WO2011065679A2 - 무정전 전원 공급 시스템 및 무정전 전원 장치 - Google Patents
무정전 전원 공급 시스템 및 무정전 전원 장치 Download PDFInfo
- Publication number
- WO2011065679A2 WO2011065679A2 PCT/KR2010/007714 KR2010007714W WO2011065679A2 WO 2011065679 A2 WO2011065679 A2 WO 2011065679A2 KR 2010007714 W KR2010007714 W KR 2010007714W WO 2011065679 A2 WO2011065679 A2 WO 2011065679A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- power supply
- uninterruptible power
- voltage
- mode
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 claims description 19
- 230000005856 abnormality Effects 0.000 claims description 9
- 238000004891 communication Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims 12
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010616 electrical installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
- H02J9/062—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/493—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
Definitions
- the present invention relates to power supply technology, and more particularly, to an uninterruptible power supply system and an uninterruptible power supply.
- An uninterrupted power supply is a device that provides power to a load generated from a battery or a separate auxiliary power source in an emergency such as a power failure.
- the uninterruptible power supply can operate during power outages, providing auxiliary power for a few seconds to hours to protect the electrical installations of the load and safely shut down.
- non-powered power supplies are not limited to computer protection equipment and are used to prevent damage caused by unexpected power interruptions, severe business interruptions or data loss in data centers, telecommunications or other electrical equipment.
- the uninterruptible power supply system provides a single phase AC input voltage to the load and the battery when the operation mode is the normal mode, and converts the power of the battery into the single phase AC output voltage when the operation mode is the power failure mode.
- a plurality of uninterruptible power supplies serving a load.
- each of the plurality of uninterruptible power supply units receives the single-phase AC input voltage in common and outputs the single-phase AC output voltage in common.
- the configuration mode is a three-phase mode
- the plurality of uninterruptible power supplies include at least three uninterruptible supply devices, each of the at least three uninterruptible supply devices independently of the different phase voltage of the three-phase AC input voltage. It receives the input and outputs the different phase voltage of the three phase AC output voltage.
- the uninterruptible power supply includes a first conversion circuit, a second conversion circuit and a controller.
- the first conversion circuit is inductively coupled with a battery, and when the configuration mode is a single phase parallel mode, a single phase AC input voltage is commonly input to a separate single phase uninterruptible power supply and transferred to the battery, and the configuration mode is a three phase mode. When the phase voltage of the three-phase AC input voltage is received and transferred to the battery.
- the second conversion circuit is inductively coupled with the battery, and when the configuration mode is the single-phase parallel mode, converts the power of the battery into a single-phase AC output voltage and outputs it in common with the separate single-phase uninterruptible power supply.
- the control unit includes a setting unit and a processor.
- the setting unit sets the configuration mode and parameters according to the configuration mode.
- the processor includes a controller including a processor to control an operation mode of the first and second conversion circuits based on the set configuration mode and parameters.
- FIG. 1 is a block diagram illustrating an uninterruptible power supply.
- FIGS. 2 and 3 are block diagrams illustrating an uninterruptible power supply system according to an embodiment of the disclosed technology.
- FIG. 4 is a block diagram illustrating an uninterruptible power supply according to an embodiment of the disclosed technology.
- FIG. 5 is a block diagram illustrating in detail the control unit included in the uninterruptible power supply of FIG. 4.
- first and second are intended to distinguish one component from another component, and the scope of rights should not be limited by these terms.
- first component may be named a second component, and similarly, the second component may also be named a first component.
- first item, second item and / or third item may be given from two or more of the first, second or third items as well as the first, second or third items. Any combination of the possible items.
- the identifiers (e.g., a, b, c, ...) are used for convenience of description, and the identifiers do not describe the order of the steps, and each step is clearly contextual. Unless stated in a specific order, it may occur differently from the stated order. That is, each step may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
- FIG. 1 is a block diagram illustrating an uninterruptible power supply.
- the switch SW1 is connected between the uninterruptible power supply 100 and the input power supply 300, and the switch SW2 is also connected between the uninterruptible power supply 100 and the load 400.
- the bypass switch SW3 is connected between the input power 300 and the load 400 to provide the power of the input power 300 directly to the load 400 when performing a task for maintenance of the uninterruptible power supply 100. do.
- the switch may be implemented using an insulated gated bipolar transistor (IGBT).
- FIGS. 2 and 3 are block diagrams illustrating uninterruptible power supply systems 1000A and 1000B in accordance with one embodiment of the disclosed technology.
- FIG. 2 is a block diagram showing an uninterruptible power supply system 1000A when the configuration mode is a single-phase parallel mode.
- the uninterruptible power supply system 1000A includes a plurality of uninterruptible power supplies 100A to 100C.
- Each of the uninterruptible power supplies 100A to 100C is connected to a single-phase AC input voltage and a load through switches SW1A to SW1C, SW2A to SW2C, and SW3A to SW3C.
- Each of the plurality of uninterruptible power supplies 100A to 100C provides the single phase AC input voltage 300A to the load 400A and the battery 200 when the operation mode is the normal mode, and the battery (if the operation mode is the power failure mode).
- the power of 200 is converted into a single-phase AC output voltage and provided to the load 200.
- each of the uninterruptible power supplies SW1A to SW1C, SW2A to SW2C, and SW3A to SW3C may charge the battery 200 while providing the single-phase AC input voltage VI to the load 400A. If the power flow is unstable, such as when the power supplied through the single-phase AC input voltage 300A is interrupted or the input voltage level and phase change abruptly, each of the uninterruptible power supplies (SW1A to SW1C, SW2A to SW2C, SW3A to SW3C) is in power failure mode. It can work. In this case, the power of the charged battery 200 is converted into a single phase AC output voltage and provided to the load 400A.
- Configuration modes of the uninterruptible power supply system 1000A include a single phase parallel mode and a three phase mode. As illustrated in FIG. 2, when the configuration mode of the uninterruptible power supply system 1000A is a single phase parallel mode, the plurality of uninterruptible power supplies 100A to 100C are connected in parallel. Therefore, each of the plurality of uninterruptible power supply devices 100A to 100C receives the single-phase AC input voltage VI in common and outputs the single-phase AC output voltage VO in common. The uninterruptible power supplies 100A to 100C connected in parallel may share the battery 200.
- FIG. 3 is a block diagram showing an uninterruptible power supply system 1000B when the configuration mode is a three-phase mode.
- the uninterruptible power supply system 1000B may be configured in a three phase mode as well as a single phase parallel mode.
- Each of the plurality of uninterruptible power supplies 100A to 100C provides single-phase AC input voltages VIA, VIB, and VIC to the load 400B and the battery 200, or supplies power of the battery 200 to single-phase AC according to an operation mode.
- the output voltage is converted to the load 400B.
- the plurality of uninterruptible power supplies may include at least three uninterruptible power supplies 100A to 100C.
- Each of the at least three uninterruptible power supplies 100A to 100C independently receives different phase voltages VIA to VIC of three-phase AC input voltages and different phase voltages of three-phase AC output voltages VAO to VOC.
- FIG. 4 is a block diagram illustrating an uninterruptible power supply 100 according to an embodiment of the disclosed technology.
- FIGS. 4 illustrates one of the uninterruptible power supplies 100A to 100C included in the uninterruptible power supply systems 1000A and 1000B of FIGS. 2 and 3.
- the uninterruptible power supply 100 includes a first conversion circuit 110, a second conversion circuit 120, and a controller 130.
- the first conversion circuit 110 When the configuration mode of the uninterruptible power supply 100 is a single-phase parallel mode, the first conversion circuit 110 receives a single-phase AC input voltage in common with a separate single-phase uninterruptible power supply (not shown) and transfers it to a battery. In addition, when the configuration mode of the uninterruptible power supply device 100 is a three-phase mode, the first conversion circuit 110 receives a phase voltage of a three-phase AC input voltage and transfers it to the battery 200.
- the second conversion circuit 120 converts the power of the battery 200 into a single-phase AC output voltage and outputs it in common with a separate single-phase uninterruptible power supply.
- the second conversion circuit 120 converts the power of the battery 200 into a phase voltage of a three-phase AC output voltage and outputs the converted voltage.
- the control unit 130 of the uninterruptible power supply device 100 includes a setting unit and a processor.
- the setting unit sets parameters according to the configuration mode and the configuration mode of the uninterruptible power supply, and the processor controls the operation modes of the first and second conversion circuits 110 and 120 based on the configured configuration mode and parameters.
- FIG. 5 is a block diagram illustrating in detail the controller 130 included in the uninterruptible power supply 100 of FIG. 4.
- the controller 130 includes a setting unit 131 and a processor 132.
- the setting unit 131 sets parameters according to the configuration mode and the configuration mode of the uninterruptible power supply 100. That is, the setting unit 131 may set whether the uninterruptible power supply device 100 or the uninterruptible power supply systems 1000A and 1000B are used in the single phase parallel mode or the three phase mode. That is, the setting unit 131 may change the configuration mode by a user's input input through the external panel of the uninterruptible supply device 100.
- the processor 132 controls the operation mode of the uninterruptible power supply based on the configured configuration mode and parameters.
- the processor 132 may correspond to a microprocessor unit for digital signal processing.
- the controller 130 may further include a battery charge controller 133.
- the battery charging control unit 133 detects the voltage and current of the battery and adjusts the battery supply voltage and current based on the detected voltage and current of the battery.
- the setting unit 131 sets the configuration mode of the uninterruptible power supply system 1000B to a three-phase mode by a user input. If the configuration mode is set to three-phase mode, additional parameters can be set.
- the parameter may include ID information of each of the three uninterruptible power supplies 100A to 100C and master or slave configuration information of each of the uninterruptible power supplies 100A to 100C. That is, the user may set an ID for identifying the plurality of uninterruptible power supply units using the setting unit, and set one of the plurality of uninterruptible power supply units as the master uninterruptible power supply unit 100A and the rest of the slave uninterruptible power supply units 100B, 100C). To this end, the setting unit 131 may include an ID selector 131A and a master slave selector 131B.
- the control unit 130 of each of the at least three uninterruptible power supplies 100A to 100C tracks the level or phase change of different phase voltages of the three-phase AC input voltage. Independently detects whether an abnormality has occurred and whether it has recovered.
- the controller 130 independently of the level and phase of the different phase voltage of the three-phase AC output voltage (VOA ⁇ VOC) according to the level and phase change of the different phase voltage of the three-phase AC input voltage (VIA ⁇ VIC). Adjust
- VOA ⁇ VOC level and phase change of the different phase voltage of the three-phase AC input voltage
- VOA ⁇ VIC level and phase change of the different phase voltage of the three-phase AC input voltage
- an uninterruptible power supply device independently separated in a three-phase mode may adjust the level and phase of each phase voltage to reduce the influence between different phase voltages.
- the uninterruptible power supply system 1000B synchronizes the phase synchronization of each phase voltage (VOA, VOB, VOC) supplied to the load from the three uninterruptible power supplies 100A, 100B, 100C when the power fails or is restored again.
- the transmission line CL may include at least one direct control line CL1 that directly transfers some of the power state information (for example, whether an input voltage is abnormal or recovered) to a logic voltage level of one bit.
- a communication line CL2 for transmitting and receiving data for CAN communication.
- the direct control line CL1 directly transmits some urgent information of the power state information to the logic voltage level of one bit to quickly change the operation mode of the uninterruptible power supplies 100A, 100B, and 100C. Can be controlled.
- the uninterruptible power supply 100A that detects the abnormality converts the abnormality into a bit logic voltage level.
- the remaining uninterruptible power supply (100B, 100C) may then be transmitted between the uninterruptible power supplies using controller area network (CAN) communication.
- the control unit 130 of the uninterruptible power supply device 100 includes a CAN communication unit (CAN COMMUNICATION UNIT) for transmitting and receiving power state information through a controller area network (CAN).
- one of the at least three uninterruptible power supplies (100A, 100B, 100C) (100A) is set as the master uninterruptible power supply and the rest as slave uninterruptible power supply (100B, 100C) uninterruptible
- the operation of the power supply units will be described.
- control unit included in the slave uninterruptible power supply (100B, 100C) of the at least three uninterruptible power supply unit detects the abnormality of the three-phase AC input voltage (VIA, VIB, VIC) or detect whether the power In one case, the power state information is transmitted to the master uninterruptible power supply 100A.
- the power state information transmitted by the slave uninterruptible power supply devices 100B and 100C may include level and phase information of the phase voltage of the input AC voltage, and may further include information on whether a specific uninterruptible power supply device operates normally. .
- the control unit of the master uninterruptible power supply (100A) changes the operation mode of the at least three uninterruptible power supply (100A, 100B, 100C) and the operation mode based on the power state information received from the slave uninterruptible power supply (100B, 100C). Determine when to synchronize the changes. That is, the master uninterruptible power supply 100A may determine whether to finally change the operation mode based on the received power state information, and determine the timing to change the operation mode.
- the master uninterruptible power supply 100A may determine a phase synchronization time point of each phase voltage, thereby reducing a sudden phase difference.
- the uninterruptible power supply devices 100A, 100B, and 100C included in the uninterruptible power supply system 1000B may share a battery.
- the first and second conversion circuits 110 and 120 included in each of the uninterruptible power supplies 100A, 100B and 100C may insulate the input / output units of the battery 200 and the uninterruptible power supplies 100A, 100B and 100C. Can be. That is, the input / output unit and the battery 200 are inductively coupled by the first and second conversion circuits.
- the battery charging controller 133 included in the controller 130 may detect the voltage and current of the battery and adjust the battery supply voltage and current according to time based on the detected voltage and current of the battery.
- the battery charge control unit 133 may perform the uniform charging at the initial stage of charging according to the discharge amount of the battery, and may perform floating charging when the battery is fully charged.
- the present invention can have the following effects. However, since a specific embodiment does not mean to include all of the following effects or only the following effects, the scope of the present invention should not be understood as being limited thereby.
- the uninterruptible power supply system and the uninterruptible power supply may be changed to a single phase parallel mode or a three phase mode by setting by a user input, and thus may be used for various types of AC power, and a plurality of uninterruptible power supplies may use a battery. It can be shared, reducing costs and easy to maintain.
- the uninterruptible power supply system and the uninterruptible power supply apparatus can maintain the three-phase voltage balance and improve the operational stability of the load by performing independent compensation for each phase voltage in the three-phase mode.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Stand-By Power Supply Arrangements (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
Claims (16)
- 동작 모드가 정상 모드인 경우 단상 교류 입력 전압을 부하 및 배터리로 제공하고, 상기 동작 모드가 정전 모드인 경우 상기 배터리의 전력을 단상 교류 출력 전압으로 변환하여 상기 부하로 제공하는 복수의 무정전 전원 장치들을 포함하고,구성 모드가 단상 병렬 모드인 경우 상기 복수의 무정전 전원 장치들 각각은 상기 단상 교류 입력 전압을 공통으로 입력받아, 상기 단상 교류 출력 전압을 공통으로 출력하며,상기 구성 모드가 3상 모드인 경우 상기 복수의 무정전 전원 장치들은 적어도 세 개의 무정전 전원 장치들을 포함하고, 상기 적어도 세 개의 무정전 전원 장치들 각각은 3상 교류 입력 전압의 서로 다른 상 전압을 독립적으로 입력받아 3상 교류 출력 전압의 서로 다른 상 전압을 출력하는 무정전 전원 공급 시스템.
- 제1항에 있어서, 상기 복수의 무정전 전원 장치들 각각은상기 구성 모드 및 상기 구성 모드에 따른 파라미터를 설정하는 설정부, 및 상기 설정된 구성 모드 및 파라미터에 기초하여 상기 복수의 무정전 전원 장치의 동작 모드를 제어하는 프로세서를 포함하는 제어부를 포함하는 것을 특징으로 하는 무정전 전원 공급 시스템.
- 제2항에 있어서, 상기 제어부는상기 구성 모드가 3상 모드인 경우 상기 3상 교류 입력 전압의 서로 다른 상 전압의 레벨 및 위상 변화에 따라 상기 3상 교류 출력 전압의 서로 다른 상 전압의 레벨 및 위상을 독립적으로 조절하는 것을 특징으로 하는 무정전 전원 공급 시스템.
- 제3항에 있어서, 상기 파라미터는상기 복수의 무정전 전원 장치들 각각의 아이디 정보; 및마스터 또는 슬레이브 설정 정보를 포함하는 것을 특징으로 하는 무정전 전원 공급 시스템.
- 제4항에 있어서, 상기 제어부는상기 3상 교류 입력 전압의 서로 다른 상 전압의 레벨 또는 위상 변화를 추적하여 이상 발생 여부 및 복전 여부를 독립적으로 검출하는 것을 특징으로 하는 무정전 전원 공급 시스템.
- 제5항에 있어서, 상기 복수의 무정전 전원 장치들 중 슬레이브 무정전 전원 장치의 제어부는상기 이상 발생 여부 및 복전 여부를 검출한 경우 전원 상태 정보를 상기 복수의 무정전 전원 장치들 중 마스터 무정전 전원 장치로 전송하는 것을 특징으로 하는 무정전 전원 공급 시스템.
- 제6항에 있어서, 상기 마스터 무정전 전원 장치의 제어부는상기 슬레이브 무정전 전원 장치로부터 수신한 상기 전원 상태 정보에 기초하여 상기 복수의 무정전 전원 장치들의 동작 모드 변경 여부 및 동작 모드 변경의 동기 시점을 결정하는 것을 특징으로 하는 무정전 전원 공급 시스템.
- 제7항에 있어서, 상기 제어부는상기 전원 상태 정보를 CAN(Controller Area Network)를 통해 송수신하는 CAN 통신부; 및상기 전원 상태 정보 중 일부를 한 비트의 논리 전압 레벨로 변환하여 상기 마스터 무정전 전원 장치 또는 상기 슬레이브 무정전 전원 장치로 직접 전달하는 적어도 하나의 직접 제어 라인(Direct Control Line)을 더 포함하는 것을 특징으로 하는 무정전 전원 공급 시스템.
- 제8항에 있어서, 상기 제어부는상기 배터리의 전압 및 전류를 검출하고, 상기 검출된 배터리의 전압 및 전류에 기초하여 배터리 공급 전압 및 전류를 조절하는 배터리 충전 제어부를 더 포함하는 것을 특징으로 하는 무정전 전원 공급 시스템.
- 제1항에 있어서, 상기 복수의 무정전 전원 장치들은상기 배터리를 공유하는 것을 특징으로 하는 무정전 전원 공급 시스템.
- 제10항에 있어서, 상기 복수의 무정전 전원 장치들 각각은입력부 및 상기 배터리를 유도 결합하며, 상기 단상 교류 입력 전압 또는 상기 3상 교류 입력 전압의 상 전압을 직류 전력으로 변환하여 상기 배터리로 전달하는 제1 변환 회로; 및출력부 및 상기 배터리를 유도 결합하며, 상기 배터리의 전력을 교류 전력으로 변환하여 상기 출력부로 전달하는 제2 변환 회로를 포함하는 무정전 전원 공급 시스템.
- 구성 모드가 단상 병렬 모드인 경우 단상 교류 입력 전압을 별도의 단상 무정전 전원 장치와 공통으로 입력받아 배터리로 전달하고, 상기 구성 모드가 3상 모드인 경우 3상 교류 입력 전압의 상 전압을 입력받아 상기 배터리로 전달하는 제1 변환 회로;상기 구성 모드가 상기 단상 병렬 모드인 경우 상기 배터리의 전력을 단상 교류 출력 전압으로 변환하여 상기 별도의 단상 무정전 전원 장치와 공통으로 출력하고, 상기 구성 모드가 상기 3상 모드인 경우 상기 배터리의 전력을 3상 교류 출력 전압의 상 전압으로 변환하여 출력하는 제2 변환 회로; 및상기 구성 모드 및 상기 구성 모드에 따른 파라미터를 설정하는 설정부, 및 상기 설정된 구성 모드 및 파라미터에 기초하여 상기 제1 및 제2 변환 회로의 동작 모드를 제어하는 프로세서를 포함하는 제어부를 포함하는 것을 특징으로 하는 무정전 전원 장치.
- 제12항에 있어서, 상기 제어부는상기 구성 모드가 상기 3상 모드인 경우 상기 3상 교류 입력 전압의 상 전압의 레벨 및 위상 변화에 따라 상기 별도의 무정전 전원 장치와 독립적으로 상기 3상 교류 출력 전압의 상 전압의 레벨 및 위상을 조절하는 것을 특징으로 하는 무정전 전원 장치.
- 제13항에 있어서, 상기 제어부는상기 3상 교류 입력 전압의 서로 다른 상 전압의 레벨 또는 위상 변화를 추적하여 이상 발생 여부 및 복전 여부를 검출한 경우, 전원 상태 정보를 상기 별도의 무정전 전원 장치로 전송하는 것을 특징으로 하는 무정전 전원 장치.
- 제14항에 있어서, 상기 제어부는상기 전원 상태 정보를 CAN(Controller Area Network)를 통해 송수신하는 CAN 통신부; 및상기 이상 발생 여부 및 상기 복전 여부를 한 비트의 논리 전압 레벨로 직접 전달하는 적어도 하나의 직접 제어 라인(Direct Control Line)을 포함하는 것을 특징으로 하는 무정전 전원 장치.
- 제12항에 있어서, 상기 무정전 전원 장치는 상기 별도의 단상 무정전 전원 장치와 상기 배터리를 공유하는 것을 특징으로 하는 무정전 전원 장치.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/512,831 US20120235480A1 (en) | 2009-11-30 | 2010-11-03 | Uninterrupted power supply system and uninterrupted power supply device |
JP2012541006A JP2013512650A (ja) | 2009-11-30 | 2010-11-03 | 無停電電源供給システム及び無停電電源装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2009-0116749 | 2009-11-30 | ||
KR1020090116749A KR100964599B1 (ko) | 2009-11-30 | 2009-11-30 | 무정전 전원 공급 시스템 및 무정전 전원 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011065679A2 true WO2011065679A2 (ko) | 2011-06-03 |
WO2011065679A3 WO2011065679A3 (ko) | 2011-11-03 |
Family
ID=42370207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2010/007714 WO2011065679A2 (ko) | 2009-11-30 | 2010-11-03 | 무정전 전원 공급 시스템 및 무정전 전원 장치 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20120235480A1 (ko) |
JP (1) | JP2013512650A (ko) |
KR (1) | KR100964599B1 (ko) |
WO (1) | WO2011065679A2 (ko) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2011379368B2 (en) * | 2011-10-21 | 2016-11-17 | Schneider Electric It Corporation | Method and apparatus of master selection logic in ups parallel system |
WO2013162500A1 (en) * | 2012-04-23 | 2013-10-31 | Hewlett-Packard Development Company, L.P. | Moderating a charging |
JP2015216773A (ja) * | 2014-05-11 | 2015-12-03 | 山洋電気株式会社 | 無停電電源システム |
US10277066B2 (en) * | 2015-04-15 | 2019-04-30 | Vertiv Corporation | Method for balancing power in paralleled converters |
US10804735B2 (en) * | 2016-01-29 | 2020-10-13 | Hewlett Packard Enterprise Development Lp | Uninterruptible power supply |
CN113396519B (zh) * | 2019-09-05 | 2024-09-20 | 株式会社Tmeic | 不间断电源系统 |
EP4052351A4 (en) * | 2019-10-28 | 2024-01-31 | Enphase Energy, Inc. | METHOD AND DEVICE WITH AN ENERGY MANAGEMENT SYSTEM |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990027643A (ko) * | 1997-09-30 | 1999-04-15 | 이종수 | 무정전 전원 시스템의 병렬운전 제어방법 |
KR20060068057A (ko) * | 2004-12-15 | 2006-06-21 | 이화전기공업 주식회사 | 3상 무정전 전원장치의 병렬 동작에 있어서 pwm 동기화방법 및 그 장치 |
KR100665540B1 (ko) * | 2006-06-14 | 2007-01-09 | 국제통신공업 주식회사 | 3상 입출력 올 아이지비티 유피에스 시스템 |
KR100842433B1 (ko) * | 2006-11-30 | 2008-07-01 | 한영전기공업주식회사 | 다병렬 무정전 전원장치의 공통 축전지 독립 병렬제어시스템 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH038038Y2 (ko) * | 1984-11-05 | 1991-02-27 | ||
US4761563A (en) * | 1987-10-27 | 1988-08-02 | International Business Machines Corporation | Asynchronous multiphase switching gear |
JPH0638538A (ja) * | 1992-07-17 | 1994-02-10 | Meidensha Corp | 無停電電源装置の三相出力電圧平衡方式 |
JP3289418B2 (ja) * | 1993-08-17 | 2002-06-04 | 富士電機株式会社 | 交流電源の切替回路装置 |
JP2000175376A (ja) * | 1998-12-08 | 2000-06-23 | Origin Electric Co Ltd | 通信機用電源装置の運転方法及び通信機用電源装置 |
JP4396060B2 (ja) * | 2001-06-29 | 2010-01-13 | 株式会社ジーエス・ユアサコーポレーション | ユニット式無停電電源装置 |
JP4110565B2 (ja) * | 2001-07-24 | 2008-07-02 | 株式会社ジーエス・ユアサコーポレーション | ユニット式無停電電源装置 |
JP2005051967A (ja) * | 2003-07-31 | 2005-02-24 | Yuasa Corp | 予備電源システム及び運転方法 |
JP2005086969A (ja) * | 2003-09-11 | 2005-03-31 | Toshiba Corp | 無停電電源システム |
JP4588337B2 (ja) * | 2004-03-08 | 2010-12-01 | 三菱電機株式会社 | 電力変換装置 |
US7904182B2 (en) * | 2005-06-08 | 2011-03-08 | Brooks Automation, Inc. | Scalable motion control system |
JP4498290B2 (ja) * | 2006-02-21 | 2010-07-07 | 東芝三菱電機産業システム株式会社 | 無停電電源システム |
JP2009165203A (ja) * | 2007-12-28 | 2009-07-23 | Panasonic Corp | 無停電電源装置 |
-
2009
- 2009-11-30 KR KR1020090116749A patent/KR100964599B1/ko not_active IP Right Cessation
-
2010
- 2010-11-03 WO PCT/KR2010/007714 patent/WO2011065679A2/ko active Application Filing
- 2010-11-03 JP JP2012541006A patent/JP2013512650A/ja active Pending
- 2010-11-03 US US13/512,831 patent/US20120235480A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990027643A (ko) * | 1997-09-30 | 1999-04-15 | 이종수 | 무정전 전원 시스템의 병렬운전 제어방법 |
KR20060068057A (ko) * | 2004-12-15 | 2006-06-21 | 이화전기공업 주식회사 | 3상 무정전 전원장치의 병렬 동작에 있어서 pwm 동기화방법 및 그 장치 |
KR100665540B1 (ko) * | 2006-06-14 | 2007-01-09 | 국제통신공업 주식회사 | 3상 입출력 올 아이지비티 유피에스 시스템 |
KR100842433B1 (ko) * | 2006-11-30 | 2008-07-01 | 한영전기공업주식회사 | 다병렬 무정전 전원장치의 공통 축전지 독립 병렬제어시스템 |
Also Published As
Publication number | Publication date |
---|---|
WO2011065679A3 (ko) | 2011-11-03 |
US20120235480A1 (en) | 2012-09-20 |
JP2013512650A (ja) | 2013-04-11 |
KR100964599B1 (ko) | 2010-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011065679A2 (ko) | 무정전 전원 공급 시스템 및 무정전 전원 장치 | |
CN101013823B (zh) | 用于使不间断电源同步的设备 | |
US7847435B2 (en) | Intrinsically balanced direct current uninterruptible power supply | |
WO2019132428A1 (ko) | Mmc 컨버터 초기충전시 서브모듈 상태 진단방법 | |
US20080043947A1 (en) | System for Line Powering in Communications | |
WO2011139023A2 (ko) | 태양광 발전을 위한 dc/dc 컨버터 장치, 인버터 시스템 및 이를 포함하는 태양광 발전 시스템 | |
WO2018230831A1 (ko) | 에너지 저장 시스템 | |
WO2016108627A1 (ko) | 제어기의 이중화 시스템 | |
JP2005033923A (ja) | 無停電電源装置の並列運転制御システム | |
CN115940302A (zh) | 持久dc断路器 | |
WO2017142106A1 (ko) | 통합 통신 모듈을 사용하는 부하 분담을 위한 전원 공급 장치 및 시스템 | |
WO2019142972A1 (ko) | 병렬 인버터 시스템 | |
WO2017090896A1 (ko) | 분산전원이 연계된 전력 계통의 전력 관리 장치 및 그 방법 | |
JP6520773B2 (ja) | 電力供給システム及び電力供給方法 | |
KR101198638B1 (ko) | 자기 부하분담 변압기를 이용한 병렬 운전 장치 | |
WO2020122605A1 (ko) | 무정전 전력 공급 마이크로그리드 시스템 | |
WO2012165779A2 (ko) | 대형빌딩 전기설비 무정전시스템 | |
US20210119475A1 (en) | Uninterruptible power supply | |
KR100964597B1 (ko) | 무정전 전원 장치 | |
US10707696B2 (en) | UPS with source impedance compensation | |
US6885879B1 (en) | Battery reconnect system for a telecommunications power system | |
WO2024090645A1 (ko) | 유피에스 병렬 시스템의 싱크 제어방법 | |
WO2024205233A1 (ko) | 안전 기능을 수행하는 방법 및 장치 | |
US20110148207A1 (en) | Hybrid architecture for dc power plants and a method of minimizing battery conductor current | |
CN218648614U (zh) | 不断电电源供应装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10833491 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012541006 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13512831 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10833491 Country of ref document: EP Kind code of ref document: A2 |