WO2019156053A1 - 低分子量ポリテトラフルオロエチレンの製造方法及び粉末 - Google Patents

低分子量ポリテトラフルオロエチレンの製造方法及び粉末 Download PDF

Info

Publication number
WO2019156053A1
WO2019156053A1 PCT/JP2019/003987 JP2019003987W WO2019156053A1 WO 2019156053 A1 WO2019156053 A1 WO 2019156053A1 JP 2019003987 W JP2019003987 W JP 2019003987W WO 2019156053 A1 WO2019156053 A1 WO 2019156053A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
low molecular
weight polytetrafluoroethylene
powder
weight ptfe
Prior art date
Application number
PCT/JP2019/003987
Other languages
English (en)
French (fr)
Inventor
辻 雅之
裕俊 吉田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US16/967,875 priority Critical patent/US11028239B2/en
Priority to EP19751304.7A priority patent/EP3733742B1/en
Priority to CN201980009398.6A priority patent/CN111630087B/zh
Publication of WO2019156053A1 publication Critical patent/WO2019156053A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/18Monomers containing fluorine
    • C08F114/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/50Partial depolymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Definitions

  • the present disclosure relates to a method and powder for producing low molecular weight polytetrafluoroethylene.
  • Low molecular weight polytetrafluoroethylene also called “polytetrafluoroethylene wax” or “polytetrafluoroethylene micropowder” having a molecular weight of several thousand to several hundred thousand is excellent in chemical stability and extremely low surface energy.
  • polytetrafluoroethylene wax also called “polytetrafluoroethylene wax” or “polytetrafluoroethylene micropowder”
  • fibrillation hardly occurs, it is used as an additive for improving the slipperiness and the texture of the coating film surface in the production of plastics, inks, cosmetics, paints, greases and the like (for example, see Patent Document 1). .
  • a method for producing low molecular weight polytetrafluoroethylene As a method for producing low molecular weight polytetrafluoroethylene, a polymerization method, a radiolysis method, a thermal decomposition method and the like are known.
  • the radiolysis method conventionally, low molecular weight polytetrafluoroethylene is generally obtained by irradiating high molecular weight polytetrafluoroethylene with radiation in an air atmosphere.
  • An object of the present disclosure is to provide a method for producing a low-molecular-weight polytetrafluoroethylene that hardly generates perfluorocarboxylic acid having 6 to 14 carbon atoms and a salt thereof.
  • a high-molecular-weight polytetrafluoroethylene and a mixed gas containing an inert gas and oxygen and containing 1 to 10% by volume of oxygen with respect to the total of the inert gas and oxygen are charged into a sealed container.
  • the low molecular weight polytetrafluoro having a melt viscosity at 380 ° C. of 1.0 ⁇ 10 2 to 7.0 ⁇ 10 5 Pa ⁇ s by irradiating the high molecular weight polytetrafluoroethylene with radiation in the step (1)
  • the present invention relates to a method for producing low molecular weight polytetrafluoroethylene, characterized by comprising a step (2) of obtaining ethylene.
  • the high molecular weight polytetrafluoroethylene preferably has a standard specific gravity of 2.130 to 2.230.
  • the high molecular weight polytetrafluoroethylene and the low molecular weight polytetrafluoroethylene are preferably powders.
  • the method further includes a step (3) of obtaining the molded product by heating the high molecular weight polytetrafluoroethylene to a temperature equal to or higher than the primary melting point, and the molded product has a specific gravity of 1.0 g / It is preferable that it is cm 3 or more.
  • the present disclosure is a powder containing a low molecular weight polytetrafluoroethylene, the low molecular weight polytetrafluoroethylene having a melt viscosity at 380 ° C. of 1.0 ⁇ 10 2 to 7.0 ⁇ 10 5 Pa ⁇ s, and Also having a carboxyl group of 30 or more per 10 6 main chain carbon atoms at the molecular chain terminal, and the total amount of perfluorooctanoic acid and its salt is 5 ppb or more and less than 25 ppb Related.
  • a high-molecular-weight polytetrafluoroethylene and a mixed gas containing an inert gas and oxygen and containing 1 to 10% by volume of oxygen with respect to the total of the inert gas and oxygen are charged into a sealed container.
  • the high molecular weight polytetrafluoroethylene is irradiated with radiation so that the melt viscosity at 380 ° C. is 1.0 ⁇ 10 2 to 7.0 ⁇ 10 5 Pa ⁇ s.
  • the present invention relates to a method for producing low molecular weight polytetrafluoroethylene, characterized by comprising a step (2) of obtaining ethylene.
  • Perfluorononanoic acid or a salt thereof and perfluorodecanoic acid perfluoroundecanoic acid, perfluorododecanoic acid, perfluorotridecanoic acid, perfluorotetradecanoic acid, each having 10, 11, 12, 13, 14 carbon atoms, Or the respective salt.
  • perfluorooctanoic acid having 8 carbon atoms or a salt thereof may be generated in an amount of 25 ppb or more.
  • the high molecular weight PTFE is irradiated with radiation in an atmosphere in which the oxygen concentration is controlled within a very limited range, so that a perfluorocarboxylic acid having 6 to 14 carbon atoms and a salt thereof are generated.
  • Hard to do In general, when irradiation is performed in an atmosphere having a low oxygen concentration, it is not easy to obtain low molecular weight PTFE. However, in the production method of the present disclosure, low molecular weight PTFE can be easily obtained. Further, according to the production method of the present disclosure, it is difficult to produce perfluorosulfonic acid having 6 to 14 carbon atoms and a salt thereof.
  • the mixed gas contains an inert gas and oxygen.
  • the inert gas needs to be an inert gas with respect to the generation reaction of low molecular weight PTFE by irradiation.
  • the inert gas include nitrogen, helium, and argon. Of these, nitrogen is preferable.
  • the mixed gas has an oxygen content of 1 to 10% by volume based on the total of the inert gas and oxygen.
  • the oxygen content in the mixed gas is within the above range, low molecular weight PTFE can be easily obtained when the high molecular weight PTFE is irradiated with radiation in the step (2).
  • the perfluorocarboxylic acid and its salt are hardly formed.
  • the oxygen content in the mixed gas is preferably 7% by volume or less, more preferably 5% by volume or less, more preferably 2% by volume or more, and 2.5% by volume or more. It is more preferable that
  • the said airtight container means the container which can be sealed so that the oxygen concentration in the said airtight container can be adjusted. Accordingly, piping for sucking and exhausting the mixed gas or exhausting the gas in the sealed container may be connected, and piping, lids, valves, flanges, etc. that are not opened during radiation irradiation are connected. May be. Moreover, the shape is not specifically limited, A cylindrical shape, prismatic shape, spherical shape, etc. may be sufficient, and the bag whose internal volume is variable may be sufficient. The material is not particularly limited, and may be a metal, glass, polymer, or the like. The sealed container needs to be made of a material and structure that transmits radiation and does not deteriorate by irradiation with radiation, but does not need to be a pressure-resistant container.
  • Examples of a method for introducing each of the above substances into the sealed container include a method of filling the sealed container with the mixed gas after the high molecular weight PTFE is placed in the sealed container.
  • a process (2) is a process implemented after a process (1).
  • the radiation is not particularly limited as long as it is ionizing radiation, and examples thereof include an electron beam, a gamma ray, an X-ray, a neutron beam, and a high energy ion, and an electron beam or a gamma ray is preferable.
  • the radiation dose is preferably 1 to 2500 kGy, more preferably 1000 kGy or less, and even more preferably 750 kGy or less. Moreover, 10 kGy or more is more preferable, and 50 kGy or more is still more preferable.
  • the irradiation temperature of the radiation is not particularly limited as long as it is 5 ° C. or higher and not higher than the melting point of high molecular weight PTFE. It is also known that the molecular chain of high molecular weight PTFE crosslinks near the melting point. For obtaining low molecular weight PTFE, it is preferably 320 ° C. or lower, more preferably 300 ° C. or lower, and further preferably 260 ° C. or lower. Economically, it is preferable to irradiate at normal temperature.
  • the production method of the present disclosure may further include a step (3) of obtaining a molded product by heating the high molecular weight PTFE to the primary melting point or higher before the step (1).
  • the molded product obtained in the step (3) can be used as the high molecular weight PTFE in the step (1).
  • fusing point 300 degreeC or more is preferable, 310 degreeC or more is more preferable, and 320 degreeC or more is still more preferable.
  • the primary melting point means the maximum peak temperature of the endothermic curve appearing on the crystal melting curve when unsintered high molecular weight PTFE is measured with a differential scanning calorimeter. The endothermic curve is obtained by raising the temperature using a differential scanning calorimeter at a rate of temperature rise of 10 ° C./min.
  • the molded article in the step (3) preferably has a specific gravity of 1.0 g / cm 3 or more, more preferably 1.5 g / cm 3 or more, and 2.5 g / cm 3 or less. It is preferable. When the specific gravity of the molded product is within the above range, the surface pores and irregularities become small, and as a result, a low molecular weight PTFE having a small specific surface area can be obtained. The specific gravity can be measured by an underwater substitution method.
  • the production method of the present disclosure may further include a step of pulverizing the molded product to obtain the high molecular weight PTFE powder after the step (3). The molded product may be pulverized roughly and then further pulverized.
  • the production method of the present disclosure may further include a step of pulverizing the low molecular weight PTFE to obtain a powder of low molecular weight PTFE after the step (2).
  • the pulverization method is not particularly limited, and examples thereof include a pulverization method.
  • the pulverizer include an impact type such as a hammer mill, a pin mill, and a jet mill, and a grinding type such as a cutter mill in which a rotary blade and an outer peripheral stator are pulverized by a shearing force caused by unevenness.
  • the pulverization temperature is preferably ⁇ 200 ° C. or more and less than 50 ° C.
  • the temperature is usually ⁇ 200 to ⁇ 100 ° C., but may be pulverized at a temperature near room temperature (10 to 30 ° C.).
  • Liquid nitrogen is generally used for freeze pulverization, but the equipment is enormous and the pulverization cost is high. It is more preferable to grind at 10 ° C. or more and less than 50 ° C., more preferably 10 to 40 ° C., more preferably 10 to 30 ° C. It is particularly preferable to do this.
  • fine particles and fibrous particles may be removed by airflow classification, and then coarse particles may be further removed by classification.
  • the pulverized particles are sent to a cylindrical classification chamber by reduced-pressure air, dispersed by a swirling airflow in the room, and fine particles are classified by centrifugal force. Particulates are collected from the center to the cyclone and bag filter.
  • a rotating body such as a conical cone or a rotor is installed so that the pulverized particles and air can perform a swirl motion uniformly.
  • the classification point is adjusted by adjusting the air volume of the secondary air and the gap between the classification cones.
  • the air volume in the classification chamber according to the number of rotations of the rotor.
  • Examples of the method for removing coarse particles include air classification using a mesh, vibrating sieve, ultrasonic sieve, and the like, and air classification is preferable.
  • the low molecular weight PTFE has a melt viscosity at 380 ° C. of 1.0 ⁇ 10 2 to 7.0 ⁇ 10 5 Pa ⁇ s.
  • “low molecular weight” means that the melt viscosity is within the above range.
  • the melt viscosity is preferably 1.5 ⁇ 10 3 Pa ⁇ s or more, preferably 3.0 ⁇ 10 5 Pa ⁇ s or less, and 1.0 ⁇ 10 5 Pa ⁇ s or less. More preferably.
  • the melt viscosity is in accordance with ASTM D 1238, and a 2 g sample previously heated at 380 ° C. for 5 minutes using a flow tester (manufactured by Shimadzu Corporation) and a 2 ⁇ -8L die under a load of 0.7 MPa. And measured at the above temperature.
  • the high molecular weight PTFE irradiated with the radiation preferably has a standard specific gravity (SSG) of 2.130 to 2.230.
  • SSG standard specific gravity
  • the standard specific gravity (SSG) is a value measured in accordance with ASTM D 4895.
  • the high molecular weight PTFE has an extremely high melt viscosity than the low molecular weight PTFE, and it is difficult to measure the accurate melt viscosity.
  • the melt viscosity of low molecular weight PTFE can be measured, it is difficult to obtain a molded product that can be used for measurement of standard specific gravity from low molecular weight PTFE, and it is difficult to measure the exact standard specific gravity. . Therefore, in the present disclosure, standard specific gravity is adopted as an index of the molecular weight of the high molecular weight PTFE irradiated with radiation, and melt viscosity is adopted as an index of the molecular weight of the low molecular weight PTFE. Note that there is no known measurement method that can directly specify the molecular weight of either the high molecular weight PTFE or the low molecular weight PTFE.
  • the low molecular weight PTFE preferably has a melting point of 320 to 340 ° C., more preferably 324 to 336 ° C.
  • the above melting point was calibrated using a differential scanning calorimeter (DSC) in advance using indium and lead as standard samples, and about 3 mg of low molecular weight PTFE was placed in an aluminum pan (crimp container) and 200 ml / ml.
  • the temperature range of 250 to 380 ° C. is raised at a rate of 10 ° C./min under an air stream of minutes, and the minimum point of the heat of fusion in the above range is defined as the melting point.
  • the shape of the high molecular weight PTFE is not particularly limited, and may be powder, a molded product of the high molecular weight PTFE, or the molded product of the high molecular weight PTFE may be cut. It may be cutting waste generated when processed.
  • the high molecular weight PTFE is powder, the low molecular weight PTFE powder can be easily obtained.
  • the shape of the low molecular weight PTFE obtained by the production method of the present disclosure is not particularly limited, but is preferably a powder.
  • the specific surface area is preferably 0.5 to 20 m 2 / g.
  • the low molecular weight PTFE powder includes a low specific surface area type having a specific surface area of 0.5 m 2 / g or more and less than 7.0 m 2 / g, and a specific surface area of 7.0 m 2 / g or more and 20 m 2 / g or less. Each type is required to have a high specific surface area.
  • a low molecular weight PTFE powder having a low specific surface area has an advantage of being easily dispersed in a matrix material such as a paint, but has a large dispersed particle size in the matrix material and is inferior in fine dispersion.
  • the specific surface area of the low molecular weight PTFE powder having a low specific surface type is preferably at least 1.0 m 2 / g, preferably 5.0 m 2 / g or less, 3.0 m 2 / g or less is more preferable.
  • the matrix material plastics, inks, paints and the like are also preferably used.
  • Low molecular weight PTFE powder with a high specific surface area has the effect of modifying the surface, for example, when dispersed in a matrix material such as paint, the dispersed particle size in the matrix material is small and the texture of the coating film surface is improved.
  • the ratio specific surface area of the high type of low molecular weight PTFE powder with surface area 8.0 m 2 / g or more, preferably 25 m 2 / g or less, 20 m 2 / g or less is more preferable.
  • the matrix material oils, greases, paints, plastics and the like are also preferably used.
  • the specific surface area is measured by using a surface analyzer (trade name: BELSORP-miniII, manufactured by Microtrac Bell Co., Ltd.), using a mixed gas of 30% nitrogen and 70% helium as a carrier gas, and liquid nitrogen for cooling. Measured by the BET method.
  • the average particle size is preferably 0.5 to 200 ⁇ m, more preferably 50 ⁇ m or less, still more preferably 25 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the average particle diameter is a relatively small powder, for example, when used as an additive of a paint, a coating film having better surface smoothness can be formed.
  • the average particle size is measured using a laser diffraction particle size distribution measuring device (HELOS & RODOS) manufactured by JEOL Ltd., without using a cascade, and corresponds to 50% of the integrated particle size distribution by measuring at a dispersion pressure of 3.0 bar. It is assumed that it is equal to the particle diameter.
  • HELOS & RODOS laser diffraction particle size distribution measuring device
  • low molecular weight PTFE having a low content of C6-C14 perfluorocarboxylic acid and a salt thereof can be obtained.
  • the low molecular weight PTFE obtained by the production method of the present disclosure is preferably such that the total amount of perfluorocarboxylic acid having 6 to 14 carbon atoms and salts thereof is 50 ppb or less, more preferably less than 25 ppb, and 20 ppb. Or less, more preferably 15 ppb or less, and particularly preferably 10 ppb or less.
  • the lower limit may be an amount less than the detection limit, but is preferably 5 ppb.
  • the amount of the perfluorocarboxylic acid and its salt can be measured by liquid chromatography.
  • the low molecular weight PTFE obtained by the production method of the present disclosure is also characterized in that the content of perfluorooctanoic acid and its salt is small.
  • the amount of perfluorooctanoic acid and a salt thereof is preferably less than 25 ppb on a mass basis, more preferably 20 ppb or less, and further preferably 15 ppb or less. It is preferably 10 ppb or less.
  • the lower limit may be an amount less than the detection limit, but is preferably 5 ppb.
  • the amount of the perfluorooctanoic acid and its salt can be measured by liquid chromatography.
  • the low molecular weight PTFE obtained by the production method of the present disclosure is also characterized in that the content of perfluorosulfonic acid having 6 to 14 carbon atoms and a salt thereof is low.
  • the low molecular weight PTFE obtained by the production method of the present disclosure preferably has an amount of perfluorosulfonic acid having 6 to 14 carbon atoms and a salt thereof of less than 25 ppb, more preferably 20 ppb or less, and 15 ppb. More preferably, it is more preferably 10 ppb or less.
  • the lower limit may be an amount less than the detection limit, but is preferably 5 ppb.
  • the amount of the perfluorosulfonic acid and its salt can be measured by liquid chromatography.
  • the low molecular weight PTFE preferably has 30 or more carboxyl groups per 10 6 main chain carbon atoms at the molecular chain terminal.
  • the number of carboxyl groups is more preferably 35 or more per 10 6 main chain carbon atoms.
  • the upper limit value of the carboxyl group is not particularly limited, but for example, 500 per 10 6 main chain carbon atoms are preferable, 350 are more preferable, and 65 are even more preferable.
  • the carboxyl group is generated at the molecular chain terminal of the low molecular weight PTFE by, for example, irradiating the high molecular weight PTFE with the radiation in the presence of oxygen. The number of carboxyl groups after irradiation increases depending on the amount of modification of the high molecular weight PTFE.
  • the above low molecular weight PTFE has 30 or more carboxyl groups per 10 6 main chain carbon atoms at the end of the molecular chain, thereby modifying molding materials, inks, cosmetics, paints, greases, office automation equipment members, and toners. It is excellent in dispersibility with additives and additives for plating solution.
  • micropowder is blended in hydrocarbon matrix resins, inks and paints for the purpose of reducing slidability and wear, preventing squealing, and improving water and oil repellency. Originally, it is not familiar with the matrix resin, ink and paint, and it is difficult to disperse uniformly.
  • micropowders produced by radiation decomposition of polymer PTFE produce PFOA (perfluorooctanoic acid and its salt) and carboxyl groups as by-products due to the production method.
  • Carboxyl groups present at the other ends of the obtained micropowder also act as dispersants for the matrix resin, ink, and paint, which are consequently hydrocarbon-based.
  • An unstable terminal group derived from the chemical structure of the polymerization initiator or chain transfer agent used in the polymerization reaction of the high molecular weight PTFE may be generated at the molecular chain terminal of the low molecular weight PTFE.
  • the unstable terminal group is not particularly limited, and examples thereof include —CH 2 OH, —COOH, —COOCH 3 and the like.
  • the low molecular weight PTFE may be one obtained by stabilizing an unstable end group.
  • the method for stabilizing the unstable terminal group is not particularly limited, and examples thereof include a method of changing the terminal to a trifluoromethyl group [—CF 3 ] by exposure to a fluorine-containing gas.
  • the low molecular weight PTFE may also be subjected to terminal amidation.
  • the terminal amidation method is not particularly limited.
  • a fluorocarbonyl group [—COF] obtained by exposure to a fluorine-containing gas is used.
  • the method of making it contact with ammonia gas etc. are mentioned.
  • the low molecular weight PTFE When the low molecular weight PTFE has been stabilized or terminally amidated as described above, it is used as an additive to other materials such as paints, greases, cosmetics, plating solutions, toners, plastics, etc. Furthermore, it is easy to become familiar with the counterpart material, and the dispersibility can be improved.
  • the high molecular weight PTFE may be a homo-PTFE composed only of tetrafluoroethylene (TFE) units, or may be a modified PTFE containing a TFE unit and a modified monomer unit based on a modified monomer copolymerizable with TFE. .
  • TFE tetrafluoroethylene
  • the low molecular weight PTFE since the composition of the polymer does not change, the low molecular weight PTFE has the composition of the high molecular weight PTFE as it is.
  • the content of the modified monomer unit is preferably 0.001 to 1% by mass of the total monomer units, more preferably 0.01% by mass or more, and 0.5% by mass. The following is more preferable, and 0.1% by mass or less is more preferable.
  • the modified monomer unit means a part derived from the modified monomer and part of the molecular structure of the modified PTFE, and the total monomer unit means all the single monomers in the molecular structure of the modified PTFE. It means a part derived from the body.
  • the content of the modified monomer unit can be determined by a known method such as Fourier transform infrared spectroscopy (FT-IR).
  • the modifying monomer is not particularly limited as long as it can be copolymerized with TFE.
  • perfluoroolefin such as hexafluoropropylene [HFP]; chlorofluoroolefin such as chlorotrifluoroethylene [CTFE];
  • HFP hexafluoropropylene
  • CTFE chlorofluoroolefin
  • VDF hydrogen-containing fluoroolefins
  • VDF vinylidene fluoride
  • perfluorovinyl ether perfluoroalkylethylene; ethylene and the like.
  • denatured monomer to be used may be 1 type, and multiple types may be sufficient as it.
  • Rf represents a perfluoro organic group
  • perfluoro organic group means an organic group in which all hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms.
  • the perfluoro organic group may have ether oxygen.
  • perfluorovinyl ether examples include perfluoro (alkyl vinyl ether) [PAVE] in which Rf represents a perfluoroalkyl group having 1 to 10 carbon atoms in the general formula (1).
  • the perfluoroalkyl group preferably has 1 to 5 carbon atoms.
  • Examples of the perfluoroalkyl group in the PAVE include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, and a perfluorohexyl group.
  • Purpleo (propyl vinyl ether) [PPVE] in which the group is a perfluoropropyl group is preferred.
  • Rf is a perfluoro (alkoxyalkyl) group having 4 to 9 carbon atoms, and Rf is represented by the following formula:
  • Rf is the following formula:
  • n an integer of 1 to 4.
  • the perfluoroalkylethylene is not particularly limited, and examples thereof include (perfluorobutyl) ethylene (PFBE), (perfluorohexyl) ethylene, and (perfluorooctyl) ethylene.
  • the modified monomer in the modified PTFE is preferably at least one selected from the group consisting of HFP, CTFE, VDF, PPVE, PFBE, and ethylene. More preferably, it is at least one selected from the group consisting of HFP and CTFE.
  • the present disclosure is a powder containing a low molecular weight polytetrafluoroethylene, the low molecular weight polytetrafluoroethylene having a melt viscosity at 380 ° C. of 1.0 ⁇ 10 2 to 7.0 ⁇ 10 5 Pa ⁇ s, and Also having a carboxyl group of 30 or more per 10 6 main chain carbon atoms at the molecular chain terminal, and the total amount of perfluorooctanoic acid and its salt is 5 ppb or more and less than 25 ppb Related.
  • the total amount of perfluorooctanoic acid and a salt thereof is 5 ppb or more and less than 25 ppb.
  • the total amount is a mass-based amount.
  • the total amount is more preferably 20 ppb or less, further preferably 15 ppb or less, and particularly preferably 10 ppb or less.
  • the amount of perfluorocarboxylic acid having 6 to 14 carbon atoms and a salt thereof is preferably 5 ppb or more and 50 ppb or less, more preferably less than 25 ppb, and more preferably 20 ppb or less on a mass basis. Is more preferably 15 ppb or less, and particularly preferably 10 ppb or less.
  • the amount of perfluorosulfonic acid having 6 to 14 carbon atoms and a salt thereof is preferably 5 ppb or more and less than 25 ppb, more preferably 20 ppb or less, and 15 ppb or less on a mass basis. Is more preferable, and 10 ppb or less is particularly preferable.
  • the powder of the present disclosure preferably has a specific surface area of 0.5 to 20 m 2 / g.
  • the specific surface area is more preferably 7.0 m 2 / g or more.
  • the powder of the present disclosure may have an average particle size of 0.5 to 200 ⁇ m.
  • composition, melt viscosity, and carboxyl group at the molecular chain terminal of the low molecular weight PTFE constituting the powder of the present disclosure are the same as described for the low molecular weight PTFE obtained by the production method of the present disclosure.
  • the low molecular weight PTFE constituting the powder of the present disclosure may also have an unstable end group at the end of the molecular chain, and may be obtained by stabilizing the unstable end group. It may have been performed, or may be fluorinated at the terminal. These aspects are also the same as described for the low molecular weight PTFE obtained by the production method of the present disclosure.
  • the powder of the present disclosure can be obtained, for example, by producing low molecular weight PTFE in a powder form by the production method of the present disclosure described above.
  • the low molecular weight PTFE and the powder are used as molding materials, inks, cosmetics, paints, greases, office automation equipment members, toner modifying additives, photocopier organic photoreceptor materials, plating solution additives, etc. It can be preferably used.
  • the molding material include engineering plastics such as polyoxybenzoyl polyester, polyimide, polyamide, polyamideimide, polyacetal, polycarbonate, and polyphenylene sulfide.
  • the low molecular weight PTFE is particularly suitable as a thickener for grease.
  • the above-mentioned low molecular weight PTFE and the above powder are used as additives for molding materials, for example, improvement of non-adhesiveness / sliding characteristics of copy rolls, engineering plastics such as furniture surface sheets, automobile dashboards, covers for household appliances, etc. Used to improve the texture of products, light load bearings, gears, cams, buttons for pushphones, projectors, camera parts, sliding parts, etc. be able to.
  • the low molecular weight PTFE and the powder can be used for the purpose of improving the slidability of varnish and paint as an additive for coating materials.
  • the low molecular weight PTFE and the powder can be used as cosmetic additives for the purpose of improving the slipperiness of cosmetics such as foundations.
  • the low molecular weight PTFE and the powder are also suitable for applications that improve oil repellency or water repellency, such as wax, and for applications that improve the slipperiness of grease and toner.
  • the low molecular weight PTFE and the powder can also be used as an electrode binder for a secondary battery or a fuel cell, a hardness adjusting agent for the electrode binder, a water repellent treatment agent for the electrode surface, and the like.
  • Grease can also be prepared using the low molecular weight PTFE or the powder and lubricating oil. Since the grease contains the low molecular weight PTFE or the powder and lubricating oil, the low molecular weight PTFE or the powder is uniformly and stably dispersed in the lubricating oil. It has excellent properties such as electrical insulation and low hygroscopicity.
  • the lubricating oil (base oil) may be a mineral oil or a synthetic oil.
  • examples of the lubricating oil (base oil) include paraffinic and naphthenic mineral oils, synthetic hydrocarbon oils, ester oils, fluorine oils, and silicone oils. From the viewpoint of heat resistance, fluorine oil is preferred.
  • examples of the fluorine oil include perfluoropolyether oil and a low polymer of ethylene trifluoride chloride. The low polymer of ethylene trifluoride chloride may have a weight average molecular weight of 500 to 1200.
  • the grease may further contain a thickener.
  • the thickener include metal soap, composite metal soap, bentonite, phthalocyanine, silica gel, urea compound, urea / urethane compound, urethane compound, and imide compound.
  • the metal soap include sodium soap, calcium soap, aluminum soap, and lithium soap.
  • the urea compound, urea / urethane compound, and urethane compound include diurea compounds, triurea compounds, tetraurea compounds, other polyurea compounds, urea / urethane compounds, diurethane compounds, and mixtures thereof.
  • the grease preferably contains 0.1 to 60% by mass of the low molecular weight PTFE or the powder, more preferably 0.5% by mass or more, further preferably 5% by mass or more, and more preferably 50% by mass or less. More preferably. If the amount of the low molecular weight PTFE or the powder is too large, the grease may be too hard and sufficient lubricity may not be exhibited. If the amount of the low molecular weight PTFE or the powder is too small, sealing properties are exhibited. It may not be possible.
  • the grease may also contain a solid lubricant, extreme pressure agent, antioxidant, oiliness agent, rust inhibitor, viscosity index improver, detergent dispersant and the like.
  • melt viscosity ASTM D 1238 a 2 g sample heated in advance at 380 ° C. for 5 minutes using a flow tester (manufactured by Shimadzu Corporation) and a die of 2 ⁇ -8L at the above temperature under a load of 0.7 MPa The measurement was performed while keeping
  • the number of terminal carboxyl groups was measured according to the terminal group analysis method described in JP-A-4-20507.
  • Low molecular weight PTFE powder was preformed by a hand press to produce a film having a thickness of approximately 0.1 mm.
  • the prepared film was analyzed by infrared absorption spectrum.
  • An infrared absorption spectrum analysis of PTFE produced by bringing fluorine gas into contact with PTFE and having a fully fluorinated terminal was also performed, and the number of terminal carboxyl groups was calculated from the difference spectrum of both by the following formula.
  • PFOA perfluorooctanoic acid and its salt
  • a separation column ACQUITY UPLC BEH C18 1.7 ⁇ m
  • the column temperature was 40 ° C.
  • the injection volume was 5 ⁇ L.
  • ESI Electron ionization
  • Negative was used, the cone voltage was set to 25 V, and the precursor ion molecular weight / product ion molecular weight was measured to be 413/369.
  • the content of perfluorooctanoic acid and its salt was calculated using an external standard method. The detection limit in this measurement is 5 ppb.
  • the total amount of perfluorocarboxylic acid having 6 to 14 carbon atoms and a salt thereof was calculated from the content (X) of perfluorooctanoic acid obtained from the above measurement using the following formula.
  • the detection limit in this measurement is 5 ppb.
  • a C6 Peak area of perfluorohexanoic acid
  • a C7 Peak area of perfluoroheptanoic acid
  • a C8 Peak area of perfluorooctanoic acid
  • a C9 Peak area of perfluorononanoic acid
  • a C10 Peak area of perfluorodecanoic acid A C11 : Peak area of perfluoroundecanoic acid
  • a C12 Peak area of perfluoronodecanoic acid
  • a C13 Peak area of perfluorotridecanoic acid
  • a C14 Peak area of perfluorotetradecanoic acid
  • X Measurement using MRM method Perfluorooctanoic acid content calculated from the results using the external standard method
  • Average particle diameter Using a laser diffraction particle size distribution analyzer (HELOS & RODOS) manufactured by JEOL Ltd., measurement is performed at a dispersion pressure of 1.0 bar without using a cascade, and a particle size corresponding to 50% of the integrated particle size distribution is obtained. The average particle size was taken.
  • HELOS & RODOS laser diffraction particle size distribution analyzer
  • Examples 2 to 6 and Comparative Examples 1 to 3 A low molecular weight PTFE powder was obtained in the same manner as in Example 1 except that the amount of the PTFE fine powder and the composition of the irradiation atmosphere were changed as shown in Table 1. Various physical properties of the obtained low molecular weight PTFE powder were measured in the same manner as in Example 1. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

炭素数6~14のパーフルオロカルボン酸及びその塩を生成させにくい低分子量ポリテトラフルオロエチレンの製造方法を提供する。高分子量ポリテトラフルオロエチレンと、不活性ガス及び酸素を含み、不活性ガス及び酸素の合計に対する酸素の含有量が1~10体積%である混合ガスと、を密閉容器に投入する工程(1)、及び、前記高分子量ポリテトラフルオロエチレンに放射線を照射して、380℃における溶融粘度が1.0×10~7.0×10Pa・sである低分子量ポリテトラフルオロエチレンを得る工程(2)を含むことを特徴とする低分子量ポリテトラフルオロエチレンの製造方法である。

Description

低分子量ポリテトラフルオロエチレンの製造方法及び粉末
本開示は、低分子量ポリテトラフルオロエチレンの製造方法及び粉末に関する。
分子量数千から数十万の低分子量ポリテトラフルオロエチレン(「ポリテトラフルオロエチレンワックス」や「ポリテトラフルオロエチレンマイクロパウダー」とも呼ばれる)は、化学的安定性に優れ、表面エネルギーが極めて低いことに加え、フィブリル化が生じにくいので、滑り性や塗膜表面の質感を向上させる添加剤として、プラスチックス、インク、化粧品、塗料、グリース等の製造に用いられている(例えば、特許文献1参照)。
低分子量ポリテトラフルオロエチレンの製造方法としては、重合法、放射線分解法、熱分解法等が知られている。放射線分解法では、従来、空気雰囲気下で高分子量ポリテトラフルオロエチレンに放射線を照射して低分子量ポリテトラフルオロエチレンを得るのが一般的である。
特開平10-147617号公報
本開示は、炭素数6~14のパーフルオロカルボン酸及びその塩を生成させにくい低分子量ポリテトラフルオロエチレンの製造方法を提供することを目的とする。
本開示は、高分子量ポリテトラフルオロエチレンと、不活性ガス及び酸素を含み、不活性ガス及び酸素の合計に対する酸素の含有量が1~10体積%である混合ガスと、を密閉容器に投入する工程(1)、及び、上記高分子量ポリテトラフルオロエチレンに放射線を照射して、380℃における溶融粘度が1.0×10~7.0×10Pa・sである低分子量ポリテトラフルオロエチレンを得る工程(2)を含むことを特徴とする低分子量ポリテトラフルオロエチレンの製造方法に関する。
上記高分子量ポリテトラフルオロエチレンは、標準比重が2.130~2.230であることが好ましい。
上記高分子量ポリテトラフルオロエチレン及び上記低分子量ポリテトラフルオロエチレンがいずれも粉末であることが好ましい。
工程(1)の前に、更に、上記高分子量ポリテトラフルオロエチレンを、その一次融点以上に加熱することにより成形品を得る工程(3)を含み、上記成形品は、比重が1.0g/cm以上であることが好ましい。
本開示は、低分子量ポリテトラフルオロエチレンを含む粉末であって、上記低分子量ポリテトラフルオロエチレンは、1.0×10~7.0×10Pa・sの380℃における溶融粘度、及び、分子鎖末端に主鎖炭素数10個あたり30個以上のカルボキシル基を有しており、パーフルオロオクタン酸及びその塩の総量が5ppb以上、25ppb未満であることを特徴とする粉末にも関する。
本開示によれば、炭素数6~14のパーフルオロカルボン酸及びその塩を生成させにくい低分子量ポリテトラフルオロエチレンの製造方法を提供することができる。
以下、本開示を具体的に説明する。
本開示は、高分子量ポリテトラフルオロエチレンと、不活性ガス及び酸素を含み、不活性ガス及び酸素の合計に対する酸素の含有量が1~10体積%である混合ガスと、を密閉容器に投入する工程(1)、及び、前記高分子量ポリテトラフルオロエチレンに放射線を照射して、380℃における溶融粘度が1.0×10~7.0×10Pa・sである低分子量ポリテトラフルオロエチレンを得る工程(2)を含むことを特徴とする低分子量ポリテトラフルオロエチレンの製造方法に関する。
従来の照射条件で高分子量PTFEに放射線を照射すると、高分子量PTFEよりも溶融粘度が大きい低分子量PTFEが生成すると同時に、炭素数6~14のパーフルオロカルボン酸又はその塩が生成する。これらの化合物には、自然界には存在せず分解され難い物質であり、更には、生物蓄積性が高いことが指摘されている炭素数が8のパーフルオロオクタン酸又はその塩、炭素数が9のパーフルオロノナン酸又はその塩、及び炭素数が10、11、12、13、14の、それぞれパーフルオロデカン酸パーフルオロウンデカン酸、パーフルオロドデカン酸、パーフルオロトリデカン酸、パーフルオロテトラデカン酸、又はそれぞれの塩、が含まれている。
従来の照射条件で高分子量PTFEに放射線を照射した場合、炭素数が8のパーフルオロオクタン酸又はその塩が25ppb以上生成してしまう可能性がある。
本開示の製造方法では、酸素濃度が極めて限定された範囲内に制御された雰囲気中で上記高分子量PTFEに放射線を照射することから、炭素数6~14のパーフルオロカルボン酸及びその塩が生成しにくい。また、通常、酸素濃度が低い雰囲気中で照射を行うと低分子量PTFEを得ることが容易ではないが、本開示の製造方法においては、容易に低分子量PTFEを得ることができる。
また、本開示の製造方法によれば、炭素数6~14のパーフルオロスルホン酸及びその塩も生成しにくい。
上記混合ガスは、不活性ガス及び酸素を含む。上記不活性ガスは、放射線照射による低分子量PTFEの生成反応に対して不活性なガスであることが必要である。上記不活性ガスとしては、窒素、ヘリウム、アルゴン等のガスが挙げられる。なかでも、窒素が好ましい。
上記混合ガスは、不活性ガス及び酸素の合計に対する酸素の含有量が1~10体積%である。上記混合ガス中の酸素の含有量が上記範囲内にあることにより、工程(2)において上記高分子量PTFEに放射線を照射した際に、容易に低分子量PTFEが得られる一方、炭素数6~14のパーフルオロカルボン酸及びその塩は生成しにくい。上記混合ガス中の酸素の含有量は、7体積%以下であることが好ましく、5体積%以下であることがより好ましく、また、2体積%以上であることが好ましく、2.5体積%以上であることがより好ましい。
上記密閉容器とは、上記密閉容器内の酸素濃度を調整できるように密閉が可能な容器をいう。従って、上記混合ガスを吸排気したり、上記密閉容器内のガスを排気したりするための配管が接続されていてもよく、放射線照射時には開放しない配管、蓋、バルブ、フランジ等が接続されていてもよい。また、その形状は特に限定されず、円柱状、角柱状、球状等であってよく、内容積可変な袋であってもよい。また、その素材も特に限定されず、金属、ガラス、ポリマー等であってよい。上記密閉容器は、放射線を透過し、かつ放射線の照射によって劣化しない材質・構造のものである必要があるが、耐圧容器である必要はない。
上記密閉容器内に上記の各物質を投入する方法としては、例えば、上記密閉容器内に上記高分子量PTFEを設置した後、上記密閉容器内を上記混合ガスで満たす方法が挙げられる。
工程(2)において、上記高分子量PTFEへの上記放射線の照射は、例えば以下の方法及び条件により行うことができる。なお、工程(2)は、工程(1)の後に実施される工程である。
上記放射線としては、電離性放射線であれば特に限定されず、電子線、ガンマ線、X線、中性子線、高エネルギーイオン等が挙げられるが、電子線又はガンマ線が好ましい。
上記放射線の照射線量としては、1~2500kGyが好ましく、1000kGy以下がより好ましく、750kGy以下が更に好ましい。また、10kGy以上がより好ましく、50kGy以上が更に好ましい。
上記放射線の照射温度としては、5℃以上、高分子量PTFEの融点以下であれば特に限定されない。融点近傍付近では高分子量PTFEの分子鎖が架橋することも知られており、低分子量PTFEを得る上では、320℃以下が好ましく、300℃以下がより好ましく、260℃以下が更に好ましい。経済的には常温で照射することが好ましい。
本開示の製造方法は、工程(1)の前に、更に、上記高分子量PTFEを、その一次融点以上に加熱することにより成形品を得る工程(3)を含むこともできる。この場合、工程(3)で得られた成形品を工程(1)における上記高分子量PTFEとして使用することができる。
上記一次融点としては、300℃以上が好ましく、310℃以上がより好ましく、320℃以上が更に好ましい。
上記一次融点は、未焼成の高分子量PTFEを示差走査熱量計で測定した場合に、結晶融解曲線上に現れる吸熱カーブの最大ピーク温度を意味する。上記吸熱カーブは、示差走査熱量計を用いて、昇温速度10℃/分の条件で昇温させて得られたものである。
工程(3)における上記成形品は、比重が1.0g/cm以上であることが好ましく、1.5g/cm以上であることがより好ましく、また、2.5g/cm以下であることが好ましい。上記成形品の比重が上記範囲内にあると、表面の細孔や凸凹が小さくなり、結果的に比表面積の小さい低分子量PTFEを得ることが出来る。
上記比重は、水中置換法により測定することができる。
本開示の製造方法は、工程(3)の後に、更に、上記成形品を粉砕して、上記高分子量PTFEの粉末を得る工程を含むこともできる。上記成形品を粗く粉砕してから、更に小さく粉砕してもよい。
本開示の製造方法は、工程(2)の後に、更に、上記低分子量PTFEを粉砕して、低分子量PTFEの粉末を得る工程を含むこともできる。
上記粉砕の方法としては特に限定されないが、粉砕機で粉砕する方法が挙げられる。上記粉砕機には、ハンマーミル、ピンミル、ジェットミル等の衝撃式や、回転刃と外周ステーターが凹凸による剪断力で粉砕するカッターミル等の摩砕式等がある。
粉砕温度は-200℃以上、50℃未満であることが好ましい。冷凍粉砕では通常-200~-100℃であるが、室温付近の温度(10~30℃)で粉砕してもよい。冷凍粉砕では一般に液体窒素を使用するが、設備が膨大で粉砕コストも高くなる。工程が簡素となる点、粉砕コストを抑えることができる点で、10℃以上、50℃未満で粉砕することがより好ましく、10~40℃で粉砕することが更に好ましく、10~30℃で粉砕することが特に好ましい。
上記粉砕の後、微粒子や繊維状粒子を気流分級により除去した後に、更に分級により粗粒子を除去してもよい。
気流分級においては、粉砕された粒子が減圧空気により円柱状の分級室に送られ、室内の旋回気流により分散され、遠心力によって微粒子が分級される。微粒子は中央部からサイクロン及びバグフィルターへ回収される。分級室内には、粉砕粒子と空気が均一に旋回運動を行うために円錐状のコーン、ローター等の回転体が設置されている。
分級コーンを使用する場合には、分級点の調節は二次エアーの風量と分級コーン間の隙間を調節することにより行う。ローターを使用する場合には、ローターの回転数により分級室内の風量を調節する。
粗粒子の除去方法としては、メッシュによる気流分級、振動篩、超音波篩等が挙げられるが、気流分級が好ましい。
次に、本開示の製造方法の工程(2)において放射線を照射する高分子量PTFE、及び、放射線を照射した後に得られる低分子量PTFEについて説明する。
上記低分子量PTFEは、380℃における溶融粘度が1.0×10~7.0×10Pa・sである。本開示において、「低分子量」とは、上記溶融粘度が上記の範囲内にあることを意味する。
上記溶融粘度は、1.5×10Pa・s以上であることが好ましく、また、3.0×10Pa・s以下であることが好ましく、1.0×10Pa・s以下であることがより好ましい。
上記溶融粘度は、ASTM D 1238に準拠し、フローテスター(島津製作所社製)及び2φ-8Lのダイを用い、予め380℃で5分間加熱しておいた2gの試料を0.7MPaの荷重にて上記温度に保って測定した値である。
上記放射線を照射する上記高分子量PTFEは、標準比重(SSG)が2.130~2.230であることが好ましい。上記標準比重(SSG)はASTM D 4895に準拠し、測定した値である。
上記高分子量PTFEは、上記低分子量PTFEよりも溶融粘度が極めて高く、その正確な溶融粘度を測定することは困難である。他方、低分子量PTFEの溶融粘度は測定可能であるが、低分子量PTFEからは、標準比重の測定に使用可能な成形品を得ることが難しく、その正確な標準比重を測定することが困難である。従って、本開示では、放射線を照射する上記高分子量PTFEの分子量の指標として、標準比重を採用し、上記低分子量PTFEの分子量の指標として、溶融粘度を採用する。なお、上記高分子量PTFE及び上記低分子量PTFEのいずれについても、直接に分子量を特定できる測定方法は知られていない。
上記低分子量PTFEは、融点が320~340℃であることが好ましく、324~336℃であることがより好ましい。
上記融点は、示差走査熱量計(DSC)を用い、事前に標準サンプルとして、インジウム、鉛を用いて温度校正した上で、低分子量PTFE約3mgをアルミ製パン(クリンプ容器)に入れ、200ml/分のエアー気流下で、250~380℃の温度領域を10℃/分で昇温させて行い、上記領域における融解熱量の極小点を融点とする。
本開示の製造方法において、上記高分子量PTFEの形状は特に限定されず、粉末であってもよいし、上記高分子量PTFEの成形品であってもよいし、上記高分子量PTFEの成形品を切削加工した場合に生じる切削屑であってもよい。上記高分子量PTFEが粉末であると、上記低分子量PTFEの粉末を容易に得ることができる。
また、本開示の製造方法によって得られる低分子量PTFEの形状は、特に限定されないが、粉末であることが好ましい。
本開示の製造方法によって得られる低分子量PTFEが粉末である場合、比表面積が0.5~20m/gであることが好ましい。
低分子量PTFE粉末としては、比表面積が0.5m/g以上、7.0m/g未満の比表面積の低いタイプと、比表面積が7.0m/g以上、20m/g以下の比表面積の高いタイプがそれぞれ求められている。
比表面積の低いタイプの低分子量PTFE粉末は、例えば塗料等のマトリクス材料に容易に分散する利点がある一方、マトリクス材料への分散粒径が大きく、微分散に劣る。
比表面積の低いタイプの低分子量PTFE粉末の比表面積は、1.0m/g以上が好ましく、5.0m/g以下が好ましく、3.0m/g以下がより好ましい。マトリクス材料としては、プラスチック、インクの他、塗料等も好適に用いられる。
比表面積の高いタイプの低分子量PTFE粉末は、例えば塗料等のマトリクス材料に分散させた場合、マトリクス材料への分散粒径が小さく、塗膜表面の質感を向上させる等、表面を改質する効果が高く、吸油量も多くなるが、マトリクス材料への分散に必要な時間が長い等容易に分散しないおそれがあり、また、塗料等の粘度が上昇するおそれもある。
比表面積の高いタイプの低分子量PTFE粉末の比表面積は、8.0m/g以上が好ましく、25m/g以下が好ましく、20m/g以下がより好ましい。マトリクス材料としては、オイル、グリース、塗料の他、プラスチック等も好適に用いられる。
上記比表面積は、表面分析計(商品名:BELSORP-miniII、マイクロトラック・ベル株式会社製)を用い、キャリアガスとして窒素30%、ヘリウム70%の混合ガスを用い、冷却に液体窒素を用いて、BET法により測定する。
本開示の製造方法によって得られる低分子量PTFEが粉末である場合、平均粒子径が0.5~200μmであることが好ましく、50μm以下がより好ましく、25μm以下が更に好ましく、10μm以下が特に好ましい。このように、平均粒子径が比較的小さい粉末であることで、例えば、塗料の添加剤として用いた場合等に、より優れた表面平滑性を有する塗膜を形成することができる。
上記平均粒子径は、日本電子株式会社製レーザー回折式粒度分布測定装置(HELOS&RODOS)を用いて、カスケードは使用せず、分散圧力3.0barで測定を行い、粒度分布積算の50%に対応する粒子径に等しいとする。
本開示の製造方法では、工程(2)を実施した後に、炭素数6~14のパーフルオロカルボン酸及びその塩の含有量が少ない低分子量PTFEを得ることができる。本開示の製造方法により得られる低分子量PTFEは、炭素数6~14のパーフルオロカルボン酸及びその塩の総量が質量基準で50ppb以下であることが好ましく、25ppb未満であることがより好ましく、20ppb以下であることが更に好ましく、15ppb以下であることが更により好ましく、10ppb以下であることが特に好ましい。下限は、検出限界未満の量であってよいが、5ppbであることも好ましい。
上記パーフルオロカルボン酸及びその塩の量は、液体クロマトグラフィーにより測定できる。
また、本開示の製造方法により得られる低分子量PTFEは、パーフルオロオクタン酸及びその塩の含有量が少ない点にも特徴がある。本開示の製造方法により得られる低分子量PTFEは、パーフルオロオクタン酸及びその塩の量が質量基準で25ppb未満であることが好ましく、20ppb以下であることがより好ましく、15ppb以下であることが更に好ましく、10ppb以下であることが特に好ましい。下限は、検出限界未満の量であってよいが、5ppbであることも好ましい。
上記パーフルオロオクタン酸及びその塩の量は、液体クロマトグラフィーにより測定できる。
また、本開示の製造方法により得られる低分子量PTFEは、炭素数6~14のパーフルオロスルホン酸及びその塩の含有量が少ない点にも特徴がある。本開示の製造方法により得られる低分子量PTFEは、炭素数6~14のパーフルオロスルホン酸及びその塩の量が質量基準で25ppb未満であることが好ましく、20ppb以下であることがより好ましく、15ppb以下であることが更に好ましく、10ppb以下であることが特に好ましい。下限は、検出限界未満の量であってよいが、5ppbであることも好ましい。
上記パーフルオロスルホン酸及びその塩の量は、液体クロマトグラフィーにより測定できる。
上記低分子量PTFEは、分子鎖末端に主鎖炭素数10個あたり30個以上のカルボキシル基を有していることが好ましい。上記カルボキシル基は、主鎖炭素数10個あたり35個以上がより好ましい。また、上記カルボキシル基の上限値は特に限定されないが、例えば、主鎖炭素数10個あたり500個が好ましく、350個がより好ましく、65個が更に好ましい。上記カルボキシル基は、例えば、上記高分子量PTFEに酸素存在下で上記放射線を照射することにより、上記低分子量PTFEの分子鎖末端に生じる。上記高分子量PTFEの変性量によって放射線照射後のカルボキシル基数が増加する。上記低分子量PTFEは、分子鎖末端に主鎖炭素数10個あたり30個以上のカルボキシル基を有することにより、成形材料、インク、化粧品、塗料、グリース、オフィスオートメーション機器用部材、トナーを改質する添加剤、めっき液への添加剤等との分散性に優れる。例えば、マイクロパウダーは、摺動性や摩耗量低下、鳴き防止、撥水性・撥油性向上を目的として、ハイドロカーボン系のマトリックス樹脂やインク、塗料に配合されるが、パーフルオロ樹脂であるマイクロパウダーは、もともと上記マトリックス樹脂やインク、塗料とはなじみが悪く、均一に分散することが難しい。一方、高分子PTFEを照射分解して製造されたマイクロパウダーは、その製法故に副生成物としてPFOA(パーフルオロオクタン酸及びその塩)やカルボキシル基が生成される。得られたマイクロパウダーの末端他に存在するカルボキシル基は、結果的にハイドロカーボン系である上記マトリックス樹脂やインク、塗料への分散剤としても作用する。
上記低分子量PTFEの分子鎖末端には、上記高分子量PTFEの重合反応において使用された重合開始剤又は連鎖移動剤の化学構造に由来する不安定末端基が生じていてもよい。上記不安定末端基としては特に限定されず、例えば、-CHOH、-COOH、-COOCH等が挙げられる。
上記低分子量PTFEは、不安定末端基の安定化を行ったものであってもよい。上記不安定末端基の安定化の方法としては特に限定されず、例えば、フッ素含有ガスに曝露することにより末端をトリフルオロメチル基〔-CF〕に変化させる方法等が挙げられる。
上記低分子量PTFEはまた、末端アミド化を行ったものであってもよい。上記末端アミド化の方法としては特に限定されず、例えば、特開平4-20507号公報に開示されているように、フッ素含有ガスに曝露する等して得られたフルオロカルボニル基〔-COF〕をアンモニアガスと接触させる方法等が挙げられる。
上記低分子量PTFEが上述の不安定末端基の安定化又は末端アミド化を行ったものであると、塗料、グリース、化粧品、メッキ液、トナー、プラスチックス等の相手材への添加剤として用いる場合に、相手材となじみやすく、分散性を向上させることができる。
上記高分子量PTFEは、テトラフルオロエチレン(TFE)単位のみからなるホモPTFEであってもよいし、TFE単位及びTFEと共重合可能な変性モノマーに基づく変性モノマー単位を含む変性PTFEであってもよい。本開示の製造方法において、ポリマーの組成は変化しないので、上記低分子量PTFEは、上記高分子量PTFEが有する組成をそのまま有する。
上記変性PTFEにおいて、上記変性モノマー単位の含有量は、全単量体単位の0.001~1質量%であることが好ましく、0.01質量%以上がより好ましく、また、0.5質量%以下がより好ましく、0.1質量%以下が更に好ましい。本明細書において、上記変性モノマー単位とは、変性PTFEの分子構造の一部分であって変性モノマーに由来する部分を意味し、全単量体単位とは、変性PTFEの分子構造における全ての単量体に由来する部分を意味する。上記変性モノマー単位の含有量は、フーリエ変換型赤外分光法(FT-IR)等の公知の方法により求めることができる。
上記変性モノマーとしては、TFEとの共重合が可能なものであれば特に限定されず、例えば、ヘキサフルオロプロピレン〔HFP〕等のパーフルオロオレフィン;クロロトリフルオロエチレン〔CTFE〕等のクロロフルオロオレフィン;トリフルオロエチレン、フッ化ビニリデン〔VDF〕等の水素含有フルオロオレフィン;パーフルオロビニルエーテル;パーフルオロアルキルエチレン;エチレン等が挙げられる。また、用いる変性モノマーは1種であってもよいし、複数種であってもよい。
上記パーフルオロビニルエーテルとしては特に限定されず、例えば、下記一般式(1)
CF=CF-ORf   (1)
(式中、Rfは、パーフルオロ有機基を表す。)で表されるパーフルオロ不飽和化合物等が挙げられる。本明細書において、上記「パーフルオロ有機基」とは、炭素原子に結合する水素原子が全てフッ素原子に置換されてなる有機基を意味する。上記パーフルオロ有機基は、エーテル酸素を有していてもよい。
上記パーフルオロビニルエーテルとしては、例えば、上記一般式(1)において、Rfが炭素数1~10のパーフルオロアルキル基を表すものであるパーフルオロ(アルキルビニルエーテル)〔PAVE〕が挙げられる。上記パーフルオロアルキル基の炭素数は、好ましくは1~5である。
上記PAVEにおけるパーフルオロアルキル基としては、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基等が挙げられるが、パーフルオロアルキル基がパーフルオロプロピル基であるパープルオロ(プロピルビニルエーテル)〔PPVE〕が好ましい。
上記パーフルオロビニルエーテルとしては、更に、上記一般式(1)において、Rfが炭素数4~9のパーフルオロ(アルコキシアルキル)基であるもの、Rfが下記式:
Figure JPOXMLDOC01-appb-C000001
(式中、mは、0又は1~4の整数を表す。)で表される基であるもの、Rfが下記式:
Figure JPOXMLDOC01-appb-C000002
(式中、nは、1~4の整数を表す。)で表される基であるもの等が挙げられる。
パーフルオロアルキルエチレンとしては特に限定されず、例えば、(パーフルオロブチル)エチレン(PFBE)、(パーフルオロヘキシル)エチレン、(パーフルオロオクチル)エチレン等が挙げられる。
上記変性PTFEにおける変性モノマーとしては、HFP、CTFE、VDF、PPVE、PFBE及びエチレンからなる群より選択される少なくとも1種であることが好ましい。より好ましくは、HFP及びCTFEからなる群より選択される少なくとも1種である。
本開示は、低分子量ポリテトラフルオロエチレンを含む粉末であって、上記低分子量ポリテトラフルオロエチレンは、1.0×10~7.0×10Pa・sの380℃における溶融粘度、及び、分子鎖末端に主鎖炭素数10個あたり30個以上のカルボキシル基を有しており、パーフルオロオクタン酸及びその塩の総量が5ppb以上、25ppb未満であることを特徴とする粉末にも関する。
本開示の粉末は、パーフルオロオクタン酸及びその塩の総量が5ppb以上、25ppb未満である。なお、上記総量は質量基準の量である。上記総量は、20ppb以下であることがより好ましく、15ppb以下であることが更に好ましく、10ppb以下であることが特に好ましい。
本開示の粉末は、炭素数6~14のパーフルオロカルボン酸及びその塩の量が質量基準で5ppb以上、50ppb以下であることが好ましく、25ppb未満であることがより好ましく、20ppb以下であることが更に好ましく、15ppb以下であることが更により好ましく、10ppb以下であることが特に好ましい。
本開示の粉末は、炭素数6~14のパーフルオロスルホン酸及びその塩の量が質量基準で5ppb以上、25ppb未満であることが好ましく、20ppb以下であることがより好ましく、15ppb以下であることが更に好ましく、10ppb以下であることが特に好ましい。
本開示の粉末は、比表面積が0.5~20m/gであることが好ましい。上記比表面積としては、7.0m/g以上がより好ましい。
本開示の粉末は、平均粒子径が0.5~200μmであってよい。
本開示の粉末を構成する低分子量PTFEの組成、溶融粘度、及び、分子鎖末端のカルボキシル基については、本開示の製造方法により得られる低分子量PTFEについて述べたのと同様である。
本開示の粉末を構成する低分子量PTFEはまた、分子鎖末端に不安定末端基を有してもよく、当該不安定末端基の安定化を行ったものであってもよく、末端アミド化を行ったものであってもよく、末端をフッ素化したものでもよい。これらの態様についても、本開示の製造方法により得られる低分子量PTFEについて述べたのと同様である。
本開示の粉末は、例えば、上述した本開示の製造方法により、粉末形状の低分子量PTFEを製造することによって得ることができる。
上記低分子量PTFE及び上記粉末は、成形材料、インク、化粧品、塗料、グリース、オフィスオートメーション機器用部材、トナーを改質する添加剤、複写機の有機感光体材料、めっき液への添加剤等として好適に使用することができる。上記成形材料としては、例えば、ポリオキシベンゾイルポリエステル、ポリイミド、ポリアミド、ポリアミドイミド、ポリアセタール、ポリカーボネート、ポリフェニレンサルファイド等のエンジニアリングプラスチックが挙げられる。上記低分子量PTFEは、特に、グリース用粘稠剤として好適である。
上記低分子量PTFE及び上記粉末は、成形材料の添加剤として、例えば、コピーロールの非粘着性・摺動特性の向上、家具の表層シート、自動車のダッシュボード、家電製品のカバー等のエンジニアリングプラスチック成形品の質感を向上させる用途、軽荷重軸受、歯車、カム、プッシュホンのボタン、映写機、カメラ部品、摺動材等の機械的摩擦を生じる機械部品の滑り性や耐摩耗性を向上させる用途に用いることができる。
上記低分子量PTFE及び上記粉末は、塗料の添加剤として、ニスやペンキの滑り性向上の目的に用いることができる。上記低分子量PTFE及び上記粉末は、化粧品の添加剤として、ファンデーション等の化粧品の滑り性向上等の目的に用いることができる。
上記低分子量PTFE及び上記粉末は、更に、ワックス等の撥油性又は撥水性を向上させる用途や、グリースやトナーの滑り性を向上させる用途にも好適である。
上記低分子量PTFE及び上記粉末は、二次電池や燃料電池の電極バインダー、電極バインダーの硬度調整剤、電極表面の撥水処理剤等としても使用できる。
上記低分子量PTFE又は上記粉末と潤滑油とを使用してグリースを調製することもできる。上記グリースは、上記低分子量PTFE又は上記粉末と潤滑油とを含有することを特徴とすることから、潤滑油中に上記低分子量PTFE又は上記粉末が均一かつ安定に分散しており、耐荷重性、電気絶縁性、低吸湿性等の特性に優れている。
上記潤滑油(基油)は、鉱物油であっても、合成油であってもよい。上記潤滑油(基油)としては、例えば、パラフィン系やナフテン系の鉱物油、合成炭化水素油、エステル油、フッ素オイル、シリコーンオイルのような合成油等が挙げられる。耐熱性の観点からはフッ素オイルが好ましい。上記フッ素オイルとしては、パーフルオロポリエーテルオイル、三フッ化塩化エチレンの低重合物等が挙げられる。三フッ化塩化エチレンの低重合物は、重量平均分子量が500~1200であってよい。
上記グリースは、更に、増稠剤を含むものであってもよい。上記増稠剤としては、金属石けん、複合金属石けん、ベントナイト、フタロシアニン、シリカゲル、ウレア化合物、ウレア・ウレタン化合物、ウレタン化合物、イミド化合物等が挙げられる。上記金属石けんとしては、例えばナトリウム石けん、カルシウム石けん、アルミニウム石けん、リチウム石けん等が挙げられる。また上記ウレア化合物、ウレア・ウレタン化合物及びウレタン化合物としては、例えばジウレア化合物、トリウレア化合物、テトラウレア化合物、その他のポリウレア化合物、ウレア・ウレタン化合物、ジウレタン化合物又はこれらの混合物等が挙げられる。
上記グリースは、上記低分子量PTFE又は上記粉末を0.1~60質量%含むことが好ましく、0.5質量%以上含むことがより好ましく、5質量%以上含むことが更に好ましく、50質量%以下含むことがより好ましい。上記低分子量PTFE又は上記粉末の量が多すぎると、グリースが硬くなりすぎて、充分な潤滑性を発揮できないおそれがあり、上記低分子量PTFE又は上記粉末の量が少なすぎると、シール性が発揮できないおそれがある。
上記グリースは、固体潤滑剤、極圧剤、酸化防止剤、油性剤、さび止め剤、粘度指数向上剤、清浄分散剤等を含むこともできる。
次に実施例を挙げて本開示を更に詳しく説明するが、本開示はこれらの実施例のみに限定されるものではない。
実施例の各数値は以下の方法により測定した。
溶融粘度
ASTM D 1238に準拠し、フローテスター(島津製作所社製)及び2φ-8Lのダイを用い、予め380℃で5分間加熱しておいた2gの試料を0.7MPaの荷重にて上記温度に保って測定を行った。
末端カルボキシル基数
特開平4-20507号公報記載の末端基の分析方法に準拠し、以下の測定を行った。
低分子量PTFE粉末をハンドプレスにて予備成形し、およそ0.1mm厚みのフィルムを作製した。作製したフィルムについて赤外吸収スペクトル分析した。PTFEにフッ素ガスを接触させて作製した末端を完全フッ素化したPTFEの赤外吸収スペクトル分析も行い、両者の差スペクトルから次式により末端カルボキシル基の個数を算出した。
末端カルボキシル基の個数(炭素数10個あたり)=(l×K)/t
l:吸光度
K:補正係数
t:フィルムの厚み(mm)
カルボキシル基の吸収周波数は3560cm-1、補正係数は440とする。
パーフルオロオクタン酸及びその塩(PFOA)の含有量
液体クロマトグラフ質量分析計(Waters, LC-MS ACQUITY UPLC/TQD)を用い、パーフルオロオクタン酸及びその塩の含有量の測定を行った。測定粉末1gにアセトニトリル5mlを加え、60分間の超音波処理を行い、パーフルオロオクタン酸を抽出した。得られた液相について、MRM(Multiple Reaction Monitoring)法を用いて測定した。移動相としてアセトニトリル(A)と酢酸アンモニウム水溶液(20mmol/L)(B)を、濃度勾配(A/B=40/60-2min-80/20-1min)で送液した。分離カラム(ACQUITY UPLC BEH C18 1.7μm)を使用し、カラム温度は40℃、注入量は5μLとした。イオン化法はESI(Electrospray ionization) Negativeを使用し、コーン電圧は25Vに設定し、プリカーサーイオン分子量/プロダクトイオン分子量は413/369を測定した。パーフルオロオクタン酸及びその塩の含有量は外部標準法を用い、算出した。この測定における検出限界は5ppbである。
炭素数6~14のパーフルオロカルボン酸及びその塩(PFC)の含有量
液体クロマトグラフ質量分析計(Waters, LC-MS ACQUITY UPLC/TQD)を用い、炭素数6~14のパーフルオロカルボン酸及びその塩を測定した。溶液はパーフルオロオクタン酸の測定にて抽出した液相を使用し、MRM法を用いて測定した。測定条件はパーフルオロオクタン酸の測定条件から、濃度勾配を変更し(A/B=10/90-1.5min-90/10-3.5min)、プリカーサーイオン分子量/プロダクトイオン分子量は、パーフルオロヘキサン酸(炭素数6)は313/269、パーフルオロヘプタン酸(炭素数7)は363/319、パーフルオロオクタン酸(炭素数8)は413/369、パーフルオロノナン酸(炭素数9)は463/419、パーフルオロデカン酸(炭素数10)は513/469、パーフルオロウンデカン酸(炭素数11)は563/519、パーフルオロドデカン酸(炭素数12)は613/569、パーフルオロトリデカン酸(炭素数13)は663/619、パーフルオロテトラデカン酸(炭素数14)は713/669を測定した。
炭素数6~14のパーフルオロカルボン酸及びその塩の合計量は、上記測定より得られたパーフルオロオクタン酸の含有量(X)から下記式を用いて算出した。この測定における検出限界は5ppbである。
(AC6+AC7+AC8+AC9+AC10+AC11+AC12+AC13+AC14)/AC8×X
C6:パーフルオロヘキサン酸のピーク面積
C7:パーフルオロヘプタン酸のピーク面積
C8:パーフルオロオクタン酸のピーク面積
C9:パーフルオロノナン酸のピーク面積
C10:パーフルオロデカン酸のピーク面積
C11:パーフルオロウンデカン酸のピーク面積
C12:パーフルオロノデカン酸のピーク面積
C13:パーフルオロトリデカン酸のピーク面積
C14:パーフルオロテトラデカン酸のピーク面積
X:MRM法を用いた測定結果から外部標準法を用いて算出したパーフルオロオクタン酸の含有量
平均粒子径
日本電子株式会社製レーザー回折式粒度分布測定装置(HELOS&RODOS)を用いて、カスケードは使用せず、分散圧力1.0barで測定を行い、粒度分布積算の50%に対応する粒径を平均粒子径とした。
実施例1
バリアナイロン製の袋にPTFEファインパウダー(ASTM D 4895に準拠し、測定した標準比重:2.175、PFC及びPFOAの濃度は検出限界以下である)を50g計量した。次いで、袋内を窒素ガスで10回置換した後、酸素:窒素=1:99(体積%)の混合ガスで5回置換し、袋内を上記混合ガス雰囲気にした後、ヒートシールを用いて、密封した。
袋内のPTFEファインパウダーに室温にてコバルト-60γ線を200kGy照射し、低分子量PTFE粉末を得た。
得られた低分子量PTFE粉末の各種物性を測定した。結果を表1に示す。
実施例2~6及び比較例1~3
PTFEファインパウダーの量、及び、照射雰囲気の組成を表1のように変更した点以外は実施例1と同様にして、低分子量PTFE粉末を得た。
得られた低分子量PTFE粉末について、実施例1と同様に各種物性を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003

Claims (5)

  1. 高分子量ポリテトラフルオロエチレンと、
    不活性ガス及び酸素を含み、不活性ガス及び酸素の合計に対する酸素の含有量が1~10体積%である混合ガスと、
    を密閉容器に投入する工程(1)、及び、
    前記高分子量ポリテトラフルオロエチレンに放射線を照射して、380℃における溶融粘度が1.0×10~7.0×10Pa・sである低分子量ポリテトラフルオロエチレンを得る工程(2)
    を含むことを特徴とする低分子量ポリテトラフルオロエチレンの製造方法。
  2. 前記高分子量ポリテトラフルオロエチレンは、標準比重が2.130~2.230である請求項1記載の製造方法。
  3. 前記高分子量ポリテトラフルオロエチレン及び前記低分子量ポリテトラフルオロエチレンがいずれも粉末である請求項1又は2記載の製造方法。
  4. 工程(1)の前に、更に、前記高分子量ポリテトラフルオロエチレンを、その一次融点以上に加熱することにより成形品を得る工程(3)を含み、前記成形品は、比重が1.0g/cm以上である請求項1、2又は3記載の製造方法。
  5. 低分子量ポリテトラフルオロエチレンを含む粉末であって、
    前記低分子量ポリテトラフルオロエチレンは、1.0×10~7.0×10Pa・sの380℃における溶融粘度、及び、分子鎖末端に主鎖炭素数10個あたり30個以上のカルボキシル基を有しており、
    パーフルオロオクタン酸及びその塩の総量が5ppb以上、25ppb未満である
    ことを特徴とする粉末。
PCT/JP2019/003987 2018-02-07 2019-02-05 低分子量ポリテトラフルオロエチレンの製造方法及び粉末 WO2019156053A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/967,875 US11028239B2 (en) 2018-02-07 2019-02-05 Manufacturing method for low molecular weight polytetrafluoroethylene, and powder
EP19751304.7A EP3733742B1 (en) 2018-02-07 2019-02-05 Manufacturing method for low molecular weight polytetrafluoroethylene, and powder
CN201980009398.6A CN111630087B (zh) 2018-02-07 2019-02-05 低分子量聚四氟乙烯的制造方法和粉末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018020459 2018-02-07
JP2018-020459 2018-02-07

Publications (1)

Publication Number Publication Date
WO2019156053A1 true WO2019156053A1 (ja) 2019-08-15

Family

ID=67547980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003987 WO2019156053A1 (ja) 2018-02-07 2019-02-05 低分子量ポリテトラフルオロエチレンの製造方法及び粉末

Country Status (5)

Country Link
US (1) US11028239B2 (ja)
EP (1) EP3733742B1 (ja)
JP (1) JP6590096B2 (ja)
CN (1) CN111630087B (ja)
WO (1) WO2019156053A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900024871A1 (it) * 2019-12-19 2021-06-19 Guarniflon S P A Metodo per produrre politetrafluoroetilene (PTFE) a basso peso molecolare, PTFE a basso peso molecolare e composizione
WO2021131096A1 (ja) 2019-12-25 2021-07-01 ダイキン工業株式会社 冷凍サイクル装置、冷凍機油および冷媒漏洩防止剤
WO2021130150A1 (en) * 2019-12-23 2021-07-01 Solvay Specialty Polymers Italy S.P.A. Method for manufacturing low-molecular-weight polytetrafluoroethylene

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6927445B1 (ja) * 2020-01-09 2021-09-01 ダイキン工業株式会社 低分子量ポリテトラフルオロエチレンの製造方法及び粉末
WO2023224043A1 (ja) * 2022-05-16 2023-11-23 ダイキン工業株式会社 低分子量ポリテトラフルオロエチレンの製造方法
JP2024081155A (ja) * 2022-12-05 2024-06-17 ダイキン工業株式会社 ポリテトラフルオロエチレンマイクロパウダーの製造方法、及び、ポリテトラフルオロエチレンパウダー

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948671B2 (ja) * 1971-11-30 1974-12-23 Japan Atomic Energy Res Inst
JPH0420507A (ja) 1990-05-14 1992-01-24 Daikin Ind Ltd テトラフルオロエチレン共重合体およびその製法
JPH0491134A (ja) * 1990-08-07 1992-03-24 Sumitomo Heavy Ind Ltd ポリマーの微粉末化方法
JPH10147617A (ja) 1996-09-18 1998-06-02 Daikin Ind Ltd ポリテトラフルオロエチレン粉末及びその製造方法
JP2009001745A (ja) * 2007-06-25 2009-01-08 Daikin Ind Ltd 低分子量ポリテトラフルオロエチレン水性分散液及びその製造方法
WO2018026012A1 (ja) * 2016-08-04 2018-02-08 ダイキン工業株式会社 低分子量ポリテトラフルオロエチレンの製造方法、低分子量ポリテトラフルオロエチレン及び粉末

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3838030A (en) 1971-11-30 1974-09-24 Japan Atomic Energy Res Inst Process for preparing of polytetrafluoroethylene resin wax
EP0253400A3 (en) * 1986-07-18 1988-09-14 Yoneho Tabata Process for producing low-molecular weight polytetrafluoroethylene fine powder by ionizing radiation
JP2004137363A (ja) * 2002-10-17 2004-05-13 Nissan Motor Co Ltd 樹脂組成物、樹脂材料及びこれを用いた摺動部材、内燃機関用チェーンシステム、車両用シールリング
CN103182342B (zh) * 2013-04-03 2015-08-19 太仓金凯特种线缆有限公司 γ射线结合臭氧制备PTFE超细粉的方法
WO2018026017A1 (ja) * 2016-08-04 2018-02-08 ダイキン工業株式会社 低分子量ポリテトラフルオロエチレンの製造方法、低分子量ポリテトラフルオロエチレン及び粉末

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948671B2 (ja) * 1971-11-30 1974-12-23 Japan Atomic Energy Res Inst
JPH0420507A (ja) 1990-05-14 1992-01-24 Daikin Ind Ltd テトラフルオロエチレン共重合体およびその製法
JPH0491134A (ja) * 1990-08-07 1992-03-24 Sumitomo Heavy Ind Ltd ポリマーの微粉末化方法
JPH10147617A (ja) 1996-09-18 1998-06-02 Daikin Ind Ltd ポリテトラフルオロエチレン粉末及びその製造方法
JP2009001745A (ja) * 2007-06-25 2009-01-08 Daikin Ind Ltd 低分子量ポリテトラフルオロエチレン水性分散液及びその製造方法
WO2018026012A1 (ja) * 2016-08-04 2018-02-08 ダイキン工業株式会社 低分子量ポリテトラフルオロエチレンの製造方法、低分子量ポリテトラフルオロエチレン及び粉末

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3733742A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900024871A1 (it) * 2019-12-19 2021-06-19 Guarniflon S P A Metodo per produrre politetrafluoroetilene (PTFE) a basso peso molecolare, PTFE a basso peso molecolare e composizione
WO2021124311A1 (en) * 2019-12-19 2021-06-24 Guarniflon S.P.A. Method for producing low molecular weight polytetrafluoroethylene (ptfe), low molecular weight ptfe and composition
EP4389805A2 (en) 2019-12-19 2024-06-26 Guarniflon S.P.A. Method for producing low molecular weight polytetrafluoroethylene (ptfe), low molecular weight ptfe and composition
WO2021130150A1 (en) * 2019-12-23 2021-07-01 Solvay Specialty Polymers Italy S.P.A. Method for manufacturing low-molecular-weight polytetrafluoroethylene
WO2021131096A1 (ja) 2019-12-25 2021-07-01 ダイキン工業株式会社 冷凍サイクル装置、冷凍機油および冷媒漏洩防止剤

Also Published As

Publication number Publication date
EP3733742A4 (en) 2021-09-08
JP2019137851A (ja) 2019-08-22
US11028239B2 (en) 2021-06-08
CN111630087A (zh) 2020-09-04
CN111630087B (zh) 2021-08-20
US20210009769A1 (en) 2021-01-14
EP3733742A1 (en) 2020-11-04
JP6590096B2 (ja) 2019-10-16
EP3733742B1 (en) 2023-01-25

Similar Documents

Publication Publication Date Title
US12006407B2 (en) Method for producing low molecular weight polytetrafluoroethylene, low molecular weight polytetrafluoroethylene, and powder
JP6729659B2 (ja) 低分子量ポリテトラフルオロエチレン粉末
JP6590096B2 (ja) 低分子量ポリテトラフルオロエチレンの製造方法及び粉末
JP7406126B2 (ja) 低分子量ポリテトラフルオロエチレンを含む組成物の製造方法
JP6860093B2 (ja) 低分子量ポリテトラフルオロエチレンの製造方法
US20220127391A1 (en) Method for producing low-molecular weight polytetrafluoroethylene, and powder
JP7037085B2 (ja) 低分子量ポリテトラフルオロエチレンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019751304

Country of ref document: EP

Effective date: 20200727

NENP Non-entry into the national phase

Ref country code: DE