WO2019155872A1 - Haps協調飛行システム - Google Patents

Haps協調飛行システム Download PDF

Info

Publication number
WO2019155872A1
WO2019155872A1 PCT/JP2019/001917 JP2019001917W WO2019155872A1 WO 2019155872 A1 WO2019155872 A1 WO 2019155872A1 JP 2019001917 W JP2019001917 W JP 2019001917W WO 2019155872 A1 WO2019155872 A1 WO 2019155872A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless relay
relay devices
flight
haps
information
Prior art date
Application number
PCT/JP2019/001917
Other languages
English (en)
French (fr)
Inventor
隆史 藤井
太田 喜元
兼次 星野
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Priority to CN201980011802.3A priority Critical patent/CN111684830B/zh
Priority to CA3090214A priority patent/CA3090214C/en
Priority to KR1020207024111A priority patent/KR102280484B1/ko
Priority to FIEP19750866.6T priority patent/FI3751885T3/fi
Priority to US16/966,254 priority patent/US11308814B2/en
Priority to EP19750866.6A priority patent/EP3751885B1/en
Publication of WO2019155872A1 publication Critical patent/WO2019155872A1/ja
Priority to IL276475A priority patent/IL276475B/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/02Arrangements or adaptations of signal or lighting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/20UAVs specially adapted for particular uses or applications for use as communications relays, e.g. high-altitude platforms
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0026Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located on the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0043Traffic management of multiple aircrafts from the ground
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/1555Selecting relay station antenna mode, e.g. selecting omnidirectional -, directional beams, selecting polarizations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • H04L67/125Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/08User group management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/50Glider-type UAVs, e.g. with parachute, parasail or kite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/31Supply or distribution of electrical power generated by photovoltaics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/005Moving wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/18Network protocols supporting networked applications, e.g. including control of end-device applications over a network

Definitions

  • the present invention relates to a system and method for controlling the flight of a wireless relay device such as a HAPS (High Altitude Platform Station) suitable for building a three-dimensional network for fifth generation communication.
  • a wireless relay device such as a HAPS (High Altitude Platform Station) suitable for building a three-dimensional network for fifth generation communication.
  • LTE-AdvancedPro which is an extension of 3GPP LTE (Long Term Evolution) -Advanced
  • Non-Patent Document 1 which is a communication standard for mobile communication systems
  • Non-Patent Document 2 a communication standard for mobile communication systems
  • LTE-AdvancedPro specifications for providing communication to devices for recent IoT (Internet of Things) have been formulated.
  • IoT Internet of Things
  • the fifth generation mobile that supports simultaneous connection and low delay to many terminal devices (also referred to as “UE (user equipment)”, “mobile station”, “communication terminal”) such as devices for IoT. Communication has been studied (for example, see Non-Patent Document 3).
  • Communication quality may be deteriorated due to frequent handovers at the cell boundaries of a plurality of cells formed by the wireless relay device or increased interference from adjacent cells.
  • a system is a system including a plurality of wireless relay devices that wirelessly communicate with a terminal device, and each of the plurality of wireless relay devices fly over the sky.
  • a wireless relay station is provided that is movable and forms a cell toward the ground or the sea and wirelessly communicates with a terminal device located in the cell, and between the wireless relay devices by autonomous control or by external control Fly in coordination with each other to maintain the positional relationship.
  • each of the plurality of wireless relay devices may perform coordinated flight that maintains a positional relationship between the wireless relay devices in the horizontal direction.
  • each of the plurality of wireless relay devices may perform coordinated flight so as to maintain a positional relationship between the wireless relay devices in the height direction.
  • each of the plurality of wireless relay devices may perform coordinated flight so that the wireless relay devices have the same flight direction and the attitude relative to the flight direction. Further, in the system, when the flight pattern of any one of the plurality of wireless relay devices changes, the other wireless relay device performs the same flight as the flight pattern after the change of any one of the wireless relay devices. It may be controlled to fly in a pattern.
  • the plurality of wireless relay devices are classified into a plurality of groups corresponding to a plurality of different areas on the ground or the sea based on positions of the wireless relay devices, and the wireless relay devices are grouped into the groups. You may control the cooperation flight of an apparatus.
  • any one of the plurality of wireless relay devices is set as a wireless relay device serving as a reference for the flight control, and the reference wireless relay device is set around the reference wireless relay device.
  • the system further includes a management device that manages the plurality of wireless relay devices, wherein the management device receives information including at least one of a current position, an altitude, and an attitude of each of the plurality of wireless relay devices.
  • Control information for performing the coordinated flight based on the information of the wireless relay device is obtained from each of the wireless relay devices via the ground or sea gateway station, It may be transmitted to each of the wireless relay devices.
  • the system further includes a management device that manages the plurality of wireless relay devices, and any one of the plurality of wireless relay devices has a current position, altitude, and attitude of each of the other wireless relay devices.
  • Information including at least one is acquired from the other wireless relay device, and the management device receives information including at least one of a current position, an altitude, and an attitude of each of the plurality of wireless relay devices. Obtained from the wireless relay device via a ground or marine gateway station, and based on the information of the wireless relay device, control information for performing the cooperative flight is transmitted via the gateway station. It may be transmitted to one wireless relay device, and transmitted to the other wireless relay device via the gateway station and any one of the wireless relay devices.
  • the wireless relay device acquires information including at least one of a current position, an altitude, and a posture of another wireless relay device located near the wireless relay device from the other wireless relay device. The system is controlled to fly in cooperation with the other wireless relay device based on the information of the wireless relay device.
  • a radio relay device is a radio relay device that performs radio communication with a terminal device, and is provided so as to be able to fly over the sky and move, and forms a cell toward the ground or the sea to form the cell.
  • a management apparatus is a management apparatus that manages a plurality of wireless relay apparatuses that wirelessly communicate with a terminal apparatus, and is provided so as to be able to fly over the cell and move toward the ground or the sea.
  • Information including at least one of the current position, altitude, and attitude of each of the plurality of wireless relay devices that wirelessly communicate with terminal devices located in the cell by forming Control information for the plurality of wireless relay devices to fly in cooperation with each other so as to maintain the positional relationship between the wireless relay devices based on the information of the plurality of wireless relay devices acquired via a gateway station Is transmitted to each of the plurality of wireless relay devices via the gateway station.
  • a management apparatus is a management apparatus that manages a plurality of wireless relay apparatuses that wirelessly communicate with a terminal apparatus, and is provided so as to be able to fly over the cell and move toward the ground or the sea.
  • Information including at least one of the current position, altitude, and attitude of each of a plurality of wireless relay devices that wirelessly communicate with a terminal device located in the cell by forming one of the plurality of wireless relay devices.
  • the plurality of wireless relay devices cooperate with each other so as to maintain the positional relationship between the wireless relay devices based on the information of the plurality of wireless relay devices obtained from the relay device via a ground or sea gateway station.
  • the control information for flying is transmitted to any one of the wireless relay devices via the gateway station, and is transmitted via the gateway station and any one of the wireless relay devices. Sending of the radio relay equipment.
  • a method according to still another aspect of the present invention is a method of flying a plurality of wireless relay devices that wirelessly communicate with a terminal device, and is formed so as to be movable by flying over the sky, and forming a cell toward the ground or the sea.
  • a plurality of wireless relay devices that wirelessly communicate with terminal devices located in the cell maintain the positional relationship between the wireless relay devices by autonomous control or by external control, by autonomous control, or by external control To fly in coordination with each other.
  • the present invention it is possible to suppress deterioration in communication quality due to frequent handovers at a cell boundary of a plurality of cells formed by a plurality of radio relay apparatuses that can move over the sky and an increase in interference from neighboring cells.
  • FIG. 1 is a schematic configuration diagram illustrating an example of an overall configuration of a communication system that realizes a three-dimensional network according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating an example of HAPS used in the communication system according to the embodiment.
  • FIG. 3 is a side view showing another example of HAPS used in the communication system of the embodiment.
  • FIG. 4 is an explanatory diagram illustrating an example of a wireless network formed over the plurality of HAPSs according to the embodiment.
  • FIG. 5 is a schematic configuration diagram illustrating an example of an overall configuration of a communication system that realizes a three-dimensional network according to still another embodiment.
  • FIG. 6 is a block diagram illustrating a configuration example of a HAPS wireless relay station according to the embodiment.
  • FIG. 1 is a schematic configuration diagram illustrating an example of an overall configuration of a communication system that realizes a three-dimensional network according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating an example of HAPS used
  • FIG. 7 is a block diagram illustrating another configuration example of the HAPS wireless relay station of the embodiment.
  • FIG. 1 is a block diagram illustrating still another configuration example of the HAPS radio relay station according to the embodiment.
  • FIG. 9A is an explanatory diagram illustrating an example of coordinated flight of a plurality of HAPSs according to the embodiment.
  • FIG. 9B is an explanatory diagram illustrating an example of coordinated flight of a plurality of HAPS according to the embodiment.
  • FIG. 10A is an explanatory diagram illustrating an example of a plurality of HAPS in a disordered flight state according to a comparative example.
  • FIG. 10B is an explanatory diagram illustrating an example of a plurality of HAPS in a disordered flight state according to a comparative example.
  • FIG. 9A is an explanatory diagram illustrating an example of a plurality of HAPS in a disordered flight state according to a comparative example.
  • FIG. 11A is an explanatory diagram illustrating another example of coordinated flight of a plurality of HAPS according to the embodiment.
  • FIG. 11B is an explanatory diagram illustrating another example of coordinated flight of a plurality of HAPS according to the embodiment.
  • FIG. 12A is an explanatory diagram illustrating another example of a plurality of HAPS in a disordered flight state according to a comparative example.
  • FIG. 12B is an explanatory diagram illustrating another example of a plurality of HAPS in a disordered flight state according to a comparative example.
  • FIG. 13A is an explanatory diagram illustrating an example of the shape of a flight route determined according to the strength of the wind over which the HAPS is flying.
  • FIG. 12A is an explanatory diagram illustrating another example of coordinated flight of a plurality of HAPS according to the embodiment.
  • FIG. 11B is an explanatory diagram illustrating another example of coordinated flight of a plurality of HAPS according to the embodiment.
  • FIG. 12A is an
  • FIG. 13B is an explanatory diagram illustrating an example of the shape of the flight route determined according to the strength of the wind over which the HAPS is flying.
  • FIG. 13C is an explanatory diagram illustrating an example of the shape of the flight route determined according to the strength of the wind over which the HAPS is flying.
  • FIG. 14 is an explanatory diagram illustrating an example of HAPS group cooperative flight according to the embodiment.
  • FIG. 15 is an explanatory diagram illustrating an example of cooperative flight centered on the anchor body of the HAPS according to the embodiment.
  • FIG. 16 is an explanatory diagram illustrating an example of a centralized control system that can control the HAPS coordinated flight according to the embodiment.
  • FIG. 17 is an explanatory diagram illustrating another example of a centralized control system capable of controlling HAPS coordinated flight according to the embodiment.
  • FIG. 18 is an explanatory diagram illustrating an example of a control system on the autonomous control side that can control the HAPS cooperative flight according to the embodiment.
  • FIG. 1 is a schematic configuration diagram showing an example of the overall configuration of a communication system according to an embodiment of the present invention.
  • the communication system according to the present embodiment is suitable for realizing a three-dimensional network for fifth generation mobile communication that supports simultaneous connection to a large number of terminal devices and low delay.
  • mobile communication standards applicable to the communication system, radio relay station, base station, repeater, and terminal device disclosed in this specification are the fifth generation mobile communication standards and the fifth generation and later. Includes standards for next generation mobile communications.
  • the communication system includes a plurality of high-altitude platform stations (HAPS) (also referred to as “high-altitude pseudo-satellite”) 10 and 20 as a plurality of airborne communication relay apparatuses (wireless relay apparatuses).
  • the HAPS 10 and 20 are located in an airspace at a predetermined altitude, and form three-dimensional cells (three-dimensional areas) 41 and 42 as indicated by hatching areas in the figure in a cell formation target airspace 40 at a predetermined altitude.
  • the HAPS 10 and 20 are levitated bodies (for example, solar cells) that are controlled to float or fly in a high altitude air space (floating air space) 50 of 100 [km] or less from the ground or sea surface by autonomous control or external control. (Plane, airship) equipped with a radio relay station.
  • the airspace 50 where the HAPS 10 and 20 are located is, for example, a stratospheric airspace whose altitude is 11 [km] or more and 50 [km] or less.
  • the airspace 50 may be an airspace with an altitude of 15 km or more and 25 km or less where the weather conditions are relatively stable, and may be an airspace with an altitude of approximately 20 km.
  • Hrsl and Hrsu in the figure indicate relative altitudes of the lower end and the upper end of the airspace 50 where the HAPSs 10 and 20 are located with respect to the ground (GL), respectively.
  • the cell formation target airspace 40 is a target airspace that forms a three-dimensional cell with one or more HAPSs in the communication system of the present embodiment.
  • the cell formation target airspace 40 is a predetermined altitude located between the airspace 50 where the HAPSs 10 and 20 are located and a cell formation region near the ground covered by a base station (eg, LTE eNodeB) 90 such as a conventional macrocell base station.
  • a base station eg, LTE eNodeB
  • An airspace in a range for example, an altitude range of 50 [m] or more and 1000 [m] or less).
  • Hcl and Hcu in the figure respectively indicate the relative altitudes of the lower end and the upper end of the cell formation target airspace 40 with respect to the ground (GL).
  • the cell formation target airspace 40 in which the three-dimensional cell of the present embodiment is formed may be above the sea, river, or lake.
  • the wireless relay stations of the HAPS 10 and 20 respectively form beams 100 and 200 for wireless communication with a terminal device that is a mobile station toward the ground.
  • the terminal device may be a communication terminal module incorporated in the drone 60 that is an aircraft such as a small-sized helicopter that can be remotely controlled, or may be a user device used by the user in the airplane 65.
  • the regions through which the beams 100 and 200 pass in the cell formation target airspace 40 are three-dimensional cells 41 and 42.
  • the plurality of beams 100 and 200 adjacent to each other in the cell formation target airspace 40 may partially overlap.
  • Each of the wireless relay stations of the HAPS 10 and 20 is, for example, a base station that wirelessly communicates with a gateway station (also referred to as a “feeder station”) 70 as a relay station connected to a core network on the ground (or sea) side, or This repeater slave unit wirelessly communicates with a feeder station (repeater parent unit) 70 as a relay station connected to a ground (or maritime) base station.
  • the wireless relay stations of the HAPS 10 and 20 are connected to the core network of the mobile communication network 80 via a feeder station 70 installed on the ground or the sea. Communication between the HAPS 10, 20 and the feeder station 70 may be performed by wireless communication using radio waves such as microwaves, or may be performed by optical communication using laser light or the like.
  • Each of the HAPS 10 and 20 may autonomously control its own floating movement (flight) and processing at the radio relay station by executing a control program by a control unit configured by a computer or the like incorporated therein.
  • each of the HAPS 10 and 20 acquires its own current position information (for example, GPS position information), pre-stored position control information (for example, flight schedule information), position information of other HAPS located in the vicinity, etc. Based on this information, the levitating movement (flight) and the processing at the radio relay station may be autonomously controlled.
  • management devices also referred to as “remote control devices” 85 as management devices provided in a communication center of the mobile communication network 80 or the like. May be controlled by
  • the management device 85 can be configured by, for example, a computer device such as a PC, a server, or the like.
  • the HAPS 10 and 20 incorporate a control communication terminal device (for example, a mobile communication module) so that control information from the management device 85 can be received and various information such as monitoring information can be transmitted to the management device 85.
  • terminal identification information for example, an IP address, a telephone number, etc. may be assigned so that the management apparatus 85 can identify the terminal.
  • the MAC address of the communication interface may be used for identifying the control communication terminal device.
  • each of the HAPS 10 and 20 has monitoring information such as information on the levitation movement (flight) of the own or the surrounding HAPS and processing at the radio relay station, information on the state of the HAPS 10 and 20 and observation data acquired by various sensors.
  • the data may be transmitted to a predetermined transmission destination such as the management device 85.
  • the control information may include target flight route information of HAPS.
  • the monitoring information includes the current position of the HAPS 10 and 20, flight route history information, air speed, ground speed and propulsion direction, wind speed and direction of air current around the HAPS 10 and 20, and air pressure and temperature around the HAPS 10 and 20. At least one piece of information may be included.
  • a region where the beams 100 and 200 of the HAPS 10 and 20 do not pass may occur.
  • a radial beam 300 is formed upward from the ground side or the sea side to form a three-dimensional cell 43 to form an ATG (Air To Ground) connection.
  • a base station (hereinafter referred to as “ATG station”) 30 may be provided.
  • the radio relay station of the HAPS 10 and 20 can be connected to the cell formation target airspace 40.
  • the beams 100 and 200 covering the entire upper end surface of the cell formation target airspace 40 may be formed so that the dimension cells are formed all over.
  • the three-dimensional cell formed by the HAPS 10 and 20 may be formed so as to reach the ground or the sea surface so that communication can be performed with a terminal device located on the ground or the sea.
  • FIG. 2 is a perspective view illustrating an example of the HAPS 10 used in the communication system according to the embodiment.
  • the HAPS 10 in FIG. 2 is a solar plane type HAPS, and has a main wing 101 having both ends in the longitudinal direction extending upward, and a plurality of propulsion devices for a bus power system at one edge of the main wing 101 in the short direction.
  • the motor-driven propeller 103 is provided.
  • a solar power generation panel (hereinafter referred to as “solar panel”) 102 as a solar power generation unit having a solar power generation function is provided on the upper surface of the main wing part 101.
  • a plurality of pods 105 serving as device storage units in which the mission devices are stored are connected to two locations in the longitudinal direction of the lower surface of the main wing unit 101 via plate-like connection units 104.
  • Each pod 105 accommodates a radio relay station 110 as a mission device and a battery 106.
  • wheels 107 used at the time of taking off and landing are provided on the lower surface side of each pod 105.
  • the electric power generated by the solar panel 102 is stored in the battery 106, the electric power supplied from the battery 106 drives the motor of the propeller 103 to rotate, and the wireless relay station 110 performs wireless relay processing.
  • the solar plane type HAPS 10 is levitated by lift by, for example, performing a circular flight based on a predetermined target flight route, performing a “D” flight, or performing an “8” flight, It is possible to levitate so as to stay in a predetermined range in the horizontal direction at a predetermined altitude.
  • the solar plane type HAPS 10 can fly like a glider when the propeller 103 is not driven to rotate. For example, when the power of the battery 106 is surplus due to the power generation of the solar panel 102 at daytime or the like, the battery 106 rises to a high position, and when the solar panel 102 cannot generate power at night or the like, the power supply from the battery 106 to the motor is stopped and the glider is stopped. Can fly like.
  • the HAPS 10 includes a three-dimensional directional optical antenna device 130 as a communication unit used for optical communication with other HAPSs and artificial satellites.
  • the optical antenna device 130 is disposed at both ends of the main wing portion 101 in the longitudinal direction.
  • the optical antenna device 130 may be disposed at another location of the HAPS 10.
  • the communication unit used for optical communication with other HAPS and artificial satellites is not limited to such optical communication, and may be wireless communication by other methods such as wireless communication using radio waves such as microwaves. Good.
  • FIG. 3 is a perspective view illustrating another example of the HAPS 20 used in the communication system according to the embodiment.
  • the HAPS 20 in FIG. 3 is an unmanned airship type HAPS and has a large payload, so that a large-capacity battery can be mounted.
  • the HAPS 20 includes an airship body 201 filled with a gas such as helium gas for buoyancy, a motor-driven propeller 202 as a propulsion device for a bus power system, and a device storage unit 203 for storing mission devices.
  • a radio relay station 210 and a battery 204 are housed inside the device housing unit 203. With the electric power supplied from the battery 204, the motor of the propeller 202 is driven to rotate, and the wireless relay processing by the wireless relay station 210 is executed.
  • a solar panel having a solar power generation function may be provided on the top surface of the airship body 201 so that the electric power generated by the solar panel is stored in the battery 204.
  • the unmanned airship type HAPS 20 also includes a three-dimensional directivity optical antenna device 230 as a communication unit used for optical communication with other HAPS and artificial satellites.
  • the optical antenna device 230 is disposed on the upper surface portion of the airship body 201 and the lower surface portion of the device housing portion 203, but the optical antenna device 230 may be disposed on another portion of the HAPS 20.
  • the communication unit used for optical communication with other HAPS and artificial satellites is not limited to such optical communication, but performs wireless communication by other methods such as wireless communication using radio waves such as microwaves. There may be.
  • FIG. 4 is an explanatory diagram illustrating an example of a wireless network formed over the plurality of HAPSs 10 and 20 according to the embodiment.
  • the plurality of HAPSs 10 and 20 are configured to be able to perform inter-HAPS communication by optical communication over the sky, and form a wireless communication network excellent in robustness capable of stably realizing a three-dimensional network over a wide area.
  • This wireless communication network can also function as an ad hoc network by dynamic routing according to various environments and various information.
  • the wireless communication network can be formed to have various two-dimensional or three-dimensional topologies, and may be, for example, a mesh-type wireless communication network as shown in FIG.
  • FIG. 5 is a schematic configuration diagram illustrating an example of the overall configuration of a communication system according to another embodiment.
  • the same reference numerals are given to portions common to those in FIG. 1 described above, and description thereof is omitted.
  • communication between the HAPS 10 and the core network of the mobile communication network 80 is performed via the feeder station 70 and the low-orbit satellite 72.
  • communication between the artificial satellite 72 and the feeder station 70 may be performed by wireless communication using radio waves such as microwaves, or may be performed by optical communication using laser light or the like.
  • Communication between the HAPS 10 and the artificial satellite 72 is performed by optical communication using laser light or the like.
  • FIG. 6 is a block diagram illustrating a configuration example of the wireless relay stations 110 and 210 of the HAPS 10 and 20 according to the embodiment.
  • the wireless relay stations 110 and 210 in FIG. 5 are examples of repeater type wireless relay stations.
  • Each of the radio relay stations 110 and 210 includes a 3D cell forming antenna unit 111, a transmission / reception unit 112, a feed antenna unit 113, a transmission / reception unit 114, a repeater unit 115, a monitoring control unit 116, and a power supply unit 117.
  • each of the radio relay stations 110 and 210 includes an optical communication unit 125 and a beam control unit 126 used for inter-HAPS communication.
  • the 3D cell formation antenna unit 111 includes antennas that form the radial beams 100 and 200 toward the cell formation target airspace 40, and forms three-dimensional cells 41 and 42 that can communicate with the terminal device.
  • the transmission / reception unit 112 constitutes a first wireless communication unit together with the 3D cell forming antenna unit 111 and includes a duplexer (DUP: DUPlexer), an amplifier, and the like, and the 3D cell 41 via the 3D cell forming antenna unit 111. , 42, a radio signal is transmitted to a terminal device located in the area, and a radio signal is received from the terminal device.
  • DUP DUPlexer
  • the feed antenna unit 113 includes a directional antenna for wireless communication with the ground or sea feeder station 70.
  • the transmission / reception unit 114 constitutes a second wireless communication unit together with the feed antenna unit 113, has a duplexer (DUP: DUPlexer), an amplifier, and the like, and transmits a radio signal to the feeder station 70 via the feed antenna unit 113. Or a radio signal is received from the feeder station 70.
  • DUP DUPlexer
  • the repeater unit 115 relays the signal of the transmission / reception unit 112 transmitted / received to / from the terminal device and the signal of the transmission / reception unit 114 transmitted / received to / from the feeder station 70.
  • the repeater unit 115 has an amplifier function that amplifies a relay target signal having a predetermined frequency to a predetermined level.
  • the repeater unit 115 may have a frequency conversion function for converting the frequency of the relay target signal.
  • the monitoring control unit 116 is configured by, for example, a CPU and a memory, and monitors the operation processing status of each unit in the HAPS 10 and 20 and controls each unit by executing a program incorporated in advance.
  • the monitoring control unit 116 controls the motor driving unit 141 that drives the propellers 103 and 202 by executing the control program, moves the HAPS 10 and 20 to the target position, and stays in the vicinity of the target position. To control.
  • the power supply unit 117 supplies the power output from the batteries 106 and 204 to each unit in the HAPS 10 and 20.
  • the power supply unit 117 may have a function of storing in the batteries 106 and 204 power generated by a solar power generation panel or the like or power supplied from the outside.
  • the optical communication unit 125 communicates with other peripheral HAPS 10 and 20 and the artificial satellite 72 via an optical communication medium such as laser light. This communication enables dynamic routing that dynamically relays wireless communication between the terminal device such as the drone 60 and the mobile communication network 80, and other HAPS backs up when one of the HAPSs fails. Thus, the robustness of the mobile communication system can be improved by wireless relaying.
  • the beam control unit 126 controls the direction and intensity of a beam such as a laser beam used for inter-HAPS communication or communication with the artificial satellite 72, or relative position with other peripheral HAPS (wireless relay station). Control is performed so as to switch another HAPS (wireless relay station) that performs communication using a light beam such as a laser beam in accordance with the change of the laser beam. This control may be performed based on, for example, the position and posture of the HAPS itself, the positions of surrounding HAPS, and the like. Information on the position and orientation of the HAPS itself is acquired based on outputs from a GPS receiver, a gyro sensor, an acceleration sensor, etc. incorporated in the HAPS, and information on the position of the surrounding HAPS is managed by the mobile communication network 80. It may be acquired from the device 85 or a server 86 such as a HAPS management server or an application server.
  • a server 86 such as a HAPS management server or an application server.
  • FIG. 7 is a block diagram illustrating another configuration example of the wireless relay stations 110 and 210 of the HAPS 10 and 20 according to the embodiment.
  • Radio relay stations 110 and 210 in FIG. 7 are examples of base station type radio relay stations. In FIG. 7, the same components as those in FIG.
  • Each of the radio relay stations 110 and 210 in FIG. 7 further includes a modem unit 118 and a base station processing unit 119 instead of the repeater unit 115.
  • each of the radio relay stations 110 and 210 includes an optical communication unit 125 and a beam control unit 126.
  • the modem unit 118 performs, for example, a demodulation process and a decoding process on the reception signal received from the feeder station 70 via the feed antenna unit 113 and the transmission / reception unit 114, and outputs the data signal to the base station processing unit 119 side. Is generated. Further, the modem unit 118 performs encoding processing and modulation processing on the data signal received from the base station processing unit 119 side, and transmits to the feeder station 70 via the feed antenna unit 113 and the transmission / reception unit 114. Generate a signal.
  • the base station processing unit 119 has a function as e-NodeB that performs baseband processing based on, for example, a method compliant with the LTE / LTE-Advanced standard.
  • the base station processing unit 119 may perform processing by a method based on a standard for future mobile communication such as the fifth generation.
  • the base station processing unit 119 performs demodulation processing and decoding processing on the received signals received from the terminal devices located in the three-dimensional cells 41 and 42 via the 3D cell forming antenna unit 111 and the transmission / reception unit 112. A data signal to be output to the modem unit 118 side is generated. In addition, the base station processing unit 119 performs encoding processing and modulation processing on the data signal received from the modem unit 118 side, and the 3D cells 41 and 42 via the 3D cell forming antenna unit 111 and the transmission / reception unit 112. A transmission signal to be transmitted to the terminal device is generated.
  • FIG. 8 is a block diagram illustrating still another configuration example of the radio relay stations 110 and 210 of the HAPS 10 and 20 according to the embodiment.
  • the radio relay stations 110 and 210 in FIG. 8 are examples of high-function base station type radio relay stations having an edge computing function.
  • the same components as those in FIGS. 6 and 7 are denoted by the same reference numerals, and description thereof is omitted.
  • Each of the radio relay stations 110 and 210 of FIG. 8 further includes an edge computing unit 120 in addition to the components of FIG.
  • the edge computing unit 120 is configured by a small computer, for example, and can execute various types of information processing related to wireless relaying in the wireless relay stations 110 and 210 of the HAPS 10 and 20 by executing a program incorporated in advance. it can.
  • the edge computing unit 120 determines the transmission destination of the data signal based on the data signal received from the terminal device located in the three-dimensional cell 41 or 42, and relays the communication based on the determination result. Executes the process of switching. More specifically, when the transmission destination of the data signal output from the base station processing unit 119 is a terminal device located in its own three-dimensional cell 41 or 42, the data signal is not passed to the modem unit 118. Then, it returns to the base station processing unit 119 and transmits it to the transmission destination terminal device located in its own three-dimensional cell 41, 42.
  • the transmission destination of the data signal output from the base station processing unit 119 is a terminal device residing in a cell other than its own three-dimensional cells 41 and 42
  • the data signal is passed to the modem unit 118.
  • the data is transmitted to the feeder station 70 and transmitted to the terminal device of the transmission destination located in another cell of the transmission destination via the mobile communication network 80.
  • the edge computing unit 120 may execute processing for analyzing information received from a large number of terminal devices located in the three-dimensional cells 41 and 42.
  • the analysis result is transmitted to a large number of terminal devices located in the three-dimensional cells 41 and 42, or the management device 85 provided in the mobile communication network 80, or a HAPS management server or application server (application server) as a management device. Or may be transmitted to the server 86 or the like.
  • the uplink and downlink duplex schemes for wireless communication with the terminal devices via the radio relay stations 110 and 210 are not limited to specific schemes. For example, even in a time division duplex (TDD) scheme Alternatively, a frequency division duplex (FDD) method may be used.
  • the access method of wireless communication with the terminal device via the wireless relay stations 110 and 210 is not limited to a specific method, for example, FDMA (Frequency Division Multiple Access) method, TDMA (Time Division Multiple Access) method, It may be a CDMA (Code Division Multiple Access) system or OFDMA (Orthogonal Frequency Division Multiple Access).
  • the wireless communication has functions such as diversity coding, transmission beamforming, and spatial division multiplexing (SDM), and by using a plurality of antennas simultaneously for both transmission and reception, MIMO (multi-input and multi-output) technology capable of increasing the transmission capacity of the network may be used.
  • MIMO multi-input and multi-output
  • the MIMO technique may be a SU-MIMO (Single-User MIMO) technique in which one base station transmits a plurality of signals at the same time and the same frequency as one terminal device.
  • MU-MIMO (Multi-User MIMO) technology may be used in which signals are transmitted to different terminal devices at the same time and the same frequency, or a plurality of different base stations transmit signals to one terminal device at the same time and the same frequency.
  • the radio relay apparatus that performs radio communication with the terminal apparatus is the solar plane type HAPS 10 having the radio relay station 110
  • the following embodiment is an unmanned airship type HAPS 20 having the radio relay station 210 and the like.
  • the present invention can be similarly applied to other wireless relay apparatuses that can move over the sky.
  • a link between the HAPS 10 having the radio relay station 110 and the base station 90 via a gateway station (hereinafter referred to as “GW station”) 70 as a feeder station is referred to as “feeder link”, and the HAPS 10 and the terminal device
  • the link between 61 is called a “service link”.
  • a section between the HAPS 10 and the GW station 70 is referred to as a “feeder link wireless section”.
  • the downlink of communication from the GW station 70 via the HAPS 10 to the terminal device 61 is referred to as “forward link”
  • the uplink of communication from the terminal device 61 via the HAPS 10 to the GW station 70 is referred to as “reverse link”.
  • the size of the cell boundary portion and the distance between the cells change, and frequent handovers occur at the cell boundary to perform communication.
  • the quality may be deteriorated.
  • the HAPS 10 of this embodiment is controlled to fly in cooperation with each other in the same flight form so as to maintain the positional relationship between the HAPSs by autonomous control or by external control.
  • the size of the SINR degradation region where SINR (required signal-to-interference / noise power ratio) as communication quality is degraded becomes constant.
  • FIG. 9A and 9B are explanatory diagrams illustrating an example of coordinated flight of a plurality of HAPSs 10 according to the embodiment.
  • 10A and 10B are explanatory diagrams illustrating an example of a plurality of HAPSs 10 in a disordered flight state according to a comparative example.
  • FIG. 9A, FIG. 9B, FIG. 10A and FIG. 10B respectively show a plurality of HAPSs 10 (1) to 10 (6) subject to flight control, their flight routes 10F (1) to 10F (6), and cells 100A (1) to 100A ( It is the figure which looked at 6) from the upper direction of the perpendicular direction. Further, the area indicated by cross-hatching at the cell boundary in the figure is the SINR degradation area A.
  • 9A and 9B show the case where the number of HAPS 10 is six, the number of HAPS 10 may be two to five, or may be seven or more.
  • each of the plurality of HAPSs 10 forms cells 100A (1) to 100A (6) below the vertical direction by autonomous control or control from outside, while forming the same circular flight route 10F. Flight control is performed so as to repeatedly circulate along (1) to 10F (6).
  • Each HAPS 10 is controlled to fly in cooperation with each other so as to maintain a horizontal positional relationship between the HAPSs (for example, a distance between the HAPSs) by autonomous control or by external control.
  • the plurality of HAPSs 10 (1) to 10 (6) each form cells 100A (1) to 100A (6) below the vertical direction, while the flight route 10F in the horizontal direction (1) to 10F (6) are controlled so as to perform coordinated flight with the position of the right end in the figure upward in the figure.
  • the plurality of HAPS 10 (1) to 10 (6) respectively form the flight route 10F in the horizontal direction while forming the cells 100A (1) to 100A (6) below the vertical direction.
  • (1) to 10F (6) are controlled so as to perform coordinated flight with the position of the upper end in the figure toward the left in the figure.
  • SINR degradation can be suppressed, while the occurrence of handover can be suppressed by performing coordinated flight so as not to cause a change in the cell boundary line.
  • the size of the SINR degradation region A at the cell boundary is increased.
  • an SINR degradation region B is likely to occur between cells.
  • the sizes of these SINR degradation regions A and B change according to the flight of the HAPS 10 (1) to 10 (6).
  • the plurality of HAPSs 10 (1) to 10 (6) may perform coordinated flight so as to maintain the positional relationship between the HAPSs in the height direction.
  • the plurality of HAPS 10 (1) to 10 (6) may perform coordinated flight so as to maintain the same altitude.
  • both the HAPS 10 (1) to 10 (6) move up and down, both the desired signal and the interference signal increase and decrease, the SINR degradation becomes constant.
  • each of the plurality of HAPSs 10 (1) to 10 (6) has the same attitude with respect to the flight direction (for example, the inclination of rolling or pitching with respect to the traveling direction) between the HAPSs. As such, coordinated flight may be performed.
  • FIG. 11A and FIG. 11B are explanatory views showing another example of coordinated flight of a plurality of HAPSs 10 according to the embodiment.
  • 12A and 12B are explanatory diagrams illustrating another example of the plurality of HAPSs 10 in a disordered flight state according to the comparative example.
  • 11A, 11B, 12A, and 12B are examples in which the HAPS 10 forms cells in a direction inclined from the vertical direction.
  • the description of the portions common to FIGS. 9A, 9B, 10A, and 10B is omitted.
  • Each of the plurality of HAPSs 10 forms cells 100A (1) to 100A (6) in a direction inclined from the vertical direction by its own rolling under autonomous control or external control, and has the same circular flight route 10F ( 1) to 10F (6), flight control is performed so as to repeatedly circulate.
  • Each HAPS 10 is controlled to fly in cooperation with each other so as to maintain a horizontal positional relationship between the HAPSs (for example, a distance between the HAPSs) by autonomous control or by external control.
  • each of the plurality of HAPS 10 (1) to 10 (6) is shifted from the lower part in the vertical direction to the right in the figure by rolling in which the right end in the figure is higher than the left end.
  • control is performed so that the position of the right end of the flight routes 10F (1) to 10F (6) in the horizontal direction performs coordinated flight upward in the figure. Is done.
  • each of the plurality of HAPSs 10 (1) to 10 (6) is shifted from the lower part in the vertical direction to the upper part in the figure by rolling in which the upper end in the figure is higher than the lower end.
  • the cells 100A (1) to 100A (6) are formed at the positions, and the coordinated flight is performed so that the position of the upper end of the flight routes 10F (1) to 10F (6) in the horizontal direction is directed to the left in the figure.
  • the size of the SINR degradation region A is maintained. By flying in this way, SINR degradation can be suppressed, while the occurrence of handover can be suppressed by performing coordinated flight so as not to cause a change in the cell boundary line.
  • the size of the SINR degradation region A at the cell boundary is increased.
  • an SINR degradation region B in which SINR between cells is degraded is likely to occur.
  • the sizes of these SINR degradation regions A and B change according to the flight of the HAPS 10 (1) to 10 (6).
  • the plurality of HAPSs 10 (1) to 10 (6) may perform coordinated flight so as to maintain the positional relationship between the HAPSs in the height direction.
  • the case where the shape of the flight route that is controlled so that the plurality of HAPSs 10 perform cooperative flight has been described as circular, but the flight of the HAPS 10 that is the target of cooperative flight control is described.
  • the route may have a shape other than a circle.
  • FIGS. 13A to 13C are explanatory diagrams showing examples of the shape of the flight route 10F determined according to the strength of the wind W over which the HAPS 10 is flying.
  • the shape of the flight route may be changed depending on the wind speed in an altitude airspace (for example, the stratosphere) where the HAPS 10 is flying.
  • an altitude airspace for example, the stratosphere
  • a circular flight route is determined as the flight route of the HAPS 10 regardless of the direction of the wind W.
  • a circular partial arc is used as the flight route of the HAPS 10 so that the time zone during which the flight is made in the direction of the wind (as opposed to the wind W) is as short as possible.
  • the flight route of the HAPS 10 has a shape of “8” so that the time zone in which it is flying in the direction of the wind (as opposed to the wind W) is shorter. Decide on a flight route.
  • the plurality of HAPSs 10 perform the coordinated flight according to the changed flight route 10F. Be controlled.
  • the plurality of HAPS 10 flies so as to rise spirally while charging the battery with solar power generation in the daytime time zone in which sunlight can be received, and in the nighttime zone in which sunlight cannot be received.
  • the battery is charged with the rotational energy of the propeller converted from the potential energy by the gliding flight that spirals down.
  • control is performed so that a plurality of HAPSs 10 perform the above-described coordinated flight according to the spiral flight route in the daytime or nighttime. Is done.
  • the distance between adjacent HPAS is several hundred km (for example, about 200 km).
  • the environment such as weather conditions is different, and it is efficient to take the same flight form in cooperation. It may not be.
  • a plurality of HAPSs 10 may be grouped in accordance with the weather environment conditions of an altitude airspace (for example, the stratosphere) where the HAPS 10 is flying to perform coordinated flight.
  • the group of HAPS 10 may be changed according to weather environment conditions.
  • FIG. 14 is an explanatory diagram showing an example of HAPS group cooperative flight according to the embodiment.
  • a plurality of HAPS 10 covering Japan excludes Hokkaido from Group G1 of HAPS mainly covering a plurality of Hokkaido areas in Japan.
  • the group is divided into a HAPS group G2 mainly covering the eastern Japan area and a HAPS group G3 mainly covering the western Japan area including Okinawa.
  • the HAPS 10 is caused to fly in the shape of the flight route (flight form) according to the weather environment conditions such as the weather and the wind speed in the sky. And it is not necessary to force the HAPS 10 to fly.
  • FIG. 15 is an explanatory diagram showing an example of coordinated flight centering on the anchor body of the HAPS 10 according to the embodiment.
  • the arrow between HAPS in FIG. 15 indicates the transmission direction of the control information.
  • any one of the plurality of HAPSs 10 subject to coordinated flight control is set as a HAPS (hereinafter referred to as “anchor HAPS”) 10 ⁇ / b> A that serves as a reference for flight control.
  • anchor HAPS HAPS
  • the whole of the plurality of HAPS 10 is controlled to perform coordinated flight.
  • all the HAPSs subject to coordinated flight control in an area that provides a communication service using the HAPS 10 can perform coordinated flight with each other. Degradation of communication quality due to an increase in interference from can be more reliably suppressed.
  • FIG. 16 is an explanatory diagram showing an example of a centralized control system that can control the coordinated flight of the HAPS 10 according to the embodiment.
  • the management device 85 provided in the control center on the ground or the sea includes information on the aircraft as the aforementioned monitoring information of each of the plurality of HAPS 10 (for example, latitude, longitude, altitude, direction of flight direction, horizontal plane (Tilt) is received via a GW station (relay device) 70 that can communicate with each of the plurality of HAPSs 10.
  • the management device 85 aggregates and stores the information on the aircraft received from each HAPS 10 in the HAPS database as a storage means.
  • the management apparatus 85 produces
  • Each HAPS 10 performs control to perform the coordinated flight based on the received control information. As described above, in the example of FIG. 16, each HAPS 10 can be centrally controlled from the management device 85 on the ground or sea so that the plurality of HAPSs 10 perform coordinated flight with each other.
  • FIG. 17 is an explanatory diagram showing another example of a centralized control system capable of controlling the coordinated flight of the HAPS 10 according to the embodiment.
  • the management device 85 provided in the control center on the ground or the sea receives information (for example, latitude, longitude, etc.) of all the aircrafts of the plurality of HAPS 10 via any one anchor HAPS 10A of the plurality of HAPS 10. Altitude, direction of flight direction, inclination from horizontal plane).
  • the management device 85 aggregates and stores the information of all the aircrafts of the plurality of HAPS 10 received via the anchor HAPS 10A in the HAPS database.
  • the management device 85 generates or selects control information for performing the coordinated flight for all of the plurality of HAPSs 10 based on the aircraft information, and the control information is transmitted to the GW station (relay device) 70 and the anchor. It transmits to each HAPS 10 via the HAPS 10A.
  • Each HAPS 10 performs control to perform the coordinated flight based on the received control information.
  • each HAPS 10 can be centrally controlled from the management device 85 on the ground or the sea so that the entire plurality of HAPSs 10 perform coordinated flight with each other.
  • the coordinated flight of the HAPS 10 can be controlled even when any one of the plurality of HAPSs 10 cannot communicate with the GW station 70.
  • FIG. 18 is an explanatory diagram showing an example of a control system on the autonomous control side that can control the coordinated flight of the HAPS 10 according to the embodiment.
  • each of the plurality of HAPS 10 exchanges information on the aircraft (for example, latitude, longitude, altitude, direction of flight direction, inclination from the horizontal plane) with the adjacent HAPS 10 and performs the above coordinated flight.
  • Control information to be performed is generated or selected, and control is performed so as to perform the coordinated flight based on the control information.
  • the plurality of HAPSs 10 in FIG. 18 can be autonomously controlled so that the entirety of the plurality of HAPSs 10 performs coordinated flight.
  • the coordinated flight of the HAPS 10 can be controlled even when all of the plurality of HAPS 10 cannot communicate with the GW station 70.
  • processing steps described in this specification and the wireless relay station, feeder station, gateway station, management device, monitoring device, remote control device, server, terminal device (user device, mobile device) of the communication relay device such as HAPS 10 and 20 Station, communication terminal), base station, and base station apparatus components can be implemented by various means. For example, these steps and components may be implemented in hardware, firmware, software, or a combination thereof.
  • entity eg, wireless relay station, feeder station, gateway station, base station, base station device, wireless relay station device, terminal device (user device, mobile station, communication terminal), management device, monitoring device , A remote control device, a server, a hard disk drive device, or an optical disk drive device
  • entity eg, wireless relay station, feeder station, gateway station, base station, base station device, wireless relay station device, terminal device (user device, mobile station, communication terminal), management device, monitoring device , A remote control device, a server, a hard disk drive device, or an optical disk drive device
  • ASICs application specific ICs
  • DSP Digital signal processor
  • DSPD digital signal processor
  • PLD programmable logic device
  • FPGA field programmable gate array
  • processor controller, microcontroller, microprocessor, electronic device, book Functions described in the description Designed other electronic units to run, computer, or may be implemented in a combination thereof.
  • firmware and / or software implementation means such as processing units used to implement the components may be programs (eg, procedures, functions, modules, instructions) that perform the functions described herein. , Etc.).
  • any computer / processor readable medium that clearly embodies firmware and / or software code is means such as a processing unit used to implement the steps and components described herein. May be used to implement
  • the firmware and / or software code may be stored in a memory, for example, in a control device, and executed by a computer or processor.
  • the memory may be implemented inside the computer or processor, or may be implemented outside the processor.
  • the firmware and / or software code may be, for example, random access memory (RAM), read only memory (ROM), nonvolatile random access memory (NVRAM), programmable read only memory (PROM), electrically erasable PROM (EEPROM) ), FLASH memory, floppy disk, compact disk (CD), digital versatile disk (DVD), magnetic or optical data storage, etc. Good.
  • the code may be executed by one or more computers or processors, and may cause the computers or processors to perform the functional aspects described herein.
  • the medium may be a non-temporary recording medium.
  • the code of the program may be read and executed by a computer, a processor, another device or an apparatus machine, and the format is not limited to a specific format.
  • the code of the program may be any of source code, object code, and binary code, or two or more of these codes may be mixed.
  • HAPS solar plane type
  • Anchor HAPS 10F (1) to 10F
  • Flight Route 20 HAPS (Airship Type)
  • HAPS Airship Type
  • Drone 60
  • Terminal device 65
  • Airplane 65
  • Airplane 70
  • Gateway station 72
  • Artificial satellite 80
  • Mobile communication network 85
  • Management equipment control center, control center
  • server 90 base station (eNodeB) 100, 200, 300 Beam 100A, 100A (1) to 100A (6) Cell 110, 210 Radio relay station A, B SINR degradation region

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Remote Sensing (AREA)
  • Radio Relay Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Traffic Control Systems (AREA)

Abstract

上空を移動可能な複数の無線中継装置で形成する複数のセルのセル境界におけるハンドオーバーの頻発による通信品質の劣化を抑制するシステム及び方法を提供する。システムは、端末装置と無線通信する複数の無線中継装置はそれぞれ、上空を飛行して移動可能に設けられ地上又は海上に向けてセルを形成してセルに在圏する端末装置と無線通信する無線中継局を備え、自律制御により又は外部からの制御により、無線中継装置間の位置関係を維持するように互いに協調して飛行する。

Description

HAPS協調飛行システム
 本発明は、第5世代通信の3次元化ネットワークの構築に適したHAPS(高高度プラットフォーム局)等の無線中継装置の飛行を制御するシステム及び方法に関するものである。
 従来、移動通信システムの通信規格である3GPPのLTE(Long Term Evolution)-Advanced(非特許文献1参照)を発展させたLTE-AdvancedProと呼ばれる通信規格が知られている(非特許文献2参照)。このLTE-AdvancedProでは、近年のIoT(Internet of Things)向けデバイスへの通信を提供するための仕様が策定された。更に、IoT向けデバイス等の多数の端末装置(「UE(ユーザ装置)」、「移動局」、「通信端末」ともいう。)への同時接続や低遅延化などに対応する第5世代の移動通信が検討されている(例えば、非特許文献3参照)。
3GPP TS 36.300 V10.12.0(2014-12). 3GPP TS 36.300 V13.5.0(2016-09). G. Romano,「3GPP RAN progress on "5G"」,3GPP,2016.
 上記第5世代移動通信等においてIoT向けデバイスを含む端末装置との間の無線通信にて3次元化したネットワークを実現するように上空を移動可能な複数の無線中継装置を配置する場合、複数の無線中継装置で形成する複数のセルのセル境界でハンドオーバーが頻発したり、隣接セルからの干渉が増大したりすることにより、通信品質が劣化するおそれがある。
 上記課題を解決するために、本発明の一態様に係るシステムは、端末装置と無線通信する複数の無線中継装置を備えるシステムであって、前記複数の無線中継装置はそれぞれ、上空を飛行して移動可能に設けられ、地上又は海上に向けてセルを形成して前記セルに在圏する端末装置と無線通信する無線中継局を備え、自律制御により又は外部からの制御により、無線中継装置間の位置関係を維持するように互いに協調して飛行する。
 前記システムにおいて、前記複数の無線中継装置はそれぞれ、水平方向における無線中継装置間の位置関係を維持する協調飛行を行ってもよい。
 また、前記システムにおいて、前記複数の無線中継装置はそれぞれ、高さ方向における無線中継装置間の位置関係を維持するように協調飛行を行ってもよい。
 また、前記システムにおいて、前記複数の無線中継装置はそれぞれ、前記無線中継装置の飛行方向及び飛行方向に対する姿勢が無線中継装置間で互いに同じになるように協調飛行を行ってもよい。
 また、前記システムにおいて、前記複数の無線中継装置のいずれかの無線中継装置の飛行パターンが変化したとき、他の無線中継装置は、前記いずれかの無線中継装置の変化後の飛行パターンと同じ飛行パターンで飛行するように制御されてもよい。
 また、前記システムにおいて、前記複数の無線中継装置は、各無線中継装置の位置に基づいて、地上又は海上の互いに異なる複数のエリアに対応する複数のグループに分類され、前記グループごとに前記無線中継装置の協調飛行の制御を行ってもよい。
 また、前記システムにおいて、前記複数の無線中継装置のいずれかの無線中継装置を前記飛行の制御の基準となる無線中継装置に設定し、前記基準の無線中継装置を中心にして、前記基準の無線中継装置に協調して飛行するように他の無線中継装置の飛行を制御することにより、前記複数の無線中継装置の全体の協調飛行を制御してもよい。
 また、前記システムにおいて、前記複数の無線中継装置を管理する管理装置を備え、前記管理装置は、前記複数の無線中継装置それぞれの現在位置、高度及び姿勢の少なくとも一つを含む情報を、前記複数の無線中継装置それぞれから地上又は海上のゲートウェイ局を経由して取得し、前記無線中継装置の情報に基づいて、前記協調の飛行を行うための制御情報を、前記ゲートウェイ局を経由して前記複数の無線中継装置それぞれに送信してもよい。
 また、前記システムにおいて、前記複数の無線中継装置を管理する管理装置を備え、前記複数の無線中継装置のいずれか一つの無線中継装置は、他の無線中継装置それぞれの現在位置、高度及び姿勢の少なくとも一つを含む情報を前記他の無線中継装置から取得し、前記管理装置は、前記複数の無線中継装置それぞれの現在位置、高度及び姿勢の少なくとも一つを含む情報を、前記いずれか一つの無線中継装置から地上又は海上のゲートウェイ局を経由して取得し、前記無線中継装置の情報に基づいて、前記協調の飛行を行うための制御情報を、前記ゲートウェイ局を経由して前記いずれか一つの無線中継装置に送信し、前記ゲートウェイ局及び前記いずれか一つの無線中継装置を経由して前記他の無線中継装置に送信してもよい。
 また、前記システムにおいて、前記無線中継装置は、その無線中継装置の近くに位置する他の無線中継装置の現在位置、高度及び姿勢の少なくとも一つを含む情報を前記他の無線中継装置から取得し、前記無線中継装置の情報に基づいて前記他の無線中継装置と協調して飛行するように制御することを特徴とするシステム。
 本発明の他の態様に係る無線中継装置は、端末装置と無線通信する無線中継装置であって、上空を飛行して移動可能に設けられ、地上又は海上に向けてセルを形成して前記セルに在圏する端末装置と無線通信する無線中継局を備え、自律制御により又は外部からの制御により、当該無線中継装置の近くに位置する他の無線中継装置との位置関係を維持するように前記他の無線中継装置と協調して飛行する。
 本発明の更に他の態様に係る管理装置は、端末装置と無線通信する複数の無線中継装置を管理する管理装置であって、上空を飛行して移動可能に設けられ地上又は海上に向けてセルを形成して前記セルに在圏する端末装置と無線通信する複数の無線中継装置それぞれの現在位置、高度及び姿勢の少なくとも一つを含む情報を、前記複数の無線中継装置それぞれから地上又は海上のゲートウェイ局を経由して取得し、前記複数の無線中継装置の情報に基づいて、無線中継装置間の位置関係を維持するように前記複数の無線中継装置が互いに協調して飛行するための制御情報を、前記ゲートウェイ局を経由して前記複数の無線中継装置それぞれに送信する。
 本発明の更に他の態様に係る管理装置は、端末装置と無線通信する複数の無線中継装置を管理する管理装置であって、上空を飛行して移動可能に設けられ地上又は海上に向けてセルを形成して前記セルに在圏する端末装置と無線通信する複数の無線中継装置それぞれの現在位置、高度及び姿勢の少なくとも一つを含む情報を、前記複数の無線中継装置のいずれか一つの無線中継装置から地上又は海上のゲートウェイ局を経由して取得し、前記複数の無線中継装置の情報に基づいて、無線中継装置間の位置関係を維持するように前記複数の無線中継装置が互いに協調して飛行するための制御情報を、前記ゲートウェイ局を経由して前記いずれか一つの無線中継装置に送信し、前記ゲートウェイ局及び前記いずれか一つの無線中継装置を経由して他の無線中継装置に送信する。
 本発明の更に他の態様に係る方法は、端末装置と無線通信する複数の無線中継装置の飛行方法であって、上空を飛行して移動可能に設けられ地上又は海上に向けてセルを形成して前記セルに在圏する端末装置と無線通信する複数の無線中継装置は、自律制御により又は外部からの制御により、自律制御により又は外部からの制御により、無線中継装置間の位置関係を維持するように互いに協調して飛行する。
 本発明によれば、上空を移動可能な複数の無線中継装置で形成する複数のセルのセル境界におけるハンドオーバーの頻発や隣接セルからの干渉の増大による通信品質の劣化を抑制することができる。
図1は、本発明の一実施形態に係る3次元化ネットワークを実現する通信システムの全体構成の一例を示す概略構成図。 図2は、実施形態の通信システムに用いられるHAPSの一例を示す斜視図。 図3は、実施形態の通信システムに用いられるHAPSの他の例を示す側面図。 図4は、実施形態の複数のHAPSで上空に形成される無線ネットワークの一例を示す説明図。 図5は、更に他の実施形態に係る3次元化ネットワークを実現する通信システムの全体構成の一例を示す概略構成図である。 図6は、実施形態のHAPSの無線中継局の一構成例を示すブロック図である。 図7は、実施形態のHAPSの無線中継局の他の構成例を示すブロック図である。 図1は、実施形態のHAPSの無線中継局の更に他の構成例を示すブロック図である。 図9Aは、実施形態に係る複数のHAPSの協調飛行の一例を示す説明図である。 図9Bは、実施形態に係る複数のHAPSの協調飛行の一例を示す説明図である。 図10Aは、比較例に係る無秩序飛行状態の複数のHAPSの一例を示す説明図である。 図10Bは、比較例に係る無秩序飛行状態の複数のHAPSの一例を示す説明図である。 図11Aは、実施形態に係る複数のHAPSの協調飛行の他の例を示す説明図である。 図11Bは、実施形態に係る複数のHAPSの協調飛行の他の例を示す説明図である。 図12Aは、比較例に係る無秩序飛行状態の複数のHAPSの他の例を示す説明図である。 図12Bは、比較例に係る無秩序飛行状態の複数のHAPSの他の例を示す説明図である。 図13Aは、HAPSが飛行している上空の風の強さに応じて決定される飛行ルートの形状の例を示す説明図である。 図13Bは、HAPSが飛行している上空の風の強さに応じて決定される飛行ルートの形状の例を示す説明図である。 図13Cは、HAPSが飛行している上空の風の強さに応じて決定される飛行ルートの形状の例を示す説明図である。 図14は、実施形態に係るHAPSのグループ協調飛行の一例を示す説明図である。 図15は、実施形態に係るHAPSのアンカー機体を中心とした協調飛行の一例を示す説明図である。 図16は、実施形態に係るHAPSの協調飛行を制御可能な集中制御型の制御システムの一例を示す説明図である。 図17は、実施形態に係るHAPSの協調飛行を制御可能な集中制御型の制御システムの他の例を示す説明図である。 図18は、実施形態に係るHAPSの協調飛行を制御可能な自律制御側の制御システムの一例を示す説明図である。
 以下、図面を参照して本発明の実施形態について説明する。
 図1は、本発明の一実施形態に係る通信システムの全体構成の一例を示す概略構成図である。
 本実施形態に係る通信システムは、多数の端末装置への同時接続や低遅延化などに対応する第5世代移動通信の3次元化ネットワークの実現に適する。また、本明細書に開示する通信システム、無線中継局、基地局、リピータ及び端末装置に適用可能な移動通信の標準規格は、第5世代の移動通信の標準規格、及び、第5世代以降の次々世代の移動通信の標準規格を含む。
 図1に示すように、通信システムは、複数の空中浮揚型の通信中継装置(無線中継装置)としての高高度プラットフォーム局(HAPS)(「高高度疑似衛星」ともいう。)10,20を備えている。HAPS10,20は、所定高度の空域に位置して、所定高度のセル形成目標空域40に図中ハッチング領域で示すような3次元セル(3次元エリア)41,42を形成する。HAPS10,20は、自律制御又は外部から制御により地面又は海面から100[km]以下の高高度の空域(浮揚空域)50に浮遊あるいは飛行して位置するように制御される浮揚体(例えば、ソーラープレーン、飛行船)に、無線中継局が搭載されたものである。
 HAPS10,20の位置する空域50は、例えば、高度が11[km]以上及び50[km]以下の成層圏の空域である。この空域50は、気象条件が比較的安定している高度15[km]以上25[km]以下の空域であってもよく、特に高度がほぼ20[km]の空域であってもよい。図中のHrsl及びHrsuはそれぞれ、地面(GL)を基準にしたHAPS10,20の位置する空域50の下端及び上端の相対的な高度を示している。
 セル形成目標空域40は、本実施形態の通信システムにおける1又は2以上のHAPSで3次元セルを形成する目標の空域である。セル形成目標空域40は、HAPS10,20が位置する空域50と従来のマクロセル基地局等の基地局(例えばLTEのeNodeB)90がカバーする地面近傍のセル形成領域との間に位置する、所定高度範囲(例えば、50[m]以上1000[m]以下の高度範囲)の空域である。図中のHcl及びHcuはそれぞれ、地面(GL)を基準にしたセル形成目標空域40の下端及び上端の相対的な高度を示している。
 なお、本実施形態の3次元セルが形成されるセル形成目標空域40は、海、川又は湖の上空であってもよい。
 HAPS10,20の無線中継局はそれぞれ、移動局である端末装置と無線通信するためのビーム100,200を地面に向けて形成する。端末装置は、遠隔操縦可能な小型のヘリコプター等の航空機であるドローン60に組み込まれた通信端末モジュールでもよいし、飛行機65の中でユーザが使用するユーザ装置であってもよい。セル形成目標空域40においてビーム100,200が通過する領域が3次元セル41,42である。セル形成目標空域40において互いに隣り合う複数のビーム100,200は部分的に重なってもよい。
 HAPS10,20の無線中継局はそれぞれ、例えば、地上(又は海上)側のコアネットワークに接続された中継局としてのゲートウェイ局(「フィーダ局」ともいう。)70と無線通信する基地局、又は、地上(又は海上)側の基地局に接続された中継局としてのフィーダ局(リピーター親機)70と無線通信するリピーター子機である。HAPS10,20の無線中継局はそれぞれ、地上又は海上に設置されたフィーダ局70を介して、移動通信網80のコアネットワークに接続されている。HAPS10,20とフィーダ局70との間の通信は、マイクロ波などの電波による無線通信で行ってもよいし、レーザ光などを用いた光通信で行ってもよい。
 HAPS10,20はそれぞれ、内部に組み込まれたコンピュータ等で構成された制御部が制御プログラムを実行することにより、自身の浮揚移動(飛行)や無線中継局での処理を自律制御してもよい。例えば、HAPS10,20はそれぞれ、自身の現在位置情報(例えばGPS位置情報)、予め記憶した位置制御情報(例えば、飛行スケジュール情報)、周辺に位置する他のHAPSの位置情報などを取得し、それらの情報に基づいて浮揚移動(飛行)や無線中継局での処理を自律制御してもよい。
 また、HAPS10,20それぞれの浮揚移動(飛行)や無線中継局での処理は、移動通信網80の通信センター等に設けられた管理装置としての管理装置(「遠隔制御装置」ともいう。)85によって制御できるようにしてもよい。管理装置85は、例えば、PCなどのコンピュータ装置やサーバ等で構成することができる。この場合、HAPS10,20は、管理装置85からの制御情報を受信したり管理装置85に監視情報などの各種情報を送信したりできるように制御用通信端末装置(例えば、移動通信モジュール)が組み込まれ、管理装置85から識別できるように端末識別情報(例えば、IPアドレス、電話番号など)が割り当てられるようにしてもよい。制御用通信端末装置の識別には通信インターフェースのMACアドレスを用いてもよい。また、HAPS10,20はそれぞれ、自身又は周辺のHAPSの浮揚移動(飛行)や無線中継局での処理に関する情報、HAPS10,20の状態に関する情報や各種センサなどで取得した観測データなどの監視情報を、管理装置85等の所定の送信先に送信するようにしてもよい。制御情報は、HAPSの目標飛行ルート情報を含んでもよい。監視情報は、HAPS10,20の現在位置、飛行ルート履歴情報、対気速度、対地速度及び推進方向、HAPS10,20の周辺の気流の風速及び風向、並びに、HAPS10,20の周辺の気圧及び気温の少なくとも一つの情報を含んでもよい。
 セル形成目標空域40では、HAPS10,20のビーム100,200が通過していない領域(3次元セル41,42が形成されない領域)が発生するおそれがある。この領域を補完するため、図1の構成例のように、地上側又は海上側から上方に向かって放射状のビーム300を形成して3次元セル43を形成してATG(Air To Ground)接続を行う基地局(以下「ATG局」という。)30を備えてもよい。
 また、ATG局30を用いずに、HAPS10,20の位置やビーム100,200の発散角(ビーム幅)等を調整することにより、HAPS10,20の無線中継局が、セル形成目標空域40に3次元セルがくまなく形成されるように、セル形成目標空域40の上端面の全体をカバーするビーム100,200を形成してもよい。
 なお、前記HAPS10,20で形成する3次元セルは、地上又は海上に位置する端末装置との間でも通信できるよう地面又は海面に達するように形成してもよい。
 図2は、実施形態の通信システムに用いられるHAPS10の一例を示す斜視図である。
 図2のHAPS10は、ソーラープレーンタイプのHAPSであり、長手方向の両端部側が上方に沿った主翼部101と、主翼部101の短手方向の一端縁部にバス動力系の推進装置としての複数のモータ駆動のプロペラ103とを備える。主翼部101の上面には、太陽光発電機能を有する太陽光発電部としての太陽光発電パネル(以下「ソーラーパネル」という。)102が設けられている。また、主翼部101の下面の長手方向の2箇所には、板状の連結部104を介して、ミッション機器が収容される複数の機器収容部としてのポッド105が連結されている。各ポッド105の内部には、ミッション機器としての無線中継局110と、バッテリー106とが収容されている。また、各ポッド105の下面側には離発着時に使用される車輪107が設けられている。ソーラーパネル102で発電された電力はバッテリー106に蓄電され、バッテリー106から供給される電力により、プロペラ103のモータが回転駆動され、無線中継局110による無線中継処理が実行される。
 ソーラープレーンタイプのHAPS10は、例えば所定の目標飛行ルートに基づいて円形状に旋回飛行を行ったり「D」の字飛行を行ったり「8」の字飛行を行ったりすることにより揚力で浮揚し、所定の高度で水平方向の所定の範囲に滞在するように浮揚することができる。なお、ソーラープレーンタイプのHAPS10は、プロペラ103が回転駆動されていないときは、グライダーのように飛ぶこともできる。例えば、昼間などのソーラーパネル102の発電によってバッテリー106の電力が余っているときに高い位置に上昇し、夜間などのソーラーパネル102で発電できないときにバッテリー106からモータへの給電を停止してグライダーのように飛ぶことができる。
 また、HAPS10は、他のHAPSや人工衛星と光通信に用いられる通信部としての3次元対応指向性の光アンテナ装置130を備えている。なお、図2の例では主翼部101の長手方向の両端部に光アンテナ装置130を配置しているが、HAPS10の他の箇所に光アンテナ装置130を配置してもよい。なお、他のHAPSや人工衛星と光通信に用いられる通信部は、このような光通信を行うものに限らず、マイクロ波などの電波による無線通信などの他の方式による無線通信であってもよい。
 図3は、実施形態の通信システムに用いられるHAPS20の他の例を示す斜視図である。
 図3のHAPS20は、無人飛行船タイプのHAPSであり、ペイロードが大きいため大容量のバッテリーを搭載することができる。HAPS20は、浮力で浮揚するためのヘリウムガス等の気体が充填された飛行船本体201と、バス動力系の推進装置としてのモータ駆動のプロペラ202と、ミッション機器が収容される機器収容部203とを備える。機器収容部203の内部には、無線中継局210とバッテリー204とが収容されている。バッテリー204から供給される電力により、プロペラ202のモータが回転駆動され、無線中継局210による無線中継処理が実行される。
 なお、飛行船本体201の上面に、太陽光発電機能を有するソーラーパネルを設け、ソーラーパネルで発電された電力をバッテリー204に蓄電するようにしてもよい。
 また、無人飛行船タイプのHAPS20も、他のHAPSや人工衛星と光通信に用いられる通信部としての3次元対応指向性の光アンテナ装置230を備えている。なお、図3の例では飛行船本体201の上面部及び機器収容部203の下面部に光アンテナ装置230を配置しているが、HAPS20の他の部分に光アンテナ装置230を配置してもよい。なお、他のHAPSや人工衛星と光通信に用いられる通信部は、このような光通信を行うものに限らず、マイクロ波などの電波による無線通信などの他の方式による無線通信を行うものであってもよい。
 図4は、実施形態の複数のHAPS10,20で上空に形成される無線ネットワークの一例を示す説明図である。
 複数のHAPS10,20は、上空で互いに光通信によるHAPS間通信ができるように構成され、3次元化したネットワークを広域にわたって安定に実現することができるロバスト性に優れた無線通信ネットワークを形成する。この無線通信ネットワークは、各種環境や各種情報に応じたダイナミックルーティングによるアドホックネットワークとして機能することもできる。前記無線通信ネットワークは、2次元又は3次元の各種トポロジーを有するように形成することができ、例えば、図4に示すようにメッシュ型の無線通信ネットワークであってもよい。
 図5は、他の実施形態に係る通信システムの全体構成の一例を示す概略構成図である。
 なお、図5において、前述の図1と共通する部分については同じ符号を付し、その説明は省略する。
 図5の実施形態では、HAPS10と移動通信網80のコアネットワークとの間の通信を、フィーダ局70及び低軌道の人工衛星72を介して行っている。この場合、人工衛星72とフィーダ局70との間の通信は、マイクロ波などの電波による無線通信で行ってもよいし、レーザ光などを用いた光通信で行ってもよい。また、HAPS10と人工衛星72との間の通信については、レーザ光などを用いた光通信で行っている。
 図6は、実施形態のHAPS10,20の無線中継局110,210の一構成例を示すブロック図である。
 図5の無線中継局110,210はリピータータイプの無線中継局の例である。無線中継局110,210はそれぞれ、3Dセル形成アンテナ部111と、送受信部112と、フィード用アンテナ部113と、送受信部114と、リピーター部115と、監視制御部116と、電源部117とを備える。更に、無線中継局110,210はそれぞれ、HAPS間通信などに用いる光通信部125と、ビーム制御部126とを備える。
 3Dセル形成アンテナ部111は、セル形成目標空域40に向けて放射状のビーム100,200を形成するアンテナを有し、端末装置と通信可能な3次元セル41,42を形成する。送受信部112は、3Dセル形成アンテナ部111とともに第一無線通信部を構成し、送受共用器(DUP:DUPlexer)や増幅器などを有し、3Dセル形成アンテナ部111を介して、3次元セル41,42に在圏する端末装置に無線信号を送信したり端末装置から無線信号を受信したりする。
 フィード用アンテナ部113は、地上又は海上のフィーダ局70と無線通信するための指向性アンテナを有する。送受信部114は、フィード用アンテナ部113とともに第二無線通信部を構成し、送受共用器(DUP:DUPlexer)や増幅器などを有し、フィード用アンテナ部113を介して、フィーダ局70に無線信号を送信したりフィーダ局70から無線信号を受信したりする。
 リピーター部115は、端末装置との間で送受信される送受信部112の信号と、フィーダ局70との間で送受信される送受信部114の信号とを中継する。リピーター部115は、所定周波数の中継対象信号を所定のレベルまで増幅するアンプ機能を有する。リピーター部115は、中継対象信号の周波数を変換する周波数変換機能を有してもよい。
 監視制御部116は、例えばCPU及びメモリ等で構成され、予め組み込まれたプログラムを実行することにより、HAPS10,20内の各部の動作処理状況を監視したり各部を制御したりする。特に、監視制御部116は、制御プログラムを実行することにより、プロペラ103,202を駆動するモータ駆動部141を制御して、HAPS10,20を目標位置へ移動させ、また、目標位置近辺に留まるように制御する。
 電源部117は、バッテリー106,204から出力された電力をHAPS10,20内の各部に供給する。電源部117は、太陽光発電パネル等で発電した電力や外部から給電された電力をバッテリー106,204に蓄電させる機能を有してもよい。
 光通信部125は、レーザ光等の光通信媒体を介して周辺の他のHAPS10,20や人工衛星72と通信する。この通信により、ドローン60等の端末装置と移動通信網80との間の無線通信を動的に中継するダイナミックルーティングが可能になるとともに、いずれかのHAPSが故障したときに他のHAPSがバックアップして無線中継することにより移動通信システムのロバスト性を高めることができる。
 ビーム制御部126は、HAPS間通信や人工衛星72との通信に用いるレーザ光などのビームの方向及び強度を制御したり、周辺の他のHAPS(無線中継局)との間の相対的な位置の変化に応じてレーザ光等の光ビームによる通信を行う他のHAPS(無線中継局)を切り替えるように制御したりする。この制御は、例えば、HAPS自身の位置及び姿勢、周辺のHAPSの位置などに基づいて行ってもよい。HAPS自身の位置及び姿勢の情報は、そのHAPSに組み込んだGPS受信装置、ジャイロセンサ、加速度センサなどの出力に基づいて取得し、周辺のHAPSの位置の情報は、移動通信網80に設けた管理装置85、又は、HAPS管理サーバやアプリケーションサーバ等のサーバ86から取得してもよい。
 図7は、実施形態のHAPS10,20の無線中継局110,210の他の構成例を示すブロック図である。
 図7の無線中継局110,210は基地局タイプの無線中継局の例である。
 なお、図7において、図6と同様な構成要素については同じ符号を付し、説明を省略する。図7の無線中継局110,210はそれぞれ、モデム部118を更に備え、リピーター部115の代わりに基地局処理部119を備える。更に、無線中継局110,210はそれぞれ、光通信部125とビーム制御部126とを備える。
 モデム部118は、例えば、フィーダ局70からフィード用アンテナ部113及び送受信部114を介して受信した受信信号に対して復調処理及び復号処理を実行し、基地局処理部119側に出力するデータ信号を生成する。また、モデム部118は、基地局処理部119側から受けたデータ信号に対して符号化処理及び変調処理を実行し、フィード用アンテナ部113及び送受信部114を介してフィーダ局70に送信する送信信号を生成する。
 基地局処理部119は、例えば、LTE/LTE-Advancedの標準規格に準拠した方式に基づいてベースバンド処理を行うe-NodeBとしての機能を有する。基地局処理部119は、第5世代等の将来の移動通信の標準規格に準拠する方式で処理するものであってもよい。
 基地局処理部119は、例えば、3次元セル41,42に在圏する端末装置から3Dセル形成アンテナ部111及び送受信部112を介して受信した受信信号に対して復調処理及び復号処理を実行し、モデム部118側に出力するデータ信号を生成する。また、基地局処理部119は、モデム部118側から受けたデータ信号に対して符号化処理及び変調処理を実行し、3Dセル形成アンテナ部111及び送受信部112を介して3次元セル41,42の端末装置に送信する送信信号を生成する。
 図8は、実施形態のHAPS10,20の無線中継局110,210の更に他の構成例を示すブロック図である。
 図8の無線中継局110,210はエッジコンピューティング機能を有する高機能の基地局タイプの無線中継局の例である。なお、図8において、図6及び図7と同様な構成要素については同じ符号を付し、説明を省略する。図8の無線中継局110,210はそれぞれ、図7の構成要素に加えてエッジコンピューティング部120を更に備える。
 エッジコンピューティング部120は、例えば小型のコンピュータで構成され、予め組み込まれたプログラムを実行することにより、HAPS10,20の無線中継局110,210における無線中継などに関する各種の情報処理を実行することができる。
 例えば、エッジコンピューティング部120は、3次元セル41,42に在圏する端末装置から受信したデータ信号に基づいて、そのデータ信号の送信先を判定し、その判定結果に基づいて通信の中継先を切り換える処理を実行する。より具体的には、基地局処理部119から出力されたデータ信号の送信先が自身の3次元セル41,42に在圏する端末装置の場合は、そのデータ信号をモデム部118に渡さずに、基地局処理部119に戻して自身の3次元セル41,42に在圏する送信先の端末装置に送信するようにする。一方、基地局処理部119から出力されたデータ信号の送信先が自身の3次元セル41,42以外の他のセルに在圏する端末装置の場合は、そのデータ信号をモデム部118に渡してフィーダ局70に送信し、移動通信網80を介して送信先の他のセルに在圏する送信先の端末装置に送信するようにする。
 エッジコンピューティング部120は、3次元セル41,42に在圏する多数の端末装置から受信した情報を分析する処理を実行してもよい。この分析結果は3次元セル41,42に在圏する多数の端末装置に送信したり、移動通信網80に設けた管理装置85、又は、管理装置としてのHAPS管理サーバやアプリケーションサーバ(アプリサーバ)等のサーバ86などに送信したりしてもよい。
 無線中継局110、210を介した端末装置との無線通信の上りリンク及び下りリンクの複信方式は、特定の方式に限定されず、例えば、時分割複信(Time Division Duplex:TDD)方式でもよいし、周波数分割複信(Frequency Division Duplex:FDD)方式でもよい。また、無線中継局110、210を介した端末装置との無線通信のアクセス方式は、特定の方式に限定されず、例えば、FDMA(Frequency Division Multiple Access)方式、TDMA(Time Division Multiple Access)方式、CDMA(Code Division Multiple Access)方式、又は、OFDMA(Orthogonal Frequency Division Multiple Access)であってもよい。また、前記無線通信には、ダイバーシティ・コーディング、送信ビームフォーミング、空間分割多重化(SDM:Spatial Division Multiplexing)等の機能を有し、送受信両方で複数のアンテナを同時に利用することにより、単位周波数当たりの伝送容量を増やすことができるMIMO(多入力多出力:Multi-Input and Multi-Output)技術を用いてもよい。また、前記MIMO技術は、1つの基地局が1つの端末装置と同一時刻・同一周波数で複数の信号を送信するSU-MIMO(Single-User MIMO)技術でもよいし、1つの基地局が複数の異なる端末装置に同一時刻・同一周波数で信号を送信又は複数の異なる基地局が1つの端末装置に同一時刻・同一周波数で信号を送信するMU-MIMO(Multi-User MIMO)技術であってもよい。
 以下、端末装置と無線通信する無線中継装置が、無線中継局110を有するソーラープレーンタイプのHAPS10である場合について説明するが、以下の実施形態は、無線中継局210を有する無人飛行船タイプのHAPS20等の上空を移動可能な他の無線中継装置にも同様に適用できる。
 また、無線中継局110を有するHAPS10とフィーダ局としてのゲートウェイ局(以下「GW局」と略す。)70を介した基地局90との間のリンクを「フィーダリンク」といい、HAPS10と端末装置61の間のリンクを「サービスリンク」という。特に、HAPS10とGW局70との間の区間を「フィーダリンクの無線区間」という。また、GW局70からHAPS10を経由して端末装置61に向かう通信のダウンリンクを「フォワードリンク」といい、端末装置61からHAPS10を経由してGW局70に向かう通信のアップリンクを「リバースリンク」という。
 本実施形態の上空を移動可能な複数のHAPS10により地上又は海上に複数のセル100Aを形成する場合、セル境界部分の大きさやセル間の距離が変化し、セル境界でハンドオーバーが頻発して通信品質が劣化するおそれがある。
 そこで、本実施形態のHAPS10は、自律制御により又は外部からの制御により、HAPS間の位置関係を維持するように同じ飛行形態で互いに協調して飛行するように制御されている。これにより、通信品質としてのSINR(所要信号対干渉・雑音電力比)が劣化しているSINR劣化領域の大きさが一定となる。
 図9A及び図9Bは実施形態に係る複数のHAPS10の協調飛行の一例を示す説明図である。また、図10A及び図10Bは、比較例に係る無秩序飛行状態の複数のHAPS10の一例を示す説明図である。図9A,図9B図10A及び図10Bはそれぞれ、飛行制御対象の複数のHAPS10(1)~10(6)、その飛行ルート10F(1)~10F(6)及びセル100A(1)~100A(6)を、鉛直方向の上方から見た図である。また、図中のセル境界のクロスハッチングで示した領域はSINR劣化領域Aである。なお、図9A及び図9Bの例では、HAPS10の数が6機の場合について示しているが、HAPS10の数は2~5機であってもよいし、7機以上であってもよい。
 図9A及び図9Bにおいて、複数のHAPS10はそれぞれ、自律制御により又は外部からの制御により、鉛直方向の下方にセル100A(1)~100A(6)を形成しながら、互いに同じ円形の飛行ルート10F(1)~10F(6)に沿って繰り返し循環飛行するように飛行制御される。そして、各HAPS10は、自律制御により又は外部からの制御により、HAPS間の水平方向の位置関係(例えばHAPS間の距離)を維持するように互いに協調して飛行するように制御される。
 例えば、図9Aに示す飛行タイミングにおいて、複数のHAPS10(1)~10(6)はそれぞれ、鉛直方向の下方にセル100A(1)~100A(6)を形成しながら、水平方向における飛行ルート10F(1)~10F(6)の図中右端の位置を図中上方に向かう協調飛行を行うように制御される。その後、図9Bに示す飛行タイミングにおいて、複数のHAPS10(1)~10(6)はそれぞれ、鉛直方向の下方にセル100A(1)~100A(6)を形成しながら、水平方向における飛行ルート10F(1)~10F(6)の図中上端の位置を図中左方に向かう協調飛行を行うように制御される。図9A及び図9Bに示すように飛行時間が経過しても、複数のHAPS10(1)~10(6)によって形成されるセル100A(1)~100A(6)のSINR劣化領域Aの大きさは維持される。このように飛行することでSINR劣化を抑制できる一方、セル境界線に変化を起こさないように協調飛行を行うことで、ハンドオーバーの発生を抑制することができる。
 これに対し、図10A及び図10Bの比較例のように複数のHAPS10(1)~10(6)が互いに協調せずに無秩序に飛行する場合は、セル境界のSINR劣化領域Aの大きさにばらつきがあり、また、セル間にSINR劣化領域Bが発生しやすい。しかも、それらのSINR劣化領域A,Bの大きさは、HAPS10(1)~10(6)の飛行に応じて変化する。
 なお、図9A及び図9Bの例において、複数のHAPS10(1)~10(6)はそれぞれ、高さ方向におけるHAPS間の位置関係を維持するように協調飛行を行ってもよい。例えば、複数のHAPS10(1)~10(6)は、互いに同じ高度を維持するように協調飛行を行ってもよい。この場合は、HAPS10(1)~10(6)が共に昇降することで、所望信号と干渉信号が共に減増するため、SINRの劣化が一定となる。
 また、図9A及び図9Bの例において、複数のHAPS10(1)~10(6)はそれぞれ、飛行方向に対する姿勢(例えば、進行方向に対するローリングやピッチング等の傾き)がHAPS間で互いに同じになるように協調飛行を行ってもよい。
 図11A及び図11Bは実施形態に係る複数のHAPS10の協調飛行の他の例を示す説明図である。また、図12A及び図12Bは、比較例に係る無秩序飛行状態の複数のHAPS10の他の例を示す説明図である。図11A、図11B、図12A及び図12BはHAPS10が鉛直方向から傾いた方向にセルを形成している例である。なお、図11A、図11B、図12A及び図12Bにおいて、前述の図9A、図9B、図10A及び図10Bと共通する部分については説明を省略する。
 複数のHAPS10はそれぞれ、自律制御により又は外部からの制御により、自身のローリングにより鉛直方向から傾いた方向にセル100A(1)~100A(6)を形成しながら、互いに同じ円形の飛行ルート10F(1)~10F(6)に沿って繰り返し循環飛行するように飛行制御される。そして、各HAPS10は、自律制御により又は外部からの制御により、HAPS間の水平方向の位置関係(例えばHAPS間の距離)を維持するように互いに協調して飛行するように制御される。
 例えば、図11Aに示す飛行タイミングにおいて、複数のHAPS10(1)~10(6)はそれぞれ、図中右側端が左側端よりも高くなるローリングにより、鉛直方向の下方から図中右方向にシフトした位置にセル100A(1)~100A(6)を形成しながら、水平方向における飛行ルート10F(1)~10F(6)の図中右端の位置を図中上方に向かう協調飛行を行うように制御される。その後、図11Bに示す飛行タイミングにおいて、複数のHAPS10(1)~10(6)はそれぞれ、図中上側端が下側端よりも高くなるローリングにより、鉛直方向の下方から図中上方向にシフトした位置にセル100A(1)~100A(6)を形成しながら、水平方向における飛行ルート10F(1)~10F(6)の図中上端の位置を図中左方に向かう協調飛行を行うように制御される。図11A及び図11Bに示すように飛行時間が経過しても、ローリング品柄飛行している複数のHAPS10(1)~10(6)によって形成されるセル100A(1)~100A(6)のSINR劣化領域Aの大きさは維持される。このように飛行することでSINR劣化を抑制できる一方、セル境界線に変化を起こさないように協調飛行を行うことで、ハンドオーバーの発生を抑制することができる。
 これに対し、図12A及び図12Bの比較例のように複数のHAPS10(1)~10(6)が互いに協調せずに無秩序に飛行する場合は、セル境界のSINR劣化領域Aの大きさにばらつきがあり、また、セル間のSINRが劣化しているSINR劣化領域Bが発生しやすい。しかも、それらのSINR劣化領域A,Bの大きさは、HAPS10(1)~10(6)の飛行に応じて変化する。
 なお、図11A及び図11Bの例において、複数のHAPS10(1)~10(6)はそれぞれ、高さ方向におけるHAPS間の位置関係を維持するように協調飛行を行ってもよい。
 また、図9A,図9B,図11A及び図11Bの例では、複数のHAPS10が協調飛行するように制御される飛行ルートの形状が円形の場合について説明したが、協調飛行制御対象のHAPS10の飛行ルートは円形以外の形状であってもよい。
 図13A~図13CはHAPS10が飛行している上空の風Wの強さに応じて決定される飛行ルート10Fの形状の例を示す説明図である。図13A,図13B及び図13Cに示すようにHAPS10が飛行している高度の空域(例えば成層圏)での風速により飛行ルートの形状を変更する場合がある。例えば、図13Aのほぼ無風時には、風Wの方向にかかわらずHAPS10の飛行ルートとして円形の飛行ルートに決定する。また、図13Bの穏風時には、風が吹いている方向に向かって(風Wに逆って)飛行している時間帯がなるべく短くなるように、HAPS10の飛行ルートとして、円形の一部円弧の部分が直線になった「D」字形の飛行ルートに決定する。また、図13Cの強風時には、風が吹いている方向に向かって(風Wに逆って)飛行している時間帯がより短くなるように、HAPS10の飛行ルートとして、「8」の字形の飛行ルートに決定する。このように上空の風Wの強さに応じて飛行ルート10Fの形状を変更した場合、本実施形態では、その変更後の形状の飛行ルート10Fに従って、複数のHAPS10が上記協調飛行を行うように制御される。
 また、複数のHAPS10は、太陽光を受けることができる昼間の時間帯に太陽光発電でバッテリーを充電しながら螺旋状に上昇するように飛行し、太陽光を受けることができない夜間の時間帯に螺旋状に下降するグライディング飛行によって位置エネルギーから変換されるプロペラの回転エネルギーでバッテリーを充電するように飛行する場合がある。このように昼夜の螺旋状の上昇又は下降の飛行ルートで飛行する場合においても、本実施形態では、その昼間又は夜間の螺旋状の飛行ルートに従って、複数のHAPS10が上記協調飛行を行うように制御される。
 また、本実施形態において、互いに隣り合うHPAS間の距離は数百km(例えば約200km)あり、安定した成層圏といえども気象条件など環境が異なり、協調して同じ飛行形態をとるのが効率的でない場合がある。そのため、HAPS10が飛行している高度の空域(例えば、成層圏)の気象環境条件に応じて複数のHAPS10をグループ分けして協調飛行を行ってもよい。HAPS10のグループは気象環境条件に応じて変化させてもよい。
 図14は、実施形態に係るHAPSのグループ協調飛行の一例を示す説明図である。図14において、天候や上空の風速等の気象環境条件を考慮して、日本国をカバーする複数のHAPS10が、複数の日本国の北海道エリアを主にカバーするHAPSのグループG1と、北海道を除く東日本エリアを主にカバーするHAPSのグループG2と、沖縄を含む西日本エリアを主にカバーするHAPSのグループG3とにグループ分けされている。これらのグループG1,G2,G3ごとに前述のHAPS10の協調飛行の制御を行うことにより、天候や上空の風速等の気象環境条件に応じた飛行ルートの形状(飛行形態)でHAPS10を飛行させることができ、HAPS10に無理な飛行をさせなくて済む。
 図15は、実施形態に係るHAPS10のアンカー機体を中心とした協調飛行の一例を示す説明図である。図15中のHAPS間の矢印は制御情報の送信方向を示している。図15の例では、協調飛行制御対象の複数のHAPS10のうちいずれかの一つのHAPSを飛行の制御の基準となるHAPS(以下「アンカーHAPS」という。)10Aに設定している。そして、その基準のアンカーHAPS10Aを中心にして各HAPS10の制御情報を順次送信していくことにより、複数のHAPS10の全体が互いに協調飛行を行うように制御する。これにより、HAPS10を用いた通信サービスを提供しているエリアにおける協調飛行制御対象のすべてのHAPSが互いに協調飛行を行うことができ、当該通信サービス提供エリアにおいてセル境界におけるハンドオーバーの頻発や隣接セルからの干渉の増大による通信品質の劣化をより確実に抑制することができる。なお、アンカーHAPS10Aは複数であってもよい。
 図16は、実施形態に係るHAPS10の協調飛行を制御可能な集中制御型の制御システムの一例を示す説明図である。図16において、地上又は海上のコントロールセンターに設けられた管理装置85は、複数のHAPS10それぞれの前述の監視情報としての機体の情報(例えば、緯度、経度、高度、飛行方向の方位、水平面からの傾き)を、複数のHAPS10それぞれと通信可能なGW局(中継装置)70を介して受信する。管理装置85は、各HAPS10から受信した機体の情報を記憶手段としてのHAPSデータベースに集約して記憶する。また、管理装置85は、HAPS10ごとに、対応する機体の情報に基づいて上記協調飛行を行うための制御情報を生成又は選択し、その制御情報をGW局(中継装置)70を介してHAPS10に送信する。各HAPS10は、受信した制御情報に基づいて、上記協調飛行を行うように制御する。以上のように、図16の例では、地上又は海上における管理装置85から、複数のHAPS10の全体が互いに協調飛行を行うように、各HAPS10を集中制御することができる。
 図17は、実施形態に係るHAPS10の協調飛行を制御可能な集中制御型の制御システムの他の例を示す説明図である。図17において、地上又は海上のコントロールセンターに設けられた管理装置85は、複数のHAPS10のうちいずれか一つのアンカーHAPS10Aを介して、複数のHAPS10のすべての機体の情報(例えば、緯度、経度、高度、飛行方向の方位、水平面からの傾き)を受信する。管理装置85は、アンカーHAPS10Aを介して受信した複数のHAPS10のすべての機体の情報をHAPSデータベースに集約して記憶する。また、管理装置85は、複数のHAPS10のすべてについて、機体の情報に基づいて上記協調飛行を行うための制御情報を生成又は選択し、その複数の制御情報をGW局(中継装置)70及びアンカーHAPS10Aを介して各HAPS10に送信する。各HAPS10は、受信した制御情報に基づいて、上記協調飛行を行うように制御する。以上のように、図17の例では、地上又は海上における管理装置85から、複数のHAPS10の全体が互いに協調飛行を行うように、各HAPS10を集中制御することができる。特に、図17の例では、複数のHAPS10のいずれかがGW局70と通信できない状況になっている場合でもHAPS10の協調飛行を制御できる。なお、図17の例において、機体の情報及び制御情報の送受信に用いられるアンカーHAPS10A及びGW局70はそれぞれ複数であってもよい。
 図18は、実施形態に係るHAPS10の協調飛行を制御可能な自律制御側の制御システムの一例を示す説明図である。図18において、複数のHAPS10はそれぞれ、隣り合っているHAPS10との間で、機体の情報(例えば、緯度、経度、高度、飛行方向の方位、水平面からの傾き)を交換し、上記協調飛行を行うための制御情報を生成又は選択し、その制御情報に基づいて上記協調飛行を行うように制御する。以上のように、図18における複数のHAPS10は、複数のHAPS10の全体が互いに協調飛行を行うように自律制御することができる。特に、図18の例では、複数のHAPS10のすべてがGW局70と通信できない状況になっている場合でもHAPS10の協調飛行を制御できる。
 なお、本明細書で説明された処理工程並びにHAPS10,20等の通信中継装置の無線中継局、フィーダ局、ゲートウェイ局、管理装置、監視装置、遠隔制御装置、サーバ、端末装置(ユーザ装置、移動局、通信端末)、基地局及び基地局装置の構成要素は、様々な手段によって実装することができる。例えば、これらの工程及び構成要素は、ハードウェア、ファームウェア、ソフトウェア、又は、それらの組み合わせで実装されてもよい。
 ハードウェア実装については、実体(例えば、無線中継局、フィーダ局、ゲートウェイ局、基地局、基地局装置、無線中継局装置、端末装置(ユーザ装置、移動局、通信端末)、管理装置、監視装置、遠隔制御装置、サーバ、ハードディスクドライブ装置、又は、光ディスクドライブ装置)において前記工程及び構成要素を実現するために用いられる処理ユニット等の手段は、1つ又は複数の、特定用途向けIC(ASIC)、デジタルシグナルプロセッサ(DSP)、デジタル信号処理装置(DSPD)、プログラマブル・ロジック・デバイス(PLD)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、電子デバイス、本明細書で説明された機能を実行するようにデザインされた他の電子ユニット、コンピュータ、又は、それらの組み合わせの中に実装されてもよい。
 また、ファームウェア及び/又はソフトウェア実装については、前記構成要素を実現するために用いられる処理ユニット等の手段は、本明細書で説明された機能を実行するプログラム(例えば、プロシージャ、関数、モジュール、インストラクション、などのコード)で実装されてもよい。一般に、ファームウェア及び/又はソフトウェアのコードを明確に具体化する任意のコンピュータ/プロセッサ読み取り可能な媒体が、本明細書で説明された前記工程及び構成要素を実現するために用いられる処理ユニット等の手段の実装に利用されてもよい。例えば、ファームウェア及び/又はソフトウェアコードは、例えば制御装置において、メモリに記憶され、コンピュータやプロセッサにより実行されてもよい。そのメモリは、コンピュータやプロセッサの内部に実装されてもよいし、又は、プロセッサの外部に実装されてもよい。また、ファームウェア及び/又はソフトウェアコードは、例えば、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、プログラマブルリードオンリーメモリ(PROM)、電気的消去可能PROM(EEPROM)、FLASHメモリ、フロッピー(登録商標)ディスク、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)、磁気又は光データ記憶装置、などのような、コンピュータやプロセッサで読み取り可能な媒体に記憶されてもよい。そのコードは、1又は複数のコンピュータやプロセッサにより実行されてもよく、また、コンピュータやプロセッサに、本明細書で説明された機能性のある態様を実行させてもよい。
 また、前記媒体は非一時的な記録媒体であってもよい。また、前記プログラムのコードは、コンピュータ、プロセッサ、又は他のデバイス若しくは装置機械で読み込んで実行可能であれよく、その形式は特定の形式に限定されない。例えば、前記プログラムのコードは、ソースコード、オブジェクトコード及びバイナリコードのいずれでもよく、また、それらのコードの2以上が混在したものであってもよい。
 また、本明細書で開示された実施形態の説明は、当業者が本開示を製造又は使用するのを可能にするために提供される。本開示に対するさまざまな修正は当業者には容易に明白になり、本明細書で定義される一般的原理は、本開示の趣旨又は範囲から逸脱することなく、他のバリエーションに適用可能である。それゆえ、本開示は、本明細書で説明される例及びデザインに限定されるものではなく、本明細書で開示された原理及び新規な特徴に合致する最も広い範囲に認められるべきである。
 10,10(1)~10(6) HAPS(ソーラープレーンタイプ)
 10A アンカーHAPS
 10F(1)~10F(6) 飛行ルート
 20 HAPS(飛行船タイプ)
 40 セル形成目標空域
 41,42,43 3次元セル
 50 HAPSが位置する空域
 60 ドローン
 61 端末装置
 65 飛行機
 70 ゲートウェイ局(GW局)
 72 人工衛星
 80 移動通信網
 85 管理装置(管制センター、コントロールセンター)
 86 サーバ
 90 基地局(eNodeB)
 100,200、300 ビーム
 100A,100A(1)~100A(6) セル
 110,210 無線中継局
 A,B SINR劣化領域

Claims (14)

  1.  端末装置と無線通信する複数の無線中継装置を備えるシステムであって、
     前記複数の無線中継装置はそれぞれ、
      上空を飛行して移動可能に設けられ、
      地上又は海上に向けてセルを形成して前記セルに在圏する端末装置と無線通信する無線中継局を備え、
      自律制御により又は外部からの制御により、無線中継装置間の位置関係を維持するように互いに協調して飛行することを特徴とするシステム。
  2.  請求項1のシステムにおいて、
     前記複数の無線中継装置はそれぞれ、水平方向における無線中継装置間の位置関係を維持するように協調飛行を行うことを特徴とするシステム。
  3.  請求項1又は2のシステムにおいて、
     前記複数の無線中継装置はそれぞれ、高さ方向における無線中継装置間の位置関係を維持するように協調飛行を行うことを特徴とするシステム。
  4.  請求項1乃至3のいずれかのシステムにおいて、
     前記複数の無線中継装置はそれぞれ、前記無線中継装置の飛行方向及び飛行方向に対する姿勢が無線中継装置間で互いに同じになるように協調飛行を行うことを特徴とするシステム。
  5.  請求項1乃至4のいずれかのシステムにおいて、
     前記複数の無線中継装置のいずれかの無線中継装置の飛行パターンが変化したとき、他の無線中継装置は、前記いずれかの無線中継装置の変化後の飛行パターンと同じ飛行パターンで飛行するように制御されることを特徴とするシステム。
  6.  請求項1乃至5のいずれかのシステムにおいて、
     前記複数の無線中継装置は、各無線中継装置の位置に基づいて、地上又は海上の互いに異なる複数のエリアに対応する複数のグループに分類され、
     前記グループごとに前記無線中継装置の協調飛行の制御を行うことを特徴とするシステム。
  7.  請求項1乃至5のいずれかのシステムにおいて、
     前記複数の無線中継装置のいずれかの無線中継装置を前記飛行の制御の基準となる無線中継装置に設定し、
     前記基準の無線中継装置を中心にして前記複数の無線中継装置の全体が互いに協調飛行を行うように制御することを特徴とするシステム。
  8.  請求項1乃至7のいずれかのシステムにおいて、
     前記複数の無線中継装置を管理する管理装置を備え、
     前記管理装置は、
      前記複数の無線中継装置それぞれの現在位置、高度及び姿勢の少なくとも一つを含む情報を、前記複数の無線中継装置それぞれから地上又は海上のゲートウェイ局を経由して取得し、
      前記無線中継装置の情報に基づいて、前記協調の飛行を行うための制御情報を、前記ゲートウェイ局を経由して前記複数の無線中継装置それぞれに送信することを特徴とするシステム。
  9.  請求項1乃至7のいずれかのシステムにおいて、
     前記複数の無線中継装置を管理する管理装置を備え、
     前記複数の無線中継装置のいずれか一つの無線中継装置は、他の無線中継装置それぞれの現在位置、高度及び姿勢の少なくとも一つを含む情報を前記他の無線中継装置から取得し、
     前記管理装置は、
      前記複数の無線中継装置それぞれの現在位置、高度及び姿勢の少なくとも一つを含む情報を、前記いずれか一つの無線中継装置から地上又は海上のゲートウェイ局を経由して取得し、
      前記無線中継装置の情報に基づいて、前記協調の飛行を行うための制御情報を、前記ゲートウェイ局を経由して前記いずれか一つの無線中継装置に送信し、前記ゲートウェイ局及び前記いずれか一つの無線中継装置を経由して前記他の無線中継装置に送信することを特徴とするシステム。
  10.  請求項1乃至7のいずれかのシステムにおいて、
     前記無線中継装置は、その無線中継装置の近くに位置する他の無線中継装置の現在位置、高度及び姿勢の少なくとも一つを含む情報を前記他の無線中継装置から取得し、前記無線中継装置の情報に基づいて前記他の無線中継装置と協調して飛行するように制御することを特徴とするシステム。
  11.  端末装置と無線通信する無線中継装置であって、
     上空を飛行して移動可能に設けられ、
     地上又は海上に向けてセルを形成して前記セルに在圏する端末装置と無線通信する無線中継局を備え、
     自律制御により又は外部からの制御により、当該無線中継装置の近くに位置する他の無線中継装置との位置関係を維持するように前記他の無線中継装置と協調して飛行することを特徴とする無線中継装置。
  12.  端末装置と無線通信する複数の無線中継装置を管理する管理装置であって、
     上空を飛行して移動可能に設けられ地上又は海上に向けてセルを形成して前記セルに在圏する端末装置と無線通信する複数の無線中継装置それぞれの現在位置、高度及び姿勢の少なくとも一つを含む情報を、前記複数の無線中継装置それぞれから地上又は海上のゲートウェイ局を経由して取得し、
     前記複数の無線中継装置の情報に基づいて、無線中継装置間の位置関係を維持するように前記複数の無線中継装置が互いに協調して飛行するための制御情報を、前記ゲートウェイ局を経由して前記複数の無線中継装置それぞれに送信することを特徴とする管理装置。
  13.  端末装置と無線通信する複数の無線中継装置を管理する管理装置であって、
     上空を飛行して移動可能に設けられ地上又は海上に向けてセルを形成して前記セルに在圏する端末装置と無線通信する複数の無線中継装置それぞれの現在位置、高度及び姿勢の少なくとも一つを含む情報を、前記複数の無線中継装置のいずれか一つの無線中継装置から地上又は海上のゲートウェイ局を経由して取得し、
     前記複数の無線中継装置の情報に基づいて、無線中継装置間の位置関係を維持するように前記複数の無線中継装置が互いに協調して飛行するための制御情報を、前記ゲートウェイ局を経由して前記いずれか一つの無線中継装置に送信し、前記ゲートウェイ局及び前記いずれか一つの無線中継装置を経由して他の無線中継装置に送信することを特徴とする管理装置。
  14.  端末装置と無線通信する複数の無線中継装置の飛行方法であって、
     上空を飛行して移動可能に設けられ地上又は海上に向けてセルを形成して前記セルに在圏する端末装置と無線通信する複数の無線中継装置は、自律制御により又は外部からの制御により、無線中継装置間の位置関係を維持するように互いに協調して飛行することを特徴とする飛行方法。
PCT/JP2019/001917 2018-02-06 2019-01-22 Haps協調飛行システム WO2019155872A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201980011802.3A CN111684830B (zh) 2018-02-06 2019-01-22 Haps协同飞行系统、管理装置以及飞行方法
CA3090214A CA3090214C (en) 2018-02-06 2019-01-22 Haps cooperative flight system
KR1020207024111A KR102280484B1 (ko) 2018-02-06 2019-01-22 Haps 협조 비행 시스템
FIEP19750866.6T FI3751885T3 (fi) 2018-02-06 2019-01-22 Menetelmä, laitteet ja järjestelmät HAPS-koordinoitua lentoa varten
US16/966,254 US11308814B2 (en) 2018-02-06 2019-01-22 HAPS cooperative flight system
EP19750866.6A EP3751885B1 (en) 2018-02-06 2019-01-22 Method, apparatuses and systems for haps coordinated flight
IL276475A IL276475B (en) 2018-02-06 2020-08-03 haps cooperative flight system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018018968A JP6813520B2 (ja) 2018-02-06 2018-02-06 システム、管理装置及び飛行方法
JP2018-018968 2018-02-06

Publications (1)

Publication Number Publication Date
WO2019155872A1 true WO2019155872A1 (ja) 2019-08-15

Family

ID=67548022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001917 WO2019155872A1 (ja) 2018-02-06 2019-01-22 Haps協調飛行システム

Country Status (9)

Country Link
US (1) US11308814B2 (ja)
EP (1) EP3751885B1 (ja)
JP (1) JP6813520B2 (ja)
KR (1) KR102280484B1 (ja)
CN (1) CN111684830B (ja)
CA (1) CA3090214C (ja)
FI (1) FI3751885T3 (ja)
IL (1) IL276475B (ja)
WO (1) WO2019155872A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034677A1 (ja) * 2020-08-13 2022-02-17 日本電気株式会社 通信装置、通信システム、通信方法及びコンピュータ可読媒体
US20230249850A1 (en) * 2020-04-17 2023-08-10 Gs Yuasa International Ltd. Method of controlling flying object, flying object, and computer program
JP7556391B2 (ja) 2020-08-13 2024-09-26 日本電気株式会社 通信装置、通信方法及びプログラム

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6721618B2 (ja) * 2018-01-04 2020-07-15 ソフトバンク株式会社 通信システム、ゲートウェイ局及び基地局
JP6689916B2 (ja) * 2018-06-19 2020-04-28 Hapsモバイル株式会社 通信中継装置、システム、管理装置、並びに、通信中継装置の飛行を制御する方法及びプログラム
JP6643409B2 (ja) * 2018-06-22 2020-02-12 Hapsモバイル株式会社 無線通信サービスを提供する飛行体の編隊飛行及び通信エリア等制御
JP6976995B2 (ja) * 2019-07-03 2021-12-08 Hapsモバイル株式会社 Haps通信システムのフィーダリンクにおけるリバースリンク通信の干渉検知及び干渉抑制
JP2021069406A (ja) * 2019-10-29 2021-05-06 株式会社三洋物産 遊技機
JP7069099B2 (ja) * 2019-11-13 2022-05-17 Hapsモバイル株式会社 システム、制御装置、プログラム、及び制御方法
CN111640332B (zh) * 2020-06-09 2021-08-27 成都民航空管科技发展有限公司 一种atc系统中的通话频率移交方法及系统
US11783715B2 (en) * 2020-08-21 2023-10-10 Drobotics, Llc Unmanned aerial vehicle with neural network for enhanced mission performance
CN116326190B (zh) * 2020-10-21 2024-08-30 上海诺基亚贝尔股份有限公司 基于机载平台的容量提升
JP2022110534A (ja) * 2021-01-18 2022-07-29 Hapsモバイル株式会社 制御装置、プログラム、システム、及び制御方法
CN112994764B (zh) * 2021-02-04 2022-01-28 南京邮电大学 Hap辅助多对中继通信中的位置与收发预编码设计方法
JP7244577B2 (ja) * 2021-06-25 2023-03-22 ソフトバンク株式会社 情報処理システム、情報処理装置及び情報処理プログラム
CN113371173B (zh) * 2021-06-30 2022-11-25 湖南工商大学 一种基于边缘智能的高低空协同疫情防控系统及方法
KR102461494B1 (ko) * 2021-10-13 2022-11-01 스카이루먼 주식회사 중계드론을 이용한 중계범위의 확장, 분리 및 통합을 통한 임무범위 조정 방법
WO2023157062A1 (ja) * 2022-02-15 2023-08-24 日本電信電話株式会社 制御装置、無線通信システム、及び制御方法
KR102522930B1 (ko) 2022-04-29 2023-04-18 고려대학교 산학협력단 우주-공중-지상 통합망에서 고고도 플랫폼과 드론 간 매칭 방법, 이를 수행하기 위한 기록 매체 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159055A (ja) * 2000-11-17 2002-05-31 Nec System Integration & Construction Ltd 移動体通信システム
JP2004336408A (ja) * 2003-05-08 2004-11-25 Matsushita Electric Ind Co Ltd 通信ネットワークの構築方法および通信システム
JP2014091335A (ja) * 2012-10-31 2014-05-19 Mobile Core Inc 飛行体を利用した無線通信システムおよび無線通信方法
JP2016219874A (ja) * 2015-05-14 2016-12-22 日本電信電話株式会社 無線中継システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030236070A1 (en) * 2002-06-25 2003-12-25 Seligsohn Sherwin I. Sub-orbital, high altitude communications system
US9859972B2 (en) * 2014-02-17 2018-01-02 Ubiqomm Llc Broadband access to mobile platforms using drone/UAV background
IL256934B (en) * 2015-07-27 2022-07-01 Genghiscomm Holdings Llc Airborne relays in cooperative multiple input and multiple output systems
US10084531B2 (en) * 2015-08-31 2018-09-25 The Boeing Company System and method for allocating resources within a communication network
JP6206736B2 (ja) 2015-10-28 2017-10-04 パナソニックIpマネジメント株式会社 飛翔体を用いた観測システムおよび観測方法
US9973261B1 (en) * 2016-12-28 2018-05-15 Echostar Technologies Llc Rapidly-deployable, drone-based wireless communications systems and methods for the operation thereof
US9836049B1 (en) * 2017-05-05 2017-12-05 Pinnacle Vista, LLC Relay drone system
CN108668257B (zh) 2018-04-28 2019-06-25 中国人民解放军陆军工程大学 一种分布式无人机邮差中继轨迹优化方法
CN109104235A (zh) 2018-07-10 2018-12-28 东南大学 一种基于自适应的无人机群长距离通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159055A (ja) * 2000-11-17 2002-05-31 Nec System Integration & Construction Ltd 移動体通信システム
JP2004336408A (ja) * 2003-05-08 2004-11-25 Matsushita Electric Ind Co Ltd 通信ネットワークの構築方法および通信システム
JP2014091335A (ja) * 2012-10-31 2014-05-19 Mobile Core Inc 飛行体を利用した無線通信システムおよび無線通信方法
JP2016219874A (ja) * 2015-05-14 2016-12-22 日本電信電話株式会社 無線中継システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230249850A1 (en) * 2020-04-17 2023-08-10 Gs Yuasa International Ltd. Method of controlling flying object, flying object, and computer program
WO2022034677A1 (ja) * 2020-08-13 2022-02-17 日本電気株式会社 通信装置、通信システム、通信方法及びコンピュータ可読媒体
JP7556391B2 (ja) 2020-08-13 2024-09-26 日本電気株式会社 通信装置、通信方法及びプログラム

Also Published As

Publication number Publication date
EP3751885A1 (en) 2020-12-16
EP3751885A4 (en) 2021-10-13
FI3751885T3 (fi) 2023-01-31
JP6813520B2 (ja) 2021-01-13
CA3090214C (en) 2021-10-05
IL276475B (en) 2021-07-29
US11308814B2 (en) 2022-04-19
US20200380874A1 (en) 2020-12-03
CA3090214A1 (en) 2019-08-15
KR102280484B1 (ko) 2021-07-21
CN111684830A (zh) 2020-09-18
EP3751885B1 (en) 2022-12-28
JP2019140427A (ja) 2019-08-22
KR20200110414A (ko) 2020-09-23
CN111684830B (zh) 2021-05-11
IL276475A (en) 2020-09-30

Similar Documents

Publication Publication Date Title
WO2019155872A1 (ja) Haps協調飛行システム
JP6615827B2 (ja) 通信システム及び遠隔制御装置
EP3606128B1 (en) Three dimensionalization of fifth generation communication
JP6760982B2 (ja) 無線中継装置及び通信システム
JP6653684B2 (ja) 無線中継装置、遠隔制御装置及び通信システム
JP6721618B2 (ja) 通信システム、ゲートウェイ局及び基地局
WO2019235329A1 (ja) Hapsの飛行制御用通信回線を介した遠隔制御によるセル最適化
WO2020013176A1 (ja) Hapsを用いた単一周波数ネットワークセル構成
WO2018173984A1 (ja) 高緯度地域に対応する第5世代通信の3次元化
OA19809A (en) Inter-HAPS communication that builds three-dimensionally formed network of fifthgeneration communication, and large-capacity and multi-cell captive airship-type HAPS.
OA19796A (en) Three dimensionalization of fifth generation communication.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3090214

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207024111

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019750866

Country of ref document: EP

Effective date: 20200907