WO2019155907A1 - 通信装置 - Google Patents

通信装置 Download PDF

Info

Publication number
WO2019155907A1
WO2019155907A1 PCT/JP2019/002402 JP2019002402W WO2019155907A1 WO 2019155907 A1 WO2019155907 A1 WO 2019155907A1 JP 2019002402 W JP2019002402 W JP 2019002402W WO 2019155907 A1 WO2019155907 A1 WO 2019155907A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
communication device
data frame
signal
unit
Prior art date
Application number
PCT/JP2019/002402
Other languages
English (en)
French (fr)
Inventor
菅谷 茂
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to AU2019217730A priority Critical patent/AU2019217730B2/en
Priority to EP19751966.3A priority patent/EP3751894A4/en
Priority to KR1020207021638A priority patent/KR20200119789A/ko
Priority to US16/964,891 priority patent/US11357049B2/en
Publication of WO2019155907A1 publication Critical patent/WO2019155907A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/246TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter calculated in said terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present technology relates to a communication device, and more particularly, to a communication device capable of notifying surrounding devices of the presence of a device that is receiving data.
  • NAV network allocation vector
  • the configuration is such that the transmission path is used for the time described in the Duration portion of the MAC header.
  • the method using the busy tone signal is a situation in which communication in the access point is not established by a signal from a wireless communication terminal under the control of the surrounding access point in an environment where a plurality of access points exist adjacent to each other. This is a technique to prevent by transmitting a busy tone signal.
  • Patent Document 1 discloses that an access point using a transmission path is in use by transmitting a busy tone signal using a predetermined tone channel in an environment where a plurality of access points exist adjacent to each other. A technique for communicating a certain thing to another access point is disclosed.
  • the present technology has been made in view of such a situation, and can notify surrounding devices of the presence of a device that is receiving data.
  • a communication device includes a construction unit that generates a data frame, a transmission unit that transmits the data frame to a destination communication device, and transmission during a predetermined period during the transmission of the data frame. And a control unit that performs control to be interrupted.
  • a communication device uses a reception unit that receives a data frame that is transmitted with a period in which transmission is interrupted intermittently, and a transmission path in the period in which the transmission is interrupted.
  • a transmitting unit that transmits a busy signal indicating that the data is being used.
  • the data is transmitted during a period in which the transmission is interrupted with respect to the first communication device that transmits the data frame transmitted by intermittently providing a period in which the transmission is interrupted.
  • a receiving unit that receives a signal in use indicating that a transmission path is used, transmitted from a second communication device that receives a frame; and transmission control that controls transmission according to a reception status of the signal in use A part.
  • a data frame is generated, the data frame is transmitted to a transmission destination communication device, and control for interrupting transmission for a predetermined period is performed during transmission of the data frame.
  • the data frame that is transmitted with the period in which the transmission is interrupted is intermittently received, and the transmission path is used during the period in which the transmission is interrupted A medium signal is transmitted.
  • a period for interrupting transmission is provided intermittently, and the data frame is transmitted in a period for interrupting the transmission to the first communication device that transmits the transmitted data frame.
  • a busy signal indicating that the transmission path is being used, which is transmitted from the receiving second communication apparatus, is received. Then, transmission is controlled according to the reception status of the busy signal.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless network of a wireless LAN system.
  • the communication devices 1-0 to 1-4 operate on the same frequency channel.
  • communication devices 1 when it is not necessary to distinguish between the communication devices 1-0 to 1-4, they are referred to as communication devices 1.
  • the wireless LAN system in FIG. 1 is composed of a first basic service set (BSS1) and a second basic service set (BSS2) connected as a wireless network.
  • BSS1 and BSS2 exist as different wireless networks, but are BSSs configured using the same frequency channel, and are configured on a space where some overlap.
  • BSS is a group of wireless networks.
  • a group to which each communication device belongs such as a wireless network group of Mr. A's house and a wireless network group of Mr. B's house, is restricted by a password or the like.
  • BSS1 is composed of a communication device 1-0 and a communication device 1-1.
  • BSS2 includes a communication device 1-2, a communication device 1-3, and a communication device 1-4.
  • Dotted line circles # 0 to # 4 schematically show the radio wave reachable ranges of the communication devices 1-0 to 1-4 when transmission power control is not performed. Each of the circles # 0 to # 4 having the same size indicates that transmission is performed at the maximum transmission power because transmission power control is not performed. A white arrow indicates a data transmission direction. The same applies to FIG.
  • data is transmitted by the communication device 1-0 in BSS1, and data is transmitted by the communication device 1-2 in BSS2. Further, the communication device 1-1 is included in the radio wave reach of the communication device 1-2 of BSS2. Therefore, the BSS1 communication device 1-1 detects a signal transmitted by the BSS2 communication device 1-2.
  • FIG. 2 is a diagram showing an interference state of the wireless network when transmission power control is performed.
  • Circles # 0 and # 1 indicated by broken lines schematically indicate the radio wave reachable ranges of the communication device 1-0 and the communication device 1-1, respectively.
  • the fact that the circle # 0 and the circle # 1 are smaller than in the case of FIG. 1 indicates that the communication device 1-0 and the communication device 1-1 are performing transmission power control.
  • the circle # 2 is indicated by a broken line for reference, but in FIG. 2, the transmission power control is not performed in the communication device 1-2. Therefore, the circle # 2 indicated by the alternate long and short dash line is the communication device 1 -2 radio wave reachable range.
  • the communication device 1-0 and the communication device 1-1 of BSS1 perform communication by mutually performing transmission power control.
  • the communication method using NAV since the communication device 1-0 transmits an RTS frame and the communication device 1-1 transmits a CTS frame, the surrounding communication device 1-2 receives either of them.
  • the transmission / reception between the communication device 1-0 and the communication device 1-1 can be known.
  • the BSS2 communication device 1-2 is not included in the radio wave reach of the BSS1 communication device 1-1. Accordingly, the BSS2 communication device 1-2 cannot grasp that the communication device 1-1 is receiving data transmitted from the BSS1 communication device 1-0 to the communication device 1-1. .
  • the communication device 1-2 may determine that the transmission path is empty, and may transmit data to the communication device 1-4 without performing transmission power control. .
  • the communication device 1-1 In the communication device 1-1 that has received the data transmitted by the communication device 1-0, the communication device 1-2 transmits the data to the communication device 1-4, so that the data is received in an overlapping manner. . As a result, the communication device 1-1 may have an error in receiving data transmitted by the communication device 1-0, and may not be able to correctly decode the data.
  • FIG. 3 is a diagram showing a malfunction of the wireless network when the transmission power control is performed.
  • Circles # 2 and # 3 indicated by broken lines schematically indicate the radio wave reachable ranges of the communication device 1-2 and the communication device 1-3.
  • the fact that the circle # 2 and the circle # 3 are smaller than the case of FIG. 1 indicates that the communication device 1-2 and the communication device 1-3 are performing transmission power control.
  • the BSS1 communication device 1-0 and the communication device 1-1 communicate with each other by performing transmission power control, and the BSS2 communication device 1-2 and the communication device 1-3 transmit. Communication is performed in which power control is performed mutually to suppress transmission power.
  • the communication device 1-4 of BSS2 is not included in the radio wave reachable range of the communication device 1-2.
  • the communication device 1-4 since the communication device 1-4 may be difficult to detect a signal transmitted by the communication device 1-2, the communication device 1-4 is configured to interfere with data transmission / reception in the BSS2.
  • FIG. 4 is a diagram illustrating an operation example of surrounding communication apparatuses when a data receiving side transmits a CTS frame at the maximum transmission power.
  • a circle # 0 indicated by a broken line schematically indicates the radio wave reachable range of the communication device 1-0.
  • the fact that the circle # 0 is smaller than the case of FIG. 1 indicates that the communication device 1-0 performs data transmission by performing transmission power control.
  • Circles # 1 and # 2 are indicated by broken lines for reference. However, in FIG. 4, since transmission power control is not performed in the communication device 1-1 and the communication device 1-2, a one-dot chain line is shown.
  • a circle # 1 and a circle # 2 indicated by indicate the radio wave reachable range of the communication device 1-1 and the communication device 1-2.
  • the CTS frame is transmitted at the maximum transmission power as an operation in which the communication device 1-1 performs reception.
  • the CTS frame transmitted by the communication device 1-1 is received by the communication device 1-2 of the surrounding BSS2, and the NAV is set in the communication device 1-2.
  • the communication device 1-2 can receive the signal transmitted by the communication device 1-3, the NAV is set, so that, for example, a frame such as ACK indicating the completion of reception is transmitted to the communication device 1- Cannot send to 3.
  • a transmission frame is intermittently provided on the transmission side to transmit data frames.
  • a busy signal (Using Signal) is transmitted during a period in which transmission is interrupted.
  • the receiving-side communication device 1 that has received the data frame is configured to transmit the in-use signal using the intermittently set period
  • the communication device 1 that exists in the vicinity of the received in-use signal receives data Even if the frame is not received, it can be understood that the transmission path is in use.
  • the communication devices 1 existing in the vicinity are the communication devices 1 in the vicinity of the latter communication device 1 other than the communication device 1 that is transmitting the data frame and the communication device 1 that is transmitting the busy signal. It is.
  • FIG. 5 is a diagram illustrating a configuration example of a wireless LAN system according to the present technology.
  • the wireless LAN system in FIG. 5 is composed of BSS1 and BSS2, which are network groups, as in FIG. The description overlapping with the above description will be omitted as appropriate.
  • Circles # 1 to # 6 indicated by broken lines schematically indicate the radio wave arrival ranges when the transmission power control of the communication devices 1-1 to 1-6 is performed.
  • Circles # 1 to # 6 indicated by alternate long and short dash lines schematically indicate the radio wave reachable range by the maximum transmission power when the transmission power control of the communication apparatuses 1-1 to 1-6 is not performed.
  • the communication device 1-2 performs communication by transmission power control.
  • the communication device 1-5 performs communication based on transmission power control.
  • either communication based on transmission power control or communication based on maximum transmission power where transmission power control is not performed is appropriately performed.
  • the communication device 1-1 that receives a data frame transmitted by the communication device 1-0 of BSS1 transmits a busy signal according to the present technology as an operation for performing reception.
  • the communication device 1-2 belonging to BSS2 is configured to be able to perform transmission within a range that does not affect reception in the communication device 1-1.
  • the communication device 1-1 when the communication device 1-1 does not control the transmission power as indicated by the one-dot chain line circle # 1, the communication device 1-0, the communication device 1-2 to the communication device 1-4, 1-1 receives the in-use signal transmitted by 1-1, and grasps that it is in use to receive the signal transmitted through the transmission path by the communication device 1-1.
  • the communication device 1-5 Since the communication device 1-5 has not received the busy signal transmitted by the communication device 1-1, the communication device 1-2 has received the data transmitted by the communication device 1-2 as indicated by the dashed-dotted circle # 2. However, it is also possible to transmit a signal to another communication device within a range that does not affect the reception of the communication device 1-1 that is receiving the data. Further, the communication apparatus 1-5 transmits a signal as shown by a broken circle # 5 so that the communication apparatus 1-2 does not affect the reception of a response such as an ACK frame from the communication apparatus 1-1. Sometimes, it is also possible to transmit a signal to the communication device 1-5 by controlling the transmission power.
  • transmission of a signal from the communication device 1-2 to the communication device 1-4 without performing transmission power control as indicated by the one-dot chain line circle # 5 indicates that the circle # 4 of the one-dot chain line
  • transmission of a response such as an ACK frame from the communication device 1-4 affects the reception of signals in the communication device 1-1 and the communication device 1-2.
  • FIG. 6 is a diagram illustrating a state in which a reception error occurs when conventional transmission power control is performed.
  • the horizontal direction represents time.
  • the transmission side device is the communication device 1 on the transmission side, and corresponds to the communication device 1-0 in FIG.
  • the receiving-side device is the receiving-side communication device 1 and corresponds to the communication device 1-1 in FIG.
  • the OBSS transmission side device is a communication device 1 on the transmission side existing in the surrounding OBSS, and corresponds to the communication device 1-2 in FIG.
  • the OBSS transmission side device is located in the vicinity of the reception side device existing in the BSS.
  • the surrounding OBSS receiving side device is the receiving side communication device 1 existing in the surrounding OBSS, and corresponds to the communication device 1-3 in FIG.
  • the OBSS is a BSS that overlaps the BSS of the transmission side device and the reception side device.
  • the transmitting device controls transmission power and transmits a data frame to the receiving device
  • the surrounding OBSS transmitting device transmits to the surrounding OBSS receiving device.
  • a case where transmission of a data frame is started with the maximum transmission power without controlling the power will be described.
  • the height of the square indicating the data frame indicates the level of power (transmission power or reception power).
  • the transmission side device sequentially transmits a preamble (P), header information (HR), MPDU (MAC layer protocol data unit) -1, MPDU-2, MPDU-3, and MPDU-4. .
  • MPDU-1, MPDU-2, MPDU-3, and MPDU-4 aggregated (concatenated) data frames.
  • the surrounding OBSS transmission side apparatus cannot detect the data frame transmitted by the transmission side apparatus, and the transmission path is If it is erroneously determined to be in an empty state, data frame transmission is started.
  • TPC Transmit Power Control
  • surrounding OBSS transmission side devices that do not perform transmission power control are preamble (P), header information (HR), Transmission of MPDU-1, MPDU-2, MPDU-3, and MPDU-4 is started.
  • the receiving device receiving the data frame transmitted by the transmitting device has a nearby OBSS transmitter nearby and the received electric field strength is high.
  • the data frame transmitted from the surrounding OBSS transmission side device is received.
  • the receiving side device After receiving the data frame, the receiving side device transmits a preamble (P) and an ACK frame (BA: block ack).
  • P preamble
  • BA block ack
  • the ACK frame (NG) transmitted here indicates that reception of the data frame has failed.
  • the peripheral OBSS receiver that receives only the data frame transmitted by the peripheral OBSS transmitter transmits the preamble and the ACK frame after the reception of the BSS data frame is completed. To do.
  • the ACK frame (OK) transmitted here indicates that the data frame has been successfully received.
  • the reception side device since the reception field strength of the data frame transmitted by the surrounding OBSS transmission side device is high even though the reception side device receives the data frame transmitted by the transmission side device, the reception side device A reception error occurred.
  • the receiving side device that failed to receive the data frame transmits an ACK frame indicating NG
  • the surrounding OBSS receiving side device that has successfully received the data frame transmits an ACK frame indicating OK. If the transmission timing of the ACK frame of the receiving device overlaps the transmission timing of the ACK frame of the surrounding OBSS receiving device, the surrounding OBSS transmitting device fails to receive the ACK frame transmitted by the surrounding OBSS receiving device. There is a risk that.
  • FIG. 7 is a diagram illustrating an example of communication control using a busy signal according to the present technology.
  • the reception side neighboring peripheral device, the receiving side device, the transmitting side device, the transmission / reception side neighboring peripheral device, and the receiving side far side peripheral device are shown in a state of transmission or reception.
  • the description overlapping with the description of FIG. 6 is omitted.
  • the reception-side nearby peripheral device is a peripheral communication device 1 that exists in the vicinity of the reception-side device, and corresponds to the communication device 1-0 in FIG.
  • the reception side device is the communication device 1 on the reception side and corresponds to the communication device 1-1 in FIG.
  • the transmission side device is the communication device 1 on the transmission side and corresponds to the communication device 1-2 in FIG.
  • the transmission / reception side neighboring device is a surrounding communication device 1 in the vicinity of the reception side device and in the vicinity of the transmission side device, and corresponds to the communication device 1-3 in FIG.
  • the reception-side distant peripheral device is a peripheral communication device 1 that is far from the reception side and is present in the vicinity of the transmission side, and corresponds to the communication device 1-4 in FIG.
  • the SR transmission side device is a communication device that transmits a signal using a spatial reuse technology (Spatial Reuse technology) that promotes spatial reuse of frequency resources, and corresponds to the communication device 1-5 in FIG.
  • the SR receiving side device is a communication device that receives a signal transmitted using the space reuse technology, and corresponds to the communication device 1-6 in FIG.
  • Spatial reuse technology is a technology that allows transmission / reception in the form of being superposed on it if it does not affect the previous transmission / reception even if someone is already using the channel.
  • the transmission side device transmits a predetermined preamble (P) and header information (HR).
  • P preamble
  • HR header information
  • the receiving side device that has received the P and HR sent by the transmitting side device intermittently sends a busy signal (US: Using Signal).
  • the receiving device designated as the receiving device in the header information is configured to immediately return a busy signal.
  • the reception-side nearby peripheral device that has received only the in-use signal knows that there is a communication device (reception-side device) that uses the transmission path for a predetermined time. be able to. In the vicinity device on the receiving side, transmission of data frames can be prohibited by grasping the existence of a communication device using the transmission path.
  • the transmission / reception-side neighboring peripheral device that has received both the signal transmitted by the transmission-side device and the busy signal transmitted by the reception-side device receives both signals. Therefore, it can be understood that the receiving side device and the transmitting side device are present in the vicinity.
  • the far-side receiving device that receives only the signal transmitted by the transmitting-side device and has not detected the busy signal transmitted by the receiving-side device transmits to its surroundings. It can be ascertained that there is no communication device (receiving device) that is receiving data transmitted by the side device.
  • SR can be used for transmission.
  • the transmitting side apparatus receives a busy signal during a GAP period after a predetermined preamble (P) and header information (HR), and then receives the first data unit (MPDU). -1) is sent.
  • GAP is a period during which transmission is interrupted. When the transmission of the first data unit is completed, a GAP is provided.
  • the receiving side device transmits a busy signal during GAP. Also, when the next data unit (MPDU-2) to (MPDU-3) is transmitted from the transmitting side device following the busy signal after MPDU-1, and the end of each data unit arrives, GAP Are intermittently provided, and the in-use signal (US) is intermittently transmitted from the receiving side device during the GAP.
  • an end signal (ES) is transmitted from the reception side device as shown in the second row from the top It is good.
  • the block ACK frame may be returned from the receiving device to the transmitting device after a predetermined time has elapsed.
  • the SR transmission side device that performs transmission using the space reuse technology also provides a GAP after a predetermined preamble (P) and header information (HR), and then The first data unit (MPDU-1) is transmitted.
  • P preamble
  • HR header information
  • the SR receiving device that receives the signal transmitted using the space reuse technology also transmits the busy signal during the GAP by the SR transmitting device.
  • the SR receiving side apparatus may also be configured to transmit an end signal (ES), or may be configured to return a block ACK frame.
  • FIG. 8 is a block diagram illustrating a configuration example of a communication device to which the present technology is applied.
  • the communication device 1 will be described as a configuration that can operate as both an access point and a communication device that constitute a wireless LAN system, but portions unnecessary for each operation are omitted as necessary. Also good.
  • the communication device 1 is configured to include an Internet connection module 11, an information input module 12, a device control unit 13, an information output module 14, and a wireless communication module 15.
  • the Internet connection module 11 When the Internet connection module 11 operates as an access point, it functions as an adapter for connecting to the Internet network by wire.
  • the information input module 12 is a unit that receives when an operation requested by the user is input, and determines the input based on an input from a keyboard or a user's voice.
  • the device control unit 13 centrally manages control of the operation of the communication apparatus 1 and stores functions corresponding to a CPU (Central Processing Unit) that executes arithmetic processing, an OS, and an application.
  • a CPU Central Processing Unit
  • the information output module 14 is a unit that outputs information to the user, for example, and outputs desired data to the user by displaying the information on a display, for example.
  • the wireless communication module 15 operates as a communication module for actually performing a wireless communication operation.
  • FIG. 9 is a block diagram illustrating a functional configuration example of the wireless communication module of FIG.
  • the wireless communication module 15 is configured to include an interface 101, a transmission buffer 102, a network management unit 103, a transmission frame construction unit 104, a wireless communication control unit 105, a header information generation unit 106, and an in-use signal generation unit 107. .
  • the radio communication module 15 is configured to include a transmission timing control unit 108, a transmission power control unit 109, a radio transmission processing unit 110, an antenna control unit 111, an antenna 111-1A and an antenna 111-1B, and a radio reception processing unit 112.
  • the wireless communication module 15 is configured to include a detection threshold value control unit 113, a reception timing control unit 114, a busy signal detection unit 115, a header information analysis unit 116, a reception data construction unit 117, and a reception buffer 118. .
  • the unit 116 is a part that performs communication control.
  • the interface 101 is an interface unit with the device control unit 13 of FIG.
  • the interface 101 supplies the data supplied from the device control unit 13 to the transmission buffer 102 and supplies the data accumulated in the reception buffer 118 to the device control unit 13.
  • the interface 101 supplies information supplied from the device control unit 13 to the network management unit 103, and supplies information on surrounding wireless networks managed by the network management unit 103 to the device control unit 13.
  • the transmission buffer 102 stores MPDU data supplied from the device control unit 13 for wireless transmission.
  • the transmission buffer 102 supplies the stored data to the transmission frame construction unit 104 at a predetermined timing.
  • the network management unit 103 is based on information supplied from the wireless communication control unit 105 or the interface 101, and includes communication included in the OBSS that is a surrounding wireless network that overlaps with the surrounding communication device 1 with its own BSS. Manages attribute information such as device addresses.
  • the network management unit 103 supplies the managed BSS attribute information to the transmission frame construction unit 104, the wireless communication control unit 105, the interface 101, and the reception data construction unit 117 as necessary.
  • the transmission frame construction unit 104 uses the data from the transmission buffer 102 to generate a wireless communication frame in a predetermined aggregation unit for wireless communication, and the generated wireless communication frame is converted into a header information generation unit 106 and a wireless transmission process. To the unit 110.
  • the wireless communication control unit 105 performs access communication control on the wireless transmission path according to a predetermined communication protocol based on information supplied from the network management unit 103, the busy signal detection unit 115, and the header information analysis unit 116.
  • the wireless communication control unit 105 controls power related to communication, such as controlling the transmission power control unit 109, setting transmission power, controlling the detection threshold value control unit 113, and acquiring reception power.
  • the wireless communication control unit 105 supplies information obtained as a result of the access communication control to the header information generation unit 106, the busy signal generation unit 107, and the network management unit 103.
  • the header information generation unit 106 generates a predetermined preamble and header information to be added to the head portion of the data frame generated by the transmission frame construction unit 104 under the control of the wireless communication control unit 105.
  • the header information generation unit 106 supplies the generated predetermined preamble and header information to the busy signal generation unit 107.
  • the header information generation unit 106 adds the generated predetermined preamble and header information to the data frame from the transmission frame construction unit 104 and supplies the data frame to the wireless transmission processing unit 110.
  • the in-use signal generation unit 107 is receiving a data frame based on information supplied from the wireless communication control unit 105, the header information generation unit 106, and the detection threshold value control unit 113, and is using the transmission path. Is used to generate a signal in use.
  • the busy signal generator 107 supplies the generated busy signal to the transmission timing controller 108 and the wireless transmission processor 110.
  • the transmission timing control unit 108 controls the timing at which the wireless transmission processing unit 110 transmits a data frame or an in-use signal on the transmission path based on information supplied from the reception timing control unit 114 and the transmission power control unit 109.
  • the transmission power control unit 109 needs transmission power of a transmission frame transmitted by the wireless transmission processing unit 110 toward the transmission destination communication device under the control of the wireless communication control unit 105 and the transmission timing control unit 108. Control accordingly.
  • the wireless transmission processing unit 110 includes a data frame to which the header information generated by the header information generation unit 106 is added, a data frame generated by the transmission frame construction unit 104, a busy signal generated by the busy signal generation unit 107, and a transmission frame. Is converted into a predetermined baseband signal to perform modulation processing and signal processing.
  • the wireless transmission processing unit 110 supplies the baseband signal after the signal processing to the antenna control unit 111 so as to transmit with the transmission power controlled by the transmission power control unit 109 at the timing controlled by the transmission timing control unit 108. To do.
  • the antenna control unit 111 controls the antenna 111-1A and the antenna 111-1B composed of a plurality of elements, and transmits or receives signals from the transmission path. At least one of the antenna 111-1A and the antenna 111-1B transmits a signal from the wireless transmission processing unit 110 to the transmission path. At least one of the antenna 111-1A and the antenna 111-1B supplies a signal received from the transmission path to the wireless reception processing unit 112.
  • the wireless reception processing unit 112 receives a data frame wirelessly transmitted in a predetermined format via the antenna 111-A or the antenna 111-1B.
  • the radio reception processing unit 112 supplies the received data frame to the detection threshold value control unit 113, the reception timing control unit 114, the header information analysis unit 116, and the reception data construction unit 117.
  • the detection threshold value controller 113 sets a threshold value for detecting a preamble and a midamble included in the received signal, and detects a signal (data frame) having a reception power larger than the set threshold value. Information on the detected reception power is supplied to the busy signal generation unit 107, the reception timing control unit 114, and the wireless reception processing unit 112.
  • the reception timing control unit 114 performs wireless communication based on information on received power from the detection threshold control unit 113, parameters of the used signal detected by the used signal detection unit 115, header information analyzed by the header information analysis unit 116, and the like.
  • the reception processing unit 112 controls the timing of receiving a data frame and an in-use signal to be inserted.
  • the reception timing control unit 114 supplies the transmission timing control unit 108 with information on the reception timing of the data frame and the used signal to be inserted.
  • the in-use signal detection unit 115 detects the in-use signal from the header information analyzed by the header information analysis unit 116, thereby grasping the use of the transmission path, and analyzing and analyzing the parameters described in the in-use signal.
  • the parameters are supplied to the reception timing control unit 114 and the wireless communication control unit 105.
  • the header information analysis unit 116 detects the preamble added to the head of the frame, thereby extracting the header information and analyzing the content of the header information. Although details will be described later, since the in-use signal is also compatible with the existing preamble, it is extracted as header information.
  • the header information analysis unit 116 supplies the header information and the header information analysis result to the reception timing control unit 114, the busy signal detection unit 115, the reception data construction unit 117, and the wireless communication control unit 105.
  • the reception data construction unit 117 performs the aggregated reception received by the wireless reception processing unit 112 based on the management information of the network managed by the network management unit 103 and the analysis result of the header information analyzed by the header information analysis unit 116. A frame is generated as received data in a predetermined unit.
  • the reception data construction unit 117 stores the reception data in the reception buffer 118.
  • the reception buffer 118 stores MPDU data generated by the reception data construction unit 117.
  • the reception buffer 118 reads the data at a predetermined timing and supplies it to the device control unit 13 via the interface 101.
  • the in-use signal detection unit 115 detects the in-use signal from the header information from the header information analysis unit 116 because the in-use signal is compatible with the existing preamble.
  • the in-use signal detector 115 may be configured to detect the in-use signal directly from the received frame.
  • FIG. 10 is a diagram illustrating a configuration example of a conventional aggregated MPDU (A-MPDU) frame.
  • the A-MPDU frame is composed of a predetermined preamble (Preamble), a PLCP header (Header), and a MAC layer protocol data unit (MPDU).
  • Preamble a predetermined preamble
  • Header a PLCP header
  • MPDU MAC layer protocol data unit
  • the preamble consists of a legacy short training field (L-STF), a legacy long training field (L-LTF), and a legacy signal (L-SIG).
  • L-STF legacy short training field
  • L-LTF legacy long training field
  • L-SIG legacy signal
  • L-STF indicates the beginning of the frame.
  • L-LTF indicates information for correcting timing and frequency error.
  • L-SIG indicates the setting of the modulation method and coding rate of the data portion that follows and the signal duration.
  • the PLCP header is composed of a high throughput signal (HT-SIG), a high throughput short training field (HT-STF), a high throughput long training field (HT-STF), and the like.
  • H-SIG high throughput signal
  • H-STF high throughput short training field
  • HTTP-STF high throughput long training field
  • HT-SIG and HT-STF are recognized as part of the preamble and generally contain various information necessary for newly expanded functions.
  • HT-STF is used to perform channel estimation.
  • an MPDU is configured as a data payload.
  • An MPDU can be configured as one burst by aggregating subframes of a plurality of MPDUs.
  • FIG. 10 shows an example in which four subframes MPDU-1 to MPDU-4 are aggregated.
  • a frame check sequence (FCS) is added to an actual data part (MPDU) of a delimiter (Delimiter) in which length information and the like are described, and padding processing is performed as necessary.
  • FCS frame check sequence
  • MPDU actual data part
  • Delimiter delimiter
  • FIG. 11 is a diagram illustrating a configuration example of an A-MPDU frame used in the present technology.
  • FIG. 11 shows a configuration example of the MAC layer protocol data unit (MPDU) in FIG.
  • a GAP section indicated by G is inserted at the boundary of the MPDU, and the receiving side communication apparatus 1 can return a busy signal at the GAP timing.
  • GAP is configured as a time interval during which a busy signal can be returned.
  • the GAP does not have to be configured to include a predetermined interframe space time interval.
  • the GAP may be configured from the information length of the in-use signal frame at the transmission / reception operation switching time.
  • MPDU-0 header is set at the head of A-MPDU.
  • the MPDU-0 header is composed of a type indicating the frame format, information for identifying the address information of the target communication apparatus 1, length information indicating the entire length, various parameter information, and error detection CRC. .
  • the receiving side communication device 1 that has received the frame prepares transmission of a busy signal when the address information of the target communication device 1 is described as the address information of the target communication device 1, and the GAP timing has arrived. If this happens, it is desirable to be ready for immediate transmission.
  • the MPDU includes the GAP and the subframe of each MPDU shown in FIG.
  • the MPDU in FIG. 11 includes four subframes MPDU-1 through MPDU-4.
  • each of the MPDUs in FIG. 11 may be fragmented to a predetermined length and configured as a MAC layer service data unit (MSDU).
  • MSDU MAC layer service data unit
  • FIG. 12 is a diagram illustrating a frame configuration example of a signal in use (Using Signal).
  • the Using Signal frame in Fig. 12 is composed of Using Signal parameters, which is a feature of this technology, in addition to L-STF, L-LTF, and L-SIG.
  • L-STF, L-LTF, and L-SIG have parameter arrangements compatible with the conventional preamble, and the presence of the Using ⁇ Signal frame can be grasped even in existing communication devices.
  • FIG. 13 is a diagram showing a frame configuration example of End Signal.
  • the End Signal frame in Fig. 13 is composed of L-STF, L-LTF, and L-SIG.
  • End Signal frame notifies the end of the A-MPDU frame, so that all the parameters described in the L-SIG may be set to 0.
  • FIG. 14 is a diagram showing the arrangement of parameters in the L-SIG and Using Signal parameters.
  • L-SIG has a RATE field (4 bits), an R bit (1 bit), a LENGTH field (12 bits), a parity P bit (1 bit), and a Tail bit field (6 bits). ).
  • the RATE field indicates the modulation method and coding rate of the data part.
  • the R bit indicates the L-SIG of the present technology.
  • the LENGTH field indicates the remaining information length of the data portion. For example, in the LENGTH field, a reception duration calculated based on a parameter describing the duration of the data frame added to the data frame is described.
  • the Using Signal parameter is composed of, for example, a length of 2 OFDM symbols, but it may be composed of a length of 1 OFDM symbol or a length of 3 OFDM symbols or more depending on the amount of information. Good.
  • Signal parameters are Type (2 bits), RSI (4 bits), BSS Color information (6 bits), AID12 information (12 bits), ACK bitmap information (Sequence) (12 bits), TPC information (2 bits) , CRC (4 bits), and Tail bit fields (6 bits).
  • Type indicates the frame format.
  • the RSI is information on the received electric field strength of the data frame obtained when the data frame is received.
  • BSS Color is information for identifying BSS (network).
  • AID 12 is an association identifier that can identify a communication device, and TPC information is transmission power control parameter information when transmitting a busy signal.
  • the TPC information may be information added to the header information of the data frame.
  • the Using Signal parameter may also include information identifying the communication device that has transmitted the data frame.
  • Level signals may be transmitted by space reuse technology.
  • the surrounding communication device 1 that has received the in-use signal knows to which BSS the communication device 1 that is receiving the data belongs. can do.
  • OBSS overlapping BSS
  • Parameters such as BSS Color information are described in the signal of the communication device 1 on the transmission side, and the space reuse technology is defined. After the communication device 1 on the reception side grasps the level that needs to be received, It was necessary to apply space reuse technology to the extent that the reception was not affected.
  • the communication device 1 since the TPC information is described in the Using Signal parameter, the communication device 1 that has received the in-use signal knows the level that needs to be received and does not affect the reception. Spatial reuse technology can be applied.
  • FIG. 15 is a diagram illustrating a subcarrier configuration example of an OFDM signal.
  • one OFDM symbol is composed of 52 subcarriers, of which 4 are pilot subcarriers indicated by P in the figure. That is, 48 1OFDM symbols are used as data subcarriers indicated by D in the figure.
  • FIG. 15 includes +/ ⁇ 26 (total 52) subcarriers with a center frequency of 0 as a DC null carrier, of which subcarriers ⁇ 21, ⁇ 7, +7, ⁇ 7 Four of 21 are used as pilot subcarriers.
  • FIG. 16 is a diagram showing the relationship between the modulation scheme and the coding rate.
  • coding rate R 1/2, and coding for each subcarrier, 48 bits of information can be coded with 10 FDM symbols, 24 bits of information can be transmitted, and the data rate Are 6 Mb / s (20 MHz channel space), 3 Mb / s (10 MHz channel space), and 1.5 Mb / s (5 MHz channel space).
  • coding rate R 3/4
  • coding for each subcarrier 48 bits of information can be coded with 10 FDM symbols, 36 bits of information can be transmitted, and the data rate is 9 Mb / s (20 MHz channel space), 4.5 Mb / s (10 MHz channel space), and 2.25 Mb / s (5 MHz channel space).
  • coding rate R 1/2, and coding every 2 subcarriers, 96 bits of information can be encoded with 10 FDM symbols, 48 bits of information can be transmitted, and the data rate is 12 Mb / s (20 MHz channel space), 6 Mb / s (10 MHz channel space), and 3 Mb / s (5 MHz channel space).
  • coding rate R 3/4, coding every 2 subcarriers, 96 bits of information can be coded with 10 FDM symbols, 72 bits of information can be transmitted, and the data rate is 18 Mb / s (20 MHz channel space), 9 Mb / s (10 MHz channel space), and 4.5 Mb / s (5 MHz channel space).
  • coding rate R 3/4, coding every 4 subcarriers, 192-bit information can be encoded with 10FDM symbols, 144-bit information can be transmitted, and the data rate is 36 Mb It is shown that / s (20 MHz channel space), 18 Mb / s (10 MHz channel space), and 9 Mb / s (5 MHz channel space).
  • coding rate R 2/3
  • coding every 6 subcarriers 288-bit information can be encoded with 10FDM symbols
  • 192-bit information can be transmitted
  • the data rate is 48 Mb It is shown that / s (20 MHz channel space), 24 Mb / s (10 MHz channel space), and 12 Mb / s (5 MHz channel space).
  • coding rate R 3/4
  • coding every 6 subcarriers 288-bit information can be encoded with 10FDM symbols, 216-bit information can be transmitted, and the data rate is 54 Mb / s (20 MHz channel space), 27 Mb / s (10 MHz channel space), and 13.5 Mb / s (5 MHz channel space).
  • the amount of information that can be transmitted per 10 FDM symbols varies depending on the modulation method used and the coding rate.
  • FIG. 17 is a diagram illustrating a configuration example of a preamble.
  • FIG. 17 shows a detailed configuration example of the preamble portion shown in FIG.
  • the preamble is composed of predetermined parameter values in a format determined for synchronizing signals as a training sequence added to the head of the frame.
  • GI guard interval
  • STF signal detection, AGC, and diversity selection are performed from t1 to t7, and coarse frequency offset evaluation and timing synchronization are performed from t8 to t10.
  • LTF performs channel and fine frequency offset evaluation.
  • the Legacy SIGNAL (L-SIG) field part describing the PHY parameters is constructed, followed by the data part.
  • the L-SIG and the data part are also separated by guard intervals. Since the L-SIG field is always arranged in the first OFDM symbol, it can be transmitted with compatibility with the frame structure of the existing scheme.
  • FIG. 18 is a diagram illustrating a configuration example of the L-SIG field.
  • FIG. 18 shows an example of the configuration of the L-SIG shown in FIG. 14, and since it is the same configuration, its description is omitted.
  • the L-SIG field is composed of a RATE field that specifies a frame modulation method and a coding rate, and a LENGTH field that indicates a frame length, and a tail bit is arranged, so that decoding can be terminated.
  • a unit of time (4 ⁇ sec) that can be recognized as data at a predetermined time per OFDM symbol a unit of time (4 ⁇ sec) that can be recognized as data at a predetermined time per OFDM symbol.
  • a certain amount of time is required to send actual data using a plurality of OFDM symbols.
  • the SIGNAL field is placed in front of the data frame, the Tail bit is placed in the first data frame part, the 16-bit Service and the tail Data part, and the part that is less than the OFDM symbol has Padding Applied.
  • FIG. 19 is a diagram showing a configuration example of A-MPDU.
  • a technique is used in which a plurality of MPDUs are connected to form one aggregated MPDU (A-MPDU) configuration.
  • FIG. 19 shows a configuration in which the A-MPDU of subframe 1 to the A-MPDU of subframe n are aggregated.
  • transmission efficiency can be improved by sending a plurality of A-MPDU subframes together.
  • a delimiter (Delimiter) is added to the head of the MPDU so that the breaks of the MPDU can be known in advance.
  • FIG. 20 is a diagram illustrating a detailed configuration example of one MPDU among A-MPDUs.
  • MPDU consists of MPDU delimiter (4 Octets), MPDU (Octets is variable), and Pad (0-3 Octets). As shown in FIG. 20, the MPDU is configured by adding a delimiter to the head of each MPDU.
  • FIG. 21 is a diagram showing a configuration example of the MPDU delimiter.
  • the MPDU delimiter is composed of 4-bit Reserved, 12-bit MPDU length, b-bit CRC, and 8-bit Delimiter Signature.
  • padding is performed in units of each MPDU with respect to the length of the MPDU described in the MPDU delimiter.
  • FIG. 22 is a diagram illustrating an internal configuration example of the MPDU.
  • the inside of the MPDU is composed of a MAC header, a frame body, and FCS.
  • MAC header part address information of a transmission source and a transmission destination is described.
  • the MAC header in FIG. 22 is: 2 Octets Frame Control, 2 Octets Duration ID, 6 Octets Address1, 6 Octets Address2, 6 Octets Address3, 2 Octets sequence control, 6 Octets Address4, 2 Octets QoS control 4 octets HT control, 0-7951 octets frame body, and 4 octets FCS.
  • the error detection of the MAC header has a configuration in which the correctness / incorrectness cannot be determined unless the tail FCS is decoded, and it takes time to identify which device should return the busy signal.
  • MPDUerHeader is configured to be independent. .
  • FIG. 23 is a diagram illustrating a configuration example of padding.
  • the MPDU-1 is padded with a data length of D15 in order from the top.
  • MPDU-2 is padded with a data length of D10.
  • MPDU-3 has a data length of D13 and is not padded.
  • MPDU-4 is padded with a data length of D12.
  • a frame is configured by inserting an MPDU header and a GAP as described above with reference to FIG.
  • the GAP is set with an OFDM symbol which is the time length of a predetermined busy signal. That is, assuming that a predetermined preamble (8 ⁇ s ⁇ 2), L-SIG (4 ⁇ s), and using the “Signal” parameter (8 ⁇ s) of the present technology, a GAP is configured as a time of 28 ⁇ s. However, the GAP time may be appropriately adjusted depending on the configuration of the in-use signal.
  • the transmission-side communication device 1 corresponds to the transmission-side device in FIG.
  • step S101 the transmission buffer 102 and the network management unit 103 acquire transmission data from the application to be transmitted (device control unit 13) via the interface 101.
  • the network management unit 103 manages attribute information such as the address of a communication device included in a BSS that is a group of surrounding wireless networks that overlaps with its own BSS with surrounding communication devices.
  • step S102 the network management unit 103 acquires the attribute information of the communication device 1 on the reception side based on the transmission data acquired via the interface 101.
  • step S103 the network management unit 103 determines whether or not the communication method of the communication device 1 on the reception side corresponds to the busy signal. If it is determined in step S103 that the currently used signal is not supported, the process proceeds to step S104.
  • step S104 the transmission frame construction unit 104 generates a data frame based on an existing communication method under the control of the network management unit 103.
  • step S105 the transmission frame construction unit 104 generates a data frame corresponding to the busy signal under the control of the network management unit 103.
  • the generated data frame may have a configuration in which a plurality of MPDUs are collected so as to have a predetermined aggregated MPDU configuration.
  • the generated data frame is supplied to the header information generation unit 106 and the wireless transmission processing unit 110.
  • the header information generation unit 106 generates a predetermined preamble and header information to be added to the head portion of the frame supplied from the transmission frame construction unit 104 based on the information supplied from the wireless communication control unit 105.
  • the header information information for specifying the destination communication device 1, information on the transmission power of the data frame, and the like are described.
  • the radio reception processing unit 112 receives the transmission path signal via the antenna 111-1B, and when the signal is detected by the detection threshold control unit 113, the radio reception processing unit 112 is radio-transmitted in a predetermined format from the surrounding communication device 1. It is determined whether or not a data frame is included. When the wireless reception processing unit 112 determines that a data frame wirelessly transmitted in a predetermined format from the surrounding communication device 1 is included, the received data frame is supplied to the header information analysis unit 116.
  • the header information analysis unit 116 detects the preamble from the received data frame, analyzes the header information, and supplies the analysis result to the wireless communication control unit 105. When header information is included, the header information analysis unit 116 supplies the header information to the busy signal detection unit 115. The busy signal detector 115 detects whether or not there is a busy signal in the header information.
  • the in-use signal detection unit 115 is configured to detect the in-use signal from the header information from the header information analysis unit 116.
  • the signal detection unit 115 may be configured to detect a busy signal directly from the received data frame.
  • the busy signal detection unit 115 supplies information on the busy signal to the wireless communication control unit 105, and another communication device that receives the frame transmitted on the transmission path Know that it exists. Such an access procedure is performed.
  • the access procedure is an example and is not limited to this.
  • step S106 the wireless communication control unit 105 performs a data frame on the transmission path based on an analysis result analyzed by the header information analysis unit 116 or a detection result detected by the busy signal detection unit 115 after a predetermined access procedure. It is determined whether or not transmission is possible. In step S106, the process waits until it is determined that the data frame can be transmitted on the transmission path.
  • step S106 determines whether the transmission path is empty, that is, it is possible to transmit the data frame on the transmission path. If the busy signal is not detected, if it is determined in step S106 that the transmission path is empty, that is, it is possible to transmit the data frame on the transmission path, the process proceeds to step S107.
  • step S107 the radio communication control unit 105 controls the header information generation unit 106 to transmit a data frame.
  • the header information generation unit 106 adds the generated header information to the data frame generated by the transmission frame construction unit 104, and supplies the data frame to the wireless transmission processing unit 110.
  • the radio transmission processing unit 110 converts the data frame with the header information generated by the header information generation unit 106 into a predetermined baseband signal, performs modulation processing and signal processing, and performs baseband after signal processing.
  • the signal is transmitted via the antenna 111-1A.
  • the frame may be transmitted with the minimum transmission power that can be received by the communication device 1 on the reception side under the control of the transmission power control unit 109. Also, the frame is transmitted with a transmission power value that does not affect the OBSS communication calculated based on the received electric field strength when the in-use signal is received and the received electric field strength information described in the in-use signal. It may be.
  • step S108 the wireless communication control unit 105 determines whether or not the in-use signal is disposed, and when it is determined that the in-use signal is not disposed, the process returns to step S107. The subsequent processing is repeated.
  • step S108 If it is determined in step S108 that the signal in use is located, the process proceeds to step S109.
  • step S 109 the transmission timing control unit 108 inserts a GAP under the control of the wireless communication control unit 105.
  • the GAP insertion method is not limited to transmission timing control, and it is also possible to insert empty data in the GAP part so that no signal is output only in the GAP part when creating a data frame. .
  • step S110 the wireless communication control unit 105 determines whether or not a busy signal is detected based on the detection result from the busy signal detection unit 115 after the predetermined access procedure described above. If it is determined in step S110 that a busy signal has been detected, the process proceeds to step S111.
  • step S111 the wireless communication control unit 105 acquires the parameters described in the busy signal detected by the busy signal detection unit 115. At this time, the wireless communication control unit 105 may monitor the state of the transmission path as necessary.
  • step S110 determines whether a busy signal has not been detected. If it is determined in step S110 that a busy signal has not been detected, the process proceeds to step S112. In step S112, the wireless communication control unit 105 performs a predetermined access procedure, and determines whether the in-use signal is continuously undetected.
  • step S112 If it is determined in step S112 that the in-use signal has not been detected continuously, the process proceeds to step S113.
  • step S113 the wireless communication control unit 105 determines whether or not to perform retransmission, and when determining that retransmission is not performed, ends the processing of the communication device 1 on the transmission side.
  • step S113 If it is determined in step S113 that retransmission is to be performed, the process returns to step S106, and the subsequent processes are repeated. If it is determined in step S112 that the in-use signal is not continuously detected, the process proceeds to step S114.
  • step S114 the wireless communication control unit 105 determines whether it is the end of the data frame. If it is determined in step S114 that it is not the end of the data frame, the process returns to step S107, and the subsequent processes are repeated.
  • step S114 If it is determined in step S114 that it is the end of the data frame, the processing of the communication device 1 on the transmission side is terminated. After that, as in the conventional case, it may be configured such that the transmission side communication apparatus 1 confirms whether or not a data frame has been received by exchanging ACK frames.
  • the receiving-side communication device 1 corresponds to the receiving-side device in FIG.
  • step S151 the wireless communication control unit 105 determines whether the header information analysis unit 116 has detected the preamble, and waits until it is determined that the preamble has been detected. If it is determined in step S151 that a preamble has been detected, the process proceeds to step S152.
  • step S152 the wireless communication control unit 105 acquires the PLCP header information analyzed by the header information analysis unit 116, and if the data frame corresponds to the busy signal, the data frame corresponds to the busy signal.
  • step S153 the wireless communication control unit 105 acquires the received electric field strength when the in-use signal is received from the detection threshold value control unit 113.
  • step S154 the reception data construction unit 117 receives the data payload (or MPDU-0 header) and performs decoding until the end of the MPDU.
  • step S155 the reception data construction unit 117 determines whether or not decoding has been completed without error until the end of the MPDU. If it is determined in step S155 that decoding has been performed without error, the process proceeds to step S156. In step S156, the reception data construction unit 117 acquires the data payload and stores it in the reception buffer 118.
  • step S157 the reception data construction unit 117 generates ACK information of the received data frame.
  • the generated ACK information may be included in a busy signal, or may be transmitted as a block ACK frame at the end of transmission.
  • step S155 If it is determined in step S155 that decoding has not been completed without error until the end of the MPDU, the processes in steps S156 and S157 are skipped, and the process proceeds to step S158.
  • step S158 the transmission timing control unit 108 determines whether it is the position of the busy signal.
  • step S ⁇ b> 159 the transmission timing control unit 108 acquires the busy signal generated by the busy signal generation unit 107.
  • step S ⁇ b> 160 the wireless transmission processing unit 110 transmits the busy signal supplied by the transmission timing control unit 108.
  • the transmission power control unit 109 transmits a normal data frame with the minimum power that can be received by the communication device 1 on the receiving side.
  • the transmission power control unit 109 controls the signal being used so that it is transmitted with transmission power larger than that of a normal data frame.
  • step S161 the wireless communication control unit 105 determines whether the end of the data frame has arrived. For example, if the aggregated MPDU continues, it is determined in step S161 that the end of the data frame has not arrived, so the process returns to step S154 and the subsequent processes are repeated. If it is determined in step S161 that the end of the data frame has arrived, the processing of the communication device 1 on the receiving side is terminated.
  • the surrounding communication device 1 corresponds to at least one of the reception side neighboring device, the transmission / reception side neighboring device, the receiving side far surrounding device, the SR transmitting device, and the SR receiving device shown in FIG.
  • step S201 the wireless communication control unit 105 waits until it determines that the busy signal detection unit 115 detects the busy signal. If it is determined in step S201 that a busy signal has been detected, the process proceeds to step S202.
  • step S202 the wireless communication control unit 105 acquires the parameters described in the busy signal detected by the busy signal detection unit 115.
  • the wireless communication control unit 105 refers to the acquired parameter such as BSS color information, for example, and determines whether or not the detected busy signal is an OBSS signal.
  • step S203 If it is determined in step S203 that the signal is not an OBSS signal, it is a BSS signal, and the processing of the surrounding communication devices 1 is terminated.
  • step S203 If it is determined in step S203 that the signal is an OBSS signal, the process proceeds to step S204.
  • the wireless communication control unit 105 refers to the acquired parameter, and determines whether or not the detected busy signal is compatible with space reuse.
  • step S204 If it is determined in step S204 that space reuse is supported, the process proceeds to step S205.
  • step S205 the wireless communication control unit 105 sets a transmission power value that does not affect the OBSS communication based on the received electric field strength when the in-use signal is received and the received electric field strength information described in the in-use signal. calculate.
  • step S206 the wireless communication control unit 105 refers to information managed by the network management unit 103, and determines whether or not there is a data frame transmission plan in its own BSS. If it is determined in step S206 that there is no plan for data frame transmission in the BSS, the processing of the surrounding communication devices 1 is terminated.
  • step S206 If it is determined in step S206 that the data frame is scheduled to be transmitted in the BSS, the process proceeds to step S207.
  • step S207 the wireless communication control unit 105 sets a back-off time for waiting for transmission.
  • step S208 the wireless communication control unit 105 determines that the set back-off time has expired, and waits until it is determined that the set back-off time has expired. If it is determined in step S208 that the set back-off time has expired, the process proceeds to step S209.
  • step S209 the transmission power control unit 109 sets the transmission power calculated by the wireless communication control unit 105.
  • step S210 the wireless transmission processing unit 110 transmits the data frame to which the header information generated by the header information generation unit 106 is added (or the data frame generated by the transmission frame construction unit 104).
  • the processing is described separately as the transmission-side communication device 1, the reception-side communication device 1, and the surrounding communication device 1, but any processing can be performed by the communication device 1.
  • Each step used in the three processes may be used in any process as necessary. The order of steps may also be changed.
  • the data-in-use signal is intermittently transmitted from the data frame receiving side, it is possible to notify a device in an interference range that affects reception.
  • the aggregated A-MPDU frame by securing the area of the in-use signal after the MPDU subframe, it is possible to notify the neighboring devices of the presence of the device that is receiving the data frame in a short cycle.
  • a transmission line usage notification method using a busy tone requires a channel for transmitting a busy tone signal, and a communication block for transmitting and receiving the busy tone signal has been required.
  • the present technology by using the busy signal, it is possible to perform processing with the conventional transmission / reception circuit without using the tone signal transmission / reception circuit or filter.
  • the surrounding communication device 1 When the NAV is set by exchanging the conventional RTS / CTS frame, the surrounding communication device 1 that has received the RTS frame but has not received the CTS frame can receive the data frame of the communication device 1 on the receiving side. In spite of no impact, NAV was set and transmission opportunities were decreasing.
  • NAV network allocation vector
  • the transmission power is not controlled around the communication apparatus 1 on the receiving side from the overlapping BSS, and the signal is transmitted with the maximum transmission power. May be unable to communicate within BSS.
  • the overlapping BSS does not know that the transmission power control is performed. In some cases, a signal is transmitted without performing transmission power control.
  • the required S / N of the data reception destination is determined from the value of the RSSI information and the transmission power information.
  • the ratio can be estimated, and it is possible to determine whether or not transmission is performed with space reuse. As a result, transmission power can be set within a range that does not affect data reception.
  • This technology can be applied to communication devices such as access points and communication devices constituting a wireless LAN system.
  • the series of processes described above can be executed by hardware or can be executed by software.
  • a program constituting the software is installed in the computer.
  • the computer includes, for example, a general-purpose personal computer that can execute various functions by installing a computer incorporated in dedicated hardware and various programs.
  • FIG. 27 is a block diagram illustrating a hardware configuration example of a communication apparatus that executes the above-described series of processing by a program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • An input / output interface 305 is also connected to the bus 304.
  • An input unit 306, an output unit 307, a storage unit 308, a communication unit 309, and a drive 310 are connected to the input / output interface 305.
  • the input unit 306 includes, for example, a keyboard, a mouse, a microphone, a touch panel, an input terminal, and the like.
  • the output unit 307 includes, for example, a display, a speaker, an output terminal, and the like.
  • the storage unit 308 includes, for example, a hard disk, a RAM disk, a nonvolatile memory, and the like.
  • the communication unit 309 includes a network interface, for example.
  • the drive 310 drives a removable medium 311 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 301 loads the program stored in the storage unit 308 to the RAM 303 via the input / output interface 305 and the bus 304 and executes the program. A series of processing is performed.
  • the RAM 303 also appropriately stores data necessary for the CPU 301 to execute various processes.
  • the program executed by the communication device (CPU 301) can be recorded and applied to, for example, a removable medium 311 as a package medium or the like.
  • the program can be installed in the storage unit 308 via the input / output interface 305 by attaching the removable medium 311 to the drive 310.
  • This program can also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting. In that case, the program can be received by the communication unit 309 and installed in the storage unit 308.
  • this program can be installed in the ROM 302 or the storage unit 308 in advance.
  • the program executed by the communication device may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program in which processing is performed.
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and a single device housing a plurality of modules in one housing are all systems. .
  • Embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
  • the present technology can take a configuration of cloud computing in which one function is shared by a plurality of devices via a network and is jointly processed.
  • each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
  • the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
  • this technique can also take the following structures.
  • (1) A construction that generates a data frame; A transmission unit for transmitting the data frame to a destination communication device; And a control unit that performs control to interrupt transmission for a predetermined period during transmission of the data frame.
  • (2) The communication apparatus according to (1), further including a receiving unit that receives a busy signal indicating that a transmission path is being used from the transmission destination communication apparatus during the predetermined period in which the transmission is interrupted.
  • the predetermined period during which the transmission is interrupted is configured to include a transmission / reception operation switching time.
  • (4) The communication device according to any one of (1) to (3), wherein the transmission unit transmits the transmission device with transmission power that enables the transmission destination communication device to receive the data frame.
  • a header information generation unit configured to generate header information of the data frame in which information specifying the transmission destination communication device of the data frame and information related to transmission power of the data frame are described
  • the communication device according to any one of (4).
  • a control unit The communication device according to any one of (1) to (5), wherein the transmission unit transmits the data frame with the transmission power.
  • the control unit determines that the transmission path is idle;
  • the communication device according to any one of (1) to (5), wherein the transmission unit transmits the data frame to the communication device of the transmission destination when it is determined that the transmission path is empty.
  • a receiving unit that receives a data frame that is transmitted while intermittently providing a period for interrupting transmission;
  • a communication device comprising: a transmitting unit that transmits a busy signal indicating that a transmission line is used during a period in which the transmission is interrupted.
  • the in-use signal generating unit that adds a reception duration calculated based on a parameter describing the duration of the data frame added to the data frame to the in-use signal. Communication equipment.
  • the busy signal generator adds information on received electric field strength when the data frame is received and transmission power information added to header information of the data frame to the busy signal.
  • Communication device (11) The communication device according to any one of (8) to (10), wherein the transmission unit transmits an end signal indicating completion when reception of the data frame is completed. (12) The transmission unit transmits the busy signal with a transmission power larger than the transmission power of the data frame in the transmission source communication apparatus that has transmitted the data frame. Any one of (8) to (11) The communication device described. (13) The communication device according to any one of (8) to (11), wherein the busy signal includes information for identifying a network and information for specifying a transmission source communication device that has transmitted the data frame. .
  • the communication device according to any one of (8) to (13), wherein the busy signal is configured with a parameter arrangement that is compatible with an existing preamble.
  • the busy signal is configured with a parameter arrangement that is compatible with an existing preamble.
  • 1, 1-1 to 1-5 communication device 11 internet connection module, 12 information input module, 13 device control unit, 14 information output module, 15 wireless communication module, 101 interface, 102 transmission buffer, 103 network management unit, 104 Transmission frame construction unit, 105 wireless communication control unit, 106 header information generation unit, 107 busy signal generation unit, 108 transmission timing control unit, 109 transmission power control unit, 110 wireless transmission processing unit, 111 antenna control unit, 111-1A Antenna, 111-1B antenna, 112 wireless reception processing unit, 113 detection threshold control unit, 114 reception timing control unit, 115 busy signal detection unit, 116 header information analysis , 117 received data construction unit, 118 reception buffer

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本技術は、データ受信中の装置の存在を周囲の装置に通知することができるようにする通信装置に関する。 データフレームの送信側の通信装置の無線送信処理部は、送信タイミング制御部からの制御のもと、送信を中断する期間を間欠的に設けて、データフレームを送信先の通信装置に送信する。本開示は、例えば、無線LANシステムに適用することができる。

Description

通信装置
 本技術は、通信装置に関し、特に、データ受信中の装置の存在を周囲の装置に通知することができる通信装置に関する。
 従来、無線LANシステムでは、伝送路の利用を把握した場合、MACヘッダのDuration部分に記載の値から、ネットワークアロケーションベクター(NAV)を設定して、周囲の通信装置からの送信を控える制御が行われてきた。
 NAVを用いた通信方式では、データ送信側の通信装置からのRequest to Send(RTS)フレームと、データ受信側の通信装置からのClear to Send(CTS)フレームを受信した周囲に存在する通信装置が、MACヘッダのDuration部分に記載されている時間にわたり伝送路が利用されることを把握する構成になっていた。
 また、従来、伝送路が利用中であることを伝える手法として、ビジートーン信号をアクセスポイントから送信する手法が一般的に用いられてきた。
 ビジートーン信号を用いた手法は、複数のアクセスポイントが隣接して存在する環境などで、周囲のアクセスポイントの配下にある無線通信端末からの信号により自己のアクセスポイント内における通信が成り立たなくなる状態を、ビジートーン信号を送信することによって防ぐ手法である。
 特許文献1には、複数のアクセスポイントが隣接して存在している環境で、伝送路を利用しているアクセスポイントが、所定のトーンチャネルを用いてビジートーン信号を送信することで、利用中であることを他のアクセスポイントに伝える技術が開示されている。
特開2011-254319号公報
 従来のNAV設定方法では、RTSフレームを受信した場合と、CTSフレームを受信した場合の双方で設定されるため、受信側の通信装置のデータフレームの受信に影響のない範囲からの送信が抑制されてしまうことがある。
 また、従来のビジートーン信号を用いた手法では、ビジートーン信号を送受信するための通信ブロックを通信装置に用意する必要がある。
 本技術は、このような状況に鑑みてなされたものであり、データ受信中の装置の存在を周囲の装置に通知することができるものである。
 本技術の第1の側面の通信装置は、データフレームを生成する構築部と、前記データフレームを送信先の通信装置に送信する送信部と、前記データフレームの送信中に、所定の期間送信を中断する制御を行う制御部とを備える。
 本技術の第2の側面の通信装置は、送信を中断する期間が間欠的に設けられて送信されたデータフレームを受信する受信部と、前記送信を中断する期間に、伝送路を利用していることを示す利用中信号を送信する送信部とを備える。
 本技術の第3の側面の通信装置は、送信を中断する期間が間欠的に設けられて送信されたデータフレームを送信する第1の通信装置に対して前記送信を中断する期間に、前記データフレームを受信する第2の通信装置から送信される、伝送路を利用していることを示す利用中信号を受信する受信部と、前記利用中信号の受信状況に応じて送信を制御する送信制御部とを備える。
 本技術の第1の側面においては、データフレームが生成され、前記データフレームが送信先の通信装置に送信され、前記データフレームの送信中に、所定の期間送信を中断する制御が行われる。
 本技術の第2の側面においては、送信を中断する期間が間欠的に設けられて送信されたデータフレームが受信され、前記送信を中断する期間に、伝送路を利用していることを示す利用中信号が送信される。
 本技術の第3の側面においては、送信を中断する期間が間欠的に設けられて送信されたデータフレームを送信する第1の通信装置に対して前記送信を中断する期間に、前記データフレームを受信する第2の通信装置から送信される、伝送路を利用していることを示す利用中信号が受信される。そして、前記利用中信号の受信状況に応じて送信が制御される。
 本技術によれば、データ受信中の装置の存在を周囲の装置に通知することができる。
 なお、本明細書に記載された効果は、あくまで例示であり、本技術の効果は、本明細書に記載された効果に限定されるものではなく、付加的な効果があってもよい。
無線LANシステムの無線ネットワークの構成例を示す図である。 送信電力制御を実施した場合の無線ネットワークの干渉状況を示す図である。 送信電力制御を実施した場合の無線ネットワークの不具合を示す図である。 受信側でCTSフレームを送信した場合の周囲の通信装置の動作例を示す図である。 本技術の無線LANシステムの構成例を示す図である。 従来の送信電力制御を実施した場合に、受信エラーが生じる状態を示す図である。 本技術による利用中信号を用いた通信制御の例を示す図である。 本技術を適用した通信装置の構成例を示すブロック図である。 無線通信モジュールの構成例を示すブロック図である。 A-MPDUフレームの構成例を示す図である。 本技術で用いられるA-MPDUフレーム構成例を示す図である。 利用中信号のフレーム構成例を示す図である。 End Signalのフレーム構成例を示す図である。 L-SIGおよびUsing Signalパラメータのデータの配置例を示す図である。 OFDM信号のサブキャリア構成例を示す図である。 変調方式と符号化率の関係を示す図である。 プリアンブルの構成例を示す図である。 L-SIGフィールドの構成例を示す図である。 A-MPDUの構成例を示す図である。 1つのMPDUの詳細な構成例を示す図である。 MPDUデリミタの構成例を示す図である。 MPDUの内部の構成例を示す図である。 パディングの構成例を示す図である。 送信側の通信装置の処理例について説明するフローチャートである。 受信側の通信装置の処理例について説明するフローチャートである。 周囲の通信装置の処理例について説明するフローチャートである。 通信装置のハードウエア構成例を示す図である。
 以下、本開示を実施するための形態(以下実施の形態とする)について説明する。
 <無線ネットワークの構成例>
 図1は、無線LANシステムの無線ネットワークの構成例を示す図である。
 図1の無線LANシステムでは、通信装置1-0乃至通信装置1-4が同じ周波数チャネルにて動作をしている。以下、通信装置1-0乃至通信装置1-4を区別する必要がない場合、通信装置1と称する。
 図1の無線LANシステムは、無線ネットワークとして接続される第1のベーシックサービスセット(BSS1)と第2のベーシックサービスセット(BSS2)とで構成されている。BSS1とBSS2は異なる無線ネットワークとして存在するが、同じ周波数チャネルを用いて構成されたBSSであり、一部がオーバーラップする空間上に構成されている。
 BSSは無線ネットワークのグループである。例えば、Aさんの家の無線ネットワークグループ、Bさんの家の無線ネットワークグループというように、それぞれの通信装置が属するグループがパスワードなどにより制限される。
 BSS1は、通信装置1-0と通信装置1-1から構成される。BSS2は、通信装置1-2、通信装置1-3、および通信装置1-4から構成される。
 一点鎖線の円#0乃至円#4は、それぞれ、送信電力制御を実施しない場合の、通信装置1-0乃至1-4の電波到達範囲を模式的に示している。円#0乃至円#4のそれぞれの大きさが同じ大きさであることは、送信電力制御が行われていないため最大送信電力にて送信されることを示している。白抜き矢印は、データの送信方向を示している。図2以降においても同様である。
 図1の例において、BSS1においては通信装置1-0によりデータの送信が行われ、BSS2においては通信装置1-2によりデータの送信が行われている。また、BSS2の通信装置1-2の電波到達範囲に通信装置1-1が含まれている。このため、BSS1の通信装置1-1が、BSS2の通信装置1-2が送信する信号を検出してしまう構成になっている。
 図2は、送信電力制御を実施した場合の無線ネットワークの干渉状況を示す図である。
 破線で示す円#0および円#1は、それぞれ、通信装置1-0および通信装置1-1の電波到達範囲を模式的に示している。円#0および円#1が図1の場合と比べて小さくなっていることは、通信装置1-0および通信装置1-1が、送信電力制御を実施していることを示している。なお、円#2については、参考までに破線で示されているが、図2では、通信装置1-2では送信電力制御が行われないため、一点鎖線で示す円#2が、通信装置1-2の電波到達範囲を示すものとする。
 図2の例においては、BSS1の通信装置1-0と通信装置1-1が送信電力制御を互いに実施して通信を行っている。NAVを用いた通信方式では、通信装置1-0が、RTSフレームを送信し、通信装置1-1がCTSフレームを送信するので、周囲の通信装置1-2は、そのどちらかを受けることで、通信装置1-0と通信装置1-1の送受信を知ることができる。
 しかしながら、BSS2の通信装置1-2は、BSS1の通信装置1-1の電波到達範囲に含まれていない。したがって、BSS2の通信装置1-2は、BSS1の通信装置1-0から通信装置1-1に向けて送信されたデータを、通信装置1-1が受信していることを把握することができない。
 この場合、通信装置1-2は、伝送路が空き状態であると判断してしまい、送信電力制御を実施せずに、通信装置1-4に向けてデータを送信してしまう可能性がある。
 通信装置1-0が送信するデータを受信している通信装置1-1においては、通信装置1-2が通信装置1-4に対してデータを送信することによって、データが重なって受信される。これにより、通信装置1-1では、通信装置1-0が送信するデータの受信にエラーが生じてしまい、データを正しく復号できなくなる恐れがある。
 図3は、送信電力制御を実施した場合の無線ネットワークの不具合を示す図である。
 破線で示す円#2および円#3は、通信装置1-2および通信装置1-3の電波到達範囲を模式的に示している。円#2および円#3が図1の場合と比べて小さくなっていることは、通信装置1-2および通信装置1-3が送信電力制御を実施していることを示している。
 図3の例においては、BSS1の通信装置1-0と通信装置1-1が送信電力制御を互いに実施して通信を行っており、BSS2の通信装置1-2と通信装置1-3が送信電力制御を互いに実施して送信電力を抑制した通信を行っている。BSS2の通信装置1-4は、通信装置1-2の電波到達範囲に含まれていない。
 この場合、通信装置1-4は、通信装置1-2が送信する信号を検出しにくくなることがあるため、BSS2におけるデータの送受信に支障をきたしてしまう構成になっている。
 このため、隣接する異なるBSSの間では、同程度の送信電力制御を実施してしまうと、本来ネットワークを構成できる範囲の通信装置との通信に支障をきたすため、送信電力を制御せずに最大送信電力で通信を実施しなければならない。
 図4は、データの受信側でCTSフレームを最大送信電力にて送信した場合の周囲の通信装置の動作例を示す図である。
 破線で示す円#0は、通信装置1-0の電波到達範囲を模式的に示している。円#0が図1の場合と比べて小さくなっていることは、通信装置1-0が、送信電力制御を実施してデータを通信していることを示している。なお、円#1と円#2については、参考までに破線で示されているが、図4では、通信装置1-1および通信装置1-2では送信電力制御が行われないため、一点鎖線で示す円#1と円#2が、通信装置1-1および通信装置1-2の電波到達範囲を示すものとする。
 図4の例においては、通信装置1-1が受信を実施する動作として、CTSフレームを最大送信電力にて送信するものとされている。通信装置1-1が送信したCTSフレームは周囲のBSS2の通信装置1-2により受信され、通信装置1-2において、NAVが設定される構成になっている。
 この場合、通信装置1-2は、通信装置1-3が送信する信号を受信することはできるものの、NAVが設定されているので、例えば、受信完了を示すACKなどのフレームを通信装置1-3に送信することができない。
 以上のように、通信装置1-1が受信を実施し、周囲に通知する動作として、CTSフレームを送信する方法があるが、CTSフレームを送信する方法では、送信電力制御を実施した場合には対応しきれていない。
 以上のように、従来技術のNAV設定方法では、RTS信号を受信した場合と、CTS信号を受信した場合の双方で設定されるため、受信側の通信装置1のデータ受信に影響のない範囲からの送信が抑制されてしまっていた。
 したがって、CTSフレーム以外の方法で、送信電力制御が実施されて送信された信号を受信している通信装置1が、伝送路を利用中であることを周囲の通信装置1に知らせる技術が必要である。
 そこで、本技術においては、送信側で、送信を中断する期間が間欠的に設けられて、データフレームの送信が行われるようになっている。また、受信側で、データフレームが受信されるとともに、送信を中断する期間に、利用中信号(Using Signal)の送信が行われるようになっている。
 データフレームを受信した受信側の通信装置1が、間欠的に設定された期間を用いて、利用中信号を送信する構成としたため、利用中信号を受信した周囲に存在する通信装置1は、データフレームを受信していなくとも、伝送路が利用中であることを把握することができる。ここで、周囲に存在する通信装置1は、データフレームの送信を行っている通信装置1と利用中信号の送信を行っている通信装置1以外の、後者の通信装置1の近傍の通信装置1である。
 <本技術の無線LANシステムの構成例>
 図5は、本技術の無線LANシステムの構成例を示す図である。
 図5の無線LANシステムは、図1と同様に、ネットワークのグループであるBSS1とBSS2から構成されている。上述した説明と重複する説明については適宜省略する。
 破線で示す円#1乃至円#6は、通信装置1-1乃至通信装置1-6の送信電力制御を実施した場合の電波到達範囲を模式的に示している。一点鎖線で示す円#1乃至円#6は、通信装置1-1乃至通信装置1-6の送信電力制御を行わない場合の最大送信電力による電波到達範囲を模式的に示している。
 通信装置1-2では、送信電力制御による通信が行われる。通信装置1-5では、送信電力制御による通信が行われる。通信装置1-1乃至通信装置1-6では、適宜、送信電力制御による通信または送信電力制御が行われない最大送信電力による通信のどちらかの通信が行われる。
 図5の例においては、BSS1の通信装置1-0が送信するデータフレームを受信する通信装置1-1は、受信を実施する動作として、本技術による利用中信号を送信するようになっている。また、BSS2に属する通信装置1-2は、通信装置1-1における受信に影響がない範囲で、送信を実施することができる構成になっている。
 すなわち、一点鎖線の円#1で示されるように通信装置1-1が送信電力の制御をしていない場合、通信装置1-0、通信装置1-2乃至通信装置1-4は、通信装置1-1が送信する利用中信号を受信し、通信装置1-1によって伝送路を送信された信号を受信するために利用中であることを把握する。
 通信装置1-5は、通信装置1-1が送信する利用中信号を受信していないため、一点鎖線の円#2で示されるように通信装置1-2が送信したデータを受信しているが、そのデータを受信している通信装置1-1の受信に影響しない範囲で、他の通信装置に対して信号を送信することも可能である。また、通信装置1-5は、通信装置1-2が通信装置1-1からのACKフレームのような応答の受信に影響のないように、破線の円#5に示されるように、信号送信時に、送信電力を制御することで、通信装置1-5に対して信号を送信することも可能である。
 ただし、一点鎖線の円#5で示されるように送信電力制御を実施せずに、通信装置1-2から通信装置1-4に対して信号を送信することは、一点鎖線の円#4に示されるように通信装置1-4からのACKフレームのような応答の送信によって、通信装置1-1および通信装置1-2における信号の受信に影響を及ぼすことから控えられる。
 <従来の通信制御の例>
 図6は、従来の送信電力制御を実施した場合に、受信エラーが生じる状態を示す図である。
 上から順に、送信側装置、受信側装置、周囲OBSS送信側装置、周囲OBSS受信側装置の送信または受信の様子が示されている。横方向は時間を表す。
 送信側装置は、送信側の通信装置1であり、図1の通信装置1-0に相当する。受信側装置は、受信側の通信装置1であり、図1の通信装置1-1に相当する。OBSS送信側装置は、周囲のOBSSに存在する送信側の通信装置1であり、図1の通信装置1-2に相当する。OBSS送信側装置は、BSSに存在する受信側装置の近傍に位置している。周囲OBSS受信側装置は、周囲のOBSSに存在する受信側の通信装置1であり、図1の通信装置1-3に相当する。なお、OBSSは、送信側装置と受信側装置のBSSにオーバーラップしたBSSである。
 図6を参照して、送信側装置が送信電力を制御して受信側装置に対してデータフレームを送信している場合に、周囲OBSS送信側装置が、周囲OBSS受信側装置に対して、送信電力を制御せずに最大送信電力でデータフレームの送信を開始した場合について説明する。
 図6の実線は、送信されるデータフレームを示し、破線は、受信されるデータフレームを示す。データフレームを示す四角の高さは電力(送信電力または受信電力)のレベルを示す。
 最上段に示されるように、送信側装置は、プリアンブル(P)、ヘッダ情報(HR)、MPDU(MAC層プロトコルデータユニット)-1、MPDU-2、MPDU-3、MPDU-4を順に送信する。MPDU-1、MPDU-2、MPDU-3、MPDU-4アグリゲーション(連結)したデータフレームである。
 このとき、送信側装置の送信電力が抑えられているため、上から3段目に示されるように、周囲OBSS送信側装置は、送信側装置が送信したデータフレームを検出できず、伝送路が空き状態であると誤判断して、データフレームの送信を開始してしまう。
 すなわち、送信電力制御(TPC:Transmit Power Control)が実施されて送信されたデータフレームの受信中に、送信電力制御を実施しない周囲OBSS送信側装置が、プリアンブル(P)、ヘッダ情報(HR)、MPDU-1、MPDU-2、MPDU-3、MPDU-4の送信を開始する。
 このとき、上から2段目に示されるように、送信側装置が送信するデータフレームを受信している受信側装置は、周囲OBSS送信装置が近くに存在し、かつ、受信電界強度が高いので、周囲OBSS送信側装置から送信されてきたデータフレームまで受信してしまう。
 その結果、受信側装置では、受信エラーが発生してしまう。受信側装置は、データフレームの受信完了後、プリアンブル(P)とACKフレーム(BA:ブロックアック)を送信する。ここで送信されるACKフレーム(NG)は、データフレームの受信が失敗したことを表す。
 一方、上から4段目に示されるように、周囲OBSS送信側装置が送信するデータフレームのみを受信している周囲OBSS受信側装置は、BSSデータフレームの受信完了後、プリアンブルとACKフレームを送信する。ここで送信されるACKフレーム(OK)は、データフレームの受信が成功したことを表す。
 以上のように、送信側装置が送信するデータフレームを受信側装置が受信しているにも関わらず、周囲OBSS送信側装置が送信するデータフレームの受信電界強度が高いために、受信側装置において受信エラーが生じてしまっていた。
 また、データフレームの受信に失敗した受信側装置はNGを示すACKフレームを送信し、データフレームの受信に成功した周囲OBSS受信側装置はOKを示すACKフレームを送信する。受信側装置のACKフレームの送信タイミングと、周囲OBSS受信側装置のACKフレームの送信タイミングが重なってしまうと、周囲OBSS送信側装置では、周囲OBSS受信側装置が送信するACKフレームの受信を失敗してしまう恐れがある。
 以上のように、送信電力制御を実施した装置と送信電力制御を実施しない装置の双方の通信が正しく行われない。
 <本技術による利用中信号を用いた通信制御の例>
 図7は、本技術による利用中信号を用いた通信制御の例を示す図である。
 上から順に、受信側近傍周囲装置、受信側装置、送信側装置、送受信側近傍周囲装置、受信側遠方周囲装置の送信または受信の様子が示されている。図6の説明と重複する説明については省略する。
 受信側近傍周囲装置は、受信側装置の近傍に存在する周囲の通信装置1であり、図5の通信装置1-0に相当する。受信側装置は、受信側の通信装置1であり、図5の通信装置1-1に相当する。送信側装置は、送信側の通信装置1であり、図5の通信装置1-2に相当する。送受信側近傍周囲装置は、受信側装置の近傍であり、送信側装置の近傍に存在する周囲の通信装置1であり、図5の通信装置1-3に相当する。受信側遠方周囲装置は、受信側の遠方であり、送信側の近傍に存在する周囲の通信装置1であり、図5の通信装置1-4に相当する。
 SR送信側装置は、周波数リソースの空間再利用を促進する空間再利用技術(Spatial Reuse技術)を利用して信号を送信する通信装置であり、図5の通信装置1-5に相当する。SR受信側装置は、空間再利用技術を利用して送信された信号を受信する通信装置であり、図5の通信装置1-6に相当する。
 空間再利用技術は、誰かがチャネルを既に使用している状態であっても、先行する送受信に影響を及ぼさない場合には、それに重畳する形での送受信を許容する技術である。
 上から3段目に示されるように、送信側装置は、所定のプリアンブル(P)とヘッダ情報(HR)を送信する。
 上から2段目に示されるように、送信側装置が送信したPとHRを受信した受信側装置は、利用中信号(US:Using Signal)を間欠的に送信する。ヘッダ情報に受信先装置として指定されていた受信先装置は、利用中信号を即座に返信する構成になっている。
 最上段に示されるように、利用中信号のみを受信した受信側近傍周囲装置は、所定の時間にわたり、伝送路を利用している通信装置(受信側装置)が周囲に存在することを把握することができる。受信側近傍周囲装置では、伝送路を利用している通信装置の存在の把握により、データフレームの送信を禁止することができる。
 上から4段目に示されるように、送信側装置が送信する信号と、受信側装置が送信する利用中信号との双方を受信した送受信側近傍周囲装置は、双方の信号を受信していることから、受信側装置と送信側装置とが近傍に存在していることを把握することができる。
 上から5段目に示されるように、送信側装置が送信する信号のみを受信し、受信側装置が送信する利用中信号を検出していない受信側遠方周囲装置は、自己の周囲に、送信側装置が送信するデータを受信している通信装置(受信側装置)が存在しないことを把握することができる。
 したがって、送信側装置が送信する信号を検出していても、受信側装置から離れた位置にいることから、受信側装置の受信に影響が少ないため、受信側遠方周囲装置は、空間再利用技術(SR)を利用した送信を行うことが可能である。
 上から3段目に示されるように、送信側装置は、所定のプリアンブル(P)とヘッダ情報(HR)の後、GAPの期間に利用中信号を受信し、その後、最初のデータユニット(MPDU-1)を送信する。GAPとは、送信を中断する期間のことである。最初のデータユニットの送信が終了した場合、GAPが設けられる。
 上から2段目に示されるように、受信側装置は、GAPの間に利用中信号を送信する。また、MPDU-1の後の利用中信号に続いて送信側装置から次のデータユニット(MPDU-2)乃至(MPDU-3)が送信され、各データユニットの末尾が到来した場合にも、GAPが間欠的にそれぞれ設けられ、GAPの間に、受信側装置から利用中信号(US)が間欠的にそれぞれ送信される。
 利用中信号に続いて送信側装置から最後のデータユニット(MPDU-4)が送信された後、上から2段目に示されるように、受信側装置から終了信号(ES)が送信される構成としてもよい。終了信号(ES)が送信された後、受信側装置から送信側装置に、所定の時間経過後にブロックACKフレームが返送される構成としてもよい。
 一方、上から6段目に示されるように、空間再利用技術を利用した送信を行うSR送信側装置も、所定のプリアンブル(P)とヘッダ情報(HR)の後、GAPを設けて、その後、最初のデータユニット(MPDU-1)を送信する。
 上から7段目に示されるように、空間再利用技術を利用して送信された信号を受信するSR受信側装置も、SR送信側装置によるGAPの間、利用中信号を送信する。SR受信側装置も、終了信号(ES)が送信される構成としてもよいし、ブロックACKフレームが返送される構成としてもよい。
 <本技術の通信装置の構成例>
 図8は、本技術を適用した通信装置の構成例を示すブロック図である。
 ここでは、通信装置1を、無線LANシステムを構成するアクセスポイントおよび通信デバイスのどちらとしても動作できる構成として説明するが、それぞれの動作に不要な部分は、必要に応じて省略して構成されてもよい。
 通信装置1は、インターネット接続モジュール11、情報入力モジュール12、機器制御部13、情報出力モジュール14、および無線通信モジュール15を含むように構成されている。
 インターネット接続モジュール11は、アクセスポイントとして動作する場合、インターネット網に有線によって接続するアダプタとして機能する。
 情報入力モジュール12は、ユーザが求める動作が入力された場合に受け取る部であり、キーボードからの入力や、ユーザの音声によって、その入力を判定する。
 機器制御部13は、通信装置1の動作の制御を一元的に管理し、演算処理を実行するCPU(Central Processing Unit)や、OSおよびアプリケーションに相当する機能が格納されている。
 情報出力モジュール14は、例えばユーザに対して情報を出力する部であり、例えばディスプレイ等に情報を表示することでユーザに所望のデータを出力する。
 無線通信モジュール15は、実際に無線通信動作を実施するための通信モジュールとして動作する。
 <無線通信モジュールの機能構成例>
 図9は、図8の無線通信モジュールの機能構成例を示すブロック図である。
 無線通信モジュール15は、インタフェース101、送信バッファ102、ネットワーク管理部103、送信フレーム構築部104、無線通信制御部105、ヘッダ情報生成部106、および利用中信号生成部107を含むように構成される。
 無線通信モジュール15は、送信タイミング制御部108、送信電力制御部109、無線送信処理部110、アンテナ制御部111、アンテナ111-1Aおよびアンテナ111-1B、無線受信処理部112を含むように構成される。
 さらに、無線通信モジュール15は、検出閾値制御部113、受信タイミング制御部114、利用中信号検出部115、ヘッダ情報解析部116、受信データ構築部117、および受信バッファ118を含むように構成される。
 中央の破線の枠で囲まれる、無線通信制御部105、ヘッダ情報生成部106、利用中信号生成部107、送信タイミング制御部108、受信タイミング制御部114、利用中信号検出部115、ヘッダ情報解析部116は、通信制御を行う部分である。
 下段の破線で囲まれる、送信電力制御部109、無線送信処理部110、アンテナ制御部111、アンテナ111-1A、アンテナ111-1B、無線受信処理部112、検出閾値制御部113は、実際の通信処理や電力制御に関わる部分である。
 インタフェース101は、図8の機器制御部13とのインタフェース部である。インタフェース101は、機器制御部13により供給されるデータを送信バッファ102に供給し、受信バッファ118に蓄積されたデータを機器制御部13に供給する。インタフェース101は、機器制御部13により供給される情報を、ネットワーク管理部103に供給し、ネットワーク管理部103が管理する周囲の無線ネットワークの情報を、機器制御部13に供給する。
 送信バッファ102は、機器制御部13から供給される、無線送信するためMPDUのデータを格納する。送信バッファ102は、所定のタイミングで、格納されたデータを、送信フレーム構築部104に供給する。
 ネットワーク管理部103は、無線通信制御部105やインタフェース101により供給される情報に基づいて、周囲の通信装置1との間で自己のBSSとオーバーラップする周囲の無線ネットワークであるOBSSに含まれる通信装置のアドレスなどの属性情報を管理する。ネットワーク管理部103は、管理するBSSの属性情報を、必要に応じて、送信フレーム構築部104、無線通信制御部105、インタフェース101、および受信データ構築部117に供給する。
 送信フレーム構築部104は、送信バッファ102からのデータを用いて、無線通信のために所定のアグリゲーション単位で無線通信フレームを生成し、生成した無線通信フレームを、ヘッダ情報生成部106および無線送信処理部110に供給する。
 無線通信制御部105は、ネットワーク管理部103、利用中信号検出部115、ヘッダ情報解析部116により供給される情報に基づいて、所定の通信プロトコルに従って無線伝送路上においてアクセス通信制御を実施する。
 無線通信制御部105は、送信電力制御部109を制御し、送信電力を設定させ、検出閾値制御部113を制御し、受信電力を取得するなど、通信に関する電力を制御する。無線通信制御部105は、アクセス通信制御の結果得られた情報を、ヘッダ情報生成部106、利用中信号生成部107、ネットワーク管理部103に供給する。
 ヘッダ情報生成部106は、無線通信制御部105の制御のもと、送信フレーム構築部104が生成したデータフレームの先頭部分に付加する所定のプリアンブルおよびヘッダ情報を生成する。ヘッダ情報生成部106は、生成した所定のプリアンブルおよびヘッダ情報を、利用中信号生成部107に供給する。ヘッダ情報生成部106は、生成した所定のプリアンブルおよびヘッダ情報を、送信フレーム構築部104からのデータフレームに付加して、無線送信処理部110に供給する。
 利用中信号生成部107は、無線通信制御部105、ヘッダ情報生成部106、検出閾値制御部113により供給される情報に基づいて、データフレームを受信中であり、伝送路を利用中であることを周囲に示す利用中信号を生成する。利用中信号生成部107は、生成した利用中信号を送信タイミング制御部108および無線送信処理部110に供給する。
 送信タイミング制御部108は、受信タイミング制御部114および送信電力制御部109により供給される情報に基づいて、無線送信処理部110がデータフレームや利用中信号を伝送路上に送信するタイミングを制御する。
 送信電力制御部109は、無線通信制御部105および送信タイミング制御部108の制御のもと、送信先の通信装置に向けて、無線送信処理部110により送信される送信フレームの送信電力を必要に応じて制御する。
 無線送信処理部110は、ヘッダ情報生成部106が生成したヘッダ情報が付加されたデータフレーム、送信フレーム構築部104が生成したデータフレーム、利用中信号生成部107が生成した利用中信号、送信フレームを所定のベースバンド信号に変換して変調処理と信号処理を実施する。無線送信処理部110は、送信タイミング制御部108により制御されたタイミングで、送信電力制御部109により制御された送信電力で送信するように、信号処理後のベースバンド信号をアンテナ制御部111に供給する。
 アンテナ制御部111は、複数のエレメントで構成されるアンテナ111-1Aおよびアンテナ111-1Bを制御し、伝送路からの信号を送信または受信する。アンテナ111-1Aおよびアンテナ111-1Bは、少なくともどちらか一方が無線送信処理部110からの信号を、伝送路に送信する。アンテナ111-1Aおよびアンテナ111-1Bは、少なくともどちらか一方が、伝送路から受信した信号を無線受信処理部112に供給する。
 無線受信処理部112は、所定のフォーマットで無線伝送されるデータフレームを、アンテナ111-Aまたはアンテナ111-1Bを介して受信する。無線受信処理部112は、受信したデータフレームを、検出閾値制御部113、受信タイミング制御部114、ヘッダ情報解析部116、および受信データ構築部117に供給する。
 検出閾値制御部113は、受信した信号に含まれるプリアンブルおよびミッドアンブルを検出する閾値を設定し、設定した閾値よりも大きい受信電力の信号(データフレーム)を検出する。検出された受信電力の情報は、利用中信号生成部107、受信タイミング制御部114、および無線受信処理部112に供給される。
 受信タイミング制御部114は、検出閾値制御部113からの受信電力の情報、利用中信号検出部115が検出した利用中信号のパラメータ、ヘッダ情報解析部116が解析したヘッダ情報などに基づいて、無線受信処理部112が、データフレームや挿入される利用中信号を受信するタイミングを制御する。受信タイミング制御部114は、データフレームや挿入される利用中信号の受信タイミングの情報を、送信タイミング制御部108に供給する。
 利用中信号検出部115は、ヘッダ情報解析部116が解析したヘッダ情報から、利用中信号を検出することで、伝送路の利用を把握し、利用中信号に記載されるパラメータを解析し、解析したパラメータを、受信タイミング制御部114および無線通信制御部105に供給する。
 ヘッダ情報解析部116は、フレームの先頭に付加されるプリアンブルを検出することで、ヘッダ情報を抽出してヘッダ情報の内容を解析する。詳細は後述するが、利用中信号も既存のプリアンブルと互換性があるため、ヘッダ情報として抽出される。ヘッダ情報解析部116は、ヘッダ情報およびヘッダ情報の解析結果などを、受信タイミング制御部114、利用中信号検出部115、受信データ構築部117、および無線通信制御部105に供給する。
 受信データ構築部117は、ネットワーク管理部103が管理するネットワークの管理情報、およびヘッダ情報解析部116が解析したヘッダ情報の解析結果などに基づいて、無線受信処理部112が受信したアグリゲーションされた受信フレームを所定の単位で受信データとして生成する。受信データ構築部117は、受信データを受信バッファ118に蓄積する。
 受信バッファ118は、受信データ構築部117が生成したMPDUのデータを格納する。受信バッファ118は、所定のタイミングで読み出して、インタフェース101を介して、機器制御部13に供給する。
 なお、図9の例においては、利用中信号が既存のプリアンブルと互換性を有するため、利用中信号検出部115が、ヘッダ情報解析部116からのヘッダ情報から利用中信号を検出する構成を説明したが、利用中信号検出部115を、受信されたフレームから直接利用中信号を検出する構成としてもよい。
 <フレームの構成例>
 図10は、従来のアグリゲーションされたMPDU(A-MPDU)フレームの構成例を示す図である。
 A-MPDUフレームは、所定のプリアンブル(Preamble)、PLCPヘッダ(Header)、およびMAC層プロトコルデータユニット(MPDU)から構成される。
 プリアンブルは、レガシーショートトレーニングフィールド(L-STF)、レガシーロングトレーニングフィールド(L-LTF)、およびレガシーシグナル(L-SIG)によって構成される。
 L-STFは、フレームの先頭を示す。L-LTFは、タイミングや周波数誤差の補正を行うための情報を示す。L-SIGは、以降に続くデータ部分の変調方式・符号化率の設定や信号持続時間を示す。
 PLCPヘッダは、ハイスループットシグナル(HT-SIG)、ハイスループットショートトレーニングフィールド(HT-STF)、およびハイスループットロングトレーニングフィールド(HT-STF)などから構成される。
 HT-SIGとHT-STFは、プリアンブルの一部として認識され、一般的に新たに拡張された機能に必要な各種の情報が記載されている。HT-STFは、チャネル推定を実施するために利用される。
 これらのプリアンブルなどに続いて、データペイロードとして、MPDUが構成される。MPDUには、複数のMPDUのサブフレームをアグリゲートして、1つのバーストとして構成することができる。図10では、MPDU-1からMPDU-4の4つのサブフレームをアグリゲーションする例が示されている。
 MPDUサブフレームは、レングス情報等が記載されたデリミタ(Delimiter)の実際のデータ部分(MPDU)に、フレームチェックシーケンス(FCS)が付加され、必要に応じてパディング処理がなされる。なお、MPDUサブフレームの詳細な構成は、図20に後述される。
 図11は、本技術で用いられるA-MPDUフレーム構成例を示す図である。
 図11では、図10のMAC層プロトコルデータユニット(MPDU)の構成例を示している。
 図11のフレームは、MPDUの境目にGに示されるGAPとなる区間が挿入されており、GAPのタイミングで受信側の通信装置1が利用中信号を返送できる構成になっている。
 すなわち、GAPは、利用中信号を返送できる時間間隔として構成されている。GAPは、所定のインターフレームスペースの時間間隔を含んで構成される必要はない。例えば、GAPは、送受信動作の切り替え時間に、利用中信号フレームの情報長から構成されていてもよい。
 また、A-MPDUの先頭には、MPDU-0ヘッダが設定される。MPDU-0ヘッダは、フレーム形式を示すType、ターゲットとなる通信装置1のアドレス情報を識別できる情報、全体の長さを示すレングス情報、各種のパラメータ情報、および誤り検出のCRCなどから構成される。
 フレームを受信した受信側の通信装置1は、ターゲットとなる通信装置1のアドレス情報として、自己のアドレス情報が記載されていた場合、利用中信号の送信を用意しておき、GAPのタイミングが到来した場合に、即座に送信できる態勢に整えておくことが望ましい。
 なお、MPDUには、GAPに続いて、図10に示した各MPDUのサブフレームが構成されている。図11のMPDUは、MPDU-1乃至MPDU-4まで4つのサブフレームから構成される。
 また、図11のMPDUはそれぞれ所定の長さにフラグメント化され、MAC層サービスデータユニット(MSDU)として構成されていてもよい。
 図12は、利用中信号(Using Signal)のフレーム構成例を示す図である。
 図12のUsing Signalフレームは、L-STF、L-LTF、L-SIGに加えて、本技術の特徴である、Using Signalパラメータによって構成される。
 すなわち、L-STF、L-LTF、L-SIGは、従来方式のプリアンブルと互換性のあるパラメータ配置となっており、既存の通信装置においても、Using Signalフレームの存在を把握することができる。
 図13は、End Signalのフレーム構成例を示す図である。
 図13のEnd Signalフレームは、L-STF、L-LTF、L-SIGで構成されている。
 なお、End Signalフレームでは、A-MPDUフレームが終了したことを通知するため、L-SIGに記載のパラメータは、全て0が記載される構成としてもよい。
 図14は、L-SIGおよびUsing Signalパラメータにおけるパラメータの配置を示す図である。
 L-SIGは、既存製品と互換性を保つため、RATEフィールド(4ビット)、Rビット(1ビット)、LENGTHフィールド(12ビット)、パリティPビット(1ビット)、Tailビットのフィールド(6ビット)から構成されている。RATEフィールドは、データ部分の変調方式・符号化率を示す。Rビットは、本技術のL-SIGであることを示す。LENGTHフィールドは、データ部分の残りの情報長を示す。例えば、LENGTHフィールドには、データフレームに付加されたデータフレームの持続時間を記載したパラメータに基づいて算出された受信持続時間が記載される。
 Using Signal パラメータは、例えば、2OFDMシンボルの長さで構成されているが、情報量に応じて、これを1OFDMシンボルの長さで構成したり、3OFDMシンボル以上の長さで構成したりしてもよい。
 Using Signal パラメータは、Type(2ビット)、RSI(4ビット)、BSS Color情報(6ビット)、AID12情報(12ビット)、ACKビットマップ情報(Sequence)(12ビット)、TPC情報(2ビット)、CRC(4ビット)、Tailビットのフィールド(6ビット)の各パラメータから構成されている。
 Typeは、フレームの形式を示す。RSIは、データフレームを受信したときに得られるデータフレームの受信電界強度の情報である。BSS Colorは、BSS(ネットワーク)を識別する情報である。AID12は、通信装置を識別することができるアソシエーション識別子であり、TPC情報は、利用中信号を送信するときの送信電力制御パラメータ情報である。TPC情報は、データフレームのヘッダ情報に付加されていた情報であってもよい。Using Signal パラメータには、データフレームを送信してきた通信装置を特定する情報も含まれてもよい。
 近年、OBSSからの信号を検出する場合、規格化が進んでいる空間再利用技術を適用するために、送信された信号を受信できなければ伝送路の利用を判断できなかった。
 すなわち、OBSSにおいて信号を受信している通信装置1からはBSS color情報が記載された信号が送信されず、また、受信側の通信装置1は受信中に信号を送信できないため、受信に干渉するレベルの信号が、空間再利用技術によって送信されてしまうことがあった。
 これに対して、Using Signal パラメータに、BSS Color情報を入れるようにしたので、利用中信号を受信した周囲の通信装置1は、データ受信中の通信装置1がどのBSSに属しているのかを把握することができる。
 また、オーバーラップするBSS(OBSS)に対して、自己のBSS内では送信電力制御を実施していることを知らせる技術が必要であった。
 送信側の通信装置1の信号に、BSS Color情報などのパラメータが記載されて空間再利用技術が定義されているが、受信側の通信装置1において、受信が必要なレベルを把握したうえで、その受信に影響のない範囲で、空間再利用技術を適用する必要があった。
 これに対して、Using Signal パラメータに、TPC情報を記載するようにしたので、利用中信号を受信した通信装置1は、受信が必要なレベルを把握したうえで、その受信に影響のない範囲で、空間再利用技術を適用することができる。
 なお、これらのパラメータは例示したものであり、必要に応じて加減して構成されてもよい。また、図14では、暫定的にパラメータを配置したが、この順番に配置する事に限定されず、配置される順番についても必要に応じて適宜変更されていてもよい。
 <OFDM信号の構成とGAP時間の例>
 次に、OFDM信号について順に説明しつつ、GAPの時間について説明する。
 図15は、OFDM信号のサブキャリア構成例を示す図である。
 20MHzの帯域幅では、1OFDMシンボルは52本のサブキャリアで構成され、そのうち、4本が、図中Pで示されるパイロットサブキャリアとされる。すなわち、1OFDMシンボルの48本が、図中Dで示されるデータサブキャリアとして利用される。
 図15には、中心周波数0をDCのヌルキャリアとして、+/-26本(合計52本)のサブキャリアで構成されているが、このうち、サブキャリア-21、-7、+7、-21の4つがパイロットサブキャリアとして利用される。
 図16は、変調方式と符号化率の関係を示す図である。
 図16には、変調方式BPSK、符号化率R=1/2、1サブキャリア毎の符号化の場合、10FDMシンボルで48ビットの情報が符号化でき、24ビットの情報が伝送でき、データレートは、6Mb/s(20MHzのチャネル空間)、3Mb/s(10MHzのチャネル空間)、1.5Mb/s(5MHzのチャネル空間)であることが示されている。変調方式BPSK、符号化率R=3/4、1サブキャリア毎の符号化の場合、10FDMシンボルで48ビットの情報が符号化でき、36ビットの情報が伝送でき、データレートは、9Mb/s(20MHzのチャネル空間)、4.5Mb/s(10MHzのチャネル空間)、2.25Mb/s(5MHzのチャネル空間)であることが示されている。
 変調方式QPSK、符号化率R=1/2、2サブキャリア毎の符号化の場合、10FDMシンボルで96ビットの情報が符号化でき、48ビットの情報が伝送でき、データレートは、12Mb/s(20MHzのチャネル空間)、6Mb/s(10MHzのチャネル空間)、3Mb/s(5MHzのチャネル空間)であることが示されている。変調方式QPSK、符号化率R=3/4、2サブキャリア毎の符号化の場合、10FDMシンボルで96ビットの情報が符号化でき、72ビットの情報が伝送でき、データレートは、18Mb/s(20MHzのチャネル空間)、9Mb/s(10MHzのチャネル空間)、4.5Mb/s(5MHzのチャネル空間)であることが示されている。
 変調方式16-QAM、符号化率R=1/2、4サブキャリア毎の符号化の場合、10FDMシンボルで192ビットの情報が符号化でき、96ビットの情報が伝送でき、データレートは、24Mb/s(20MHzのチャネル空間)、12Mb/s(10MHzのチャネル空間)、6Mb/s(5MHzのチャネル空間)であることが示されている。変調方式16-QAM、符号化率R=3/4、4サブキャリア毎の符号化の場合、10FDMシンボルで192ビットの情報が符号化でき、144ビットの情報が伝送でき、データレートは、36Mb/s(20MHzのチャネル空間)、18Mb/s(10MHzのチャネル空間)、9Mb/s(5MHzのチャネル空間)であることが示されている。
 変調方式64-QAM、符号化率R=2/3、6サブキャリア毎の符号化の場合、10FDMシンボルで288ビットの情報が符号化でき、192ビットの情報が伝送でき、データレートは、48Mb/s(20MHzのチャネル空間)、24Mb/s(10MHzのチャネル空間)、12Mb/s(5MHzのチャネル空間)であることが示されている。変調方式64-QAM、符号化率R=3/4、6サブキャリア毎の符号化の場合、10FDMシンボルで288ビットの情報が符号化でき、216ビットの情報が伝送でき、データレートは、54Mb/s(20MHzのチャネル空間)、27Mb/s(10MHzのチャネル空間)、13.5Mb/s(5MHzのチャネル空間)であることが示されている。
 無線LANシステムでは、利用する変調方式(Modulation)と符号化率(Coding Rate)によって、10FDMシンボルあたり伝送することができる情報量が変わってくる。
 図16の例から代表して、例えば、変調方式BPSK、符号化率R=1/2の場合、10FDMシンボルで24ビットの情報が伝送でき、変調方式64-QAM、符号化率R=3/4の場合、10FDMシンボルで216ビットの情報が伝送できることがわかる。
 図17は、プリアンブルの構成例を示す図である。図17には、図9で示されたプリアンブル部分の詳細な構成例が示されている。
 プリアンブルは、図17に示されるように、フレームの先頭に付加されるトレーニングシーケンスとして、信号の同期を取るために決められた形式で、所定のパラメータ値から構成されている。
 図17のプリアンブルは、フレームを検出できるように、データシンボルの2倍の長さ(8+8=16μs)で、短い同期信号(t1乃至t10)が10回繰り返されるSTFと、チャンネル推定などに利用される長いLTFの2部で構成されている。STFとLTFは、ガードインターバル(GI)によって仕切られている。
 STFでは、t1乃至t7で、信号検出、AGC、ダイバーシティ選択が行われ、t8乃至t10で、粗い周波数オフセット評価やタイミング同期が行われる。LTFでは、チャンネルと細かい周波数オフセット評価が行われる。
 プリアンブルに続き、PHYパラメータが記載されたLegacy SIGNAL(L-SIG)フィールド部分が構成され、データ部分が続いていく。L-SIGとデータ部分もそれぞれガードインターバルによって仕切られている。最初のOFDMシンボルには、L-SIGフィールドが必ず配置されることで、既存方式のフレーム構造と互換性を保って伝送できる構成となっている。
 図18は、L-SIGフィールドの構成例を示す図である。図18には、図14で示されたL-SIGの構成例が示されており、同じ構成であるので、その説明は省略される。
 すなわち、L-SIGフィールドは、フレームの変調方式と符号化率を指定するRATEフィールドとフレーム長を示すLENGTHフィールドから構成され、Tailビットが配置されているので、デコードを終端することが可能である。
 ここで、1OFDMシンボルにあたり、所定の時間にデータとして認識できる時間(4μ秒)を単位としている。これにより、実際のデータを送るには、複数OFDMシンボルを利用して、ある程度の時間が必要になる。
 実際には、データフレームの手前にSIGNALフィールドが配置され、これに最初のデータフレーム部分に、16ビットのServiceや末尾のData部分にTailビットが配置され、OFDMシンボルに満たない部分は、Paddingが施される。
 図19は、A-MPDUの構成例を示す図である。OFDM信号では、複数のMPDUを連結して1つのアグリゲートしたMPDU(A-MPDU)構成とする技術が用いられている。
 図19では、サブフレーム1のA-MPDU乃至サブフレームnのA-MPDUがアグリゲートした構成が示されている。
 このように、A-MPDUサブフレームを複数まとめて送ることで伝送効率を向上させることができる。ただし、単純に連続してまとめてしまうと、切れ目が何処にあるのか判らなくなるので、MPDUの先頭に、デリミタ(Delimiter)が付加されて、予めMPDUの切れ目が判るようになっている。
 図20は、A-MPDUのうち、1つのMPDUの詳細な構成例を示す図である。
 MPDUは、MPDUデリミタ(4 Octets)、MPDU(Octetsは可変)、およびPad(0-3 Octets)で構成される。図20に示されるように、MPDUでは、個々のMPDUの先頭に、デリミタが付加されて構成されている。
 図21は、MPDUデリミタの構成例を示す図である。
 MPDUデリミタは、4ビットのReserved、12ビットのMPDU length、bビットのCRC、8ビットのDelimiter Signatureで構成されている。
 ここで、本技術の特徴としては、MPDUデリミタに記載されたMPDUのLengthに対して、各MPDU単位でパディングが実施される構成になっている。
 図22は、MPDUの内部の構成例を示す図である。
 MPDUの内部は、MACヘッダとフレームボディ、FCSから構成されていて、MACヘッダ部分に、送信元、送信先のアドレス情報などが記載されている。
 図22のMACヘッダは、2 OctetsのFrame Control、2 OctetsのDuration ID、6 OctetsのAddress1、6 OctetsのAddress2、6 OctetsのAddress3、2 Octetsのシーケンスコントロール、6 OctetsのAddress4、2 OctetsのQoSコントロール、4 OctetsのHTコントロール、0-7951 OctetsのFrame body、および4 Octetsの FCSで構成されている。
 MACヘッダの誤り検出は、末尾のFCSをデコードしなければ、正誤の判断ができない構成になっており、どの装置が利用中信号を返送するべきなのかを特定するまでに時間がかかる。
 そこで、末尾のFCSを待たずに、Target Addressを特定し、MPDU Headerに規定しておく必要があるので、本技術においては、図11に示したように、MPDU Headerを独立させた構成としてある。
 図23は、パディングの構成例を示す図である。
 本技術においては、MPDU単位でGAPを挿入することから、MPDUごとにOFDM シンボルのサブキャリアの本数(24ビットとか、216ビットの単位)で割り切れる数字になるまで、パディングが必要になる。
 すなわち、送信するMPDUのデータ長が、1OFDM Symbolで割り切れない場合は、パディングが付加される。具体的には、BPSK、R=1/2の場合では、24ビットで割り切れない部分にPadding処理される。
 図23の例の場合、上から順に、MPDU-1は、データ長がD15でパディング処理されている。MPDU-2は、データ長がD10でパディング処理されている。MPDU-3は、データ長がD13であり、パディング処理されない。MPDU-4は、データ長がD12でパディング処理されている。
 以上のようにパディングなどが構成される本技術では、図11で上述したように、MPDUヘッダとGAPを挿入してフレームが構成される。
 なお、GAPは、所定の利用中信号の時間長となるOFDMシンボルが設定される。すなわち、所定のプリアンブル(8μ秒×2)に、L-SIG(4μ秒)、さらに本技術のUsing Signal パラメータ(8μ秒)とすると、28μ秒の時間としてGAPが構成されることになる。ただし、利用中信号の構成によって、そのGAPの時間は適宜調整されてもよい。
 <送信側の通信装置の動作例>
 次に、図24のフローチャートを参照して、送信側の通信装置1の処理例について説明する。送信側の通信装置1は、図7の送信側装置に相当する。
 ステップS101において、送信バッファ102とネットワーク管理部103は、送信するアプリケーション(機器制御部13)からの送信データを、インタフェース101を介して取得する。ネットワーク管理部103は、周囲の通信装置との間で自己のBSSとオーバーラップする周囲の無線ネットワークのグループであるBSSに含まれる通信装置のアドレスなどの属性情報を管理している。
 ステップS102において、ネットワーク管理部103は、インタフェース101を介して取得した送信データに基づいて、受信側の通信装置1の属性情報を取得する。
 ステップS103において、ネットワーク管理部103は、受信側の通信装置1の通信方式が利用中信号に対応しているか否かを判定する。ステップS103において、利用中信号に対応していないと判定された場合、処理は、ステップS104に進む。
 ステップS104において、送信フレーム構築部104は、ネットワーク管理部103の制御のもと、既存の通信方式によるデータフレームを生成する。
 ステップS103において、利用中信号に対応していると判定された場合、処理は、ステップS105に進む。ステップS105において、送信フレーム構築部104は、ネットワーク管理部103の制御のもと、利用中信号に対応しているデータフレームを生成する。生成するデータフレームは、所定のアグリゲーションしたMPDU構成となるように、複数のMPDUをまとめる構成としてもよい。
 生成されたデータフレームは、ヘッダ情報生成部106および無線送信処理部110に供給される。ヘッダ情報生成部106は、無線通信制御部105により供給された情報に基づいて、送信フレーム構築部104から供給されたフレームの先頭部分に付加する所定のプリアンブルおよびヘッダ情報を生成する。ヘッダ情報には、送信先の通信装置1を特定する情報、データフレームの送信電力に関する情報などが記載される。
 無線受信処理部112は、伝送路信号を、アンテナ111-1Bを介して受信し、検出閾値制御部113により信号が検出された場合、周囲の通信装置1からの所定のフォーマットで無線伝送されるデータフレームが含まれているか否かを判定する。周囲の通信装置1からの所定のフォーマットで無線伝送されるデータフレームが含まれていると無線受信処理部112により判定された場合、ヘッダ情報解析部116に受信したデータフレームが供給される。
 ヘッダ情報解析部116は、受信したデータフレームからプリアンブルを検出し、ヘッダ情報を解析し、解析結果を無線通信制御部105に供給する。また、ヘッダ情報が含まれる場合、ヘッダ情報解析部116は、利用中信号検出部115にヘッダ情報を供給する。利用中信号検出部115は、ヘッダ情報に利用中信号があるか否かを検出する。
 ここでは、利用中信号が既存のプリアンブルと互換性を有するため、利用中信号検出部115が、ヘッダ情報解析部116からのヘッダ情報から利用中信号を検出する構成となっているが、利用中信号検出部115を、受信されたデータフレームから直接利用中信号を検出する構成としてもよい。
 利用中信号検出部115は、利用中信号が検出された場合、利用中信号の情報を、無線通信制御部105に供給し、伝送路上で送信されたフレームを受信している他の通信装置が存在することを把握する。このようなアクセス手順が行われる。なお、アクセス手順は、一例であり、これに限らない。
 ステップS106において、無線通信制御部105は、所定のアクセス手順後、ヘッダ情報解析部116が解析した解析結果や、利用中信号検出部115が検出した検出結果に基づいて、伝送路でのデータフレームの送信が可能であるか否かを判定する。ステップS106において、伝送路でのデータフレームの送信が可能であると判定するまで待機する。
 利用中信号が検出されない場合、ステップS106において、伝送路が空き状態であると、すなわち、伝送路でのデータフレームの送信が可能であると判定された場合、処理は、ステップS107に進む。ステップS107において、無線通信制御部105は、ヘッダ情報生成部106を制御し、データフレームを送信させる。
 ヘッダ情報生成部106は、生成したヘッダ情報を、送信フレーム構築部104により生成されたデータフレームに付加して、無線送信処理部110に供給する。無線送信処理部110は、ヘッダ情報生成部106により生成されたヘッダ情報が付加されたデータフレームを、所定のベースバンド信号に変換して変調処理と信号処理を実施し、信号処理後のベースバンド信号をアンテナ111-1Aを介して送信する。
 このとき、フレームは、送信電力制御部109の制御のもと、受信側の通信装置1で受信可能な最小の送信電力で送信されるようにしてもよい。また、フレームは、利用中信号が受信されたときの受信電界強度および利用中信号に記載の受信電界強度の情報に基づいて算出されたOBSSの通信に影響のない送信電力値で送信されるようにしてもよい。
 ステップS108において、無線通信制御部105は、利用中信号が配置される位置であるか否かを判定し、利用中信号が配置される位置ではないと判定した場合、ステップS107の処理に戻り、それ以降の処理が繰り返される。
 ステップS108において、利用中信号が配置される位置であると判定された場合、処理は、ステップS109に進む。ステップS109において、送信タイミング制御部108は、無線通信制御部105の制御のもと、GAPを挿入する。
 なお、GAPの挿入方法は、送信タイミングの制御に限らず、データフレーム作成時に、GAPの部分に空データを入れておいて、GAPの部分だけ信号が出ないようにするなどの方法も考えられる。
 ステップS110において、無線通信制御部105は、上述した所定のアクセス手順後、利用中信号検出部115からの検出結果に基づいて、利用中信号を検出したか否かを判定する。ステップS110において、利用中信号を検出したと判定された場合、処理は、ステップS111に進む。
 ステップS111において、無線通信制御部105は、利用中信号検出部115により検出された利用中信号に記載されているパラメータを取得する。このとき、無線通信制御部105は、必要に応じて、伝送路の状況をモニターするようにしてもよい。
 その後、処理は、ステップS114に進む。
 一方、ステップS110において、利用中信号を検出していないと判定された場合、処理は、ステップS112に進む。ステップS112において、無線通信制御部105は、所定のアクセス手順を行い、利用中信号が連続して未検出であるか否かを判定する。
 ステップS112において、利用中信号が連続して未検出であると判定された場合、処理は、ステップS113に進む。ステップS113において、無線通信制御部105は、再送を実施するか否かを判定し、再送を実施しないと判定した場合、送信側の通信装置1の処理を終了する。
 ステップS113において、再送を実施すると判定された場合、処理は、ステップS106に戻り、それ以降の処理が繰り返される。ステップS112において、利用中信号が連続して未検出ではないと判定された場合、処理は、ステップS114に進む。
 ステップS114において、無線通信制御部105は、データフレームの末尾であるか否かを判定する。ステップS114において、データフレームの末尾ではないと判定された場合、処理は、ステップS107に戻り、それ以降の処理が繰り返される。
 ステップS114において、データフレームの末尾であると判定された場合、送信側の通信装置1の処理は、終了される。その後、従来と同様に、ACKフレームの交換によって、データフレームが受信されたかどうかを送信側の通信装置1に確認させる構成としてもよい。
 なお、通信方式が利用中信号に対応していない場合、ステップS108乃至S111の利用中信号に関わる処理はスキップされる。
 <受信側の通信装置の動作例>
 次に、図25のフローチャートを参照して、受信側の通信装置1の処理例について説明する。受信側の通信装置1は、図7の受信側装置に相当する。
 図24で上述したアクセス手順が行われ、ステップS151において、無線通信制御部105は、ヘッダ情報解析部116がプリアンブルを検出したか否かを判定し、プリアンブルを検出したと判定するまで待機する。ステップS151において、プリアンブルを検出したと判定された場合、処理は、ステップS152に進む。
 ステップS152において、無線通信制御部105は、ヘッダ情報解析部116により解析されたPLCPヘッダ情報を取得し、利用中信号に対応するデータフレームであれば、データフレームが利用中信号に対応していることを記憶する。
 ステップS153において、無線通信制御部105は、検出閾値制御部113から、利用中信号を受信したときの受信電界強度を取得する。
 ステップS154において、受信データ構築部117は、データペイロード(または、MPDU-0ヘッダ)を受信し、MPDUの終わりまで復号を行う。
 ステップS155において、受信データ構築部117は、MPDUの終わりまで誤りなく復号できたか否かを判定する。ステップS155において、誤りなく復号できたと判定された場合、処理は、ステップS156に進む。ステップS156において、受信データ構築部117は、データペイロードを取得し、受信バッファ118に蓄積する。
 ステップS157において、受信データ構築部117は、受信したデータフレームのACK情報を生成する。生成されたACK情報は、利用中信号に入れてもよいし、送信の最後に、ブロックACKフレームとして送信されてもよい。
 ステップS155において、MPDUの終わりまで誤りなく復号できなかったと判定された場合、ステップS156とステップS157の処理はスキップされ、処理は、ステップS158に進む。
 ステップS158において、送信タイミング制御部108は、利用中信号の位置であるか否かを判定する。ステップS159において、送信タイミング制御部108は、利用中信号生成部107により生成された利用中信号を取得する。ステップS160において、無線送信処理部110は、送信タイミング制御部108により供給された利用中信号を送信する。
 ここで、送信電力制御部109は、通常のデータフレームについては、受信側の通信装置1で受けることのできる最小限の電力で送信する。一方、送信電力制御部109は、利用中信号については、通常のデータフレームより大きい送信電力で送られるように制御している。
 ステップS161において、無線通信制御部105は、データフレーム末尾が到来したか否かを判定する。例えば、アグリゲーションされたMPDUが継続する場合、ステップS161において、データフレーム末尾が到来していないと判定されるので、処理は、ステップS154に戻り、それ以降の処理が繰り返される。ステップS161において、データフレーム末尾が到来したと判定された場合、受信側の通信装置1の処理は終了される。
 <周囲の通信装置の動作例>
 次に、図26のフローチャートを参照して、周囲の通信装置1の処理例について説明する。周囲の通信装置1は、図7の受信側近傍周囲装置、送受信側近傍周囲装置、受信側遠方周囲装置、SR送信側装置、SR受信側装置の少なくともいずれか1台に相当する。
 上述したアクセス手順が行われ、ステップS201において、無線通信制御部105は、利用中信号検出部115が利用中信号を検出したと判定するまで待機している。ステップS201において、利用中信号を検出したと判定された場合、処理は、ステップS202に進む。
 ステップS202において、無線通信制御部105は、利用中信号検出部115が検出した利用中信号に記載されているパラメータを取得する。ステップS203において、無線通信制御部105は、取得した、例えばBSS Color情報などのパラメータを参照して、検出された利用中信号がOBSSの信号であるか否かを判定する。
 ステップS203において、OBSSの信号ではないと判定された場合、BSSの信号であるので、周囲の通信装置1の処理は終了される。
 ステップS203において、OBSSの信号であると判定された場合、処理は、ステップS204に進む。ステップS204において、無線通信制御部105は、取得したパラメータを参照して、検出された利用中信号が、空間再利用に対応しているか否かを判定する。
 ステップS204において、空間再利用に対応していると判定された場合、処理は、ステップS205に進む。ステップS205において、無線通信制御部105は、利用中信号が受信されたときの受信電界強度および利用中信号に記載の受信電界強度の情報に基づいて、OBSSの通信に影響のない送信電力値を算出する。
 ステップS206において、無線通信制御部105は、ネットワーク管理部103が管理している情報などを参照し、自己のBSS内でデータフレーム送信の予定があるか否かを判定する。ステップS206において、BSS内でデータフレーム送信の予定がないと判定された場合、周囲の通信装置1の処理は終了される。
 ステップS206において、BSS内でデータフレーム送信の予定があると判定された場合、処理は、ステップS207に進む。
 ステップS207において、無線通信制御部105は、送信待ちを行うためのバックオフ時間を設定する。ステップS208において、無線通信制御部105は、設定したバックオフ時間が満了したと判定し、設定したバックオフ時間が満了したと判定するまで待機する。ステップS208において、設定したバックオフ時間が満了したと判定された場合、処理は、ステップS209に進む。
 ステップS209において、送信電力制御部109は、無線通信制御部105が算出した送信電力を設定する。
 ステップS210において、無線送信処理部110は、ヘッダ情報生成部106により生成されたヘッダ情報が付加されたデータフレーム(または送信フレーム構築部104により生成されたデータフレーム)を送信する。
 なお、図24乃至図26においては、送信側の通信装置1、受信側の通信装置1、および周囲の通信装置1として処理を分けて記載したが、いずれの処理も通信装置1が可能な処理であり、3つの処理に用いられた各ステップは、必要に応じて、どの処理で用いられるようにしてもよい。ステップの順番も変更されてもよい。
 以上のように、本技術においては、データフレーム受信側から利用中信号を間欠的に送信するようにしたので、受信に影響のある干渉範囲の装置に対して通知することができる。
 例えば、アグリゲートしたA-MPDUフレームにおいて、MPDUサブフレーム後に、利用中信号の領域を確保することで、データフレーム受信中の装置の存在を、短い周期で周囲の装置に通知することができる。
 従来、ビジートーンを用いた伝送路の利用通知方法では、ビジートーン信号を送信するチャネルなどが必要となっており、ビジートーンの信号を送受信するための通信ブロックが必要となっていた。
 これに対して、本技術によれば、利用中信号を用いることにより、トーン信号の送受信回路やフィルタを用いることなく、従来の送受信回路のままで処理することができる。
 従来のRTS/CTSフレームの交換でNAVを設定する場合において、RTSフレームを受信できたが、CTSフレームを受信できなかった周囲の通信装置1は、その受信側の通信装置1のデータフレーム受信に影響がないにもかかわらず、NAVが設定されてしまい、送信機会が減少してしまっていた。
 従来技術のNAV設定方法では、RTS信号を受信した場合と、CTS信号を受信した場合の双方で設定されるため、受信側の通信装置1のデータフレーム受信に影響のない範囲からの送信が抑制されてしまっていた。
 つまり、RTS信号でNAVを設定した後に、CTS信号の受信がなければ、その信号の受信先の通信装置1に干渉を与える影響が少ないと考えられていた。
 これに対して、本技術によれば、RTS/CTSの交換を実施することなく、受信側の通信装置1の周囲にネットワークアロケーションベクター(NAV)を設定させることができる。
 また、送信電力制御が実施されて送信電力が低減された信号を受信している場合に、オーバーラップするBSSから受信側の通信装置1の周囲で送信電力を制御せず、最大送信電力で信号が送信されてしまうと、BSS内の通信が行えなくなることがあった。
 つまり、送信電力制御を実施して、BSS内で送信電力を抑制して通信を実施しても、その送信電力制御が実施されていることを把握していない、オーバーラップするBSS(OBSS)では、送信電力制御を実施せずに信号を送信してしまうことがあった。
 本技術によれば、利用中信号に、データ受信時のRSSI情報や、データの送信電力情報が記載するようにしたので、RSSI情報や送信電力情報の値から、データ受信先の所用S/N比を見積もることができ、空間再利用を実施した送信の可否を判断することができる。これにより、データ受信に影響のない範囲の送信電力の設定ができる。
 本技術は、無線LANシステムを構成するアクセスポイントおよび通信デバイスなどの通信装置に適用することができる。
 <通信装置のハードウエア構成例>
 上述した一連の処理は、ハードウエアにより実行させることもできるし、ソフトウエアにより実行させることもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、コンピュータにインストールされる。ここでコンピュータには、専用のハードウエアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータ等が含まれる。
 図27は、上述した一連の処理をプログラムにより実行する通信装置のハードウエア構成例を示すブロック図である。
 図27に示される通信装置300において、CPU(Central Processing Unit)301、ROM(Read Only Memory)302、RAM(Random Access Memory)303は、バス304を介して相互に接続されている。
 バス304にはまた、入出力インタフェース305も接続されている。入出力インタフェース305には、入力部306、出力部307、記憶部308、通信部309、およびドライブ310が接続されている。
 入力部306は、例えば、キーボード、マウス、マイクロホン、タッチパネル、入力端子などよりなる。出力部307は、例えば、ディスプレイ、スピーカ、出力端子などよりなる。記憶部308は、例えば、ハードディスク、RAMディスク、不揮発性のメモリなどよりなる。通信部309は、例えば、ネットワークインタフェースよりなる。ドライブ310は、磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリなどのリムーバブルメディア311を駆動する。
 以上のように構成される通信装置では、CPU301が、例えば、記憶部308に記憶されているプログラムを、入出力インタフェース305およびバス304を介して、RAM303にロードして実行することにより、上述した一連の処理が行われる。RAM303にはまた、CPU301が各種の処理を実行する上において必要なデータなども適宜記憶される。
 通信装置(CPU301)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア311に記録して適用することができる。その場合、プログラムは、リムーバブルメディア311をドライブ310に装着することにより、入出力インタフェース305を介して、記憶部308にインストールすることができる。
 また、このプログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することもできる。その場合、プログラムは、通信部309で受信し、記憶部308にインストールすることができる。
 その他、このプログラムは、ROM302や記憶部308に、あらかじめインストールしておくこともできる。
 なお、通信装置が実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 なお、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。従って、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、および、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 また、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、本技術は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示はかかる例に限定されない。本開示の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 なお、本技術は以下のような構成も取ることができる。
(1)
 データフレームを生成する構築部と、
 前記データフレームを送信先の通信装置に送信する送信部と、
 前記データフレームの送信中に、所定の期間送信を中断する制御を行う制御部と
 を備える通信装置。
(2)
 前記送信を中断する前記所定の期間に、前記送信先の通信装置から、伝送路を利用していることを示す利用中信号を受信する受信部を
 さらに備える前記(1)に記載の通信装置。
(3)
 前記送信を中断する前記所定の期間は、送受信動作の切り替え時間を含むように構成される
 前記(1)または(2)に記載の通信装置。
(4)
 前記送信部は、前記送信先の通信装置が前記データフレームを受信可能とする送信電力で送信する
 前記(1)乃至(3)のいずれかに記載の通信装置。
(5)
 前記データフレームの前記送信先の通信装置を特定する情報と、前記データフレームの送信電力に関する情報とが記載された前記データフレームのヘッダ情報を生成するヘッダ情報生成部
 をさらに備える前記(1)乃至(4)のいずれかに記載の通信装置。
(6)
 前記利用中信号を受信したときの受信電界強度と、前記利用中信号に記載の受信電界強度の情報に基づいて、他の通信装置のデータフレームの受信に影響のない送信電力を設定する送信電力制御部
 をさらに備え、
 前記送信部は、前記送信電力で前記データフレームを送信する
 前記(1)乃至(5)のいずれかに記載の通信装置。
(7)
 前記制御部は、所定の時間、他の通信装置からの利用中信号を検出しない場合、前記伝送路が空き状態であると判定し、
 前記送信部は、前記伝送路が空き状態であると判定された場合、前記データフレームを前記送信先の通信装置に送信する
 前記(1)乃至(5)のいずれかに記載の通信装置。
(8)
 送信を中断する期間が間欠的に設けられて送信されたデータフレームを受信する受信部と、
 前記送信を中断する期間に、伝送路を利用していることを示す利用中信号を送信する送信部と
 を備える通信装置。
(9)
 前記データフレームに付加された、前記データフレームの持続時間を記載したパラメータに基づいて算出された受信持続時間を、前記利用中信号に付加する利用中信号生成部
 をさらに備える前記(8)に記載の通信装置。
(10)
 前記利用中信号生成部は、前記データフレームを受信したときの受信電界強度の情報と、前記データフレームのヘッダ情報に付加された送信電力の情報とを、前記利用中信号に付加する
 前記(9)に記載の通信装置。
(11)
 前記送信部は、前記データフレームの受信が終了したときに、終了したことを示す終了信号を送信する
 前記(8)乃至(10)のいずれかに記載の通信装置。
(12)
 前記送信部は、前記利用中信号を、前記データフレームを送信してきた送信元の通信装置における前記データフレームの送信電力よりも大きい送信電力で送信する
 前記(8)乃至(11)のいずれかに記載の通信装置。
(13)
 前記利用中信号は、ネットワークを識別するための情報と、前記データフレームを送信してきた送信元の通信装置を特定する情報とを含む
 前記(8)乃至(11)のいずれかに記載の通信装置。
(14)
 前記利用中信号は、既存方式のプリアンブルと互換性のあるパラメータ配置で構成される
 前記(8)乃至(13)のいずれかに記載の通信装置。
(15)
 送信を中断する期間が間欠的に設けられて送信されたデータフレームを送信する第1の通信装置に対して前記送信を中断する期間に、前記データフレームを受信する第2の通信装置から送信される、伝送路を利用していることを示す利用中信号を受信する受信部と、
 前記利用中信号の受信状況に応じて送信を制御する送信制御部
 とを備える通信装置。
(16)
 前記利用中信号を受信した場合、前記送信制御部は、前記送信を禁止するように制御する
 前記(15)に記載の通信装置。
(17)
 前記受信部が、前記利用中信号を受信していない場合、前記送信制御部は、他のデータフレームの送信を制御する
 前記(15)または(16)に記載の通信装置。
(18)
 前記利用中信号を受信したときの受信電界強度と、前記利用中信号に記載の受信電界強度に基づいて、前記第2の通信装置による前記データフレームの受信に影響のない送信電力を設定する送信電力制御部と
 をさらに備え、
 前記送信制御部は、前記送信電力で前記他のデータフレームの送信を制御する
 前記(15)乃至(17)のいずれかに記載の通信装置。
(19)
 前記送信制御部は、送信待ち時間であるバックオフ時間を設定し、前記バックオフ時間が満了したとき、前記送信制御部は、前記送信電力で前記他のデータフレームの送信を制御する
 前記(18)に記載の通信装置。
 1,1-1乃至1-5 通信装置, 11 インターネット接続モジュール, 12 情報入力モジュール, 13 機器制御部, 14 情報出力モジュール, 15 無線通信モジュール, 101 インタフェース, 102 送信バッファ, 103 ネットワーク管理部, 104 送信フレーム構築部, 105 無線通信制御部, 106 ヘッダ情報生成部, 107 利用中信号生成部, 108 送信タイミング制御部, 109 送信電力制御部, 110 無線送信処理部, 111 アンテナ制御部, 111-1A アンテナ, 111-1B アンテナ, 112 無線受信処理部, 113 検出閾値制御部, 114 受信タイミング制御部, 115 利用中信号検出部, 116 ヘッダ情報解析部, 117 受信データ構築部, 118 受信バッファ

Claims (19)

  1.  データフレームを生成する構築部と、
     前記データフレームを送信先の通信装置に送信する送信部と、
     前記データフレームの送信中に、所定の期間送信を中断する制御を行う制御部と
     を備える通信装置。
  2.  前記送信を中断する前記所定の期間に、前記送信先の通信装置から、伝送路を利用していることを示す利用中信号を受信する受信部を
     さらに備える請求項1に記載の通信装置。
  3.  前記送信を中断する前記所定の期間は、送受信動作の切り替え時間を含むように構成される
     請求項2に記載の通信装置。
  4.  前記送信部は、前記送信先の通信装置が前記データフレームを受信可能とする送信電力で送信する
     請求項2に記載の通信装置。
  5.  前記データフレームの前記送信先の通信装置を特定する情報と、前記データフレームの送信電力に関する情報とが記載された前記データフレームのヘッダ情報を生成するヘッダ情報生成部
     をさらに備える請求項2に記載の通信装置。
  6.  前記利用中信号を受信したときの受信電界強度と、前記利用中信号に記載の受信電界強度の情報に基づいて、他の通信装置のデータフレームの受信に影響のない送信電力を設定する送信電力制御部
     をさらに備え、
     前記送信部は、前記送信電力で前記データフレームを送信する
     請求項2に記載の通信装置。
  7.  前記制御部は、所定の時間、他の通信装置からの利用中信号を検出しない場合、前記伝送路が空き状態であると判定し、
     前記送信部は、前記伝送路が空き状態であると判定された場合、前記データフレームを前記送信先の通信装置に送信する
     請求項2に記載の通信装置。
  8.  送信を中断する期間が間欠的に設けられて送信されたデータフレームを受信する受信部と、
     前記送信を中断する期間に、伝送路を利用していることを示す利用中信号を送信する送信部と
     を備える通信装置。
  9.  前記データフレームに付加された、前記データフレームの持続時間を記載したパラメータに基づいて算出された受信持続時間を、前記利用中信号に付加する利用中信号生成部
     をさらに備える請求項8に記載の通信装置。
  10.  前記利用中信号生成部は、前記データフレームを受信したときの受信電界強度の情報と、前記データフレームのヘッダ情報に付加された送信電力の情報とを、前記利用中信号に付加する
     請求項9に記載の通信装置。
  11.  前記送信部は、前記データフレームの受信が終了したときに、終了したことを示す終了信号を送信する
     請求項8に記載の通信装置。
  12.  前記送信部は、前記利用中信号を、前記データフレームを送信してきた送信元の通信装置における前記データフレームの送信電力よりも大きい送信電力で送信する
     請求項8に記載の通信装置。
  13.  前記利用中信号は、ネットワークを識別するための情報と、前記データフレームを送信してきた送信元の通信装置を特定する情報とを含む
     請求項8に記載の通信装置。
  14.  前記利用中信号は、既存方式のプリアンブルと互換性のあるパラメータ配置で構成される
     請求項8に記載の通信装置。
  15.  送信を中断する期間が間欠的に設けられて送信されたデータフレームを送信する第1の通信装置に対して前記送信を中断する期間に、前記データフレームを受信する第2の通信装置から送信される、伝送路を利用していることを示す利用中信号を受信する受信部と、
     前記利用中信号の受信状況に応じて送信を制御する送信制御部
     とを備える通信装置。
  16.  前記利用中信号を受信した場合、前記送信制御部は、前記送信を禁止するように制御する
     請求項15に記載の通信装置。
  17.  前記受信部が、前記利用中信号を受信していない場合、前記送信制御部は、他のデータフレームの送信を制御する
     請求項15に記載の通信装置。
  18.  前記利用中信号を受信したときの受信電界強度と、前記利用中信号に記載の受信電界強度に基づいて、前記第2の通信装置による前記データフレームの受信に影響のない送信電力を設定する送信電力制御部と
     をさらに備え、
     前記送信制御部は、前記送信電力で前記他のデータフレームの送信を制御する
     請求項17に記載の通信装置。
  19.  前記送信制御部は、送信待ち時間であるバックオフ時間を設定し、前記バックオフ時間が満了したとき、前記送信制御部は、前記送信電力で前記他のデータフレームの送信を制御する
     請求項18に記載の通信装置。
PCT/JP2019/002402 2018-02-09 2019-01-25 通信装置 WO2019155907A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2019217730A AU2019217730B2 (en) 2018-02-09 2019-01-25 Communication device
EP19751966.3A EP3751894A4 (en) 2018-02-09 2019-01-25 COMMUNICATION DEVICE
KR1020207021638A KR20200119789A (ko) 2018-02-09 2019-01-25 통신 장치
US16/964,891 US11357049B2 (en) 2018-02-09 2019-01-25 Communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-021661 2018-02-09
JP2018021661 2018-02-09

Publications (1)

Publication Number Publication Date
WO2019155907A1 true WO2019155907A1 (ja) 2019-08-15

Family

ID=67549077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002402 WO2019155907A1 (ja) 2018-02-09 2019-01-25 通信装置

Country Status (5)

Country Link
US (1) US11357049B2 (ja)
EP (1) EP3751894A4 (ja)
KR (1) KR20200119789A (ja)
AU (1) AU2019217730B2 (ja)
WO (1) WO2019155907A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110892750B (zh) * 2017-07-06 2023-11-28 索尼公司 无线通信装置和方法
US12120025B2 (en) * 2020-05-19 2024-10-15 Qualcomm Incorporated Physical layer preamble design
JP2022138406A (ja) * 2021-03-10 2022-09-26 シャープディスプレイテクノロジー株式会社 タッチパネル付き表示装置及びタッチパネル付き表示装置の制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124490A (ja) * 2003-02-03 2010-06-03 Sony Corp 通信方法及び通信装置、並びにコンピュータプログラム
JP2011254319A (ja) 2010-06-02 2011-12-15 National Institute Of Information & Communication Technology 基地局装置、無線通信システムおよび無線通信方法
JP2015061138A (ja) * 2013-09-17 2015-03-30 Necエンジニアリング株式会社 移動通信システム、移動通信方法、制御装置及び制御プログラム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060268924A1 (en) * 2005-04-01 2006-11-30 Interdigital Technology Corporation Method and apparatus for dynamically adjusting a deferred transmission level and a transmission power level in a wireless communication system
JP4316646B2 (ja) * 2005-05-10 2009-08-19 三菱電機株式会社 端末制御装置及び無線lanシステム
EP1821462A1 (en) 2006-02-20 2007-08-22 Thomson Telecom Belgium Method and device to transmit a busy medium signal to another device
JP4762007B2 (ja) * 2006-03-03 2011-08-31 パナソニック株式会社 中継装置、通信端末、及び通信システム
EP2514262A1 (en) * 2009-12-16 2012-10-24 Nokia Siemens Networks Oy Apparatus and method
KR20150003764A (ko) * 2012-03-29 2015-01-09 엘지전자 주식회사 무선랜 시스템에서 채널 액세스 제어 방법 및 장치
US20150351125A1 (en) 2012-07-02 2015-12-03 Electronics And Telecommunications Research Institute Apparatus and method for allocating resource
WO2015018453A1 (en) * 2013-08-09 2015-02-12 Nokia Solutions And Networks Oy Offloading traffic of a user equipment communication session from a cellular communication network to a wireless local area network (wlan)
WO2015122630A1 (ko) 2014-02-12 2015-08-20 엘지전자(주) 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2016087917A1 (ko) * 2014-11-19 2016-06-09 뉴라컴 인코포레이티드 고효율 무선랜에서 bss 식별정보에 기초한 ppdu프로세싱 방법 및 장치
US20180263047A1 (en) * 2014-12-25 2018-09-13 Lg Electronics Inc. Method and apparatus for transmitting data unit on basis of trigger frame
WO2017023074A1 (ko) * 2015-07-31 2017-02-09 주식회사 윌러스표준기술연구소 다중 캐리어 신호 전송 방법, 장치 및 시스템
CN110249570B (zh) * 2016-12-05 2022-11-01 瑞典爱立信有限公司 基于另一个参考信号带宽来控制极简载波上的小区特定参考信号(crs)带宽
JP7114236B2 (ja) * 2017-10-19 2022-08-08 キヤノン株式会社 通信装置、制御方法、及びプログラム
US11317469B2 (en) * 2017-11-28 2022-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Radio access network node technology

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124490A (ja) * 2003-02-03 2010-06-03 Sony Corp 通信方法及び通信装置、並びにコンピュータプログラム
JP2011254319A (ja) 2010-06-02 2011-12-15 National Institute Of Information & Communication Technology 基地局装置、無線通信システムおよび無線通信方法
JP2015061138A (ja) * 2013-09-17 2015-03-30 Necエンジニアリング株式会社 移動通信システム、移動通信方法、制御装置及び制御プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3751894A4

Also Published As

Publication number Publication date
KR20200119789A (ko) 2020-10-20
EP3751894A4 (en) 2021-03-31
US11357049B2 (en) 2022-06-07
US20210037570A1 (en) 2021-02-04
AU2019217730A1 (en) 2020-07-09
EP3751894A1 (en) 2020-12-16
AU2019217730B2 (en) 2024-04-04

Similar Documents

Publication Publication Date Title
JP6609067B2 (ja) 不連続チャネルを利用した無線通信方法及び無線通信端末
KR102072326B1 (ko) 트리거 정보를 사용하는 무선 통신 방법 및 이를사용하는 무선 통신 단말
US10225061B2 (en) Method and apparatus for receiving frame
JP4697068B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
US10349288B2 (en) Method and device for receiving frame
EP3160058B1 (en) Method and apparatus for transmitting frame
CN112291045B (zh) 用于响应于接收到的帧而传送确认的方法和装置
KR102596870B1 (ko) 집합 mpdu 및 이에 대한 응답 프레임의 전송 방법 및 이를 이용한 무선 통신 단말
JP2019118107A (ja) 無線通信装置および無線通信方法
EP3076725A1 (en) Method and device for transmitting uplink frame in wireless lan
US20170245306A1 (en) Method and device for enabling station to receive signal in wireless communication system
CN107211411B (zh) 无线接收装置、无线发送装置、通信方法及通信系统
KR20180010172A (ko) 무선 랜 시스템에서 상향링크 송신을 수행하는 방법 및 장치
EP3119154A1 (en) Method and apparatus for transmitting frame in wireless lan
CN106664724B (zh) 无线发送装置、无线接收装置、通信方法以及通信系统
KR20160125488A (ko) 무선 근거리 네트워크 데이터를 전송하기 위한 방법 및 장치
KR101966132B1 (ko) 무선랜 시스템에서 상향링크 확인응답 신호 송수신 방법 및 이를 위한 장치
WO2019155907A1 (ja) 通信装置
US20160043946A1 (en) Systems and methods for aggregating multi-user media access control protocol data unit frames in a wireless network
JPWO2016143842A1 (ja) 端末装置および通信方法
US20190007971A1 (en) Terminal device, communication method, and integrated circuit
KR20170030759A (ko) 고효율 무선랜에서 다중 채널 액세스를 위한 상향링크 전송 및 이에 응답하는 확인응답 방법 및 장치
EP3694288B1 (en) Terminal and communication method
WO2016140179A1 (ja) 基地局装置および端末装置
KR20220104586A (ko) 동시 송수신 동작이 제한된 다중 링크 동작에서의 전송 기회 유지를 위한 채널 접근 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751966

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019217730

Country of ref document: AU

Date of ref document: 20190125

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019751966

Country of ref document: EP

Effective date: 20200909

NENP Non-entry into the national phase

Ref country code: JP