WO2019156036A1 - ニトリルの製造方法 - Google Patents

ニトリルの製造方法 Download PDF

Info

Publication number
WO2019156036A1
WO2019156036A1 PCT/JP2019/003933 JP2019003933W WO2019156036A1 WO 2019156036 A1 WO2019156036 A1 WO 2019156036A1 JP 2019003933 W JP2019003933 W JP 2019003933W WO 2019156036 A1 WO2019156036 A1 WO 2019156036A1
Authority
WO
WIPO (PCT)
Prior art keywords
supercritical fluid
reaction
primary amide
nitrile
amide
Prior art date
Application number
PCT/JP2019/003933
Other languages
English (en)
French (fr)
Inventor
大治郎 塚本
河村 健司
山田 勝成
真人 赤平
山本 大介
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP19750705.6A priority Critical patent/EP3750871A1/en
Priority to JP2019510976A priority patent/JPWO2019156036A1/ja
Priority to US16/966,183 priority patent/US20210032197A1/en
Priority to CN201980010467.5A priority patent/CN111655667A/zh
Publication of WO2019156036A1 publication Critical patent/WO2019156036A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/84Nitriles
    • C07D213/85Nitriles in position 3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/20Preparation of carboxylic acid nitriles by dehydration of carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/02Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton
    • C07C255/03Mononitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/02Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton
    • C07C255/04Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton containing two cyano groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/06Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and unsaturated carbon skeleton
    • C07C255/07Mononitriles
    • C07C255/08Acrylonitrile; Methacrylonitrile
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/50Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/50Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings
    • C07C255/51Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings containing at least two cyano groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/84Nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for producing nitrile.
  • Nitrile is a chemical substance that has many uses such as solvents, pharmaceutical raw materials, agricultural chemical raw materials, metal surface treatment agents, antioxidants, and polymeric raw materials.
  • a method for producing nitrile a method of dehydrating primary amides is widely adopted.
  • a method for producing a nitrile from a primary amide using a dehydrating reagent such as diphosphorus pentoxide, phosphoryl chloride, phosgene, and chloroformate in a pyridine solvent at room temperature to 50 ° C. Patent Document 1
  • a method for producing a nitrile from a primary amide using a rhenium compound as a catalyst in a mesitylene solvent at 165 ° C. Patent Document 2
  • first in phosphoric acid at 300 ° C. using phosphoric acid as a catalyst first in phosphoric acid at 300 ° C. using phosphoric acid as a catalyst.
  • Patent Document 3 A method for producing a nitrile from a primary amide (Patent Document 3), a method for producing a nitrile from a primary amide in a gas phase at 325 ° C. to 345 ° C. using silicon dioxide as a catalyst (Patent Document 4), no solvent, A method for producing a nitrile from a primary amide at 250 ° C. using iron oxide, niobium oxide or the like as a catalyst is known (Patent Document 5).
  • Patent Document 1 Polyphosphoric acid generated from phosphoric acid is precipitated in the reaction vessel, making it difficult to separate the product, the reactor is corroded (Patent Document 3), and it is necessary to raise the temperature to vaporize the amide raw material. Since the raw material is thermally decomposed due to the reaction (Patent Document 4), the reaction is carried out in a molten amide, so that it cannot be applied to an amide having a high melting point (Patent Document 5).
  • Non-patent Documents 1 and 2 As a technique that can be expected to solve the aforementioned problems, there is an acid-catalyzed reaction in a supercritical fluid (Non-patent Documents 1 and 2). However, when acid-catalyzed reactions such as alkylation, amination, cracking, disproportionation, esterification, Fischer-Tropsch synthesis, and isomerization are carried out in a supercritical fluid, only the reaction selectivity is improved.
  • Non-patent Document 1 the reaction rate and the reaction selectivity may not be improved
  • Alcohol in the presence of an acid catalyst in a supercritical fluid or non-supercritical fluid it is known that the reaction rate and selectivity are higher in the non-supercritical fluid than in the supercritical fluid (Non-Patent Document 2).
  • Non-Patent Document 2 the technical effects of acid catalyzed reactions in critical fluids are not constant.
  • Non-Patent Document 3 describes a method of synthesizing benzonitrile by dehydrating benzamide, which is a primary amide, in acetonitrile in the absence of an acid catalyst.
  • the reaction temperature and pressure in this method are 350 ° C. and 6.5 MPa, respectively, and are higher than the critical temperature / pressure (275 ° C./4.8 MPa) of acetonitrile, acetonitrile is considered to be in a supercritical state.
  • the dehydration reaction of benzamide is sufficiently lower than the above reaction temperature (350 ° C.) and sufficiently proceeds even at 250 ° C. which is lower than the critical temperature (275 ° C.) of acetonitrile.
  • the critical temperature 275 ° C.
  • An object of the present invention is to provide a method for producing a nitrile excellent in reaction rate and reaction selectivity while solving the problems to be solved in carrying out the above-described conventional method for producing a nitrile.
  • the present inventor has focused on the acid-catalyzed reaction in a supercritical fluid.
  • the technical effect of acid-catalyzed reactions in supercritical fluids in terms of reaction rate and reaction selectivity has not been constant, and primary amides in supercritical fluids in the absence of acid catalysts.
  • the reaction rate and reaction selectivity were not superior compared to those in a non-supercritical fluid.
  • the present inventors have found that the reaction rate and nitrile selectivity can be remarkably improved by carrying out the dehydration reaction in the presence of a non-supercritical fluid in a supercritical fluid, thereby completing the present invention. It came.
  • the present invention comprises the following (1) to (6).
  • the supercritical fluid is a supercritical fluid of one or two or more substances selected from the group consisting of carbon dioxide, alcohol compounds, ether compounds and hydrocarbon compounds (1) to (4) The method in any one of.
  • the supercritical fluid is carbon dioxide, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, tert-butanol, tert-amyl alcohol, diethyl ether, methyl-tert.
  • the reaction rate and nitrile selectivity can be increased in the method for producing nitrile by dehydration of primary amide.
  • the primary amide refers to an organic compound containing one or more primary amide groups (—CONH 2 ).
  • the primary amide is not particularly limited and can be used as a raw material for the nitrile production method of the present invention.
  • the number of primary amide groups contained in the primary amide is not particularly limited, but primary amides having one or two primary amide groups can be preferably used.
  • the primary amide used in the present invention is not particularly limited, but a saturated alkyl amide, an unsaturated alkyl amide, an amide containing an aromatic ring and / or a heterocyclic ring can be preferably used.
  • Saturated alkyl amide refers to a primary amide containing a saturated alkyl group having an arbitrary functional group with an arbitrary number of carbon atoms, not containing an unsaturated alkyl, an aromatic ring, or a heterocyclic ring.
  • saturated alkylamides include acetamide, propanamide, butyramide, barrelamide, hexaneamide, cyclohexaneamide, malonamide, succinamide, glutaramide, adipamide, suberonamide, 1,3-cyclohexanediamide, 1,4-cyclohexanediamide and the like. it can.
  • unsaturated alkylamide refers to a primary amide containing an unsaturated alkyl having an arbitrary functional group with an arbitrary number of carbon atoms, not including an aromatic ring or a heterocyclic ring.
  • unsaturated alkylamides include acrylamide, methacrylamide, buteneamide, hexeneamide, 2-hexene-1,6-diamide, 3-hexene-1,6-diamide, 2,4-hexadiene-1,6-diamide, etc. can do.
  • the amide containing an aromatic ring and / or a heterocyclic ring refers to a primary amide containing an aromatic ring and / or a heterocyclic ring having an arbitrary functional group with an arbitrary carbon number.
  • Examples of amides containing an aromatic ring and / or a heterocyclic ring include benzamide, 4-aminobenzamide, 2-hydroxybenzamide, isophthalamide, terephthalamide, cinnamylamide, nicotinamide, and isonicotinamide.
  • an arbitrary functional group means an alkyl group, a carbonyl group (—CO—), a hydroxy group (—OH), an aldehyde group (—CHO), a carboxy group (—COOH), an ether bond (—O—), an ester.
  • Bond (—COO—) amino group (—NH 2 ), nitro group (—NO 2 ), cyano group (—C ⁇ N), secondary amide group (—CONHR 1 : where R 1 is any alkyl group ), Tertiary amide group (—CONR 1 R 2, wherein R 1 and R 2 are each an arbitrary alkyl group), sulfo group (—SO 3 H), halogen (—F, —Cl, —Br, —I) ).
  • Primary amides can be produced chemically and / or biologically from various carbon sources such as crude oil, coal, natural gas, biomass, exhaust gas, plastic products, etc. Primary amides can be used in the present invention.
  • primary amides are industrially synthesized by producing a carboxylic acid ammonium salt by heating carboxylic acid (R-COOH) and ammonia as shown in Scheme 1 below, followed by dehydration of the carboxylic acid ammonium salt.
  • R-COOH carboxylic acid
  • Scheme 1 shows carboxylic acid ammonium salt
  • Scheme 2 shows carboxylic acid ester
  • primary amides produced from carboxylic acids or carboxylic acid esters in this way can also be used as raw materials, and the corresponding nitriles can be produced.
  • the nitrile produced in the present invention is an organic compound containing a cyano group (—C ⁇ N), and is produced by dehydrating a part or all of the primary amide group contained in the primary amide.
  • the dehydration reaction of the primary amide is promoted in the presence of an acid catalyst.
  • the acid catalyst may indicate any acid catalytic action of Bronsted acidity or Lewis acidity.
  • the acid catalyst includes an inorganic acid, an organic acid, a solid acid catalyst, and the like. In the present invention, a solid acid catalyst is preferably used.
  • inorganic acids examples include mineral acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, and boric acid, Sn, Ga, In, Sc, Fe, Al, B, Zn, Ti, Zr, Sb, and Cd.
  • mineral acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, and boric acid, Sn, Ga, In, Sc, Fe, Al, B, Zn, Ti, Zr, Sb, and Cd.
  • examples thereof include halides, sulfates, hydrochlorides, nitrates and the like containing one or more metal elements selected from the group consisting of:
  • organic acids examples include organic sulfonic acids such as methanesulfonic acid, paratoluenesulfonic acid, and paraaminobenzenesulfonic acid, and carboxylic acids such as formic acid, acetic acid, and fluoroacetic acid.
  • the solid acid catalyst means an acid catalyst in which an active site showing acidity exists on the surface of the solid.
  • the solid acid catalyst that can be used in the present invention include metal oxides, metal sulfides, zeolites, clays, acidic ion exchange resins, heteropolyacids, solid phosphoric acid, and hydroxyapatite.
  • metal oxides to be solid acid catalysts Sc, Y, Ce, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Zn, Cd, Al, Ga, In, Si, Ge, Examples thereof include oxides containing one or more metal elements selected from the group consisting of Sn and Pb.
  • zeolite to be a solid acid catalyst a zeolite that is given a structure code consisting of a three-letter alphabet in the International Zeolite Association database can be used.
  • zeolites having structure codes such as LTA, FER, MWW, MFI, MOR, LTL, FAU, BEA, CHA, and CON can be exemplified.
  • clay used as a solid acid catalyst examples include kaolin, montmorillonite, bentonite, saponite, and acid clay.
  • a styrene sulfonic acid type ion exchange resin or a phenol sulfonic acid type ion exchange resin can be used as the acidic ion exchange resin to be a solid acid catalyst.
  • Specific examples include DIAION manufactured by Mitsubishi Chemical Corporation, Levacit manufactured by LANXESS, Amberlite manufactured by Rohm and Haas, Amberlist, DOWEX manufactured by Dow, and the like.
  • the heteropolyacid is an acid catalyst composed of heteroelements such as Si, P and As, polyelements such as Mo, W and V, and oxygen.
  • heteropolyacid serving as the solid acid catalyst include phosphotungstic acid, silicotungstic acid, phosphomolybdic acid, and silicomolybdic acid.
  • any two or more kinds of acid catalysts can be mixed and used as a mixture from the above acid catalysts, or two or more kinds of acid catalysts can be chemically combined and used as a complex.
  • silicon dioxide carrying phosphoric acid silicon dioxide carrying a metal halide, silica-alumina (SiO 2 -Al 2 O 3 ), which is a composite of silicon dioxide and aluminum oxide, and the like can be used in the present invention. Included in the solid acid catalyst.
  • a supercritical fluid refers to a substance placed at a temperature and pressure (supercritical state) above the critical point.
  • the substance that is the basis thereof is not particularly limited as long as the effects of the present invention are exhibited, and can be used as a reaction field for the dehydration reaction of the primary amide of the present invention.
  • the supercritical fluid used in the present invention may be a supercritical fluid of one kind of substance or a supercritical fluid of a mixture of two or more kinds of substances.
  • substances that can be used as a supercritical fluid include ammonia, carbon monoxide, carbon dioxide, water, alcohol compounds, ether compounds, ester compounds, hydrocarbon compounds, organochlorine compounds, and the like. A mixture of the above substances may be used.
  • alcohol compounds include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, tert-butanol, tert-amyl alcohol, cyclohexanol and the like.
  • ether compounds include dimethyl ether, diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dibutyl ether, 1,2-dimethoxyethane, tetrahydrofuran, 1,4-dioxane, cyclopentyl methyl ether, and the like.
  • ester compounds include methyl formate, ethyl formate, methyl acetate, ethyl acetate, n-propyl acetate, n-butyl acetate and the like.
  • hydrocarbon compound examples include ethane, ethylene, propane, propylene, butane, isobutane, pentane, hexane, heptane, octane, decane, cycloheptane, cyclohexane, benzene, toluene, xylene and the like.
  • organochlorine compounds include carbon tetrachloride, dichloromethane, chloroform and the like.
  • reaction format The production method of the present invention can be carried out in any form using any one of a batch tank reactor, a semi-batch tank reactor, a continuous tank reactor, and a continuous tube reactor.
  • reaction When the reaction is carried out using a solid acid catalyst, the reaction can be carried out by any of suspension bed type, fixed bed type, moving bed type and fluidized bed type.
  • reaction temperature of the dehydration reaction of the primary amide is not particularly limited as long as it is higher than the critical temperature of the substance used as the supercritical fluid. Since thermal decomposition of the primary amide as a raw material can be suppressed, the temperature is preferably 300 ° C. or lower.
  • reaction pressure of the dehydration reaction is not particularly limited as long as it is higher than the critical pressure of the substance used as the supercritical fluid.
  • the pressure in the reactor is increased by using an optional pump.
  • pressure can be applied from the raw material supply port side of the reactor using a pump that supplies the raw material to the reactor.
  • a back pressure valve By providing a back pressure valve on the discharge side of the reactor, the pressure in the reactor can be controlled.
  • the sufficient amount refers to an amount sufficient to prevent all of the substance from vaporizing when reaching the critical temperature.
  • a sufficient amount of a substance that is solid or liquid in a standard state 25 ° C., atmospheric pressure
  • a method of raising the temperature inside the reactor to a critical temperature or higher and a critical pressure or higher by raising the temperature to a critical temperature or higher in a non-open state there is a method in which the reactor temperature is raised to the critical temperature of the relevant substance after the pressure in the reactor is raised to the critical pressure of the relevant substance using a pump or the like.
  • the temperature in the reactor is raised to a critical temperature or higher and then the reactor internal pressure is raised to a critical pressure or higher using a pump or the like.
  • the nitrile produced by the method for producing a nitrile of the present invention can be recovered by usual separation and purification operations such as filtration, extraction, distillation, crystallization, and recrystallization after completion of the reaction.
  • adipamide when used as the primary amide, adiponitrile can be produced.
  • the obtained adiponitrile can be hydrogenated by a known method (for example, Japanese Patent Publication No. 2000-508305) to produce hexamethylenediamine as a raw material for polyamide 6,6.
  • Dehydrated primary amide group ratio (%) (dehydrated primary amide group / total primary amide group in raw material) ⁇ 100.
  • Nitrile selectivity (%) nitrile production (mol) / (raw amide (mol) ⁇ unreacted amide (mol)) ⁇ 100.
  • the aqueous solution of the reaction solution and the reaction solution concentrate was analyzed by gas chromatography (GC) and high performance liquid chromatography (HPLC), respectively.
  • the product was quantified using an absolute calibration curve prepared using a standard.
  • the quantitative analysis of nitrile was mainly performed by GC, and the quantitative analysis of amide was mainly performed by HPLC.
  • the analytical conditions for GC and HPLC are shown below.
  • GC analysis conditions GC device: GC2010 plus (manufactured by Shimadzu Corporation) Column: InertCap for amines, length 30 m, inner diameter 0.32 mm (manufactured by GL Sciences) Carrier gas: Helium, constant linear velocity (40.0 cm / sec) Vaporization chamber temperature: 250 ° C Detector temperature: 250 ° C Column oven temperature: 100 ° C. ⁇ (10 ° C./min) ⁇ 230° C. 10 minutes (total 23 minutes) Detector: FID.
  • Example 1 Production of nitrile from adipamide 0.144 g of adipamide (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and 50 mL of tert-butanol (Wako Pure Chemical Industries, Ltd.) in a 0.1 L stainless steel autoclave (made by pressure-resistant glass industry) Co., Ltd.) and 0.05 g of ⁇ -iron oxide ( ⁇ -Fe 2 O 3 : Wako Pure Chemical Industries, Ltd.) was added as a catalyst. The inside of the autoclave is adjusted to 30 ° C., and the inside of the autoclave is purged with nitrogen while stirring at a stirring speed of 500 rpm.
  • Example 2 The reaction was performed in the same manner as in Example 1 except that 2-propanol (manufactured by Nacalai Tesque) was used instead of tert-butanol and the temperature in the autoclave was changed to 237 ° C. The results are shown in Table 2.
  • Example 3 The reaction was performed in the same manner as in Example 2 except that the temperature in the autoclave was 240 ° C. The results are shown in Table 2.
  • Example 4 The reaction was performed in the same manner as in Example 1 except that diisopropyl ether was used instead of tert-butanol and the temperature in the autoclave was changed to 230 ° C. The results are shown in Table 2.
  • Example 5 Production of benzonitrile from benzamide A reaction was carried out in the same manner as in Example 1 except that 0.121 g (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of adipamide. 2-Propanol was added to the collected reaction solution and stirred at room temperature, then the catalyst was centrifuged, and the supernatant was analyzed by GC. The results are shown in Table 3.
  • Example 6 Production of nicotinonitrile from nicotinamide A reaction was carried out in the same manner as in Example 1 except that 0.122 g (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of adipamide. The results are shown in Table 3.
  • Example 7 Production of nitrile from terephthalamide Reaction was carried out in the same manner as in Example 1 except that 0.164 g of terephthalamide (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of adipamide. A concentrated solution obtained by concentrating the collected reaction solution with a rotary evaporator was dissolved in dimethyl sulfoxide (DMSO: Wako Pure Chemical Industries, Ltd.) and analyzed by HPLC. The results are shown in Table 3.
  • DMSO dimethyl sulfoxide
  • Example 8 Production of benzonitrile from benzamide A reaction was conducted in the same manner as in Example 5 except that hexane (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of tert-butanol and the reaction temperature was 237 ° C. It was. The results are shown in Table 3.
  • Example 9 Production of acrylonitrile from acrylamide Reaction was carried out in the same manner as in Example 5 except that acrylamide (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of benzamide. The results are shown in Table 3.
  • Example 10 Production of hexanenitrile from hexaneamide The reaction was conducted in the same manner as in Example 1 except that 0.115 g of hexaneamide (Sigma-Aldrich) was used instead of adipamide. The catalyst was centrifuged and the supernatant was analyzed by GC. The results are shown in Table 3.
  • the proportion of the dehydrated primary amide group is remarkably increased, indicating that the reaction rate of the dehydration reaction is improved. It can also be seen that the nitrile selectivity is remarkably high in the supercritical fluid. Therefore, from Examples 1 to 4 and Comparative Examples 1 to 6, the dehydration reaction of the primary amide is performed in a supercritical fluid in the presence of an acid catalyst, so that the reaction rate is improved and the nitrile has a high nitrile selectivity. It was shown that can be manufactured.
  • Examples 5 to 17 show that the present invention can be applied to nitrile production from various primary amides in various supercritical fluids in the presence of various acid catalysts.
  • the nitrile production method of the present invention is excellent in reaction rate and nitrile selectivity, and the resulting nitrile is suitably used for many applications such as solvents, pharmaceutical raw materials, agricultural chemical raw materials, metal surface treatment agents, antioxidants, and polymer raw materials. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

本発明は、第一級アミドからニトリルを製造する方法であって、第一級アミドを、酸触媒の存在下、超臨界流体中で脱水反応に供することを特徴とし、反応装置の腐食や原料の熱分解を抑制するという課題を解決するとともに、反応速度及びニトリル選択性が向上するという効果が得られる。

Description

ニトリルの製造方法
 本発明は、ニトリルの製造方法に関する。
 ニトリルは、溶剤、医薬品原料、農薬原料、金属表面処理剤、酸化防止剤、高分子原料など多くの用途がある化学物質である。
 ニトリルの製法としては、第一級アミドを脱水する方法が広く採用されている。具体例として、ピリジン系溶媒中、室温から50℃において、五酸化二リン・塩化ホスホリル・ホスゲン・クロロギ酸エステルなどの脱水試薬を用いて、第一級アミドからニトリルを製造する方法(特許文献1)、メシチレン溶媒中、165℃で、レニウム化合物を触媒に用いて、第一級アミドからニトリルを製造する方法(特許文献2)、リン酸中、300℃で、リン酸を触媒として、第一級アミドからニトリルを製造する方法(特許文献3)、気相において、325℃から345℃で、二酸化ケイ素を触媒として、第一級アミドからニトリルを製造する方法(特許文献4)、無溶媒、250℃で、酸化鉄、酸化ニオブなどを触媒として、第一級アミドからニトリルを製造する方法(特許文献5)が知られている。
 しかしながら、これら従来の方法では、1当量以上の脱水試薬を必要とするほか、有害な廃棄物を生じる(特許文献1)、極めて希少なレニウムを用いる必要があり、産業上好適ではない(特許文献2)、リン酸から生じるポリリン酸が反応容器に沈殿し生成物の分離を困難にする、反応装置が腐食する(特許文献3)、アミド原料を気化させるために高温にする必要があり、これによって原料が熱分解する(特許文献4)、溶融したアミド中で反応を行うため、融点が高いアミドには適用することはできない(特許文献5)といった課題も知られていた。
 前述の課題を解決することが期待できる技術として、超臨界流体中での酸触媒反応が挙げられる(非特許文献1及び2)。しかしながら、アルキル化、アミノ化、クラッキング、不均化、エステル化、フィッシャートロプシュ合成、異性化などの酸触媒反応を超臨界流体中で行うと、反応速度のみが向上する場合、反応選択性のみが向上する場合、反応速度及び反応選択性がいずれも向上する場合、向上しない場合があること(非特許文献1)、また、超臨界流体又は非超臨界流体中での酸触媒の存在下におけるアルコールの脱水反応では、超臨界流体中よりも、非超臨界流体中のほうが反応速度、選択性ともに高いことが知られており(非特許文献2)、反応速度及び反応選択性の観点での超臨界流体中での酸触媒反応の技術的効果は一定のものではない。
 さらに、非特許文献3には、アセトニトリル中、酸触媒の非存在下、第一級アミドであるベンズアミドの脱水によりベンズニトリルを合成する方法が記載されている。本方法での反応温度、圧力はそれぞれ350℃、6.5MPaであり、アセトニトリルの臨界温度/圧力(275℃/4.8MPa)よりも高いため、アセトニトリルは超臨界状態となっているとみられるが、ベンズアミドの脱水反応が、上記反応温度(350℃)を大幅に下回り、アセトニトリルの臨界温度(275℃)以下である250℃でも十分に進行することが記載されており、反応速度及び反応選択性の観点で、第一級アミドの脱水反応を超臨界流体中で実施する技術的効果はないと認識されている。
特許第3185482号公報 特許第4190192号公報 米国特許第3297740号明細書 米国特許第2144340号明細書 特表2016-513119号公報
Chemical Reviews,vol.99,p.453-473(1999). Catalysis Today,vol.121,p.121-129(2007). Journal of Organic Chemistry,vol.78,p.10567-10571(2013).
 本発明は、前述の従来のニトリルの製造方法を実施する上での解決するべき課題を解決しつつ、反応速度及び反応選択性に優れたニトリルの製造方法を提供することを課題とする。
 本発明者は、上記課題を解決するため鋭意研究を行った結果、超臨界流体中での酸触媒反応に着目した。従来、反応速度及び反応選択性の観点での超臨界流体中での酸触媒反応の技術的効果は一定のものではなく、また、酸触媒非存在下における超臨界流体中での第一級アミドの脱水反応では、非超臨界流体中に比べて反応速度及び反応選択性が優れるものではないことが当業者の技術常識として認識されていたが、本発明者は、第一級アミドを酸触媒の存在下で脱水する反応を、超臨界流体中で実施することにより、非超臨界流体中に比べて、顕著に反応速度及びニトリル選択性を高めることができることを見出し、本発明を完成するに至った。
 すなわち、本発明は次の(1)~(6)から構成される。
(1)第一級アミドを酸触媒の存在下、超臨界流体中で脱水反応に供することを特徴とする、ニトリルの製造方法。
(2)前記第一級アミドが1つ又は2つの一級アミド基を含む第一級アミドである、(1)に記載の方法。
(3)前記第一級アミドが、飽和アルキルアミド、不飽和アルキルアミド或いは芳香環及び/又は複素環を含むアミドである、(1)または(2)に記載の方法。
(4)前記酸触媒が固体酸触媒である、(1)から(3)のいずれかに記載の方法。
(5)前記超臨界流体が、二酸化炭素、アルコール化合物、エーテル化合物及び炭化水素化合物からなる群から選択される1種又は2種以上の物質の超臨界流体である、(1)から(4)のいずれかに記載の方法。
(6)前記超臨界流体が、二酸化炭素、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブタノール、tert-ブタノール、tert-アミルアルコール、ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ペンタン、ヘキサン及びベンゼンからなる群から選択される1種又は2種以上の物質の超臨界流体である、(1)から(5)のいずれかに記載の方法。
 本発明により、第一級アミドの脱水によるニトリルの製造方法において反応速度及びニトリル選択性を高めることができる。
 以下、本発明をより詳細に説明する。
 [第一級アミド]
 本発明において第一級アミドとは、1つ以上の一級アミド基(-CONH)を含む有機化合物を示す。第一級アミドであれば特に制限されず、本発明のニトリルの製造方法の原料として用いることができる。
 第一級アミドが含む一級アミド基の数は特に制限されないが、一級アミド基の数が1つまたは2つである第一級アミドを好ましく用いることができる。
 本発明に用いる第一級アミドは、特に制限されないが、飽和アルキルアミド、不飽和アルキルアミド、芳香環及び/又は複素環を含むアミドを好ましく用いることができる。
 飽和アルキルアミドとは、不飽和アルキル、芳香環、複素環を含まず、任意の炭素数で任意の官能基を有する飽和アルキル基を含む第一級アミドを示す。飽和アルキルアミドとして、アセトアミド、プロパンアミド、ブチルアミド、バレルアミド、ヘキサンアミド、シクロヘキサンアミド、マロンアミド、スクシンアミド、グルタルアミド、アジポアミド、スベロンアミド、1,3-シクロヘキサンジアミド、1,4-シクロヘキサンジアミド等を例示することができる。
 不飽和アルキルアミドとは、芳香環、複素環を含まず、任意の炭素数で任意の官能基を有する不飽和アルキルを含む第一級アミドを示す。不飽和アルキルアミドとして、アクリルアミド、メタクリルアミド、ブテンアミド、ヘキセンアミド、2-ヘキセン-1,6-ジアミド、3-ヘキセン-1,6-ジアミド、2,4-ヘキサジエン-1,6-ジアミド等を例示することができる。
 芳香環及び/又は複素環を含むアミドとは、任意の炭素数で任意の官能基を有する芳香環及び/又は複素環を含む第一級アミドを示す。芳香環及び/又は複素環を含むアミドとして、ベンズアミド、4-アミノベンズアミド、2-ヒドロキシベンズアミド、イソフタルアミド、テレフタルアミド、シンナミルアミド、ニコチンアミド、イソニコチンアミド等を例示することができる。
 ここで任意の官能基とは、アルキル基、カルボニル基(-CO-)、ヒドロキシ基(-OH)、アルデヒド基(-CHO)、カルボキシ基(-COOH)、エーテル結合(-O-)、エステル結合(-COO-)、アミノ基(-NH)、ニトロ基(-NO)、シアノ基(-C≡N)、二級アミド基(-CONHR:ここでRは任意のアルキル基)、三級アミド基(-CONR:ここでR1、はそれぞれ任意のアルキル基)、スルホ基(-SOH)、ハロゲン(-F、-Cl、-Br、-I)を示す。
 第一級アミドは、原油、石炭、天然ガス、バイオマス、排ガス、プラスチック製品等、種々の炭素源を原料として、化学的及び/又は生物学的に製造することができ、このように製造された第一級アミドを本発明において用いることができる。
 特に、第一級アミドは、以下のスキーム1に示されるようなカルボン酸(R-COOH)とアンモニアを加熱することによるカルボン酸アンモニウム塩生成と、つづくカルボン酸アンモニウム塩の脱水により工業的に合成される(例えば、特表2016-513119号公報に記載。)。あるいは、スキーム2に示されるようなカルボン酸エステル(R-COO-R’)の加アンモニア分解によっても工業的に合成される(例えば、特開平10-195035号公報に記載。)。
Figure JPOXMLDOC01-appb-C000001
 本発明では、このようにカルボン酸やカルボン酸エステルから製造した第一級アミドも原料として用いることができ、対応するニトリルを製造することができる。
 [ニトリル]
 本発明で製造するニトリルとは、シアノ基(-C≡N)を含む有機化合物であり、上述の第一級アミドに含まれる一部あるいは全ての一級アミド基が脱水されることにより生成する。
 [酸触媒]
 第一級アミドの脱水反応は、酸触媒の存在下において促進される。本発明において酸触媒とは、ブレンステッド酸性、ルイス酸性のいずれの酸触媒作用を示すものであってもよい。酸触媒には、無機酸、有機酸、固体酸触媒等があるが、本発明においては固体酸触媒が好ましく用いられる。
 本発明で用いることができる無機酸として、硫酸、塩酸、硝酸、リン酸、ホウ酸等の鉱酸、Sn、Ga、In、Sc、Fe、Al、B、Zn、Ti、Zr、Sb、Cdからなる群から選択される1種又は2種以上の金属元素を含むハロゲン化物、硫酸塩、塩酸塩、硝酸塩等を例示することができる。
 本発明で用いることができる有機酸として、メタンスルホン酸、パラトルエンスルホン酸、パラアミノベンゼンスルホン酸などの有機スルホン酸、ギ酸、酢酸、フルオロ酢酸等のカルボン酸を例示することができる。
 固体酸触媒とは、固体の表面上に酸性を示す活性部位が存在する酸触媒のことを示す。本発明で用いることができる固体酸触媒としては、金属酸化物、金属硫化物、ゼオライト、粘土、酸性イオン交換樹脂、ヘテロポリ酸、固体リン酸、ハイドロキシアパタイトなどが挙げられる。
 固体酸触媒となる金属酸化物として、Sc、Y、Ce、Ti、Zr、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pbからなる群から選択される1種又は2種以上の金属元素を含む酸化物を例示することができる。より具体的には、酸化スカンジウム(Sc)、酸化セリウム(CeO)、アナターゼ型酸化チタン(A-TiO)、ルチル型酸化チタン(R-TiO)、酸化ジルコニウム(ZrO)、酸化バナジウム(V)、酸化ニオブ(Nb)、酸化タンタル(Ta)、酸化クロム(Cr)、酸化モリブデン(MoO)、酸化タングステン(WO)、酸化マンガン(MnO)、酸化鉄(Fe、Fe)、酸化亜鉛(ZnO)、酸化アルミニウム(Al)、酸化ガリウム(Ga)、酸化インジウム(In)、二酸化ケイ素(SiO)、酸化ゲルマニウム(GeO)、酸化スズ(SnO)、酸化鉛(PbO)などを例示することができる。
 固体酸触媒となるゼオライトとして、International Zeolite Associationのデータベースにおいて3文字のアルファベットからなる構造コードを与えられているゼオライトを用いることができる。具体的には、LTA、FER、MWW、MFI、MOR、LTL、FAU、BEA、CHA、CON等の構造コードが与えられているゼオライトを例示することができる。
 固体酸触媒となる粘土として、カオリン、モンモリロナイト、ベントナイト、サポナイト、酸性白土等を例示することができる。
 固体酸触媒となる酸性イオン交換樹脂として、スチレン系スルホン酸型イオン交換樹脂、フェノール系スルホン酸型イオン交換樹脂を用いることができる。具体例としては、三菱ケミカル株式会社製のDIAION、ランクセス社製のレバチット、ローム・アンド・ハース社製のアンバーライト、アンバーリスト、ダウ社製のDOWEX等を挙げられる。
 ヘテロポリ酸は、Si、P、As等のヘテロ元素、Mo、W、V等のポリ元素、酸素から構成される酸触媒である。固体酸触媒となるヘテロポリ酸としては、リンタングステン酸、ケイタングステン酸、リンモリブデン酸、ケイモリブデン酸等を例示することができる。
 固体酸触媒になる固体リン酸として、Si、B、Al、Zr、Zn、Ti、Feからなる群から選択される1種又は2種以上の金属元素を含むリン酸塩を例示することができる。より具体的には、リン酸ケイ素、リン酸ホウ素、リン酸アルミニウム、リン酸ジルコニウム、リン酸亜鉛、リン酸チタニウム、リン酸鉄を挙げられる。
 酸触媒として、上記の酸触媒から、任意の2種以上の酸触媒を混合して混合物として用いることができるし、もしくは、2種以上の酸触媒を化学的に複合化して複合体として用いることもできる。例えば、リン酸を担持した二酸化ケイ素、金属ハロゲン化物を担持した二酸化ケイ素、二酸化ケイ素と酸化アルミニウムの複合体であるシリカ-アルミナ(SiO-Al)等も本発明で用いることができる固体酸触媒に含まれる。
 [超臨界流体]
 超臨界流体とは、臨界点以上の温度・圧力(超臨界状態)下においた物質のことを示す。本発明では、超臨界流体であればそのもととなる物質は本発明の効果を奏する範囲においては特に制限されず、本発明の第一級アミドの脱水反応の反応場として用いることができる。また、本発明で用いる超臨界流体は、1種の物質の超臨界流体または異なる2種以上の物質の混合物の超臨界流体を用いることができる。
 超臨界流体として用いることができる物質としては、アンモニア、一酸化炭素、二酸化炭素、水、アルコール化合物、エーテル化合物、エステル化合物、炭化水素化合物、有機塩素系化合物等が挙げられ、これらのうち2種以上の物質の混合物でもよい。
 アルコール化合物として、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブタノール、tert-ブタノール、tert-アミルアルコール、シクロヘキサノール等を例示することができる。
 エーテル化合物として、ジメチルエーテル、ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン、シクロペンチルメチルエーテル等を例示することができる。
 エステル化合物として、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル等を例示することができる。
 炭化水素化合物として、エタン、エチレン、プロパン、プロピレン、ブタン、イソブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、シクロヘプタン、シクロヘキサン、ベンゼン、トルエン、キシレン等を例示することができる。
 有機塩素系化合物として、四塩化炭素、ジクロロメタン、クロロホルム等を例示することができる。
 中でも、二酸化炭素、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブタノール、tert-ブタノール、tert-アミルアルコール、シクロヘキサノールなどのアルコール化合物、ジメチルエーテル、ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、1,2-ジメトキシエタン、ジグリム、テトラヒドロフラン、1,4-ジオキサン、シクロペンチルメチルエーテルなどのエーテル化合物、エタン、エチレン、プロパン、プロピレン、ブタン、イソブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、シクロヘプタン、シクロヘキサン、ベンゼン、トルエン、キシレンなどの炭化水素化合物が好ましく使用でき、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブタノール、tert-ブタノール、tert-アミルアルコール、ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ペンタン、ヘキサン、ベンゼンをさらに好ましく用いることができる。
 物質の臨界温度、臨界圧力は、CRC Handbook of Chemistry and Physics第84版、CRCプレス、2003-2004年、1023頁-1038頁に記載されている。代表的な物質の臨界温度、臨界圧力を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 [反応形式]
 本発明の製造方法は、バッチ式槽型反応器、半バッチ式槽型反応器、連続式槽型反応器、連続式管型反応器のいずれの反応器を用いる形式でも実施することができる。
 固体酸触媒を用いて反応を行う場合、懸濁床式、固定床式、移動床式、流動床式のいずれの方式でも反応を実施することができる。
 [反応温度]
 第一級アミドの脱水反応の反応温度は、超臨界流体として用いる物質の臨界温度以上であれば、特に制限されない。原料である第一級アミドの熱分解を抑制できるため、300℃以下であることが好ましい。
 [反応圧力]
 脱水反応の反応圧力は超臨界流体として用いる物質の臨界圧力以上であれば、特に制限されない。
 バッチ式槽型反応器、半バッチ式槽型反応器、連続式槽型反応器、連続式管型反応器のいずれの場合においても、任意のポンプ類を用いることで反応器内の圧力を高めることができる。例えば、原料を反応器に供給するポンプを用いて、反応器の原料供給口側から圧力をかけることができる。背圧弁を反応器の吐出側に設けることにより、反応器内圧力を制御することができる。
 槽型反応器の場合、反応器内に標準状態(25℃、大気圧)において固体又は液体である物質を十分量添加し、非開放状態で昇温すると、温度に対応した該物質の蒸気圧が反応器に加わる。したがって、反応器の温度を該物質の臨界温度以上にした場合、反応器内の圧力は自ずと臨界圧力以上となる。この場合、臨界圧力を達成するために外部から圧力を加える必要はない。なお、ここでいう十分量とは、臨界温度に達する段階において該物質全てが気化しないほどに十分な量を示す。
 反応器内の超臨界流体として用いる物質を超臨界状態にする方法としては、例えば、上述の通り、反応器内に標準状態(25℃、大気圧)において固体又は液体である物質を十分量添加し、非開放状態で臨界温度以上に昇温することで、反応器内を臨界温度以上、臨界圧力以上にする方法がある。また、ポンプ等を用いて反応器内圧力を該当物質の臨界圧力以上に上昇させた後に、反応器温度を該当物質の臨界温度以上にする方法がある。また、反応器内の温度を臨界温度以上に上昇させてから、ポンプ等を用いて反応器内圧を臨界圧力以上に上昇させる方法がある。
 [雰囲気]
 第一級アミドの脱水反応を行う反応器中には超臨界流体の他に、標準状態(25℃、大気圧)では気体である窒素、ヘリウム、アルゴン、酸素、水素、アンモニア等が共存していてもよい。これらの気体は反応器中で超臨界流体との良好な混合状態を形成することができる。中でも、第一級アミドの脱アミド化によるカルボン酸生成を抑制できることが期待できることから、アンモニアが共存することが好ましい。また生成したニトリルの水和による第一級アミドへの逆反応を抑制するため、水蒸気は存在しない或いは極力少ないことが好ましい。
 [ニトリルの回収]
 本発明のニトリルの製造方法で生成するニトリルは、反応終了後に濾過、抽出、蒸留、晶析、再結晶など通常の分離精製操作により回収することができる。
 [ヘキサメチレンジアミンの製造]
 本発明のニトリルの製造方法では、第一級アミドとしてアジポアミドを用いた場合、アジポニトリルを製造することができる。得られたアジポニトリルを公知の方法(例えば特表2000-508305号公報)により水素化することでポリアミド6,6の原料であるヘキサメチレンジアミンを製造することができる。
 以下、実施例を用いて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例、比較例における反応成績は下記の式によって定義する。
 脱水された一級アミド基の割合(%)=(脱水された一級アミド基/原料中の全一級アミド基)×100。
 ニトリル選択率(%)=ニトリルの生成量(mol)/(原料アミド(mol)-未反応アミド(mol))×100。
 反応溶液及び反応溶液濃縮物の水溶液は、それぞれ、ガスクロマトグラフィー(GC)及び高速液体クロマトグラフィー(HPLC)により分析した。生成物の定量は標品を用いて作成した絶対検量線により行った。ニトリルの定量分析は主にGCで行い、アミドの定量分析は主にHPLCで行った。GC及びHPLCの分析条件を以下に示す。
 [GC分析条件]
GC装置:GC2010 plus(株式会社島津製作所製)
カラム:InertCap for amines、長さ30m、内径0.32mm(GLサイエンス社製)
キャリアガス:ヘリウム、線速度一定(40.0cm/秒)
気化室温度:250℃
検出器温度:250℃
カラムオーブン温度:100℃→(10℃/分)→230℃ 10分(計23分)
検出器:FID。
 [HPLC分析条件]
HPLC装置:Prominence(株式会社島津製作所製)
カラム:Synergi hydro-RP(Phenomenex社製)、長さ250mm、内径4.60mm、粒径4μm
移動相:0.1重量%リン酸水溶液/アセトニトリル=95/5(体積比)
流速:1.0mL/分
検出器:UV(210nm)
カラム温度:40℃。
 (実施例1)アジポアミドからニトリルの製造
 内容量0.1Lのステンレス製オートクレーブ(耐圧硝子工業株式会社製)にアジポアミド0.144g(東京化成工業株式会社製)、tert-ブタノール50mL(和光純薬工業株式会社製)、触媒としてα-酸化鉄(α-Fe:和光純薬工業株式会社製)0.05gを添加した。オートクレーブ内を30℃に調整し、撹拌速度500rpmで撹拌しながら、オートクレーブ内を窒素でパージしたのち、アンモニアガスを添加し、オートクレーブ内のアンモニアガス分圧を0.18MPaとなるよう調節し、その後30分間保持した。その後、攪拌を継続しながら窒素を添加し、オートクレーブ内の窒素分圧が0.32MPaとなるよう調節した(全圧(ゲージ圧):0.50MPa)。次いで、オートクレーブ内の温度を235℃に昇温した。235℃におけるゲージ圧は4.8MPaであった。1時間235℃で保持した後、室温まで放冷し、オートクレーブ内のガスを放出して常圧に戻した後、反応溶液を回収した。濾過により触媒を除去し、上清をGCで分析した。また上清をロータリーエバポレーター(東京理化器械株式会社製)で濃縮して得た濃縮物の水溶液を調製し、HPLCにより分析した。結果を表2に示す。
 (比較例1)
 触媒を用いないこと以外は、実施例1と同様に反応を行った。結果を表2に示す。
 (比較例2)
 オートクレーブ内の温度を225℃にした以外は、実施例1と同様に反応を行った。結果を表2に示す。
 (比較例3)
 オートクレーブ内の温度を230℃にした以外は、実施例1と同様に反応を行った。結果を表2に示す。
 (実施例2)
 tert-ブタノールの代わりに2-プロパノール(ナカライテスク株式会社製)を用いて、オートクレーブ内の温度を237℃にした以外は、実施例1と同様に反応を行った。結果を表2に示す。
 (実施例3)
 オートクレーブ内の温度を240℃にした以外は、実施例2と同様に反応を行った。結果を表2に示す。
 (比較例4)
 オートクレーブ内の温度を230℃にした以外は、実施例2と同様に反応を行った。結果を表2に示す。
 (比較例5)
 オートクレーブ内の温度を232℃にした以外は、実施例2と同様に反応を行った。結果を表2に示す。
 (実施例4)
 tert-ブタノールの代わりにジイソプロピルエーテルを用いて、オートクレーブ内の温度を230℃にした以外は、実施例1と同様に反応を行った。結果を表2に示す。
 (比較例6)
 オートクレーブ内の温度を225℃にした以外は、実施例4と同様に反応を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 (実施例5)ベンズアミドからベンズニトリルの製造
 アジポアミドの代わりにベンズアミド0.121g(和光純薬工業株式会社製)を用いた以外は、実施例1と同様に反応を行った。回収した反応溶液に2-プロパノールを加えて室温で撹拌してから、触媒を遠心分離し、上清をGCで分析した。結果を表3に示す。
 (実施例6)ニコチンアミドからニコチノニトリルの製造
 アジポアミドの代わりにニコチンアミド0.122g(和光純薬工業株式会社製)を用いた以外は、実施例1と同様に反応を行った。結果を表3に示す。
 (実施例7)テレフタルアミドからニトリルの製造
 アジポアミドの代わりにテレフタルアミド0.164g(東京化成工業株式会社製)を用いた以外は、実施例1と同様に反応を行った。回収した反応溶液をロータリーエバポレーターで濃縮して得た濃縮物を、ジメチルスルホキシド(DMSO:和光純薬工業株式会社製)に溶解させた溶液をHPLCで分析した。結果を表3に示す。
 (実施例8)ベンズアミドからベンズニトリルの製造
 tert-ブタノールの代わりにヘキサン(和光純薬工業株式会社製)を用いて、反応温度を237℃にした以外は、実施例5と同様に反応を行った。結果を表3に示す。
 (実施例9)アクリルアミドからアクリロニトリルの製造
 ベンズアミドの代わりにアクリルアミド(和光純薬工業株式会社製)を用いた以外は、実施例5と同様に反応を行った。結果を表3に示す。
 (実施例10)ヘキサンアミドからヘキサンニトリルの製造
 アジポアミドの代わりにヘキサンアミド0.115g(シグマ-アルドリッチ社製)を用いた以外は、実施例1と同様に反応を行った。触媒を遠心分離し、上清をGCで分析した。結果を表3に示す。
 (実施例11~17)ヘキサンアミドからヘキサンニトリルの製造
 α-酸化鉄(Fe)の代わりに酸化ニオブ(Nb:和光純薬工業株式会社製)、酸化インジウム(In:和光純薬工業株式会社製)、MFIゼオライト(ZSM-5:日揮触媒化成株式会社製)、FAUゼオライト(JRC-Z-HY:日揮触媒化成株式会社製、触媒学会参照触媒部会より提供)、モンモリロナイト(シグマ-アルドリッチ社製)、リン酸アルミニウム(シグマ-アルドリッチ社製)、または、シリカ-アルミナ(日揮触媒化成株式会社製)を用いた以外は、それぞれ実施例10と同様に反応を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 超臨界流体中では、脱水された一級アミド基の割合が顕著に高くなることから、脱水反応の反応速度が向上していることが分かる。また、超臨界流体中では、ニトリル選択率が顕著に高いことが分かる。したがって、実施例1~4及び比較例1~6から、超臨界流体中、酸触媒の存在下、第一級アミドの脱水反応を行うことにより、反応速度が向上し、高いニトリル選択率でニトリルを製造できることが示された。
 また、実施例5~17から、様々な酸触媒の存在下、様々な超臨界流体中において、様々な第一級アミドからのニトリル製造に本発明が適用できることが示された。
 本発明のニトリルの製造方法は反応速度及びニトリル選択性に優れ、得られるニトリルは溶剤、医薬品原料、農薬原料、金属表面処理剤、酸化防止剤、高分子原料など多くの用途に好適に用いられる。

Claims (6)

  1.  第一級アミドを酸触媒の存在下、超臨界流体中で脱水反応に供することを特徴とする、ニトリルの製造方法。
  2.  前記第一級アミドが1つ又は2つの一級アミド基を含む第一級アミドである、請求項1に記載の方法。
  3.  前記第一級アミドが、飽和アルキルアミド、不飽和アルキルアミド或いは芳香環及び/又は複素環を含むアミドである、請求項1または2に記載の方法。
  4.  前記酸触媒が固体酸触媒である、請求項1から3のいずれか1項に記載の方法。
  5.  前記超臨界流体が、二酸化炭素、アルコール化合物、エーテル化合物及び炭化水素化合物からなる群から選択される1種又は2種以上の物質の超臨界流体である、請求項1から4のいずれか1項に記載の方法。
  6.  前記超臨界流体が、二酸化炭素、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブタノール、tert-ブタノール、tert-アミルアルコール、ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ペンタン、ヘキサン及びベンゼンからなる群から選択される1種又は2種以上の物質の超臨界流体である、請求項1から5のいずれか1項に記載の方法。
     
PCT/JP2019/003933 2018-02-06 2019-02-05 ニトリルの製造方法 WO2019156036A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19750705.6A EP3750871A1 (en) 2018-02-06 2019-02-05 Method for producing nitrile
JP2019510976A JPWO2019156036A1 (ja) 2018-02-06 2019-02-05 ニトリルの製造方法
US16/966,183 US20210032197A1 (en) 2018-02-06 2019-02-05 Method for producing nitrile
CN201980010467.5A CN111655667A (zh) 2018-02-06 2019-02-05 腈的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018019482 2018-02-06
JP2018-019482 2018-02-06

Publications (1)

Publication Number Publication Date
WO2019156036A1 true WO2019156036A1 (ja) 2019-08-15

Family

ID=67549357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003933 WO2019156036A1 (ja) 2018-02-06 2019-02-05 ニトリルの製造方法

Country Status (5)

Country Link
US (1) US20210032197A1 (ja)
EP (1) EP3750871A1 (ja)
JP (1) JPWO2019156036A1 (ja)
CN (1) CN111655667A (ja)
WO (1) WO2019156036A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111454172A (zh) * 2020-05-13 2020-07-28 山东元利科技有限公司 一种酯类物质胺解制备戊二腈的生产方法
WO2021131096A1 (ja) 2019-12-25 2021-07-01 ダイキン工業株式会社 冷凍サイクル装置、冷凍機油および冷媒漏洩防止剤

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113149903B (zh) * 2021-04-30 2023-02-10 安徽国星生物化学有限公司 一种氰基吡啶的合成方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2144340A (en) 1937-03-26 1939-01-17 Du Pont Process and apparatus for the production of adiponitrile
US3297740A (en) 1963-02-11 1967-01-10 Scholven Chemie Ag Process for the production of trimethyl adipic acid dinitrile
JPH10195035A (ja) 1997-01-14 1998-07-28 Lion Corp 脂肪族ニトリルの製造方法
JP2000508305A (ja) 1996-04-10 2000-07-04 ビーエーエスエフ アクチェンゲゼルシャフト 6―アミノカプロニトリルとヘキサメチレンジアミンの同時製造方法
JP3185482B2 (ja) 1993-07-14 2001-07-09 住友化学工業株式会社 ニトリル化方法
JP4190192B2 (ja) 2002-03-01 2008-12-03 独立行政法人科学技術振興機構 ニトリルの製造方法及びニトリル製造用触媒
JP2009132663A (ja) * 2007-11-30 2009-06-18 National Institute Of Advanced Industrial & Technology アクロレイン類の製造法とその装置
JP2016513119A (ja) 2013-02-20 2016-05-12 アルケマ フランス 気相および液体−気体相ニトリル化法
JP2016216362A (ja) * 2014-09-09 2016-12-22 新日鐵住金株式会社 ベンゾニトリルの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220166A (ja) * 1989-11-30 1991-09-27 Mitsui Toatsu Chem Inc α,β―不飽和ニトリルの製造方法
US5831116A (en) * 1996-12-18 1998-11-03 Northeastern University Catalytic process for making ethers, aldehydes esters and acids from alcohols using a supercritical fluid mobile
WO2015099053A1 (ja) * 2013-12-27 2015-07-02 新日鐵住金株式会社 シアノピリジンの製造方法、ベンゾニトリルの製造方法、炭酸エステルの製造方法、及び炭酸エステルの製造装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2144340A (en) 1937-03-26 1939-01-17 Du Pont Process and apparatus for the production of adiponitrile
US3297740A (en) 1963-02-11 1967-01-10 Scholven Chemie Ag Process for the production of trimethyl adipic acid dinitrile
JP3185482B2 (ja) 1993-07-14 2001-07-09 住友化学工業株式会社 ニトリル化方法
JP2000508305A (ja) 1996-04-10 2000-07-04 ビーエーエスエフ アクチェンゲゼルシャフト 6―アミノカプロニトリルとヘキサメチレンジアミンの同時製造方法
JPH10195035A (ja) 1997-01-14 1998-07-28 Lion Corp 脂肪族ニトリルの製造方法
JP4190192B2 (ja) 2002-03-01 2008-12-03 独立行政法人科学技術振興機構 ニトリルの製造方法及びニトリル製造用触媒
JP2009132663A (ja) * 2007-11-30 2009-06-18 National Institute Of Advanced Industrial & Technology アクロレイン類の製造法とその装置
JP2016513119A (ja) 2013-02-20 2016-05-12 アルケマ フランス 気相および液体−気体相ニトリル化法
JP2016216362A (ja) * 2014-09-09 2016-12-22 新日鐵住金株式会社 ベンゾニトリルの製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"CRC Handbook of Chemistry and Physics", 2003, CRC PRESS, pages: 1023 - 1038
CATALYSIS TODAY, vol. 121, 2007, pages 121 - 129
CHEMICAL REVIEWS, vol. 99, 1999, pages 453 - 473
JOURNAL OF ORGANIC CHEMISTRY, vol. 78, 2013, pages 10567 - 10571
NGUYEN, THI THU HANG ET AL.: "Synthesis of Acetonitrile fro Ammonium Acetate in Sub- and Supercritical Water", CHEMIE INGENIEUR TECHNIK, vol. 86, no. 1-2, 2014, pages 161 - 168, XP055629608 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131096A1 (ja) 2019-12-25 2021-07-01 ダイキン工業株式会社 冷凍サイクル装置、冷凍機油および冷媒漏洩防止剤
CN111454172A (zh) * 2020-05-13 2020-07-28 山东元利科技有限公司 一种酯类物质胺解制备戊二腈的生产方法
CN111454172B (zh) * 2020-05-13 2023-04-28 山东元利科技有限公司 一种酯类物质胺解制备戊二腈的生产方法

Also Published As

Publication number Publication date
US20210032197A1 (en) 2021-02-04
EP3750871A1 (en) 2020-12-16
CN111655667A (zh) 2020-09-11
JPWO2019156036A1 (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
Chatterjee et al. Reductive amination of furfural to furfurylamine using aqueous ammonia solution and molecular hydrogen: an environmentally friendly approach
WO2019156036A1 (ja) ニトリルの製造方法
Heydari et al. Trifluoroethanol as a metal-free, homogeneous and recyclable medium for the efficient one-pot synthesis of α-amino nitriles and α-amino phosphonates
JP6082034B2 (ja) 酢酸とジメチルエーテルを製造する触媒およびプロセス
JP6672325B2 (ja) ジエンの製造方法
KR20190019060A (ko) 이소프로필 알코올의 제조 방법 및 불순물이 저감된 이소프로필 알코올
US7465816B2 (en) Production of tetrahydrofuran from 1,4-butanediol
WO2013146370A1 (ja) 3-アルコキシ-3-メチル-1-ブタノールの製造方法
EP3553048B1 (en) Method for producing epsilon-caprolactam
KR100841604B1 (ko) 테트라히드로푸란을 제조하는 방법
Du et al. A simple and efficient zeolite catalyst for toluene oxidation in aqueous media
WO2019131746A1 (ja) ジシアノシクロヘキサン、及びビス(アミノメチル)シクロヘキサンの製造方法
US9828322B2 (en) Efficient synthesis of methacroelin and other alpha, beta-unsaturated aldehydes over a regenerable anatase titania catalyst
JP2014525942A (ja) Fachとedaの反応によるeddnおよび/またはedmnの製造方法
US8378147B2 (en) Process for producing a 2-alkyl-2-cycloalkene-1-one
Muratov et al. Formal reductive addition of acetonitrile to aldehydes and ketones
EP2819994B1 (en) Process for producing amide compounds
Yamaguchi et al. Supported Metal Hydroxides as Efficient Heterogeneous Catalysts for Green Functional Group Transformations
EP3124463A1 (en) Method for producing cyclopentyl alkyl ether compound
RU2421441C1 (ru) Одностадийный способ получения изопрена
US11111205B2 (en) Process for preparing alkanediol and dialkyl carbonate
JP6357047B2 (ja) ニトリル化合物の製造方法
CN117396459A (zh) 制备苯胺或苯胺衍生物的方法
KR20210079524A (ko) 터트-부탄올로부터 이소부틸렌의 제조방법
JP2001131135A (ja) アクリロニトリルの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019510976

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019750705

Country of ref document: EP

Effective date: 20200907