WO2019156346A1 - Dc배전에서 무순단 전력변환 시스템 - Google Patents

Dc배전에서 무순단 전력변환 시스템 Download PDF

Info

Publication number
WO2019156346A1
WO2019156346A1 PCT/KR2018/016414 KR2018016414W WO2019156346A1 WO 2019156346 A1 WO2019156346 A1 WO 2019156346A1 KR 2018016414 W KR2018016414 W KR 2018016414W WO 2019156346 A1 WO2019156346 A1 WO 2019156346A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power converter
power
master
distribution
Prior art date
Application number
PCT/KR2018/016414
Other languages
English (en)
French (fr)
Inventor
김현준
백요한
Original Assignee
효성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 효성중공업 주식회사 filed Critical 효성중공업 주식회사
Priority to US16/967,268 priority Critical patent/US11128234B2/en
Publication of WO2019156346A1 publication Critical patent/WO2019156346A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/81Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal arranged for operation in parallel

Definitions

  • the present invention relates to a stepless power conversion in DC distribution, in particular in the DC distribution to perform a voltage control in a stepless manner by switching the slave power converter to the master power converter in the event of a failure in the master power converter of the DC distribution.
  • An uninterruptible power conversion system is provided.
  • a power converter for converting AC power supplied from the AC distribution network into DC power is required. It is not only technically difficult to manufacture such a power converter with one large capacity, but it is reasonable to connect a plurality of small capacity in parallel according to the capacity of the DC power.
  • FIG. 1 A typical power conversion system of DC distribution is shown in FIG.
  • the AC power supplied from the AC power distribution network 10 is converted into DC power by the plurality of power converters 20, and the DC power to various facilities 50 through the DC power distribution line 40 of the DC power distribution network 30. Is supplied.
  • one of the plurality of power converter 20 is operated as the master power converter 20 to perform the voltage control of the DC power distribution network 30, the other is operated as a slave power converter 20 to the DC power distribution network Power control (current control) of 30 is performed.
  • the master power converter 20 supplies a DC voltage to the DC distribution line 40.
  • the upper controller detects a failure when the DC voltage of the DC distribution line 40 falls below the preset range ( ⁇ Vdc) as shown in FIG. 3 and converts one of the plurality of slave power converters 20 into the master power converter.
  • the converted master power converter to continue to control the voltage of the DC power distribution network (30).
  • the DC distribution line 40 determines the occurrence of a failure by reducing the DC voltage, so it takes a long time to switch and does not perform a smooth conversion in the DC distribution. have.
  • the DC within the error range (for example, ⁇ 10%) is not judged to be a failure and the DC as shown in FIG. Since the voltage is determined to be a failure only after the margin of error ( ⁇ Vdc) of the margin, there is a problem that the failure determination is late.
  • the host controller since the host controller receives the information of the entire power converter 20 and the load 50 through communication, fault determination and mode switching are performed. Therefore, the speed of mode switching is determined according to the communication speed, and the worst due to low reliability of communication. In this case, there is a problem that a power failure of the DC power distribution network may occur.
  • the present invention has been proposed to solve the above problems of the prior art, the DC power distribution to allow the slave power converter to immediately detect the failure of the master power converter in the DC distribution to perform voltage control of the DC power distribution network
  • the purpose is to provide a power conversion system.
  • the present invention is a non-stationary power conversion system in the DC distribution so that when the master power converter of the DC distribution failure occurs, the slave power converter immediately supply the DC voltage to the DC distribution line to enable the uninterrupted power supply in the DC distribution.
  • the slave power converter immediately supply the DC voltage to the DC distribution line to enable the uninterrupted power supply in the DC distribution.
  • a power conversion system for converting an AC voltage into a DC voltage between an AC power distribution network and a DC power distribution network including a plurality of power converters connected in parallel.
  • the master power converter of the plurality of power converter converts the AC voltage supplied from the AC power distribution network to a DC voltage, but converts the DC voltage containing an AC voltage of a predetermined size to the DC power distribution network Supplying to a DC distribution line, and the remaining slave power converter of the plurality of power converters senses the DC voltage of the DC distribution line in real time, and if the AC voltage is not detected from the detected DC voltage, the remaining slave power converter One of the switches to the master power converter.
  • each of the power converter, the switching unit of the bridge structure consisting of a plurality of semiconductor switches and capacitors; A DC voltage control unit controlling switching of the plurality of semiconductor switches; And the DC voltage controller is configured to control the switching of the plurality of semiconductor switches to generate a DC voltage including the AC voltage when an operation signal of the master power converter is received from an upper controller.
  • the DC voltage is supplied to the DC distribution line of the DC distribution network.
  • the AC voltage is not extracted from the DC voltage in the AC voltage extraction unit is switched from the slave power converter to the master power converter.
  • the master power converter in the uninterruptible power conversion system in the DC distribution according to another embodiment of the present invention, is supplied from the AC distribution network Converts a predetermined AC voltage into a DC voltage, and converts the converted AC voltage into a DC voltage including an AC voltage having a predetermined size and supplies the same to the DC distribution line of the DC distribution network, and the slave power converter converts the DC voltage in the DC distribution line in real time.
  • the controller continues to operate as the slave power converter, and if not detected, it switches to the master power converter.
  • the master power converter performs voltage control of the DC power distribution network
  • the slave power converter performs current control of the DC power distribution network
  • the master power conversion device the switching unit of the bridge structure consisting of a plurality of semiconductor switches and capacitors; A DC voltage control unit controlling switching of the plurality of semiconductor switches; And the DC voltage controller is configured to control the switching of the plurality of semiconductor switches to generate a DC voltage including the AC voltage when an operation signal of the master power converter is received from an upper controller.
  • the DC voltage is supplied to the DC distribution line of the DC distribution network.
  • the present invention since a quick response speed is switched between the master power converter and the slave power converter in the DC distribution, it is possible to supply the stepless power in the DC distribution line.
  • the master power converter includes a fine AC voltage command value in the DC voltage output value to perform DC voltage control in the DC power distribution network and the slave power converter fails in the master power converter when the AC voltage is not detected.
  • a seamless transfer between the master and the slave is possible at low cost and in a simple manner.
  • FIG. 3 is a graph illustrating a switching time of a slave power converter according to a failure determination in a conventional power conversion system of DC distribution.
  • FIG. 5 is a graph showing a DC voltage when a failure occurs during operation of the master power converter in the power distribution system of the DC distribution according to an embodiment of the present invention.
  • FIG. 6 is a graph illustrating a switching time of a slave power converter according to a failure determination in a power conversion system of DC distribution according to an exemplary embodiment of the present invention.
  • FIG. 7 is a graph illustrating an experimental result of power conversion between a conventional DC power conversion system and a DC power distribution system.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be “connected”, “coupled” or “connected”.
  • FIG. 4 is a configuration diagram of a power conversion system of DC distribution according to an embodiment of the present invention.
  • the uninterruptible power conversion system 100 in DC distribution is connected between the AC distribution network 110 and the DC distribution network 130 from the AC distribution network 110.
  • the supplied AC voltage is converted into a DC voltage to be used in the DC power distribution network 130 and supplied to the DC power distribution network 130 through the DC power distribution line 140.
  • At least two or more power converters 120 are connected to each other in parallel.
  • the number of these power converters 120 may be determined according to the amount of DC power required by the DC power distribution network 130, and as the DC voltage (amount of power) required by the DC power distribution network 130 increases, the power conversion device 120 may increase. ) Will also increase the conversion capacity.
  • such a power converter may be an inverter or a converter.
  • the plurality of power converters 120 includes a master power converter 120a that performs voltage control of the DC power distribution network 130 and the remaining slave power converters that perform power control, that is, current control of the DC power distribution network 130. 120b is included.
  • an upper controller selects one of the plurality of power converters 120 to master power. It is set to operate as the converter 120a and the rest is set to operate as the slave power converter 120b.
  • an important feature of the present embodiment is that the power converter set as the master power converter 120a by the upper controller (not shown) converts the AC voltage supplied from the AC power distribution network 110 into a DC voltage, The AC voltage of the magnitude is converted into the DC voltage is supplied to the DC distribution line 140 of the DC power distribution network (130).
  • the master power converter 120a which performs voltage control of the DC power distribution network 130 supplies the DC voltage to the DC power distribution network 130, a small amount of AC voltage is included.
  • Supply DC voltage This substantially means that the DC voltage has a magnitude change in a range corresponding to the amplitude of the AC voltage.
  • the remaining at least one slave power converter 120b detects the DC voltage of the DC distribution line 140 in real time, and checks whether an AC voltage is detected from the detected DC voltage.
  • the AC voltage to be detected here becomes a voltage supplied by the master power converter 120a.
  • each slave power converter 120b detects an AC voltage from the DC voltage of the DC distribution line 140, the slave power converter 120b continues to operate as the slave power converter 120b. It is determined that a failure has occurred in the converter 120a, and one of the remaining slave power converters 120b switches to the master power converter 120a to operate as the master power converter 120a, that is, the DC power distribution network 130. It is to keep the voltage control of.
  • the master power converter 120a supplies the DC voltage including the AC voltage to the DC distribution line 140 as described above, if the master power converter 120a operates normally, the slave power converter 120b performs DC distribution.
  • the AC voltage may be extracted from the DC voltage sensed by the line 140.
  • the slave power converter 120b uses the magnitude of the DC voltage reduced in the DC distribution line 140 due to the failure of the master power converter 120a to cause the failure of the master power converter 120a.
  • the slave power converter 120a is not a master of the master power converter 120a because it detects a failure of the master power converter 120a by checking whether an AC voltage is detected from the DC voltage. The occurrence can be detected quickly.
  • the speed at which the slave power converter 120b is converted to the master power converter 120a is increased, thereby allowing the stepless power supply in the DC distribution.
  • the DC voltage controller 122 controls the switching of the semiconductor switches of the bridge structure, respectively, to convert the input AC voltage into the DC voltage. Convert to, but convert to a DC voltage containing a predetermined AC voltage.
  • the AC voltage may be generated by adjusting the turn on / off time of the semiconductor switch by the DC voltage controller 122.
  • each of the power converter 120 is a DC voltage detection unit 123 for detecting a DC voltage in the DC distribution line 120 and an AC voltage extraction unit 124 to extract the AC voltage from the detected DC voltage More).
  • the DC voltage detector 123 and the AC voltage extractor 124 may preferably operate when the power converter 120 operates as a slave power converter 120b. That is, when the master power converter 120a supplies the DC voltage including the AC voltage to the DC distribution line 140, the DC voltage sensing unit 123 of the slave power converter 120b is the DC distribution line 140. ) Detects the DC voltage. At this time, the AC voltage is extracted from the DC voltage detected by the AC voltage extraction unit 124 to determine whether the AC voltage is included in the DC voltage.
  • the master power converter 120a If the AC voltage is included, it is determined that the master power converter 120a is operating normally so that the master power converter 120a continues to operate as the slave power converter 120b. On the contrary, if the AC voltage is not included, it is determined that a failure has occurred in the master power converter 120a, and it is switched to the master power converter.
  • the AC voltage included in the DC voltage supplied to the DC power distribution network 130 should not affect the DC voltage of the DC power distribution network 130. Therefore, the magnitude of the AC voltage is very small.
  • the magnitude of the AC voltage is preferably less than 1% of the magnitude of the DC voltage. More preferably, you may be 0.3 to 0.7%.
  • the size and ratio of the AC voltage may be changed according to the capacity and size of the DC voltage required in the DC power distribution network.
  • FIG. 5 shows a DC voltage supplied by the master power converter 120a to the DC distribution line 140, specifically, a DC voltage including an AC voltage.
  • a DC voltage including an AC voltage is illustrated as an example, but a DC voltage including an AC voltage is substantially supplied.
  • the slave power converter 120b detects the DC voltage in real time in the DC distribution line 140.
  • the DC voltage detected by the DC distribution line 140 includes an AC voltage, thereby detecting the voltage signal as shown in FIG. 6.
  • the master power converter 120a When a failure occurs in the master power converter 120a, the AC voltage is not detected from the DC voltage in the DC power distribution line 140, and the slave power converter 120b immediately checks this, Detecting a failure is to switch to the master power converter 120a. Therefore, in the present invention, since the master-slave is switched as soon as the AC voltage is not detected, it has a fast switching speed, thereby enabling an uninterrupted power supply to the DC distribution line 140.
  • FIG. 7A illustrates that the slave power converter 120b detects a failure of the master power converter 120a when the DC voltage of the DC power distribution line 140 falls below a predetermined range. It can be seen that the voltage drop occurs, and it takes a considerable time to secure a stable DC voltage afterwards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

본 발명은 DC배전의 마스터 전력변환장치에 고장발생시 슬레이브 전력변환장치가 마스터 전력변환장치로 빠르게 전환하여 무순단으로 전압제어를 수행하도록 하는 DC배전에서 무순단 전력변환 시스템에 관한 것이다. 본 발명의 일 실시 예에 따른 DC배전에서 무순단 전력변환 시스템은, 병렬로 연결된 복수의 전력변환장치를 포함하여 AC배전망과 DC배전망 사이에서 AC전압을 DC전압으로 변환을 수행하는 전력변환시스템에 있어서, 상기 복수의 전력변환장치 중 마스터 전력변환장치는 상기 AC배전망으로부터 공급된 AC전압을 DC전압으로 변환하되, 기설정된 크기의 AC전압이 포함된 DC전압으로 변환하여 상기 DC배전망의 DC배전라인에 공급하고, 상기 복수의 전력변환장치 중 나머지 슬레이브 전력변환장치는 상기 DC배전라인의 DC전압을 실시간 감지하여 상기 감지된 DC전압에서 AC전압이 검출되지 않으면 상기 나머지 슬레이브 전력변환장치 중 하나가 마스터 전력변환장치로 전환한다.

Description

DC배전에서 무순단 전력변환 시스템
본 발명은 DC배전에서 무순단 전력변환에 관한 것으로서, 특히 DC배전의 마스터 전력변환장치에 고장발생시 슬레이브 전력변환장치가 마스터 전력변환장치로 빠르게 전환하여 무순단으로 전압제어를 수행하도록 하는 DC배전에서 무순단 전력변환 시스템에 관한 것이다.
DC배전라인을 통해 각종 설비로 DC전력을 공급하기 위해서는 AC배전망으로부터 공급된 AC전력을 DC전력으로 변환하기 위한 전력변환장치가 필요하다. 이러한 전력변환장치는 하나의 큰 용량으로 제조하는 것은 기술적으로도 어려울 뿐만 아니라 DC전력의 용량에 따라 복수의 작은 용량을 병렬연결하는 것이 합리적이다.
DC배전에서 마스터/슬레이브 방식으로 병렬운전하는 계통연계형 전력변환장치의 경우 DC배전망의 전압제어는 마스터 장치가 수행하고 복수의 슬레이브 장치는 전류제어를 각각 수행하는 것이 산업계에서 일반적이다.
일반적인 DC배전의 전력변환 시스템이 도 1에 도시된다. AC배전망(10)으로부터 공급되는 AC전력은 복수의 전력변환장치(20)에 의해 DC전력으로 변환되어 DC배전망(30)의 DC배전라인(40)을 통해 각종 설비(50)로 DC전력이 공급된다.
이때, 복수의 전력변환장치(20) 중 하나는 마스터 전력변환장치(20)로 동작하여 DC배전망(30)의 전압제어를 수행하고 나머지는 슬레이브 전력변환장치(20)로 동작하여 DC배전망(30)의 전력제어(전류제어)를 수행한다. 이를 위해 마스터 전력변환장치(20)는 DC배전라인(40)에 DC전압을 공급하도록 한다.
이처럼 마스터/슬레이브 방식의 경우 마스터 전력변환장치(20)의 의존도가 크기 때문에 DC배전망(30)에 사고가 발생하게 되면 DC배전망(30)의 전압을 제어할 수 없기 때문에 DC배전망(30) 전체는 정전을 유발하는 문제점이 있다.
마스터 전력변환장치(20)에 고장(fault)이 발생하면 도 2와 같이 고장시점부터 DC전압은 점차 감소한다. 이때 상위제어기는 도 3과 같이 DC배전라인(40)의 DC전압이 기설정된 범위(△Vdc) 이하로 떨어지면 고장을 감지하여 복수의 슬레이브 전력변환장치(20) 중 하나를 마스터 전력변환장치로 전환하여 그 전환된 마스터 전력변환장치가 DC배전망(30)의 전압제어를 계속 수행하도록 한다.
그런데, 종래에 마스터 전력변환장치(20)의 고장발생시 DC배전라인(40)에서 DC전압의 감소를 통해 고장발생을 판단하므로 전환시간이 많이 걸리고 DC배전에서의 무순단 전환이 이루어지지 않는다는 문제점이 있다.
특히, AC전력공급의 특성에 따라 DC배전망(30)에 공급되는 DC전압에 일정 범위의 마진을 두기 때문에 오차범위(예:± 10% 정도) 이내는 고장으로 판단하지 않고 도 3과 같이 DC전압이 그 마진의 오차범위(△Vdc)를 벗어나고서야 고장으로 판단하므로 고장 판단이 늦게 된다는 문제점이 있다.
또한, 상위제어기가 전체 전력변환장치(20) 및 부하(50)의 정보를 통신으로 수신받아 고장판단과 모드전환이 이루어지므로 통신속도에 따라 모드전환의 속도가 결정되고 낮은 통신의 신뢰성으로 인해 최악의 경우 DC배전망의 정전사고가 발생할 수 있다는 문제점을 안고 있다.
본 발명은 상기한 종래기술의 문제점을 해결하기 위해 제안된 것으로서, DC 배전에서 슬레이브 전력변환장치가 마스터 전력변환장치의 고장발생을 즉시 감지하여 DC배전망의 전압제어를 수행하도록 하는 DC배전의 무순단 전력변환 시스템을 제공하는데 그 목적이 있다.
또한, 본 발명은 DC배전의 마스터 전력변환장치에 고장발생시 슬레이브 전력변환장치가 즉시 DC배전라인에 DC전압을 공급함으로써 DC배전에서 무순단 전력공급이 가능하도록 하는 DC배전에서의 무순단 전력변환 시스템을 제공하는데 다른 목적이 있다.
본 발명의 일 실시 예에 따른 DC배전에서 무순단 전력변환 시스템은, 병렬로 연결된 복수의 전력변환장치를 포함하여 AC배전망과 DC배전망 사이에서 AC전압을 DC전압으로 변환을 수행하는 전력변환시스템에 있어서, 상기 복수의 전력변환장치 중 마스터 전력변환장치는 상기 AC배전망으로부터 공급된 AC전압을 DC전압으로 변환하되, 기설정된 크기의 AC전압이 포함된 DC전압으로 변환하여 상기 DC배전망의 DC배전라인에 공급하고, 상기 복수의 전력변환장치 중 나머지 슬레이브 전력변환장치는 상기 DC배전라인의 DC전압을 실시간 감지하여 상기 감지된 DC전압에서 AC전압이 검출되지 않으면 상기 나머지 슬레이브 전력변환장치 중 하나가 마스터 전력변환장치로 전환한다.
본 발명에서, 상기 전력변환장치 각각은, 복수의 반도체스위치와 커패시터로 이루어진 브릿지 구조의 스위칭부; 상기 복수의 반도체스위치의 스위칭을 제어하는 DC전압제어부; 를 포함하고, 상기 DC전압제어부는 상위제어기로부터 마스터 전력변환장치 동작신호가 수신되면 상기 복수의 반도체스위치의 스위칭을 각각 제어하여 상기 AC전압이 포함된 DC전압을 생성하도록 하고 상기 AC전압이 포함된 DC전압을 상기 DC배전망의 DC배전라인으로 공급한다.
본 발명에서, 상기 전력변환장치 각각은, 복수의 반도체스위치와 커패시터로 이루어진 브릿지 구조의 스위칭부; 상기 복수의 반도체스위치의 스위칭을 제어하는 DC전압제어부; 상기 DC배전라인에서 DC전압을 감지하는 DC전압감지부; 및 상기 감지된 DC전압에서 AC전압이 추출하는 AC전압추출부; 를 포함하고, 상기 AC전압추출부에서 상기 DC전압으로부터 AC전압이 추출되면 자신은 슬레이브 전력변환장치로 동작한다.
본 발명에서, 상기 AC전압추출부에서 상기 DC전압으로부터 AC전압이 추출되지 않으면 슬레이브 전력변환장치에서 마스터 전력변환장치로 전환된다.
본 발명에서, 상기 AC전압의 크기는 상기 DC전압 크기의 0.3~0.7%이다.
또한, 본 발명의 다른 실시 예에 따른 DC배전에서의 무순단 전력변환 시스템은, 마스터/슬레이브 전력변환장치가 병렬운전되는 무순단 전력변환 시스템에 있어서, 상기 마스터 전력변환장치는 AC배전망에서 공급된 AC전압을 DC전압으로 변환하되, 기설정된 크기의 AC전압이 포함된 DC전압으로 변환하여 DC배전망의 DC배전라인에 공급하고, 상기 슬레이브 전력변환장치는 상기 DC배전라인에서 DC전압을 실시간 감지하여 상기 DC전압으로부터 AC전압이 검출되면 슬레이브 전력변환장치로 계속 동작하고 검출되지 않으면 자신이 마스터 전력변환장치로 전환한다.
본 발명에서, 상기 마스터 전력변환장치는 상기 DC배전망의 전압제어를 수행하고 상기 슬레이브 전력변환장치는 상기 DC배전망의 전류제어를 수행한다.
본 발명에서, 상기 마스터 전력변환장치는, 복수의 반도체스위치와 커패시터로 이루어진 브릿지 구조의 스위칭부; 상기 복수의 반도체스위치의 스위칭을 제어하는 DC전압제어부; 를 포함하고, 상기 DC전압제어부는 상위제어기로부터 마스터 전력변환장치 동작신호가 수신되면 상기 복수의 반도체스위치의 스위칭을 각각 제어하여 상기 AC전압이 포함된 DC전압을 생성하도록 하고 상기 AC전압이 포함된 DC전압을 상기 DC배전망의 DC배전라인으로 공급한다.
본 발명에서, 상기 슬레이브 전력변환장치는, 복수의 반도체스위치와 커패시터로 이루어진 브릿지 구조의 스위칭부; 상기 복수의 반도체스위치의 스위칭을 제어하는 DC전압제어부; 상기 DC배전라인에서 DC전압을 감지하는 DC전압감지부; 및 상기 감지된 DC전압에서 AC전압이 추출하는 AC전압추출부; 를 포함하고, 상기 AC전압추출부에서 상기 DC전압으로부터 AC전압이 추출되면 자신은 슬레이브 전력변환장치로 계속 동작하고 검출되지 않으면 자신이 마스터 전력변환장치로 전환한다.
본 발명에 의하면 DC배전에서 마스터 전력변환장치 및 슬레이브 전력변환장치 간에 빠른 반응속도로 전환이 이루어지므로 DC배전라인에서 무순단 전력공급이 가능하다.
또한, 본 발명에 의하면 마스터 전력변환장치에서 DC전압 출력치에 미세한 AC전압 지령치를 포함시켜 DC배전망에 DC전압제어를 수행하고 슬레이브 전력변환장치가 AC전압의 미검출시 마스터 전력변환장치의 고장으로 판단하여 마스터 전력변환장치로 전환하도록 하므로 적은 비용과 간단한 방법으로 마스터/슬레이브 간에 무순단 전환(seamless transfer)이 가능하다.
도 1은 종래의 일반적인 DC배전에서의 전력변환 시스템의 구성도이다.
도 2는 종래의 DC배전의 전력변환 시스템에서 마스터 전력변환장치가 동작중 고장발생시 DC전압을 나타낸 그래프이다.
도 3은 종래의 DC배전의 전력변환 시스템에서 고장판단에 따른 슬레이브 전력변환장치의 전환시점을 설명하기 위한 그래프이다.
도 4는 본 발명의 실시 예에 따른 DC배전의 전력변환 시스템의 구성도이다.
도 5는 본 발명의 실시 예에 따른 DC배전의 전력변환 시스템에서 마스터 전력변환장치가 동작중 고장발생시 DC전압을 나타낸 그래프이다.
도 6은 본 발명의 실시 예에 따른 DC배전의 전력변환 시스템에서 고장판단에 따른 슬레이브 전력변환장치의 전환시점을 설명하기 위한 그래프이다.
도 7은 종래의 DC배전의 전력변환 시스템과 본 발명의 DC배전의 전력변환 시스템 간의 전력변환에 대한 실험결과를 도시한 그래프이다.
이하, 본 발명의 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도 4는 본 발명의 실시 예에 따른 DC배전의 전력변환 시스템의 구성도이다.
도 4를 참조하면, 본 발명의 실시 예에 따른 DC배전에서의 무순단 전력변환 시스템(100)은 AC배전망(110)과 DC배전망(130) 사이에 연결되어 AC배전망(110)으로부터 공급되는 AC전압을 DC배전망(130)에서 사용할 수 있도록 DC전압으로 변환하여 DC배전라인(140)을 통해 DC배전망(130)에 공급한다.
복수의 전력변환장치(120)는 적어도 2개 이상이 각각 서로 병렬로 연결된다. 이들 전력변환장치(120)의 개수는 DC배전망(130)에서 필요로 하는 DC전력량에 따라 결정될 수 있으며, DC배전망(130)에서 요구하는 DC전압(전력량)이 증가할수록 전력변환장치(120)의 변환용량도 증가할 것이다.
최근 전력변환장치를 큰 용량으로 제조하는 시도가 있으나, 바람직하게는 상대적으로 적은 용량의 전력변환장치라도 이들을 병렬로 연결하여 사용하도록 한다. 본 실시 예에서 이러한 전력변환장치는 인버터 또는 컨버터 등이 될 수 있다.
복수의 전력변환장치(120)에는 DC배전망(130)의 전압제어를 수행하는 마스터 전력변환장치(120a)와 DC배전망(130)의 전력제어, 즉 전류제어를 수행하는 나머지 슬레이브 전력변환장치(120b)가 포함된다.
이와 같이 하나의 마스터 전력변환장치(120a)와 나머지 적어도 하나의 슬레이브 전력변환장치(120b)로 구성하기 위해 상위제어기(미도시)는 복수의 전력변환장치(120) 중에서 어느 하나를 선택하여 마스터 전력변환장치(120a)로 동작하도록 설정하고 나머지는 슬레이브 전력변환장치(120b)로 동작하도록 설정한다.
이때, 본 실시 예에서 중요한 특징은 상위제어기(미도시)에 의해 마스터 전력변환장치(120a)로 설정된 전력변환장치는 AC배전망(110)으로부터 공급된 AC전압을 DC전압으로 변환하되, 기설정된 크기의 AC전압이 포함된 DC전압으로 변환하여 DC배전망(130)의 DC배전라인(140)에 공급한다는 것이다.
즉, 종래기술과는 달리 본 실시 예에서는 DC배전망(130)의 전압제어를 실시하는 마스터 전력변환장치(120a)가 DC배전망(130)에 DC전압을 공급할 때, 소량의 AC전압이 포함된 DC전압을 공급한다는 것이다. 이는 실질적으로 DC전압이 AC전압의 진폭에 대응하는 범위만큼 크기 변화를 갖는다는 것을 의미한다.
주의할 것은 이러한 AC전압에 의해 DC전압의 변동이 DC배전망(130)에 미치는 영향은 무시될 정도이다.
이때, 나머지 적어도 하나의 슬레이브 전력변환장치(120b)는 각각 DC배전라인(140)의 DC전압을 실시간 감지하고, 그 감지된 DC전압에서 AC전압이 검출되는지 확인한다. 여기서 검출대상이 되는 AC전압은 결국 마스터 전력변환장치(120a)가 공급한 전압이 되는 것이다.
각각의 슬레이브 전력변환장치(120b)가 DC배전라인(140)의 DC전압으로부터 AC전압이 검출되면 자신은 계속해서 슬레이브 전력변환장치(120b)로 동작하도록 하고, 반대로 AC전압이 검출되지 않으면 마스터 전력변환장치(120a)에 고장이 발생한 것으로 판단하여 나머지 슬레이브 전력변환장치(120b) 중 하나가 마스터 전력변환장치(120a)로 전환하여 마스터 전력변환장치(120a)로서의 동작, 즉 DC배전망(130)의 전압제어를 계속 수행하도록 하는 것이다.
이는 상기와 같이 마스터 전력변환장치(120a)가 AC전압이 포함된 DC전압을 DC배전라인(140)에 공급하므로 마스터 전력변환장치(120a)가 정상적으로 동작한다면 슬레이브 전력변환장치(120b)에서는 DC배전라인(140)에서 감지된 DC전압에서 AC전압을 추출할 수 있다.
그런데 마스터 전력변환장치(120a)에 고장이 발생하게 되면 DC배전라인(140)에 공급되는 DC전압에 AC전압이 포함되지 못하므로 슬레이브 전력변환장치(120b)에서는 DC배전라인(140)에서 감지된 DC전압으로부터 AC전압이 검출되지 않으므로 마스터 전력변환장치(120a)에 고장이 발생한 것으로 즉시 판단하는 것이다.
이와 같이 본 발명에서는 슬레이브 전력변환장치(120b)가 마스터 전력변환장치(120a)의 고장발생으로 인해 DC배전라인(140)에서 감소되는 DC전압의 크기를 이용하여 마스터 전력변환장치(120a)의 고장발생을 감지하는 것이 아니라, DC전압에서 AC전압이 검출되는지를 확인하여 마스터 전력변환장치(120a)의 고장발생을 감지하는 것이므로, 슬레이브 전력변환장치(120a)는 마스터 전력변환장치(120a)의 고장발생을 빠른 시간 내에 감지할 수 있는 것이다.
따라서 슬레이브 전력변환장치(120b)가 마스터 전력변환장치(120a)로 전환되는 속도가 빨라지게 되어 DC배전에서의 무순단 전력공급이 가능하게 된다.
도면을 참조하면, 각각의 전력변환장치(120)는 복수의 반도체스위치와 커패시터로 이루어진 브릿지(bridge) 구조의 스위칭부(121)와, 이들 복수의 반도체스위치의 스위칭을 제어하는 DC전압제어부(122)를 포함한다. DC전압제어부(122)는 반도체스위치를 설정된 프로세스에 따라 턴온(turn-on) 및 턴오프(turn-off)함으로써 입력되는 AC전압을 DC전압으로 변환하여 커패시터에 저장되도록 한다.
특히, 본 실시 예에서는 상위제어기로부터 마스터 전력변환장치(120a)로 동작하도록 하는 동작신호가 수신되면 DC전압제어부(122)는 브릿지 구조의 반도체스위치들의 스위칭을 각각 제어하여 입력된 AC전압을 DC전압으로 변환하되, 기설정된 AC전압이 포함된 DC전압으로 변환하도록 한다. 이러한 AC전압은 DC전압제어부(122)에 의해 반도체스위치의 턴온/턴오프 시간을 조정함으로써 생성이 가능하다.
이와 같이 AC전압이 포함된 DC전압은 DC배전라인(140)으로 공급되며, 이로써 DC배전라인(140)에 연결된 각종 부하(150)들이 이를 소비하게 된다.
또한, 상기한 각각의 전력변환장치(120)는 DC배전라인(120)에서 DC전압을 감지하는 DC전압감지부(123) 및 상기 감지된 DC전압에서 AC전압이 추출하는 AC전압추출부(124)를 더 포함한다. 이들 DC전압감지부(123)과 AC전압추출부(124)는 바람직하게는 전력변환장치(120)가 슬레이브 전력변환장치(120b)로 동작할 때 동작할 수 있다. 즉, 마스터 전력변환장치(120a)가 DC배전라인(140)에 AC전압이 포함된 DC전압을 공급하는 경우에 슬레이브 전력변환장치(120b)의 DC전압감지부(123)는 DC배전라인(140)에서 DC전압을 검출한다. 이때, AC전압추출부(124)에서 검출된 DC전압에 AC전압을 추출하여 DC전압에 AC전압이 포함되어 있는지를 확인한다.
만약, AC전압이 포함되어 있으면 마스터 전력변환장치(120a)가 정상적으로 동작하고 있는 것으로 판단하여 자신은 계속 슬레이브 전력변환장치(120b)로 동작하도록 한다. 반대로 AC전압이 포함되어 있지 않으면 마스터 전력변환장치(120a)에 고장이 발생한 것으로 판단하여 자신이 마스터 전력변환장치로 전환된다.
복수의 슬레이브 전력변환장치의 경우 선택된 어느 하나가 마스터 전력변환장치로 전환될 수 있다. 예컨대 복수의 슬레이브 전력변환장치 중 마스터 전력변환장치의 고장을 가장 빨리 감지한 슬레이브 전력변환장치가 마스터 전력변환장치로 전환할 수 있다.
본 실시 예에서 DC배전망(130)에 공급되는 DC전압에 포함된 AC전압은 DC배전망(130)의 DC전압에 영향을 주지 않아야 한다. 따라서 AC전압의 크기는 매우 작다. 예컨대 AC전압의 크기는 DC전압 크기의 1% 미만인 것이 바람직하다. 보다 바람직하게는 0.3~0.7%으로 한다. 물론, DC배전망에서 요구되는 DC전압의 용량 및 크기에 따라 AC전압의 크기 및 비율은 변경될 수도 있다.
도 5는 본 발명의 실시 예에 따른 DC배전의 전력변환 시스템에서 마스터 전력변환장치가 동작중 고장발생시 DC전압을 나타낸 그래프이고, 도 6은 본 발명의 실시 예에 따른 DC배전의 전력변환 시스템에서 고장판단에 따른 슬레이브 전력변환장치의 전환시점을 설명하기 위한 그래프이다.
먼저 도 5에는 마스터 전력변환장치(120a)가 DC배전라인(140)에 공급하는 DC전압, 상세하게는 AC전압이 포함된 DC전압을 도시한다. 도 5에는 설명의 편의상 예시적으로 AC전압으로 도시되어 있으나 실질적으로 AC전압이 포함된 DC전압을 공급하도록 한다.
이와 같이 마스터 전력변환장치(120a)가 정상적으로 동작하여 AC전압이 포함된 DC전압을 DC배전라인(140)에 공급하는 도중에 어떠한 원인에 의해 고장(fault)이 발생한다면, DC배전라인(140)에서의 DC전압은 계속 감소하게 된다.
이에 과정에 대응하여 도 6과 같이 슬레이브 전력변환장치(120b)에서는 DC배전라인(140)에서 DC전압을 실시간으로 검출한다. 마스터 전력변환장치(120a)가 정상적으로 동작하는 경우에는 DC배전라인(140)에서 감지한 DC전압에는 AC전압이 포함되어 있어 도 6과 같은 전압신호가 검출된다.
마스터 전력변환장치(120a)에 고장이 발생하면 DC배전라인(140)에서의 DC전압으로부터 AC전압이 검출되지 않게 되고 슬레이브 전력변환장치(120b)는 이를 확인하는 즉시 마스터 전력변환장치(120a)의 고장을 감지하여 자신이 마스터 전력변환장치(120a)로 전환하는 것이다. 따라서, 본 발명에서는 AC전압이 검출되지 않는 즉시 마스터 - 슬레이브의 전환이 이루어지므로 빠른 전환속도를 갖게 되고, 이로써 DC배전라인(140)에 무순단 전력공급이 가능하게 되는 것이다.
도 7은 종래의 DC배전의 전력변환 시스템과 본 발명의 DC배전의 전력변환 시스템 간의 무순단 전력변환에 대한 실험결과를 도시한 그래프이다.
도 7의 (a)는 종래기술에서 슬레이브 전력변환장치(120b)가 DC배전라인(140)의 DC전압이 일정 범위 이하로 떨어지는 경우에 마스터 전력변환장치(120a)의 고장발생으로 감지하므로 -130V의 전압 강하가 발생하게 되고, 이후에 안정적인 DC전압을 확보하기 위해서는 상당한 시간이 걸리게 됨을 알 수 있다.
반면에, 도 7의 (b)는 본 발명에서 슬레이브 전력변환장치(120b)가 DC배전라인(140)의 DC전압에서 AC전압을 실시간으로 감지하여 AC전압이 감지되지 않는 즉시 마스터 전력변환장치(120a)의 고장발생으로 감지하므로 불과 -15V의 전압 강하만 발생하게 되고, 이후에 즉시 안정적인 DC전압을 확보할 수 있게 됨을 알 수 있다.
이상에서 설명한 바와 같이, 본 발명에 따른 DC배전에서의 무순단 전력변환시스템에서는 슬레이브 전력변환장치에서 DC배전라인에서 검출된 DC전압에서 AC전압이 감지되지 않은 즉시 마스터 전력변환장치의 고장으로 판단하여 슬레이브 전력변환장치가 마스터 전력변환장치로 전환할 수 있도록 함으로써 DC배전에서 무순단 전력공급이 가능하도록 하는 것을 특징으로 한다.
이상에서, 본 발명의 실시 예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시 예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (9)

  1. 병렬로 연결된 복수의 전력변환장치를 포함하여 AC배전망과 DC배전망 사이에서 AC전압을 DC전압으로 변환을 수행하는 전력변환시스템에 있어서,
    상기 복수의 전력변환장치 중 마스터 전력변환장치는 상기 AC배전망으로부터 공급된 AC전압을 DC전압으로 변환하되, 기설정된 크기의 AC전압이 포함된 DC전압으로 변환하여 상기 DC배전망의 DC배전라인에 공급하고,
    상기 복수의 전력변환장치 중 나머지 슬레이브 전력변환장치는 상기 DC배전라인의 DC전압을 실시간 감지하여 상기 감지된 DC전압에서 AC전압이 검출되지 않으면 상기 나머지 슬레이브 전력변환장치 중 하나가 마스터 전력변환장치로 전환하는 무순단 전력변환 시스템.
  2. 제1항에 있어서, 상기 전력변환장치 각각은,
    복수의 반도체스위치와 커패시터로 이루어진 브릿지 구조의 스위칭부;
    상기 복수의 반도체스위치의 스위칭을 제어하는 DC전압제어부; 를 포함하고,
    상기 DC전압제어부는 상위제어기로부터 마스터 전력변환장치 동작신호가 수신되면 상기 복수의 반도체스위치의 스위칭을 각각 제어하여 상기 AC전압이 포함된 DC전압을 생성하도록 하고 상기 AC전압이 포함된 DC전압을 상기 DC배전망의 DC배전라인으로 공급하는 무순단 전력변환 시스템.
  3. 제1항에 있어서, 상기 전력변환장치 각각은,
    복수의 반도체스위치와 커패시터로 이루어진 브릿지 구조의 스위칭부;
    상기 복수의 반도체스위치의 스위칭을 제어하는 DC전압제어부;
    상기 DC배전라인에서 DC전압을 감지하는 DC전압감지부; 및
    상기 감지된 DC전압에서 AC전압이 추출하는 AC전압추출부; 를 포함하고,
    상기 AC전압추출부에서 상기 DC전압으로부터 AC전압이 추출되면 자신은 슬레이브 전력변환장치로 동작하는 무순단 전력변환 시스템.
  4. 제3항에 있어서, 상기 AC전압추출부에서 상기 DC전압으로부터 AC전압이 추출되지 않으면 슬레이브 전력변환장치에서 마스터 전력변환장치로 전환되는 무순단 전력변환 시스템.
  5. 제1항에 있어서, 상기 AC전압의 크기는 상기 DC전압 크기의 0.3~0.7%인 것을 특징으로 하는 무순단 전력변환 시스템.
  6. 마스터/슬레이브 전력변환장치가 병렬운전되는 무순단 전력변환 시스템에 있어서,
    상기 마스터 전력변환장치는 AC배전망에서 공급된 AC전압을 DC전압으로 변환하되, 기설정된 크기의 AC전압이 포함된 DC전압으로 변환하여 DC배전망의 DC배전라인에 공급하고,
    상기 슬레이브 전력변환장치는 상기 DC배전라인에서 DC전압을 실시간 감지하여 상기 DC전압으로부터 AC전압이 검출되면 슬레이브 전력변환장치로 계속 동작하고 검출되지 않으면 자신이 마스터 전력변환장치로 전환하는 무순단 전력변환 시스템.
  7. 제6항에 있어서, 상기 마스터 전력변환장치는 상기 DC배전망의 전압제어를 수행하고 상기 슬레이브 전력변환장치는 상기 DC배전망의 전류제어를 수행하는 무순단 전력변환 시스템.
  8. 제6항에 있어서, 상기 마스터 전력변환장치는,
    복수의 반도체스위치와 커패시터로 이루어진 브릿지 구조의 스위칭부;
    상기 복수의 반도체스위치의 스위칭을 제어하는 DC전압제어부; 를 포함하고,
    상기 DC전압제어부는 상위제어기로부터 마스터 전력변환장치 동작신호가 수신되면 상기 복수의 반도체스위치의 스위칭을 각각 제어하여 상기 AC전압이 포함된 DC전압을 생성하도록 하고 상기 AC전압이 포함된 DC전압을 상기 DC배전망의 DC배전라인으로 공급하는 무순단 전력변환 시스템.
  9. 제6항에 있어서, 상기 슬레이브 전력변환장치는,
    복수의 반도체스위치와 커패시터로 이루어진 브릿지 구조의 스위칭부;
    상기 복수의 반도체스위치의 스위칭을 제어하는 DC전압제어부;
    상기 DC배전라인에서 DC전압을 감지하는 DC전압감지부; 및
    상기 감지된 DC전압에서 AC전압이 추출하는 AC전압추출부; 를 포함하고,
    상기 AC전압추출부에서 상기 DC전압으로부터 AC전압이 추출되면 자신은 슬레이브 전력변환장치로 계속 동작하고 검출되지 않으면 자신이 마스터 전력변환장치로 전환하는 무순단 전력변환 시스템.
PCT/KR2018/016414 2018-02-07 2018-12-21 Dc배전에서 무순단 전력변환 시스템 WO2019156346A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/967,268 US11128234B2 (en) 2018-02-07 2018-12-21 System for seamless power conversion in DC power distribution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0015243 2018-02-07
KR1020180015243A KR102044513B1 (ko) 2018-02-07 2018-02-07 Dc배전에서 무순단 전력변환 시스템

Publications (1)

Publication Number Publication Date
WO2019156346A1 true WO2019156346A1 (ko) 2019-08-15

Family

ID=67549658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016414 WO2019156346A1 (ko) 2018-02-07 2018-12-21 Dc배전에서 무순단 전력변환 시스템

Country Status (3)

Country Link
US (1) US11128234B2 (ko)
KR (1) KR102044513B1 (ko)
WO (1) WO2019156346A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327147A (ja) * 1993-05-12 1994-11-25 Hitachi Ltd 直流電源投入装置
JP2007228666A (ja) * 2006-02-21 2007-09-06 Toshiba Mitsubishi-Electric Industrial System Corp 無停電電源システム
KR20120005801A (ko) * 2010-07-09 2012-01-17 주식회사 포스코아이씨티 직류 전압 분배 장치 및 이를 이용한 전원 공급 시스템
JP2015006014A (ja) * 2013-06-06 2015-01-08 三菱電機株式会社 電源装置
KR101650010B1 (ko) * 2016-02-04 2016-09-08 주식회사 제이엔티이엔지 병렬운전정류장치 및 그 운용방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050043859A1 (en) * 2003-08-13 2005-02-24 Chia-Ming Tsai Modular uninterruptible power supply system and control method thereof
US9312745B2 (en) * 2012-12-08 2016-04-12 Acbel Polytech Inc. Universal power supply system
US20150372487A1 (en) * 2013-01-28 2015-12-24 Rikiya Abe Power router and operation control method thereof, power network system, and non-transitory computer readable media storing program
CN104518519B (zh) 2013-09-26 2017-11-03 南京南瑞继保电气有限公司 直流电压控制方法及装置
EP3180849B1 (en) * 2014-08-13 2021-11-10 INESC TEC - Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência Ac/dc converter with three to single phase matrix converter, full-bridge ac/dc converter and hf transformer
US10245959B2 (en) * 2014-10-07 2019-04-02 Nanyang Technological University Power converter system and method of manufacturing thereof
CN107112794B (zh) * 2014-12-25 2020-12-22 东芝三菱电机产业系统株式会社 不间断电源系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327147A (ja) * 1993-05-12 1994-11-25 Hitachi Ltd 直流電源投入装置
JP2007228666A (ja) * 2006-02-21 2007-09-06 Toshiba Mitsubishi-Electric Industrial System Corp 無停電電源システム
KR20120005801A (ko) * 2010-07-09 2012-01-17 주식회사 포스코아이씨티 직류 전압 분배 장치 및 이를 이용한 전원 공급 시스템
JP2015006014A (ja) * 2013-06-06 2015-01-08 三菱電機株式会社 電源装置
KR101650010B1 (ko) * 2016-02-04 2016-09-08 주식회사 제이엔티이엔지 병렬운전정류장치 및 그 운용방법

Also Published As

Publication number Publication date
US11128234B2 (en) 2021-09-21
KR102044513B1 (ko) 2019-11-13
KR20190095802A (ko) 2019-08-16
US20210083595A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
WO2019132428A1 (ko) Mmc 컨버터 초기충전시 서브모듈 상태 진단방법
CN107819356B (zh) 带有扼流圈旁路开关的隔离并联不间断电源系统
CN107819357B (zh) 带有故障位置检测的隔离并联ups系统
WO2015002372A1 (en) Power supply device, micro server having the same, and power supply method
WO2018105989A1 (ko) 마이크로그리드 시스템 및 고장 처리 방법
WO2014073811A1 (en) Electronic apparatus, power supply apparatus, and power supply method
WO2011065679A2 (ko) 무정전 전원 공급 시스템 및 무정전 전원 장치
WO2021085759A1 (ko) 무순단 전원 공급 제어 장치 및 그 전원 공급 제어 장치가 적용된 ups 모듈
WO2018216899A1 (ko) 군용 마이크로그리드 시스템
WO2019156346A1 (ko) Dc배전에서 무순단 전력변환 시스템
JPH08289485A (ja) 無停電電源システム
WO2022098148A1 (ko) 위상천이 풀브릿지 컨버터
WO2021172736A1 (ko) 인버터 초기충전회로의 고장진단장치 및 그 방법
US11283286B2 (en) Uninterruptible power supply
WO2019139276A1 (ko) Dc 차단기
WO2019142972A1 (ko) 병렬 인버터 시스템
WO2011099781A2 (ko) 온라인 전기자동차 시스템의 세그먼트 절체장치 및 그 제어방법
KR100788116B1 (ko) 무정전 전원공급장치의 고속절환장치
EP3314723B1 (en) Ups with source impedance compensation
KR20210037806A (ko) 역전류 방지 기능을 갖는 바이패스 스위치 제어장치
WO2022191384A1 (ko) 서브 모듈을 스위칭 제어하기 위한 vbe 제어기 및 이를 포함하는 mmc 방식의 statcom 시스템
WO2022145708A1 (ko) 에너지 저장 시스템의 배터리 오토 밸런싱 장치 및 방법
JP7452741B1 (ja) 無停電電源システム
WO2017115951A1 (ko) 무효전력 보상제어기용 차단기 제어장치 및 제어방법
WO2021095999A1 (ko) Ups 모듈 및 그 ups 모듈의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905589

Country of ref document: EP

Kind code of ref document: A1