WO2019142972A1 - 병렬 인버터 시스템 - Google Patents

병렬 인버터 시스템 Download PDF

Info

Publication number
WO2019142972A1
WO2019142972A1 PCT/KR2018/004045 KR2018004045W WO2019142972A1 WO 2019142972 A1 WO2019142972 A1 WO 2019142972A1 KR 2018004045 W KR2018004045 W KR 2018004045W WO 2019142972 A1 WO2019142972 A1 WO 2019142972A1
Authority
WO
WIPO (PCT)
Prior art keywords
slave
data
transmitting
receiving end
master controller
Prior art date
Application number
PCT/KR2018/004045
Other languages
English (en)
French (fr)
Inventor
이봉기
Original Assignee
엘에스산전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스산전 주식회사 filed Critical 엘에스산전 주식회사
Publication of WO2019142972A1 publication Critical patent/WO2019142972A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention is directed to a parallel inverter system.
  • an inverter is a series of devices that receives power supplied from a commercial power source and controls the motor speed to be used with high efficiency by varying the voltage and frequency to supply the electric power to the electric motor.
  • Low-voltage inverter Depending on the type of the applied load, Low-voltage inverter.
  • a double low-voltage inverter is an inverter whose capacity range is several hundreds W to several MW.
  • Low-voltage inverters can be operated independently in all capacity ranges.
  • the inverter is designed to operate alone even in the case of several hundreds of kW or more, there is a disadvantage in that the design efficiency is significantly deteriorated due to limitations of power semiconductor devices in the inverter and restriction of mechanical design. Therefore, in order to overcome such a disadvantage, in general, a plurality of inverters having a capacity smaller than the design capacity are designed to operate in parallel.
  • FIG. 1 is a configuration diagram of a conventional parallel inverter system
  • FIG. 2 is a schematic diagram for explaining the operation of the synchronizing signal distributing unit of FIG.
  • a parallel inverter system includes a master inverter 100 and a plurality of slave inverters 200.
  • the control signal is transmitted to the master controller 110 through the control period communication line 1A do.
  • the master controller 110 uses this to calculate the pulse width modulation (PWM) control signal of each inverter 100, 200.
  • PWM pulse width modulation
  • the PWM control signals computed by the master controller 110 are transmitted to the slave controllers 210 of the slave inverters through the communication line 1A respectively and each of the inverter controllers 110 and 210 is controlled by the master controller 110 And outputs the PWM control signal to the switch modules 120 and 220 in synchronization with the PWM synchronization signal 1B generated by the switch module 120 and 220.
  • the switch modules 120 and 220 output an AC voltage according to a PWM control signal and output the AC voltage to the motor 500, respectively.
  • Fig. 2 is a diagram for explaining the inverter control period communication and the communication between the inverter controller and the sink hub 300.
  • cables 1A, 1B and 1C for such communication usually use optical cables.
  • the transmitting end Tx of the master controller 110 and the receiving end Rx of the next slave controller 210 are connected by an optical cable, and the transmitting end Tx of the slave controller 210 and the receiving end Rx of the next slave controller 210
  • the master controller 110 sequentially connects the transmitting terminal Tx of the last slave controller 210 and the receiving terminal Rx of the master controller 110 through an optical cable, ).
  • a parallel inverter system in which a master inverter including a master controller and a plurality of slave inverters each including a slave controller are connected in parallel to each other to control the motor
  • the master controller includes a first communication port composed of a first transmitting end and a first receiving end, a second communication port composed of a second transmitting end and a second receiving end, and each of the slave controllers comprises a third transmitting end and a third receiving end And a fourth communication port including a fourth transmitting end and a fourth receiving end, wherein data transmitted through the first transmitting end is transmitted to a fourth receiving end of a slave controller connected in parallel with the master controller in one direction And the data transmitted to the second transmitting end is transmitted to the master controller
  • the third transmitting end and the fourth receiving end of the slave controller are internally connected so that data received at the fourth receiving end is transmitted to the third transmitting end, The third transmitting end is connected internally and data received by the third receiving end is transmitted to the fourth
  • the master controller transmits synchronous data through the first and second transmitting ends, and checks whether the synchronous data is received at the second and first receiving ends, The disconnection of the communication line between the plurality of slave inverters can be confirmed.
  • the master controller determines that the communication line is disconnected when the synchronization data is not received by any one of the second or first receiving end, and transmits control data for controlling the slave inverter It can be transmitted through a communication line which is not disconnected.
  • the master controller determines that the communication line is disconnected when the synchronization data is not received by any one of the second or first receiving end, and transmits control data for controlling the slave inverter Respectively, through the first and second transmitting terminals.
  • the master controller may transmit control data for controlling the slave inverter through the first or second transmitting terminal when the synchronous data is received by the second and first receiving ends .
  • the master controller may transmit response request data to one of a plurality of slave controllers connected in parallel via the first transmitting terminal.
  • the master controller may transmit response request data to one of the plurality of slave controllers via a second transmitting end if response data is not received from one of the plurality of slave controllers connected in parallel .
  • the slave controller when the slave controller receives the response request data through the third receiver, the slave controller may transmit response data through the third transmitter.
  • the present invention as described above provides the communication stability of the parallel inverter system by transmitting the control data in one direction when there is no disconnection in the communication line and in both directions when the disconnection occurs in the communication line, And the like.
  • the present invention can easily grasp a communication line where a break occurs, it is possible to reduce time and cost required for maintenance.
  • FIG. 1 is a block diagram of a conventional parallel inverter system.
  • FIG. 2 is a schematic diagram for explaining the operation of the sync signal distributing unit of FIG.
  • FIG. 3 is a block diagram illustrating a parallel inverter system according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an inverter control period connection relationship in a parallel inverter system according to an embodiment of the present invention.
  • 5 to 7 are diagrams for explaining a path for transmitting a signal in an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a method of controlling a parallel inverter system according to an embodiment of the present invention.
  • FIG. 3 a parallel inverter system according to an embodiment of the present invention will be described with reference to FIGS. 3 to 8.
  • FIG. 3
  • FIG. 3 is a block diagram illustrating a parallel inverter system according to an embodiment of the present invention
  • FIG. 4 is a diagram illustrating an inverter control period connection relationship in a parallel inverter system according to an embodiment of the present invention.
  • an inverter system of an embodiment of the present invention includes a master inverter 1 and a plurality of slave inverters 2.
  • the master inverter 1 and the plurality of slave inverters 2 receive the three-phase input power from the power input unit 4 and use an operation command and a frequency command transmitted from the host controller 1 Phase voltage to the electric motor (3).
  • the present invention is not limited thereto, and the inverter system may operate using a general DC or AC power instead of the three-phase input power.
  • the master inverter 1 may include a controller 11 (hereinafter referred to as a 'master controller' MC) and a switch module (SW) 12 for performing voltage switching.
  • the slave inverter 2 may include a controller 21 (hereinafter referred to as a 'slave controller' SC) and a switch module 22 for performing voltage switching.
  • the components of the inverter are not limited thereto, and may include various other components, but the description of the inverter components not related to the present invention will be omitted.
  • the master controller 11 and the plurality of slave controllers 21 of the present invention may have two receiving ends Rx1 and Rx2 and transmitting ends Tx1 and Tx2, respectively.
  • the inverter controllers 11 and 21 of the embodiment of the present invention have two communication ports, and one communication port includes a transmitting terminal and a receiving terminal, respectively . That is, the first communication port may include a first transmitting terminal Tx1 and a first receiving terminal Rx1, and the second communication port may include a second transmitting terminal Tx2 and a second receiving terminal Rx2. Both the master controller 11 and the slave controller 21 are the same.
  • the first transmitting terminal Tx1 of the master controller 11 transmits a signal to the second transmitting terminal Rx2 of the Nth slave controller 21-N and the second transmitting terminal Tx2 of the Nth slave controller 21- Transmits a signal to the first receiving end (Rx1) of the master controller (11).
  • the second transmitting terminal Tx2 of the master controller 11 transmits a signal to the first receiving terminal Rx1 of the first slave controller 21-1 and transmits the signal to the first transmitting terminal Tx1 of the first slave controller 21-1 Transmits a signal to the second receiving end (Rx2) of the master controller (11).
  • the second transmitting terminal Tx2 of the first slave controller 21-1 transmits a signal to the first receiving terminal Rx1 of the second slave controller 21-2 and the second transmitting terminal Tx2 of the second slave controller 21-2 1 transmitting terminal Tx1 transmits a signal to the second receiving terminal Rx2 of the first slave controller 21-1.
  • the second transmitting terminal Tx2 of the (N-1) th slave controller 21- (N-1) transmits a signal to the first receiving terminal Rx1 of the Nth slave controller 21-N
  • the first transmitting end Tx1 of the Nth slave controller 21-N transmits a signal to the second receiving end Rx2 of the (N-1) th slave controller 21- (N-1).
  • the master controller 11 can transmit / receive signals to / from the first slave controller 21-1 and the Nth slave controller 21-N, and the first slave controller 21- 1 can transmit and receive signals to and from the master controller 11 and the second slave controller 21-2. According to this configuration, the characteristics of the optical cable that is transmitted in a unidirectional manner are improved, and bi-directional communication becomes possible.
  • the first receiving end Rx1 and the second transmitting end Tx2 are connected to each other so that a signal received by the first receiving end Rx1 is transmitted to the second transmitting end Tx2
  • a signal transmitted from the first transmitting end Tx1 to the second receiving end Rx2 and received by the second receiving end Rx2 may be provided to the first transmitting end Tx1.
  • the inverter controllers 11 and 21 of the plurality of inverters 1 and 2 connected in parallel have first and second transmitting terminals and first and second receiving terminals, respectively, And the first transmitting end and the second receiving end of the slave controller 21 and the second transmitting end and the first receiving end may be internally connected by the signal line 4B.
  • the first transmitting end and the second receiving end, the second transmitting end and the first receiving end are connected in the slave controller 21 of the embodiment of the present invention so that the signal is not transmitted to the PWM controller 23 generating the PWM control signal So that the problem of the communication line can be identified quickly.
  • 5 to 7 are diagrams for explaining a path for transmitting a signal in an embodiment of the present invention.
  • the master controller 11 can detect the control period disconnection in the inverter system by transmitting the synchronous data through the first and second transmitting terminals Tx1 and Tx2.
  • the synchronization data transmitted through the first transmitting end Tx1 of the master controller 11 is transmitted to the second receiving end Rx2 of the Nth slave controller 21-N, the first receiving end Rx2 of the Nth slave controller 21- The second receiving end Rx2 of the second slave controller 21-2, the first transmitting end Tx1 of the second slave controller 21-2, the first slave controller 21- The second receiving end Rx2 of the first slave controller 21-1 and the first receiving end Rx2 of the master controller 11 via the first transmitting end Tx1 of the first slave controller 21-1.
  • the synchronous data transmitted through the second transmitting end Tx2 of the master controller 11 is transmitted to the first receiving end Rx1 of the first slave controller 21-1 and the second receiving end Rx1 of the second slave controller 21-1
  • This also constitutes one ring communication path as 5B.
  • the master controller 11 can determine that a disconnection has occurred in the communication line.
  • the master controller 11 transmits the PWM control signal only in one direction (that is, through either the first transmitting terminal Tx1 or the second transmitting terminal Tx2) when no disconnection occurs in the communication line, It is possible to transmit the PWM control signal in both directions (i.e., through both the first transmitting terminal Tx1 and the second transmitting terminal Tx2).
  • control data can be transmitted in one direction when there is no disconnection in the communication line and in both directions when disconnection occurs in the communication line, thereby providing control stability of the electric motor 3.
  • the slave controller 21 when the master controller 11 transmits response request data, the slave controller 21 can transmit the response data through the transmitting end of the same communication port.
  • the master controller 11 transmits response request data to the second slave controller 21-2, and confirms the path through which the master controller 11 receives the response request data. That is, the response request data transmitted through the second transmitting terminal Tx2 of the master controller 11 is transmitted to the first slave controller 21-1 via the first receiving terminal Rx1 and the second transmitting terminal Tx2, And is received by the first receiving end Rx1 of the slave controller 21-2.
  • the second slave controller 21-2 transmits the response data corresponding to the response request data through the first transmitting terminal Tx1 which is the same port and the second receiving terminal Rx2 of the first slave controller 21-1, And input to the second receiving end Rx2 of the master controller 11 through the first transmitting end Tx1.
  • response request data is not transmitted to the second slave controller 21-2
  • the master controller 11 can not receive the response data. Accordingly, in this case, response data can be received through another path by transmitting the response request data through the first transmitting terminal Tx1.
  • the master controller 11 can confirm the place where the disconnection occurred. That is, when the master controller 11 determines that a disconnection has occurred, the master controller 11 can transmit response request data for all the slave controllers 21 through the first transmitting terminal Tx1 and the second transmitting terminal Tx2.
  • the response request data transmitted through the first transmitting terminal Tx1 may receive the response data from the former slave controller 21, but the response request data transmitted through the second transmitting terminal Tx2 may not be received by the first slave
  • the master controller 11 is able to receive only from the controller 21 so that the second transmitting end Tx2 of the first slave controller 21-1 and the first receiving end Rx1 of the second slave controller 21-2, As shown in FIG.
  • FIG. 8 is a flowchart for explaining a control method of the parallel inverter system according to the embodiment of the present invention, showing a control method in the master controller 11 of the master inverter 1.
  • FIG. 8 is a flowchart for explaining a control method of the parallel inverter system according to the embodiment of the present invention, showing a control method in the master controller 11 of the master inverter 1.
  • the master controller 11 can simultaneously transmit synchronization data through the first and second transmission terminals Tx1 and Tx2 (S81).
  • the master controller 11 can confirm whether the synchronous data is received at the first and second receiving ends Rx1 and Rx2 in response to the transmission of the synchronous data at step S82.
  • the control data transmitted through the master controller 11 may include a PWM control signal for controlling the switching modules 13 and 23 of the inverters 1 and 2.
  • the output currents of the inverters 1 and 2 are detected by a predetermined current detector (not shown) and transmitted to the respective inverter controllers 11 and 21 and are controlled according to the request (response request data) of the master controller 11 (Response data) to the master controller 11 through the communication line.
  • the master controller 11 calculates a PWM control signal of each of the inverters 1 and 2 by using the calculated PWM control signal and outputs the calculated PWM control signal to the first transmitting terminal Tx1 or the second transmitting terminal Tx2 , ≪ / RTI >
  • step S82 If it is determined in step S82 that no synchronization data is received by the first and second receiving ends Rx1 and Rx2 and only one of the receiving ends receives synchronization data, it is determined that an error has occurred in the communication line (S84 ), The control data can be transmitted through the first and second transmitting terminals Tx1 and Tx2 (S85).
  • control data can be transmitted in one direction when there is no disconnection in the communication line, and in both directions when disconnection occurs in the communication line.
  • Each of the inverter controllers 11 and 21 receives the PWM control signal which is the control data received from the master controller 11 and transmits it to the PWM controllers 13 and 23.
  • the PWM controllers 13 and 23 receive the PWM control signal
  • the AC voltage output from the switch modules 12 and 22 can be input to the electric motor 3 by performing the PWM control on the switch modules 12 and 22.
  • the master controller 11 can easily determine the abnormality of the communication line through the transmission of the synchronous data and transmits the control data in both directions, thereby providing communication stability to the parallel inverter system, thereby providing the motor control stability can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

병렬 인버터 시스템이 개시된다. 본 발명의 시스템에서 마스터 제어기는 제1송신단과 제1수신단으로 구성되는 제1통신포트와 제2송신단과 제2수신단으로 구성되는 제2통신포트를 포함하고, 슬레이브 제어기 각각은 제3송신단과 제3수신단으로 구성되는 제3통신포트와 제4송신단과 제4수신단으로 구성되는 제4통신포트를 포함하여, 각각의 인버터 제어기가 이중화된 통신라인으로 연결된다.

Description

병렬 인버터 시스템
본 발명은 병렬 인버터 시스템에 대한 것이다.
일반적으로 인버터란, 상용전원으로부터 공급된 전력을 입력받아 전압과 주파수를 가변하여 전동기에 공급함으로써 전동기 속도를 고효율로 이용하게 제어하는 일련의 장치를 말하는 것으로서, 적용되는 부하의 종류에 따라 고압 인버터와 저압 인버터로 구분된다.
이중 저압 인버터는 적용되는 부하의 용량범위가 수백 W에서 수 MW의 범위인 인버터이다. 저압 인버터는 모든 용량범위에서 단독운전이 가능하지만 수백 kW 이상의 경우도 단독운전하게 설계하면, 인버터 내부의 전력용 반도체 소자의 한계 및 기구설계 제약 등으로 인해 설계 효용성이 현저하게 저하되는 단점이 있다. 따라서 이러한 단점을 극복하기 위해, 통상 일정 용량 이상의 인버터는 설계용량보다 적은 용량의 복수의 인버터가 병렬운전하도록 설계된다.
복수의 인버터를 병렬운전하는 경우 다양한 방식에 의해 제어가 가능하며, 이중 하나의 주제어기(마스터 제어기)와 복수의 보조 제어기(슬레이브 제어기)로 구성하여 마스터 제어기와 슬레이브 제어기간 통신을 통해 제어하는 방식이 가장 많이 사용되고 있다.
이러한 인버터 병렬운전에서는 통신라인의 노이즈 대처를 위해 대부분 광통신이 이용된다. 그러나 이러한 통신라인에 문제가 발생하여 통신이 두절되는 경우, 인버터의 오동작으로 인해 출력전류가 균등하게 배분되지 않는 문제가 있다.
도 1은 종래의 병렬 인버터 시스템의 구성도이고, 도 2는 도 1의 동기신호 분배부의 동작을 설명하기 위한 개략도이다.
도 1을 참조로 하면, 병렬 인버터 시스템은 마스터 인버터(100)와 복수의 슬레이브 인버터(200)로 구성된다.
각 인버터의 출력전류를 인버터 제어기(C)(110, 210)가 저장하고 마스터 인버터의 제어기(마스터 제어기)(110)가 이를 요구하면 제어기간 통신라인(1A)을 통해 마스터 제어기(110)로 전송된다. 마스터 제어기(110)는 이를 이용하여 각각의 인버터(100, 200)의 출력 펄스폭변조(pulse width modulation, PWM) 제어신호를 연산한다.
마스터 제어기(110)에 의해 연산된 PWM 제어신호는 통신라인(1A)을 통해 슬레이브 인버터의 제어기(슬레이브 제어기)(210)로 각각 전송되고, 각각의 인버터 제어기(110, 210)는 마스터 제어기(110)가 생성한 PWM 동기신호(1B)에 동기되어 PWM 제어신호를 스위치모듈(120, 220)로 출력한다. 스위치모듈(120, 220)은 PWM 제어신호에 의해 교류전압을 출력하여 전동기(500)로 각각 출력하게 된다.
이러한 인버터의 병렬운전에서 중요한 것은 인버터 제어기(110, 210)간 빠른 데이터의 송수신과 PWM 신호의 동기이다.
도 2는 인버터 제어기간 통신과 인버터 제어기와 싱크허브(300)간 통신을 설명하기 위한 것이다.
인버터는 대전압 및 전류를 스위칭하기 때문에 노이즈가 많이 발생한다. 특히 통신선이나 PWM 동기신호에 노이즈가 인가되어 오신호가 발생하였을 경우, 병렬운전의 효율이 현저히 저하된다. 따라서 이러한 통신을 위한 케이블(1A, 1B, 1C)은 보통 광케이블이 사용된다.
이때 마스터 제어기(110)의 송신단(Tx)과 다음 슬레이브 제어기(210)의 수신단(Rx)을 광케이블로 연결하고, 해당 슬레이브 제어기(210)의 송신단(Tx)과 그 다음 슬레이브 제어기(210)의 수신단(Rx)을 순차적으로 연결하고, 마지막 슬레이브 제어기(210)의 송신단(Tx)와 마스터 제어기(110)의 수신단(Rx)을 광케이블로 연결하여 링 네트워크를 구성하고, 통신의 제어는 마스터 제어기(110)가 담당하게 된다.
이와 같은 종래의 병렬 인버터 시스템에서는, 인버터 제어기간 통신이 링 네트워크를 구성하므로, 연결된 통신선 중 하나에 오류가 발생하면 해당 지점 이후의 인버터 제어기는 통신이 끊어지게 된다. 따라서 통신의 단절로 인해 PWM 신호의 동기가 틀어지게 되어 인버터의 출력전류가 전동기(500)로 흐르지 않고 다른 인버터로 흐르게 되면서 인버터의 소손이 발생하는 문제점이 있다.
본 발명이 해결하고자 하는 기술적 과제는, 인버터의 통신을 이중화하여 인버터 통신라인에 문제가 발생한 경우에도 안정적으로 인버터 제어를 유지하는 병렬 인버터 시스템을 제공하는 것이다.
상기와 같은 기술적 과제를 해결하기 위해, 마스터 제어기를 포함하는 마스터 인버터와 각각 슬레이브 제어기를 포함하는 복수의 슬레이브 인버터가 각각 병렬로 연결되어 전동기를 제어하는 본 발명의 일실시예의 병렬 인버터 시스템은, 상기 마스터 제어기는 제1송신단과 제1수신단으로 구성되는 제1통신포트와 제2송신단과 제2수신단으로 구성되는 제2통신포트를 포함하고, 상기 슬레이브 제어기 각각은 제3송신단과 제3수신단으로 구성되는 제3통신포트와 제4송신단과 제4수신단으로 구성되는 제4통신포트를 포함하고, 상기 제1송신단을 통해 전송되는 데이터는 상기 마스터 제어기와 일방향으로 병렬연결된 슬레이브 제어기의 제4수신단으로 전송되고, 상기 제2송신단으로 통해 전송되는 데이터는 상기 마스터 제어기와 타방향으로 병렬연결된 슬레이브 제어기의 제3수신단으로 전송되고, 상기 슬레이브 제어기의 상기 제3송신단과 상기 제4수신단은 내부적으로 연결되어 상기 제4수신단으로 수신되는 데이터가 상기 제3송신단으로 전달되고, 상기 제4수신단과 상기 제3송신단은 내부적으로 연결되어 상기 제3수신단으로 수신되는 데이터가 상기 제4송신단으로 전달되고, 상기 제1송신단을 통해 전송되는 데이터는 상기 제2수신단으로 수신되고, 상기 제2송신단을 통해 전송되는 데이터는 상기 제1수신단으로 수신되도록 구성될 수 있다.
본 발명의 일실시예에서, 상기 마스터 제어기는, 상기 제1 및 제2송신단을 통해 동기데이터를 전송하고, 상기 제2 및 제1수신단으로 상기 동기데이터가 수신되는지를 확인하여 병렬연결된 마스터 인버터 및 복수의 슬레이브 인버터간 통신라인의 단선을 확인할 수 있다.
본 발명의 일실시예에서, 상기 마스터 제어기는, 상기 제2 또는 제1수신단 중 어느 하나 이상 동기데이터가 수신되지 않은 경우 상기 통신라인의 단선으로 판단하고, 상기 슬레이브 인버터를 제어하기 위한 제어데이터를 단선되지 않은 통신라인을 통해 전송할 수 있다.
본 발명의 일실시예에서, 상기 마스터 제어기는, 상기 제2 또는 제1수신단 중 어느 하나 이상 동기데이터가 수신되지 않은 경우 상기 통신라인의 단선으로 판단하고, 상기 슬레이브 인버터를 제어하기 위한 제어데이터를 상기 제1 및 제2송신단을 통해 각각 전송할 수 있다.
본 발명의 일실시예에서, 상기 마스터 제어기는, 상기 제2 및 제1수신단으로 상기 동기데이터가 수신된 경우, 상기 슬레이브 인버터를 제어하기 위한 제어데이터를 상기 제1 또는 제2송신단 통해 전송할 수 있다.
본 발명의 일실시예에서, 상기 마스터 제어기는, 상기 제1송신단을 통해 병렬연결된 복수의 슬레이브 제어기 중 하나로 응답요청 데이터를 송신할 수 있다.
본 발명의 일실시예에서, 상기 마스터 제어기는, 병렬연결된 복수의 슬레이브 제어기 중 하나로부터 응답데이터가 수신되지 않는 경우, 제2송신단을 통해 상기 복수의 슬레이브 제어기 중 하나로 응답요청 데이터를 송신할 수 있다.
본 발명의 일실시예에서, 상기 슬레이브 제어기는, 상기 제3수신단을 통해 상기 응답요청 데이터를 수신한 경우, 상기 제3송신단을 통해 응답데이터를 송신할 수 있다.
상기와 같은 본 발명은, 통신라인에 단선이 없는 경우는 단방향으로, 통신라인에 단선이 발생한 경우는 양방향으로 제어데이터를 전송함으로써, 병렬 인버터 시스템의 통신안정성을 제공하고, 이로부터 전동기의 제어안정성을 제공하게 하는 효과가 있다.
또한, 본 발명은 단선이 발생한 통신라인을 쉽게 파악할 수 있게 되므로, 유지보수에 소요되는 시간 및 비용을 줄이게 하는 효과가 있다.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.
도 1은 종래의 병렬 인버터 시스템의 구성도이다.
도 2는 도 1의 동기신호 분배부의 동작을 설명하기 위한 개략도이다.
도 3은 본 발명의 일실시예의 병렬 인버터 시스템을 설명하기 위한 구성도이다.
도 4는 본 발명의 일실시예의 병렬 인버터 시스템에서 인버터 제어기간 연결관계를 설명하기 위한 일예시도이다.
도 5 내지 도 7은 본 발명의 일실시예에서 신호가 전달되는 경로를 확인하기 위한 일예시도이다.
도 8은 본 발명의 일실시예의 병렬 인버터 시스템의 제어방법을 설명하기 위한 흐름도이다.
본 발명의 구성 및 효과를 충분히 이해하기 위하여, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예들을 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라, 여러가지 형태로 구현될 수 있고 다양한 변경을 가할 수 있다. 단지, 본 실시예에 대한 설명은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다. 첨부된 도면에서 구성요소는 설명의 편의를 위하여 그 크기를 실제보다 확대하여 도시한 것이며, 각 구성요소의 비율은 과장되거나 축소될 수 있다.
'제1', '제2' 등의 용어는 다양한 구성요소를 설명하는데 사용될 수 있지만, 상기 구성요소는 위 용어에 의해 한정되어서는 안 된다. 위 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용될 수 있다. 예를 들어, 본 발명의 권리범위를 벗어나지 않으면서 '제1구성요소'는 '제2구성요소'로 명명될 수 있고, 유사하게 '제2구성요소'도 '제1구성요소'로 명명될 수 있다. 또한, 단수의 표현은 문맥상 명백하게 다르게 표현하지 않는 한, 복수의 표현을 포함한다. 본 발명의 실시예에서 사용되는 용어는 다르게 정의되지 않는 한, 해당 기술분야에서 통상의 지식을 가진 자에게 통상적으로 알려진 의미로 해석될 수 있다.
이하에서는, 도 3 내지 도 8을 참조하여 본 발명의 일실시예에 따른 병렬 인버터 시스템을 설명하기로 한다.
도 3은 본 발명의 일실시예의 병렬 인버터 시스템을 설명하기 위한 구성도이고, 도 4는 본 발명의 일실시예의 병렬 인버터 시스템에서 인버터 제어기간 연결관계를 설명하기 위한 일예시도이다.
도 3을 참조로 하면, 본 발명의 일실시예의 인버터 시스템은, 마스터 인버터(1)와 복수의 슬레이브 인버터(2)를 포함한다. 마스터 인버터(1)와 복수의 슬레이브 인버터(2)는 전원입력부(4)로부터 삼상의 입력전원을 입력받아 상위 제어기(도시되지 않음)로부터 마스터 인버터(1)에 전달되는 운전지령 및 주파수지령을 이용하여 합성된 삼상의 전압을 전동기(3)에 전달할 수 있다.
다만, 본 발명이 이에 한정되는 것은 아니며, 인버터 시스템은 삼상의 입력전원을 대신하여 일반적인 직류 또는 교류전원을 이용하여 동작할 수 있다.
마스터 인버터(1)는 제어기(11)(이하, '마스터 제어기'(MC)라 함)와 전압스위칭을 수행하는 스위치모듈(SW)(12)를 포함할 수 있다. 마찬가지로, 슬레이브 인버터(2)는 제어기(21)(이하, '슬레이브 제어기'(SC)라 함)와 전압스위칭을 수행하는 스위치모듈(22)을 포함할 수 있다. 다만, 인버터의 구성요소가 이에 한정되는 것은 아니고 더욱 다양한 구성요소를 포함할 수 있겠으나, 본 발명과 무관한 인버터 구성요소에 대한 설명은 생략하기로 한다.
본 발명의 일실시예에 의하면, 통신 안정성을 높이기 위해 인버터 제어기(11, 21)간의 통신라인을 이중화하는 것이다. 이를 위해, 본 발명의 마스터 제어기(11)와 복수의 슬레이브 제어기(21)는 각각 두개의 수신단(Rx1, Rx2)과 송신단(Tx1, Tx2)을 구비할 수 있다. 즉, 하나의 통신포트를 구비하던 종래의 인버터 제어기와 달리, 본 발명의 일실시예의 인버터 제어기(11, 21)는 두개의 통신포트를 구비하며, 하나의 통신포트에는 송신단과 수신단이 각각 포함된다. 즉, 제1통신포트는 제1송신단(Tx1)과 제1수신단(Rx1)으로 구성되고, 제2통신포트는 제2송신단(Tx2)과 제2수신단(Rx2)으로 구성될 수 있다. 이는 마스터 제어기(11)와 슬레이브 제어기(21) 모두 동일하다.
마스터 제어기(11)의 제1송신단(Tx1)은 제N슬레이브 제어기(21-N)의 제2송신단(Rx2)으로 신호를 전송하고, 제N슬레이브 제어기(21-N)의 제2송신단(Tx2)은 마스터 제어기(11)의 제1수신단(Rx1)으로 신호를 전송한다.
마스터 제어기(11)의 제2송신단(Tx2)은 제1슬레이브 제어기(21-1)의 제1수신단(Rx1)으로 신호를 전송하고, 제1슬레이브 제어기(21-1)의 제1송신단(Tx1)은 마스터 제어기(11)의 제2수신단(Rx2)으로 신호를 전송한다.
제1슬레이브 제어기(21-1)의 제2송신단(Tx2)은 제2슬레이브 제어기(21-2)의 제1수신단(Rx1)으로 신호를 전송하고, 제2슬레이브 제어기(21-2)의 제1송신단(Tx1)은 제1슬레이브 제어기(21-1)의 제2수신단(Rx2)으로 신호를 전송한다.
이와 유사하게, 제(N-1)슬레이브 제어기(21-(N-1))의 제2송신단(Tx2)은 제N슬레이브 제어기(21-N)의 제1수신단(Rx1)으로 신호를 전송하고, 제N슬레이브 제어기(21-N)의 제1송신단(Tx1)은 제(N-1)슬레이브 제어기(21-(N-1))의 제2수신단(Rx2)으로 신호를 전송한다.
즉, 본 발명의 일실시예에서, 마스터 제어기(11)는 제1슬레이브 제어기(21-1)와 제N슬레이브 제어기(21-N)와 신호를 송수신할 수 있고, 제1슬레이브 제어기(21-1)는 마스터 제어기(11)와 제2슬레이브 제어기(21-2)와 신호를 송수신할 수 있다. 이와 같은 구성에 의하면, 단방향으로 전달되는 광케이블의 특성을 개선하여 양방향 통신이 가능해진다.
한편, 슬레이브 제어기(21)의 내부를 도면을 참조해 보면, 제1수신단(Rx1)과 제2송신단(Tx2)이 연결되어 제1수신단(Rx1)으로 수신되는 신호가 제2송신단(Tx2)으로 제공되고, 제1송신단(Tx1)과 제2수신단(Rx2)이 연결되어 제2수신단(Rx2)으로 수신되는 신호가 제1송신단(Tx1)으로 제공될 수 있다.
즉, 본 발명의 일실시예의 병렬 인버터 시스템에서, 병렬연결된 복수의 인버터(1, 2)의 인버터 제어기(11, 21)는 각각 제1 및 제2송신단과 제1 및 제2수신단을 구비하여 이중화된 외부의 통신라인(4A)에 의해 연결되며, 슬레이브 제어기(21)의 제1송신단과 제2수신단, 및 제2송신단 및 제1수신단은 내부적으로 신호선(4B)에 의해 연결될 수 있다.
본 발명의 일실시예의 슬레이브 제어기(21)의 내부에서 제1송신단과 제2수신단, 및 제2송신단 및 제1수신단이 연결되어, PWM 제어신호를 생성하는 PWM 제어기(23)로 신호가 전송되지 않고 바로 전달되도록 구성함으로써, 빠르게 통신라인의 문제점을 확인할 수 있다.
도 5 내지 도 7은 본 발명의 일실시예에서 신호가 전달되는 경로를 확인하기 위한 일예시도이다.
마스터 제어기(11)는 제1 및 제2송신단(Tx1, Tx2)을 통해 동기데이터를 전송함으로써 인버터 시스템에서 제어기간 단선을 검출할 수 있다.
즉, 마스터 제어기(11)의 제1송신단(Tx1)을 통해 전송되는 동기데이터는 제N슬레이브 제어기(21-N)의 제2수신단(Rx2), 제N슬레이브 제어기(21-N)의 제1송신단(Tx1), ..., 제2슬레이브 제어기(21-2)의 제2수신단(Rx2), 제2슬레이브 제어기(21-2)의 제1송신단(Tx1), 제1슬레이브 제어기(21-1)의 제2수신단(Rx2), 및 제1슬레이브 제어기(21-1)의 제1송신단(Tx1)을 거쳐 마스터 제어기(11)의 제2수신단(Rx2)을 통해 수신될 수 있다. 이는 하나의 링통신 경로를 5A와 같이 구성하게 된다.
또한, 마스터 제어기(11)의 제2송신단(Tx2)을 통해 전송되는 동기데이터는 제1슬레이브 제어기(21-1)의 제1수신단(Rx1), 제1슬레이브 제어기(21-1)의 제2송신단(Tx2), 제2슬레이브 제어기(21-2)의 제1수신단(Rx1), 제2슬레이브 제어기(21-2)의 제2송신단(Tx2), ..., 제N슬레이브 제어기(21-N)의 제1수신단(Rx1) 및 제N슬레이브 제어기(21-N)의 제2송신단(Tx2)을 거쳐 마스터 제어기(11)의 제1수신단(Tx1)을 통해 수신될 수 있다. 이 역시 하나의 링통신 경로를 5B와 같이 구성하게 된다.
만약, 도 6과 같이 제1슬레이브 제어기(21-1)의 제2송신단(Tx2)과 제2슬레이브 제어기(21-2)의 제1수신단(Rx1) 사이의 통신라인이 단선되는 경우, 경로 5A를 통해 전송되는 동기데이터는 마스터 제어기(11)의 제2수신단(Rx2)을 통해 수신되지만, 경로 5B를 통해 전송되는 동기데이터는 도 6과 같이 마스터 제어기(11)의 제1수신단(Rx1)을 통해 수신되지 않게 된다.
이와 같은 경우 마스터 제어기(11)는 통신라인에 단선이 발생하였음을 결정할 수 있다. 마스터 제어기(11)는 통신라인에 단선이 발생하지 않은 경우에는 한방향으로만(즉, 제1송신단(Tx1) 또는 제2송신단(Tx2) 중 어느 하나를 통해) PWM 제어신호를 전송하지만, 통신라인에 단선이 발생한 경우에는 PWM 제어신호를 양방향으로(즉, 제1송신단(Tx1) 및 제2송신단(Tx2) 모두를 통해) 전송할 수 있을 것이다.
이와 같이 통신라인에 단선이 없는 경우는 단방향으로, 통신라인에 단선이 발생한 경우는 양방향으로 제어데이터를 전송함으로써, 전동기(3)의 제어안정성을 제공할 수 있다.
한편, 본 발명의 일실시예에서, 마스터 제어기(11)가 응답요청 데이터를 전송하는 경우, 슬레이브 제어기(21)는 동일한 통신포트의 송신단을 통해 응답데이터를 전송할 수 있다.
도 7을 참조로 하면, 마스터 제어기(11)가 제2슬레이브 제어기(21-2)로 응답요청 데이터를 전송하여 이를 수신하는 경로를 확인할 수 있다. 즉, 마스터 제어기(11)의 제2송신단(Tx2)을 통해 전송되는 응답요청 데이터는, 제1슬레이브 제어기(21-1)의 제1수신단(Rx1), 제2송신단(Tx2)을 통해 제2슬레이브 제어기(21-2)의 제1수신단(Rx1)으로 수신된다. 제2슬레이브 제어기(21-2)는 해당 응답요청 데이터에 대응하는 응답 데이터를 동일 포트인 제1송신단(Tx1)을 통해 송신하고, 제1슬레이브 제어기(21-1)의 제2수신단(Rx2), 제1송신단(Tx1)을 통해 마스터 제어기(11)의 제2수신단(Rx2)으로 입력될 수 있다.
만약, 도 6의 케이스와 같이 제1 및 제2슬레이브 제어기(21-1, 21-2) 사이의 통신라인에 단선이 발생한 경우, 제2슬레이브 제어기(21-2)로 응답요청 데이터가 전송되지 않으므로, 이에 대한 응답데이터 역시 마스터 제어기(11)가 수신할 수 없다. 따라서, 이와 같은 경우, 제1송신단(Tx1)을 통해 응답요청 데이터를 전송함으로써 다른 경로를 통해 응답데이터를 수신할 수 있게 된다.
이와 같은 구성에 의해, 마스터 제어기(11)는 단선이 발생한 곳을 확인할 수 있다. 즉, 마스터 제어기(11)는 단선이 발생한 것으로 결정한 경우, 모든 슬레이브 제어기(21)에 대한 응답요청 데이터를 제1송신단(Tx1) 및 제2송신단(Tx2)을 통해 전송할 수 있다.
이 경우, 제1송신단(Tx1)을 통해 전송된 응답요청 데이터에 대해서는 전 슬레이브 제어기(21)로부터 응답 데이터를 수신할 수 있으나, 제2송신단(Tx2)을 통해 전송된 응답요청 데이터는 제1슬레이브 제어기(21)로부터만 수신할 수 있으므로, 마스터 제어기(11)는 제1슬레이브 제어기(21-1)의 제2송신단(Tx2)과 제2슬레이브 제어기(21-2)의 제1수신단(Rx1) 사이에 단선이 발생하였음을 확인할 수 있을 것이다.
이와 같이, 본 발명의 일실시예에 따르면, 단선이 발생한 통신라인을 쉽게 파악할 수 있게 되므로, 유지보수에 소요되는 시간 및 비용을 줄일 수 있게 된다.
도 8은 본 발명의 일실시예의 병렬 인버터 시스템의 제어방법을 설명하기 위한 흐름도로서, 마스터 인버터(1)의 마스터 제어기(11)에서의 제어방법을 나타낸 것이다.
도면에 도시된 바와 같이, 마스터 제어기(11)는 제1 및 제2송신단(Tx1, Tx2)을 통해 동시에 동기데이터를 전송할 수 있다(S81). 마스터 제어기(11)는, 해당 동기데이터의 전송에 대응하여, 제1 및 제2수신단(Rx1, Rx2)으로 동기데이터가 수신되는지 확인할 수 있다(S82).
만약, 제1 및 제2수신단(Rx1, Rx2)으로 동기데이터가 수신되는 경우, 통신라인에 이상이 없는 것으로 판단하고, 제1송신단(Tx1) 또는 제2송신단(Tx2) 중 어느 하나를 통해 제어데이터를 전송할 수 있다(S83).
마스터 제어기(11)를 통해 전송되는 제어데이터는, 각 인버터(1, 2)의 스위칭모듈(13, 23)을 제어하기 위한 PWM 제어신호를 포함할 수 있다. 각 인버터(1, 2)의 출력전류는 소정의 전류검출기(도시되지 않음)에 의해 검출되어 각 인버터 제어기(11, 21)로 전달되며, 마스터 제어기(11)의 요구(응답요청 데이터)에 따라 통신라인을 통해 마스터 제어기(11)로 전송(응답 데이터)될 수 있다. 마스터 제어기(11)는 이를 이용하여 각각의 인버터(1, 2)의 PWM 제어신호를 연산하며, 연산된 PWM 제어신호는 통신라인에 이상이 없는 경우 제1송신단(Tx1) 또는 제2송신단(Tx2) 중 어느 하나를 통해 전송될 수 있다.
만약, S82의 확인 결과, 제1 및 제2수신단(Rx1, Rx2)으로 동기데이터가 수신되지 않고 어느 하나의 수신단만 동기데이터를 수신하는 경우에는, 통신라인에 이상이 발생하였음을 결정하고(S84), 제1 및 제2송신단(Tx1, Tx2)을 통해 제어데이터를 전송할 수 있다(S85).
즉, 본 발명의 병렬 인버터 시스템에서 통신라인에 단선이 없는 경우는 단방향으로, 통신라인에 단선이 발생한 경우는 양방향으로 제어데이터를 전송할 수 있다.
각각의 인버터 제어기(11, 21)는 마스터 제어기(11)로부터 수신한 제어데이터인 PWM 제어신호를 수신하여 이를 PWM 제어기(13, 23)에 전달하고, PWM 제어기(13, 23)는 PWM 제어신호에 따라 스위치모듈(12, 22)에 대한 PWM 제어를 수행하여 스위치모듈(12, 22)로부터 출력되는 교류전압이 전동기(3)로 입력될 수 있다.
이와 같이, 마스터 제어기(11)는 동기데이터의 전송을 통해 통신라인의 이상을 간단하게 판단하고, 제어데이터를 양방향으로 전송함으로써, 병렬 인버터 시스템에 통신 안정성을 제공하고, 이에 의해 전동기 제어안정성을 제공할 수 있다.
이상에서 본 발명에 따른 실시예들이 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 범위의 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 다음의 청구범위에 의해서 정해져야 할 것이다.

Claims (8)

  1. 마스터 제어기를 포함하는 마스터 인버터와 각각 슬레이브 제어기를 포함하는 복수의 슬레이브 인버터가 각각 병렬로 연결되어 전동기를 제어하는 병렬 인버터 시스템에 있어서,
    상기 마스터 제어기는 제1송신단과 제1수신단으로 구성되는 제1통신포트와 제2송신단과 제2수신단으로 구성되는 제2통신포트를 포함하고,
    상기 슬레이브 제어기 각각은 제3송신단과 제3수신단으로 구성되는 제3통신포트와 제4송신단과 제4수신단으로 구성되는 제4통신포트를 포함하고,
    상기 제1송신단을 통해 전송되는 데이터는 상기 마스터 제어기와 일방향으로 병렬연결된 슬레이브 제어기의 제4수신단으로 전송되고, 상기 제2송신단으로 통해 전송되는 데이터는 상기 마스터 제어기와 타방향으로 병렬연결된 슬레이브 제어기의 제3수신단으로 전송되고,
    상기 슬레이브 제어기의 상기 제3송신단과 상기 제4수신단은 내부적으로 연결되어 상기 제4수신단으로 수신되는 데이터가 상기 제3송신단으로 전달되고, 상기 제4수신단과 상기 제3송신단은 내부적으로 연결되어 상기 제3수신단으로 수신되는 데이터가 상기 제4송신단으로 전달되고,
    상기 제1송신단을 통해 전송되는 데이터는 상기 제2수신단으로 수신되고, 상기 제2송신단을 통해 전송되는 데이터는 상기 제1수신단으로 수신되도록 구성되는 병렬 인버터 시스템.
  2. 제1항에 있어서,
    상기 마스터 제어기는,
    상기 제1 및 제2송신단을 통해 동기데이터를 전송하고, 상기 제2 및 제1수신단으로 상기 동기데이터가 수신되는지를 확인하여 병렬연결된 마스터 인버터 및 복수의 슬레이브 인버터간 통신라인의 단선을 확인하는 병렬 인버터 시스템.
  3. 제2항에 있어서,
    상기 마스터 제어기는,
    상기 제2 또는 제1수신단 중 어느 하나 이상 동기데이터가 수신되지 않은 경우 상기 통신라인의 단선으로 판단하고, 상기 슬레이브 인버터를 제어하기 위한 제어데이터를 단선되지 않은 통신라인을 통해 전송하는 병렬 인버터 시스템.
  4. 제2항에 있어서,
    상기 마스터 제어기는,
    상기 제2 또는 제1수신단 중 어느 하나 이상 동기데이터가 수신되지 않은 경우 상기 통신라인의 단선으로 판단하고, 상기 슬레이브 인버터를 제어하기 위한 제어데이터를 상기 제1 및 제2송신단을 통해 각각 전송하는 병렬 인버터 시스템.
  5. 제2항에 있어서,
    상기 마스터 제어기는,
    상기 제2 및 제1수신단으로 상기 동기데이터가 수신된 경우, 상기 슬레이브 인버터를 제어하기 위한 제어데이터를 상기 제1 또는 제2송신단 통해 전송하는 병렬 인버터 시스템.
  6. 제1항에 있어서,
    상기 마스터 제어기는,
    상기 제1송신단을 통해 병렬연결된 복수의 슬레이브 제어기 중 하나로 응답요청 데이터를 송신하는 병렬 인버터 시스템.
  7. 제6항에 있어서,
    상기 마스터 제어기는,
    병렬연결된 복수의 슬레이브 제어기 중 하나로부터 응답데이터가 수신되지 않는 경우, 제2송신단을 통해 상기 복수의 슬레이브 제어기 중 하나로 응답요청 데이터를 송신하는 병렬 인버터 시스템.
  8. 제6항에 있어서,
    상기 슬레이브 제어기는,
    상기 제3수신단을 통해 상기 응답요청 데이터를 수신한 경우, 상기 제3송신단을 통해 응답데이터를 송신하는 병렬 인버터 시스템.
PCT/KR2018/004045 2018-01-19 2018-04-06 병렬 인버터 시스템 WO2019142972A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180006834A KR102162464B1 (ko) 2018-01-19 2018-01-19 병렬 인버터 시스템
KR10-2018-0006834 2018-01-19

Publications (1)

Publication Number Publication Date
WO2019142972A1 true WO2019142972A1 (ko) 2019-07-25

Family

ID=67302293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004045 WO2019142972A1 (ko) 2018-01-19 2018-04-06 병렬 인버터 시스템

Country Status (2)

Country Link
KR (1) KR102162464B1 (ko)
WO (1) WO2019142972A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102543423B1 (ko) 2021-05-21 2023-06-14 (주)피씨에스컴퍼니 Pwm 인버터의 병렬 운전 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719687A (zh) * 2005-07-08 2006-01-11 浙江大学 一种新颖的逆变电源的自动主从并联装置
KR20130058344A (ko) * 2011-11-25 2013-06-04 엘에스산전 주식회사 병렬 인버터 시스템
KR101304055B1 (ko) * 2012-06-18 2013-09-04 미쓰비시덴키 가부시키가이샤 인버터 시스템 및 통신 방법
US8836394B2 (en) * 2012-03-26 2014-09-16 Rambus Inc. Method and apparatus for source-synchronous signaling
KR20150141316A (ko) * 2014-06-10 2015-12-18 엘에스산전 주식회사 병렬운전 인버터 시스템의 pwm 동기화 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719687A (zh) * 2005-07-08 2006-01-11 浙江大学 一种新颖的逆变电源的自动主从并联装置
KR20130058344A (ko) * 2011-11-25 2013-06-04 엘에스산전 주식회사 병렬 인버터 시스템
US8836394B2 (en) * 2012-03-26 2014-09-16 Rambus Inc. Method and apparatus for source-synchronous signaling
KR101304055B1 (ko) * 2012-06-18 2013-09-04 미쓰비시덴키 가부시키가이샤 인버터 시스템 및 통신 방법
KR20150141316A (ko) * 2014-06-10 2015-12-18 엘에스산전 주식회사 병렬운전 인버터 시스템의 pwm 동기화 장치

Also Published As

Publication number Publication date
KR102162464B1 (ko) 2020-10-06
KR20190088593A (ko) 2019-07-29

Similar Documents

Publication Publication Date Title
EP1865702B1 (en) A long-distance powering system for communication system
EP0198932B1 (en) Extension arrangement and station connecting method for a ring communication system
WO2019132428A1 (ko) Mmc 컨버터 초기충전시 서브모듈 상태 진단방법
WO2018038431A1 (ko) 통합모듈 및 통신의 이중화 구조를 구비한 모터제어반용 시스템
US5189541A (en) Method and apparatus for connecting branch networks with a trunk network in optical transmission system
WO2011065679A2 (ko) 무정전 전원 공급 시스템 및 무정전 전원 장치
WO2019172519A1 (ko) 전력선 통신을 이용한 배전반 내 차단기의 계통 분석 시스템
WO2018124519A1 (ko) 모듈러 멀티레벨 컨버터 시스템
KR101521635B1 (ko) 유무선 이중화 통신 방식의 태양광 발전 시스템 및 그 통신 방법
CN112202571A (zh) 一种poe电源传输装置、poe交换机及poe系统
WO2014073787A1 (ko) 무정전 전원 공급장치의 비상 바이패스 절체회로
WO2019142972A1 (ko) 병렬 인버터 시스템
JPH0354499B2 (ko)
WO2018038432A1 (ko) 이중화된 보호제어모듈을 구비한 모터제어반용 시스템
KR101506274B1 (ko) 네트워크 인터페이스 기반 입출력 확장형 이중화 알티유 시스템(rtu)
US5060224A (en) Method and apparatus for connecting branch networks with a trunk network in optical transmission system
WO2020122605A1 (ko) 무정전 전력 공급 마이크로그리드 시스템
WO2016108597A1 (ko) Mmc 컨버터의 서브모듈용 전원제어장치
EP2873174A1 (en) Method and arrangement for providing data plane redundancy
EP4094420B1 (en) Building technology device
WO2015083920A1 (ko) 링 토폴로지 방식의 광중계기
CN220421644U (zh) 电源系统
WO2024048850A1 (ko) 태양광 발전용 차동전력 제어장치
WO2021172766A1 (ko) 커넥터 및 통신 시스템
US8972643B2 (en) Field bus network adapter and field bus network subscriber with field bus connections

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901569

Country of ref document: EP

Kind code of ref document: A1