WO2019155558A1 - フィルター濾材の製造方法、フィルター濾材及びレスピレーター - Google Patents

フィルター濾材の製造方法、フィルター濾材及びレスピレーター Download PDF

Info

Publication number
WO2019155558A1
WO2019155558A1 PCT/JP2018/004243 JP2018004243W WO2019155558A1 WO 2019155558 A1 WO2019155558 A1 WO 2019155558A1 JP 2018004243 W JP2018004243 W JP 2018004243W WO 2019155558 A1 WO2019155558 A1 WO 2019155558A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
filter medium
filter
range
respirator
Prior art date
Application number
PCT/JP2018/004243
Other languages
English (en)
French (fr)
Inventor
圭 渡邊
道 大澤
Original Assignee
株式会社ナフィアス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナフィアス filed Critical 株式会社ナフィアス
Priority to PCT/JP2018/004243 priority Critical patent/WO2019155558A1/ja
Priority to JP2019571140A priority patent/JP7152034B2/ja
Priority to PCT/JP2019/004393 priority patent/WO2019156157A1/ja
Publication of WO2019155558A1 publication Critical patent/WO2019155558A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/05Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
    • A41D13/11Protective face masks, e.g. for surgical use, or for use in foul atmospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/22Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system
    • F02M37/32Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system characterised by filters or filter arrangements
    • F02M37/34Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system characterised by filters or filter arrangements by the filter structure, e.g. honeycomb, mesh or fibrous

Definitions

  • the present invention relates to a method for producing a filter medium, a filter medium, and a respirator.
  • Products equipped with a filter using a fibrous substance and collecting (removing) particles or the like present in the air or liquid are widely used in various applications.
  • respirators are used in dusty work sites, operating rooms, Use in particularly severe environments such as hospital wards and pandemic (influenza, etc.) countermeasure sites (for example, examination rooms) is expected. For this reason, high collection performance is required for the filter of the respirator.
  • the filter of the respirator is also required to reduce the load on the user during wearing.
  • a filter for a respirator As a filter for a respirator, a filter using a nonwoven fabric (for example, a melt blown nonwoven fabric) made of fibers having a fiber diameter of a micrometer class or larger (hereinafter referred to as normal fibers) is generally used.
  • a nonwoven fabric for example, a melt blown nonwoven fabric
  • normal fibers fibers having a fiber diameter of a micrometer class or larger
  • a respirator equipped with a filter using a nonwoven fabric made of ordinary fibers has a problem that the load on the wearer increases when trying to obtain high collection performance, and maintains high collection performance. There is a strong demand to make the filter thinner and lighter.
  • a nanofiber nonwoven fabric composed of nanofibers is basically formed in a planar manner for convenience of formation method and fiber diameter. For this reason, it is difficult to laminate nanofibers thickly. Therefore, when it is going to acquire high collection performance only with a nanofiber nonwoven fabric, a nanofiber is formed in high density and it becomes a precise
  • a conventional method for producing a filter medium includes a step of laminating nanofibers on one side of a meltblown nonwoven fabric to form a nanofiber nonwoven fabric, and a hot-bond resin is sprayed on one side of a thermal bond nonwoven fabric to heat and melt the resin. The process and the process of bonding each non-woven fabric with a heat-melted resin are included in this order.
  • the conventional method for producing a filter medium it is possible to produce a filter medium that can achieve a reduction in thickness and weight while maintaining high collection performance by combining a nonwoven fabric made of ordinary fibers and a nanofiber nonwoven fabric. It becomes possible.
  • the present invention has been made to solve the above-described problems, and can achieve a reduction in thickness and weight while maintaining a high collection performance, and causes deterioration and breakage as compared with the conventional filter filter manufacturing method. It aims at providing the manufacturing method of the filter medium which can manufacture a difficult filter medium.
  • Another object of the present invention is to provide a filter medium that can achieve a reduction in thickness and weight while maintaining high collection performance, and is less susceptible to deterioration and breakage than a filter medium produced by a conventional filter medium production method. To do. Furthermore, it is compatible with both high collection performance and reducing the load on the wearer, and is less susceptible to deterioration and breakage of the filter than a respirator using a filter medium produced by a conventional filter medium production method as a filter. Another object is to provide a respirator.
  • the method for producing a filter medium of the present invention has an average fiber diameter of 100 nm to 400 nm on one side of a first nonwoven fabric which is a spunbonded nonwoven fabric having a basis weight of 10 g / m 2 to 50 g / m 2 .
  • the method for producing a filter medium of the present invention similarly to the conventional method for producing a filter medium, by combining a nonwoven fabric made of normal fibers and a nanofiber nonwoven fabric, it is thinned while maintaining high collection performance. It becomes possible to manufacture a filter medium that can achieve weight reduction.
  • the melt blown nonwoven fabric has a property of being easily charged as compared with a spunbond nonwoven fabric or a thermal bond nonwoven fabric. For this reason, when trying to laminate nanofibers on one side of a meltblown nonwoven fabric as in the conventional method of producing filter media, the meltblown nonwoven fabric is charged and electrical repulsion occurs between the nanofibers and the nanofiber lamination May not work, or uneven lamination may occur. As a result, the filter medium produced by the conventional method for producing a filter is likely to be deteriorated or broken (particularly, due to peeling between the melt blown nonwoven fabric and the nanofiber nonwoven fabric or a decrease in strength due to the peeling).
  • the first nonwoven fabric and the nanofiber are formed because the second nonwoven fabric is formed by laminating nanofibers on one side of the first nonwoven fabric, which is a spunbond nonwoven fabric that is relatively less charged. It is possible to appropriately stack nanofibers by reducing the electrical repulsion between the two.
  • the method for producing a filter medium of the present invention can produce a filter medium that is less susceptible to deterioration or breakage than a filter medium produced by a conventional method for producing a filter medium.
  • the method for producing a filter medium of the present invention can achieve a reduction in thickness and weight while maintaining high collection performance, and a filter medium that is less susceptible to deterioration and breakage than conventional methods of producing filter media. It becomes the manufacturing method of the filter medium which can be manufactured.
  • the method for producing a filter medium of the present invention it is possible to appropriately stack nanofibers by forming the second nonwoven fabric on one side of the first nonwoven fabric, which is a spunbond nonwoven fabric that is relatively less charged. Therefore, the collection performance per thickness can be increased by forming a high-quality nanofiber nonwoven fabric. As a result, according to the method for producing a filter medium of the present invention, it is possible to produce a filter medium that can ensure high collection performance even if it is thinner than the filter medium produced by the conventional method of producing a filter medium. It becomes possible.
  • the basis weight of the first nonwoven fabric that is a spunbond nonwoven fabric is in the range of 10 g / m 2 to 50 g / m 2 , so the basis weight is 10 g / m 2 or more. Therefore, it is possible to ensure sufficient tensile strength to prevent abnormalities (breaking, breakage, elongation, etc.) when forming the second nonwoven fabric made of nanofibers, and the basis weight is 50 g / m 2 or less. As a result, the insulating property of the spunbonded nonwoven fabric can be sufficiently lowered to sufficiently increase the bonding force between the first nonwoven fabric and the second nonwoven fabric, and the filter medium can be reduced in weight.
  • the average fiber diameter of nanofibers is in the range of 100 nm to 400 nm, a practical production amount can be ensured by setting the average fiber diameter to 100 nm or more. In addition, by setting the average fiber diameter to 400 nm or less, it is possible to sufficiently increase the collection performance and sufficiently reduce the pressure loss.
  • the basis weight 0.05g / M 2 or more makes it possible to sufficiently increase the collection performance, and by setting the basis weight to 0.2 g / m 2 or less, the pressure loss can be made sufficiently low.
  • the basis weight of the third nonwoven fabric which is a melt blown nonwoven fabric is in the range of 5 g / m 2 to 30 g / m 2 , so the basis weight is 5 g / m 2 or more. It is possible to ensure ease of handling during bonding (stacking, heating, pressurization, cooling, etc., stability of behavior during the bonding process, so-called handling properties), and a basis weight of 30 g. / M 2 or less makes it possible to reduce the thickness of the third nonwoven fabric with respect to the thickness direction and achieve a reduction in the thickness of the filter medium.
  • the third nonwoven fabric is an electret melt blown nonwoven fabric, it is possible to obtain high collection performance by electrostatic force.
  • the nanofibers are preferably laminated using a multi-nozzle electrospinning apparatus whose spinning direction is from bottom to top.
  • the third nonwoven fabric is bonded by hot melt using a resin adhesive.
  • the third nonwoven fabric is preferably made of polypropylene as a raw material.
  • Polypropylene is an easily charged material suitable for electretization. For this reason, by setting it as the above methods, it becomes possible to suppress attenuation of the effect of electretization and to suppress that the collection performance of a filter medium deteriorates with time.
  • the nanofiber in the nanofiber laminating step, is made of the nanofiber using at least one of thermoplastic polyurethane, polyvinylidene fluoride, polyamide, polyacrylonitrile, and polyvinyl alcohol as a raw material. It is preferable to form a second nonwoven fabric.
  • the filter medium of the present invention includes a first nonwoven fabric that is a spunbond nonwoven fabric having a basis weight within a range of 10 g / m 2 to 50 g / m 2 , and an average fiber diameter that is disposed on one side of the first nonwoven fabric.
  • nanofiber nonwoven fabric is in the range of 0.05g / m 2 ⁇ 0.2g / m 2, said second nonwoven
  • a third nonwoven fabric that is an electret meltblown nonwoven fabric disposed on the opposite side of the first nonwoven fabric and having a weight per unit area in the range of 5 g / m 2 to 30 g / m 2 .
  • the non-woven fabric and the second non-woven fabric are integrated by contact and entanglement of fibers constituting each non-woven fabric, and have a thickness in the range of 0.05 mm to 0.4 mm.
  • the filter medium of the present invention it is possible to achieve a reduction in thickness and weight while maintaining high collection performance by combining a nonwoven fabric made of ordinary fibers and a nanofiber nonwoven fabric.
  • the second nonwoven fabric is integrated on one side of the first nonwoven fabric which is a spunbond nonwoven fabric which is relatively less charged by contact and entanglement between the fibers constituting each nonwoven fabric, It is possible to reduce the electrical repulsion generated between the first nonwoven fabric and the nanofibers during production and firmly integrate the second nonwoven fabric and the first nonwoven fabric.
  • the filter medium of the present invention is a filter medium that is less susceptible to deterioration and breakage than the filter medium manufactured by the conventional filter medium manufacturing method.
  • the filter medium of the present invention can achieve a reduction in thickness and weight while maintaining high collection performance, and is less susceptible to deterioration and breakage than a filter medium manufactured by a conventional filter medium manufacturing method. It becomes a filter medium.
  • the filter medium of the present invention since the second nonwoven fabric is integrated on one surface of the first nonwoven fabric, which is a spunbond nonwoven fabric that is relatively difficult to be charged, the nanofibers can be appropriately laminated at the time of manufacture. It becomes possible, and it becomes possible to make the collection performance per thickness high as a high-quality nanofiber nonwoven fabric. As a result, according to the filter medium of the present invention, it is possible to ensure high collection performance even as a filter medium thinner than the conventional filter medium.
  • the respirator of the present invention is arranged on one side of the first nonwoven fabric which is a spunbond nonwoven fabric having a basis weight in a range of 10 g / m 2 to 50 g / m 2 and an average fiber diameter.
  • a second nonwoven is a nanofiber nonwoven fabric basis weight consists nanofibers in the range of 100 nm ⁇ 400 nm is in the range of 0.05g / m 2 ⁇ 0.2g / m 2, said second nonwoven first A first non-woven fabric, and a third non-woven fabric which is an electret melt-blown non-woven fabric having a weight per unit area in the range of 5 g / m 2 to 30 g / m 2 , And the second non-woven fabric is formed by integrating a filter medium having a thickness in the range of 0.05 mm to 0.4 mm, which is integrated by contact and entanglement of fibers constituting each non-woven fabric. Characterized in that it comprises as a component of chromatography.
  • the respirator of the present invention uses a filter comprising the filter medium of the present invention as a component, it achieves both a high collection performance and a reduced load on the wearer, and a conventional filter medium is used as a component of the filter. It becomes a respirator that is less prone to deterioration and breakage of the filter than the respirator used.
  • the total thickness of the filter is preferably in the range of 0.2 mm to 1.5 mm.
  • the filter preferably has a plane shape.
  • the surface shape is a plane means that it does not have a three-dimensional shape (for example, unevenness for increasing the surface area of the filter) that is not essential from the viewpoint of configuring the shape of the respirator. .
  • a three-dimensional shape for example, unevenness for increasing the surface area of the filter
  • the condition that the surface shape is a plane is satisfied.
  • FIG. 10 It is sectional drawing of the filter medium 10 which concerns on embodiment. It is a figure shown in order to demonstrate nanofiber lamination process S1 in the manufacturing method of the filter material which concerns on embodiment. It is a figure shown in order to demonstrate adhesion process S2 in a manufacturing method of a filter material concerning an embodiment. It is a figure shown in order to demonstrate the respirator 100 which concerns on embodiment. It is a figure which shows a mode that the respirator 100 which concerns on embodiment is used. It is a table
  • FIG. 1 is a cross-sectional view of a filter medium 10 according to the embodiment.
  • the filter medium 10 according to the embodiment includes a first nonwoven fabric 12, a second nonwoven fabric 14, and a third nonwoven fabric 16.
  • the filter medium 10 has a thickness in the range of 0.05 mm to 0.4 mm.
  • the “filter medium” refers to a filter (collecting) function that is a main function of the filter among those used as components of the filter.
  • the filter medium may be used alone as a filter, or may be used by being laminated or integrated with other components (for example, a non-woven fabric for mouth, a non-woven fabric for reinforcement, other filter medium).
  • the first nonwoven fabric 12 is a spunbonded nonwoven fabric having a basis weight in the range of 10 g / m 2 to 50 g / m 2 .
  • the first nonwoven fabric 12 is made of, for example, polypropylene (PP).
  • the second nonwoven fabric 14 is disposed on one side of the first nonwoven fabric 12.
  • the second nonwoven fabric 14 is formed of nanofibers made from at least one of thermoplastic polyurethane (TPU), polyvinylidene fluoride (PVDF), polyamide (PA), polyacrylonitrile (PAN), and polyvinyl alcohol (PVA). ing.
  • TPU thermoplastic polyurethane
  • PVDF polyvinylidene fluoride
  • PA polyamide
  • PAN polyacrylonitrile
  • PVA polyvinyl alcohol
  • the third nonwoven fabric 16 is an electret melt blown nonwoven fabric disposed on the opposite side of the second nonwoven fabric 14 from the first nonwoven fabric 12 and having a basis weight in the range of 5 g / m 2 to 30 g / m 2. is there.
  • the third nonwoven fabric 16 is made of polypropylene (PP) as a raw material.
  • PP polypropylene
  • Electretized meltblown nonwoven fabrics can collect relatively large collection targets with the fibers themselves, and at the same time, can collect relatively small collection targets due to the action of electrostatic force. It is a suitable component to do.
  • the 1st nonwoven fabric 12 and the 2nd nonwoven fabric 14 are integrated by the contact and entanglement of the fibers which comprise each nonwoven fabric.
  • the integration can be achieved by forming the second nonwoven fabric 14 by the electrospinning method (see the nanofiber laminating step S1 of the filter filter manufacturing method described later).
  • the 1st nonwoven fabric 12, the 2nd nonwoven fabric 14, and the 3rd nonwoven fabric 16 are adhere
  • the method for manufacturing a filter material according to the embodiment includes a nanofiber lamination step S1 and an adhesion step S2 in this order. Hereinafter, each step will be described.
  • Nanofiber lamination process S1 Drawing 2 is a figure shown in order to explain nanofiber lamination process S1 in a manufacturing method of a filter material concerning an embodiment.
  • FIG. 2A is a schematic view showing a state where the nanofiber laminating step S1 is performed
  • FIG. 2B is a cross-sectional view showing a state of the position A1 in FIG. ) Is a cross-sectional view showing the state of position A2 in FIG.
  • the first nonwoven fabric 12 (see FIG. 2B), which is a spunbonded nonwoven fabric having a basis weight in the range of 10 g / m 2 to 50 g / m 2 . on one side, forming a second nonwoven 14 laminated nanofibers average fiber diameter is within the range of 100 nm ⁇ 400 nm as basis weight is in the range of 0.05g / m 2 ⁇ 0.2g / m 2 (See FIG. 2C).
  • the first nanofiber is made of at least one of thermoplastic polyurethane (TPU), polyvinylidene fluoride (PVDF), polyamide (PA), polyacrylonitrile (PAN) and polyvinyl alcohol (PVA).
  • TPU thermoplastic polyurethane
  • PVDF polyvinylidene fluoride
  • PA polyamide
  • PAN polyacrylonitrile
  • PVA polyvinyl alcohol
  • Two nonwoven fabrics 14 are formed.
  • nanofiber lamination step S1 as shown in FIG. 2A, nanofibers are laminated using a multi-nozzle electrospinning apparatus 200 whose spinning direction is from bottom to top.
  • reference numeral 210 indicates a feeding roll for feeding the first nonwoven fabric 12
  • reference numeral 212 indicates a winding roll for winding the first nonwoven fabric 12 and the second nonwoven fabric 14.
  • the first nonwoven fabric 12 and the second nonwoven fabric 14 are taken up by the take-up roll 212 while the first nonwoven fabric 12 is fed out from the feeding roll 210, so that the second nonwoven fabric 14 on one side of the first nonwoven fabric 12 is wound. Formation (stacking of nanofibers) is performed continuously.
  • the basis weight of the second nonwoven fabric 14 can be adjusted by changing the speed at which the first nonwoven fabric 12 is moved, changing the injection amount of the nanofiber material, increasing or decreasing the applied voltage, and the like.
  • the formation of the second nonwoven fabric may not be continuous. For example, preparing a first nonwoven fabric of a predetermined area to form a second nonwoven fabric, and then preparing a first nonwoven fabric of another predetermined area and forming a second nonwoven fabric again, The formation of the second nonwoven fabric may be intermittent.
  • FIG. 3A is a schematic view showing the state of performing the bonding step S2
  • FIG. 3B is a cross-sectional view showing the state of the position A3 in FIG. 3A
  • FIG. 3A is a cross-sectional view showing the state of the position A4 in FIG. 3A
  • FIG. 3D is a cross-sectional view showing the state of the position A5 in FIG.
  • the bonding step S2 is electretized on the surface of the second nonwoven fabric 14 on the side opposite to the first nonwoven fabric 12 so that the basis weight is in the range of 5 g / m 2 to 30 g / m 2.
  • This is a step of bonding the third nonwoven fabric 16 which is a melt blown nonwoven fabric.
  • the third nonwoven fabric 16 is made of polypropylene (PP) as a raw material.
  • PP polypropylene
  • the third nonwoven fabric 16 is bonded by hot melt using a resin adhesive.
  • hot melt is performed by spraying or applying a thermoplastic resin adhesive 18 on the second nonwoven fabric 14 by a resin adhesive applicator 300 (see FIG. 3B).
  • the 3rd nonwoven fabric 16 is piled up on the 2nd nonwoven fabric 14 via the resin adhesive 18 (refer FIG.3 (c)), the resin adhesive 18 is fuse
  • FIGS. 3A hot melt is performed by spraying or applying a thermoplastic resin adhesive 18 on the second nonwoven fabric 14 by a resin adhesive applicator 300 (see FIG. 3B).
  • the 3rd nonwoven fabric 16 is piled up on the 2nd nonwoven fabric 14 via the resin adhesive 18 (refer FIG.3 (c)), the resin adhesive 18 is fuse
  • the resin adhesive 18 is shown as having a granular shape arranged at equal intervals, but this is for convenience.
  • the resin adhesive can be of any (appropriate) form (shape such as mesh or line, solid, paste, gel) It can be used and can be spread, applied, arranged, etc. by any (appropriate) distribution / method.
  • the filter medium 10 is manufactured by performing the bonding step S2.
  • reference numeral 320 indicates a feeding roll for feeding out the first nonwoven fabric 12 and the second nonwoven fabric 14, and reference numeral 322 indicates a feeding roll for feeding out the third nonwoven fabric 16, which is indicated by reference numeral 324.
  • reference numeral 324 indicates a take-up roll for winding the filter medium 10.
  • each nonwoven fabric is moved by winding up the filter medium 10 with the take-up roll 324 while feeding each nonwoven fabric from the feed roll 320 and the feed roll 322, and the filter medium 10 is manufactured continuously.
  • the third nonwoven fabric may not be continuously bonded (intermittently).
  • the total thickness of the first nonwoven fabric 12, the second nonwoven fabric 14, and the third nonwoven fabric 16 is in the range of 0.05 mm to 0.4 mm.
  • FIG. 4 is a view for explaining the respirator 100 according to the embodiment.
  • 4A is a plan view of the respirator 100 in a folded state
  • FIG. 4B is a cross-sectional view taken along line AA in FIG. 4A
  • FIG. 4C is a cross-sectional view of FIG. It is sectional drawing which shows the mode of the position shown by A6.
  • FIG. 4B the respirator 100 is shown in a slightly opened state rather than a completely folded state in order to make it easy to understand how the filter 20 is folded.
  • FIG. 5 is a diagram illustrating a state in which the respirator 100 according to the embodiment is used.
  • reference numeral U denotes a user of the respirator 100.
  • FIG. 5 can also be referred to as a perspective view showing the state of the respirator 100 when it is used (deployed) when focusing on the respirator 100.
  • the respirator 100 has a first nonwoven fabric 12 that is a spunbond nonwoven fabric having a basis weight within a range of 10 g / m 2 to 50 g / m 2 , and one side of the first nonwoven fabric 12.
  • the second nonwoven 14 average fiber diameter of nanofiber nonwoven fabric that are within the scope basis weight consists nanofibers in the range of 100 nm ⁇ 400 nm of 0.05g / m 2 ⁇ 0.2g / m 2
  • the third nonwoven fabric 16 is an electret melt blown nonwoven fabric disposed on the opposite side of the second nonwoven fabric 14 from the first nonwoven fabric 12 and having a basis weight in the range of 5 g / m 2 to 30 g / m 2.
  • the first nonwoven fabric 12 and the second nonwoven fabric 14 are integrated by contact and entanglement of fibers constituting each nonwoven fabric, and the thickness is 0.05 mm to 0.4 mm.
  • the filter medium 10 in ⁇ provided as a component of the filter 20. That is, the respirator 100 includes the filter medium 10 according to the embodiment as a component of the filter 20 (in the embodiment, a part of the filter 20).
  • the respirator 100 is a foldable type. Since the shape of the respirator 100 is a known one, detailed description is omitted, but the respirator 100 can be folded so as to be approximately trapezoidal when viewed in plan, as shown in FIG. . When using the respirator 100, the end on the mouth side is opened up and down (see FIG. 4B), and the folded filter 20 is expanded (see FIG. 5).
  • the foldable respirator is characterized by space saving and easy storage and transportation. Since the filter medium of the present invention can be reduced in weight and thickness, it can be particularly suitably used as a filter medium used for a foldable respirator.
  • the filter 20 includes a filter medium 10 and a mouth side nonwoven fabric 22 made of a thermal bond nonwoven fabric.
  • the filter medium 10 and the mouth side non-woven fabric 22 are joined at each end. That is, the filter medium 10 and the mouth side nonwoven fabric 22 are not joined (adhered) over the entire surface.
  • the overall thickness of the filter 20 is in the range of 0.2 mm to 1.5 mm. Further, the filter 20 has a plane shape and does not have embossing or the like.
  • the respirator 100 includes a binding tape 30 that fixes the end of the filter 20 by thermocompression bonding, a cover tape 40 that covers the end of the user U that touches the skin, and a nose of the user U's nose.
  • a nose clamp 50 for securing a sealing property between the portion and the end of the respirator 100 and a mounting rubber 60 for fixing the respirator 100 to the user U are provided. Since these constituent elements are known as constituent elements of the respirator, description thereof is omitted.
  • the respirator 100 can be manufactured by a known (general) manufacturing method except that the filter 20 including the filter medium 10 according to the embodiment is used.
  • the method of manufacturing the respirator 100 using the filter medium 10 includes: (1) a process of cutting the filter medium 10 into an appropriate size; and (2) laminating the cut filter medium 10 and the mouth side nonwoven fabric 22.
  • a combination of a non-woven fabric made of normal fibers and a nano-fiber non-woven fabric makes it thin while maintaining high collection performance. And it becomes possible to manufacture the filter medium 10 which can achieve weight reduction.
  • the first nonwoven fabric 14 is formed by laminating nanofibers on one side of the first nonwoven fabric 12 that is a spunbond nonwoven fabric that is relatively less easily charged.
  • the method for producing a filter medium of the present invention can produce the filter medium 10 that is less likely to be deteriorated or damaged than the conventional method for producing a filter medium.
  • the filter filter medium manufacturing method according to the embodiment can achieve a reduction in thickness and weight while maintaining high collection performance, and is less susceptible to deterioration and breakage than conventional filter filter medium manufacturing methods.
  • 10 is a method for producing a filter medium capable of producing 10.
  • the manufacturing method of the filter medium which concerns on embodiment, lamination
  • manufacturing the filter medium 10 that can ensure high collection performance even if the filter medium is thinner than the filter medium manufactured by the conventional filter medium manufacturing method. Is possible.
  • the basis weight of the first nonwoven fabric 12 which is a spunbond nonwoven fabric is in the range of 10 g / m 2 to 50 g / m 2 , the basis weight is 10 g / m.
  • abnormality when forming the second nonwoven fabric 14 composed of nanofibers by 2 or more it is possible to secure a tensile strength sufficient to prevent, and a basis weight is 50 g / can be lighter filter medium 10 with a sufficiently large bonding force between the first nonwoven fabric 12 is sufficiently low insulation spunbonded nonwoven and the second nonwoven fabric 14 by at m 2 or less It becomes.
  • the average fiber diameter of the nanofibers is in the range of 100 nm to 400 nm, a practical production amount is ensured by setting the average fiber diameter to 100 nm or more.
  • the collection performance can be sufficiently increased and the pressure loss can be sufficiently decreased by setting the average fiber diameter to 400 nm or less.
  • for laminating to a basis weight of nanofiber is in the range of 0.05g / m 2 ⁇ 0.2g / m 2, the basis weight 0. It becomes possible to make collection performance sufficiently high by setting it as 05 g / m ⁇ 2 > or more, and it becomes possible to make pressure loss low enough by making a basis weight into 0.2 g / m ⁇ 2 > or less. .
  • the basis weight of the third nonwoven fabric 16 that is a melt blown nonwoven fabric is in the range of 5 g / m 2 to 30 g / m 2 , so the basis weight is 5 g / m 2.
  • the basis weight is 5 g / m 2.
  • the third nonwoven fabric 16 is an electret melt blown nonwoven fabric, it is possible to obtain high collection performance by electrostatic force.
  • the nanofibers are laminated using the multi-nozzle electrospinning apparatus 200 whose spinning direction is from bottom to top. And it becomes possible to laminate
  • the 3rd nonwoven fabric 16 uses a polypropylene as a raw material, attenuation
  • damping of the effect of electretization is suppressed and the collection performance of the filter material 10 deteriorates with time. It is possible to suppress this.
  • the second is made by nanofibers using at least one of thermoplastic polyurethane, polyvinylidene fluoride, polyamide, polyacrylonitrile, and polyvinyl alcohol as a raw material. Since the nonwoven fabric 14 is formed, the second nonwoven fabric 14 having a high collection performance can be stably formed.
  • the filter medium 10 it is possible to achieve a reduction in thickness and weight while maintaining high collection performance by combining a nonwoven fabric made of ordinary fibers and a nanofiber nonwoven fabric.
  • the second nonwoven fabric 14 is integrated on one side of the first nonwoven fabric 12 that is a spunbond nonwoven fabric that is relatively difficult to be charged by contact and entanglement of fibers constituting each nonwoven fabric. Therefore, it is possible to reduce the electrical repulsion generated between the first nonwoven fabric 12 and the nanofibers during production and to firmly integrate the second nonwoven fabric 14 and the first nonwoven fabric 12.
  • the filter medium 10 according to the embodiment is a filter medium that is less susceptible to deterioration and breakage than the filter medium manufactured by the conventional method for manufacturing a filter medium.
  • the filter medium 10 according to the embodiment can achieve a reduction in thickness and weight while maintaining high collection performance, and is more deteriorated or broken than a filter medium manufactured by a conventional filter medium manufacturing method. It becomes difficult filter media.
  • the filter medium 10 since the second nonwoven fabric 14 is integrated on one side of the first nonwoven fabric 12 that is a spunbond nonwoven fabric that is relatively difficult to be charged, it is possible to appropriately stack nanofibers at the time of manufacture. Therefore, it is possible to increase the collection performance per thickness as a high-quality nanofiber nonwoven fabric. As a result, according to the filter medium 10 according to the embodiment, it is possible to ensure high collection performance even when the filter medium is thinner than the conventional filter medium.
  • the respirator 100 according to the embodiment uses the filter medium including the filter medium 10 according to the embodiment, both the high collection performance and the load on the wearer are reduced, and the conventional filter medium is used as a filter.
  • the respirator is less susceptible to filter deterioration and breakage than the respirator used as a component.
  • the entire thickness of the filter 20 is in the range of 0.2 mm to 1.5 mm, so that sufficient strength of the filter 20 is ensured while sufficiently securing the strength of the filter 20. Thinning and weight reduction can be achieved.
  • the filter 20 since the filter 20 has a plane surface shape, it is possible to prevent a decrease in collection performance due to formation of embossing or the like.
  • FIG. 6 is a table showing experimental results according to examples and comparative examples.
  • Example 1 is a filter medium within the scope of the present invention.
  • the filter medium has the same configuration as the filter medium 10 according to the above embodiment, and was manufactured by the same method as the filter medium according to the above embodiment.
  • the first nonwoven fabric in Example 1 is a spunbonded nonwoven fabric having a basis weight of 30 g / m 2 and an average thickness of 0.15 mm made of polypropylene (PP).
  • the second nonwoven fabric in Example 1 is a nanofiber nonwoven fabric having a basis weight of 0.1 g / m 2 and an average thickness of 0.0003 mm (300 nm) made of thermoplastic polyurethane (TPU).
  • the third nonwoven fabric in Example 1 is a melt blown nonwoven fabric having a basis weight of 26 g / m 2 and a thickness of 0.19 mm made of polypropylene (PP).
  • Example 2 is a filter used in a respirator that is within the scope of the present invention.
  • the respirator and the filter have the same configuration as the respirator 100 and the filter 20 according to the above embodiment.
  • the filter in Example 2 is obtained by laminating the filter medium according to Example 1 and the thermal bond nonwoven fabric for the mouth.
  • the thermal bond nonwoven fabric a fabric made of polypropylene and polyethylene having a basis weight of 15 g / m 2 and an average thickness of 0.9 mm was used.
  • Comparative Examples 1 and 2 are respirators or mask filters that are actually commercially available.
  • the filter in Comparative Example 1 is a laminate of two melt blown nonwoven fabrics made of polypropylene (PP).
  • Comparative Example 1 is a filter used for a commercially available N95 mask (respirator).
  • the filter in Comparative Example 2 has a basis weight of 0.1 g / m 2 made of a thermoplastic polyurethane (TPU) on a spunbonded nonwoven fabric (weight per unit: 30 g / m 2, average thickness: 0.15 mm) made of polypropylene (PP).
  • TPU thermoplastic polyurethane
  • a laminate of the nanofiber nonwoven fabrics is layered so that the nanofiber nonwoven fabric is on the inside.
  • Comparative Example 2 is a filter used for a lightweight mask using nanofibers.
  • the filter media and the filter thickness were measured with a thickness gauge. Further, the basis weight was calculated by actually measuring the weight of the filter medium or filter cut out to have a predetermined area.
  • the experiments in the examples were performed according to the N95 standard for filter media and filters for each respirator.
  • the N95 standard is one of the standards established by the US National Institute of Occupational Safety and Health (NIOSH), where “N” indicates no oil resistance, and “95” captures 95% or more of test particles. Indicates that you can gather.
  • test particles having an aerodynamic mass diameter of about 0.3 ⁇ m, which is most difficult to collect with a filter must be used and have a collection performance capable of collecting 95% or more of the test particles.
  • the N95 standard is a standard relating to filter performance, and does not guarantee the performance when a respirator is used.
  • the collection performance was evaluated by the collection efficiency, and it was confirmed whether or not the collection efficiency was 95% or more at the initial stage and after exposure (when 200 mg of NaCl was deposited).
  • the collection efficiency was measured using TSI-8130 of TSI Inc., USA. The number of trials was 4, and the average value of the results obtained was treated as the final collection efficiency.
  • the initial value was confirmed.
  • the pressure loss was also measured using TSI-8130 of TSI Inc., USA.
  • the number of trials was 4, and the average value of the results obtained was treated as the final collection efficiency.
  • the experimental results are shown in FIG. As a result of the experiment, it was confirmed that the filter medium according to Example 1 exhibited excellent performance that satisfies the N95 standard more than enough in terms of collection performance and pressure loss.
  • the filter according to comparative example 1 has sufficient collection performance as a filter used for the N95 mask.
  • the filter according to Comparative Example 2 is thin and has a very small pressure loss, but it can be seen that the collection performance is insufficient when viewed on the basis of the N95 mask.
  • the filter according to Example 2 was confirmed to have the same value as the pressure loss while surpassing the collection performance.
  • the filter according to Example 2 has a thickness of about 2/3 as compared with the filter according to Comparative Example 1 and the collection performance is the same as that of Comparative Example 1 even though the pressure loss is small. It was confirmed that it was higher than the filter. Furthermore, the filter according to Example 2 is a filter using nanofibers as in the filter according to Comparative Example 2, but has a greater collection ability that can be predicted from the difference in thickness compared with the filter according to Comparative Example 2. It was confirmed that it has a collection capacity exceeding that.
  • a respirator (N95 mask) with a filter thickness of 1.2 mm and a product weight of 4.6 g could be produced while maintaining the above-described collection performance. It was. Since the thickness of a filter of a general respirator (which satisfies the N95 standard) is about 1.5 mm to 4 mm and the product weight is about 5 g to over 10 g, the respirator according to the present invention is a general respirator and In comparison, it was confirmed that the film was superior in terms of thickness and weight while having the same or superior performance. The thin thickness contributes to space saving, and is a great advantage especially when storing (storage) or transporting. In addition, the fact that the weight is light means that in addition to obtaining the effect of reducing the load on the user, it is also possible to transport more respirators within the limited weight limit during transportation. means.
  • the method for producing a filter medium described in the above embodiment is an exemplification, and may further include, for example, steps other than those described above.
  • the respirator 100 described in the above embodiment is an exemplification.
  • the respirator 100 may be folded differently, or may be a non-folding type that is formed into a cup shape.
  • the filter medium of the present invention may be used for applications other than a respirator (for example, a filter for a device that allows fluid to pass through).
  • the filter medium and respirator according to the present invention have high collection efficiency of liquids, harmful particles, viruses and the like, and have high air permeability and excellent usability. Therefore, hospitals, schools, stores, office buildings, factories, trains, buses It can be suitably used for various applications including aircraft.
  • SYMBOLS 10 ... Filter medium, 12 ... 1st nonwoven fabric, 14 ... 2nd nonwoven fabric, 16 ... 3rd nonwoven fabric, 18 ... Resin adhesive, 20 ... Filter, 22 ... Mouth side nonwoven fabric, 30 ... Binding tape, 40 ... Cover tape, 50 ... Nose clamp, 60 ... Rubber for mounting, 100 ... Respirator, 200 ... Multi-nozzle electrospinning device. 210, 320, 322 ... feeding roll, 212, 324 ... winding roll, 300 ... resin adhesive applicator, 310 ... heater

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

目付量が10g/m2~50g/m2の範囲内にあるスパンボンド不織布である第1不織布12の片面に、平均繊維径が100nm~400nmの範囲内にあるナノファイバーを目付量が0.05g/m2~0.2g/m2の範囲内となるように積層して第2不織布14を形成するナノファイバー積層工程と、目付量が5g/m2~30g/m2の範囲内にあるエレクトレット化されたメルトブロー不織布である第3不織布16を接着する接着工程とをこの順序で含み、合計厚さを0.05mm~0.4mmの範囲内とするフィルター濾材の製造方法。また、フィルター濾材10及び当該フィルター濾材10を用いたレスピレーター100。 本発明のフィルター濾材の製造方法によれば、高い捕集性能を維持したまま薄型化及び軽量化を達成でき、かつ、従来のフィルター濾材の製造方法よりも劣化や破損が生じにくいフィルター濾材10を製造することが可能となる。

Description

フィルター濾材の製造方法、フィルター濾材及びレスピレーター
 本発明は、フィルター濾材の製造方法、フィルター濾材及びレスピレーターに関する。
 繊維状の物質を用いたフィルターを備え、空気中や液体中に存在する粒子等を捕集(除去)する製品は、さまざまな用途に広く用いられている。
 フィルターを備える製品の中でも、レスピレーター(呼吸用保護具。防塵マスク、医療用マスク、感染予防マスク等として用いられる、密閉性が高いマスクの一種。)は、発塵のある作業現場、手術室、病棟、パンデミック(インフルエンザ等)対策の現場(例えば診察室)等、特にシビアな環境での使用が想定されている。このため、レスピレーターのフィルターには高い捕集性能が求められる。また、レスピレーターは用途の関係上長時間の使用や高頻度の使用が想定されるため、レスピレーターのフィルターには着用中の使用者の負荷を小さくすることも求められる。
 レスピレーターのフィルターとしては、マイクロメートルクラスかそれ以上の繊維径を有する繊維(以下、通常の繊維という。)からなる不織布(例えば、メルトブロー不織布)を用いたフィルターが一般的に用いられている。しかし、通常の繊維からなる不織布で一層高い捕集性能を実現しようとすると、必然的に厚いフィルターとなってしまう。
 フィルターが厚くなると断熱性(保温性)が高くなり、発汗等による疲労感や不快感が発生・増大する原因となる。また、フィルターが厚くなると吸音性も高くなることから、声が外部に伝わりにくくなってしまい、レスピレーターを着用した状態での意思疎通が困難となる場合がある。
 このため、通常の繊維からなる不織布を用いたフィルターを備えるレスピレーターには、高い捕集性能を得ようとすると着用者にかかる負荷が大きくなってしまうという問題があり、高い捕集性能を維持したままフィルターを薄型化及び軽量化することが強く求められている。
 高い捕集性能を維持したままで薄型化及び軽量化を達成するためには、フィルターを構成する繊維を微細化することが好ましい。そこで、ナノスケールの繊維径を有するナノファイバーを利用する技術が注目されている。
 しかし、ナノファイバーからなるナノファイバー不織布は、形成方法や繊維径の都合上、基本的に平面的に形成される。このため、ナノファイバーを厚く積層することは難しい。従って、ナノファイバー不織布のみで高い捕集性能を得ようとする場合には、ナノファイバーを高密度に形成し、緻密なナノファイバー不織布とすることになる。しかし、ナノファイバー不織布を過度に緻密化すると圧力損失の増大により呼吸がしにくくなり、ナノファイバー不織布を用いたフィルターを備えるレスピレーターとしても、かえって着用者の負荷が大きくなってしまう場合がある。
 上記の理由から、レスピレーターのフィルターとしては、通常の繊維からなる不織布とナノファイバー不織布とを組み合わせて用いることが好ましいと考えられる。
 従来、通常の繊維からなる不織布とナノファイバー不織布とを組み合わせたフィルター濾材の製造方法が知られている(例えば、特許文献1参照。)。
 従来のフィルター濾材の製造方法は、メルトブロー不織布の片面にナノファイバーを積層してナノファイバー不織布を形成する工程と、サーマルボンド不織布の片面にホットメルト用の樹脂を散布して当該樹脂を加熱溶融する工程と、加熱溶融した樹脂により各不織布を接着する工程とをこの順序で含む。
 従来のフィルター濾材の製造方法によれば、通常の繊維からなる不織布とナノファイバー不織布とを組み合わせることで、高い捕集性能を維持したまま薄型化及び軽量化を達成できるフィルター濾材を製造することが可能となる。
特許第6172924号公報
 しかしながら、本発明の発明者の鋭意研究の結果、従来のフィルター濾材の製造方法には、製造したフィルター濾材に劣化や破損が生じやすいという問題があることが判明した。
 本発明は上記した問題を解決するためになされたものであり、高い捕集性能を維持したまま薄型化及び軽量化を達成でき、かつ、従来のフィルター濾材の製造方法よりも劣化や破損が生じにくいフィルター濾材を製造可能なフィルター濾材の製造方法を提供することを目的とする。また、高い捕集性能を維持したまま薄型化及び軽量化を達成でき、かつ、従来のフィルター濾材の製造方法で製造したフィルター濾材よりも劣化や破損が生じにくいフィルター濾材を提供することも目的とする。さらに、高い捕集性能と着用者の負荷を小さくすることとを両立し、かつ、従来のフィルター濾材の製造方法により製造したフィルター濾材をフィルターとして用いたレスピレーターよりもフィルターの劣化や破損が生じにくいレスピレーターを提供することも目的とする。
[1]本発明のフィルター濾材の製造方法は、目付量が10g/m~50g/mの範囲内にあるスパンボンド不織布である第1不織布の片面に、平均繊維径が100nm~400nmの範囲内にあるナノファイバーを目付量が0.05g/m~0.2g/mの範囲内となるように積層して第2不織布を形成するナノファイバー積層工程と、前記第1不織布とは反対側の前記第2不織布の表面上に、目付量が5g/m~30g/mの範囲内にあるエレクトレット化されたメルトブロー不織布である第3不織布を接着する接着工程とをこの順序で含み、前記第1不織布、前記第2不織布及び前記第3不織布の合計厚さを0.05mm~0.4mmの範囲内とすることを特徴とする。
 本発明のフィルター濾材の製造方法によれば、従来のフィルター濾材の製造方法と同様に、通常の繊維からなる不織布とナノファイバー不織布とを組み合わせることで、高い捕集性能を維持したまま薄型化及び軽量化を達成できるフィルター濾材を製造することが可能となる。
 ところで、メルトブロー不織布はスパンボンド不織布やサーマルボンド不織布等と比較して帯電しやすい性質がある。このため、従来のフィルター濾材の製造方法のようにメルトブロー不織布の片面にナノファイバーを積層しようとすると、メルトブロー不織布が帯電してナノファイバーとの間で電気的な反発が発生し、ナノファイバーの積層がうまくいかなかったり、積層にむらが発生してしまったりすることがある。その結果、従来のフィルターの製造方法により製造したフィルター濾材は、劣化や破損(特に、メルトブロー不織布とナノファイバー不織布との剥離や当該剥離による強度低下に起因するもの)が生じやすくなってしまう。
 一方、本発明のフィルター濾材の製造方法によれば、比較的帯電しにくいスパンボンド不織布である第1不織布の片面にナノファイバーを積層して第2不織布を形成するため、第1不織布とナノファイバーとの間に生じる電気的な反発を小さくしてナノファイバーの積層を適切に行うことが可能となる。その結果、本発明のフィルター濾材の製造方法は、従来のフィルター濾材の製造方法により製造したフィルター濾材よりも劣化や破損が生じにくいフィルター濾材を製造することが可能となる。
 このため、本発明のフィルター濾材の製造方法は、高い捕集性能を維持したまま薄型化及び軽量化を達成でき、かつ、従来のフィルター濾材の製造方法よりも劣化や破損が生じにくいフィルター濾材を製造可能なフィルター濾材の製造方法となる。
 また、本発明のフィルター濾材の製造方法によれば、比較的帯電しにくいスパンボンド不織布である第1不織布の片面に第2不織布を形成することでナノファイバーの積層を適切に行うことが可能となるため、高品質なナノファイバー不織布を形成することで厚さあたりの捕集性能を高くすることが可能となる。その結果、本発明のフィルター濾材の製造方法によれば、従来のフィルター濾材の製造方法で製造したフィルター濾材よりも薄型としても高い捕集性能を確保することが可能なフィルター濾材を製造することが可能となる。
 また、本発明のフィルター濾材の製造方法によれば、スパンボンド不織布である第1不織布の目付量が10g/m~50g/mの範囲内にあるため、目付量が10g/m以上であることでナノファイバーからなる第2不織布を形成するときに異常(破れ、破損、伸び等)を防止するに足る引張強度を確保することが可能となり、かつ、目付量が50g/m以下であることでスパンボンド不織布の絶縁性を十分に低くして第1不織布と第2不織布との間の接合力を十分に大きくするとともにフィルター濾材を軽量化することが可能となる。
 また、本発明のフィルター濾材の製造方法によれば、ナノファイバーの平均繊維径が100nm~400nmの範囲内にあるため、平均繊維径を100nm以上とすることで実用的な生産量を確保することが可能となり、かつ、平均繊維径を400nm以下とすることで捕集性能を十分に高くすること及び圧力損失を十分に低くすることが可能となる。
 また、本発明のフィルター濾材の製造方法によれば、ナノファイバーを目付量が0.05g/m~0.2g/mの範囲内となるように積層するため、目付量を0.05g/m以上とすることで捕集性能を十分に高くすることが可能となり、かつ、目付量を0.2g/m以下とすることで圧力損失を十分に低くすることが可能となる。
 また、本発明のフィルター濾材の製造方法によれば、メルトブロー不織布である第3不織布の目付量が5g/m~30g/mの範囲内にあるため、目付量が5g/m以上であることで接着の際における扱いやすさ(積層、加熱、加圧、冷却等、接着工程実施時における挙動の安定性。いわゆるハンドリング性。)を確保することが可能となり、かつ、目付量が30g/m以下であることで厚さ方向に対する第3不織布の厚さを薄くしてフィルター濾材の薄型化を達成することが可能となる。
 また、本発明のフィルター濾材の製造方法によれば、第3不織布がエレクトレット化されたメルトブロー不織布であるため、静電気力により高い捕集性能を得ることが可能となる。
[2]本発明のフィルター濾材の製造方法においては、前記ナノファイバー積層工程では、紡糸方向が下から上であるマルチノズル式エレクトロスピニング装置を用いて前記ナノファイバーを積層することが好ましい。
 このような方法とすることにより、ナノファイバーを均一かつ効率的に積層することが可能となる。
[3]本発明のフィルター濾材の製造方法においては、前記接着工程では、樹脂接着剤を用いたホットメルトにより前記第3不織布を接着することが好ましい。
 このような方法とすることにより、エレクトレット化されたメルトブロー不織布である第3不織布を安定して接着することが可能となる。
[4]本発明のフィルター濾材の製造方法においては、前記第3不織布は、ポリプロピレンを原料とするものであることが好ましい。
 ポリプロピレンは、エレクトレット化に適した帯電しやすい原料である。このため、上記のような方法とすることにより、エレクトレット化の効果の減衰を抑制してフィルター濾材の捕集性能が経時劣化することを抑制することが可能となる。
[5]本発明のフィルター濾材の製造方法においては、前記ナノファイバー積層工程では、熱可塑性ポリウレタン、ポリフッ化ビニリデン、ポリアミド、ポリアクリロニトリル及びポリビニルアルコールのうち少なくとも1種類を原料とする前記ナノファイバーにより前記第2不織布を形成することが好ましい。
 このような方法とすることにより、捕集性能が高い第2不織布を安定して形成することが可能となる。
[6]本発明のフィルター濾材は、目付量が10g/m~50g/mの範囲内にあるスパンボンド不織布である第1不織布と、前記第1不織布の片面に配置され、平均繊維径が100nm~400nmの範囲内にあるナノファイバーからなり目付量が0.05g/m~0.2g/mの範囲内にあるナノファイバー不織布である第2不織布と、前記第2不織布の前記第1不織布とは反対の側に配置されており、目付量が5g/m~30g/mの範囲内にあるエレクトレット化されたメルトブロー不織布である第3不織布とを有し、前記第1不織布と前記第2不織布とは、それぞれの不織布を構成する繊維同士の接触及び絡みつきにより一体化され、厚さが0.05mm~0.4mmの範囲内にあることを特徴とする。
 本発明のフィルター濾材によれば、通常の繊維からなる不織布とナノファイバー不織布とを組み合わせることで、高い捕集性能を維持したまま薄型化及び軽量化を達成することが可能となる。
 また、本発明のフィルター濾材によれば、比較的帯電しにくいスパンボンド不織布である第1不織布の片面に第2不織布をそれぞれの不織布を構成する繊維同士の接触及び絡みつきにより一体化しているため、製造時における第1不織布とナノファイバーとの間に生じる電気的な反発を小さくして第2不織布と第1不織布とを強固に一体化することが可能となる。その結果、本発明のフィルター濾材は、従来のフィルター濾材の製造方法で製造したフィルター濾材よりも劣化や破損が生じにくいフィルター濾材となる。
 このため、本発明のフィルター濾材は、高い捕集性能を維持したまま薄型化及び軽量化を達成でき、かつ、従来のフィルター濾材の製造方法で製造したフィルター濾材よりも劣化や破損が生じにくいフィルター濾材となる。
 また、本発明のフィルター濾材によれば、比較的帯電しにくいスパンボンド不織布である第1不織布の片面に第2不織布が一体化しているため、製造時におけるナノファイバーの積層を適切に行うことが可能となり、高品質なナノファイバー不織布として厚さあたりの捕集性能を高くすることが可能となる。その結果、本発明のフィルター濾材によれば、従来のフィルター濾材よりも薄型のフィルター濾材としても、高い捕集性能を確保することが可能となる。
 上記[6]でフィルター濾材について記載した各数値範囲やエレクトレット化の効果は、上記[1]で記載した効果と同じであるため、ここでは記載を省略する。
[7]本発明のレスピレーターは、目付量が10g/m~50g/mの範囲内にあるスパンボンド不織布である第1不織布と、前記第1不織布の片面に配置され、平均繊維径が100nm~400nmの範囲内にあるナノファイバーからなり目付量が0.05g/m~0.2g/mの範囲内にあるナノファイバー不織布である第2不織布と、前記第2不織布の前記第1不織布とは反対の側に配置されており、目付量が5g/m~30g/mの範囲内にあるエレクトレット化されたメルトブロー不織布である第3不織布とを有し、前記第1不織布と前記第2不織布とは、それぞれの不織布を構成する繊維同士の接触及び絡みつきにより一体化され、厚さが0.05mm~0.4mmの範囲内にあるフィルター濾材を、フィルターの構成要素として備えることを特徴とする。
 本発明のレスピレーターは、本発明のフィルター濾材を構成要素として備えるフィルターを用いるため、高い捕集性能と着用者の負荷を小さくすることとを両立し、かつ、従来のフィルター濾材をフィルターの構成要素として用いたレスピレーターよりもフィルターの劣化や破損が生じにくいレスピレーターとなる。
 上記[7]でレスピレーターについて記載した各数値範囲やエレクトレット化の効果は、上記[1]で記載した効果と同じであるため、ここでは記載を省略する。
[8]本発明のレスピレーターにおいては、前記フィルターの全体の厚さは、0.2mm~1.5mmの範囲内にあることが好ましい。
 このような構成とすることにより、フィルターの強度を十分に確保しつつ、フィルターの十分な薄型化及び軽量化を達成することが可能となる。
[9]本発明のレスピレーターにおいては、前記フィルターは、面形状がプレーンであることが好ましい。
 このような構成とすることにより、エンボス等の形成に起因する捕集性能の低下を防ぐことが可能となる。
 なお、本明細書における「面形状がプレーンである」とは、レスピレーターの形状を構成する観点からは不可欠ではない立体形状(例えば、フィルターの表面積を大きくするための凹凸)を有しないことをいう。例えば、折り畳み式レスピレーターとするために、フィルターに折り目があったとしても、上記のような立体形状が存在しなければ、「面形状がプレーンである」という条件を満たす。
実施形態に係るフィルター濾材10の断面図である。 実施形態に係るフィルター濾材の製造方法におけるナノファイバー積層工程S1を説明するために示す図である。 実施形態に係るフィルター濾材の製造方法における接着工程S2を説明するために示す図である。 実施形態に係るレスピレーター100を説明するために示す図である。 実施形態に係るレスピレーター100を使用している様子を示す図である。 実施例及び比較例に係る実験結果を示す表である。
 以下、本発明のフィルター濾材の製造方法、フィルター濾材及びレスピレーターについて、図に示す実施形態に基づいて説明する。各図面は模式図であり、必ずしも実際の構造や構成を厳密に反映したものではない。以下に説明する実施形態は、請求の範囲に係る発明を限定するものではない。また、実施形態の中で説明されている諸要素及びその組み合わせの全てが本発明に必須であるとは限らない。
[実施形態]
1.フィルター濾材10
 まず、実施形態に係るフィルター濾材10について説明する。
 図1は、実施形態に係るフィルター濾材10の断面図である。
 実施形態に係るフィルター濾材10は、図1に示すように、第1不織布12と、第2不織布14と、第3不織布16とを有する。フィルター濾材10は、厚さが0.05mm~0.4mmの範囲内にある。
 本明細書において「フィルター濾材」とは、フィルターの構成要素として用いられるもののうち、フィルターの主要機能である濾過(捕集)機能を担うもののことをいう。フィルター濾材は、単独でフィルターとして用いてもよいし、他の構成要素(例えば、口元用の不織布、補強用の不織布、他のフィルター濾材等)と積層又は一体化させて用いてもよい。
 第1不織布12は、目付量が10g/m~50g/mの範囲内にあるスパンボンド不織布である。第1不織布12は、例えば、ポリプロピレン(PP)を原料とするものである。
 第2不織布14は、第1不織布12の片面に配置されている。第2不織布14は、平均繊維径が100nm~400nmの範囲内にあるナノファイバーからなる目付量が0.05g/m~0.2g/mの範囲内にあるナノファイバー不織布である。
 第2不織布14は、熱可塑性ポリウレタン(TPU)、ポリフッ化ビニリデン(PVDF)、ポリアミド(PA)、ポリアクリロニトリル(PAN)及びポリビニルアルコール(PVA)のうち少なくとも1種類を原料とするナノファイバーにより形成されている。
 第3不織布16は、第2不織布14の第1不織布12とは反対の側に配置されており、目付量が5g/m~30g/mの範囲内にあるエレクトレット化されたメルトブロー不織布である。第3不織布16は、ポリプロピレン(PP)を原料とするものである。
 なお、エレクトレット化されたメルトブロー不織布は、繊維自体で比較的大きな捕集対象を捕集でき、同時に静電気力の作用により比較的小さい捕集対象も捕集できるため、フィルター濾材の捕集性能を高くするのに適する構成要素である。
 第1不織布12と第2不織布14とは、それぞれの不織布を構成する繊維同士の接触及び絡みつきにより一体化されている。当該一体化は、第2不織布14をエレクトロスピニング法により形成することにより達成することができる(後述するフィルター濾材の製造方法のナノファイバー積層工程S1参照。)。
 また、第1不織布12及び第2不織布14と第3不織布16とは、樹脂接着剤により接着されている。当該接着のための方法としては、例えば、ホットメルトを用いることができる(後述するフィルター濾材の製造方法の接着工程S2参照。)
2.フィルター濾材の製造方法
 次に、実施形態に係るフィルター濾材の製造方法について説明する。
 実施形態に係るフィルター素材の製造方法は、ナノファイバー積層工程S1と接着工程S2とをこの順序で含む。以下、各工程について説明する。
2-1.ナノファイバー積層工程S1
 図2は、実施形態に係るフィルター濾材の製造方法におけるナノファイバー積層工程S1を説明するために示す図である。図2(a)はナノファイバー積層工程S1を実施する様子を示す模式図であり、図2(b)は図2(a)におけるA1の位置の様子を示す断面図であり、図2(c)は図2(a)におけるA2の位置の様子を示す断面図である。
 ナノファイバー積層工程S1は、図2に示すように、目付量が10g/m~50g/mの範囲内にあるスパンボンド不織布である第1不織布12(図2(b)参照。)の片面に、平均繊維径が100nm~400nmの範囲内にあるナノファイバーを目付量が0.05g/m~0.2g/mの範囲内となるように積層して第2不織布14を形成する(図2(c)参照。)工程である。
 ナノファイバー積層工程S1では、熱可塑性ポリウレタン(TPU)、ポリフッ化ビニリデン(PVDF)、ポリアミド(PA)、ポリアクリロニトリル(PAN)及びポリビニルアルコール(PVA)のうち少なくとも1種類を原料とするナノファイバーにより第2不織布14を形成する。
 ナノファイバー積層工程S1では、図2(a)に示すように、紡糸方向が下から上であるマルチノズル式エレクトロスピニング装置200を用いてナノファイバーを積層する。
 図2(a)において符号210で示すのは第1不織布12を繰り出す繰り出しロールであり、符号212で示すのは第1不織布12及び第2不織布14を巻き取る巻き取りロールである。本実施形態においては、繰り出しロール210から第1不織布12を繰り出しつつ巻き取りロール212で第1不織布12及び第2不織布14を巻き取ることで、第1不織布12の片面への第2不織布14の形成(ナノファイバーの積層)を連続的に行う。
 この場合、第2不織布14の目付量は、第1不織布12を移動させる速度の変更、ナノファイバー原料の噴射量の変更、印加電圧の増減等を行うことにより調整することができる。
 なお、第2不織布の形成は連続的でなくてもよい。例えば、所定の面積の第1不織布を準備して第2不織布の形成を行い、その後、別の所定の面積の第1不織布を準備して再び第2不織布の形成を行う、とするように、第2不織布の形成は断続的であってもよい。
2-2.接着工程S2
 図3は、実施形態に係るフィルター濾材の製造方法における接着工程S2を説明するために示す図である。図3(a)は接着工程S2を実施する様子を示す模式図であり、図3(b)は図3(a)におけるA3の位置の様子を示す断面図であり、図3(c)は図3(a)におけるA4の位置の様子を示す断面図であり、図3(d)は図3(a)におけるA5の位置の様子を示す断面図である。
 接着工程S2は、図3に示すように、第1不織布12とは反対側の第2不織布14の表面上に、目付量が5g/m~30g/mの範囲内にあるエレクトレット化されたメルトブロー不織布である第3不織布16を接着する工程である。第3不織布16は、上記したようにポリプロピレン(PP)を原料とするものである。なお、不織布のエレクトレット化については公知であるため、説明は省略する。
 接着工程S2では、樹脂接着剤を用いたホットメルトにより第3不織布16を接着する。ホットメルトは、例えば図3(a)に示すように、樹脂接着剤塗布機300により第2不織布14上に熱可塑性の樹脂接着剤18を散布又は塗布し(図3(b)参照。)、第3不織布16を樹脂接着剤18を介して第2不織布14上に重ね(図3(c)参照。)、加熱ヒーター310による加熱で樹脂接着剤18を溶融させて第1不織布12及び第2不織布14と第3不織布16とを接着する(図3(d)参照。)。
 なお、図3(a)~図3(c)においては、樹脂接着剤18を等間隔に配置された粒状の形状のものであるように表示しているが、これは便宜上のものである。樹脂接着剤は、第3不織布を適切に接着するという目的を達成することができる限り、任意の(適切な)形態(網状や線状といった形状や、固体、ペースト、ゲルといった状態)のものを用いることができ、任意の(適切な)分布・方法で散布、塗布、配置等を行うことができる。
 本実施形態においては、接着工程S2を実施することによりフィルター濾材10を製造する。
 図3(a)において符号320で示すのは第1不織布12及び第2不織布14を繰り出す繰り出しロールであり、符号322で示すのは第3不織布16を繰り出す繰り出しロールであり、符号324で示すのはフィルター濾材10を巻き取る巻き取りロールである。本実施形態においては、繰り出しロール320及び繰り出しロール322から各不織布を繰り出しつつ巻き取りロール324でフィルター濾材10を巻き取ることで各不織布を移動させ、フィルター濾材10を連続的に製造する。
 なお、上記した第2不織布の形成の場合と同じく、第3不織布の接着は連続的でなくても(断続的であっても)よい。
 本実施形態においては、第1不織布12、第2不織布14及び第3不織布16の合計厚さを0.05mm~0.4mmの範囲内とする。
3.レスピレーター100
 次に、実施形態に係るレスピレーター100について説明する。
 図4は、実施形態に係るレスピレーター100を説明するために示す図である。図4(a)は折り畳んだ状態のレスピレーター100の平面図であり、図4(b)は図4(a)のA-A断面図であり、図4(c)は図4(b)のA6で示す位置の様子を示す断面図である。なお、図4(b)においては、フィルター20が折り畳まれている様子をわかりやすくするために、レスピレーター100を完全に折り畳んだ状態ではなく、わずかに開いた状態として図示している。
 図5は、実施形態に係るレスピレーター100を使用している様子を示す図である。図5において符号Uで示すのは、レスピレーター100の使用者である。図5は、レスピレーター100に着目する場合には、レスピレーター100の使用時(展開時)の状態を示す斜視図ということもできる。
 実施形態に係るレスピレーター100は、図4に示すように、目付量が10g/m~50g/mの範囲内にあるスパンボンド不織布である第1不織布12と、第1不織布12の片面に配置され、平均繊維径が100nm~400nmの範囲内にあるナノファイバーからなり目付量が0.05g/m~0.2g/mの範囲内にあるナノファイバー不織布である第2不織布14と、第2不織布14の第1不織布12とは反対の側に配置されており、目付量が5g/m~30g/mの範囲内にあるエレクトレット化されたメルトブロー不織布である第3不織布16とを有し、第1不織布12と第2不織布14とは、それぞれの不織布を構成する繊維同士の接触及び絡みつきにより一体化され、厚さが0.05mm~0.4mmの範囲内にあるフィルター濾材10を、フィルター20の構成要素として備える。
 つまり、レスピレーター100は、実施形態に係るフィルター濾材10をフィルター20の構成要素(実施形態においては、フィルター20の一部)として備える。
 レスピレーター100は、折り畳み式である。レスピレーター100の形状自体は公知のものであるため詳しい説明は省略するが、レスピレーター100は、図4(a)に示すように、平面視したときにおおよそ台形になるように折り畳んでおくことができる。レスピレーター100を使用するときには、口元側の端部を上下に開き(図4(b)参照。)、折りたたまれているフィルター20を広げる(図5参照。)。
 折り畳み式のレスピレーターには、省スペースであり、収納や運搬が容易であるという特徴がある。本発明のフィルター濾材は軽量化及び薄型化が可能なものであるため、折り畳み式のレスピレーター用に用いるフィルター濾材として特に好適に用いることができる。
 フィルター20は、図4(c)に示すように、フィルター濾材10とサーマルボンド不織布からなる口元側不織布22とからなる。フィルター20においては、フィルター濾材10と口元側不織布22とはそれぞれの端部で接合されている。つまり、フィルター濾材10と口元側不織布22とは、全面において接合(接着)されているものではない。
 フィルター20の全体の厚さは、0.2mm~1.5mmの範囲内にある。
 また、フィルター20は面形状がプレーンであり、エンボス等が存在しない。
 なお、レスピレーター100は、フィルター20の他に、熱圧着によりフィルター20の端部を固定するバインディングテープ30、使用者Uの皮膚に触れる側の端部を覆うカバーテープ40、使用者Uの鼻の部分とレスピレーター100の端部との間の密閉性を確保するためのノーズクランプ50及びレスピレーター100を使用者Uに固定するための装着用ゴム60を備える。これらの構成要素は、レスピレーターの構成要素として公知のものであるため、説明を省略する。
 レスピレーター100は、実施形態に係るフィルター濾材10を備えるフィルター20を用いること以外については、公知の(一般的な)製造方法により製造することができる。フィルター濾材10を用いてレスピレーター100を製造する方法としては、(1)フィルター濾材10を適切な大きさに裁断する工程と、(2)裁断したフィルター濾材10と口元側不織布22とを積層してフィルター20とする工程と、(3)フィルター20をレスピレーター100に対応する形状に折り畳む工程と、(4)ノーズクランプ50及び装着用ゴム60をフィルター20の適切な位置に配置する工程と、(5)バインディングテープ30及びカバーテープ40を熱圧着することでフィルター20、ノーズクランプ50及び装着用ゴム60を一体化する工程と、(6)フィルター20を裁断して単独のレスピレーター100とする工程とをこの順序で含む方法を例示することができる。
4.実施形態に係るフィルター濾材の製造方法、フィルター濾材10及びレスピレーター100の効果
 実施形態に係るフィルター濾材の製造方法によれば、従来のフィルター濾材の製造方法と同様に、通常の繊維からなる不織布とナノファイバー不織布とを組み合わせることで、高い捕集性能を維持したまま薄型化及び軽量化を達成できるフィルター濾材10を製造することが可能となる。
 また、実施形態に係るフィルター濾材の製造方法によれば、比較的帯電しにくいスパンボンド不織布である第1不織布12の片面にナノファイバーを積層して第2不織布14を形成するため、第1不織布12とナノファイバーとの間に生じる電気的な反発を小さくしてナノファイバーの積層を適切に行うことが可能となる。その結果、本発明のフィルター濾材の製造方法は、従来のフィルター濾材の製造方法よりも劣化や破損が生じにくいフィルター濾材10を製造することが可能となる。
 このため、実施形態に係るフィルター濾材の製造方法は、高い捕集性能を維持したまま薄型化及び軽量化を達成でき、かつ、従来のフィルター濾材の製造方法よりも劣化や破損が生じにくいフィルター濾材10を製造可能なフィルター濾材の製造方法となる。
 また、実施形態に係るフィルター濾材の製造方法によれば、比較的帯電しにくいスパンボンド不織布である第1不織布12の片面に第2不織布14を形成することでナノファイバーの積層を適切に行うことが可能となるため、高品質なナノファイバー不織布を形成することで厚さあたりの捕集性能を高くすることが可能となる。その結果、実施形態に係るフィルター濾材の製造方法によれば、従来のフィルター濾材の製造方法で製造したフィルター濾材より薄型としても高い捕集性能を確保することが可能なフィルター濾材10を製造することが可能となる。
 また、実施形態に係るフィルター濾材の製造方法によれば、スパンボンド不織布である第1不織布12の目付量が10g/m~50g/mの範囲内にあるため、目付量が10g/m以上であることでナノファイバーからなる第2不織布14を形成するときに異常(破れ、破損、伸び等)を防止するに足る引張強度を確保することが可能となり、かつ、目付量が50g/m以下であることでスパンボンド不織布の絶縁性を十分に低くして第1不織布12と第2不織布14との間の接合力を十分に大きくするとともにフィルター濾材10を軽量化することが可能となる。
 また、実施形態に係るフィルター濾材の製造方法によれば、ナノファイバーの平均繊維径が100nm~400nmの範囲内にあるため、平均繊維径を100nm以上とすることで実用的な生産量を確保することが可能となり、かつ、平均繊維径を400nm以下とすることで捕集性能を十分に高くすること及び圧力損失を十分に低くすることが可能となる。
 また、実施形態に係るフィルター濾材の製造方法によれば、ナノファイバーを目付量が0.05g/m~0.2g/mの範囲内となるように積層するため、目付量を0.05g/m以上とすることで捕集性能を十分に高くすることが可能となり、かつ、目付量を0.2g/m以下とすることで圧力損失を十分に低くすることが可能となる。
 また、実施形態に係るフィルター濾材の製造方法によれば、メルトブロー不織布である第3不織布16の目付量が5g/m~30g/mの範囲内にあるため、目付量が5g/m以上であることで接着の際における扱いやすさ(積層、加熱、加圧、冷却等、接着工程実施時における挙動の安定性。いわゆるハンドリング性。)を確保することが可能となり、かつ、目付量が30g/m以下であることで厚さ方向に対する第3不織布16の厚さを薄くしてフィルター濾材10の薄型化を達成することが可能となる。
 また、実施形態に係るフィルター濾材の製造方法によれば、第3不織布16がエレクトレット化されたメルトブロー不織布であるため、静電気力により高い捕集性能を得ることが可能となる。
 また、実施形態に係るフィルター濾材の製造方法においては、ナノファイバー積層工程S1では、紡糸方向が下から上であるマルチノズル式エレクトロスピニング装置200を用いてナノファイバーを積層するため、ナノファイバーを均一かつ効率的に積層することが可能となる。
 また、実施形態に係るフィルター濾材の製造方法においては、接着工程S2では、樹脂接着剤18を用いたホットメルトにより第3不織布16を接着するため、エレクトレット化されたメルトブロー不織布である第3不織布16を安定して接着することが可能となる。
 また、実施形態に係るフィルター濾材の製造方法においては、第3不織布16は、ポリプロピレンを原料とするものであるため、エレクトレット化の効果の減衰を抑制してフィルター濾材10の捕集性能が経時劣化することを抑制することが可能となる。
 また、実施形態に係るフィルター濾材の製造方法においては、ナノファイバー積層工程S1では、熱可塑性ポリウレタン、ポリフッ化ビニリデン、ポリアミド、ポリアクリロニトリル及びポリビニルアルコールのうち少なくとも1種類を原料とするナノファイバーにより第2不織布14を形成するため、捕集性能が高い第2不織布14を安定して形成することが可能となる。
 実施形態に係るフィルター濾材10によれば、通常の繊維からなる不織布とナノファイバー不織布とを組み合わせることで、高い捕集性能を維持したまま薄型化及び軽量化を達成することが可能となる。
 また、実施形態に係るフィルター濾材10によれば、比較的帯電しにくいスパンボンド不織布である第1不織布12の片面に第2不織布14をそれぞれの不織布を構成する繊維同士の接触及び絡みつきにより一体化しているため、製造時における第1不織布12とナノファイバーとの間に生じる電気的な反発を小さくして第2不織布14と第1不織布12とを強固に一体化することが可能となる。その結果、実施形態に係るフィルター濾材10は、従来のフィルター濾材の製造方法で製造したフィルター濾材よりも劣化や破損が生じにくいフィルター濾材となる。
 このため、実施形態に係るフィルター濾材10は、高い捕集性能を維持したまま薄型化及び軽量化を達成でき、かつ、従来のフィルター濾材の製造方法で製造したフィルター濾材よりも劣化や破損が生じにくいフィルター濾材となる。
 また、実施形態に係るフィルター濾材10によれば、比較的帯電しにくいスパンボンド不織布である第1不織布12の片面に第2不織布14が一体化しているため、製造時におけるナノファイバーの積層を適切に行うことが可能となり、高品質なナノファイバー不織布として厚さあたりの捕集性能を高くすることが可能となる。その結果、実施形態に係るフィルター濾材10によれば、従来のフィルター濾材よりも薄型のフィルター濾材としても、高い捕集性能を確保することが可能となる。
 実施形態に係るレスピレーター100は、実施形態に係るフィルター濾材10を備えるフィルター濾材を用いるため、高い捕集性能と着用者の負荷を小さくすることとを両立し、かつ、従来のフィルター濾材をフィルターの構成要素として用いたレスピレーターよりもフィルターの劣化や破損が生じにくいレスピレーターとなる。
 また、実施形態に係るレスピレーター100においては、フィルター20の全体の厚さは、0.2mm~1.5mmの範囲内にあるため、フィルター20の強度を十分に確保しつつ、フィルター20の十分な薄型化及び軽量化を達成することが可能となる。
 また、実施形態に係るレスピレーター100においては、フィルター20は、面形状がプレーンであるため、エンボス等の形成に起因する捕集性能の低下を防ぐことが可能となる。
[実施例]
 以下、本発明のフィルター濾材及びレスピレーター(フィルター)の効果を、実際に行った実験に基づいて説明する。
 図6は、実施例及び比較例に係る実験結果を示す表である。
 実施例においては、本発明の範囲内にあるフィルター濾材及び本発明の範囲内にあるレスピレーターに用いるフィルターを実際に製造し、市販のレスピレーターやマスクのフィルターとの比較を行った。
 以下、実験に用いた実施例1,2及び比較例1,2について説明する。
 実施例1は、本発明の範囲内にあるフィルター濾材である。当該フィルター濾材は、上記実施形態に係るフィルター濾材10と同様の構成を有し、上記実施形態に係るフィルター濾材の製造方法と同様の方法にて製造した。
 実施例1における第1不織布は、ポリプロピレン(PP)からなる目付量が30g/m、平均厚さ0.15mmのスパンボンド不織布である。
 実施例1における第2不織布は、熱可塑性ポリウレタン(TPU)からなる目付量が0.1g/m、平均厚さ0.0003mm(300nm)のナノファイバー不織布である。
 実施例1における第3不織布は、ポリプロピレン(PP)からなる目付量が26g/m、厚さが0.19mmのメルトブロー不織布である。
 実施例2は、本発明の範囲内にあるレスピレーターに用いるフィルターである。当該レスピレーター及びフィルターは、上記実施形態に係るレスピレーター100及びフィルター20と同様の構成を有する。
 実施例2におけるフィルターは、上記した実施例1に係るフィルター濾材と口元用のサーマルボンド不織布とを積層したものである。
 サーマルボンド不織布としては、ポリプロピレン及びポリエチレンからなる、目付量が15g/m、平均厚さ0.9mmのものを用いた。
 比較例1,2は、実際に市販されているレスピレーター又はマスクのフィルターである。
 比較例1におけるフィルターは、ポリプロピレン(PP)からなるメルトブロー不織布を2枚重ねたものである。比較例1は、市販のN95マスク(レスピレーター)に用いられているフィルターである。
 比較例2におけるフィルターは、ポリプロピレン(PP)からなるスパンボンド不織布(目付量:30g/m2、平均厚さ:0.15mm)に熱可塑性ポリウレタン(TPU)からなる目付量が0.1g/mのナノファイバー不織布を積層したものを、ナノファイバー不織布が内側になるように2枚重ねにしたものである。比較例2は、ナノファイバーを用いた軽量型のマスクに用いられているフィルターである。
 なお、フィルター濾材及びフィルターの厚さは、シックネスゲージにより測定した。
 また、目付量は、所定の面積となるように切り出したフィルター濾材又はフィルターの重量を実際に測定することにより算出した。
 実施例における実験は、フィルター濾材及び各レスピレーターのフィルターを対象にN95規格に従って行った。
 N95規格とは、米国NIOSH(National Institute of Occupational Safety and Health)が定めた基準の中の1つで、「N」は耐油性が無いことを表し、「95」は試験粒子を95%以上捕集できることを表す。当該規格を満たすためには、フィルターで最も捕集しづらい空力学的質量径がおおよそ0.3μmの試験粒子を用い、当該試験粒子を95%以上捕集できる捕集性能を有しなければならない。なお、N95規格はフィルター性能に関する規格であり、レスピレーターとした際の性能を保証するものではない。
 実験例における実験においては、試験粒子としてNaCl(平均粒子径0.075μm±0.02μm)を用い、気体流量を85L±2L/minとし、前処理条件を38℃/湿度85%/24h±1hとした。
 捕集性能については、捕集効率により評価し、初期及び暴露後(NaClが200mg堆積したとき)に95%以上の捕集効率を有するか否かを確認した。
 捕集効率は、米国のTSI Inc.のTSI-8130を用いて測定した。試行回数は4回とし、得られた結果の平均値を最終的な捕集効率として扱った。
 圧力損失については、初期における値を確認した。
 圧力損失についても、米国のTSI Inc.のTSI-8130を用いて測定した。試行回数は4回とし、得られた結果の平均値を最終的な捕集効率として扱った。
 実験結果を図6に示す。
 実験の結果、実施例1に係るフィルター濾材は、捕集性能及び圧力損失において、N95規格を十分以上に満たす優れた性能を発揮することが確認できた。
 次に、比較例について見てみると、比較例1に係るフィルターは、N95マスクに用いるフィルターとして十分な捕集性能を有することがわかる。また、比較例2に係るフィルターは、薄くかつ圧力損失が極めて小さいが、N95マスクの基準で見たときには、捕集性能は不十分であることがわかる。
 一方、実施例2に係るフィルターについては、実施例1に係るフィルター濾材と比較すると、捕集性能で上回りつつ、圧力損失は同様の値となっていることが確認できた。
 また、実施例2に係るフィルターは、比較例1に係るフィルターと比較して厚さが2/3程度であり、圧力損失も小さくなっているにもかかわらず、捕集性能は比較例1に係るフィルターよりも高いことが確認できた。
 さらに、実施例2に係るフィルターは、比較例2に係るフィルターと同様にナノファイバーを用いるフィルターであるが、比較例2に係るフィルターと比較して、厚みの差から予想できる捕集能力を大きく超える捕集能力を有することが確認できた。
 なお、上記フィルターを用いて実際にレスピレーターを作成したところ、上記の捕集性能を保ちつつ、フィルターの厚みが1.2mm、製品重量が4.6gのレスピレーター(N95マスク)を製造することができた。一般的なレスピレーター(N95規格を満たすもの)のフィルターの厚みは1.5mm~4mm程度であり、製品重量が5g~10g超程度であることから、本発明に係るレスピレーターは、一般的なレスピレーターと比較して、同程度又は優れた性能を有しつつ、厚さ及び重量の観点から優れていることも確認できた。厚さが薄いことは省スペース化に寄与し、特に収納(保管)や運搬を行う際における大きなアドバンテージとなる。また、重量が軽いということは、使用者への負荷を小さくする効果が得られる他に、輸送時において、限られた重量制限の中でより多くのレスピレーターを輸送することが可能であることも意味する。
 以上、本発明を上記の実施形態に基づいて説明したが、本発明は上記の実施形態に限定されるものではない。その趣旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば、次のような変形も可能である。
(1)上記実施形態において記載した構成要素の形状、数、位置等は例示であり、本発明の効果を損なわない範囲において変更することが可能である。
(2)上記実施形態において説明したフィルター濾材の製造方法は例示であり、例えば、上記した以外の工程をさらに含んでいてもよい。
(3)上記実施形態において説明したレスピレーター100は例示であり、例えば、折り畳みかたが異なっていてもよいし、カップ型に成形されているような非折り畳み式のものであってもよい。
(4)本発明のフィルター濾材は、レスピレーター以外の用途(例えば、流体を通過させる機器のためのフィルター)に用いてもよい。
 本発明に係るフィルター濾材及びレスピレーターは、液体、有害粒子、ウイルス等の捕集効率が高く、かつ、通気度が高く使用感に優れるため、病院、学校、店舗、オフィスビル、工場、列車、バス、航空機をはじめ種々の用途に好適に使用できる。
10…フィルター濾材、12…第1不織布、14…第2不織布、16…第3不織布、18…樹脂接着剤、20…フィルター、22…口元側不織布、30…バインディングテープ、40…カバーテープ、50…ノーズクランプ、60…装着用ゴム、100…レスピレーター、200…マルチノズル式エレクトロスピニング装置。210,320,322…繰り出しロール、212,324…巻き取りロール、300…樹脂接着剤塗布機、310…加熱ヒーター

Claims (9)

  1.  目付量が10g/m~50g/mの範囲内にあるスパンボンド不織布である第1不織布の片面に、平均繊維径が100nm~400nmの範囲内にあるナノファイバーを目付量が0.05g/m~0.2g/mの範囲内となるように積層して第2不織布を形成するナノファイバー積層工程と、
     前記第1不織布とは反対側の前記第2不織布の表面上に、目付量が5g/m~30g/mの範囲内にあるエレクトレット化されたメルトブロー不織布である第3不織布を接着する接着工程とをこの順序で含み、
     前記第1不織布、前記第2不織布及び前記第3不織布の合計厚さを0.05mm~0.4mmの範囲内とすることを特徴とするフィルター濾材の製造方法。
  2.  前記ナノファイバー積層工程では、紡糸方向が下から上であるマルチノズル式エレクトロスピニング装置を用いて前記ナノファイバーを積層することを特徴とする請求項1に記載のフィルター濾材の製造方法。
  3.  前記接着工程では、樹脂接着剤を用いたホットメルトにより前記第3不織布を接着することを特徴とする請求項1又は2に記載のフィルター濾材の製造方法。
  4.  前記第3不織布は、ポリプロピレンを原料とするものであることを特徴とする請求項1~3のいずれかに記載のフィルター濾材の製造方法。
  5.  前記ナノファイバー積層工程では、熱可塑性ポリウレタン、ポリフッ化ビニリデン、ポリアミド、ポリアクリロニトリル及びポリビニルアルコールのうち少なくとも1種類を原料とする前記ナノファイバーにより前記第2不織布を形成することを特徴とする請求項1~4のいずれかに記載のフィルター濾材の製造方法。
  6.  目付量が10g/m~50g/mの範囲内にあるスパンボンド不織布である第1不織布と、
     前記第1不織布の片面に配置され、平均繊維径が100nm~400nmの範囲内にあるナノファイバーからなり目付量が0.05g/m~0.2g/mの範囲内にあるナノファイバー不織布である第2不織布と、
     前記第2不織布の前記第1不織布とは反対の側に配置されており、目付量が5g/m~30g/mの範囲内にあるエレクトレット化されたメルトブロー不織布である第3不織布とを有し、
     前記第1不織布と前記第2不織布とは、それぞれの不織布を構成する繊維同士の接触及び絡みつきにより一体化され、
     厚さが0.05mm~0.4mmの範囲内にあることを特徴とするフィルター濾材。
  7.  目付量が10g/m~50g/mの範囲内にあるスパンボンド不織布である第1不織布と、前記第1不織布の片面に配置され、平均繊維径が100nm~400nmの範囲内にあるナノファイバーからなり目付量が0.05g/m~0.2g/mの範囲内にあるナノファイバー不織布である第2不織布と、前記第2不織布の前記第1不織布とは反対の側に配置されており、目付量が5g/m~30g/mの範囲内にあるエレクトレット化されたメルトブロー不織布である第3不織布とを有し、前記第1不織布と前記第2不織布とは、それぞれの不織布を構成する繊維同士の接触及び絡みつきにより一体化され、厚さが0.05mm~0.4mmの範囲内にあるフィルター濾材を、フィルターの構成要素として備えることを特徴とするレスピレーター。
  8.  前記フィルターの全体の厚さは、0.2mm~1.5mmの範囲内にあることを特徴とする請求項7に記載のレスピレーター。
  9.  前記フィルターは、面形状がプレーンであることを特徴とする請求項7又は8に記載のレスピレーター。
PCT/JP2018/004243 2018-02-07 2018-02-07 フィルター濾材の製造方法、フィルター濾材及びレスピレーター WO2019155558A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/004243 WO2019155558A1 (ja) 2018-02-07 2018-02-07 フィルター濾材の製造方法、フィルター濾材及びレスピレーター
JP2019571140A JP7152034B2 (ja) 2018-02-07 2019-02-07 フィルター濾材及びレスピレーター
PCT/JP2019/004393 WO2019156157A1 (ja) 2018-02-07 2019-02-07 フィルター濾材の製造方法、フィルター濾材及びレスピレーター

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/004243 WO2019155558A1 (ja) 2018-02-07 2018-02-07 フィルター濾材の製造方法、フィルター濾材及びレスピレーター

Publications (1)

Publication Number Publication Date
WO2019155558A1 true WO2019155558A1 (ja) 2019-08-15

Family

ID=67548269

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/004243 WO2019155558A1 (ja) 2018-02-07 2018-02-07 フィルター濾材の製造方法、フィルター濾材及びレスピレーター
PCT/JP2019/004393 WO2019156157A1 (ja) 2018-02-07 2019-02-07 フィルター濾材の製造方法、フィルター濾材及びレスピレーター

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004393 WO2019156157A1 (ja) 2018-02-07 2019-02-07 フィルター濾材の製造方法、フィルター濾材及びレスピレーター

Country Status (2)

Country Link
JP (1) JP7152034B2 (ja)
WO (2) WO2019155558A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7473957B2 (ja) 2020-06-18 2024-04-24 フレックスジャパン株式会社 マスク

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7445636B2 (ja) * 2021-11-26 2024-03-07 株式会社ファーストリテイリング マスク

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544468A (ja) * 2006-07-21 2009-12-17 スリーエム イノベイティブ プロパティズ カンパニー 高性能hvacフィルタ
JP2012223674A (ja) * 2011-04-15 2012-11-15 Shinshu Univ フィルター及びフィルターの製造方法
JP2013022569A (ja) * 2011-07-25 2013-02-04 Shinshu Univ バグフィルター用濾材
JP2014226184A (ja) * 2013-05-20 2014-12-08 タカラ化成工業株式会社 マスクの折畳み構造、及びその保管構造、並びにマスク保管ケース
JP2017031515A (ja) * 2015-07-30 2017-02-09 パナソニックIpマネジメント株式会社 積層不織布および空気清浄機
JP2017031530A (ja) * 2015-07-31 2017-02-09 パナソニックIpマネジメント株式会社 積層不織布および空気清浄機
JP6172924B2 (ja) * 2012-12-11 2017-08-02 倉敷繊維加工株式会社 エアフィルター又はマスク用不織布基材の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3101212U (ja) * 2003-10-24 2004-06-10 株式会社ダイセン マスク
JP2014223227A (ja) * 2013-05-17 2014-12-04 株式会社白鳩 プリーツ型衛生マスク
JP6624588B2 (ja) * 2015-11-30 2019-12-25 パナソニックIpマネジメント株式会社 積層不織布およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544468A (ja) * 2006-07-21 2009-12-17 スリーエム イノベイティブ プロパティズ カンパニー 高性能hvacフィルタ
JP2012223674A (ja) * 2011-04-15 2012-11-15 Shinshu Univ フィルター及びフィルターの製造方法
JP2013022569A (ja) * 2011-07-25 2013-02-04 Shinshu Univ バグフィルター用濾材
JP6172924B2 (ja) * 2012-12-11 2017-08-02 倉敷繊維加工株式会社 エアフィルター又はマスク用不織布基材の製造方法
JP2014226184A (ja) * 2013-05-20 2014-12-08 タカラ化成工業株式会社 マスクの折畳み構造、及びその保管構造、並びにマスク保管ケース
JP2017031515A (ja) * 2015-07-30 2017-02-09 パナソニックIpマネジメント株式会社 積層不織布および空気清浄機
JP2017031530A (ja) * 2015-07-31 2017-02-09 パナソニックIpマネジメント株式会社 積層不織布および空気清浄機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7473957B2 (ja) 2020-06-18 2024-04-24 フレックスジャパン株式会社 マスク

Also Published As

Publication number Publication date
JP7152034B2 (ja) 2022-10-12
JPWO2019156157A1 (ja) 2021-03-04
WO2019156157A1 (ja) 2019-08-15

Similar Documents

Publication Publication Date Title
KR102069880B1 (ko) 나노섬유 필터가 가공된 마스크
JP6593170B2 (ja) 極細繊維を含む繊維積層体およびそれからなるフィルター
JP5175789B2 (ja) 衛生マスク用複合不織布及びその製造方法
JP4880934B2 (ja) 積層体及び濾過材
JP6172924B2 (ja) エアフィルター又はマスク用不織布基材の製造方法
WO2014024805A1 (ja) マスク
JP5784458B2 (ja) エアフィルタ濾材
JP2007021025A (ja) マスク
JP5918641B2 (ja) プリーツ型エアフィルタ用濾材及びプリーツ型エアフィルタユニット
WO2019155558A1 (ja) フィルター濾材の製造方法、フィルター濾材及びレスピレーター
KR20190064753A (ko) 마스크
JP2002018216A (ja) フィルタ
JP2007098370A (ja) 複層フィルター
JP5888812B2 (ja) 積層不織布
JP2009136736A (ja) エレクトレット濾材およびフィルタユニット
US20220219105A1 (en) Nanofiber filter material and resperatory system and air filtering article
JP2019155244A (ja) 積層帯電濾材
KR20230010200A (ko) 여과 매체
EP4223170A1 (en) Mask sheet, method for manufacturing same, and mask comprising same
CN115697500A (zh) 呼吸防护罩
JP3190510U (ja) 複合シート
CN216533928U (zh) 口罩用片、卷绕体和口罩
GB2593883A (en) Face mask
KR102605007B1 (ko) 위생 마스크용 시트
JP2022088699A (ja) マスク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP