WO2019157844A1 - 充电方法及装置、系统、充电电路、终端、充电系统 - Google Patents

充电方法及装置、系统、充电电路、终端、充电系统 Download PDF

Info

Publication number
WO2019157844A1
WO2019157844A1 PCT/CN2018/116219 CN2018116219W WO2019157844A1 WO 2019157844 A1 WO2019157844 A1 WO 2019157844A1 CN 2018116219 W CN2018116219 W CN 2018116219W WO 2019157844 A1 WO2019157844 A1 WO 2019157844A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
conversion circuit
terminal
output
charged
Prior art date
Application number
PCT/CN2018/116219
Other languages
English (en)
French (fr)
Inventor
龚勇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/966,748 priority Critical patent/US20200373778A1/en
Priority to EP18906048.6A priority patent/EP3754777A4/en
Publication of WO2019157844A1 publication Critical patent/WO2019157844A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of charging, and in particular to a charging method and device, a system, a charging circuit, a terminal, and a charging system.
  • Terminals such as mobile phones have become a living tool for communication interaction, digital entertainment, etc., and large-capacity batteries have become typical configurations of terminals.
  • High-capacity batteries and frequent use make fast charging an important aspect of the end-user experience.
  • the charging current of the battery increases, how to make the battery obtain a large charging current when the terminal is charged, shorten the charging time, and improve the user experience of the terminal, which has become an important direction of the terminal development process.
  • USB PD 3.1 is released.
  • the USB VBUS can support incremental changes of 20mV and 10mA, enabling the terminal with the TYPE C interface to support a more flexible fast charging process.
  • the battery capacity of the terminal is increased, and rapid charging becomes a technology that is urgently required by the terminal.
  • the essence of fast charging is to increase the output power of the charging device, and even if the charging conversion chip gives the battery a larger charging current, the charging time is shortened.
  • the low voltage and high current increase the output power of the charging device by increasing the output current of the charging device, so that the battery can also obtain a larger charging current.
  • the main implementation of low-voltage and high-current is the direct charging mode, that is, the charging device directly charges the battery.
  • the charging algorithm implementation control unit of the terminal notifies the charging device to output a suitable current and voltage to directly charge the battery according to the detected battery state.
  • the essence of this mode is to transfer the function of the charging conversion chip of the terminal to the charging device, and also to the charging device caused by the charging conversion chip in the voltage conversion process.
  • the charging device has a large structure space relative to the terminal, and can fully dissipate heat, and does not cause heat generation of the terminal when the terminal battery is quickly charged, which is also the advantage of the advantages of low voltage and large current.
  • the high voltage charging method increases the output power of the charging device by increasing the output voltage of the charging device.
  • the terminal's charge conversion chip obtains a large input power and converts a large output power.
  • the output voltage is constant, that is, a large output current is converted, so that the battery obtains a large charging current and shortens the charging time.
  • the charging algorithm implementation control unit of the terminal notifies the charging device to output a suitable high voltage according to the state of the detecting battery and the charging conversion chip; when the high voltage is transmitted to the charging conversion chip of the terminal, the voltage suitable for the battery is converted and corresponding The current is used to charge the battery.
  • the inductive step-down charge conversion chip can output the required voltage according to the charging process.
  • the input voltage can be higher than the minimum input value.
  • the fast charging of the terminal platform manufacturer Qualcomm is the main technical representative; the switched capacitor array charging conversion chip is always maintained.
  • the input and output become a certain conversion ratio relationship, and the charge conversion chip will maintain a high working efficiency when converting the proportional relationship.
  • the low-voltage and high-current mode has high impedance loss, which puts high requirements on the charging cable and has high cable cost.
  • the conventional micro USB connector has an electrical specification of 1.8A, which cannot meet the low-voltage and high-current mode. Therefore, the charging cable and the connector need to be re-customized, and the non-standard cable brings a bad user experience.
  • the high-voltage charging mode has relatively small current between the charging device and the charging conversion chip, and the line loss is small.
  • the standard charging cable and the connector can be used, the cable cost is low, and the cable range is wide. This is also one of the advantages of the high-voltage charging method.
  • the inductive step-down charge conversion chip is not efficient because of high power operation, so that when the high-power voltage is switched, the charging conversion chip generates heat, which causes heat generation during terminal charging and poor user experience. Therefore, in the actual charging process, the charging conversion chip cannot operate at a high power due to heat, and cannot output a large current, so that rapid charging cannot be achieved. Obviously, the working efficiency restricts the working state of the inductive buck charging conversion chip, thereby affecting the charging efficiency.
  • Embodiments of the present invention provide a charging method and device, a system, a charging circuit, a terminal, and a charging system, to at least solve the charging problem of the charging scheme in the related art and the technical problem of poor user experience.
  • a charging method including: detecting an operating parameter of a terminal to be charged in a charging process, wherein the working parameter is used to reflect a state of the terminal to be charged in a charging process Adjusting an operating state of the charging conversion circuit in the terminal to be charged according to the working parameter, wherein different working states correspond to different charging efficiencies.
  • a charging circuit includes: a charging conversion circuit connected to a charging management module, configured to convert an input voltage of the charging conversion circuit into an output voltage according to a preset conversion ratio;
  • the module is connected to the charging management module, and is configured to collect an operating parameter of the terminal to be charged during charging, and send the working parameter to the charging management module, where the working parameter is used to reflect the terminal to be charged a state in the charging process;
  • the charging management module is configured to generate, according to the operating parameter, a control instruction for implementing a function of: adjusting an operating state of the charging conversion circuit in the terminal to be charged, wherein different operations The status corresponds to different charging efficiencies.
  • a terminal comprising: the charging circuit described above.
  • a charging system includes: a charging device and a terminal to be charged, wherein the charging device includes: a power management module, connected to the power conversion output module, and configured to be connected to the terminal to be charged
  • the charging management module communicates and generates a control command; the power conversion output module is configured to output an output electrical signal corresponding to the control command according to the control command;
  • the to-be-charged terminal includes: a charging conversion circuit, and a
  • the charging management module is connected to be configured to convert the input voltage of the charging conversion circuit into an output voltage according to a preset conversion ratio; the collecting module is connected to the charging management module, and is configured to collect the charging terminal in the charging process.
  • the charging management module is configured to generate according to the working parameter Control instruction for implementing the following functions: adjusting the terminal to be charged Operating state conversion circuit, wherein the different operating states corresponding to different charging efficiency.
  • a charging apparatus including: a detecting module configured to detect an operating parameter of a terminal to be charged during charging, wherein the operating parameter is used to reflect that the terminal to be charged is a state in the charging process; the adjusting module is configured to adjust an operating state of the charging conversion circuit in the terminal to be charged according to the working parameter, wherein different working states correspond to different charging efficiencies.
  • a storage medium including a stored program, wherein, when the program is running, the device in which the storage medium is located is executed to perform the charging method of any of the above.
  • a processor is provided, the processor being configured to execute a program, wherein the program is executed while performing the charging method of any of the above.
  • an electronic device comprising a memory and a processor, wherein the memory stores a computer program, the processor being configured to perform the charging method described above by the computer program .
  • the charging efficiency of the charging conversion circuit is realized by adjusting the working state of the charging conversion circuit (for indicating the charging efficiency) according to the working parameter of the terminal to be charged in the charging process.
  • the adjustment improves the charging efficiency, thereby solving the charging problem of the charging scheme in the related art and the technical problem of poor user experience.
  • FIG. 1a is a schematic structural diagram of a charging system according to an embodiment of the present application.
  • FIG. 1b is a schematic structural diagram of a charging system according to an embodiment of the present application.
  • FIG. 1c is a schematic structural diagram of another optional charging system according to an embodiment of the present application.
  • FIG. 2 is a schematic flow chart of a charging method according to an embodiment of the invention.
  • FIG. 3 is a schematic flow chart of an optional charging method of an output signal of a charger power supply according to an embodiment of the invention
  • FIG. 4 is a schematic flow chart of a charging method when another optional charger power supply output signal is fixed (ie, the charger power supply fixed output) according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing the workflow of an optional charger according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an optional charging circuit according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing the circuit structure of an optional switched capacitor array according to an embodiment of the invention.
  • FIG. 8 is a diagram showing an alternative relationship between a clk signal and a /clk signal according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another optional charging circuit according to an embodiment of the present invention.
  • FIG. 10 is a flow chart of another optional charging method when the charger output power is adjustable according to an embodiment of the invention.
  • FIG. 11 is a flow chart of another optional charging method when the charger output power is adjustable according to an embodiment of the invention.
  • FIG. 12 is a schematic structural diagram of another optional charging circuit according to an embodiment of the present invention.
  • FIG. 13 is a flow chart showing another alternative charging method when the charger output power is adjustable according to an embodiment of the present invention.
  • FIG. 14 is a flow chart showing another alternative charging method when the charger output power is not adjustable according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of another optional charging system according to an embodiment of the present invention.
  • 16 is a flow chart showing another alternative charging method when the charger output power is adjustable according to an embodiment of the present invention.
  • 17 is a flow chart showing another alternative charging method when the charger output power is not adjustable according to an embodiment of the present invention.
  • FIG. 18 is a schematic structural view of a charging device according to an embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram of a charging circuit according to an embodiment of the present invention.
  • Charging efficiency of the charge conversion circuit the ratio of the output power of the charge conversion circuit to the input power.
  • Switched capacitor array comprising at least one capacitive switch combination, each capacitive switch combination comprising at least one capacitive switching circuit.
  • the storage medium or the storage device in the embodiment of the present application includes not only a device for storing data locally but also a storage node on the cloud network, but is not limited thereto.
  • the “user” involved in the embodiments of the present application includes, but is not limited to, a biological creature such as a human being, and may also include an electronic device such as a robot that automatically performs work or tasks.
  • a charge conversion chip based on a switched capacitor array converts an input voltage and an output voltage in a proportional relationship to achieve a high work efficiency within an allowable operating current range.
  • the switched capacitor array charging conversion chip has been greatly improved.
  • the high efficiency of the switched capacitor array charge conversion chip is related to the conversion power and the ratio of the input voltage to the output voltage. When the ratio of the input voltage to the output voltage exceeds a certain range, the operating efficiency of the switched capacitor array charge conversion chip is drastically reduced.
  • the switching capacitor array charging conversion chip is not ideal.
  • the input voltage does not change and the power is small enough, that is, when the input current is small to a certain range, the working efficiency of the switched capacitor array charge conversion chip also drops sharply. Therefore, the high efficiency operating state of the switched capacitor array charge conversion chip is susceptible to conditions.
  • the low-voltage and high-current charging method in the related art transfers the heat of the charging conversion chip to the charging device end, ignoring the influence of the charging conversion chip operating efficiency, the speciality and highness of the charging cable and the connector are high. Cost, circuit design complexity makes this charging method not widely available.
  • the high-voltage charging method has advantages in low-voltage and high-current charging methods in line loss and device cost, but because of the work efficiency, the high-voltage charging method realized by the inductive step-down charging conversion chip does not reflect the low-voltage and high-current modes.
  • the switched capacitor array charge conversion chip has higher efficiency when operating at high power, and has a comparative advantage over the low voltage and high current charging mode.
  • the current high efficiency operation of the switched capacitor array charge conversion chip is also affected by the input and output voltage and power, so that the range of use of the switched capacitor array charge conversion chip is also limited.
  • the charging scheme in the related art has a problem of charging efficiency and poor user experience.
  • the embodiment of the present application provides a corresponding solution, which is described in detail below.
  • FIG. 1a is a schematic structural diagram of a charging system according to an embodiment of the present application. As shown in FIG. 1a, the charging system includes: a charging device 10 and a terminal 12 to be charged, wherein
  • the charging device 10 includes a power management module 100 and a power conversion output module 102. among them:
  • the power management module 100 is connected to the power conversion output module 102, configured to communicate with the charging management module in the terminal to be charged, and generate a control command.
  • the power conversion output module 102 is configured to output an output corresponding to the control command according to the control command. electric signal.
  • the power management module 100 is configured to perform communication identification before charging with the terminal to be charged, and control the power conversion output module 102 according to the communicated information during the charging process; wherein the power management module 100 can
  • the communication with the terminal to be charged is communicated by, for example, a charging device (for example, a charging device) for the TYPE C interface can communicate through the signal line CC of the interface, a charging device of the USB interface other than the TYPE C, and data through the USB interface.
  • a charging device for example, a charging device for the TYPE C interface can communicate through the signal line CC of the interface, a charging device of the USB interface other than the TYPE C, and data through the USB interface.
  • the content to be communicated with the power management module 100 includes, but is not limited to, obtaining a charging protocol supported by the charging device and a power output capability of the charging device, for example, a range of output voltage, a range of output current, and an adjustable output voltage. Step diameter, adjustable step of output current.
  • the power conversion output module 102 is configured to output an accurate voltage and current according to information communicated by the power management module.
  • the power management module 100 of the charging device is configured to perform an identification interaction before charging with the terminal to be charged, which indicates that the charging device can perform a specific power output capability according to the requirements of the terminal, and can also know whether the terminal needs a specific power output.
  • the power management module 100 fails to communicate with the terminal to be charged, the power management module 100 controls the power conversion output module 102 to perform power output according to the standard specification of the charging device.
  • the voltage management module 100 can be a functional circuit implemented by a microprocessor chip or a chip supporting a protocol such as the TYPE C PD protocol; the power conversion output can be implemented by a programmable power chip or a voltage and current tunable circuit.
  • the terminal to be charged 12 includes:
  • the charging conversion circuit 120 is connected to the charging management module 122 and configured to convert the input voltage of the charging conversion circuit 120 into an output voltage according to a preset conversion ratio;
  • the charge conversion circuit 120 includes: a capacitive switch array, the capacitor switch array includes: a plurality of capacitive switch combinations; and a plurality of capacitive switch combinations, wherein each of the plurality of capacitive switch combinations corresponds to a conversion ratio, and controlling at least a portion of the capacitance of each of the capacitive switch combinations by closing and/or opening at least a portion of the switched capacitor circuit of each of the capacitive switch combinations, the conversion ratio being an input of the charge conversion circuit The ratio of voltage to output voltage.
  • the implementation of the charging conversion circuit 120 will be described in detail below, and details are not described herein again.
  • the collection module 124 is connected to the charging management module 122, and is configured to collect the working parameters of the terminal to be charged in the charging process, and send the working parameters to the charging management module 122, wherein the working parameters are used to reflect the charging terminal in the charging process. status;
  • the acquisition module 124 includes, but is not limited to, a temperature sensor disposed near the battery of the terminal to be charged, a module for collecting the state of the battery in the terminal to be charged, a temperature sensor for collecting the temperature change of the charge conversion circuit, and a collection charge conversion circuit.
  • a module for inputting power and output power eg, an input current acquisition module of the charge conversion circuit, an input voltage acquisition module, an output current acquisition module, and an output voltage acquisition module; and may also include a processor that calculates power based on current and voltage).
  • the acquisition module 124 can include at least one of the following: a first current collection module 1241, disposed at an input end of the charge conversion circuit, configured to collect an input current of the charge conversion circuit; and a second current acquisition module 1243, disposed at an output end of the charging conversion circuit, configured to collect an output current of the charging conversion circuit;
  • the first voltage collecting module 1245 is disposed at an input end of the charging conversion circuit, and is configured to collect an input voltage of the charging conversion circuit;
  • the second voltage The acquisition module 1247 is disposed at an output end of the charge conversion circuit and configured to collect an output voltage of the charge conversion circuit.
  • the acquisition module 124 may further include the following modules: a first temperature collection module 1249, connected to the charge management module 122, configured to collect first temperature information of the charge conversion circuit; and a second temperature acquisition module 1251. And connected to the charging management module 122, configured to collect second temperature information of the battery in the terminal to be charged.
  • the charging management module 122 is configured to generate a control instruction for implementing the following functions according to the operating parameters: adjusting the working state of the charging conversion circuit 120 in the terminal 12 to be charged, wherein different working states correspond to different charging efficiencies.
  • the charge management module 122 is configured to perform identification interaction with the charging device 10, temperature detection of the charge conversion chip and battery, input voltage and current of the charge conversion chip, detection of output voltage and current, and The control signal of the charge conversion chip; the switched capacitor array of the charge conversion chip converts the input power to a suitable output power source to charge the battery.
  • the power management module 122 of the charging device is configured to perform an identification interaction before charging with the terminal to be charged, which indicates that the charging device can perform a specific power output capability according to the requirements of the terminal, and can also know whether the terminal needs a specific power output.
  • the power management module 100 in the charging device 10 fails to communicate with the terminal to be charged, the power management module 100 controls the power conversion output module 102 to perform power output according to the standard specification of the charging device.
  • the voltage management module 100 can be a functional circuit implemented by a microprocessor chip or a chip supporting a certain protocol (for example, the TYPE C PD protocol); the power conversion output module 102 can be implemented by a programmable power supply chip or a voltage and current tunable circuit. .
  • the charging management module 122 communicates with the charging device 10 to learn the power output capability of the charging device. At the same time, the input voltage, the input voltage, the output current, and the operating temperature change of the charging conversion chip (corresponding to the charging conversion circuit 120) are detected. , to detect the temperature change when the battery is charged. According to the power output state of the charging device, the charging conversion chip operating state, and the battery charging state, the working process of different charging conversion chips is selected, so that the charging conversion chip operates in an optimal efficiency state to achieve an optimal efficiency fast charging process.
  • the charge conversion chip can be realized by a switched capacitor array chip or a capacitor capacitor array composed of a capacitor and a MOS tube; temperature detection can be realized by a thermistor or other temperature measuring component; charging management can be simulated for a microprocessor and a voltage detection The digital conversion chip, the coulomb counter for current detection, and the functional circuit components required to control the charge conversion chip. And the corresponding functional device can be selected according to the state detection, the charging algorithm and the charging conversion chip control.
  • FIG. 1c is a schematic structural diagram of another alternative charging system according to an embodiment of the present application.
  • the charging device 10 and the terminal 12 are connected by a charging cable 111 and a data communication bus 113.
  • the charger (ie, charging device) 10 includes: a power conversion output module 102 and a power management module 100;
  • the embodiment of the present application further provides a charging method, which may be implemented in the hardware scenario shown in FIG. 1a and FIG. 1b, but is not limited thereto. As shown in FIG. 2, the method includes the following processing steps:
  • Step S202 detecting an operating parameter of the terminal to be charged in the charging process, wherein the working parameter is used to reflect the state of the terminal to be charged in the charging process;
  • Detecting the operating parameters of the terminal to be charged during charging includes at least one of: detecting a state of the battery in the terminal to be charged, a temperature change of the charge conversion circuit, an input current or an input voltage of the charge conversion circuit, and an output current or an output voltage.
  • the corresponding adjustment manner may also be determined according to the type of the charging device, for example, determining the charging device type of the charging device connected to the terminal to be charged, wherein charging The device type includes: a first type that supports adjustment of an output electrical signal of the charging device; a second type that does not support adjustment of an output electrical signal of the charging device, wherein the output electrical signal includes: an output voltage and/or an output current;
  • the charging device type is the first type, and the charging efficiency is not the specified charging efficiency
  • the first command for adjusting the magnitude of the output electrical signal of the charging device is transmitted to the charging device.
  • Compensation for line loss can be compensated by: transmitting a second command to the charging device, the second command for controlling the charging device to output current according to the first current value; according to the first current value, the charging device, and the standby
  • a line impedance between the input terminals of the charge conversion circuit in the charging terminal determines a pressure difference which is a difference between an output voltage of the charging device and an input voltage of the charge conversion circuit; and transmits the pressure difference to the charging device such that The charging device compensates for the line loss between the charging device and the input of the charging conversion circuit in the terminal to be charged, depending on the voltage difference.
  • the conversion ratio of the charging conversion circuit may be adjusted to achieve adjustment of the charging efficiency during the charging process, for example, according to the charging to be charged.
  • the battery state and the charging current information in the terminal select a conversion ratio of the charging conversion circuit, and the conversion ratio is a ratio of an input voltage and an output voltage of the charging conversion circuit.
  • the current can be increased to improve the charging efficiency, for example, by, but not limited to, transmitting the third to the charging device.
  • an instruction, wherein the third instruction is used to control the charging device to output a current according to the second current value, where the second current value is greater than the first current value.
  • the charging device includes a charger and a charging conversion circuit including a charging conversion chip as an example.
  • a charging conversion circuit including a charging conversion chip as an example.
  • the charging device is The charging workflow for the two types can be seen in Figure 4.
  • the charger electronic device
  • the charging management unit of the terminal communicates with the charger to determine the charger. Information, whether the power supply output is adjustable and adjustable range.
  • the charging conversion chip (equivalent to the charging conversion circuit) is detected.
  • the voltage at the input terminal which is the charging voltage that the charger outputs to the terminal, and the output power of the charger is not adjustable by default.
  • the input voltage and the voltage of the battery that is, the input voltage and the output voltage, select a suitable conversion ratio of the switched capacitor array charging conversion chip, for example, 1/2, 1/3 or 2/3, wherein the conversion ratio can be converted by charging
  • the opening and closing of a plurality of switch combinations in the chip is implemented, but is not limited thereto.
  • the charging management unit obtains the information of the charger (including but not limited to the charging protocol supported by the charger, for example, PD3.1, charger manufacturer, loop impedance, etc.) and the power supply.
  • Output adjustment capability including but not limited to the range of output voltage, the range of output current, the adjustable step of the output voltage, and the adjustable step of the output current.
  • the charger output a small current (for example, 50mA current) to estimate the power line transmission impedance between the charger and the charge conversion chip. According to the voltage difference between the charger output voltage and the voltage at the input of the charge conversion chip, the difference can be calculated.
  • the line loss when the current is output so that the charger compensates for the line loss, so that the voltage reaching the charge conversion chip is more accurate.
  • the proportional relationship of the switched capacitor array charge conversion chip is selected, and the charger is notified to output accurate voltage and current.
  • the charging method shown in FIG. 3 includes the following processing steps:
  • Step S302 determining that the charger (corresponding to the above charging device) is inserted
  • Step S304 identifying the type of the charger, confirming that the type of the charger is adjustable for the output power (ie, the first type described above);
  • Step S306 using a small current to estimate the line impedance of the charger to the charge conversion chip (corresponding to the charge conversion circuit);
  • Step S308 selecting a conversion ratio of the charging conversion chip and a power output of the charger according to the battery state
  • Step S310 starting to charge the battery
  • Step S312 detecting the charge conversion chip input voltage Vin and the input current Iin, the output voltage Vout and the output current Iout, detecting the battery and the charge conversion chip temperature change;
  • Step S314 it is determined whether the battery and the charge conversion chip are hot, that is, whether the temperature value is greater than a preset threshold; if yes, go to step S312; otherwise, go to step S320;
  • Step S318 it is determined whether the charging conversion chip is in the highest efficiency point in this state (ie, whether it is in the highest charging efficiency state), if yes, then go to step S312, otherwise, go to step S320;
  • Step S320 it is determined whether it is necessary to adjust the power output of the charger, if yes, go to step S322, otherwise, go to step S324;
  • Step S322 notifying the charger to adjust the power output, step S312;
  • Step S324 the input current is less than a certain threshold, determine whether to adjust the proportional relationship of the charge conversion chip (ie, the conversion ratio), and if so, go to step S326, otherwise, go to step S328;
  • Step S328 it is determined whether the charging current is less than a certain threshold, whether it is necessary to adjust the clock frequency inside the charging conversion chip; if yes, go to step S330, otherwise, go to step S332;
  • Step S330 adjusting an internal clock frequency of the charging chip
  • Step S332 adjusting a duty ratio of a switching frequency inside the charging conversion chip
  • the charging method shown in FIG. 4 includes the following processing steps:
  • Step S402 determining that the charger is inserted
  • Step S404 identifying the type of the charger, confirming that the type of the charger is that the output power is not adjustable (ie, the second type described above);
  • Step S406 detecting an input voltage of the charge conversion chip, and selecting a conversion ratio of the charge conversion chip according to the battery state;
  • Step S410 detecting the charge conversion chip input voltage Vin and the input current Iin, the output voltage Vout and the output current Iout, and detecting the temperature change of the battery and the charge conversion chip;
  • Step S412 it is determined whether the battery and the charge conversion chip are hot, that is, whether the temperature value is greater than a preset threshold; if yes, go to step S418; otherwise, go to step S412;
  • Step S416 it is determined whether the charging conversion chip is in the highest efficiency point in this state, and if so, then proceeds to step S410, otherwise, proceeds to step S418;
  • Step S4108 it is determined whether it is necessary to adjust the conversion ratio of the charge conversion chip; if yes, then go to step S420, otherwise, go to step S422;
  • Step S420 adjusting a conversion ratio of the charging conversion chip
  • Step S422 it is determined whether the charging current is less than a certain threshold, whether it is necessary to adjust the clock frequency inside the charging conversion chip; if yes, go to step S424, otherwise, go to step S426;
  • Step S424 adjusting an internal clock frequency of the charging chip
  • the charging device type of the charging device connected to the terminal to be charged may be determined by: the terminal to be charged transmitting a request message to the charging device; when receiving the response message corresponding to the request message within a preset time Determining that the charging device type is the first type; when the response message corresponding to the request message is not received within the preset time, determining that the charging device type is the second type.
  • the above specified charging efficiency may be the charging efficiency required by the user.
  • the above specified charging efficiency includes, but is not limited to, the highest charging efficiency; the highest charging efficiency is determined by: selecting charging from the historical charging record. The highest efficiency value is used as the highest charging efficiency; or, the setting command is received, wherein the setting command carries charging efficiency; and the charging efficiency carried in the setting command is taken as the highest charging efficiency.
  • Vout is used to indicate the current output voltage of the charge conversion circuit
  • a represents the conversion ratio of the charge conversion circuit
  • the conversion ratio is the charge conversion circuit
  • the V potential difference voltage represents the difference between the design value of the output voltage of the charge conversion circuit and the input voltage of the battery in the terminal to be charged
  • Vout is designed to represent the charge conversion circuit.
  • the output voltage; Vin represents the input voltage of the charge conversion circuit.
  • the ratio of the input voltage and the output voltage involved in the conversion ratio may be a ratio of a theoretical input voltage to a design value of the output voltage.
  • the theoretical input voltage and output voltage may also be a charge conversion circuit.
  • Step S204 adjusting an operating state of the charging conversion circuit in the terminal to be charged according to the working parameter, wherein different working states correspond to different charging efficiency. Based on the processing step, the operating state of the charging conversion circuit can be adjusted according to the above operating parameters, thereby achieving adjustment of the charging efficiency.
  • one or more of the above four operating parameters may be utilized for the above-mentioned charge conversion circuit Work status is adjusted. For example, in the case of using a plurality of operating parameters: when it is detected that the temperature of the charging conversion circuit rises and the remaining amount of power in the battery does not reach the specified value, the charging current is lowered to prevent the temperature of the charging conversion circuit from being too high, which affects the charging efficiency; For example, when it is detected that the input current is less than the first threshold and the residual current of the battery does not reach the specified value, the input current is increased.
  • the combination of the above four working parameters can be flexibly adjusted according to actual conditions, and is not limited to the above embodiment.
  • the working state is an operating state corresponding to the charging efficiency.
  • the step S204 can be expressed as the following implementation manner, but is not limited thereto: the duty ratio of the operating frequency of the charging conversion circuit is adjusted according to the operating parameter, and/or the charging conversion circuit The conversion ratio, and / or the clock frequency of the charge conversion circuit.
  • the adjustment process of the working state in step S204 may be expressed as the following implementation manner, but is not limited thereto: determining whether the output current of the charging conversion circuit is less than the first threshold; and adjusting the charging conversion circuit when the determination result indicates that the output current is less than the first threshold.
  • the conversion ratio may be adjusted first, that is, the priority of the conversion ratio is higher than the priority of the output current.
  • the level can be implemented, for example, by determining whether the input current of the charge conversion circuit is less than a second threshold; adjusting the conversion ratio of the charge conversion circuit when the input current is less than the second threshold; and triggering when the input current is greater than the second threshold It is determined whether the output current is less than the first threshold.
  • the charging process begins to begin after a switched capacitor array charge conversion chip (including but not limited to a switched capacitor array based charge conversion chip) selects an appropriate conversion ratio relationship.
  • the charging management unit in the terminal to be charged detects the voltage, the input and output currents of the input and output terminals of the switched capacitor array charging conversion chip, the temperature of the switched capacitor array charging conversion chip, and the temperature of the battery in real time.
  • efficiency (output voltage * output current) / (input voltage * input current)
  • the efficiency value is compared with the efficiency value of the corresponding state of the switched capacitor array charge conversion chip, to determine whether the current switched capacitor array charge conversion chip is At the highest efficiency point.
  • the charger with adjustable power output first check whether the voltage of the output terminal is raised due to the charging of the battery (ie, determine whether the sum of the product of the current output voltage and the conversion ratio and the potential difference voltage is greater than the input voltage) , thereby reducing the charging efficiency. If it is caused by the output voltage rise, then the corresponding adjustment of the output voltage of the charger makes the charging efficiency reach the highest efficiency point. If the output power of the charger is not adjustable, then it is necessary to adjust the proportional relationship of the capacitor array charge conversion chip, for example, from 1/3 to 1/2 proportional relationship, raise the output voltage, and simultaneously change the current proportionally to improve the conversion efficiency.
  • the charging current changes during the charging process of the battery, so that the output power changes, whether it is necessary to change the switching operating frequency, reduce the switching loss caused by the frequency or the switching capacitor operates in a supersaturated state, thereby improving the working efficiency of the switched capacitor array charging conversion chip, For example, when the output current is lower than a certain value, the switching operating frequency is lowered; or whether the duty ratio of the switching capacitor array charging switching chip switching operating frequency signal needs to be adjusted, so that the charging and discharging of the capacitor array are close to the power balance, and the input power is close to The output power, that is, the highest efficiency point, for example, the input voltage is greater than the output voltage* proportional relationship, and reduces the duty cycle of the switching operating frequency signal during the charging phase.
  • the temperature changes of the battery and the switched capacitor array charging conversion chip are also detected, and the working state of the switched capacitor array charging conversion chip is simultaneously adjusted according to the temperature change (for example, when the temperature exceeds a certain value, Reducing the input power; if the temperature is within the limits, the input power is raised, so that the charging process is at an optimum efficiency point for continuous operation, thereby achieving fast charging.
  • the temperature and efficiency are related to a certain extent, the higher the efficiency, the less the power loss, the lower the calorific value and the lower the temperature rise.
  • the premise of adjusting multiple parameters in the efficiency described above, that is, the temperature change is within the preset allowable range. Since the switched-capacitor conversion chip operates within the allowable electrical parameters, the temperature rise change satisfies the requirements and is therefore not particularly prominent. However, the occurrence of abnormal conditions is not neglected, so temperature changes are taken into consideration.
  • the temperature detection of the battery is intended to charge the battery within the allowable operating temperature range of the battery.
  • the temperature rise of the battery during normal charging is also mainly caused by the charging current; once the battery temperature rises, it is necessary to reduce the current and change the power of the charging conversion chip, thereby re-establishing a new working state.
  • FIG. 5 is a schematic diagram of the workflow of an optional charger according to an embodiment of the invention. As shown in FIG. 5, specifically, as shown in FIG. 5:
  • Step S502 determining that the charger is inserted into the terminal
  • Step S504 it is determined whether the charger matches the terminal, if yes, go to step S506, otherwise, go to step S512;
  • Step S506 outputting power required by the terminal
  • Step S508 it is determined whether to adjust the output power, if yes, go to step S506, otherwise, go to step S510;
  • Step S510 determining whether charging is over
  • step S512 the power is output according to the charger specification.
  • Figures 6 and 7 are examples of high efficiency switched capacitor array charging implementations.
  • a conversion ratio relationship of 1/3, 1/2, and 2/3 can be achieved.
  • the specific scale implementation is as follows:
  • Capacitor charging phase S1, S5, S8 are closed, other switches are disconnected, and capacitors C1 and C2 are charged;
  • Capacitor discharge phase S2, S4, S7, S9 are closed, other switches are open, and capacitors C1 and C2 are discharged.
  • Capacitor charging phase S1, S3, S6, S8 are closed, other switches are disconnected, and capacitors C1 and C2 are charged;
  • Capacitor discharge phase S2, S4, S7, S9 are closed, other switches are open, and capacitors C1 and C2 are discharged.
  • Capacitor charging phase S1, S3, S6, S8 are closed, other switches are disconnected, and capacitors C1 and C2 are charged;
  • Capacitor discharge phase S2, S5, S9 are closed, other switches are open, and capacitors C1 and C2 are discharged.
  • one end of S1, one end of S6, and Cin are connected to Vin; the two ends of S1, one end of S2 is connected to one end of C1; the two ends of S4, one end of S3, two ends of S5, and C1 The two ends are connected; the two ends of S6, one end of S5, one end of S7 and one end of C2; the two ends of S9, one end of S8 and the two ends of C2; the two ends of S2, the two ends of S3, and the S7
  • the two ends, the two ends of the S8 are connected to one end of the Cout.
  • the switching operation of the charging phase is controlled by the clk signal of Fig. 6, and the switching operation of the discharging phase is controlled by the /clk signal of Fig. 6.
  • the clk signal and the /clk signal are inversely related to each other, as shown in FIG.
  • the high level of the clk signal corresponds to the low level of the /clk signal
  • the /clk signal can be derived from the clk signal through the inverter. In this way, the charging and discharging phases of the capacitors are separated by stricter control, and the Vin and Vout are connected to avoid conflicts.
  • the charging conversion chip selects the corresponding capacitive switch combination according to the proportional signal obtained by the proportional selection control signal line, and simultaneously controls the charging phase switch by the clk signal, and the discharging phase switch is controlled by the /clk signal, The switches participating in the charge and discharge are all turned off.
  • the charging management unit selects a suitable conversion ratio relationship according to the change of the battery voltage, and the charging conversion chip simultaneously switches the corresponding operation switch in real time. After charging is complete, the charge conversion chip turns off all switches by default.
  • the coulomb counter and the sampling resistor form a current sense function; the analog-to-digital converter A/D is used to measure the voltage and convert the analog value to a digital value for transmission to the microprocessor.
  • the thermistor PTC is used to detect temperature changes of the charge conversion chip and the battery.
  • the hardware part of the charge management unit is constituted by a coulomb counter, an analog to digital converter A/D, and a microprocessor.
  • the microprocessor When the microprocessor detects that Vin has a voltage value, it indicates that the charger is plugged into the phone and is ready to charge the phone.
  • the micro-processing interacts with the charger through the communication signal line, which may be the data signal line D+/D- of the USB interface, or the CC line of the TYPE C interface, or a custom communication signal line. According to the interaction with the charger, determine the standard specifications supported by the charger, or the power output capability.
  • the microprocessor detects the output of the charge conversion chip, in this example, Vout of Figures 6 and 7.
  • the output is connected to the battery and is on the main board of the terminal.
  • the line impedance between the output and the battery is very small, so Vout is almost equal to the voltage of the battery. Therefore, the current voltage of the battery can be judged by Vout, and the allowed charging current range can be confirmed according to the charging curve.
  • the charging management unit Before starting charging, the charging management unit requires the charging conversion chip to be closed S4, S5, S6.
  • S4 has a certain impedance, allowing a small current to pass to the ground.
  • the charger is required to output a small current value, for example 50 mA; at the same time, a default voltage, for example 5 V, is output.
  • the output voltage of the charger Vin' + line impedance * charger output current + charge potential difference voltage value.
  • the Vin'+ charge potential difference voltage is also the input voltage Vin of the charge conversion chip.
  • the charger output power is not adjustable, or the charger cannot interact, then based on the ratio of Vin to Vout, choose a close proportional conversion relationship. For example, Vin is 12V, Vout is 3.8V, and the proportional relationship can be chosen to be 1/3.
  • the input current of the charging conversion chip when the charging current is too small, the input current of the charging conversion chip also becomes smaller.
  • the input current is less than a certain threshold, the loss of the switched capacitor array to the capacitor charging phase is mainly reflected in the turn-on and turn-off losses of the switch.
  • the conversion ratio should be changed at this time to increase the input current of the charge conversion chip.
  • the charging current of the battery changes due to the progress of the charging process. For example, when the battery voltage is 3.7V, the charging current is 6A, and when the battery voltage is 4.1V, the charging current is 1A. That is, when the output voltage rises from 3.7V to 4.1V, the output current is reduced from 6A to 1A.
  • the frequency of the clk signal for the switched capacitor array remains unchanged, for example still at 1 MHz. Then, the switched capacitor array loss at this time is mainly converted from the on-resistance loss of the switch to the on-off and off-crossing loss of the switch. Therefore, the output current is lower than a certain threshold to reduce the frequency of the clock signal of the switched capacitor array.
  • the charging management unit adjusts the working efficiency of the charging conversion chip by detecting the input voltage and current, the output voltage and the current, simultaneously detecting the temperature of the charging conversion chip and the battery, thereby judging the heating condition of the charging conversion chip and the battery, preventing charging due to continuous heating.
  • the conversion chip and battery overheat stop charging.
  • the temperature exceeds a certain value, the charging current is lowered.
  • the charger power supply output adjustable reduce the output current of the charger; for the charger power supply output is not turned on, reduce the duty cycle of the switching operation frequency signal of the capacitor charging phase. In the heating phase, the charging process continues, which is also a manifestation of fast charging.
  • the charging management unit informs the charging conversion chip to turn off all the switches while stopping the operation of the clock frequency signal. For chargers with adjustable power output, notify the charger to return to the default state.
  • FIG. 9 is a block diagram showing another alternative charging circuit in accordance with an embodiment of the present invention.
  • the charging management unit since the charging management unit always detects the voltage at the input end and the output end of the charging conversion chip during the entire charging process, it is only necessary to detect the voltage at the front end of the sampling resistor at the input end and the back end of the sampling resistor at the output end.
  • the input current and output current can be calculated.
  • FIG. 10 is a flow chart showing the high efficiency of the adjustable output power of the charger in an alternative embodiment of the present application.
  • the charging method shown in FIG. 10 includes the following processing steps:
  • Step S1002 determining that the charger is inserted
  • Step S1004 Identify the type of the charger, and confirm that the type of the charger is adjustable for the output power;
  • Step S1006 estimating the line impedance of the charger to the charge conversion chip by using a small current
  • Step S1008 selecting a conversion ratio of the charging conversion chip and a power output of the charger according to the battery state
  • Step S1010 starting to charge the battery
  • Step S1012 detecting voltages Vin_r and Vin across the sampling resistor Rin at the input end of the charging conversion chip, and detecting voltages Vout and Vout_r across the sampling resistor at the output end to detect temperature changes of the battery and the charging conversion chip;
  • Step S1014 it is determined whether the battery and the charge conversion chip are hot, that is, whether the temperature value is greater than a preset threshold; if yes, go to step S1012; otherwise, go to step S1020;
  • Step S1018 it is determined whether the charging chip is in the highest efficiency point in this state, and if so, then proceeds to step S1012, otherwise, proceeds to step S1020;
  • Step S1020 it is determined whether it is necessary to adjust the power output of the charger, if yes, go to step S1022, otherwise, go to step S1024;
  • Step S1022 notifying the charger to adjust the power output, step S1012;
  • Step S1024 the input current is less than a certain threshold, determine whether to adjust the proportional relationship of the charge conversion chip (ie, the conversion ratio), and if so, go to step S1026, otherwise, go to step S1028;
  • Step S1028 it is determined whether the charging current is less than a certain threshold, whether it is necessary to adjust the clock frequency inside the charging conversion chip; if yes, go to step S1030, otherwise, go to step S1032;
  • Step S1030 adjusting an internal clock frequency of the charging chip
  • Step S1032 adjusting the duty ratio of the internal switching frequency of the charging conversion chip
  • FIG. 11 is a flow chart of an optional high efficiency operation for a fixed power supply of a charger according to an embodiment of the present application.
  • the charging method shown in FIG. 11 includes the following processing steps:
  • Step S1102 determining that the charger is inserted
  • Step S1104 Identify the type of the charger, and confirm that the type of the charger is that the output power is not adjustable;
  • Step S1106 detecting an input voltage of the charge conversion chip, and selecting a conversion ratio of the charge conversion chip according to the battery state;
  • Step S1110 detecting the charge conversion chip input voltage Vin and the input current Iin, the output voltage Vout and the output current Iout according to the period detection, and detecting the temperature change of the battery and the charge conversion chip;
  • Step S1112 it is determined whether the battery and the charge conversion chip are hot, that is, whether the temperature value is greater than a preset threshold; if yes, go to step S1118; otherwise, go to step S1112;
  • Step S1116 it is determined whether the charging chip is in the highest efficiency point in this state, and if so, then proceeds to step S1110, otherwise, proceeds to step S1118;
  • Step S1118 it is determined whether it is necessary to adjust the conversion ratio of the charge conversion chip; if yes, then go to step S1120, otherwise, go to step S1122;
  • Step S1120 adjusting a conversion ratio of the charging conversion chip
  • Step S1122 determining whether the charging current is less than a certain threshold, whether it is necessary to adjust the clock frequency inside the charging conversion chip; if yes, go to step S1124, otherwise, go to step S1126;
  • Step S1124 adjusting an internal clock frequency of the charging chip
  • Step S1126 adjusting the duty ratio of the internal switching frequency of the charging conversion chip
  • the voltage detection before and after the sampling resistor can share an A/D chip, as shown in the example of FIG.
  • the switch SW is synchronously switched so that the A/D chip can measure the voltage value at the other end of the resistor.
  • Another optional charging process is shown in Figures 13 and 14, respectively.
  • the charging method shown in Figure 13 includes the following processing steps:
  • Step S1302 determining that the charger is inserted
  • Step S1304 identifying the type of the charger, and confirming that the type of the charger is adjustable for the output power;
  • Step S1306 estimating the line impedance of the charger to the charging conversion chip by using a small current
  • Step S1308, selecting a conversion ratio of the charging conversion chip and a power output of the charger according to the battery state;
  • Step S1310 starting to charge the battery
  • Step S1312 detecting the voltages Vin and Vout at both ends of the charging conversion chip by cycle, after the detection is completed, switching the switch SW, switching the voltages of the other ends of the sampling resistors Rin and Rout to the ADC, and detecting the temperature change of the battery and the charging conversion chip;
  • Step S1314 it is determined whether the battery and the charge conversion chip are hot, that is, whether the temperature value is greater than a preset threshold; if yes, go to step S1312; otherwise, go to step S1322;
  • Step S1316 after the ADC completes the sampling period, the Vin_r and Vout_r are measured, and the switch SW is switched, and the ADC measurement is switched to the voltage measurement at both ends of the charging conversion chip for the next measurement.
  • Step S1320 it is determined whether the charging chip is in the highest efficiency point in this state, and if so, then proceeds to step S1312, otherwise, proceeds to step S1322;
  • Step S1322 it is determined whether it is necessary to adjust the power output of the charger, if yes, go to step S1324, otherwise, go to step S1326;
  • Step S1324 notifying the charger to adjust the power output, step S1312;
  • Step S1326 the input current is less than a certain threshold, determine whether to adjust the proportional relationship of the charge conversion chip (ie, the conversion ratio), and if so, go to step S1328, otherwise, go to step S1330;
  • Step S1328 adjusting the proportional relationship of the charge conversion chip, step S1312;
  • Step S1330 it is determined whether the charging current is less than a certain threshold, whether it is necessary to adjust the clock frequency inside the charging conversion chip; if yes, go to step S1332, otherwise, go to step S1334;
  • Step S1332 adjusting an internal clock frequency of the charging chip
  • Step S1334 adjusting the duty ratio of the internal switching frequency of the charging conversion chip
  • the charging method shown in Figure 14 includes the following processing steps:
  • Step S1402 determining that the charger is inserted
  • Step S1404 identifying the type of the charger, and confirming that the type of the charger is that the output power is not adjustable;
  • Step S1406 detecting the input voltage of the charge conversion chip by cycle, and selecting the conversion ratio of the charge conversion chip according to the battery state;
  • Step S1410 detecting the voltages Vin and Vout at both ends of the charging conversion chip by cycle, after the detection is completed, switching the switch SW, switching the voltages of the other ends of the sampling resistors Rin and Rout to the ADC, and detecting the temperature change of the battery and the charging conversion chip;
  • Step S1412 it is determined whether the battery and the charge conversion chip are hot, that is, whether the temperature value is greater than a preset threshold; if yes, go to step S1420; otherwise, go to step S1412;
  • Step S1414 after the ADC completes the sampling period, the Vin_r and Vout_r are measured, and the switch SW is switched, and the ADC measurement is switched to the voltage measurement at both ends of the charging conversion chip for the next measurement;
  • Step S1418 it is determined whether the charging chip is in the highest efficiency point in this state, and if so, then proceeds to step S1410, otherwise, proceeds to step S1420;
  • Step S1420 it is determined whether it is necessary to adjust the conversion ratio of the charge conversion chip; if yes, then go to step S1422, otherwise, go to step S1424;
  • Step S1422 adjusting a conversion ratio of the charging conversion chip
  • Step S1424 it is determined whether the charging current is less than a certain threshold, whether it is necessary to adjust the clock frequency inside the charging conversion chip; if yes, go to step S1426, otherwise, go to step S1428;
  • Step S1426 adjusting an internal clock frequency of the charging chip
  • Step S1428 adjusting the duty ratio of the internal switching frequency of the charging conversion chip
  • the structure of the system shown in Figure 15 is an alternative.
  • the battery is charged in a current range in which the switched capacitor array charge conversion chip can operate.
  • the charge-discharge relationship of the capacitor has a linear relationship, that is, the input current and the output current are linear.
  • the operating efficiency point of the switched capacitor array charge conversion chip is related to the operating current.
  • the charging management unit establishes an efficiency distribution of the switched capacitor array charging conversion chip according to the operating current.
  • the input current of the charge conversion circuit has a linear relationship with the output current, so that the detection circuit of the input current or the output current can be omitted, that is, only one parameter can be used to determine another parameter.
  • FIG. 16 An alternative implementation workflow diagram is shown in Figures 16 and 17.
  • the charging management unit interacts with the charger to prepare for the relevant charging according to the characteristics of the charger.
  • the charger power output is adjustable
  • the corresponding output power adjustment is performed according to whether the power supply needs to be adjusted; when the output power is not adjusted, it is judged whether it is necessary to adjust the proportional conversion relationship of the capacitor array; or adjust the capacitance
  • the operating frequency inside the array charging conversion chip; or the duty ratio of the switching frequency inside the capacitor array charging conversion chip, at this time also need to adjust the proportional coefficient of the input and output current.
  • the temperature changes of the charge conversion chip and the battery are simultaneously detected to adjust the operation state of the charge conversion chip until the end of charging.
  • FIG. 16 includes the following processing steps:
  • Step S1602 determining that the charger is inserted
  • Step S1604 identifying the type of the charger, and confirming that the type of the charger is adjustable for the output power;
  • Step S1606 estimating the line impedance of the charger to the charging conversion chip by using a small current
  • Step S1608 selecting a conversion ratio of the charging conversion chip and a power output of the charger according to the battery state
  • Step S1610 starting to charge the battery
  • Step S1612 detecting the charging conversion chip input voltage Vin, the output voltage Vout, and the output current Iout according to the period, and detecting the temperature change of the battery and the charging conversion chip;
  • Step S1614 it is determined whether the battery and the charge conversion chip are hot, that is, whether the temperature value is greater than a preset threshold; if yes, go to step S1612; otherwise, go to step S1620;
  • Step S1618 it is determined whether the charging chip is in the highest efficiency point in this state, and if so, then proceeds to step S1612, otherwise, proceeds to step S1620;
  • Step S1620 it is determined whether it is necessary to adjust the power output of the charger, if yes, go to step S1622, otherwise, go to step S1624;
  • Step S1622 notifying the charger to adjust the power output, step S1612;
  • Step S1624 the input current is less than a certain threshold, determine whether to adjust the proportional relationship of the charge conversion chip (ie, the conversion ratio), and if so, go to step S1626, otherwise, go to step S1628;
  • Step S1626 adjusting the proportional relationship of the charge conversion chip, step S1612;
  • Step S1628 determining whether the charging current is less than a certain threshold, whether it is necessary to adjust the clock frequency inside the charging conversion chip; if yes, go to step S1630, otherwise, go to step S1632;
  • Step S1630 adjusting an internal clock frequency of the charging chip
  • Step S1632 adjusting the duty ratio of the internal switching frequency of the charging conversion chip
  • the charging process shown in Figure 17 includes the following processing steps:
  • Step S1702 determining that the charger is inserted
  • Step S1704 identifying the type of the charger, and confirming that the type of the charger is that the output power is not adjustable;
  • Step S1706 detecting an input voltage of the charge conversion chip, and selecting a conversion ratio of the charge conversion chip according to the battery state;
  • Step S1708 starting to charge the battery
  • Step S1710 detecting the charging conversion chip input voltage Vin, the output voltage Vout, and the output current Iout according to the period, and detecting the temperature change of the battery and the charging conversion chip;
  • Step S1712 it is determined whether the battery and the charge conversion chip are hot, that is, whether the temperature value is greater than a preset threshold; if yes, go to step S1718; otherwise, go to step S1712;
  • Step S1716 it is determined whether the charging chip is in the highest efficiency point in this state, and if so, then proceeds to step S1710, otherwise, proceeds to step S1718;
  • Step S1718 it is determined whether it is necessary to adjust the conversion ratio of the charge conversion chip; if yes, then go to step S1720, otherwise, go to step S1722;
  • Step S1720 adjusting a conversion ratio of the charging conversion chip
  • Step S1722 it is determined whether the charging current is less than a certain threshold, whether it is necessary to adjust the clock frequency inside the charging conversion chip; if yes, go to step S1724, otherwise, go to step S1726;
  • Step S1724 adjusting an internal clock frequency of the charging chip
  • Step S1726 adjusting the duty ratio of the internal switching frequency of the charging conversion chip
  • the method before the operating state of the charging conversion circuit in the terminal to be charged is adjusted according to the working parameter, the method further includes: acquiring the first temperature information of the charging conversion circuit and the second temperature information of the battery in the terminal to be charged; The temperature information and the second temperature information adjust the operating state of the charge conversion circuit.
  • the first temperature information and the second temperature information each include at least one of the following, but are not limited thereto: a temperature value and a temperature change value. Since the main component of the charge conversion circuit is a charge conversion chip, the first temperature information may include, but is not limited to, temperature information of the charge conversion chip.
  • the solution provided by the embodiment is as follows: 1) Expanding the range of chargers required for the switched capacitor array charge conversion chip, that is, expanding the application scenario of the charge conversion chip based on the switched capacitor array. 2) adaptively adjusts the highest efficiency of the charging process, so that the adjustment of any stage supports the highest efficiency point in the corresponding working state; by detecting the power supply of the input and output terminals of the charging conversion chip, the data is effective and efficient. The detection calculation is accurate. 3) The optimum efficiency of the charging process is adaptively adjusted so that the optimal charging process is achieved within the temperature range at the time of charging.
  • the embodiment of the present invention provides a charging device, which is used to implement the method in Embodiment 1, as shown in FIG. 18, the device includes:
  • the detecting module 180 is configured to detect an operating parameter of the terminal to be charged during charging, wherein the working parameter is used to reflect a state of the terminal to be charged during charging;
  • the adjustment module 182 is coupled to the detection module 180 and configured to adjust the working state of the charging conversion circuit in the terminal to be charged according to the operating parameter, wherein different working states correspond to different charging efficiencies.
  • each of the foregoing modules may be implemented by software or hardware.
  • each of the foregoing modules is located in the same processor; or, each of the foregoing modules is respectively Located in different processors.
  • FIG. 19 is a flow chart showing another charging method according to an embodiment of the present invention. As shown in FIG. 19, the method includes:
  • Step S1902 determining a charging device type of the charging device connected to the terminal to be charged, wherein the charging device type includes: a first type that supports adjustment of an output electrical signal of the charging device; and does not support adjustment of an output electrical signal of the charging device a second type, wherein the output electrical signal comprises: an output voltage and/or an output current;
  • Step S1904 Obtain an operating parameter of the terminal to be charged during charging, wherein the working parameter is used to reflect a state of the terminal to be charged during charging; optionally, the working parameter includes: a battery state in the terminal to be charged, and charging Current information.
  • the second instruction is sent to the charging device, and the second instruction is used to control the charging device according to a first current value output current; determining a voltage difference according to a first current value, a line impedance between the charging device and an input end of the charging conversion circuit in the terminal to be charged, the voltage difference being an output voltage of the charging device and an input of the charging conversion circuit The difference between the voltages; the differential pressure is sent to the charging device such that the charging device compensates for the line loss between the charging device and the input of the charging conversion circuit in the terminal to be charged, depending on the voltage difference.
  • Step S1906 when the charging device type is the first type, and the charging efficiency is not the specified charging efficiency, generating a first instruction for adjusting the magnitude of the output electrical signal of the charging device according to the operating parameter, and transmitting the first instruction to the charging device .
  • the conversion ratio Before generating the first instruction for adjusting the magnitude of the output electrical signal of the charging device according to the operating parameter, selecting a conversion ratio of the charging conversion circuit according to the battery state and the charging current information in the terminal to be charged, the conversion ratio being an input of the charging conversion circuit The ratio of voltage to output voltage. That is, before the first instruction is generated, the conversion ratio may be selected first to generate the first instruction.
  • the third instruction is sent to the charging device, wherein the third instruction is used to control the charging device according to the second
  • the current value outputs a current
  • the second current value is greater than the first current value. That is, the third command is used to control the charging device to start charging according to the second current value.
  • FIG. 20 is a schematic structural diagram of a charging circuit according to an embodiment of the present invention. As shown in FIG. 20, the charging circuit includes:
  • the charging conversion circuit 200 is connected to the charging management module 204 and configured to convert the input voltage of the charging conversion circuit into an output voltage according to a preset conversion ratio;
  • the collecting module 202 is connected to the charging management module 204, and is configured to collect the working parameters of the terminal to be charged during the charging process, and send the working parameters to the charging management module 204, wherein the working parameters are used to reflect the charging terminal in the charging process. status;
  • the charging management module 204 is configured to generate a control instruction for realizing the following functions according to the operating parameters: adjusting an operating state of the charging conversion circuit 200 in the terminal to be charged, wherein different working states correspond to different charging efficiencies.
  • the charge conversion circuit 200 can be embodied as a capacitive switch array, the capacitive switch array comprising: a plurality of capacitive switch combinations; each of the plurality of capacitive switch combinations corresponding to a conversion ratio, and by closing and/or disconnecting each At least a portion of the switched capacitor circuit of the capacitive switch combination controls a charge and discharge state of at least a portion of the capacitance of each of the capacitive switch combinations, the conversion ratio being a ratio of an input voltage to an output voltage of the charge conversion circuit.
  • the acquisition module 202 includes at least one of the following: a first current collection module 2021, disposed at an input end of the charge conversion circuit, configured to collect an input current of the charge conversion circuit; and a second current collection module 2023 configured to An output end of the charging conversion circuit is configured to collect an output current of the charging conversion circuit; the first voltage collecting module 2025 is disposed at an input end of the charging conversion circuit, and is configured to collect an input voltage of the charging conversion circuit; the second voltage collecting module 2027, It is disposed at the output end of the charge conversion circuit and is set to collect the output voltage of the charge conversion circuit.
  • the collection module 202 may further include the following processing modules, but is not limited thereto: the first temperature collection module 2029 is connected to the charging management module 204, and is configured to collect first temperature information of the charging conversion circuit; The collecting module 2031 is connected to the charging management module 204 and configured to collect second temperature information of the battery in the terminal to be charged. At this time, the charging management module 204 is further configured to receive the first temperature information and the second temperature information, and adjust an operating state of the charging conversion circuit according to the first temperature information and the second temperature information.
  • the charging management module 204 is further configured to receive the first temperature information and the second temperature information, and according to the first temperature information and the second temperature information.
  • the charging management module 204 is further configured to generate a control command that implements a function of adjusting a duty ratio of an operating frequency of the charging conversion circuit according to the operating parameter, and/or a conversion ratio of the charging conversion circuit, And / or the clock frequency of the charge conversion circuit.
  • the charging management module 204 may include, but is not limited to, a hardware implementation circuit such as a processor.
  • the embodiment provides a terminal, and the terminal includes the charging circuit in Embodiment 4.
  • the charging circuit in Embodiment 4 includes the charging circuit in Embodiment 4.
  • An embodiment of the present invention provides a storage medium, where the storage medium includes a stored program, wherein the device in which the storage medium is located is controlled to perform the charging method in Embodiment 1 or Embodiment 3 while the program is running.
  • An embodiment of the present invention provides a processor configured to run a program, wherein the charging method in Embodiment 1 or Embodiment 3 is executed when the program is running.
  • An embodiment of the present invention provides an electronic device including a memory and a processor.
  • the memory stores a computer program
  • the processor is configured to execute the charging method in Embodiment 1 or Embodiment 3 through a computer program.
  • the disclosed technical contents may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the unit may be a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, unit or module, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .
  • a charging method, apparatus, system, charging circuit, terminal, and charging system provided by the embodiments of the present invention have the following beneficial effects: solving the charging efficiency and the poor user experience of the charging scheme in the related art problem.

Abstract

一种充电方法及装置、系统、充电电路、终端、充电系统。其中,该方法包括:检测待充电终端在充电过程中的工作参数,其中,所述工作参数用于反映所述待充电终端在充电过程中的状态(S202);依据所述工作参数调整所述待充电终端中充电转换电路的工作状态,其中,不同的工作状态对应不同的充电效率(S204)。解决了相关技术中的充电方案存在的充电效率以及用户体验不佳的技术问题。

Description

充电方法及装置、系统、充电电路、终端、充电系统 技术领域
本发明涉及充电领域,具体而言,涉及一种充电方法及装置、系统、充电电路、终端、充电系统。
背景技术
手机等终端已成为通讯交互、数字娱乐等多方面的生活工具,大容量电池已成为终端所侧重的典型配置。大容量电池及频繁使用的方式,使得快速充电成为终端用户体验的一个重要方面。随着电池的充电倍率增大,电池的充电电流增大,如何使终端充电时电池获得较大的充电电流,缩短充电时间,改善终端的用户体验,已成为终端研发过程的一个重要方向。尤其在通用串行总线(Universal Serial Bus,简称为USB)组织发布USB PD 3.1,USB的VBUS可以支持到20mV及10mA增量变化,使得配置TYPE C接口的终端可以支持更加灵活的快速充电过程。
目前终端的电池容量增大,快速充电也就成为了终端迫切需求的技术。快速充电本质是增大充电装置的输出功率,也即使充电转换芯片给予电池更大的充电电流,缩短充电时间。目前主要有两种快速充电方式:低压大电流和高压充电方式。
低压大电流是通过增大充电装置的输出电流来增大充电装置的输出功率,从而电池也能获得较大的充电电流。目前低压大电流主要实现方式是直充方式,即充电装置直接给电池充电。在充电过程进入快速充电阶段,终端的充电算法实施控制单元根据检测到电池状态,通知充电装置输出适合的电流及电压直接给电池进行充电。该种模式的本质是将终端的充电转换芯片功能转移到充电装置中实现,同时也将因充电转换芯片在电压转换过程所引起的发热带到了充电装置中。充电装置相对终端的结构空间较大,可以充分散热,在给终端电池进行快速充电时并不会引起终端的发热,这也是低压大电流的优势所体现之处。
高压充电方式是通过增大充电装置的输出电压来增大充电装置的输出功率。终端的充电转换芯片获得较大的输入功率,转换出较大的输出功率。在输出电压不变时,也就是转换出较大的输出电流,从而电池获得较大的充电电流,缩短了充电时间。在充电过程中,终端的充电算法实施控制单元根据检测电池和充电转换芯片的状态,通知充电装置输出适合的高电压;当高电压传输到终端的充电转换芯片,转换出适合电 池的电压和对应的电流用以给电池充电。高压充电方式中终端的充电转换芯片有两种类型的:一种是电感降压充电转换芯片,一种是开关电容阵列充电转换芯片。电感降压充电转换芯片可以依据充电过程输出所需要的电压,输入电压只要高于最低输入值即可,目前以终端平台厂商高通的快速充电为主要技术代表;开关电容阵列充电转换芯片始终是保持输入和输出成为某个转换比例关系,在此转换比例关系时充电转换芯片将保持一个较高的工作效率。
目前,低压大电流和高压充电方式存在以下缺陷:
1、低压大电流方式线路阻抗损耗较高,对充电线缆提出了较高的要求,且线缆成本较高。常规的micro USB连接器电气规范通流能力在1.8A,不能满足低压大电流方式,因而对充电线缆及连接器需要重新定制,非标准线缆带来了不好的用户体验。
2、高压充电方式在充电装置传输给充电转换芯片之间的电流相对较小,线路损耗较小,使用标准充电线缆和连接器即可,线缆成本低,可适用线缆范围较广,这也是高压充电方式优势方面之一。但是,电感降压充电转换芯片因大功率工作效率不高,使得在工作在大功率电压转换时,充电转换芯片发热较严重,造成了终端充电时发热,用户体验较差。因而在实际充电过程中,充电转换芯片因发热原因并不能工作在大功率,就不能输出较大电流,也就无法实现快速充电。显然工作效率制约了电感降压充电转换芯片的工作状态,从而影响充电效率。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种充电方法及装置、系统、充电电路、终端、充电系统,以至少解决相关技术中的充电方案存在的充电效率以及用户体验不佳的技术问题。
根据本发明实施例的一个方面,提供了一种充电方法,包括:检测待充电终端在充电过程中的工作参数,其中,所述工作参数用于反映所述待充电终端在充电过程中的状态;依据所述工作参数调整所述待充电终端中充电转换电路的工作状态,其中,不同的工作状态对应不同的充电效率。
根据本发明实施例的一个方面,提供了一种充电电路,包括:充电转换电路,与充电管理模块连接,设置为按照预设转换比例将所述充电转换电路的输入电压转换为输出电压;采集模块,与所述充电管理模块连接,设置为采集待充电终端在充电过程中的工作参数,并将所述工作参数发送至充电管理模块,其中,所述工作参数用于反映所述待充电终端在充电过程中的状态;所述充电管理模块,设置为依据所述工作参 数,产生用于实现以下功能的控制指令:调整所述待充电终端中充电转换电路的工作状态,其中,不同的工作状态对应不同的充电效率。
根据本发明实施例的一个方面,提供了一种终端,包括:以上所述的充电电路。
根据本发明实施例的一个方面,提供了一种充电系统,包括:充电装置和待充电终端,其中,所述充电装置包括:电源管理模块,与电源转换输出模块连接,设置为与待充电终端中的充电管理模块进行通信,并产生控制指令;电源转换输出模块,设置为根据所述控制指令输出与所述控制指令对应的输出电信号;所述待充电终端包括:充电转换电路,与所述充电管理模块连接,设置为按照预设转换比例将所述充电转换电路的输入电压转换为输出电压;采集模块,与所述充电管理模块连接,设置为采集待充电终端在充电过程中的工作参数,并将所述工作参数发送至充电管理模块,其中,所述工作参数用于反映所述待充电终端在充电过程中的状态;所述充电管理模块,设置为依据所述工作参数,产生用于实现以下功能的控制指令:调整所述待充电终端中充电转换电路的工作状态,其中,不同的工作状态对应不同的充电效率。
根据本发明实施例的一个方面,提供了一种充电装置,包括:检测模块,设置为检测待充电终端在充电过程中的工作参数,其中,所述工作参数用于反映所述待充电终端在充电过程中的状态;调整模块,设置为依据所述工作参数调整所述待充电终端中充电转换电路的工作状态,其中,不同的工作状态对应不同的充电效率。
根据本发明实施例的一个方面,提供了一种存储介质,所述存储介质包括存储的程序,其中,在所述程序运行时控制所述存储介质所在设备执行以上任一所述的充电方法。
根据本发明实施例的一个方面,提供了一种处理器,所述处理器设置为运行程序,其中,所述程序运行时执行以上任一所述的充电方法。
根据本发明实施例的一个方面,提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为通过所述计算机程序执行以上所述的充电方法。
在本发明实施例中,采用依据待充电终端在充电过程中的工作参数对待充电终端中充电转换电路的工作状态(用于体现充电效率)进行调整的方式,实现了对充电转换电路的充电效率的调整,从而提升充电效率,进而解决了相关技术中的充电方案存在的充电效率以及用户体验不佳的技术问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1a是根据本申请实施例的一种充电系统的结构示意图;
图1b是根据本申请实施例的一种充电系统的结构示意图;
图1c是根据本申请实施例的另一种可选的充电系统的结构示意图;
图2是根据本发明实施例的一种充电方法的流程示意图;
图3是根据本发明实施例的一种可选的充电器电源的输出信号可调时充电方法的流程示意图;
图4是根据本发明实施例的另一种可选的充电器电源的输出信号固定(即充电器电源固定输出)时的充电方法的流程示意图;
图5是根据本发明实施例的一种可选的充电器的工作流程示意图;
图6是根据本发明实施例的一种可选的充电电路的结构示意图;
图7是根据本发明实施例的一种可选的开关电容阵列的电路结构示意图;
图8是根据本发明实施例的一种可选的clk信号与/clk信号的关系图;
图9是根据本发明实施例的另一种可选的充电电路的结构示意图;
图10是根据本发明实施例的另一种可选的充电器输出电源可调时的充电方法流程图;
图11是根据本发明实施例的另一种可选的充电器输出电源可调时的充电方法流程图;
图12是根据本发明实施例的另一种可选的充电电路的结构示意图;
图13是根据本发明实施例的另一种可选的充电器输出电源可调时的充电方法的流程图;
图14是根据本发明实施例的另一种可选的充电器输出电源不可调时的充电方法的流程图;
图15是根据本发明实施例的另一种可选的充电系统的结构示意图;
图16是根据本发明实施例的另一种可选的充电器输出电源可调时的充电方法的 流程图;
图17是根据本发明实施例的另一种可选的充电器输出电源不可调时的充电方法的流程图;
图18是根据本发明实施例的一种充电装置的结构示意图;
图19是根据本发明实施例的一种可选的充电方法的流程图;以及
图20是根据本发明实施例的一种充电电路的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为便于理解本申请实施例,以下将本申请实施例中所涉及的技术术语简述如下:
充电转换电路的充电效率:充电转换电路的输出功率与输入功率的比值。
开关电容阵列:包括至少一个电容开关组合,每个电容开关组合包括至少一个电容开关电路。
需要说明的是,本申请实施例中所涉及的存储介质或存储器,不仅包括设备本地的用于存储数据的设备,也可以体现为云网络上的存储节点,但不限于此。
另外,本申请实施例中所涉及的“用户”包括但不限于生物学上的人类等智慧生物,还可以包括:机器人等自动执行工作或任务的电子设备。
相关技术中,基于开关电容阵列的充电转换芯片是将输入电压和输出电压按比例 关系进行转换,在允许的工作电流范围内实现较高的工作效率。相对电感型充电转换芯片的工作效率,开关电容阵列充电转换芯片有了非常大的改善。但是,开关电容阵列充电转换芯片的高效率与转换功率及输入电压和输出电压之比有关。当输入电压和输出电压之比超出一定范围,该开关电容阵列充电转换芯片的工作效率急剧下降。当充电装置的输出电压无法跟随待充电电池电压(也即开关电容阵列充电转换芯片的输出电压)调整时,也就体现在开关电容阵列充电转换芯片的输入电压和输出电压之比超出某个范围,那么开关电容阵列充电转换芯片工作效率就不理想。在输入电压不改变,功率小到一定范围,也即输入电流小到一定范围时,开关电容阵列充电转换芯片工作效率也急剧下降。因而,开关电容阵列充电转换芯片的高效率工作状态易受条件限制。
并且,尽管相关技术中低压大电流充电方式将充电转换芯片的发热转移到了充电装置端,忽略了充电转换芯片工作效率所带来的影响,但其因充电线缆及连接器的特殊性和高成本,电路设计复杂性使得该充电方式并不能广泛运用。高压充电方式在线路损耗和器件成本上较低压大电流充电方式有所优势,但因为工作效率的缘故,使得通过电感降压充电转换芯片实现的高压充电方式并没有对低压大电流方式体现出优势。开关电容阵列充电转换芯片在大功率工作时具有较高的效率,相对低压大电流充电方式具有较明显的优势。但是,从上面分析可知,当前开关电容阵列充电转换芯片其高效率工作也是受输入输出电压和功率所影响的,使得开关电容阵列充电转换芯片使用范围也受限。
基于以上至少一种因素,导致相关技术中的充电方案存在充电效率以及用户体验不佳的问题。为解决上述问题,本申请实施例提供了相应的解决方案,以下详细说明。
实施例1
图1a是根据本申请实施例的一种充电系统的结构示意图。如图1a所示,该充电系统包括:充电装置10和待充电终端12,其中,
充电装置10包括:电源管理模块100和电源转换输出模块102。其中:
电源管理模块100,与电源转换输出模块102连接,设置为与待充电终端中的充电管理模块进行通信,并产生控制指令;电源转换输出模块102,设置为根据控制指令输出与控制指令对应的输出电信号。
在一个可选实施例中,电源管理模块100,设置为与待充电终端进行充电前的沟通识别,充电过程中根据沟通的信息对电源转换输出模块102进行控制;其中,该电源管理模块100可以通过以下方式与待充电终端进行沟通:例如,对于TYPE C接口的 充电装置(例如充电装置)可以通过接口的信号线CC进行沟通,非TYPE C的USB接口的充电装置,可以通过USB接口的数据信号线(D+/D-);
其中,待充电终端与电源管理模块100沟通的内容包括但不限于:获取充电装置支持的充电协议和充电装置的电源输出能力,例如:输出电压的范围、输出电流的范围、输出电压的可调步径,输出电流的可调步径。
电源转换输出模块102,设置为根据电源管理模块沟通的信息,输出准确的电压和电流。
充电装置的电源管理模块100设置为与待充电终端进行充电前的识别交互,既表明充电装置可以按终端的需求进行特定电源输出能力,也可以获知终端是否需要特定电源输出的需求。电源管理模块100与待充电的终端进行沟通识别失败时,电源管理模块100控制电源转换输出模块102按充电装置的标准规范进行电源输出。电压管理模块100可以是由微处理器芯片或支持某种协议(例如TYPE C PD协议)的芯片实现的功能电路;电源转换输出可以由可编程电源芯片或支持电压和电流可调电路实现。
待充电终端12包括:
充电转换电路120,与充电管理模块122连接,设置为按照预设转换比例将充电转换电路120的输入电压转换为输出电压;
在一个可选实施例中,充电转换电路120包括:电容开关阵列,电容开关阵列包括:多个电容开关组合;多个电容开关组合,其中,多个电容开关组合中的每个电容开关组合对应一个转换比例,并且,通过闭合和/或断开每个电容开关组合中的至少部分开关电容电路,控制每个电容开关组合中的至少部分电容的充放电状态,转换比例为充电转换电路的输入电压和输出电压的比值。其中,充电转换电路120的实现方式会在以下详细说明,此处不再赘述。
采集模块124,与充电管理模块122连接,设置为采集待充电终端在充电过程中的工作参数,并将工作参数发送至充电管理模块122,其中,工作参数用于反映待充电终端在充电过程中的状态;
例如,采集模块124,包括但不限于:设置在待充电终端的电池附近的温度传感器、采集待充电终端中电池的状态的模块、采集充电转换电路的温度变化的温度传感器、采集充电转换电路的输入功率和输出功率的模块(例如,充电转换电路的输入电流采集模块、输入电压采集模块;输出电流采集模块和输出电压采集模块;还可以包括依据电流和电压计算功率的处理器)。
又例如,如图1b所示,采集模块124可以包括以下至少之一:第一电流采集模块1241,设置于充电转换电路的输入端,设置为采集充电转换电路的输入电流;第二电流采集模块1243,设置于充电转换电路的输出端,设置为采集充电转换电路的输出电流;第一电压采集模块1245,设置于充电转换电路的输入端,设置为采集充电转换电路的输入电压;第二电压采集模块1247,设置于充电转换电路的输出端,设置为采集充电转换电路的输出电压。
又例如,如图1b所示,采集模块124还可以包括以下模块:第一温度采集模块1249,与充电管理模块122连接,设置为采集充电转换电路的第一温度信息;第二温度采集模块1251,与充电管理模块122连接,设置为采集待充电终端中电池的第二温度信息。
充电管理模块122,设置为依据工作参数,产生用于实现以下功能的控制指令:调整待充电终端12中充电转换电路120的工作状态,其中,不同的工作状态对应不同的充电效率。
在一个可选实施例中,充电管理模块122,设置为与充电装置10进行识别交互、充电转换芯片和电池的温度检测、充电转换芯片的输入电压和电流、输出电压和电流的检测、以及对充电转换芯片的控制信号;充电转换芯片的开关电容阵列按比例将输入电源转换适合的输出电源给电池进行充电。
其中,充电装置的电源管理模块122,设置为与待充电终端进行充电前的识别交互,既表明充电装置可以按终端的需求进行特定电源输出能力,也可以获知终端是否需要特定电源输出的需求。充电装置10中的电源管理模块100与待充电终端进行沟通识别失败时,电源管理模块100控制电源转换输出模块102按充电装置的标准规范进行电源输出。电压管理模块100可以是由微处理器芯片或支持某种协议(例如TYPE C PD协议)的芯片实现的功能电路;电源转换输出模块102可以由可编程电源芯片或支持电压和电流可调电路实现。
充电管理模块122与充电装置10进行沟通交互,获知充电装置的电源输出能力;同时检测充电转换芯片(相当于充电转换电路120)的输入电压及输入电流、输出电压及输出电流、工作时温度变化,检测电池充电时温度变化。根据充电装置的电源输出状态、充电转换芯片工作状态、电池充电时状态,选择不同的充电转换芯片的工作过程,使得充电转换芯片工作在最佳效率状态,实现最佳效率的快速充电过程。充电转换芯片可以是由开关电容阵列芯片或电容和MOS管组成开关电容阵列实现;温度检测可以通过热敏电阻或其他测温元器件来实现;充电管理你看可以为微处理器、电压检测模拟数字转换芯片、电流检测的库仑计及设置为控制充电转换芯片所需要功能电 路组成。并可以依据状态检测、充电算法及充电转换芯片控制选择对应的功能器件。
图1c是根据本申请实施例的另一种可选的充电系统的结构示意图。如图1c所示,充电装置10和终端12之间通过充电线缆111和数据通信总线113连接,充电器(即充电装置)10包括:电源转换输出模块102和电源管理模块100;
基于图1a和图1b所示实施例,本申请实施例还提供了一种充电方法,该方法可以运行于图1a和图1b所示硬件场景中,但不限于此。如图2所示,该方法包括以下处理步骤:
步骤S202,检测待充电终端在充电过程中的工作参数,其中,工作参数用于反映待充电终端在充电过程中的状态;
检测待充电终端在充电过程中的工作参数包括以下至少之一:检测待充电终端中电池的状态、充电转换电路的温度变化、充电转换电路的输入电流或输入电压和输出电流或输出电压。
可选地,在检测待充电终端在充电过程中的工作参数之前,还可以根据充电装置的类型确定对应的调整方式,例如:确定与待充电终端连接的充电装置的充电装置类型,其中,充电装置类型包括:支持对充电装置的输出电信号进行调整的第一类型;不支持对充电装置的输出电信号进行调整的第二类型,其中,输出电信号包括:输出电压和/或输出电流;在充电装置类型为第一类型时,且充电效率不是指定充电效率时,向充电装置发送用于调整充电装置的输出电信号的大小的第一指令。
作为本申请的另一个可选实施例,为保证充电过程的顺利进行,以及检测数据的准确性,可以在获取待充电终端在充电过程中的工作参数之前,对充电装置和待充电终端之间的线路损耗进行补偿,例如,可以通过以下方式进行补偿:向充电装置发送第二指令,该第二指令用于控制充电装置按照第一电流值输出电流;依据第一电流值、充电装置和待充电终端中充电转换电路的输入端之间的线路阻抗确定压差,该压差为充电装置的输出电压和充电转换电路的输入电压之间的差值;将压差发送至充电装置,以使得充电装置依据压差对充电装置和待充电终端中充电转换电路的输入端之间的线路损耗进行补偿。
其中,向充电装置发送用于调整充电装置的输出电信号的大小的第一指令之前,可以对充电转换电路的转换比例进行调整,以实现对充电过程中充电效率的调节,例如:依据待充电终端中电池状态和充电电流信息选择充电转换电路的转换比例,该转换比例为充电转换电路的输入电压和输出电压的比值。在依据待充电终端中电池状态和充电电流信息选择充电转换电路的转换比例之后,便可以增大电流,以提高充电效 率,例如可以通过以下方式实现,但不限于此:向充电装置发送第三指令,其中,该第三指令用于控制充电装置按照第二电流值输出电流,第二电流值大于第一电流值。
在一个可选实施例中,以上述充电装置包括充电器和充电转换电路包括充电转换芯片为例,对于上述充电装置第一类型时的充电工作流程可以参见图3所示,对于上述充电装置第二类型时的充电工作流程可以参见图4所示。如图3和图4所示,充电器(相当于充电装置)插入终端(相当于待充电终端)给电池进行充电时,终端的充电管理单元就会与充电器进行沟通交互,以便确定充电器的信息、是否支持电源输出可调及可调的范围。如果不能与充电器进行沟通(例如,非TYPE C的USB接口的充电线缆中没有USB数据信号线,此时,终端和充电器便不能沟通),检测充电转换芯片(相当于充电转换电路)输入端的电压,该电压也即充电器输出给终端的充电电压,同时默认该充电器的输出电源不可调整。根据输入电压和电池的电压,也即输入电压和输出电压选择合适的开关电容阵列充电转换芯片的转换比例,例如1/2、1/3或2/3,其中,该转换比例可以通过充电转换芯片中多个开关组合的开闭实现,但不限于此。当终端与充电器可以进行交互识别,充电管理单元获取充电器的信息(包括但不限于充电器所支持的充电协议,例如,PD3.1,充电器生产厂商、回路阻抗等信息。)以及电源输出调整能力(包括但不限于输出电压的范围、输出电流的范围、输出电压的可调步径、输出电流的可调步径)。首先让充电器输出小电流(例如50mA的电流)预估充电器至充电转换芯片之间的电源线路传输阻抗,根据充电器输出电压和充电转换芯片输入端的电压产生的压差,就可以计算不同输出电流时的线路损耗,以便充电器针对有线路损耗的进行补偿,使得到达充电转换芯片的电压更加准确。根据电池的状态和充电电流的情况,选择开关电容阵列充电转换芯片适合的比例关系,同时通知充电器输出准确的电压和电流。
以下详细说明图3和图4中所示的充电过程。
其中,图3所示充电方法包括以下处理步骤:
步骤S302,确定充电器(相当于上述充电装置)插入;
步骤S304,对充电器的类型进行识别,确认充电器的类型为输出电源可调(即上述第一类型);
步骤S306,利用小电流预估充电器至充电转换芯片(相当于充电转换电路)的线路阻抗;
步骤S308,根据电池状态选择充电转换芯片的转换比例以及充电器的电源输出;
步骤S310,开始对电池进行充电;
步骤S312,检测充电转换芯片输入电压Vin和输入电流Iin,输出电压Vout和输出电流Iout,检测电池及充电转换芯片温度变化;
步骤S314,判断电池以及充电转换芯片是否发热,即温度值是否大于预设阈值;如果是,转步骤S312;否则,转步骤S320;
步骤S316,根据Pin=Vin*Iin、Pout=Vout*Iout和E 充电效率=Pout/Pin计算出充电效率E 充电效率
步骤S318,判断充电转换芯片是否处于该状态下最高效率点(即是否处于最高充电效率状态),如果是,则转步骤S312,否则,转步骤S320;
步骤S320,判断是否需要调整充电器的电源输出,如果是,转步骤S322,否则,转步骤S324;
步骤S322,通知充电器调整电源输出,转步骤S312;
步骤S324,输入电流小于某个阈值,判断是否调整充电转换芯片的比例关系(即转换比例),如果是,转步骤S326,否则,转步骤S328;
步骤S326,调整充电转换芯片的比例关系,转步骤S312;
步骤S328,判断充电电流是否小于某个阈值,是否需要调整充电转换芯片内部的时钟频率;如果是,转步骤S330,否则,转步骤S332;
步骤S330,调整充电芯片的内部时钟频率;
步骤S332,调整充电转换芯片内部切换频率的占空比;
步骤S334,充电结束。
其中,图4所示充电方法包括以下处理步骤:
步骤S402,确定充电器插入;
步骤S404,对充电器的类型进行识别,确认充电器的类型为输出电源不可调(即上述第二类型);
步骤S406,检测充电转换芯片的输入电压,根据电池状态选择充电转换芯片的转换比例;
步骤S408,开始对电池进行充电;
步骤S410,检测充电转换芯片输入电压Vin和输入电流Iin,输出电压Vout和输 出电流Iout,检测电池及充电转换芯片温度变化;
步骤S412,判断电池以及充电转换芯片是否发热,即温度值是否大于预设阈值;如果是,转步骤S418;否则,转步骤S412;
步骤S414,根据Pin=Vin*Iin、Pout=Vout*Iout和效率=Pout/Pin计算出充电效率;
步骤S416,判断充电转换芯片是否处于该状态下最高效率点,如果是,则转步骤S410,否则,转步骤S418;
步骤S418,判断是否需要调整充电转换芯片的转换比例;,如果是,则转步骤S420,否则,转步骤S422;
步骤S420,调整充电转换芯片的转换比例;
步骤S422,判断充电电流是否小于某个阈值,是否需要调整充电转换芯片内部的时钟频率;如果是,转步骤S424,否则,转步骤S426;
步骤S424,调整充电芯片的内部时钟频率;
步骤S426,调整充电转换芯片内部切换频率的占空比;
步骤S428,充电结束。
在一个可选实施例中,可以通过以下方式确定与待充电终端连接的充电装置的充电装置类型:待充电终端向充电设备发送请求消息;在预设时间内接收到请求消息对应的响应消息时,确定充电装置类型为第一类型;在预设时间内未接收到请求消息对应的响应消息时,确定充电装置类型为第二类型。
上述指定充电效率可以为用户所需要的充电效率,出于提高充电效率的目的,上述指定充电效率包括但不限于:最高充电效率;该最高充电效率通过以下方式确定:从历史充电记录中选择充电效率最高的值作为最高充电效率;或者,接收设置指令,其中,设置指令中携带有充电效率;将设置指令中携带的充电效率作为最高充电效率。
在向充电装置发送上述第一指令之前,可以确定充电转换电路是否满足一定的条件,以对该发送过程的触发条件进行限定,例如,可以在确定充电转换电路满足以下条件时,触发上述发送过程:Vout*a+V 势差电压*a>V out设计*a=Vin,其中,Vout用于表示充电转换电路的当前输出电压,a表示充电转换电路的转换比例,该转换比例为充电转换电路的输入电压和输出电压的设计值的比值,V势差电压表示充电转换电路输出电压的设计值与待充电终端中电池的输入电压之间的差值,V out设计用于表示充电转换电路的 设计输出电压;Vin表示充电转换电路的输入电压。需要说明的是,转换比例中所涉及的输入电压和输出电压的比值,可以为理论上的输入电压和输出电压的设计值的比值,上述理论上的输入电压和输出电压也可以为充电转换电路的额定输入电压和输出电压。
步骤S204,依据工作参数调整待充电终端中充电转换电路的工作状态,其中,不同的工作状态对应不同的充电效率。基于该处理步骤,可以实现依据上述工作参数调整充电转换电路的工作状态,从而实现对充电效率的调整。
其中,可以利用上述四个工作参数(待充电终端中电池的状态、充电转换电路的温度变化、充电转换电路的输入电流或输入电压和输出电流)中的一个或多个对上述充电转换电路的工作状态进行调整。例如,对于使用多个工作参数的情况:在检测到充电转换电路的温度升高且电池中剩余电量未到达指定值时,降低充电电流,避免充电转换电路的温度过高,影响充电效率;又例如,在检测到上述输入电流小于第一阈值且电池的剩余电流未到达指定值时,增大上述输入电流。其中,上述四个工作参数的组合情况可以根据实际情况灵活调整,并不限于上述实施例。
上述工作状态是与充电效率对应的工作状态,此时该步骤S204可以表现为以下实现方式,但不限于此:依据工作参数调整充电转换电路的工作频率的占空比,和/或充电转换电路的转换比例,和/或充电转换电路的时钟频率。
其中,对于使用一种工作参数的情况,可以表现为以下形式,但不限于此:
步骤S204中工作状态的调整过程可以表现为以下实现方式,但不限于此:判断充电转换电路的输出电流是否小于第一阈值;在判断结果指示输出电流小于第一阈值时,调整充电转换电路中充电转换芯片的时钟频率;在判断结果指示输出电流大于第一阈值时,调整充电转换电路的工作频率的占空比。
其中,在判断充电转换电路的输出电流是否小于第一阈值之前,还可以判断是否满足转换比例的调整条件,如果满足,则可以先调整转换比例,即转换比例的优先级高于输出电流的优先级,例如可以通过以下处理过程实现:判断充电转换电路的输入电流是否小于第二阈值;在输入电流小于第二阈值时,调整充电转换电路的转换比例;在输入电流大于第二阈值时,触发判断输出电流是否小于第一阈值。
在一个可选实施例中,在开关电容阵列充电转换芯片(包括但不限于基于开关电容阵列的充电转换芯片)选择合适的转换比例关系后,开始启动充电过程。待充电终端中的充电管理单元实时检测开关电容阵列充电转换芯片输入端和输出端的电压、输入和输出电流、开关电容阵列充电转换芯片的温度、电池的温度。根据公式效率=(输 出电压*输出电流)/(输入电压*输入电流),同时将该效率值和开关电容阵列充电转换芯片对应状态下的效率值相比较,判断当前开关电容阵列充电转换芯片是否在最高效率点。如果不是最高效率点,对于电源输出可调的充电器,首先检查是否因电池充电时使得输出端电压抬升(即确定当前输出电压和转换比例的乘积与势差电压的和,是否大于输入电压),从而降低了充电效率。如果是因为输出电压抬升导致的,那么对应的调整充电器的输出电压,使得充电效率达到最高效率点。如果充电器的输出电源不可调整,那么是否需要调整电容阵列充电转换芯片的比例关系,例如从1/3转换到1/2的比例关系,抬升输出电压,同时等比例改变电流,提升转换效率。或因为电池充电过程充电电流变化,使得输出功率变化,是否需要改变开关工作频率,降低因频率带来的开关损耗或开关电容工作在过饱和状态,从而提升开关电容阵列充电转换芯片的工作效率,例如输出电流低于某个值时,降低开关工作频率;或是否需要调整开关电容阵列充电转换芯片开关工作频率信号的占空比,使得电容阵列的充电和放电接近功率平衡,也就输入功率接近输出功率,即最高效率点,例如输入电压大于输出电压*比例关系,降低充电阶段时开关工作频率信号的占空比。
在检测开关电容阵列充电转换芯片工作效率的同时也检测电池和开关电容阵列充电转换芯片的温度变化,根据温度变化情况同时调整开关电容阵列充电转换芯片的工作状态(例如,温度超过一定值时,降低输入功率;温度在限值范围内,则抬升输入功率),使得充电过程处于一种持续工作的最佳效率点,进而实现快速充电。
其中,温度和效率在一定程度上是相关的,效率越高,功率损耗越少,发热量就低,温升就低。前面描述的效率时调整多个参数的前提,也就是温度变化在预设的允许范围内。由于开关电容转换芯片在允许的电气参数范围内工作,该温升变化满足要求,因而没有特别重点突出。但也不忽视异常状况的发生,故而将温度变化考虑进去。另外电池的温度检测,目的是为了在电池的所允许的工作温度范围给电池充电。而电池在正常充电时的温度上升,也主要是充电电流所引起的;一旦电池温度上升,那么就需要降低电流,改变了充电转换芯片的功率,因而相当于重新建立一个新的工作状态。
在一个可选实施例中,当充电器插入终端时,充电器中的电源管理单元会等待与终端的充电管理单元进行沟通,以确认终端是否适配需要调整输出电源的充电过程。如果不是,充电器按默认的充电器的标准规范进行电源输出。充电器与终端的充电管理单元适配后,充电器依据终端所需电源进行输出,并且在整个充电过程按终端的充电管理单元所需进行电源调整,直至充电结束。图5是根据本发明实施例的一种可选的充电器的工作流程示意图。如图5所示,具体地,如图5所示:
步骤S502,确定充电器插入终端;
步骤S504,判断充电器是否与终端匹配,如果是,转步骤S506,否则,转步骤S512;
步骤S506,输出终端所需电源;
步骤S508,判断是否调整输出电源,如果是,转步骤S506,否则,转步骤S510;
步骤S510,判断充电是否结束;
步骤S512,按充电器规范输出电源。
图6和图7是一种高效率的开关电容阵列充电实施方案实例。对于图7中的开关电容阵列可以实现1/3、1/2、2/3的转换比例关系。具体比例实现操作如下:
1/3转换比例关系,即Vout=1/3·Vin,操作如下:
电容充电阶段:S1、S5、S8闭合,其他开关断开,电容C1、C2充电;
电容放电阶段:S2、S4、S7、S9闭合,其他开关断开,电容C1、C2放电。
1/2转换比例关系,即Vout=1/2·Vin,操作如下:
电容充电阶段:S1、S3、S6、S8闭合,其他开关断开,电容C1、C2充电;
电容放电阶段:S2、S4、S7、S9闭合,其他开关断开,电容C1、C2放电。
2/3转换比例关系,即Vout=2/3·Vin,操作如下:
电容充电阶段:S1、S3、S6、S8闭合,其他开关断开,电容C1、C2充电;
电容放电阶段:S2、S5、S9闭合,其他开关断开,电容C1、C2放电。
如图7所示,S1的一端、S6的一端和Cin连接到Vin;S1的二端,S2的一端和C1的一端相连接;S4的二端、S3的一端、S5的二端与C1的二端相连接;S6的二端、S5的一端、S7的一端和C2的一端连接;S9的二端、S8的一端和C2的二端连接;S2的二端、S3的二端、S7的二端、S8的二端和Cout的一端连接。
充电阶段的开关操作由图6中的clk信号控制,放电阶段的开关操作由图6中的/clk信号控制。clk信号和/clk信号互为逆反关系,即如图8所示。在一个时钟周期T内,clk信号的高电平对应/clk信号的低电平,/clk信号可以由clk信号经过反相器得来。这样就较为严格控制区分开了电容的充放电阶段,避免开Vin和Vout连接在一起产生冲突故障。在充电开始前,充电转换芯片根据通过比例选择控制信号线所获 得的比例信号,选择对应的电容开关组合,并同时将充电阶段开关由clk信号控制,放电阶段的开关由/clk信号控制,不参与充电放电的开关全部断开。在充电的过程中,充电管理单元会根据电池电压的变化选择适合的转换比例关系,充电转换芯片同时实时切换对应的操作开关。充电完成后,充电转换芯片默认断开所有的开关。
库仑计和采样电阻组成电流检测功能;模拟数字转换器A/D用于测量电压,并将模拟数值转换为数字数值传递给微处理器。热敏电阻PTC用于检测充电转换芯片及电池的温度变化。由库仑计、模拟数字转换器A/D、微处理器构成充电管理单元的硬件部分。
当微处理器检测到Vin有电压数值,表明充电器插入手机,准备给手机充电。微处理通过通讯信号线与充电器交互,该信号线可以是USB接口的数据信号线D+/D-,或者是TYPE C接口的CC线,也可以是自定义的通讯信号线。根据与充电器的交互,判断充电器所支持标准规范,或者电源输出能力。
微处理器检测充电转换芯片的输出端,在本实例中也即图6和图7的Vout处。输出端与电池相连接,并且都是在终端的主板上,输出端与电池之间的线路阻抗非常小,所以Vout与电池的电压几乎相等。因而可以通过Vout可以判断电池当前的电压,根据充电曲线也就可以确认所允许的充电电流范围。如果充电器电源输出可调时,根据Vout和充电器电源输出能力,选择充电转换芯片合适的转换比例关系。例如选择1/3比例关系时,Vin’=3*Vout,充电器输出电流就是1/3的充电电流。其他的转换比例关系依此计算,Vin’=Vout/K,K为转换比例系数,充电器的输出电流是K倍的电池充电电流。
在开始充电前,充电管理单元要求充电转换芯片闭合S4、S5、S6,在实际使用过程中,S4是具有一定阻抗,允许通过小电流到地。同时要求充电器输出一个小电流值,例如50mA;同时输出一个默认的电压,例如5V。根据检测到Vin,输入端电流Iin,依据线路阻抗=(5V-Vin)/Iin可以计算出线路阻抗。充电器的输出电压=Vin’+线路阻抗*充电器输出电流+充电势差电压值。Vin’+充电势差电压也就是充电转换芯片的输入电压Vin。充电势差电压值可以是依据实验测得,本方案中该充电势差电压值设为50mV,使得Vin=Vin’+50mV>3*Vout,使得开关电容在放电阶段可以给电池进行充电。
如果充电器输出电源不可调,或者充电器不能交互,那么根据Vin和Vout的比值,选择一个靠近的比例转换关系。例如Vin是12V,Vout是3.8V,可以选择比例关系是1/3。
启动充电后,充电管理单元通过A/D转换芯片、库仑计可以实时检测输入电压和 电流、输出电压和电流。根据效率=(输出电压*输出电流)/(输入电压*输入电流)公式可以计算出当前工作状态的效率,与充电转换芯片依据输出电流及输出功率建立的效率表进行比较,判断当前充电转换芯片是否是工作在最高效率点。如果当前效率不是最高效率,根据所检测到充电转换芯片输入电压和电流、输出电压和电流的状态进行调整:
a、是否是因为随着充电过程进行,电池电压上升,使得输入电压和输出电压的转换比例关系不适合。例如初始时Vin=7V,Vout=3.4V,势差电压值在200mV,转换比例关系为1/2;充电后,Vout=3.5V时,显然该Vin=7V已无法给电池进行充电。对于充电器电源输出可调,那么要求充电器调整电源输出,使得Vin=7.2V即可;对于充电器电源输出不可调,那么要求充电转换芯片调整转换比例关系,即实现2/3的比例关系操作。另外在充电过程中,电池的充电电流也会发生变化,例如在接近充满时,充电电流也会变小,那么充电转换芯片的输入电流也会随着变小。当输入电流小于某个阈值时,开关电容阵列给电容充电阶段的损耗主要体现在开关的导通和断开交越损耗。对于充电器电源输出可调,此时应改变转换比例关系,增大充电转换芯片的输入电流。
b、是否因随着充电过程的进行,电池的充电电流的改变。例如电池电压在3.7V时,充电电流在6A,而电池电压在4.1V时,充电电流在1A。也即输出电压从3.7V上升到4.1V时,输出电流从6A降低到1A。对于开关电容阵列的clk信号的频率保持不变,例如仍然为1MHz。那么此时的开关电容阵列损耗从开关的导通阻抗损耗为主转成由开关的导通和断开交越损耗为主。故输出电流低压某个阈值,降低开关电容阵列的时钟信号频率。
c、是否因电压电流检测器件的精度或充电器输出电源的精度,在经过线路阻抗损耗补偿的充电器输出电压不准确,使得充电转换芯片输入端电压并不是最佳的电压值,从而使得充电转换芯片不是工作在最高效率状态,此时应改变操作频率信号的占空比。或者对于充电器输出电源不可调时,改变转换比例关系后,充电转换芯片的输入输出电压比值偏离转换比例关系,并且此时无法再调整比例关系。当Vin<(K*Vout+K*势差电压值),降低开关电容的充电时间,也即如图中调整clk信号的占空比,例如将50%占空比调整为40%占空比,反之就提升了/clk信号的占空比,也即提升了开关电容的放电时间,从而使得充电转换芯片的输入功率和输出功率达到最佳值,也即提升了充电转换芯片的工作效率。该占空比随着Vin与Vout偏离转换比例关系越大,降低电容充电开关操作的频率信号占空比越多。
充电管理单元在通过检测输入电压和电流、输出电压和电流调整充电转换芯片工作效率时,同时检测充电转换芯片和电池的温度,以便判断充电转换芯片和电池的发热情况,防止因持续发热致使充电转换芯片和电池过热停止充电。当温度超过一定值时,降低充电电流。对于充电器电源输出可调的,降低充电器的输出电流;对于充电器电源输出不开调的,降低电容充电阶段开关操作频率信号的占空比。在发热阶段,使得充电过程持续进行,这也是一种快速充电的体现。例如2.5A电流不间断充电10分钟,充电电量是25A·分钟;3A电流不间断充电7分钟,过热停止工作3分钟,充电电量是21A·分钟。很显然,持续充电比过热阶段产生的充电更加高效率。
充电结束后,充电管理单元告知充电转换芯片断开所有开关,同时停止操作时钟频率信号。对于电源输出可调的充电器,通知充电器恢复至默认状态。
图9是根据本发明实施例的另一种可选的充电电路的结构示意图。如图9所示,由于在整个充电过程中,充电管理单元都会一直检测充电转换芯片输入端和输出端的电压,因而只需要在输入端采样电阻的前端和输出端采样电阻的后端检测电压就可以计算出输入电流和输出电流。通过Iin=(Vin_r-Vin)/R采样电阻值,Iout=(Vout-Vout_r)/R 采样电阻值公式就可以计算出输入电流和输出电流。
图10本申请一个可选实施例的对于充电器输出电源可调的高效率工作流程图。其中,图10所示充电方法包括以下处理步骤:
步骤S1002,确定充电器插入;
步骤S1004,对充电器的类型进行识别,确认充电器的类型为输出电源可调;
步骤S1006,利用小电流预估充电器至充电转换芯片的线路阻抗;
步骤S1008,根据电池状态选择充电转换芯片的转换比例以及充电器的电源输出;
步骤S1010,开始对电池进行充电;
步骤S1012,按周期检测充电转换芯片输入端采样电阻Rin两端的电压Vin_r和Vin,输出端采样电阻两端的电压Vout和Vout_r,检测电池及充电转换芯片温度变化;
步骤S1014,判断电池以及充电转换芯片是否发热,即温度值是否大于预设阈值;如果是,转步骤S1012;否则,转步骤S1020;
步骤S1016,根据Iin=(Vin_r-Vin)/Rin采样和Iout=(Vout-Vout_r)/Rout采样公式计算出输入电流和输出电流,再根据Pin=Vin*Iin、Pout=Vout*Iout和效率 =Pout/Pin计算出效率;
步骤S1018,判断充电芯片是否处于该状态下最高效率点,如果是,则转步骤S1012,否则,转步骤S1020;
步骤S1020,判断是否需要调整充电器的电源输出,如果是,转步骤S1022,否则,转步骤S1024;
步骤S1022,通知充电器调整电源输出,转步骤S1012;
步骤S1024,输入电流小于某个阈值,判断是否调整充电转换芯片的比例关系(即转换比例),如果是,转步骤S1026,否则,转步骤S1028;
步骤S1026,调整充电转换芯片的比例关系,转步骤S1012;
步骤S1028,判断充电电流是否小于某个阈值,是否需要调整充电转换芯片内部的时钟频率;如果是,转步骤S1030,否则,转步骤S1032;
步骤S1030,调整充电芯片的内部时钟频率;
步骤S1032,调整充电转换芯片内部切换频率的占空比;
步骤S1034,充电结束。
图11是本申请实施例的一种可选的对于充电器固定电源输出的高效率工作流程图。
其中,图11所示充电方法包括以下处理步骤:
步骤S1102,确定充电器插入;
步骤S1104,对充电器的类型进行识别,确认充电器的类型为输出电源不可调;
步骤S1106,检测充电转换芯片的输入电压,根据电池状态选择充电转换芯片的转换比例;
步骤S1108,开始对电池进行充电;
步骤S1110,按周期检测检测充电转换芯片输入电压Vin和输入电流Iin,输出电压Vout和输出电流Iout,检测电池及充电转换芯片温度变化;
步骤S1112,判断电池以及充电转换芯片是否发热,即温度值是否大于预设阈值;如果是,转步骤S1118;否则,转步骤S1112;
步骤S1114,根据Pin=Vin*Iin、Pout=Vout*Iout和效率=Pout/Pin计算出充电效 率;
步骤S1116,判断充电芯片是否处于该状态下最高效率点,如果是,则转步骤S1110,否则,转步骤S1118;
步骤S1118,判断是否需要调整充电转换芯片的转换比例;,如果是,则转步骤S1120,否则,转步骤S1122;
步骤S1120,调整充电转换芯片的转换比例;
步骤S1122,判断充电电流是否小于某个阈值,是否需要调整充电转换芯片内部的时钟频率;如果是,转步骤S1124,否则,转步骤S1126;
步骤S1124,调整充电芯片的内部时钟频率;
步骤S1126,调整充电转换芯片内部切换频率的占空比;
步骤S1128,充电结束。
当模拟数字转换器的转换速率满足要求,采样电阻前后的电压检测可以共用一个A/D芯片,如图12所示实例。在充电过程对充电芯片输入电压和输出电压检测过程时,同步切换开关SW,使得A/D芯片可以测量采用电阻另一端的电压值。通过Iin=(Vin_r-Vin)/R 采样电阻值,Iout=(Vout-Vout_r)/R 采样电阻值公式就可以计算出输入电流和输出电流。图13和图14分别示出了另一可选的充电流程。
图13所示充电方法包括以下处理步骤:
步骤S1302,确定充电器插入;
步骤S1304,对充电器的类型进行识别,确认充电器的类型为输出电源可调;
步骤S1306,利用小电流预估充电器至充电转换芯片的线路阻抗;
步骤S1308,根据电池状态选择充电转换芯片的转换比例以及充电器的电源输出;
步骤S1310,开始对电池进行充电;
步骤S1312,按周期检测充电转换芯片两端的电压Vin和Vout,待检测完成后,切换开关SW,将采样电阻Rin和Rout另一端电压切换至ADC,同时检测电池及充电转换芯片温度变化;
步骤S1314,判断电池以及充电转换芯片是否发热,即温度值是否大于预设阈值;如果是,转步骤S1312;否则,转步骤S1322;
步骤S1316,待ADC完成采样周期后,测量出Vin_r和Vout_r,并切换开关SW,将ADC测量切换至充电转换芯片两端的电压测量,以备下一次测量。
步骤S1318,根据Iin=(Vin_r-Vin)/Rin采样和Iout=(Vout-Vout_r)/Rout采样公式计算出输入电流和输出电流,再根据Pin=Vin*Iin、Pout=Vout*Iout和效率=Pout/Pin计算出效率;
步骤S1320,判断充电芯片是否处于该状态下最高效率点,如果是,则转步骤S1312,否则,转步骤S1322;
步骤S1322,判断是否需要调整充电器的电源输出,如果是,转步骤S1324,否则,转步骤S1326;
步骤S1324,通知充电器调整电源输出,转步骤S1312;
步骤S1326,输入电流小于某个阈值,判断是否调整充电转换芯片的比例关系(即转换比例),如果是,转步骤S1328,否则,转步骤S1330;
步骤S1328,调整充电转换芯片的比例关系,转步骤S1312;
步骤S1330,判断充电电流是否小于某个阈值,是否需要调整充电转换芯片内部的时钟频率;如果是,转步骤S1332,否则,转步骤S1334;
步骤S1332,调整充电芯片的内部时钟频率;
步骤S1334,调整充电转换芯片内部切换频率的占空比;
步骤S1336,充电结束。
图14所示充电方法包括以下处理步骤:
步骤S1402,确定充电器插入;
步骤S1404,对充电器的类型进行识别,确认充电器的类型为输出电源不可调;
步骤S1406,按周期检测充电转换芯片的输入电压,根据电池状态选择充电转换芯片的转换比例;
步骤S1408,开始对电池进行充电;
步骤S1410,按周期检测充电转换芯片两端的电压Vin和Vout,待检测完成后,切换开关SW,将采样电阻Rin和Rout另一端电压切换至ADC,同时检测电池及充电转换芯片温度变化;
步骤S1412,判断电池以及充电转换芯片是否发热,即温度值是否大于预设阈值;如果是,转步骤S1420;否则,转步骤S1412;
步骤S1414,待ADC完成采样周期后,测量出Vin_r和Vout_r,并切换开关SW,将ADC测量切换至充电转换芯片两端的电压测量,以备下一次测量;
步骤S1416,根据Iin=(Vin_r-Vin)/Rin采样和Iout=(Vout-Vout_r)/Rout采样公式计算出输入电流和输出电流,再根据Pin=Vin*Iin、Pout=Vout*Iout和效率=Pout/Pin计算出效率;
步骤S1418,判断充电芯片是否处于该状态下最高效率点,如果是,则转步骤S1410,否则,转步骤S1420;
步骤S1420,判断是否需要调整充电转换芯片的转换比例;,如果是,则转步骤S1422,否则,转步骤S1424;
步骤S1422,调整充电转换芯片的转换比例;
步骤S1424,判断充电电流是否小于某个阈值,是否需要调整充电转换芯片内部的时钟频率;如果是,转步骤S1426,否则,转步骤S1428;
步骤S1426,调整充电芯片的内部时钟频率;
步骤S1428,调整充电转换芯片内部切换频率的占空比;
步骤S1430,充电结束。
图15所示系统的结构是一种可替代的方案。在开关电容阵列充电转换芯片可工作的电流范围内进行电池进行充电。在较短的时间范围内,假定电容的充放电关系成某种线性关系,也即输入电流和输出电流成线性关系。并且,开关电容阵列充电转换芯片的工作效率点与工作电流有关。在对电池进行充电前,充电管理单元依据工作电流对开关电容阵列充电转换芯片进行效率分布建立。充电转换电路的输入电流与输出电流存在线性关系,这样,便可以省却输入电流或输出电流的检测电路,即仅根据其中一个参数便可以确定另一个参数。
可替代方案实施工作流程图如图16和图17。在充电器插入终端给电池进行充电时,充电管理单元与充电器进行交互适配,依据对充电器特性进行相关充电前的准备。在充电过程中,检测输出电流,依据效率=(输出电压*输出电流)/(输入电压*输出电流*比例系数)=输出电压/(比例系数*输入电压),以便判断当前输出电流时,效率 是否达到最高效率。当不是最高效率点时,充电器电源输出可调时依据是否需要调整电源进行相应的输出电源调整;在不调整输出电源时,再判断是否是需要调整电容阵列的比例转换关系;或者是调整电容阵列充电转换芯片内部的工作频率;或者是调整电容阵列充电转换芯片内部的切换频率的占空比,此时也同时需要调整输入输出电流的比例系数。在整个充电过程中,同时检测充电转换芯片和电池的温度变化,以便调整充电转换芯片的工作状态直至充电结束。
具体地,图16所示流程包括以下处理步骤:
步骤S1602,确定充电器插入;
步骤S1604,对充电器的类型进行识别,确认充电器的类型为输出电源可调;
步骤S1606,利用小电流预估充电器至充电转换芯片的线路阻抗;
步骤S1608,根据电池状态选择充电转换芯片的转换比例以及充电器的电源输出;
步骤S1610,开始对电池进行充电;
步骤S1612,按周期检测充电转换芯片输入电压Vin,输出电压Vout,输出电流Iout,检测电池及充电转换芯片温度变化;
步骤S1614,判断电池以及充电转换芯片是否发热,即温度值是否大于预设阈值;如果是,转步骤S1612;否则,转步骤S1620;
步骤S1616,结合充电器的电源输出电流Ita,根据Pin=Vin*Ita、Pout=Vout*Iout和效率=Pout/Pin计算出效率;
步骤S1618,判断充电芯片是否处于该状态下最高效率点,如果是,则转步骤S1612,否则,转步骤S1620;
步骤S1620,判断是否需要调整充电器的电源输出,如果是,转步骤S1622,否则,转步骤S1624;
步骤S1622,通知充电器调整电源输出,转步骤S1612;
步骤S1624,输入电流小于某个阈值,判断是否调整充电转换芯片的比例关系(即转换比例),如果是,转步骤S1626,否则,转步骤S1628;
步骤S1626,调整充电转换芯片的比例关系,转步骤S1612;
步骤S1628,判断充电电流是否小于某个阈值,是否需要调整充电转换芯片内部 的时钟频率;如果是,转步骤S1630,否则,转步骤S1632;
步骤S1630,调整充电芯片的内部时钟频率;
步骤S1632,调整充电转换芯片内部切换频率的占空比;
步骤S1634,充电结束。
图17所示充电流程包括以下处理步骤:
步骤S1702,确定充电器插入;
步骤S1704,对充电器的类型进行识别,确认充电器的类型为输出电源不可调;
步骤S1706,检测充电转换芯片的输入电压,根据电池状态选择充电转换芯片的转换比例;
步骤S1708,开始对电池进行充电;
步骤S1710,按周期检测充电转换芯片输入电压Vin,输出电压Vout,输出电流Iout,检测电池及充电转换芯片温度变化;
步骤S1712,判断电池以及充电转换芯片是否发热,即温度值是否大于预设阈值;如果是,转步骤S1718;否则,转步骤S1712;
步骤S1714,结合充电器的电源输出电流I,根据Pin=Vin*I、Pout=Vout*Iout和效率=Pout/Pin计算出效率;
步骤S1716,判断充电芯片是否处于该状态下最高效率点,如果是,则转步骤S1710,否则,转步骤S1718;
步骤S1718,判断是否需要调整充电转换芯片的转换比例;,如果是,则转步骤S1720,否则,转步骤S1722;
步骤S1720,调整充电转换芯片的转换比例;
步骤S1722,判断充电电流是否小于某个阈值,是否需要调整充电转换芯片内部的时钟频率;如果是,转步骤S1724,否则,转步骤S1726;
步骤S1724,调整充电芯片的内部时钟频率;
步骤S1726,调整充电转换芯片内部切换频率的占空比;
步骤S1728,充电结束。
在一个可选实施例中,依据工作参数调整待充电终端中充电转换电路的工作状态 之前,方法还包括:获取充电转换电路的第一温度信息和待充电终端中电池的第二温度信息;依据温度信息和第二温度信息调整充电转换电路的工作状态。其中,第一温度信息和第二温度信息均包括以下至少之一,但不限于此:温度值、温度变化值。由于充电转换电路的主要器件为充电转换芯片,因此,上述第一温度信息可以包括但不限于充电转换芯片的温度信息。
基于本实施例提供的方案:1)拓展了开关电容阵列充电转换芯片所需要的充电器范围,即扩展了基于开关电容阵列的充电转换芯片的应用场景。2)自适应调整了充电过程的最高效率,使得任何阶段的调整都支持工作在对应工作状态下的最高效率点;通过检测充电转换芯片输入端和输出端的电源,数据有效性强,工作效率点检测计算准确。3)自适应地调整了充电过程的最佳效率,使得在可充电时的温度范围内实现最佳充电过程。
实施例2
本发明实施例提供一种充电装置,该装置用于实现实施例1中方法,如图18所示,该装置包括:
检测模块180,设置为检测待充电终端在充电过程中的工作参数,其中,工作参数用于反映待充电终端在充电过程中的状态;
调整模块182,与检测模块180耦接,设置为依据工作参数调整待充电终端中充电转换电路的工作状态,其中,不同的工作状态对应不同的充电效率。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,其可以表现为以下实现方式,但不限于此:上述各个模块位于同一处理器中;或者,上述各个模块分别位于不同的处理器中。
需要说明的是,本实施例的优选实施方式可以参见实施例1中的相关描述,此处不再赘述。
实施例3
图19是根据本发明实施例的另一种充电方法的流程示意图。如图19所示,该方法包括:
步骤S1902,确定与待充电终端连接的充电装置的充电装置类型,其中,充电装 置类型包括:支持对充电装置的输出电信号进行调整的第一类型;不支持对充电装置的输出电信号进行调整的第二类型,其中,输出电信号包括:输出电压和/或输出电流;
步骤S1904,获取待充电终端在充电过程中的工作参数,其中,工作参数用于反映待充电终端在充电过程中的状态;可选地,该工作参数包括:待充电终端中电池状态,以及充电电流信息。
在一个可选实施例中,为保证获取的工作参数的准确性,在获取待充电终端在充电过程中的工作参数之前,向充电装置发送第二指令,该第二指令用于控制充电装置按照第一电流值输出电流;依据第一电流值、充电装置和待充电终端中充电转换电路的输入端之间的线路阻抗确定压差,该压差为充电装置的输出电压和充电转换电路的输入电压之间的差值;将压差发送至充电装置,以使得充电装置依据压差对充电装置和待充电终端中充电转换电路的输入端之间的线路损耗进行补偿。
步骤S1906,在充电装置类型为第一类型时,且充电效率不是指定充电效率时,根据工作参数产生用于调整充电装置的输出电信号的大小的第一指令,并向充电装置发送第一指令。
在根据工作参数产生用于调整充电装置的输出电信号的大小的第一指令之前,依据待充电终端中电池状态和充电电流信息选择充电转换电路的转换比例,该转换比例为充电转换电路的输入电压和输出电压的比值。即在生成第一指令之前,可以先选择转换比例,以产生第一指令。
在一个可选实施例中,依据待充电终端中电池状态和充电电流信息选择充电转换电路的转换比例之后,向充电装置发送第三指令,其中,该第三指令用于控制充电装置按照第二电流值输出电流,第二电流值大于第一电流值。即第三指令用于控制充电装置开始按照第二电流值进行充电。
需要说明的是,本实施例的优选实施方式可以参见实施例1中的相关描述,此处不再赘述。
实施例4
本实施例提供一种充电电路,图20是根据本发明实施例的一种充电电路的结构示意图,如图20所示,该充电电路包括:
充电转换电路200,与充电管理模块204连接,设置为按照预设转换比例将充电转换电路的输入电压转换为输出电压;
采集模块202,与充电管理模块204连接,设置为采集待充电终端在充电过程中的工作参数,并将工作参数发送至充电管理模块204,其中,工作参数用于反映待充电终端在充电过程中的状态;
充电管理模块204,设置为依据工作参数,产生用于实现以下功能的控制指令:调整待充电终端中充电转换电路200的工作状态,其中,不同的工作状态对应不同的充电效率。
充电转换电路200可以表现为电容开关阵列,电容开关阵列包括:多个电容开关组合;多个电容开关组合中的每个电容开关组合对应一个转换比例,并且,通过闭合和/或断开每个电容开关组合中的至少部分开关电容电路,控制每个电容开关组合中的至少部分电容的充放电状态,转换比例为充电转换电路的输入电压和输出电压的比值。
如图20所示,采集模块202包括以下至少之一:第一电流采集模块2021,设置于充电转换电路的输入端,设置为采集充电转换电路的输入电流;第二电流采集模块2023,设置于充电转换电路的输出端,设置为采集充电转换电路的输出电流;第一电压采集模块2025,设置于充电转换电路的输入端,设置为采集充电转换电路的输入电压;第二电压采集模块2027,设置于充电转换电路的输出端,设置为采集充电转换电路的输出电压。
如图20所示,采集模块202还可以包括以下处理模块,但不限于此:第一温度采集模块2029,与充电管理模块204连接,设置为采集充电转换电路的第一温度信息;第二温度采集模块2031,与充电管理模块204连接,设置为采集待充电终端中电池的第二温度信息。此时,充电管理模块204,还设置为接收第一温度信息和第二温度信息,并依据第一温度信息和第二温度信息调整充电转换电路的工作状态。
在一个可选实施例中,充电管理模块204,还设置为接收第一温度信息和第二温度信息,并依据第一温度信息和第二温度信息。
在另一个可选实施例中,充电管理模块204,还设置为产生实现以下功能的控制指令:依据工作参数调整充电转换电路的工作频率的占空比,和/或充电转换电路的转换比例,和/或充电转换电路的时钟频率。
在本申请实施例中,充电管理模块204可以包括但不限于:处理器等硬件实现电路。
需要说明的是,本实施例的优选实施方式可以参见实施例1中的相关描述,此处不再赘述。
实施例5
本实施例提供一种终端,该终端包括:实施例4中的充电电路。本实施例中充电电路的具体结构和功能可以参见实施例4中的相关描述,此处不再赘述。
实施例6
本发明实施例提供了一种存储介质,该存储介质包括存储的程序,其中,在程序运行时控制存储介质所在设备执行实施例1或实施例3中的充电方法。
需要说明的是,本实施例的优选实施方式可以参见实施例1或3中的相关描述,此处不再赘述。
实施例7
本发明实施例提供了一种处理器,该处理器设置为运行程序,其中,该程序运行时执行实施例1或实施例3中的充电方法。
需要说明的是,本实施例的优选实施方式可以参见实施例1或3中的相关描述,此处不再赘述。
实施例8
本发明实施例提供了一种电子装置,包括存储器和处理器,存储器中存储有计算机程序,处理器被设置为通过计算机程序执行实施例1或实施例3中的充电方法。
需要说明的是,本实施例的优选实施方式可以参见实施例1或3中的相关描述,此处不再赘述。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分, 可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
工业实用性
如上所述,本发明实施例提供的一种充电方法及装置、系统、充电电路、终端、充电系统具有以下有益效果:解决了相关技术中的充电方案存在的充电效率以及用户体验不佳的技术问题。

Claims (28)

  1. 一种充电方法,包括:
    检测待充电终端在充电过程中的工作参数,其中,所述工作参数用于反映所述待充电终端在充电过程中的状态;
    依据所述工作参数调整所述待充电终端中充电转换电路的工作状态,其中,不同的工作状态对应不同的充电效率。
  2. 根据权利要求1所述的方法,其中,检测所述待充电终端在充电过程中的工作参数包括以下至少之一:
    检测所述待充电终端中电池的状态、所述充电转换电路的温度变化、所述充电转换电路的输入电流或输入电压、所述充电转换电路的输出电流或输出电压。
  3. 根据权利要求1所述的方法,其中,检测待充电终端在充电过程中的工作参数之前,所述方法还包括:
    确定与所述待充电终端连接的充电装置的充电装置类型,其中,所述充电装置类型包括:支持对充电装置的输出电信号进行调整的第一类型;不支持对充电装置的输出电信号进行调整的第二类型,其中,所述输出电信号包括:输出电压和/或输出电流;
    在所述充电装置类型为所述第一类型和/或所述充电效率不是指定充电效率时,向所述充电装置发送用于调整所述充电装置的输出电信号的大小的第一指令。
  4. 根据权利要求3所述的方法,其中,所述指定充电效率包括:最高充电效率;所述最高充电效率通过以下方式确定:
    从历史充电记录中选择充电效率最高的值作为所述最高充电效率;或者,
    接收设置指令,其中,所述设置指令中携带有充电效率;将所述设置指令中携带的充电效率作为所述最高充电效率。
  5. 根据权利要求3所述的方法,其中,向所述充电装置发送用于调整所述充电装置的输出电信号的大小的第一指令之前,所述方法还包括:确定所述充电转换电路满足以下条件:
    Vin<V out*a+V 势差电压*a,V充电器=V in+V 线路损耗,其中,Vin==V out设计*a,V in用于表示所述充电转换电路的输入电压,V out设计用于表示所述充电转换电路的设计输出电压,V out用于表示所述充电转换电路的输出电压,V 势差电压用于表示所述充电转换电路输出电压的设计值与所述待充电终端中电池的输入电压之间的差值,a用于表示所述充电转换电路的比例关系。
  6. 根据权利要求3所述的方法,其中,确定与所述待充电终端连接的充电装置的充电装置类型包括:
    所述待充电终端向充电设备发送请求消息;
    在预设时间内接收到所述请求消息对应的响应消息时,确定所述充电装置类型为所述第一类型;在所述预设时间内未接收到所述请求消息对应的响应消息时,确定所述充电装置类型为所述第二类型。
  7. 根据权利要求1所述的方法,其中,依据所述工作参数调整所述待充电终端中充电转换电路的工作状态,包括:
    依据所述工作参数调整所述充电转换电路的工作频率的占空比,和/或所述充电转换电路的转换比例,和/或所述充电转换电路的时钟频率。
  8. 根据权利要求7所述的方法,其中,依据所述工作参数调整所述待充电终端中充电转换电路的工作状态,包括:
    判断所述充电转换电路的输出电流是否小于第一阈值;在判断结果指示所述输出电流小于所述第一阈值时,调整所述充电转换电路中充电转换芯片的时钟频率;在所述判断结果指示所述输出电流大于所述第一阈值时,调整所述充电转换电路的工作频率的占空比。
  9. 根据权利要求8所述的方法,其中,判断所述充电转换电路的输出电流是否小于第一阈值之前,所述方法还包括:
    判断所述充电转换电路的输入电流是否小于第二阈值;在所述输入电流小于第二阈值时,调整所述充电转换电路的转换比例;在所述输入电流大于所述第二阈值时,触发判断所述输出电流是否小于所述第一阈值。
  10. 根据权利要求9所述的方法,其中,所述充电转换电路的输入电流与所述输出电流存在线性关系。
  11. 根据权利要求1至10中任意一项所述的方法,其中,依据所述工作参数调整所述 待充电终端中充电转换电路的工作状态之前,所述方法还包括:
    获取所述充电转换电路的第一温度信息和所述待充电终端中电池的第二温度信息;依据所述温度信息和所述第二温度信息调整所述充电转换电路的工作状态,其中,所述第一温度信息和所述第二温度信息均包括以下至少之一:温度值、温度变化值。
  12. 根据权利要求3所述的方法,其中,获取所述待充电终端在充电过程中的工作参数之前,所述方法还包括:
    向所述充电装置发送第二指令,该第二指令用于控制所述充电装置按照第一电流值输出电流;
    依据所述第一电流值、所述充电装置和所述待充电终端中充电转换电路的输入端之间的线路阻抗确定压差,该压差为所述充电装置的输出电压和所述充电转换电路的输入电压之间的差值;
    将所述压差发送至所述充电装置,以使得所述充电装置依据所述压差对所述充电装置和所述待充电终端中充电转换电路的输入端之间的线路损耗进行补偿。
  13. 根据权利要求12所述的方法,其中,向所述充电装置发送用于调整所述充电装置的输出电信号的大小的第一指令之前,所述方法还包括:
    依据所述待充电终端中电池状态和充电电流信息选择所述充电转换电路的转换比例,该转换比例为所述充电转换电路的输入电压和输出电压的比值。
  14. 根据权利要求13所述的方法,其中,依据所述待充电终端中电池状态和充电电流信息选择所述充电转换电路的转换比例之后,所述方法还包括:
    向所述充电装置发送第三指令,其中,该第三指令用于控制所述充电装置按照第二电流值输出电流,所述第二电流值大于所述第一电流值。
  15. 一种充电电路,包括:
    充电转换电路,与充电管理模块连接,设置为按照预设转换比例将所述充电转换电路的输入电压转换为输出电压;
    采集模块,与所述充电管理模块连接,设置为采集待充电终端在充电过程中的工作参数,并将所述工作参数发送至所述充电管理模块,其中,所述工作参数用于反映所述待充电终端在充电过程中的状态;
    所述充电管理模块,设置为依据所述工作参数,产生用于实现以下功能的控 制指令:调整所述待充电终端中充电转换电路的工作状态,其中,不同的工作状态对应不同的充电效率。
  16. 根据权利要求15所述的充电电路,其中,所述充电转换电路包括:电容开关阵列,所述电容开关阵列包括:多个电容开关组合;
    所述多个电容开关组合,其中,所述多个电容开关组合中的每个电容开关组合对应一个转换比例,并且,通过闭合和/或断开所述每个电容开关组合中的至少部分开关电容电路,控制所述每个电容开关组合中的至少部分电容的充放电状态,所述转换比例为所述充电转换电路的输入电压和输出电压的比值。
  17. 根据权利要求15所述的充电电路,其中,所述采集模块包括以下至少之一:
    第一电流采集模块,设置于所述充电转换电路的输入端,设置为采集所述充电转换电路的输入电流;
    第二电流采集模块,设置于所述充电转换电路的输出端,设置为采集所述充电转换电路的输出电流;
    第一电压采集模块,设置于所述充电转换电路的输入端,设置为采集所述充电转换电路的输入电压;
    第二电压采集模块,设置于所述充电转换电路的输出端,设置为采集所述充电转换电路的输出电压。
  18. 根据权利要求15至17中任意一项所述的充电电路,其中,所述采集模块包括:
    第一温度采集模块,与所述充电管理模块连接,设置为采集所述充电转换电路的第一温度信息;
    第二温度采集模块,与所述充电管理模块连接,设置为采集所述待充电终端中电池的第二温度信息。
  19. 根据权利要求18所述的充电电路,其中,所述充电管理模块,还设置为接收所述第一温度信息和所述第二温度信息,并依据所述第一温度信息和所述第二温度信息调整所述充电转换电路的工作状态。
  20. 根据权利要求19所述的充电电路,其中,所述充电管理模块,还设置为接收所述第一温度信息和所述第二温度信息,并依据所述第一温度信息和所述第二温度信息。
  21. 根据权利要求15所述的充电电路,其中,所述充电管理模块,还设置为产生实现 以下功能的控制指令:依据所述工作参数调整所述充电转换电路的工作频率的占空比,和/或所述充电转换电路的转换比例,和/或所述充电转换电路的时钟频率。
  22. 一种终端,包括:权利要求15至21中任意一项所述的充电电路。
  23. 一种充电系统,包括:充电装置和待充电终端,其中,
    所述充电装置包括:电源管理模块,与电源转换输出模块连接,设置为与待充电终端中的充电管理模块进行通信,并产生控制指令;电源转换输出模块,设置为根据所述控制指令输出与所述控制指令对应的输出电信号;
    所述待充电终端包括:充电转换电路,与所述充电管理模块连接,设置为按照预设转换比例将所述充电转换电路的输入电压转换为输出电压;采集模块,与所述充电管理模块连接,设置为采集待充电终端在充电过程中的工作参数,并将所述工作参数发送至充电管理模块,其中,所述工作参数用于反映所述待充电终端在充电过程中的状态;所述充电管理模块,设置为依据所述工作参数,产生用于实现以下功能的控制指令:调整所述待充电终端中充电转换电路的工作状态,其中,不同的工作状态对应不同的充电效率。
  24. 根据权利要求23所述的充电系统,其中,所述充电转换电路包括:电容开关阵列,所述电容开关阵列包括:多个电容开关组合;
    所述多个电容开关组合,其中,所述多个电容开关组合中的每个电容开关组合对应一个转换比例,并且,通过闭合和/或断开所述每个电容开关组合中的至少部分开关电容电路,控制所述每个电容开关组合中的至少部分电容的充放电状态,所述转换比例为所述充电转换电路的输入电压和输出电压的比值。
  25. 一种充电装置,包括:
    检测模块,设置为检测待充电终端在充电过程中的工作参数,其中,所述工作参数用于反映所述待充电终端在充电过程中的状态;
    调整模块,设置为依据所述工作参数调整所述待充电终端中充电转换电路的工作状态,其中,不同的工作状态对应不同的充电效率。
  26. 一种存储介质,所述存储介质包括存储的程序,其中,在所述程序运行时控制所述存储介质所在设备执行权利要求1至14中任意一项所述的充电方法。
  27. 一种处理器,所述处理器设置为运行程序,其中,所述程序运行时执行权利要求1至14中任意一项所述的充电方法。
  28. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为通过所述计算机程序执行权利要求1至14中任意一项所述的充电方法。
PCT/CN2018/116219 2018-02-13 2018-11-19 充电方法及装置、系统、充电电路、终端、充电系统 WO2019157844A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/966,748 US20200373778A1 (en) 2018-02-13 2018-11-19 Charging Method, Apparatus and System, Charging Circuit and Terminal
EP18906048.6A EP3754777A4 (en) 2018-02-13 2018-11-19 CHARGING METHOD AND DEVICE, SYSTEM, CHARGING CIRCUIT, TERMINAL DEVICE AND CHARGING SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810149703.9A CN108258348B (zh) 2018-02-13 2018-02-13 充电方法及装置、系统、充电电路、终端、充电系统
CN201810149703.9 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019157844A1 true WO2019157844A1 (zh) 2019-08-22

Family

ID=62745174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116219 WO2019157844A1 (zh) 2018-02-13 2018-11-19 充电方法及装置、系统、充电电路、终端、充电系统

Country Status (4)

Country Link
US (1) US20200373778A1 (zh)
EP (1) EP3754777A4 (zh)
CN (1) CN108258348B (zh)
WO (1) WO2019157844A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111262299A (zh) * 2020-03-10 2020-06-09 上海闻泰电子科技有限公司 充电器输出电压调节方法、装置、智能终端及介质
WO2021075914A1 (en) 2019-10-17 2021-04-22 Samsung Electronics Co., Ltd. Electronic device including resonant charging circuit
CN114284811A (zh) * 2021-12-27 2022-04-05 协讯电子(吉安)有限公司 一种数据传输线

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258348B (zh) * 2018-02-13 2022-04-29 中兴通讯股份有限公司 充电方法及装置、系统、充电电路、终端、充电系统
CN110718944B (zh) * 2018-07-12 2023-08-04 中兴通讯股份有限公司 一种双电池充放电的方法、装置、终端和存储介质
JP7010191B2 (ja) * 2018-10-23 2022-02-10 トヨタ自動車株式会社 二次電池システムおよび二次電池の充電制御方法
CN112054564B (zh) * 2019-06-05 2022-07-19 Oppo广东移动通信有限公司 电路检测方法及装置、设备、存储介质
CN110336099B (zh) * 2019-07-22 2021-11-23 北京经纬恒润科技股份有限公司 一种电池自加热方法及装置
CN110460130B (zh) * 2019-08-26 2022-06-21 北京字节跳动网络技术有限公司 充电方法、装置、系统、终端及存储介质
CN110556902B (zh) * 2019-09-20 2021-09-03 阳光电源股份有限公司 一种充电方法及直流充电系统
CN113675926A (zh) * 2021-08-30 2021-11-19 广东艾檬电子科技有限公司 一种充放电电路、充放电方法以及终端
CN114030383B (zh) * 2021-10-15 2024-04-05 智新控制系统有限公司 高压互锁检测系统及方法
CN114006429A (zh) * 2021-10-25 2022-02-01 北京小米移动软件有限公司 充电方法、装置、终端设备及计算机可读存储介质
CN116231774A (zh) * 2021-12-02 2023-06-06 华为技术有限公司 充电方法、电子设备及计算机可读存储介质
CN115333259B (zh) * 2022-10-17 2023-02-28 北京紫光芯能科技有限公司 用于调整无线充电效率的方法及装置、无线充电接收设备
CN116826892A (zh) * 2023-05-26 2023-09-29 荣耀终端有限公司 充电方法、充电装置、电子设备及可读存储介质
CN116620090A (zh) * 2023-06-28 2023-08-22 小米汽车科技有限公司 车辆的充电方法、装置、电子设备及存储介质
CN117458674B (zh) * 2023-12-22 2024-03-08 登峰科技(江西)有限公司 一种电池混合系统控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9160166B2 (en) * 2012-12-19 2015-10-13 Silicon Laboratories Inc. Charge pump for low power consumption apparatus and associated methods
CN105552978A (zh) * 2015-08-28 2016-05-04 宇龙计算机通信科技(深圳)有限公司 充电电路、可充电电池及用户终端
CN106100028A (zh) * 2016-06-27 2016-11-09 深圳天珑无线科技有限公司 充电设备和充电电路
CN106787055A (zh) * 2016-11-30 2017-05-31 珠海市魅族科技有限公司 一种充电电路、系统、方法及终端
CN107171384A (zh) * 2017-05-31 2017-09-15 上海青橙实业有限公司 电池的充电控制方法及装置
CN108258348A (zh) * 2018-02-13 2018-07-06 中兴通讯股份有限公司 充电方法及装置、系统、充电电路、终端、充电系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090033293A1 (en) * 2007-08-01 2009-02-05 Intersil Americas Inc. Voltage converter with combined capacitive voltage divider, buck converter and battery charger
CN108667094B (zh) * 2014-11-11 2020-01-14 Oppo广东移动通信有限公司 通信方法、电源适配器和终端
CN110212599B (zh) * 2016-04-08 2022-12-27 华为技术有限公司 一种快速充电的方法、终端、充电器和系统
CN107231013B (zh) * 2016-05-24 2019-01-15 华为技术有限公司 一种充电的方法、终端、充电器和系统
CN107546434B (zh) * 2016-06-23 2020-06-05 中兴通讯股份有限公司 一种充电方法、装置及终端
US11101674B2 (en) * 2016-08-05 2021-08-24 Avago Technologies International Sales Pte. Limited Battery charging architectures
CN106329662A (zh) * 2016-10-18 2017-01-11 乐视控股(北京)有限公司 充电方法、装置及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9160166B2 (en) * 2012-12-19 2015-10-13 Silicon Laboratories Inc. Charge pump for low power consumption apparatus and associated methods
CN105552978A (zh) * 2015-08-28 2016-05-04 宇龙计算机通信科技(深圳)有限公司 充电电路、可充电电池及用户终端
CN106100028A (zh) * 2016-06-27 2016-11-09 深圳天珑无线科技有限公司 充电设备和充电电路
CN106787055A (zh) * 2016-11-30 2017-05-31 珠海市魅族科技有限公司 一种充电电路、系统、方法及终端
CN107171384A (zh) * 2017-05-31 2017-09-15 上海青橙实业有限公司 电池的充电控制方法及装置
CN108258348A (zh) * 2018-02-13 2018-07-06 中兴通讯股份有限公司 充电方法及装置、系统、充电电路、终端、充电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3754777A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075914A1 (en) 2019-10-17 2021-04-22 Samsung Electronics Co., Ltd. Electronic device including resonant charging circuit
EP4018527A4 (en) * 2019-10-17 2023-04-19 Samsung Electronics Co., Ltd. ELECTRONIC DEVICE INCLUDING A RESONANCE CHARGING CIRCUIT
CN111262299A (zh) * 2020-03-10 2020-06-09 上海闻泰电子科技有限公司 充电器输出电压调节方法、装置、智能终端及介质
CN111262299B (zh) * 2020-03-10 2023-12-01 上海闻泰电子科技有限公司 充电器输出电压调节方法、装置、智能终端及介质
CN114284811A (zh) * 2021-12-27 2022-04-05 协讯电子(吉安)有限公司 一种数据传输线

Also Published As

Publication number Publication date
EP3754777A4 (en) 2021-04-14
CN108258348B (zh) 2022-04-29
EP3754777A1 (en) 2020-12-23
US20200373778A1 (en) 2020-11-26
CN108258348A (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
WO2019157844A1 (zh) 充电方法及装置、系统、充电电路、终端、充电系统
CN107231013B (zh) 一种充电的方法、终端、充电器和系统
CN106787055B (zh) 一种充电电路、系统、方法及终端
CN107231012B (zh) 一种快速充电的方法、终端、充电器和系统
US9203254B2 (en) Power management circuit for a portable electronic device including USB functionality and method for doing the same
CN106208714B (zh) 同步整流开关电源及控制方法
CN111033872B (zh) 充电方法和充电装置
EP3627676B1 (en) Power conversion circuit, and charging apparatus and system
EP3516752A1 (en) Charging circuit for battery-powered device
CN111900781B (zh) 充电方法、充电设备及充电控制芯片
CN103219754A (zh) 单回路充电装置以及单回路充电方法
CN107846048B (zh) 充电电路及其电容式电源转换电路与充电控制方法
US9425648B2 (en) Mobile device solar powered charging apparatus, method, and system
CN206313477U (zh) 一种支持qc2.0功能的多通道车载快充芯片
CN116388350B (zh) 充电控制方法、储能设备和可读存储介质
CN110970956A (zh) 充电方法、电子设备、充电装置和充电系统
CN102118057B (zh) 具有整合式充放电路的直流不间断电源电路
Hasanah et al. DC-DC converter for USB-C power adapter in residential DC electricity
CN105281406A (zh) 一种车载自适应优化供电装置
CN213754015U (zh) 一种蓝牙耳机的充电电路、充电盒及充电系统
EP3484011B1 (en) Power supply device and charging control method
CN110739745A (zh) 应用于高电池电压音响的自动充放电检测电路
CN115001116B (zh) 充电器充电控制方法、控制器及充电器
CN108123511A (zh) 一种支持qc2.0功能的多通道车载快充芯片
CN213990241U (zh) 无线耳机的充电设备和无线耳机组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018906048

Country of ref document: EP

Effective date: 20200914