herein may also be referred to as a first direction, where the third beam may also be referred to as a second beam, where the fourth beam may also be referred to as a first beam.
  • the receiving device receives the resource reservation request message sent by the sending device in the second beam direction, and the receiving device determines the first direction, where the first direction includes at least the direction of the second beam and the direction of the first beam.
  • the first beam is a beam in a direction opposite to the second beam, and the receiving device sends a resource reservation response message in the first direction.
  • the receiving device 1 When the receiving device 1 transmits the RRS, it transmits in the first direction, and the first direction includes at least the direction of the beam 5, as shown in FIG. Wherein beam 5 is opposite to beam 2, and the direction of beam 2 is the potential transmission direction of receiving device 1, that is, beam 2 is the second beam and beam 5 is the first beam.
  • the first direction only includes the direction of the beam 5, that is, the at least one beam determined by the receiving device includes only the first beam, and the receiving device 1 transmits only in the direction of the beam 5, not in the direction of the beam 2. send.
  • the first direction comprises the direction of the beam 2 and the direction of the beam 5, ie the receiving device 1 transmits in both the direction of the beam 2 and the beam 5.
  • the receiving device 1 can simultaneously transmit the RRS in the direction of the beam 2 and the beam 5, which has high requirements on the hardware of the receiving device 2; or the receiving device 1 can also sequentially transmit the RRS in two beam directions, for example, first The direction of the beam 2 is transmitted and then transmitted in the direction of the beam 5, so that the hardware requirement for the receiving device 1 is low, which is advantageous for reducing the cost.
  • the width of the potential transmission direction may be equal to the width of the first direction (such as beam 5), that is, the width of the second beam may be equal to the width of each beam in at least one beam, or The width of the second beam is not equal to the width of each of the at least one beam, or the width of the second beam is equal to the width of the partial beam in the at least one beam.
  • the receiving device may further receive the data sent by the sending device in the second beam direction.
  • the receiving device transmits the RRS in the first direction, and the first direction includes a direction opposite to the potential transmission direction of the receiving device, in this embodiment.
  • the direction of the opposite direction of the receiving device's potential transmission direction includes not only the opposite of the potential transmission beam of the receiving device (also referred to as the reverse beam of the receiving device, that is, the first beam) direction, but also the reverse direction.
  • the beam direction around the beam, or the first direction includes the direction of the predefined range around the first beam, that is, the direction of the predefined range around the first beam, that is, the at least one beam determined by the receiving device includes not only the first beam, It is also possible to include a beam having an angle between the direction and the direction of the second beam of less than 180° and/or a beam having an angle greater than 180° between the direction and the direction of the second beam. As shown in FIG. 10B, the receiving device 1 transmits not only the RRS in the direction of the beam 5 but also the RRS on the beam 6 and the beam 7, and the beam 6 and the beam 7 are beams adjacent in the direction of the beam 5.
  • devices within a certain range around the direction of the beam 5 can receive the RRS transmitted by the receiving device 1, thereby achieving the purpose of suppressing the transmission of these devices.
  • the receiving device 1 may or may not transmit the RRS in the direction of the beam 2.
  • the receiving device 1 can simultaneously transmit the RRS in the direction of the beam 2 (if transmitted) and the direction of the beam 5 to the beam 7, which has high requirements on the hardware of the receiving device 1; it is also possible to sequentially transmit the RRS in the beam directions, for example, It is transmitted first in the direction of beam 2 and then in the direction of beam 5 to beam 7 in sequence.
  • the directions of the beams 5 to 7 can be combined to be regarded as one wide beam, and the RRS is transmitted through the wide beam.
  • the angular width of the potential transmission direction (such as beam 2) may be smaller than the angular width of beam 5 to beam 7.
  • the specific size of the angular width of the first direction may be standard pre-defined, determined by the receiving device, or may be a function of the potential transmission direction.
  • FIG. 8 introduces a method capable of solving the problem of the scene shown in FIG. 4, and the scene shown in FIG. 4 is not limited to the solution provided by the embodiment shown in FIG. Another embodiment will be described below, which can also solve the problem of the scene shown in Fig. 4.
  • the embodiment of the present application provides a third method for sending a resource reservation message, which can also solve the technical problem existing in the scenario shown in FIG.
  • the method can be implemented by the communication device.
  • the communication device is used as a receiving device. Therefore, it can also be understood that the method can be performed by the transmitting device and the communication device.
  • the transmitting device can also be understood as one of the communication devices.
  • the method is performed by a communication device as a transmitting device and a communication device as a receiving device. The flow of this method is described below.
  • the sending device sends a resource reservation request message to the receiving device, where the receiving device receives the resource reservation request message from the sending device.
  • the receiving device determines not to send a resource reservation response message, where the resource reservation response message is used to determine a reserved transmission resource.
  • the resource reservation message includes a resource reservation response message for determining the reserved transmission resource.
  • the receiving device in this embodiment is, for example, the receiving device 2 in the scenario shown in FIG. 4, and may of course be the receiving device 1 therein, which is not limited in this embodiment.
  • the present embodiment can be applied to other scenarios, for example, the scenario shown in FIG. 3, and the receiving device in this embodiment is, for example, the receiving device 1 or the receiving device 2 in the scenario shown in FIG. .
  • the receiving device does not send the resource reservation response message, including but not limited to the following two situations.
  • the resource reservation request message is an RRQ
  • the resource reservation response message is an RRS:
  • the transmitting device can indicate that the receiving device does not need to reply to, for example, the RRS through the transmitted RRQ.
  • the protocol may provide that the receiving device does not need to reply to the resource reservation response message after receiving the resource reservation request message.
  • the first case is generally applicable to a scenario in which the distance between the sending device and the receiving device is relatively close, in particular, a scenario in which the transmitting device that sends the RRQ is larger than the transmitting device.
  • the receiving device receives the RRQ, and if the receiving device determines that the timing value of the resource reservation timer maintained by the receiving device is greater than 0, the receiving device selects not to transmit the RRS. Alternatively, the receiving device may also receive data. If the receiving device determines that the timing value of the resource reservation timer maintained by the receiving device is greater than 0, the receiving device selects not to send the HARQ-ACK for the received data.
  • One implementation form of the resource reservation timer may be the NAV already introduced in the foregoing.
  • the receiving device 2 As the receiving device 2 in the scenario shown in FIG. 4, in the second case, when the receiving device 2 receives the RRQ or data from the transmitting device 2, due to the resource reservation timer of the receiving device 2 It has been previously set by the RRS from the receiving device 1 (ie, the timing value of the resource reservation timer of the receiving device 2 is greater than 0), therefore, the receiving device 2 does not transmit the RRS, and thus does not receive the receiving device 1 Reception on beam 2 causes interference.
  • the transmitting device continues to transmit data after transmitting the RRQ.
  • the transmitting device should re-competition the channel and then resend the data/RRQ.
  • the receiving device sends a resource reservation response message on at least one beam, thereby achieving the purpose of suppressing transmission of the device in at least one beam direction, and improving the success rate of the transmission of the receiving device.
  • the RRS message sent by the receiving device 2 may affect the receiving of the receiving device 1. Therefore, in this embodiment, after receiving the resource reservation request message, the receiving device may The resource reservation response message is not replied. In this way, the resource reservation response message sent by the receiving device can be prevented from affecting the transmission of other devices, and the probability of successful transmission of other devices is improved.
  • the sending device sends three types of optional sending modes when sending the resource reservation request message.
  • the first mode is to transmit only through the second beam
  • the second transmission mode is to transmit only through at least one beam
  • the third transmission mode is to be transmitted through the second beam and the at least one beam.
  • the receiving device After receiving the resource reservation request message, the receiving device has four optional processing modes.
  • the processing mode 1 is that the receiving device only passes the third beam (here, in order to distinguish the receiving device from the sending device, the second beam corresponding to the receiving device is received.
  • the third beam is changed to be the same as the second beam in the embodiment shown in FIG. 8 to transmit a resource reservation response message.
  • the second processing mode is that the receiving device sends the resource through only at least one beam.
  • the request message is reserved.
  • the processing mode 3 is that the receiving device sends the resource reservation request message by using the third beam and the at least one beam.
  • the processing mode 4 is that the receiving device does not send the resource reservation request message.
  • the sending device specifically uses the foregoing sending manner to send the resource reservation request message, which may be standard pre-defined, or may be configured by a network device, such as a base station, and the receiving device receives the resource reservation request.
  • the response may be specifically implemented by using one of the four processing modes, which may be standard pre-defined or configured by a network device, such as a base station.
  • the three sending modes of the sending device and the four processing modes of the receiving device may be arbitrarily combined.
  • the standard may pre-define the transmitting device to adopt any one of the foregoing three sending modes.
  • the resource reservation request message is sent, and the receiving device may further use any one of the foregoing four processing manners to respond to the received resource reservation request message. That is to say, the embodiment of the present application does not limit the transmission mode adopted by the sending device and the processing mode adopted by the receiving device.
  • the sending device sends the RRQ in the first direction.
  • the RRQ in the first direction.
  • the first direction only includes a direction opposite to the potential transmission direction of the transmitting device, that is, the first direction includes only the direction of at least one beam described in the embodiment shown in FIG. 5, that is, the transmitting device is absent. Transmitting the RRQ in the potential transmission direction, that is, not transmitting the RRQ in the second beam direction; or,
  • Transmission mode 2 the first direction includes both the opposite direction to the potential transmission direction of the transmitting device, and the potential transmission direction, that is, the first direction includes the direction of the second beam and the direction of at least one beam, that is, the transmitting device is Both directions are sent.
  • the sending in both directions may be simultaneous transmission, or may be sent in time sharing.
  • the transmitting device specifically uses the foregoing sending manner to send the RRQ, which may be standard pre-defined or configured by a network device, such as a base station.
  • Processing method 1 The receiving device does not send the RRS, and waits for the device data to be sent.
  • the RRQ in this case is similar to CTS-to-Self in 802.11.
  • the receiving device should know that there is no need to reply to the RRS.
  • the RRQ indicates that there is no need to reply to the RRS.
  • Such an RRQ that does not need to reply to the RRS is generally applicable to a case where the distance between the receiving device and the transmitting device is relatively close, in particular, a case where the transmitting device transmitting the RRQ is larger than the transmitting power of the receiving device; or
  • Processing 2 The receiving device replies to the RRS in the first direction, and the first direction only includes the potential transmission direction of the receiving device (ie, the direction from the receiving device to the transmitting device), that is, the first direction includes only the The direction of the second beam described in the embodiment, that is, the receiving device only replies to the RRS in the potential transmission direction; or
  • the receiving device returns the RRS in the first direction, and the first direction includes the potential transmission direction of the receiving device and the opposite direction thereof, that is, the first direction includes the first embodiment described in the embodiment shown in FIG.
  • the direction of the two beams and the direction of at least one beam, that is, the receiving device transmits the RRS in both directions.
  • the sending in both directions may be simultaneous, or may be sent in time-sharing; or,
  • Processing 4 After the receiving device receives the RRQ, if the receiving device determines that the timing value of the resource reservation timer maintained by the receiving device is greater than 0, the receiving device selects not to send the RRS. That is to say, in advance, when a device whose resource reservation timer is greater than 0 receives a message (such as RRQ or data) targeted to the device, it does not immediately contend for the channel and reply to the response message (such as RRS). Or HARQ ACK), for example, in the NR-U standard. Taking FIG.
  • the receiving device 2 when the receiving device 2 receives the RRQ or data from the transmitting device 2, since the resource reservation timer of the receiving device 2 has been previously set by the RRS from the receiving device 2 (ie, the receiving device 2 The resource reservation timer is greater than 0), so the receiving device 2 does not reply to the resource reservation response message, and thus does not interfere with the reception of the receiving device 1 on the beam 2.
  • the receiving device After receiving the RRQ sent to the receiving device, the receiving device responds by using one of the four processing modes, which may be standard pre-defined or configured by a network device, such as a base station.
  • a network device such as a base station.
  • FIG. 12 shows a schematic structural diagram of a communication device 1200.
  • the communication device 1200 can implement the functions of the transmitting device or the receiving device referred to above.
  • the communication device 1200 may be the transmitting device described above, or may be a chip or other component disposed in the transmitting device described above, or may be the receiving device described above, or may be disposed on A chip or other component in a receiving device as described herein.
  • the communication device 1200 may be a network device, such as a base station or an access point (AP), or may be a terminal device or a chip disposed in a network device or a terminal device.
  • AP access point
  • the communication device 1200 can include a processor 1201 and a transceiver 1202, for example, the transceiver 1202 can be implemented by a radio frequency transceiver, in which the number of processors 1201 is one or more.
  • the processor 1201 can be used to perform S51 in the embodiment shown in FIG. 5, and/or other processes for supporting the techniques described herein, and the transceiver 1202 can be used to perform the embodiment shown in FIG. S52, and/or other processes for supporting the techniques described herein; alternatively, processor 1201 can be used to perform S82 in the embodiment shown in FIG. 8, and/or to support the techniques described herein.
  • the transceiver 1202 can be used to perform S81 and S83 in the embodiment shown in FIG.
  • the transceiver 1202 can be used to perform S111 in the embodiment shown in FIG. 8, and/or to support the description herein. Other processes of technology.
  • the transceiver 1202 can be understood as an overall structure for implementing a transceiving function, or can also be understood to include two structures, namely, a transmitter and a receiver, respectively, and the transmitter is configured to implement a function of transmitting information or transmitting data. The receiver is used to implement the function of receiving information or receiving data.
  • the processor 1201 is configured to determine at least one beam used to send a resource reservation message, where the at least one beam includes a first beam, the direction of the first beam is opposite to a direction of the second beam, and the second The direction of the beam is the potential transmission direction of the information transmitted by the communication device;
  • the transceiver 1202 is configured to send, by using the at least one beam, the resource reservation message, where the resource reservation message includes a resource reservation request message or a resource reservation response message, where the resource reservation request message is used to request a pre-request A transmission resource is reserved, and the resource reservation response message is used to determine a reserved transmission resource.
  • the communication device 1200 can also be implemented by the structure of the communication device 1300 as shown in FIG. 13A.
  • the communication device 1300 can implement the functions of the network device or the terminal device referred to above.
  • the communication device 1300 can include a processor 1301 in which the number of processors 1301 is one or more.
  • the processor 1301 may be used to execute S51 in the embodiment shown in FIG. 5, and/or used to support this document. Other processes of the described techniques.
  • the processor 1301 may be configured to perform S82 in the embodiment shown in FIG. 8, and/or to support the description herein. Other processes of technology.
  • the processor 1301 may be configured to perform S112 in the embodiment shown in FIG. 11, and/or to support the description herein. Other processes of technology.
  • the communication device 1300 can pass through a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), a central processor (central processor). Unit, CPU), network processor (NP), digital signal processor (DSP), microcontroller (micro controller unit (MCU), or programmable logic device (programmable logic device, The PLD) or other integrated chip implementation, the communication device 600 can be disposed in the network device or the communication device of the embodiment of the present application, so that the network device or the communication device implements the method for transmitting a message provided by the embodiment of the present application.
  • FPGA field-programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor
  • NP network processor
  • DSP digital signal processor
  • MCU microcontroller
  • programmable logic device programmable logic device
  • the communication device 1300 may include a transceiver component for communicating with other devices, and the transceiver component may also be understood as a communication unit, such as an input/output interface, a pin or a circuit, and the like.
  • the transceiver component can be used to execute S52 in the embodiment shown in FIG. 5, and/or to support the text herein.
  • the transceiver component can be used to execute S81 and S83 in the embodiment shown in FIG. 8, and/or to support the text herein.
  • the transceiving component can be used to execute S111 in the embodiment shown in FIG. 11, and/or to support the description herein. Other processes of technology.
  • the communication device 1300 can further include a memory 1302, which can be referred to FIG. 13B, where the memory 1302 is used to store computer programs or instructions, and the processor 1301 is used to decode and execute the computer programs or instructions.
  • the memory 1302 may be a storage unit in the communication device 1300, such as a register, a cache, etc., or the memory 1302 may also be a storage unit located in the device where the communication device 1300 is located but external to the communication device 1300, such as a read-only memory ( Read-only memory (ROM) or other types of static storage devices, random access memory (RAM), etc. that can store static information and instructions.
  • ROM Read-only memory
  • RAM random access memory
  • the sending device can be implemented by the embodiment shown in FIG. 5, the embodiment shown in FIG. 8 or the embodiment shown in FIG. The method of sending devices in the method.
  • the receiving device can be implemented to implement the embodiment shown in FIG. 5, the embodiment shown in FIG. 8, or the embodiment shown in FIG. 11 of the embodiment of the present application.
  • the method provided is the function of the receiving device.
  • the functional programs of these transmitting devices or receiving devices are stored in a memory external to the communication device 1300.
  • the function program of the transmitting device is decoded and executed by the processor 1301, part or all of the contents of the function program of the above transmitting device are temporarily stored in the memory 1302.
  • the function program of the receiving device is decoded and executed by the processor 1301, part or all of the contents of the function program of the above receiving device are temporarily stored in the memory 1302.
  • the functional programs of these transmitting devices or receiving devices are disposed in a memory 1302 stored within the communication device 1300.
  • the communication device 1300 can be disposed in the transmitting device of the embodiment of the present application.
  • the function program of the receiving device is stored in the memory 1302 inside the communication device 1300, the communication device 1300 can be disposed in the receiving device of the embodiment of the present application.
  • portions of the functional programs of the transmitting devices are stored in a memory external to the communication device 1300, and other portions of the functional programs of the transmitting devices are stored in the memory 1302 internal to the communication device 1300.
  • portions of the functional programs of the receiving devices are stored in a memory external to the communication device 1300, and other portions of the functional programs of the receiving devices are stored in the memory 1302 inside the communication device 1300.
  • the transceiver (or transceiver component) involved is used for specific signal transceiving.
  • the processor is used to control the transceiver (or transceiver component) for signal transceiving and perform other processing functions. Therefore, the transceiver (or the transceiver component) is equivalent to the executor of the air interface signal transmission and reception, and the processor is the controller of the air interface signal transmission and reception, and is used for scheduling or controlling the transceiver (or the transceiver component) to implement the transmission and reception.
  • the processor controls the operation of the transceiver (or the transceiver component) under the driving of a software program or instruction in the memory to implement various types of signal transceiving, and jointly implements the flow of any of the above method embodiments.
  • the processor or transceiver can be considered to be capable of performing the transceiving behavior of the air interface.
  • the communication device 1200 and the communication device 1300 are presented in the form of dividing each functional module into functions, or may be presented in an integrated manner to divide the functional modules.
  • a “module” herein may refer to an ASIC, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other devices that provide the functionality described above.
  • the communication device 1200 provided by the embodiment shown in FIG. 12 can also be implemented in other forms.
  • the communication device includes a processing module and a transceiver module.
  • the processing module can be implemented by the processor 1201, and the transceiver module can be implemented by the transceiver 1202.
  • the processing module can be used to execute S51 in the embodiment shown in FIG. 5, and/or other processes for supporting the techniques described herein, and the transceiver module can be used to execute S52 in the embodiment shown in FIG. 5.
  • the processing module can be used to perform S82 in the embodiment shown in FIG.
  • the transceiver module can be used to perform S81 and S83 in the embodiment shown in FIG. 8, and/or other processes for supporting the techniques described herein; or the processing module can be used to perform the embodiment shown in FIG. S112, and/or other processes for supporting the techniques described herein, the transceiver module can be used to perform S111 in the embodiment shown in FIG. 8, and/or other processes for supporting the techniques described herein.
  • the processing module is configured to determine at least one beam for transmitting a resource reservation message, the at least one beam includes a first beam, the direction of the first beam is opposite to a direction of the second beam, and the second beam The direction of the potential transmission direction of the communication device by the communication device;
  • a transceiver module configured to send the resource reservation message by using the at least one beam, where the resource reservation message includes a resource reservation request message or a resource reservation response message, where the resource reservation request message is used to request a reservation And transmitting a resource, where the resource reservation response message is used to determine a reserved transmission resource.
  • the communication device 1200 and the communication device 1300 provided by the embodiments of the present application can be used to execute the method provided in the embodiment shown in FIG. 5, the embodiment shown in FIG. 8, or the embodiment shown in FIG. 11, it can be obtained.
  • the technical effects reference may be made to the foregoing method embodiments, and details are not described herein again.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another readable storage medium, for example, the computer instructions can be passed from a website site, computer, server or data center Wired (eg, coaxial cable, fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital versatile disc (DVD)), or a semiconductor medium (eg, a solid state disk (SSD) ))Wait.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a digital versatile disc (DVD)
  • DVD digital versatile disc
  • semiconductor medium eg, a solid state disk (SSD)

Abstract

一种发送资源预留消息的方法及装置,用于减少高频系统在数据传输过程中出现隐藏节点的几率。该方法包括:通信装置确定用于发送资源预留消息的至少一个波束,所述至少一个波束包括第一波束,所述第一波束的方向与第二波束的方向相反,所述第二波束的方向是所述通信装置发送信息的潜在传输方向;所述通信装置通过所述至少一个波束发送所述资源预留消息,所述资源预留消息包括资源预留请求消息或资源预留响应消息,所述资源预留请求消息用于请求预留传输资源,所述资源预留响应消息用于确定预留传输资源。

Description

一种发送资源预留消息的方法及装置
本申请要求在2018年2月14日提交中国国家知识产权局、申请号为201810152193.0、申请名称为“一种资源预留消息的传输方法,设备和系统”的中国专利申请,以及在2018年6月29日提交中国国家知识产权局、申请号为201810713886.2、申请名称为“一种发送资源预留消息的方法及装置”的中国专利申请的优先权,它们的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种发送资源预留消息的方法及装置。
背景技术
随着移动智能终端设备的大规模普及,特别是诸如视频、直播、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)、游戏等大流量需求的业务的涌现,用户对于移动通信蜂窝网络的速率要求也越来越高。随着无线数据业务量的急剧增大,授权(licensed)频谱已经难以满足通信需求。于是,第三代合作伙伴计划(3rd generation partnership project,3GPP)在版本(release,R)13和R14中引入了授权频谱辅助接入(license assisted access,LAA)和增强的授权频谱辅助接入(enhanced LAA,eLAA)技术,即,在非授权(unlicensed)频谱上非独立(non-standalone,NSA)的部署长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-advanced,LTE-A)系统,通过授权频谱的辅助来最大可能的利用非授权频谱资源。同样地,在第五代移动通信技术(the 5th-generation,5G)新无线(new radio,NR)系统中,非授权频谱的使用也是一个必不可少的满足业务需求、提升用户体验的技术手段,称之为NR-Unlicense(简称NR-U)。
无论LAA、eLAA还是NR-U,均可使用非授权频段,如2.4GHz、5GHz频段等。然而,非授权频段属于共享频段,各种通信系统都可能工作在这些频段上,如无线保真(wireless-fidelity,Wi-Fi)、蓝牙、LAA、eLAA、NR-U等系统同频共存,并且不同的通信系统之间可能并不具备相互协调的能力,这导致不同的通信系统甚至同一通信系统内的干扰十分严重,进而造成频谱利用率低下。为了避免或缓解该问题,国际组织规定使用非授权频段的设备须遵循的载波侦听机制为先听后说(listen before talk,LBT)机制,即,设备在发送信息前需先监听信道,如果通过LBT机制确定信道空闲,则在LBT过程结束后,设备开始竞争信道,例如作为发送设备的设备可以发送资源预留请求消息,资源预留请求消息用于请求发送数据,作为接收设备的设备接收资源预留请求消息后,可以回复资源预留响应消息,资源预留响应消息用于确认可以接收数据,作为发送设备的设备接收资源预留响应消息后,可以发送数据(data)。
NR-U与LAA/eLAA的一个显著不同之处是,LAA/eLAA仅工作于低频,如6GHz以下 的非授权频段,而NR-U除了利用低频外,还可能利用高频的非授权频段,如28/37/60GHz的非授权频段进行通信。对于工作于低频的系统,已有较为成熟的LBT机制和在LBT结束后的数据传输过程,由于低频频段的频率不高,即波长较大,因此在传输数据时通常采用全向传输的方式。而对于NR-U等高频系统,由于高频频段的频率较高,波长较短,若传输数据时采用全向传输,则传输的覆盖范围太小,因此在高频系统中可能会考虑采用波束(beam)来进行传输。那么,如果高频系统也采用LBT机制,则在高频系统中,例如发送设备A通过LBT机制确定信道空闲,则在LBT过程结束后,发送设备A可能通过波束发送资源预留请求消息,该波束的方向一般是发送设备A的潜在传输方向,也就是发送设备A发送数据的方向,则没有位于该波束的方向上的其他设备就收不到该资源预留请求消息,其他设备如果也在执行LBT过程,则其他设备在LBT过程中就会确定信道空闲,从而在LBT过程结束后照常传输数据,但其他设备的数据传输过程可能受到发送设备A的数据传输过程的干扰,从而可能导致数据传输失败。出现这种问题,是因为发送设备A成为了不能被其他设备发现的隐藏节点,干扰了其他设备的数据传输过程。
可见,在高频系统中设备进行LBT机制之后开始数据传输,由于隐藏节点的存在,可能导致该设备的数据传输失败。
发明内容
本申请实施例提供一种发送资源预留消息的方法及装置,用于减少高频系统在数据传输过程中出现隐藏节点的几率。
本申请提供的实施例包括以下任一个:
1、一种传输资源预留方法,所述方法包括:
发送设备确定第一方向,所述第一方向至少包含第一波束的方向,所述第一波束是与第二波束相反方向的波束,所述第二波束是所述发送设备发送数据的潜在传输方向的波束;
所述发送设备在所述第一方向发送资源预留请求消息。
发送设备在与潜在传输方向相反的方向发送RRQ,有利于消除隐藏节点,从而降低发生干扰的概率,提高传输性能。
2、根据实施例1所述的方法,在所述发送设备在所述第一方向发送所述资源预留请求消息之后,所述方法包括:
所述发送设备在所述第二波束方向向接收设备发送数据。
发送设备发送RRQ的目的是为了在潜在传输方向上发送数据。
3、根据实施例3所述的方法,在所述发送设备在所述第一方向发送所述资源预留请求消息之后、所述发送设备在所述第二波束方向向所述接收设备发送数据之前,所述方法包括:
所述发送设备在所述第二波束方向接收所述接收设备发送的资源预留响应消息。
发送设备收到接收设备返回的RRS,说明两设备之间的链路通畅,发送设备可以向接收设备发送数据。
4、根据实施例1-3任一所述的方法,所述第一方向还包括所述第二波束的方向。
发送设备发送的RRQ应被接收设备收到,以便触发接收设备回复RRS。另外,对于Beam传输,潜在传输方向与之相反的方向,是最容易发生干扰的两个方向。因此,潜在传输方向上的RRQ既能够被接收设备收到,也能够进一步消除隐藏节点。
5、根据实施例1-3任一所述的方法,所述第一方向还包括所述第一波束周围预定义范围的方向。
考虑到器件和设备的非理想性,发送设备发送RRQ的波束范围,应适当大于反向波束的范围。
6、一种传输资源预留方法,所述方法包括:
接收设备在第三波束方向上接收发送设备发送的资源预留请求消息;
所述接收设备确定第二方向,所述第一方向至少包含第三波束方向和第四波束的方向,所述第四波束是与第三波束相反方向的波束;
所述接收设备在所述第二方向发送资源预留响应消息。
接收设备收到RRQ后,在与其潜在传输相反的方向发送RRS,有利于消除隐藏节点,从而降低发生干扰的概率,提高传输性能。
7、根据实施例6所述的方法,在所述接收设备在所述第二方向发送资源预留响应消息之后,所述方法包括:
所述接收设备在所述第三波束方向接收所述发送设备发送的数据。
接收设备与发送设备进行RRQ/RRS交互的目的是为了在接收设备的潜在传输方向上接收发送设备发送的数据。
8、根据实施例6或7所述的方法,所述第二方向还包括所述第四波束周围预定义范围的方向。
考虑到器件和设备的非理想性,接收设备发送RRS的波束范围,应适当大于反向波束的范围。
9、一种发送设备,所述网络设备包括:
处理器,存储器和收发器;
所述收发器,用于接收和发送数据;
所述存储器,用于存储指令;
所述处理器,用于执行所述存储器中的所述指令,执行如实施例1-5任一所述的方法。
10、根据实施例9所述的网络设备,所述收发器包括:
发送器和接收器;
所述接收器用于接收终端设备发送的如实施例1-5任一所述资源预留响应详细;
所述发送器用于发送如实施例1-5任一所述资源预留请求消息和所述数据。
11、一种接收设备,所述终端设备包括:
处理器,存储器和收发器;
所述收发器,用于接收和发送数据;
所述存储器用于存储指令;
所述处理器用于执行所述存储器中的所述指令,执行如实施例6-8任一所述的方 法。
12、根据实施例11所述的终端设备,所述收发器包括:
发送器和接收器;
所述接收器用于接收网络设备发送的如实施例6-8任一所述资源预留请求消息和所述数据;
所述发送器用于发送如实施例6-8任一所述资源预留响应消息。
13、一种计算机程序产品,包括计算机程序,该计算机程序在某一计算机单元上执行时,将会使所述计算机单元实现实施例1-5任一所述的方法。
14、一种计算机程序产品,包括计算机程序,该计算机程序在某一计算机单元上执行时,将会使所述计算机单元实现实施例6-8任一所述的方法。
15、一种计算机程序,该计算机程序在某一计算机单元上执行时,将会使所述计算机单元实现实施例1-5任一所述的方法。
16、一种计算机程序,该计算机程序在某一计算机单元上执行时,将会使所述计算机单元实现实施例6-8任一所述的方法。
17、一种网络设备,所述网络设备被配置为执行如实施例1-5任一所述的方法。
18、一种终端设备,所述终端设备被配置为执行如实施例6-8任一所述的方法。
19、一种计算机可读存储介质,其上存储有计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例1-5任一所述的方法。
20、一种计算机可读存储介质,其上存储有计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例6-8任一所述的方法。
21、一种通信系统,包括如实施例1-5任一所述的终端设备和如实施例6-8任一所述的网络设备。
22、一种装置,包括:处理模块与通信接口,所述处理模块用于执行实施例1-5中任一项所述的通信方法。
所述装置可以是一种芯片或芯片系统。
23、根据实施例22所述的装置,所述装置还包括存储模块,所述存储模块用于存储指令,所述处理模块用于执行所述存储模块存储的指令,并且对所述存储模块中存储的指令的执行使得所述处理模块执行实施例1-5中任一项所述的通信方法。
24、一种装置,包括:处理模块与通信接口,所述处理模块用于执行实施例6-8任一项所述的通信方法。
所述装置可以是一种芯片或芯片系统。
25、根据实施例24所述的装置,所述装置还包括存储模块,所述存储模块用于存储指令,所述处理模块用于执行所述存储模块存储的指令,并且对所述存储模块中存储的指令的执行使得所述处理模块执行实施例6-8任一项所述的通信方法。
本申请还提供了如下任一实施例,这部分实施例的编号和本申请中其他部分实施例的编号并无特定的对应关系,仅为了此部分表述的方便:
1、一种发送资源预留消息的方法,所述方法包括:
通信装置确定用于发送资源预留消息的至少一个波束,所述至少一个波束包括第一波束,所述第一波束的方向与第二波束的方向相反,所述第二波束的方向是所述通 信装置发送信息的潜在传输方向;
所述通信装置通过所述至少一个波束发送所述资源预留消息,所述资源预留消息包括资源预留请求消息或资源预留响应消息,所述资源预留请求消息用于请求预留传输资源,所述资源预留响应消息用于确定预留传输资源。
本申请实施例提供的技术方案可以发生在LBT过程之后,在本申请实施例中,通信装置可以通过至少一个波束发送资源预留请求消息,至少一个波束中包括的第一波束的方向与第二波束的方向相反,第二波束的方向是该通信装置发送数据的潜在传输方向,也就是说,该通信装置可以在与其潜在传输方向相反的方向上也发送资源预留请求消息,则位于与该通信装置的潜在传输方向相反的方向上的其他设备也能接收到该通信装置发送的资源预留请求消息,从而减小了该通信装置成为这些设备的隐藏节点的几率,这些设备可以不再与该通信装置竞争信道,尽量提高该通信装置以及其他设备后续传输数据的成功率。
2、根据实施例1所述的方法,所述方法还包括:
所述通信装置还通过所述第二波束发送所述资源预留消息。
例如通信装置为发送设备,则发送设备通过第二波束发送资源预留请求消息,可以使得与该发送设备相对的接收设备接收该资源预留请求消息,从而做好从该发送设备接收数据的准备。或者,通信装置为接收设备,则接收设备通过第二波束发送资源预留响应消息,可以使得与该接收设备相对的发送设备接收该资源预留响应消息,从而确定可向该接收设备发送数据。
3、根据实施例1或2所述的方法,所述至少一个波束中还包括以下波束中的至少一种:
方向与所述第二波束的方向之间的夹角大于0°且小于180°的波束;及,
方向与所述第二波束的方向之间的夹角大于180°且小于360°的波束。
在实际实现中,由于器件的非理想性,即使干扰波束并没有正对接收波束,也可能对接收波束的接收造成干扰。为了解决该问题,本申请实施例中,通信装置除了可以选择第一波束发送资源预留消息外,还可以选择方向与第二波束的方向之间的夹角大于0°且小于180°的波束和/或方向与第二波束的方向之间的夹角大于180°且小于360°的波束发送资源预留消息,从而达到抑制第一波束的周边一定范围内的设备的传输的目的,尽量减小干扰。
4、根据实施例3所述的方法,所述通信装置通过所述至少一个波束发送资源预留消息,包括:
所述通信装置通过所述至少一个波束中的每个波束同时发送所述资源预留消息;或,
所述通信装置通过所述至少一个波束中的每个波束,分时发送所述资源预留消息。
通信装置可通过至少一个波束中的每个波束同时发送资源预留消息,这样可以提高传输效率,但对于通信装置的硬件设施要求较高,或者,通信装置也可以通过至少一个波束中的每个波束分时发送资源预留消息,这种方式对于通信装置的硬件设施要求不会很高,有助于降低设备的成本。
5、根据实施例1~4任一所述的方法,所述通信装置为发送设备,所述资源预留消 息为所述资源预留请求消息,所述方法还包括:
所述通信装置在发送所述资源预留请求消息之后,通过所述第二波束发送数据。
如果通信装置为发送设备,那么发送设备除了要发送资源预留消息之外,还要向接收设备发送数据,因此,通信装置在发送资源预留请求消息之后,还可以通过第二波束发送数据,从而完成数据传输。
6、根据实施例1~4任一所述的方法,所述通信装置为接收设备,所述资源预留消息为所述资源预留响应消息,在所述通信装置确定所述至少一个波束之前,还包括:
所述通信装置从发送设备接收资源预留请求消息。
如果通信装置为接收设备,那么在接收设备发送资源预留响应消息之前,很可能会先接收发送设备所发送的资源预留请求消息,这样也相当于触发接收设备来发送资源预留响应消息。当然接收设备不一定会接收发送设备所发送的资源预留请求消息,因此这只是一种示例。
7、一种通信装置,包括:
处理器,用于确定用于发送资源预留消息的至少一个波束,所述至少一个波束包括第一波束,所述第一波束的方向与第二波束的方向相反,所述第二波束的方向是所述通信装置发送信息的潜在传输方向;
收发器,用于通过所述至少一个波束发送所述资源预留消息,所述资源预留消息包括资源预留请求消息或资源预留响应消息,所述资源预留请求消息用于请求预留传输资源,所述资源预留响应消息用于确定预留传输资源。
8、根据实施例7所述的通信装置,所述收发器还用于:
通过所述第二波束发送所述资源预留消息。
9、根据实施例7或8所述的通信装置,所述至少一个波束中还包括以下波束中的至少一种:
方向与所述第二波束的方向之间的夹角大于0°且小于180°的波束;及,
方向与所述第二波束的方向之间的夹角大于180°且小于360°的波束。
10、根据实施例9所述的通信装置,所述收发器具体用于:
通过所述至少一个波束中的每个波束同时发送所述资源预留消息;或,
通过所述至少一个波束中的每个波束,分时发送所述资源预留消息。
11、根据实施例7~10任一所述的通信装置,所述通信装置为发送设备,所述资源预留消息为所述资源预留请求消息,所述收发器还用于:
在发送所述资源预留请求消息之后,通过所述第二波束发送数据。
12、根据实施例7~10任一所述的通信装置,所述通信装置为接收设备,所述资源预留消息为所述资源预留响应消息,所述收发器还用于:
在所述处理器确定所述至少一个波束之前,从发送设备接收资源预留请求消息。
13、一种通信装置,包括:
处理模块,用于确定用于发送资源预留消息的至少一个波束,所述至少一个波束包括第一波束,所述第一波束的方向与第二波束的方向相反,所述第二波束的方向是所述通信装置发送信息的潜在传输方向;
收发模块,用于通过所述至少一个波束发送所述资源预留消息,所述资源预留消 息包括资源预留请求消息或资源预留响应消息,所述资源预留请求消息用于请求预留传输资源,所述资源预留响应消息用于确定预留传输资源。
14、根据实施例13所述的通信装置,所述收发模块还用于:
通过所述第二波束发送所述资源预留消息。
15、根据实施例13或14所述的通信装置,所述至少一个波束中还包括以下波束中的至少一种:
方向与所述第二波束的方向之间的夹角小于180°的波束;及,
方向与所述第二波束的方向之间的夹角大于180°的波束。
16、根据实施例15所述的通信装置,所述收发模块具体用于:
通过所述至少一个波束中的每个波束同时发送所述资源预留消息;或,
通过所述至少一个波束中的每个波束,分时发送所述资源预留消息。
17、根据实施例13~16任一所述的通信装置,所述通信装置为发送设备,所述资源预留消息为所述资源预留请求消息,所述收发模块还用于:
在发送所述资源预留请求消息之后,通过所述第二波束发送数据。
18、根据实施例13~16任一所述的通信装置,所述通信装置为接收设备,所述资源预留消息为所述资源预留响应消息,所述收发模块还用于:
在所述处理模块确定所述至少一个波束之前,从发送设备接收资源预留请求消息。
19、一种通信装置,所述通信装置包括:至少一个处理器,存储器;所述至少一个处理器、所述存储器之间进行相互的通信;
所述存储器用于存储指令;
所述至少一个处理器用于执行所述存储器中的所述指令,执行如实施例1至6中任一项所述的方法。
具体地,所述通信装置可为终端设备或网络设备中的芯片(如系统芯片(system on chip,SoC)),使得所述终端设备或网络设备执行如实施例1-6任一所述的方法。
20、一种通信装置,应用于终端设备或网络设备中,所述通信装置被配置为执行如实施例1-6任一所述的方法。具体地,所述通信装置可为终端设备或网络设备中的芯片(如系统芯片(system on chip,SoC)),使得所述终端设备或网络设备执行如实施例1-6任一所述的方法。
21、一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如实施例1-6任一所述的方法。
22、一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如实施例1-6任一所述的方法。
其中,前述提供的各实施例的编号与后文的各实施例的编号并无明确的对应关系,仅为了此部分在表述上的方便。
在本申请各实施例中,位于与该通信装置的潜在传输方向相反的方向上的其他设备也能接收到该通信装置发送的资源预留请求消息,从而这些设备可以不再与该通信装置竞争信道,尽量提高该通信装置以及其他设备后续传输数据的成功率。
附图说明
图1为Wi-Fi系统的载波侦听过程示意图;
图2A为802.11ad的RTS/CTS传输示意图;
图2B为本申请实施例提供的高频通信系统的载波侦听过程示意图;
图3为本申请实施例的第一种应用场景示意图;
图4为本申请实施例的第二种应用场景示意图;
图5为本申请实施例提供的第一种发送资源预留消息的方法的流程图;
图6为按照本申请实施例提供的第一种发送资源预留消息的方法,在第一种应用场景下进行传输的一种示意图;
图7A为按照本申请实施例提供的第一种发送资源预留消息的方法,在第一种应用场景下进行传输的一种示意图;
图7B为按照本申请实施例提供的第一种发送资源预留消息的方法,在第一种应用场景下进行传输的一种示意图;
图8为本申请实施例提供的第二种信息发送方法的流程图;
图9为按照本申请实施例提供的第二种发送资源预留消息的方法,在第二种应用场景下进行传输的一种示意图;
图10A为按照本申请实施例提供的第二种资源预留消息的发送方法,在第二种应用场景下进行传输的一种示意图;
图10B为按照本申请实施例提供的第二种资源预留消息的发送方法,在第二种应用场景下进行传输的一种示意图;
图11为本申请实施例提供的第三种发送资源预留消息的方法的流程图;
图12为本申请实施例提供的一种通信装置的结构示意图;
图13A~图13B为本申请实施例提供的一种通信装置的两种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local  loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
2)网络设备,例如包括基站(例如,接入点),可以是指接入网中在空中接口上通过一个或多个小区与无线终端设备通信的设备。网络设备可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。网络设备还可协调对空中接口的属性管理。例如,网络设备可以包括LTE系统或LTE-A中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括5G NR系统中的下一代节点B(next generation node B,gNB),或者也可以包括云接入网(CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed ynit,DU),本申请实施例并不限定。
3)波束传输,是指采用一组天线进行发送,并给不同天线上乘以不同加权系数(一般为复数),使得这组天线发射的信号在空间中叠加之后在某些方向上增强,而在其它方向因信号抵消而削弱,从而达到方向性传输的目的。波束传输通常也称为波束赋形(beamforming)或空间滤波器(spatial filter),在NR标准中,UE的波束又称为空间域传输/接收滤波器(spatial domain transmission/reception filter),其上行(UL)波束也可用探测参考信号指示(resource indicator,SRS)来描述。下行(DL)的波束则用与该波束相关联的参考信号指示来标识,例如,用信道状态信息(channel state information,CSI)参考信号资源指示(CSI-RS resource indicator,CRI),或同步信号块资源指示(SS block resource indicator,SSBRI),或CSI-RS配置(configuration)/准配置(Quasi collocation)/准共址(QCL)类型(Type)D/目标小区标识(TCI)/链路重配置(link reconfiguration)来标识。
在高频通信系统中,采用波束传输能够有效提高传输距离,提高传输性能,并降低对其它设备的干扰,因此相比全向传输具有明显优势。发送波束实际上是一种定向传输,其根本在于其传输方向和波束宽度。一般来说,给定发射功率的情况下,波束宽度越窄,其传输距离越远,并且对来自其它方向的干扰的抑制能力也越强。相应地,接收端也可采用Beam波束进行定向接收,从而增强特定方向的接收性能,并抑制或消除来自其它方向的干扰。接收波束的实现原理与发送波束类似,不同之处在于是用于 信号接收。接收波束实际上是一种定向接收,其根本在于其接收波束的方向和宽度。为了便用描述,这种定向发送或接收,在本申请中统一采用波束进行描述。
4)高频和低频,其中,高频可以是指频率大于6GHz的频段,与高频相应的是低频,可以是指频率小于6GHz的频段。
其中,本文中所述的高频,主要是以大于28GHz的频段为例,例如37GHz的频段,或60GHz的频段,或大于60GHz的频段等。当然。本申请实施例所述的高频不限于这些频段,只要大于6GHz即可。
在本文中,也将工作在高频的通信系统称为高频通信系统或高频系统,例如NR-U就是一种高频系统,以及,将工作在低频的通信系统称为低频通信系统或低频系统,例如802.11b就是一种低频系统。
5)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术背景。
首先介绍工作在2.4/5GHz频段的Wi-Fi系统的载波侦听机制。
802.11标准由电气和电子工程师协会(institute of electrical and electronics engineers,IEEE)802.11工作组制定,其商业名称为Wi-Fi。802.11b/802.11g工作于2.4GHz频段,802.11a/802.11ac/802.11ax工作于5GHz频段,802.11n工作于2.4&5GHz频段。工作于2.4GHz频段和5GHz频段的Wi-Fi系统的载波侦听机制是相同的,具体包括物理载波侦听和虚拟载波侦听。物理载波侦听又称为净信道估计(clear channel assessment,CCA),即设备通过侦听信道,根据接收信号功率与阈值的比较结果,确定信道忙(busy)/闲(idle),信道忙则继续侦听,信道空闲则可开始竞争信道。一般来说,接收信号功率大于阈值,则CCA结果为信道忙,否则确定信道空闲。虚拟载波侦听即解出接收的Wi-Fi帧,根据Wi-Fi帧中携带的传输机会(transmission opportunity,TXOP)剩余时间(通常携带在持续时间(duration)字段中)设置网络分配矢量(network allocation vector,NAV),NAV是一个设备内部维护的倒退计时器,在NAV退为0之前,设备认为信道忙,不会去竞争信道,而当NAV退为0时,虚拟载波侦听结果为空闲,设备可以开始竞争信道。通常情况下,物理载波侦听和虚拟载波侦听两种机制是同时执行的。换句话说,当CCA结果为信道空闲(即接收信号功率小于阈值)且NAV为0时,设备认为信道空闲,可以竞争信道;其他情况下,设备均认为信道忙,不能竞争信道。如无特别说明,信道空闲都是指物理载波侦听和虚拟载波侦听结果均为空闲。
上述过程的示意如图1所示,图1中还包括了载波侦听结束之后的数据传输过程。当发送设备有数据需要发送时,首先对信道进行载波侦听,当通过载波侦听检测到信道空闲且保持分布式协调功能帧间间隔(distributed coordination function  interframe space,DIFS)时长时,发送设备执行退避(backoff)过程,即发送设备在预定范围中随机取一个值用于设置退避计时器,然后退避计时器开始倒退计时。在退避过程中,发送设备持续对信道进行检测。若直至退避计时器退为0时信道持续空闲,则发送设备发送资源预留请求消息,其中,发送设备发送资源预留请求消息,是发生在载波侦听结束之后的过程,该资源预留请求消息例如为请求发送(request to send,RTS)帧,其中包括duration字段,用于指示当前传输过程(即TXOP)的剩余时间,即,从RTS帧传输结束到当前TXOP结束之间的时长。接收设备接收RTS后,间隔短帧间间隔(short interframe space,SIFS)时长回复资源预留响应消息,该资源预留响应消息例如为清除发送(clear to send,CTS)帧,其中也包括duration字段,其取值为RTS帧中的duration字段的取值减去SIFS以及CTS的时长,即,等于从CTS帧传输结束到当前TXOP结束之间的时长。之后,发送设备接收CTS帧后,间隔SIFS发送数据(data)帧,接收设备收到data帧后间隔SIFS发送确认应答(ACK)。由于RTS和CTS帧中均包括duration字段,第三方设备收到RTS/CTS后可根据该字段来设置自己的NAV。在NAV退为0之前,第三方设备不会去竞争信道,从而避免了第三方设备发送数据对发送设备和接收设备之间的传输造成干扰。
如前介绍的是工作在低频的Wi-Fi(或称802.11)系统的载波侦听机制,以及载波侦听机制之后的数据传输过程,由于低频频段的频率不高,即波长较大,因此在载波侦听机制结束之后的数据传输过程中,传输信息时通常采用全向传输的方式。而对于NR-U等高频系统,若采用全向传输,则传输的覆盖范围太小,因此在高频系统中可能会考虑采用波束来进行传输。这样一来,针对低频频段所制定的载波侦听机制之后的数据传输过程也就不能完全适用于高频系统。
另外,目前还提出了新的Wi-Fi标准,在新的Wi-Fi标准下,Wi-Fi系统是工作在高频,例如802.11ad和802.11ay,均工作于60GHz频段(为高频频段),其载波侦听机制以及之后的数据传输过程与工作于2.4/5GHz频段(为低频频段)的802.11有所不同。
在802.11ad中,物理载波侦听采用全向CCA,即,设备对所有方向上的信号进行检测和侦听,这与2.4/5GHz频段的802.11是相同的。但是,在载波侦听结束后,资源预留消息(如RTS/CTS)的传输则采用定向传输,即,发送设备在潜在传输方向采用波束发送资源预留请求(如RTS),接收设备收到后在相反方向采用波束发送资源预留响应(如CTS),如图2A所示。其中,潜在传输方向是指将要传输数据的波束方向,如图中由发送设备指向接收设备的波束方向。
802.11ay标准正在制定过程中,其物理载波侦听可能采用全向CCA,但也有提议采用定向CCA,即,发送设备通过接收波束在潜在传输方向上进行物理载波侦听。在载波侦听结束后,发送设备或接收设备的资源预留消息(如RTS/CTS)的传输采用定向传输,与802.11ad大致相同。唯一不同之处在于,由于802.11ay支持多用户传输,因此发送设备的资源预留请求(如RTS)可以在多个潜在通信方向上传输,不同潜在通信方向对应不同波束,指向不同接收设备。不同波束方向上的资源预留请求消息发送,通过扫描方式依次轮流在不同波束方向上传输,即通过时分方式发送。
全向CCA的缺点是,设备的传输被暴露节点的传输所抑制,传输机会减少,系统 吞吐量降低。定向传输资源预留消息的缺点是,周围的某些隐藏节点可能无法收到定向传输的资源预留消息,导致这些隐藏节点继续发送消息或数据,从而对发送设备正在进行的传输造成干扰,系统吞吐量降低。可见,802.11ad和802.11ay虽然提供了一种高频系统载波侦听以及之后的数据传输过程的解决方案,但仍然存在缺陷。
由上可见,现有的载波侦听机制之后的数据传输过程,要么不适用于高频系统,要么存在一定缺点。实际上,NR-U目前尚未确定载波侦听机制之后的数据传输过程如何实现。
鉴于此,本申请实施例提供一种高频系统中的载波侦听机制之后的数据传输过程的实现方式。需注意的是,本申请的所有实施例可以适用于工作在高频的非授权频段的通信系统,例如NR-U系统,或者无线局域网(wireless local area networks,WLAN)系统,或者802.11ay,或者其他的通信系统。另外,定向传输和定向接收多用于高频通信系统,这是因为高频信号波长较小,在设备大小受限的情况下,设备上可以容纳更多天线,而天线越多,则越可能实现更窄宽度的波束。换句话说,受硬件实现限制,高频系统中更容易实现定向传输和接收。但是,这并不意味着低频系统不能采用波束传输。因此,本申请的所有实施例实际上可以适用于任何频率的通信系统,只要该通信系统采用定向传输即可,只是在后文中,多以本申请实施例应用于高频通信系统为例。更进一步,未来还有可能采用除波束之外的其它手段实现定向传输/接收,那么本申请的所有实施例也同样适用于采用任何手段实现定向传输/接收的情况。
本申请实施例中,为高频通信系统引入类似于工作在低频的802.11中的RTS/CTS机制(RTS/CTS过程也就是载波侦听机制之后的数据传输过程,或者理解为,是载波侦听机制之后的数据传输过程中的部分过程),实现对信道资源的预留。在NR-U中,RTS又可称为预留请求(reservation request,RRQ),CTS又可称为预留响应(reservation response,RRS),RRQ和RRS可统称为资源预留消息。如图2B所示,RRQ/RRS可包括当前传输过程(即TXOP)的剩余时间。图2B中,下面的DL是对上面的DL的准备阶段的具体介绍,下面的UL是对上面的UL的准备阶段的具体介绍,可以理解为,下面的DL对应的LBT和RRQ,就是上面的DL在准备阶段对应的方框,因此在这些框中都添加了“/”,下面的UL对应的LBT和RRS,就是上面的UL在准备阶段对应的方框,因此在这些框中都添加了“\”,因为上面的方框比较小,所以在下面做了更为清楚的示意。根据图2B可知,当发送设备有数据需要发送时,首先对信道进行LBT,如果通过LBT确定信道空闲,则发送设备发送资源预留请求消息,该资源预留请求消息例如为RRQ,接收设备接收RRQ后,间隔一段时长后对信道进行LBT,当通过LBT确定信道空闲,则接收设备回复资源预留响应消息,该资源预留响应消息例如为RRS,之后就可以进入数据传输阶段。可以看到,图2B所示的过程与802.11中的RTS/CTS不同之处是,802.11中CTS的发送无需LBT,即发送设备响应CTS前不需要去侦听信道且根据信道侦听结果确定是否发送CTS,而是可以直接发送,而图2B所示的过程中,在发送RRS之前需要进行LBT。
前文介绍了,对于NR-U等高频系统,若采用全向传输,则传输的覆盖范围太小,因此在高频系统中可能会考虑采用波束来进行传输,那么,在如图2B所示的传输机制下,可能会考虑采用波束传输的方式传输RRQ/RRS以及数据。但是采用波束传输,可 能会出现隐藏节点,导致传输过程受到干扰。下面介绍两种存在隐藏节点的场景,在下面的场景介绍中,假设NR-U引入了传输资源预留机制,且采用了如图2B所示的RRQ/RRS传输机制,即,发送设备发送RRQ消息,接收设备回复RRS消息。其中需注意的是,接收设备也有可能不需要回复RRS,例如,当发送设备和接收设备的距离较近(特别是当发送设备的功率大于接收设备的功率)时,接收设备可能不需要回复RRS。另外,如果一个设备接收了其他设备发送的RRQ/RRS,且该RRQ/RRS的接收目标不是该设备本身,则该设备应维护一个倒退计时器,在倒退计时器退为0之前,该设备不应去竞争信道和发送数据,以避免干扰其他设备。倒退计时器类似于802.11中的NAV,在本申请实施例中可称为资源预留计时器。
第一种场景:
在LBT之后,发送设备在潜在传输方向(即,由发送设备指向接收设备的传输方向)上发送RRQ,接收设备在与该方向相反的方向上回复RRQ,其中,接收设备回复RRQ的方向也可称为接收设备的潜在传输方向,即,由接收设备指向发送设备的传输方向。如图3所示,假设四个设备大致位于一条直线上,发送设备1有数据要向接收设备1发送,发送设备2有数据要向接收设备2发送。
发送设备1和接收设备1的传输先开始,发送设备1在波束1上向接收设备1发送RRQ,并接收接收设备1通过波束2发送的RRS,然后发送设备1在波束1上向接收设备1发送数据。由于发送设备1发送的RRQ通过波束1定向传输,因此发送设备2收不到该RRQ。因此,发送设备2仍然会向接收设备2传输,但受到发送设备1在波束1上的传输的干扰,接收设备2几乎不可能正确接收发送设备2的传输。考虑到RRQ和RRS的传输可能不是必须的,即发送设备2也有可能直接向接收设备2传输数据,而该数据传输因为受到发送设备1在波束1上的传输的干扰,显然极大概率会失败。这种情况的发生,是因为发送设备1采用定向方式发送的RRQ不能被发送设备2收到,导致发送设备1成为了发送设备2的隐藏节点。
第二种场景:
如图4所示,假设四个设备大致位于一条直线上,发送设备1有数据要向接收设备1发送,发送设备2有数据要向接收设备2发送。
在LBT之后,发送设备1和接收设备1的传输先开始,发送设备1在波束1上向接收设备1发送RRQ,并接收接收设备1通过波束2发送的RRS,然后发送设备1在波束1上向接收设备1发送数据。由于接收设备1向发送设备1发送的RRS是通过波束2定向传输,故无法被发送设备2收到,因此,发送设备2仍然会通过波束3向接收设备2发送RRQ或数据,并接收接收设备2通过波束4发送的RRS或混合自动重传请求(hybrid automatic repeat request,HARQ)-肯定应答(ACK),该RRS或HARQ-ACK会对接收设备1在波束2上的接收造成干扰,极大概率导致波束2的接收失败。这种情况的发生,是因为接收设备1采用定向方式发送的RRS不能被接收设备2收到,导致接收设备1成为了发送设备2的隐藏节点。
通过对以上两种场景的介绍可知,如果采用波束传输,则可能会出现更多隐藏节点,导致设备的传输过程受到干扰,甚至可能导致传输失败。鉴于此,本申请实施例提供的技术方案,可以较好地解决如前两种场景所涉及的隐藏节点的问题。
在本申请的各个实施例中,发送设备发送RRQ前,应先对信道进行侦听,当根据信道侦听结果判断信道空闲时,才能发送RRQ。对于信道侦听,一种实施方法是,发送设备采用全向侦听,即发送设备侦听所有方向的信号。这种方法最为保守,设备传输机会少,但漏掉周边设备信号的概率最小,传输对其它设备造成干扰的概率也小。第二种实施方法是,发送设备对潜在传输方向进行侦听,这种方法较为激进,设备传输机会多,但可能漏掉周边某些设备的信号,从而对正在进行的传输造成干扰。第三种实施方法是,发送设备对至少一个波束的方向进行侦听,至少一个波束将在后文的实施例中定义。另外在第三种实施方法中,发送设备侦听的方向除了包括至少一个波束的方向外,还可包括发送设备的潜在传输方向。其中,第三种实施方法可视为第一种实施方法和第二种实施方法的折中。对于发送设备究竟采用哪种实施方法进行信道侦听,本申请实施例不作限制。
以及,接收设备发送RRS前,可能需要进行信道侦听,也可能不需要。若需要进行信道侦听,则也可使用上述的发送设备所采用的三种实施方法中的一种,具体不再赘述。对于接收设备究竟采用哪种实施方法进行信道侦听,本申请实施例亦不作限制。
需要特别说明的是,为了便于表述,本申请实施例中,同一设备在同一方向上的发送和接收是采用同一波束进行描述,例如图3中,发送设备1通过波束1向接收设备1发送RRQ,也通过波束1从接收设备1接收RRS。换句话说,设备的发送波束和接收波束在方向上是对称的。但应需理解,在实际的通信系统中,设备可能出现发送波束和接收波束不对称的情况,例如图3中的发送设备1,可以通过波束1向接收设备1发送RRQ,而可能通过另一波束来从接收设备1接收RRS,该另一波束的方向和波束1可能并不完全一致。
还需要特别说明的是,当数据的传输使用分集或多输入多输出(multiple-input multiple-output,MIMO)技术时,发送设备的潜在传输方向上可能包括多个物理波束。例如图3或图4中,当发送设备1通过波束1传输数据时,波束1可能包括多个物理波束,这些波束的方向大致一致,即,均与波束1方向大致相同。
另外需注意的是,本申请实施例中所描述的“发送设备”和“接收设备”均为通信装置的一种,也就是说,通信装置可以包括发送设备,也可以包括接收设备。另外,“发送设备”可理解为发送数据的设备,“接收设备”可理解为接收数据的设备,可见,“发送设备”和“接收设备”等概念,只是相对概念,并不是绝对的,例如同一个设备,在接收数据时可将其称为接收设备,而在发送数据时又可称为发送设备。
本文中涉及的资源预留消息,可以包括资源预留请求消息或资源预留响应消息,资源预留请求消息用于请求预留传输资源,所述资源预留响应消息用于确定预留传输资源。
请参见图5,为本申请实施例提供的第一种发送资源预留消息的方法的流程图,该方法可用于解决图3所示的场景下存在的技术问题。该方法可以由通信装置执行,在本实施例中,该通信装置是作为发送设备,所以也可以理解为,该方法可以由接收设备和通信装置执行,当然发送设备也可以理解为通信装置的一种,因此也可以理解为,该方法是由作为发送设备的通信装置和作为接收设备的通信装置执行。其中,关于图4所示的场景所存在的技术问题,将在后文另外的实施例中予以解决。
S51、发送设备确定用于发送资源预留消息的至少一个波束,所述至少一个波束包括第一波束,所述第一波束的方向与第二波束的方向相反,所述第二波束的方向是所述发送设备发送信息的潜在传输方向;
S52、所述发送设备通过所述至少一个波束发送资源预留消息,则所述至少一个波束方向上的设备接收所述资源预留消息。
在本实施例中,资源预留消息包括资源预留请求消息,用于请求预留传输资源。
图5中的第一设备和第二设备,可视为能够接收资源预留请求消息的设备,例如第一设备和第二设备是所述至少一个波束中的两个波束的方向上的设备,或者例如第一设备是所述至少一个波束中的一个波束的方向上的设备,这个波束例如为第一波束,第二设备是第二波束方向上的设备,具体的不作限制。且,图5只是以两个设备能够接收所述资源预留请求消息为例,在实际应用中不限于此。
本实施例中的发送设备,例如为图3所示的场景中的发送设备1,当然也可以是其中的发送设备2,本实施例不作限制。或者,本实施例也可以应用于其他场景下,例如可应用在图4所示的场景中,那么本实施例中的发送设备例如为图4所示的场景中的发送设备1或发送设备2。
其中,第二波束的方向是发送设备发送信息的潜在传输方向,这里的“信息”可以是指“数据”,也就是说,第二波束的方向可以是发送设备发送数据的潜在传输方向,或者理解为,是由发送设备指向接收设备的方向。以发送设备是发送设备1为例,则第二波束的方向就是从发送设备1指向接收设备1的方向。那么,至少一个波束中包括的第一波束的方向就与第二波束的方向相反。其中,第一波束的方向与第二波束的方向可以是刚好相反,例如第一波束的方向与第二波束的方向之间的夹角为180°。其中,一个波束的方向与另一个波束的方向之间的夹角,可以是指所述的另一个波束沿逆时针方向旋转后到达与所述的一个波束重合的位置,所旋转的角度。例如第一波束的方向和第二波束的方向之间的夹角,可以是将第二波束沿逆时针方向旋转后,使得第一波束与第二波束达到重叠的角度,例如,第一波束与第二波束的方向之间的夹角为180°,可以理解为,将第二波束沿逆时针方向旋转180°后,第二波束与第一波束重合。当然,两个波束的方向之间的夹角也可以按照顺时针来理解,那么,一个波束的方向与另一个波束的方向之间的夹角,可以是指所述的另一个波束沿顺时针方向旋转后到达与所述的一个波束重合的位置,所旋转的角度。例如第一波束的方向和第二波束的方向之间的夹角,可以是将第二波束沿顺时针方向旋转后,使得第一波束与第二波束达到重叠的角度,例如,第一波束与第二波束的方向之间的夹角为180°,可以理解为,将第二波束沿顺时针方向旋转180°后,第二波束与第一波束重合。
按照理论来说,发送设备只要确定这样的第一波束,第一波束的方向与第二波束的方向之间的夹角为180°,发送设备通过该第一波束来发送资源预留请求消息,就可以使得发送设备不再成为位于与第二波束相反方向上的设备的隐藏节点。例如请参考图6,发送设备1确定了一个第一波束,该第一波束的方向与第二波束的方向之间的夹角为180°,例如该第一波束为图6中的波束5,发送设备1在波束5上发送RRQ,波束5指向发送设备2,故发送设备2可以接收发送设备1发送的RRQ,故发送设备2不会再向接收设备2发送,从而解决了隐藏节点的问题。
但是在实际实现中,由于器件的非理想性,即使干扰波束并没有正对接收波束,也可能对接收波束的接收造成干扰。如图7A所示(其传输场景同图3)的情况,尽管波束1并不正对波束4,但由于旁瓣泄露等原因,波束1的发送仍然会对波束4造成干扰。按照本申请实施例提供的解决方案,如果发送设备只确定了一个第一波束,该第一波束的方向与第二波束的方向之间的夹角为180°,例如该第一波束为图7A中的波束5,发送设备1在波束5上发送RRQ,由于波束5并不指向发送设备2,故发送设备2接收不到发送设备1的RRQ(但发送设备2可能检测到波束5泄露的干扰信号),故发送设备2仍会向接收设备2发送,而由于波束1的干扰,接收设备2的接收几乎不可能成功,这造成传输资源浪费。
针对上述问题,在本申请实施例中,发送设备还可以选择方向与第二波束的方向之间的夹角小于180°的波束和/或方向与第二波束的方向之间的夹角大于180°的波束,也就是说,在本实施例中,至少一个波束除了包括第一波束外,还可以包括以下的至少一种波束:
方向与第二波束的方向之间的夹角大于0°且小于180°的波束;及,
方向与第二波束的方向之间的夹角大于180°且小于360°的波束。
也就是说,发送设备所确定的至少一个波束,除了可以包括方向与第二波束的方向刚好相反的第一波束之外,还可以包括方向与第二波束的方向大致相反的波束,例如,与第二波束的方向之间的夹角大于0°且小于180°的方向和/或与第二波束的方向之间的夹角大于180°且小于360°的方向,都可以视为与第二波束的方向大致相反。
如图7B所示,例如发送设备确定的至少一个波束包括波束5、波束6和波束7,其中波束5是方向与第二波束的方向之间的夹角为180°的第一波束,波束6是方向与第二波束的方向之间的夹角小于180°的波束,波束7是方向与第二波束的方向之间的夹角大于180°的波束。那么,发送设备1不仅在波束5方向发送RRQ,还在波束6和波束7上发送RRQ,波束6和波束7是与波束5在方向上相邻的波束。这样,在波束5方向周边一定范围内的设备(如图7B中的发送设备2)都能够接收发送设备1发送的RRQ,从而达到抑制这些设备传输的目的。
另外,前文是将至少一个波束包括的波束分别视为单独的波束为例,例如图7B,是将波束5~波束7视为单独的3个波束。除了这种理解方式之外,本实施例也可以将至少一个波束视为一个宽波束,例如可以将图7B中的波束5~波束7视为一个宽波束,发送设备可通过该宽波束传输RRQ。本实施例中,如果将至少一个波束包括的波束分别视为单独的波束,则,至少一个波束中的每个波束的角宽度都可以相同,且都可以等于第二波束的角宽度,当然,至少一个波束中的每个波束的角宽度也有可能不同,且,其中可能有的波束的角宽度与第二波束的角宽度相同,也有可能至少一个波束的角宽度与第二波束的角宽度均不相同。其中,至少一个波束中的每个波束的角宽度,可以通过标准预定义,或者可以由发送设备自行确定,或者可以规定为与第二波束的角宽度相关,例如可根据第二波束的角宽度得到,具体的不作限制。而,如果将至少一个波束视为一个宽波束,那么该宽波束的角宽度可以大于第二波束的角宽度。其中,该宽波束的角宽度,可以通过标准预定义,或者可以由发送设备自行确定,或者可以规定为与第二波束的角宽度相关,例如可根据第二波束的角宽度得到,具体的不作限 制。
发送设备确定至少一个波束后,可通过至少一个波束发送资源预留请求消息,资源预留请求消息例如为RRQ,那么位于至少一个波束方向上的设备都可以接收发送设备所发送的RRQ。其中,对于将至少一个波束包括的波束分别视为单独的波束的情况,发送设备可通过至少一个波束中的每个波束同时发送RRQ,这样可以提高传输效率,但对于发送设备的硬件设施要求较高,或者,发送设备也可以通过至少一个波束中的每个波束分时发送RRQ,例如,通过至少一个波束中的一个波束先发送RRQ,在该波束发送完毕后,再通过至少一个波束中的另一个波束发送RRQ,这种方式虽然需要比较长的传输时间,但是对于发送设备的硬件设施要求不会很高,有助于降低成本。具体的发送设备在通过至少一个波束发送资源预留请求消息时会采用哪种发送方式,可通过协议预定义,或者由发送设备自行选择,或者可能为不同的发送设备固化某种发送方式,本实施例不作限制。
至少一个波束方向上的设备接收该发送设备所发送的RRQ之后,知道该发送设备要进行数据传输,那么至少一个波束方向上的设备在一定时间内不会再进行传输,从而减小了因为发送设备的传输而导致至少一个波束方向上的设备的数据传输失败的可能性,既减少了资源的浪费,又提高了数据传输的成功率。可以认为,对于至少一个波束方向上的设备来说,该发送设备不再是隐藏节点,从而解决了隐藏节点的问题,尽量保证该发送设备和其他设备的数据传输能够成功。
另外在本实施例中,发送设备除了可通过至少一个波束发送资源预留请求消息之外,还可以通过第二波束发送资源预留请求消息,也就是说,发送设备可选择通过至少一个波束发送资源预留请求消息,或者可选择通过至少一个波束和第二波束发送资源预留请求消息,当然,发送设备也可以选择只通过第二波束发送资源预留请求消息。发送设备通过第二波束发送资源预留请求消息,可以使得与该发送设备相对的接收设备接收该资源预留请求消息,从而做好从该发送设备接收数据的准备。其中,与该发送设备相对的接收设备,也就是要接收该发送设备所发送的数据的接收设备,以图3为例,如果该发送设备是发送设备1,那么与发送设备1相对的接收设备,就是其中的接收设备1。
如果发送设备通过至少一个波束和第二波束发送资源预留请求消息,资源预留消息例如为RRQ,那么,发送设备可通过第二波束以及至少一个波束中的每个波束同时发送RRQ,这样可以提高传输效率,但对发送设备的硬件设施要求较高。或者,发送设备可以通过至少一个波束和第二波束分时发送RRQ,例如,通过至少一个波束中的一个波束先发送RRQ,在该波束发送完毕后,再通过至少一个波束中的另一个波束发送RRQ,以此类推,在通过至少一个波束均发送完毕后,再通过第二波束发送RRQ,或者,通过第二波束发送RRQ,在通过第二波束发送完毕后,通过至少一个波束中的一个波束先发送RRQ,在该波束发送完毕后,再通过至少一个波束中的另一个波束发送RRQ,以此类推。这种方式虽然需要比较长的传输时间,但是对于发送设备的硬件设施要求不会很高,有助于降低成本。具体的,如果发送设备通过至少一个波束和第二波束发送资源预留请求消息,那么发送设备会采用哪种发送方式,可通过协议预定义,或者由发送设备自行选择,或者可能为不同的发送设备固化某种发送方式,本实施例 不作限制。
另外,发送设备在发送资源预留请求消息后,还可以通过第二波束向接收设备发送数据,在发送设备向接收设备发送数据之前,接收设备可能会向发送设备发送RRS,则发送设备会从接收设备接收RRS,在接收RRS后,发送设备向接收设备发送数据。但也有可能接收设备并不向发送设备发送RRS,例如接收设备未接收发送设备发送的资源预留请求消息,或接收设备虽然接收了发送设备发送的资源预留请求消息,但是RRS传输失败,或者接收设备虽然接收了发送设备发送的资源预留请求消息,但接收设备不向发送设备发送RRS,等等,在这些情况下,发送设备可能都收不到接收设备发送的RRS,那么发送设备也可以向接收设备发送数据。
在本申请实施例中,发送设备可以在与潜在传输方向相反的方向上发送资源预留请求消息,则位于与该发送设备的潜在传输方向相反的方向上的其他设备也能接收资源预留请求消息,从而这些设备可以不再与发送设备竞争信道,尽量提高发送设备后续发送数据的成功率,也减小这些设备数据发送失败的几率,相当于减小了该发送设备成为这些设备的隐藏节点的可能性。
或者,图5所示的实施例还可以理解为:
发送设备确定第一方向,所述第一方向至少包含第一波束的方向,所述第一波束是与第二波束相反方向的波束,所述第二波束是所述发送设备发送数据的潜在传输方向的波束;
所述发送设备在所述第一方向发送资源预留请求消息。
也就是说,发送设备确定至少一个波束,也可以理解为发送设备确定第一方向,至少一个波束中的第一波束的方向就可以理解为第一方向所包含的第一波束的方向。
例如,对于图3所示的场景,波束1是发送设备1的潜在传输方向,波束1可以理解为第二波束。发送设备1在发送RRQ时,通过第一方向进行发送,第一方向至少包括波束5的方向,如图6所示。在一种实施方式中,第一方向仅包括波束5的方向,也就是,第一方向只包括第一波束的方向,即发送设备1仅在波束5的方向进行发送(即,在波束1的方向不发送),也就是说,发送设备1只在至少一个波束上发送资源预留请求消息,而不在第二波束上发送资源预留请求消息。在另一种实施方式中,第一方向包括波束1的方向和波束5的方向,即发送设备1在波束1和波束5的方向都进行发送,也就是,第一方向包括第一波束的方向和第二波束的方向,那么,发送设备1在第二波束和至少一个波束中的第一波束上都发送资源预留请求消息。具体来说,发送设备1可以同时在波束1和波束5的方向发送RRQ,这对发送设备1硬件有较高要求;或者,发送设备1也可以依次在波束1和波束5这两个波束方向发送RRQ,例如先在波束1的方向发送,再在波束5的方向发送,这样对于发送设备1的硬件要求较低,有利于降低成本。本实施例中,潜在传输方向(如波束1)的宽度可以等于第一方向(如波束5)的宽度,也就是,第二波束的宽度可以等于至少一个波束中的每个波束的宽度,或者,第二波束的宽度与至少一个波束中的每个波束的宽度都不相等,或者,第二波束的宽度与至少一个波束中的部分波束的宽度相等。
发送设备在第一方向发送资源预留请求消息之后,还可以在第二波束方向向接收设备发送数据,也就是通过第二波束向接收设备发送数据。另外,在发送设备在第一方 向发送资源预留请求消息之后,以及在发送设备在第二波束方向向接收设备发送数据之前,发送设备还可以在第二波束方向接收接收设备发送的资源预留响应消息,也就是说,接收设备在接收资源预留请求消息之后,可能会向发送设备发送资源预留响应消息,当然接收设备也有可能不向发送设备发送资源预留响应消息,或者虽然接收设备发送了资源预留响应消息,但发送设备并未收到,具体的不作限制。
同理,考虑到器件的非理想性,也就是图7A所示的问题,则,发送设备在第一方向发送RRQ,第一方向包括与发送设备的潜在传输方向相反的方向,在本实施例中,“发送设备的潜在传输方向相反的方向”,不仅包括与发送设备的潜在传输波束相反的波束(也可称为发送设备的反向波束,也就是第一波束)方向,还包括反向波束周边的波束方向,或者说,第一方向除了包括第一波束的方向,还包括第一波束周围预定义范围的方向,也就是,发送设备所确定的至少一个波束,不仅包括第一波束,还可以包括方向与第二波束的方向之间的夹角小于180°的波束和/或方向与第二波束的方向之间的夹角大于180°的波束。如图7B所示,发送设备1不仅在波束5的方向发送RRQ,还在波束6和波束7的上发送RRQ,波束6和波束7是与波束5在方向上相邻的波束。这样,在波束5的方向周边一定范围内的设备(如发送设备2)都能够接收到发送设备1发送的RRQ,从而达到抑制这些设备传输的目的。同图6所示的情况,发送设备1可以在波束1的方向发送RRQ,也可以不发送。发送设备1可以同时在波束1的方向(若发送)以及波束5~波束7的方向发送RRQ,这对发送设备1的硬件有较高要求;也可以依次在这些波束方向上分别发送RRQ,例如先在波束1的方向发送,然后在依次在波束5~波束7方向发送。另外,还可以将波束5~波束7的方向合在一起,视为一个宽波束,通过该宽波束进行RRQ的传输。本实施例中,潜在传输方向(如波束1)的角宽度可以小于波束5~波束7的角宽度。第一方向的角宽度具体大小,可以是标准预定义的,也可以是由发送设备确定的,还可以是潜在传输方向的函数。
前文介绍的图5所示的实施例,解决了图3所示的场景下存在的技术问题。下面再介绍另外一个实施例,该实施例可用于解决图4所示的场景下存在的技术问题。
请参考图8,本申请实施例提供第二种发送资源预留消息的方法,该方法就可以解决图4所示的场景下存在的技术问题。该方法可以由通信装置执行,在本实施例中,该通信装置是作为接收设备,所以也可以理解为,该方法可以由发送设备和通信装置执行,当然发送设备也可以理解为通信装置的一种,因此也可以理解为,该方法是由作为发送设备的通信装置和作为接收设备的通信装置执行。该方法的流程介绍如下。
S81、发送设备向接收设备发送资源预留请求消息,则所述接收设备从所述发送设备接收所述资源预留请求消息;
S82、所述接收设备确定至少一个波束,所述至少一个波束包括第一波束,所述第一波束的方向与第二波束的方向相反,所述第二波束的方向是所述接收设备发送信息的潜在传输方向;
S83、所述接收设备通过所述至少一个波束发送资源预留消息,则所述至少一个波束方向上的设备接收所述资源预留消息。
在本实施例中,资源预留消息包括资源预留响应消息,用于确定预留传输资源。
本实施例中的接收设备,例如为图4所示的场景中的接收设备1,当然也可以是 其中的接收设备2,本实施例不作限制。或者,本实施例也可以应用于其他场景下,例如可应用在图3所示的场景中,那么本实施例中的接收设备例如为图3所示的场景中的接收设备1或接收设备2。
其中,第二波束的方向是接收设备发送信息的潜在传输方向,这里的“信息”,例如为资源预留响应消息,也就是,第二方向是由接收设备指向发送设备的方向,以接收设备是接收设备1为例,则第二波束的方向就是从接收设备1指向发送设备1的方向。那么,至少一个波束包括的第一波束的方向就与第二波束的方向相反。其中,第一波束的方向与第二波束的方向可以是刚好相反,例如第一波束的方向与第二波束的方向之间的夹角为180°。关于对波束的方向之间的夹角的理解,可参考图5所示的实施例中的相关介绍。
按照理论来说,接收设备只要确定这样的第一波束,该第一波束的方向与第二波束的方向之间的夹角为180°,接收设备通过该第一波束来发送资源预留响应消息,就可以使得接收设备不再成为位于与第二波束相反方向上的设备的隐藏节点。例如请参考图9,至少一个波束中包括一个第一波束,该第一波束的方向与第二波束的方向之间的夹角为180°,该第一波束例如为图9中的波束5,接收设备1在波束5上发送RRS,波束5指向发送设备2,故发送设备2能够接收到接收设备1发送的RRS,故发送设备2不会向接收设备2发送消息或数据,从而解决了隐藏节点的问题。
但是与上个实施例同理,在实际实现中,由于器件的非理想性,即使干扰波束并没有正对接收波束,也可能对接收波束的接收造成干扰。如图10A所示(其传输场景同图4)的情况,尽管波束2并不正对波束4,但由于旁瓣泄露等原因,波束4的发送仍然会对波束2造成干扰。按照本申请实施例提供的解决方案,如果至少一个波束只包括一个第一波束,该第一波束的方向与第二波束的方向之间的夹角为180°,该第一波束例如为图10A中的波束5,接收设备1在波束5上发送RRS,由于波束5并不指向发送设备2,故发送设备2接收不到接收设备1的RRS(但发送设备2可能检测到波束5泄露的干扰信号),故发送设备2仍会向接收设备2发送,因此可能干扰接收设备1通过波束2接收数据。
针对上述问题,在本申请实施例中,接收设备还可以选择方向与第二波束的方向之间的夹角小于180°的波束和/或方向与第二波束的方向之间的夹角大于180°的波束,也就是说,在本实施例中,至少一个波束除了包括第一波束外,还可以包括以下至少一种波束:
方向与第二波束的方向之间的夹角大于0°且小于180°的波束;及,
方向与第二波束的方向之间的夹角大于180°且小于360°的波束。
也就是说,接收设备所确定的至少一个波束,除了可以包括方向与第二波束的方向刚好相反的第一波束之外,还可以包括方向与第二波束的方向大致相反的波束,例如,与第二波束的方向之间的夹角大于0°且小于180°的方向和/或与第二波束的方向之间的夹角大于180°且小于360°的方向,都可以视为与第二波束的方向大致相反。
如图10B所示,例如接收设备确定的至少一个波束包括波束5、波束6和波束7,其中波束5是方向与第二波束的方向之间的夹角为180°的波束,也就是第一波束,波束6是方向与第二波束的方向之间的夹角小于180°的波束,波束7是方向与第二 波束的方向之间的夹角大于180°的波束。那么,接收设备1不仅在波束5方向发送RRS,还在波束6和波束7上发送RRS,波束6和波束7是与波束5在方向上相邻的波束。这样,在波束5方向周边一定范围内的设备(如图10B中的发送设备2)都能够接收接收设备1发送的RRS,从而达到抑制这些设备传输的目的。
另外,前文是将至少一个波束包括的波束分别视为单独的波束为例,例如图10B,是将波束5~波束7视为单独的3个波束。除了这种理解方式之外,本实施例也可以将至少一个波束视为一个宽波束,例如可以将图10B中的波束5~波束7视为一个宽波束,接收设备可通过该宽波束传输RRQ。本实施例中,如果将至少一个波束包括的波束分别视为单独的波束,则,至少一个波束中的每个波束的角宽度都可以相同,且都可以等于第二波束的角宽度,当然,至少一个波束中的每个波束的角宽度也有可能不同,且,其中可能有的波束的角宽度与第二波束的角宽度相同,也有可能至少一个波束的角宽度与第二波束的角宽度均不相同。其中,至少一个波束中的每个波束的角宽度,可以通过标准预定义,或者可以由发送设备自行确定,或者可以规定为与第二波束的角宽度相关,例如可根据第二波束的角宽度得到,具体的不作限制。而,如果将至少一个波束视为一个宽波束,那么该宽波束的角宽度可以大于第二波束的角宽度。其中,该宽波束的角宽度,可以通过标准预定义,或者可以由发送设备自行确定,或者可以规定为与第二波束的角宽度相关,例如可根据第二波束的角宽度得到,具体的不作限制。
接收设备确定至少一个波束后,可通过至少一个波束发送资源预留响应消息,资源预留响应消息例如为RRS,那么位于至少一个波束方向上的设备都可以接收该接收设备所发送的RRS。其中,对于将至少一个波束包括的波束分别视为单独的波束的情况,接收设备可通过至少一个波束中的每个波束同时发送RRS,这样可以提高传输效率,但对于接收设备的硬件设施要求较高,或者,接收设备也可以通过至少一个波束中的每个波束分时发送RRS,例如,通过至少一个波束中的一个波束先发送RRS,在该波束发送完毕后,再通过至少一个波束中的另一个波束发送RRS,这种方式虽然需要比较长的传输时间,但是对于接收设备的硬件设施要求不会很高,有助于降低成本。具体的接收设备在通过至少一个波束发送资源预留响应消息时会采用哪种发送方式,可通过协议预定义,或者由接收设备自行选择,或者可能为不同的设备固化某种发送方式,本实施例不作限制。
至少一个波束方向上的设备接收该接收设备所发送的RRS之后,知道该接收设备要进行数据传输,那么至少一个波束方向上的设备在一定时间内不会再进行传输,从而减小了因为至少一个波束方向上的设备的传输而导致该接收设备数据接收失败的可能性,既减少了资源的浪费,又提高了数据传输的成功率。可以认为,对于至少一个波束方向上的设备来说,该接收设备不再是隐藏节点,从而解决了隐藏节点的问题。
另外在本实施例中,接收设备除了可通过至少一个波束发送资源预留响应消息之外,还可以通过第二波束发送资源预留响应消息,也就是说,接收设备可选择通过至少一个波束发送资源预留响应消息,或者可选择通过至少一个波束和第二波束发送资源预留响应消息,当然,接收设备也可以选择只通过第二波束发送资源预留响应消息。接收设备通过第二波束发送资源预留响应消息,可以使得与该接收设备相对的发送设 备接收该资源预留响应消息,从而确定可向该接收设备发送数据。其中,与该接收设备相对的发送设备,也就是要向该接收设备发送数据的设备,以图4为例,如果该接收设备是接收设备1,那么与接收设备1相对的发送设备,就是其中的发送设备1。
如果发送设备通过至少一个波束和第二波束发送资源预留响应消息,资源预留响应消息例如为RRS,那么,发送设备可通过第二波束以及至少一个波束中的每个波束同时发送RRS,这样可以提高传输效率,但对接收设备的硬件设施要求较高。或者,接收设备可以通过至少一个波束和第二波束分时发送RRS,例如,通过至少一个波束中的一个波束先发送RRS,在该波束发送完毕后,再通过至少一个波束中的另一个波束发送RRS,以此类推,在通过至少一个波束均发送完毕后,再通过第二波束发送RRS,或者,先通过第二波束发送RRS,在通过第二波束发送完毕后,再通过至少一个波束中的一个波束先发送RRS,在该波束发送完毕后,再通过至少一个波束中的另一个波束发送RRQ,以此类推。这种方式虽然需要比较长的传输时间,但是对于接收设备的硬件设施要求不会很高,有助于降低成本。具体的,如果接收设备通过至少一个波束和第二波束发送资源预留响应消息,那么接收设备会采用哪种发送方式,可通过协议预定义,或者由接收设备自行选择,或者可能为不同的设备固化某种发送方式,本实施例不作限制。
图8中,以接收设备通过至少一个波束发送资源预留响应消息为例,其中的第三设备可以是能够接收该接收设备通过至少一个波束中的一个波束发送的资源预留响应消息的设备,第四设备也可以是能够接收该接收设备通过至少一个波束中的一个波束发送的资源预留响应消息的设备,第三设备和第四设备对应的波束中,可能有一个是第一波束,另一个是至少一个波束中的除了第一波束之外的一个波束,或者也可能这两个设备对应的波束都不是第一波束,而是至少一个波束中的除了第一波束之外的两个波束。且,图8只是以两个设备能够接收该接收设备通过至少一个波束发送的资源预留响应消息为例,在实际应用中不限制能够接收资源预留响应消息的设备的数量。或者,第三设备也可以是S81中所述的发送设备,那么图8中,接收设备向第三设备发送资源预留响应消息,也可以是通过第二波束发送的。
该接收设备发送资源预留响应消息后,S81中所述的发送设备可以向该接收设备发送数据,则该接收设备可正常接收。因为该接收设备通过至少一个波束发送了资源预留响应消息,抑制了周边设备的传输,因此该接收设备在接收数据的过程中,被其他设备的传输所干扰的几率有所减小,提高了该设备的数据传输成功率。
或者,图8所示的实施例还可以理解为:
接收设备在第三波束方向上接收发送设备发送的资源预留请求消息;
所述接收设备确定第二方向,所述第二方向至少包含第三波束的方向和第四波束的方向,所述第四波束是与第三波束相反方向的波束;
所述接收设备在所述第二方向发送资源预留响应消息。
也就是说,接收设备在S81中,可以在第三波束上接收发送设备所发送的资源预留请求消息。接收设备确定至少一个波束,也可以理解为接收设备确定第二方向,至少一个波束中的第一波束的方向就可以理解为第二方向所包含的第三波束的方向。或者,因为不同的实施例不相冲突,这里的第二方向也可以称为第一方向,这里的第三 波束也可以称为第二波束,这里的第四波束也可以称为第一波束,也就是说,接收设备在第二波束方向上接收发送设备发送的资源预留请求消息,所述接收设备确定第一方向,所述第一方向至少包含第二波束的方向和第一波束的方向,所述第一波束是与第二波束相反方向的波束,所述接收设备在所述第一方向发送资源预留响应消息。
接收设备1发送RRS时,通过第一方向进行发送,第一方向至少包括波束5的方向,如图9所示。其中,波束5与波束2方向相反,波束2的方向是接收设备1的潜在传输方向,也就是,波束2是第二波束,波束5是第一波束。在一种实施方式中,第一方向仅包括波束5的方向,也就是接收设备确定的至少一个波束只包括第一波束,接收设备1也仅在波束5的方向进行发送,在波束2方向不发送。在另一种实施方式中,第一方向包括波束2的方向和波束5的方向,即接收设备1在波束2和波束5的方向都进行发送。具体来说,接收设备1可以同时在波束2和波束5的方向发送RRS,这对接收设备2硬件有较高要求;或者,接收设备1也可以依次在两个波束方向发送RRS,例如先在波束2的方向发送,然后在波束5的方向发送,这样对于接收设备1的硬件要求较低,有利于降低成本。本实施例中,潜在传输方向(如波束2)的宽度可以等于第一方向(如波束5)的宽度,也就是,第二波束的宽度可以等于至少一个波束中的每个波束的宽度,或者,第二波束的宽度与至少一个波束中的每个波束的宽度都不相等,或者,第二波束的宽度与至少一个波束中的部分波束的宽度相等。
接收设备在第一方向发送资源预留请求消息之后,还可以在第二波束方向接收发送设备发送的数据。
同理,考虑到器件的非理想性,也就是图10A所示的问题,则,接收设备在第一方向发送RRS,第一方向包括与接收设备的潜在传输方向相反的方向,在本实施例中,“接收设备的潜在传输方向相反的方向”,不仅包括与接收设备的潜在传输波束相反的波束(也可称为接收设备的反向波束,也就是第一波束)方向,还包括反向波束周边的波束方向,或者说,第一方向除了包括第一波束的方向,还包括第一波束周围预定义范围的方向,也就是,接收设备所确定的至少一个波束,不仅包括第一波束,还可以包括方向与第二波束的方向之间的夹角小于180°的波束和/或方向与第二波束的方向之间的夹角大于180°的波束。如图10B所示,接收设备1不仅在波束5的方向发送RRS,还在波束6和波束7的上发送RRS,波束6和波束7是与波束5在方向上相邻的波束。这样,在波束5的方向周边一定范围内的设备(如发送设备2)都能够接收到接收设备1发送的RRS,从而达到抑制这些设备传输的目的。同图9所示的情况,接收设备1可以在波束2的方向发送RRS,也可以不发送。接收设备1可以同时在波束2的方向(若发送)以及波束5~波束7的方向发送RRS,这对接收设备1的硬件有较高要求;也可以依次在这些波束方向上分别发送RRS,例如先在波束2的方向发送,然后在依次在波束5~波束7方向发送。另外,还可以将波束5~波束7的方向合在一起,视为一个宽波束,通过该宽波束进行RRS的传输。本实施例中,潜在传输方向(如波束2)的角宽度可以小于波束5~波束7的角宽度。第一方向的角宽度具体大小,可以是标准预定义的,也可以是由接收设备确定的,还可以是潜在传输方向的函数。
图8所示的实施例介绍了一种能够解决图4所示的场景存在的问题的方法,而对于图4所示的场景,不限于图8所示的实施例所提供的解决方法。下面再介绍另一实 施例,该实施例同样能够解决图4所示的场景存在的问题。
请参考图11,本申请实施例提供第三种发送资源预留消息的方法,该方法也可以解决图4所示的场景下存在的技术问题。该方法可以由通信装置执行,在本实施例中,该通信装置是作为接收设备,所以也可以理解为,该方法可以由发送设备和通信装置执行,当然发送设备也可以理解为通信装置的一种,因此也可以理解为,该方法是由作为发送设备的通信装置和作为接收设备的通信装置执行。该方法的流程介绍如下。
S111、发送设备向接收设备发送资源预留请求消息,则所述接收设备从所述发送设备接收所述资源预留请求消息;
S112、所述接收设备确定不发送资源预留响应消息,所述资源预留响应消息用于确定预留传输资源。
在本实施例中,资源预留消息包括资源预留响应消息,用于确定预留传输资源。
本实施例中的接收设备,例如为图4所示的场景中的接收设备2,当然也可以是其中的接收设备1,本实施例不作限制。或者,本实施例也可以应用于其他场景下,例如可应用在图3所示的场景中,那么本实施例中的接收设备例如为图3所示的场景中的接收设备1或接收设备2。
其中,接收设备不发送资源预留响应消息,包括但不限于以下两种情况,在下文的介绍过程中,以资源预留请求消息是RRQ、资源预留响应消息是RRS为例:
1、第一种情况。
这种情况下,发送设备可以通过所发送的RRQ指示接收设备无需回复例如RRS。或者也可通过协议规定,接收设备接收资源预留请求消息后无需回复资源预留响应消息。
其中,第一种情况一般较为适用于发送设备和接收设备之间的距离比较近的场景,特别是发送RRQ的发送设备比接收设备的发送功率大的场景。
2、第二种情况。
接收设备接收RRQ,如果接收设备确定该接收设备所维护的资源预留计时器的计时值大于0,则该接收设备选择不发送RRS。或者,接收设备所接收的也可能是数据,如果接收设备确定该接收设备所维护的资源预留计时器的计时值大于0,则该接收设备选择不发送针对所接收的数据的HARQ-ACK。其中,资源预留计时器的一种实现形式,可以是前文中已有介绍的NAV。
以接收设备是图4所示的场景中的接收设备2为例,在第二种情况下,当接收设备2接收来自发送设备2的RRQ或数据时,由于接收设备2的资源预留计时器之前已被来自接收设备1的RRS所设置(即,接收设备2的资源预留计时器的计时值是大于0的),因此,接收设备2不会发送RRS,也就不会对接收设备1在波束2上的接收造成干扰。
对于第一种情况,发送设备在发送RRQ之后,继续发送数据。而对于第二种情况,发送设备在发送数据/RRQ之后却没有收到HARQ-ACK/RRS时,发送设备应重新竞争信道,然后重新发送数据/RRQ。
在图8所示的实施例中,接收设备在至少一个波束上发送资源预留响应消息,从而达到了抑制至少一个波束方向上的设备传输的目的,提高了接收设备传输的成功率。 而根据前文对于图4所示的场景的分析可知,主要是因为接收设备2发送的RRS消息会影响接收设备1的接收,因此在本实施例中,接收设备接收资源预留请求消息后,可以不回复资源预留响应消息,通过这种方式可避免接收设备发送的资源预留响应消息影响其他设备的传输,提高其他设备传输成功的概率。
根据如上对于图5所示的实施例、图8所示的实施例和图11所示的实施例的介绍可知,发送设备在发送资源预留请求消息时,有三种可选的发送方式,发送方式一为仅通过第二波束发送,发送方式二为仅通过至少一个波束发送,发送方式三为通过第二波束和至少一个波束发送。而接收设备在接收资源预留请求消息后,有四种可选的处理方式,处理方式一为接收设备仅通过第三波束(这里为了区分接收设备和发送设备,将接收设备对应的第二波束改称为第三波束,实际上这里的第三波束与图8所示的实施例中的第二波束为同一特征)发送资源预留响应消息,处理方式二为接收设备仅通过至少一个波束发送资源预留请求消息,处理方式三为接收设备通过第三波束和至少一个波束发送资源预留请求消息,处理方式四为接收设备不发送资源预留请求消息。
那么,发送设备具体采用上述哪种发送方式来发送资源预留请求消息,可以是标准预定义的,也可以是由网络设备,例如基站,配置的,同理,接收设备在接收资源预留请求消息后,具体采用上述的四种处理方式中的哪一种进行响应,可以是标准预定义的,也可以是由网络设备,例如基站,配置的。而对于发送设备和接收设备来说,如上的发送设备的三种发送方式和接收设备的四种处理方式可任意组合,例如,标准可以预定义发送设备采用如上的三种发送方式中的任一种来发送资源预留请求消息,还可以预定义接收设备采用如上的四种处理方式中的任一种来响应接收的资源预留请求消息。也就是说,本申请实施例对于发送设备采用的发送方式和接收设备采用的处理方式均不作限制。
或者说,综上所述,发送设备在第一方向发送RRQ,具体可以有两种可能的发送方式:
发送方式1:第一方向仅包括与发送设备的潜在传输方向相反的方向,也就是,第一方向仅包括图5所示的实施例中所述的至少一个波束的方向,即,发送设备不在潜在传输方向上发送RRQ,也就是不在第二波束方向上发送RRQ;或,
发送方式2:第一方向既包括与发送设备的潜在传输方向相反的方向,也包括潜在传输方向,也就是,第一方向包括第二波束的方向和至少一个波束的方向,即,发送设备在两个方向都发送。其中,在两个方向都发送可以是同时发送,也可以是分时依次发送。
发送设备具体采用上述哪种发送方式来发送RRQ,可以是标准预定义的,也可以是由网络设备,例如基站,配置的。
当一个接收设备接收到发送给该接收设备的RRQ时,可以有下述几种可能的处理方式:
处理方式1:接收设备不发送RRS,等待发送设备数据即可。这种情况下的RRQ类似802.11中的CTS-to-Self,接收设备收到这种RRQ时应知道无需回复RRS。例如,RRQ中指示无需回复RRS。这种无需回复RRS的RRQ一般适用于接收设备和发送设备之 间的距离较近的情况,特别是发送RRQ的发送设备比接收设备的发送功率大的情况;或,
处理方式2:接收设备在第一方向回复RRS,且第一方向仅包括接收设备的潜在传输方向(即由接收设备指向发送设备的方向),也就是,第一方向仅包括图8所示的实施例中所述的第二波束的方向,即,接收设备只在潜在传输方向上回复RRS;或,
处理方式3:接收设备在第一方向回复RRS,且第一方向同时包括接收设备的潜在传输方向以及与其相反的方向,也就是,第一方向包括图8所示的实施例中所述的第二波束的方向和至少一个波束的方向,即,接收设备在两个方向上都发送RRS。其中,在两个方向都发送可以是同时发送,也可以是分时依次发送;或,
处理方式4:接收设备接收RRQ后,如果接收设备确定该接收设备所维护的资源预留计时器的计时值大于0,则该接收设备选择不发送RRS。也就是说,预先做下述规定:当一个资源预留计时器大于0的设备接收到目标为该设备的消息(如RRQ或数据)时,不会立即去竞争信道并回复响应消息(如RRS或HARQ ACK),例如在NR-U的标准中做上述规定。以图4为例,当接收设备2接收到来自发送设备2的RRQ或数据时,由于接收设备2的资源预留计时器之前已被来自接收设备2的RRS所设置(即,接收设备2的资源预留计时器大于0),故接收设备2不会回复资源预留响应消息,因此不会对接收设备1在波束2上的接收造成干扰。
接收设备收到发送给自己的RRQ后会采用上述四种处理方式中的哪一种进行响应,可以是标准预定义的,也可以是由网络设备,例如基站,配置的。
下面结合附图介绍本申请实施例提供的装置。
图12示出了一种通信装置1200的结构示意图。该通信装置1200可以实现上文中涉及的发送设备或接收设备的功能。该通信装置1200可以是上文中所述的发送设备,或者可以是设置在上文中所述的发送设备中的芯片或其他部件,或者可以是上文中所述的接收设备,或者可以是设置在上文中所述的接收设备中的芯片或其他部件。该通信装置1200可以是网络设备,例如基站或接入点(access point,AP)等,或者也可以是终端设备,或者是设置在网络设备或终端设备中的芯片。该通信装置1200可以包括处理器1201和收发器1202,例如收发器1202可以通过射频收发器实现,在该通信装置1200中,处理器1201的数量为一个或多个。其中,处理器1201可以用于执行图5所示的实施例中的S51,和/或用于支持本文所描述的技术的其它过程,收发器1202可以用于执行图5所示的实施例中的S52,和/或用于支持本文所描述的技术的其它过程;或者,处理器1201可以用于执行图8所示的实施例中的S82,和/或用于支持本文所描述的技术的其它过程,收发器1202可以用于执行图8所示的实施例中的S81和S83,和/或用于支持本文所描述的技术的其它过程;或者,处理器1201可以用于执行图8所示的实施例中的S112,和/或用于支持本文所描述的技术的其它过程,收发器1202可以用于执行图8所示的实施例中的S111,和/或用于支持本文所描述的技术的其它过程。其中,收发器1202可以理解为一个整体的结构,用于实现收发功能,或者也可以理解为包括两种结构,分别称为发送器和接收器,发送器用于实现发送信息或发送数据的功能,接收器用于实现接收信息或接收数据的功能。
例如,处理器1201,用于确定用于发送资源预留消息的至少一个波束,所述至少 一个波束包括第一波束,所述第一波束的方向与第二波束的方向相反,所述第二波束的方向是所述通信装置发送信息的潜在传输方向;
收发器1202,用于通过所述至少一个波束发送所述资源预留消息,所述资源预留消息包括资源预留请求消息或资源预留响应消息,所述资源预留请求消息用于请求预留传输资源,所述资源预留响应消息用于确定预留传输资源。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在一个简单的实施例中,本领域的技术人员可以想到,还可以将通信装置1200通过如图13A所示的通信装置1300的结构实现。该通信装置1300可以实现上文中涉及的网络设备或终端设备的功能。该通信装置1300可以包括处理器1301,在该通信装置1300中,处理器1301的数量为一个或多个。
其中,在该通信装置1300用于实现图5所示的实施例中的发送设备的功能时,处理器1301可以用于执行图5所示的实施例中的S51,和/或用于支持本文所描述的技术的其它过程。在该通信装置1300用于实现图8所示的实施例中的接收设备的功能时,处理器1301可以用于执行图8所示的实施例中的S82,和/或用于支持本文所描述的技术的其它过程。在该通信装置1300用于实现图11所示的实施例中的接收设备的功能时,处理器1301可以用于执行图11所示的实施例中的S112,和/或用于支持本文所描述的技术的其它过程。
其中,通信装置1300可以通过现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片实现,则通信装置600可被设置于本申请实施例的网络设备或通信设备中,以使得该网络设备或通信设备实现本申请实施例提供的传输消息的方法。
在一种可选实现方式中,该通信装置1300可以包括收发组件,用于与其他设备进行通信,收发组件也可理解为通信单元,通信单元例如可以是输入/输出接口、管脚或电路等。例如,在该通信装置1300用于实现图5所示的实施例中的发送设备的功能时,收发组件可以用于执行图5所示的实施例中的S52,和/或用于支持本文所描述的技术的其它过程。在该通信装置1300用于实现图8所示的实施例中的接收设备的功能时,收发组件可以用于执行图8所示的实施例中的S81和S83,和/或用于支持本文所描述的技术的其它过程。在该通信装置1300用于实现图11所示的实施例中的接收设备的功能时,收发组件可以用于执行图11所示的实施例中的S111,和/或用于支持本文所描述的技术的其它过程。
在一种可选实现方式中,该通信装置1300还可以包括存储器1302,可参考图13B,其中,存储器1302用于存储计算机程序或指令,处理器1301用于译码和执行这些计算机程序或指令,存储器1302可以为通信装置1300内的存储单元,如寄存器、缓存等,或,存储器1302也可以是位于通信装置1300所在的设备内、但位于通信装置1300 外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。应理解,这些计算机程序或指令可包括上述发送设备或接收设备的功能程序。当发送设备的功能程序被处理器1301译码并执行时,可使得发送设备实现本申请实施例图5所示的实施例、图8所示的实施例或图11所示的实施例所提供的方法中发送设备的功能。当接收设备的功能程序被处理器1301译码并执行时,可使得接收设备实现本申请实施例的图5所示的实施例、图8所示的实施例或图11所示的实施例所提供的方法中接收设备的功能。
在另一种可选实现方式中,这些发送设备或接收设备的功能程序存储在通信装置1300外部的存储器中。当发送设备的功能程序被处理器1301译码并执行时,存储器1302中临时存放上述发送设备的功能程序的部分或全部内容。当接收设备的功能程序被处理器1301译码并执行时,存储器1302中临时存放上述接收设备的功能程序的部分或全部内容。
在另一种可选实现方式中,这些发送设备或接收设备的功能程序被设置于存储在通信装置1300内部的存储器1302中。当通信装置1300内部的存储器1302中存储有发送设备的功能程序时,通信装置1300可被设置在本申请实施例的发送设备中。当通信装置1300内部的存储器1302中存储有接收设备的功能程序时,通信装置1300可被设置在本申请实施例的接收设备中。
在又一种可选实现方式中,这些发送设备的功能程序的部分内容存储在通信装置1300外部的存储器中,这些发送设备的功能程序的其他部分内容存储在通信装置1300内部的存储器1302中。或,这些接收设备的功能程序的部分内容存储在通信装置1300外部的存储器中,这些接收设备的功能程序的其他部分内容存储在通信装置1300内部的存储器1302中。
在以上实施例中,所涉及的收发器(或收发组件)用于具体的信号收发。处理器则用于控制收发器(或收发组件)做信号收发,并执行其他的处理功能。因此收发器(或收发组件)相当于空口信号收发的执行者,而处理器则是该空口信号收发的控制者,用于调度或控制收发器(或收发组件)实现收发。处理器在存储器中的软件程序或指令的驱动下控制收发器(或收发组件)工作,实现各类信号收发,共同实现以上任一方法实施例的流程。因此处理器或收发器(或收发组件)中的一个或全部可以被认为是能够执行空口的收发行为。
在本申请实施例中,通信装置1200及通信装置1300对应各个功能划分各个功能模块的形式来呈现,或者,可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指ASIC,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
另外,图12所示的实施例提供的通信装置1200还可以通过其他形式实现。例如该通信装置包括处理模块和收发模块。例如处理模块可通过处理器1201实现,收发模块可通过收发器1202实现。其中,处理模块可以用于执行图5所示的实施例中的S51,和/或用于支持本文所描述的技术的其它过程,收发模块可以用于执行图5所示的实施例中的S52,和/或用于支持本文所描述的技术的其它过程;或者,处理模块可以用于 执行图8所示的实施例中的S82,和/或用于支持本文所描述的技术的其它过程,收发模块可以用于执行图8所示的实施例中的S81和S83,和/或用于支持本文所描述的技术的其它过程;或者,处理模块可以用于执行图8所示的实施例中的S112,和/或用于支持本文所描述的技术的其它过程,收发模块可以用于执行图8所示的实施例中的S111,和/或用于支持本文所描述的技术的其它过程。
例如,处理模块,用于确定用于发送资源预留消息的至少一个波束,所述至少一个波束包括第一波束,所述第一波束的方向与第二波束的方向相反,所述第二波束的方向是所述通信装置发送信息的潜在传输方向;
收发模块,用于通过所述至少一个波束发送所述资源预留消息,所述资源预留消息包括资源预留请求消息或资源预留响应消息,所述资源预留请求消息用于请求预留传输资源,所述资源预留响应消息用于确定预留传输资源。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
由于本申请实施例提供的通信装置1200及通信装置1300可用于执行图5所示的实施例、图8所示的实施例或图11所示的实施例所提供的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种发送资源预留消息的方法,其特征在于,包括:
    通信装置确定用于发送资源预留消息的至少一个波束,所述至少一个波束包括第一波束,所述第一波束的方向与第二波束的方向相反,所述第二波束的方向是所述通信装置发送信息的潜在传输方向;
    所述通信装置通过所述至少一个波束发送所述资源预留消息,所述资源预留消息包括资源预留请求消息或资源预留响应消息,所述资源预留请求消息用于请求预留传输资源,所述资源预留响应消息用于确定预留传输资源。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述通信装置还通过所述第二波束发送所述资源预留消息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述至少一个波束中还包括以下波束中的至少一种:
    方向与所述第二波束的方向之间的夹角大于0°且小于180°的波束;及,
    方向与所述第二波束的方向之间的夹角大于180°且小于360°的波束。
  4. 根据权利要求3所述的方法,其特征在于,所述通信装置通过所述至少一个波束发送资源预留消息,包括:
    所述通信装置通过所述至少一个波束中的每个波束同时发送所述资源预留消息;或,
    所述通信装置通过所述至少一个波束中的每个波束,分时发送所述资源预留消息。
  5. 根据权利要求1~4任一所述的方法,其特征在于,所述通信装置为发送设备,所述资源预留消息为所述资源预留请求消息,所述方法还包括:
    所述通信装置在发送所述资源预留请求消息之后,通过所述第二波束发送数据。
  6. 根据权利要求1~4任一所述的方法,其特征在于,所述通信装置为接收设备,所述资源预留消息为所述资源预留响应消息,在所述通信装置确定所述至少一个波束之前,还包括:
    所述通信装置从发送设备接收资源预留请求消息。
  7. 一种通信装置,其特征在于,包括:
    处理器,用于确定用于发送资源预留消息的至少一个波束,所述至少一个波束包括第一波束,所述第一波束的方向与第二波束的方向相反,所述第二波束的方向是所述通信装置发送信息的潜在传输方向;
    收发器,用于通过所述至少一个波束发送所述资源预留消息,所述资源预留消息包括资源预留请求消息或资源预留响应消息,所述资源预留请求消息用于请求预留传输资源,所述资源预留响应消息用于确定预留传输资源。
  8. 根据权利要求7所述的通信装置,其特征在于,所述收发器还用于:
    通过所述第二波束发送所述资源预留消息。
  9. 根据权利要求7或8所述的通信装置,其特征在于,所述至少一个波束中还包括以下波束中的至少一种:
    方向与所述第二波束的方向之间的夹角大于0°且小于180°的波束;及,
    方向与所述第二波束的方向之间的夹角大于180°且小于360°的波束。
  10. 根据权利要求9所述的通信装置,其特征在于,所述收发器具体用于:
    通过所述至少一个波束中的每个波束同时发送所述资源预留消息;或,
    通过所述至少一个波束中的每个波束,分时发送所述资源预留消息。
  11. 根据权利要求7~10任一所述的通信装置,其特征在于,所述通信装置为发送设备,所述资源预留消息为所述资源预留请求消息,所述收发器还用于:
    在发送所述资源预留请求消息之后,通过所述第二波束发送数据。
  12. 根据权利要求7~10任一所述的通信装置,其特征在于,所述通信装置为接收设备,所述资源预留消息为所述资源预留响应消息,所述收发器还用于:
    在所述处理器确定所述至少一个波束之前,从发送设备接收资源预留请求消息。
  13. 一种计算机可读存储介质,其特征在于,所述介质上存储有指令,当其在计算机上运行时,使得计算机实现如权利要求1~6任一项所述的方法。
PCT/CN2019/072641 2018-02-14 2019-01-22 一种发送资源预留消息的方法及装置 WO2019157913A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19754688.0A EP3720180A4 (en) 2018-02-14 2019-01-22 METHOD AND APPARATUS FOR SENDING A RESOURCE RESERVATION MESSAGE
US16/964,576 US11564131B2 (en) 2018-02-14 2019-01-22 Method for sending resource reservation message and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810152193 2018-02-14
CN201810152193.0 2018-02-14
CN201810713886.2 2018-06-29
CN201810713886.2A CN110167077A (zh) 2018-02-14 2018-06-29 一种发送资源预留消息的方法及装置

Publications (1)

Publication Number Publication Date
WO2019157913A1 true WO2019157913A1 (zh) 2019-08-22

Family

ID=67619754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072641 WO2019157913A1 (zh) 2018-02-14 2019-01-22 一种发送资源预留消息的方法及装置

Country Status (1)

Country Link
WO (1) WO2019157913A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106576302A (zh) * 2014-08-18 2017-04-19 三星电子株式会社 许可和未许可频段上的通信
CN106664289A (zh) * 2014-08-28 2017-05-10 瑞典爱立信有限公司 用于实现对无线通信网络中的数据传输的干扰管理的通信设备及其方法
CN107078887A (zh) * 2014-11-06 2017-08-18 三星电子株式会社 Lte小区在非授权频谱上的高效操作

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106576302A (zh) * 2014-08-18 2017-04-19 三星电子株式会社 许可和未许可频段上的通信
CN106664289A (zh) * 2014-08-28 2017-05-10 瑞典爱立信有限公司 用于实现对无线通信网络中的数据传输的干扰管理的通信设备及其方法
CN107078887A (zh) * 2014-11-06 2017-08-18 三星电子株式会社 Lte小区在非授权频谱上的高效操作

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3720180A4 *

Similar Documents

Publication Publication Date Title
JP7324779B2 (ja) チャネル化および帯域幅パート(bwp)
JP5795023B2 (ja) ミリ波無線システムにおけるクラスタリング管理
CN111148269B (zh) 用于同时数据传送和接收的无线通信方法及装置
US10581582B2 (en) Wireless communication method and wireless communication device for configuring broadband link
RU2426273C2 (ru) Передачи множеству станций в системах беспроводной связи
WO2019153756A1 (zh) 一种多接入点ap协调传输的方法以及相关装置
US11564131B2 (en) Method for sending resource reservation message and apparatus
EP3820225A1 (en) Multi access point coordination of target wake time schedules
JP2013515392A (ja) 送信指向性を設定して通信する装置、システム及び方法
US20160381646A1 (en) Method and system for high density wi-fi communications
JP5335918B2 (ja) スケジュールされたレガシー保護フレームを提供するためのシステムおよび方法
CN108141892A (zh) 用于选择用于多用户传输的增强型分布式信道接入参数的方法和装置
US20230371010A1 (en) Wireless communication method and wireless communication terminal, which use network allocation vector
US20200252961A1 (en) Wireless communication method for saving power and wireless communication terminal using same
WO2015109599A1 (zh) 无线通信方法、接入点和站点
WO2020225474A1 (en) Sharing transmission opportunity with beamforming
JP2018519717A (ja) 省電力トリガ
US20160353484A1 (en) Efficient random scheduled channel access
WO2016161633A1 (zh) 一种无线网络通信的方法和接入点设备
WO2019157913A1 (zh) 一种发送资源预留消息的方法及装置
WO2019178790A1 (zh) 用于信号传输的方法和设备
Bazan et al. Beamforming Antennas in Wireless Networks: Multihop and Millimeter Wave Communication Networks
WO2023155589A1 (zh) 上行接入方法及通信装置
WO2024067516A1 (zh) 一种通信方法及装置
WO2024032419A1 (zh) 基于被触发的传输机会共享机制的通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019754688

Country of ref document: EP

Effective date: 20200703

NENP Non-entry into the national phase

Ref country code: DE