WO2019154657A1 - Procédé d'identification et d'utilisation de produits récupérés dans un cycle de mélange - Google Patents

Procédé d'identification et d'utilisation de produits récupérés dans un cycle de mélange Download PDF

Info

Publication number
WO2019154657A1
WO2019154657A1 PCT/EP2019/051980 EP2019051980W WO2019154657A1 WO 2019154657 A1 WO2019154657 A1 WO 2019154657A1 EP 2019051980 W EP2019051980 W EP 2019051980W WO 2019154657 A1 WO2019154657 A1 WO 2019154657A1
Authority
WO
WIPO (PCT)
Prior art keywords
containers
subsystem
pallet
products
container
Prior art date
Application number
PCT/EP2019/051980
Other languages
English (en)
Inventor
Zack WILSON
Cédric BONNET
Michael DEWITT
Anthony DRAKE
James RICCIARDI
Original Assignee
Compagnie Generale Des Etablissements Michelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin filed Critical Compagnie Generale Des Etablissements Michelin
Priority to CN201980010874.6A priority Critical patent/CN111670447B/zh
Priority to MX2020008102A priority patent/MX2020008102A/es
Priority to EP19702385.6A priority patent/EP3750117A1/fr
Publication of WO2019154657A1 publication Critical patent/WO2019154657A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/30Administration of product recycling or disposal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation

Definitions

  • the invention relates in general to the production of rubber mixtures and of vehicle tyres produced therefrom. More particularly, the invention relates to the identification, management and reincorporation of recovered products as starter products used in a mixing process.
  • the complex products that are not used“as is”, but that can be recovered for reuse after treatment are usually stored without any special consideration (for example, on pallets with dividers).
  • “recovered products” or“validated products”
  • complex products of various natures and various origins may find themselves on the same pallet.
  • the invention relates to the storage and reincorporation of the recovered products by using a single recovered-product identification.
  • numerous types of rubber mixtures are envisaged in the tyre production processes, there are opportunities for recovering unused complex products for reuse downstream.
  • the invention relates to a method of identifying and using recovered products according to a production plan of a rubber mixing method using the identified recovered products.
  • the method includes the following steps:
  • a container subsystem having a storage means with which the containers filled with complex products are identified and stored as containers filled with recovered products
  • the method also includes the step of storing the constructed pallets in a pallet subsystem having a storage means with which the constructed are identified and stored as pallets that satisfy at least one generated production plan. In certain embodiments, the method also includes at least one of the following steps, each step being carried out before the step of ordering
  • the step of ordering construction of at least one pallet includes the step of ordering the containers having the longest duration of storage time in the container subsystem.
  • the method further includes the step of
  • the step of generating at least one production plan includes a step of forecasting the time needed between the step of identifying the containers filled with the recovered products in the container subsystem, and the step of automatically retrieving the identified containers.
  • the method also includes the step of logging the arrival date of each container in the container subsystem in order to obtain the time for which each container has been stored in the container subsystem, and the step of logging the arrival date of each pallet in the pallet subsystem in order to obtain the time for which each pallet has been stored in the pallet subsystem.
  • the method further includes the following steps: -identifying the pallets that satisfy the ongoing production plan; and -automatically retrieving the identified pallets in order to deliver the identified pallets to a system downstream of the pallet subsystem.
  • the system downstream of the pallet subsystem includes at least one mixer.
  • the method further includes the step of executing at least one planning activity that is necessary to satisfy at least one generated production plan.
  • the step of executing at least one planning activity includes at least one of the following steps:
  • the containers and the pallets identified and retrieved are logged in order to update the level of storage of the containers in the container subsystem and the level of storage of the pallets in the pallet subsystem.
  • the method also includes the step of emptying the containers filled with the recovered products and the step of emptying the constructed pallets.
  • the method further includes at least one of the following steps:
  • the step of identifying the containers filled with the recovered products is performed by one or more RFID tags to indicate the location from which the containers are to be retrieved.
  • Figure 1 depicts a schematic view of a system of the invention that carries out a method of identifying and using recovered products according to at least one production plan of a rubber mixing process using the identified recovered products.
  • Figure 2 depicts a front perspective view of a container that is intended to receive a corresponding recovered product
  • Figure 3 depicts a bottom perspective view of the container of Figure 2.
  • Figure 4 depicts a partial perspective view of a container subsystem and of a pallet transfer zone.
  • Figures 5 and 6 depict partial perspective views of the container subsystem of Figure 4 with a stacking device.
  • Figure 7 depicts steps of the method of the invention carried out by the system of Figure 1.
  • Figure 8 depicts a density graph according to a simulation of a prior art process.
  • Figure 9 depicts a density graph according to a simulation of the process of the invention.
  • the unused complex products are identified into various kinds and various grades, and each kind and each grade designates a specific complex product, the properties of which are known.
  • Each nature of complex product has specific properties that can be controlled in order to obtain the recovered products.
  • the various kinds, grades, batches of complex product will be designated by the term“nature” of complex product.
  • the invention relates to a system and a method for generating production plans for an ongoing campaign, or for a potential campaign, in order to guarantee the execution of planned future campaigns.
  • What is meant by“campaign” is the duration of operation of an internal mixer, or of a mixing plant, using the same recipe.
  • Figure 1 depicts one example of a system 100 that realizes a method of identifying and using recovered products according to at least one production plan of a rubber mixing method using the identified recovered products.
  • the system 100 allows the identification, management and reincorporation of the unused complex products as recovered products that can be used during a tyre manufacturing cycle.
  • the future production plans are generated in anticipation of the planned future campaigns in which recovered products are needed, in specified quantities over a specified period.
  • the specified period depends upon the completion of the production plan in progress and also upon the forthcoming production plans.
  • the system of the invention In order to satisfy a production plan, the system of the invention generates one or more production plans.
  • Each production plan contains one or more campaigns.
  • potential campaigns may be identified, for example, by satisfying the current requirements of the campaign and by indicating the execution of the ongoing campaign, then by generating various production plans that will satisfy the requirements of one or more later campaigns according to the specified timescales for executing these campaigns.
  • the system of the invention determines the feasibility of a mixture associated with the use of a production plan for realizing an ongoing campaign.
  • The“feasibility of the mixture” refers to the ability to conform to the technical references of each material used in the mixture.
  • The“feasibility of the mixture” also refers to the ability to obtain a technical end result for the mixture (i.e., that the recovered products that are used maintain their own technical characteristics while at the same time contributing to the desired characteristics of the mixture into which they are incorporated).
  • the production plans may be classified using self-learning approaches in which certain production plans are more desirable than others. The system may then classify the different production plans on the basis of the feasibility of the associated mixture.
  • the system 100 is located downstream of a system or machine for manufacturing complex products (for example, a system or a machine that performs an extrusion process, an assembly process, a stripping process or some other process in which some of what is manufactured cannot be put to use directly in building a tyre). It is envisioned for the system 100 to allow the production of rubber mixtures with diverse and varying properties as determined by the performance requirements of the resulting tyre. The system 100 therefore allows the creation of a process for the recovery of unused complex products by using equipment that allows a production throughput by managing the entry,
  • the complex products are identified as recovered products that have been identified for use in at least one rubber-mixing production plan generated by a method of the invention.
  • the complex products are stored in corresponding containers.
  • the containers act as mobile storage making it possible to identify, store and transport the complex products that become the identified recovered products.
  • Each of the complex products is characterized by a unique identification (for example, using numerals, codes, RFID identifications, hypertext links or equivalent means) that allows an extrusion or mixing machine (or equivalent) to know the complex product in the process of being manufactured according to a predefined recipe.
  • each recovered product is placed in a container, and each container holds only one recovered product at a time.
  • a container (or“bucket”) 10 comes with a pair of long sides lOa, a pair of short sides lOb and a bottom lOc that together form a space to receive a specific recovered product for reuse.
  • Each container 10 includes a pair of legs 12 that extend from the bottom lOc so as to make the container stackable on a pallet or on itself. It is understood that corresponding structure, or an equivalent structure (such as one or more tabs) may be employed along at least a portion of the perimeter of the top of the container 10.
  • the full containers are containers full of recovered products for reuse that are stored on corresponding pallets. According to the requirements of the ongoing campaign, the full containers are stored on pallets as a function of the nature of the recovered products.
  • the interior surface lOa’ of each long side lOa is inclined with respect to the bottom lOc (for example by an angle of up to 5°) in order to promote release of the recovered product from the full container.
  • An optional non-stick coating may be applied to the interior surface lOa’ to make it easier for the complex product to be extracted from the corresponding container.
  • each recovered product is placed in a corresponding container 10 that is designated to receive it.
  • the container 10 and the contents (namely, a recovered product having known properties) thereof are identified, known and managed by virtue of an
  • identification means incorporated into the container 10.
  • the system 100 is therefore capable of transferring and of storing each container 10 according to its identification. Identification of the container 10 is performed either manually (for example, using at least one visual and/or tactile identifier) or automatically (for example using numerals, codes, RFID identifications, hypertext links or equivalent means).
  • the invention is described in relation to an RFID identification
  • Identification of the recovered product is married with the identification of the container so that the system 100, by recognizing a particular container, automatically recognizes the nature of the recovered product inside the container.
  • the filling of the container 10 is performed in such a way that its volume is more or less constant and that the weight is predictable.
  • the bottom lOc of the container may include several optional orifices lOc’ aligned along the length of the bottom.
  • the orifices lOc’ are able to accept a corresponding demoulding device (not depicted) with retractable fingers in register with the orifices of the container.
  • the demoulding device and the container 10 constitute a container-demoulding system that is downstream of the system 100.
  • each short side lOb of the container 10 includes an identification means that works in concert with an automated handling device (for example, a gripper).
  • the identification means includes an RFID tag lOe, positioned on the container 10, that allows an RFID reader positioned on the automated handling device to identify the container.
  • the automated handling device may include corresponding projections such that the recesses and the projections allow the container 10 to be suitably positioned by realigning a projection in a corresponding recess.
  • the geometry of the recesses and of the projections is not restricted to squares and triangles.
  • the system 100 includes a container-storage subsystem (or“container subsystem”) 110 in which the unused complex products (or“complex products”) originating from at least one manufacturing system, are stored in corresponding containers 10.
  • the container subsystem 110 may include a storage means that is selected from known automatic means (for example, one or more automatic systems and their equivalents) or known manual means.
  • the invention refers to a storage means 120 that is an automatic storage system (for example an“automatic storage and retrieval” system or“ASRS”).
  • these complex products are deemed usable (or“recovered”) for at least one tyre manufacturing campaign.
  • the containers 10 full of complex products are identified and stored in the storage means 120.
  • the system 100 makes these recovered products available to satisfy a production plan.
  • the system 100 may also include a pallet-storage subsystem (or“pallet subsystem”) 200 in which the pallets of containers of recovered products, originating from the container subsystem 110, are stored until the start of a campaign from a generated production plan.
  • the pallet subsystem 200 may also include a storage means (not depicted) that is selected from known automatic means (for example, one or more automatic systems and their equivalents) or known manual means.
  • the invention refers to a storage means for the pallet subsystem 200, which storage means is an automatic storage system (for example, an“ASRS”).
  • each pallet used in the pallet subsystem 200 is capable of storing several containers, full or empty (see, for example, in Figure 1, the pallet P that arrives at the pallet subsystem 200 with the filled containers 10 and the pallet P’ that leaves the pallet subsystem 200 with the empty containers 10). While they are in storage in the pallet subsystem 200, these pallets are deemed satisfactory for feeding the mixer with the recovered products that are stored in the containers 10 stacked thereon. With the recovered product, having been associated with a pallet, it is therefore possible to guarantee the recipe for the mixture defined by the ongoing campaign. This campaign is programmed to satisfy at least one production plan that carries out a rubber mixing method.
  • the pallet subsystem 200 enables the execution of a method of managing the pallets of containers of recovered products, during which method the availability of the pallets is also optimized.
  • the pallets are complete or incomplete according to the recipe corresponding to an ongoing campaign.
  • pallets 210 used in the system 100 are capable of storing and carrying several (full or empty) containers 10 (see Figure 1).
  • pallets 220 used in the system 100 are capable of storing and carrying one (full or empty) container 10 (again, see Figure 1).
  • the containers 10 are designed to be stored in the storage means 120 whatever the number of containers carried by an associated pallet.
  • Identification of a pallet may be performed by known identification means, either manually (for example, using at least one visual, audio and/or tactile identifier) or automatically (for example using numerals, codes, RFID
  • Pallets with containers full of recovered products originating from the pallet subsystem 200 may feed a mixer or some other system.
  • a pallet may include one or more placement indicators (not depicted) that cover at least part of the surface of the pallet.
  • the placement indicators may be used to ensure correct positioning of the containers on the pallet (as described hereinabove).
  • the placement indicators may operate with corresponding sensors on the containers (not depicted) that detect the placement indicators for the automatic placement of the containers on the pallet.
  • the placement indicators do not need to be integrated into the pallet (for example, they may be provided on a removable mat that may be placed on the pallet if necessary).
  • the sensors on the containers may use the placement indicators for navigation and placement of containers on the pallets (either directly onto the surface of the pallet or onto a removable mat).
  • the two subsystems are served by a transfer zone 300 that they share in common.
  • the pallets with (full or empty) containers 10 are placed in and retrieved from the zone 300 either manually (using, for example, a known fork-lift truck 500) or automatically.
  • a mobile gripper 400 is able to place and retrieve the containers 10 with respect to the container subsystem 110 and also with respect to the pallet subsystem 200.
  • the use of a shared transfer zone eliminates redundancy and also contributes to cost reduction by making efficient use of the recovered products.
  • the transfer zone 300 receives pallets full of containers full of complex products originating from at least one manufacturing system.
  • Figure 1 which shows the complex products coming from three different processes I, II, III, is given by way of example. It is understood that the system 100, and notably the container subsystem 110, may accommodate complex products coming from one, two or several systems and/or machines for which some of what is produced cannot be exploited directly.
  • the full containers may be assigned to places in the container subsystem
  • the containers may be placed in sectors assigned according to the needs of an ongoing campaign and/or according to the needs of a forthcoming campaign.
  • the sectors of recovered products may be established according to products of the same nature or according to combinations of products that are planned for inclusion in a designated rubber mixture.
  • the containers may be placed on corresponding pallets for delivery to the pallet subsystem 200. The number and make-up of the pallets may thus be chosen at will and varied according to a pre-established campaign.
  • the storage means 120 has a robot (or equivalent device) capable of selectively placing and selectively removing at least one container 10 relative to the container subsystem 110. The selective placement and removal are performed on a prediction of recovered products that is intended for a generated production plan containing one or more given campaigns.
  • the robot which is selected from among commercially available robots, is depicted as a stacking device 150 with a shuttle 152 that operates on rails 154 inside the storage means 120. It is understood that the stacking device 150 may be replaced with an equivalent device known to those skilled in the art.
  • the stacking device 150 positions and retrieves the containers according to at least one production plan generated to satisfy an ongoing production plan and forthcoming production plans.
  • the storage means 120 of the container subsystem 110 may include a dedicated sector 120A for storing a specific nature of recovered product.
  • the sector 120A includes multiple places, each of these places being assigned to a single container 10.
  • a manufacturing system upstream of the container subsystem 110 indicates its need for an empty container 10V that is assigned to be filled with the recovered product of the same specific nature.
  • the stacking device 150 by means of the shuttle 152, retrieves the empty container 10V from the sector 120 A to transfer it to the transfer zone 300.
  • the empty container 10V can be stacked on a pallet of similar empty containers (i.e., empty containers associated with the pallet and also associated with a recovered product of the same nature).
  • the pallet full of the empty containers may be sent to the upstream manufacturing system.
  • the full containers 10P from the sector 120 A remain available for use by the pallet subsystem 200.
  • the system 100 can update the absence of the empty container 10V and the presence of the full containers 10P in order also to update the ongoing production plan.
  • the method includes a step of generating at least one production plan in order to carry out at least one rubber mixing method.
  • several production plans may be generated, according to the selection made by a user.
  • the recovered products that will satisfy the generated production plans are identified.
  • the system 100 may identify containers according to the minimum time allotted in order to realize the mixing. Furthermore, the system 100 may identify containers on the basis of a criterion pertaining to the make-up of a pallet of recovered products that is to be supplied at a determined time in the future.
  • the time units used may be seconds, minutes, hours, days, weeks and months. The time units used may be equivalents of these, for example the time remaining until the system 100 can create a production plan for mixing a rubber for a certain number of products based on the chosen rubber.
  • containers 10 arrive at the system 100 either on the pallets 210 or on the pallets 220.
  • the containers 10 arrive at the container subsystem 110 full of complex products originating from the various processes.
  • the method includes a step of identifying the recovered products that satisfy at least one generated production plan.
  • Each container 10 is identified with its complex product.
  • the complex product has already been deemed usable in a mixing process (i.e., the complex product has been deemed usable as an identified recovered product that will satisfy an ongoing production plan). It therefore becomes a recovered product as it arrives at the subsystem 110.
  • the system 100 may log the arrival date (the day, the time, etc.) of each container 10 in order to manage the time during which each container resides in the container subsystem 110.
  • the containers 10 are stored in the storage means 120 using known devices (for example, the stacking device 150).
  • the storage means 120 may include defined sectors for different recovered products (as described hereinabove).
  • the containers and/or their locations in the storage means 120 can be identified visually or in some other way by one or more known means (for example, one or more RFID tags) to indicate the sector from which the containers are to be retrieved.
  • the method may include a step of carrying out at least one planning activity that is necessary in order to realize the ongoing production plan and/or at least one forthcoming production plan.
  • the planning activity may include one or more steps, including at least some of the following steps: - determining the expected levels of storage in the container subsystem 110 and
  • These determinations may be effected on the basis of one or more factors, including, without limitation, the completion of one or more production plans (and the resulting storage of the recovered products that remain in the system 100), the generation of the future production plans, the current level of storage in the container and pallet subsystems, and the flow of the production activity.
  • the method includes a step of ordering the construction of at least one
  • the pallet subsystem 200 sends an order to the container subsystem 110 to retrieve the containers 10 from the storage means 120 according to the ongoing production plan.
  • the method also includes a step of automatically retrieving the containers filled with the identified recovered products that satisfy the ongoing production plan.
  • the order to construct the pallets is executed after determining the duration of the containers’ storage time. For this embodiment, the order is made to retrieve the containers that have been in storage for the longest duration, these containers being identified as satisfying the ongoing production plan. These identified containers are retrieved before the containers that have been in storage for a shorter length of time.
  • the order to construct the pallets is executed so as to obtain a mixture of recovered products and at least one fresh mixture.
  • “fresh mixtures” are mixtures made up of pure raw materials without the addition of recovered products.
  • the method allows the retrieved recovered products to be reincorporated into the fresh mixtures after checking the availability of the products of the“recovered” type and of the mixtures of the“fresh” type. The method notably makes it possible to reduce any imbalance between the generation of the complex products and the capacity for recycling such complex products.
  • the actual date of delivery of the ordered recovered products can be determined for the production plans when generating the production plans. If the recovered products stored in the container subsystem 110 do not satisfy the first production plan, the next production plan that will use available recovered products is prioritized. Thus, each of the current parameters in the container subsystem 110 and the stock provided in the container subsystem 110 is monitored dynamically in order to perform dynamic ranking of the production plans so that there is always at least one production plan that can be executed.
  • the method includes a step of automatically constructing the ordered pallets according to the ongoing production plan.
  • the containers 10 retrieved from the storage means 120 are sent to the transfer zone 300 to construct the pallets.
  • the pallets are constructed using up to nine containers per pallet. It is understood that the number of containers on a pallet is limited only by the capacity of the pallet. It is also understood that a pallet may be“complete” (i.e., the pallet carries the maximum possible number of containers) or“incomplete” (i.e., the pallet carries fewer containers than the maximum possible number). In embodiments that use products of the“recovered” type and mixtures of the“fresh” type in order to satisfy the ongoing production plan, the containers of the two types of products may be placed on the same pallet. All of the constructed pallets are sent from the transfer zone 300 to the pallet subsystem 200 for storage (see pallet P of Figure 1).
  • the method includes a step of storing the constructed pallets in the pallet subsystem 200.
  • the storage means of the pallet subsystem 200 may include sectors assigned to pallets that are constructed to satisfy at least one generated production plan (for example, by the nature of the containers on the pallet, by the planned mixing time, etc.).
  • the system 100 may log the arrival date of each pallet in order to manage the time during which each pallet is stored in the pallet subsystem 200.
  • the method includes a step of identifying the pallets that will satisfy the ongoing production plan. These pallets are identified with the associated containers (and therefore the associated recovered products). It is envisioned that the system 100 manages the production plans so as to allow the production of rubber mixtures with diverse and varying properties as determined by the performance requirements of the resulting tyre. Thus, during a given production plan, pallets of recovered products that have the desired properties can easily be found by the pallet subsystem 200.
  • the method includes a step of ordering the automatic retrieval of the identified pallets having containers filled with the identified recovered products that satisfy the ongoing production plan.
  • the pallet subsystem 200 sends an order to the container subsystem 110 in order to retrieve the containers 10 from the storage means according to the recipe of the mixture created at the end of the ongoing production plan.
  • this order is executed after the determination of the pallets’ storage time. For this embodiment, the pallets that have been in storage for the longest time, and that have the natures of recovered products that satisfy the production plan, are retrieved before the pallets placed into storage most recently.
  • the method includes a step of retrieving the ordered pallets in order to deliver them to the internal mixer or to another system downstream of the pallet subsystem 200.
  • the order is therefore executed pallet by pallet, rather than being an order that is executed container by container.
  • the method ensures that the pallets retrieved, with the associated recovered products, will satisfy the ongoing production plan.
  • the system 100 may log the retrieval of the ordered pallets and the recovered products.
  • the system 100 is capable of updating the storage of the containers in the subsystem 110 and the storage of the pallets in the pallet subsystem 200. If needed, the system 100 may order containers filled with the recovered products and/or pallets in order to satisfy at least one forthcoming production plan.
  • the method includes the step of emptying the pallets and the containers.
  • the emptying of the pallets may be performed by a known handling device (for example, a gripper) that removes each container 10 from the associated pallet.
  • the emptying of the containers may be performed by a system for the management of the pallets of containers of recovered products (which system is not depicted), which is located downstream of the system 100.
  • the management system is used to feed the internal mixer with recovered products.
  • the recovered products are weighed before being introduced into the internal mixer.
  • the empty containers are stacked on empty pallets (see pallet P’ of Figure 1).
  • the system 100 may return the empty containers to the transfer zone 300 (see Figure 1). From the transfer zone 300, the pallets may be filled with empty containers 10 so that they can be sent to one or more sources of the complex products (see Figure 1). If needed, empty containers 10 may be placed in the storage means 120 in order to satisfy a forthcoming production plan. Enhanced efficiency is therefore obtained by reducing the journeys needed for reloading the pallets.
  • the recovered products that can be used in several generated production plans cannot be used to satisfy a forthcoming production plan until a threshold level of recovered product in the container subsystem 110 is reached.
  • a threshold level of recovered product in the container subsystem 110 For example, for a recovered product (or for a pallet of associated recovered products) that is always used in greater quantity in a frequently executed production plan, this recovered product cannot be used in a smaller quantity in a less frequently executed production plan until there is a sufficient stock of this recovered product to satisfy at least one execution of the most frequently executed production plan. This may be done for the purpose of giving production priority on the basis of the demand for the recovered product, of the surplus of recovered product, of the scarcity of the recovered product and of associated factors.
  • the following comparative results were obtained by simulation to verify a variation in viscosity (a Mooney variation), comparing a control method (i.e., a“first in, first out” or“FIFO” method) and a method of the invention.
  • the Mooney index also known by the names of viscosity or plasticity index, characterizes solid substances, in a known way. Use is made of an oscillating consistometer as described in standard ASTM D1646 (1999). This plasticity measurement is carried out according to the following principle: the sample, analysed in the raw state (i.e., before curing), is moulded (shaped) in a cylindrical chamber heated to a given temperature (for example 35°C or l00°C).
  • the containers are assigned by campaign in the order in which they appear in the simulation.
  • the objective is to minimize the variation in the mean value of a property under study by choosing one or more containers per pallet. It should be understood that any mixing property could be studied (including, without limitation, the viscosity or“Mooney index”, the fluidity and the premature vulcanization time).
  • the unused complex products are generated by two different manufacturing operations: a tyre building operation and an extrusion operation. Each complex product is identified, and a production plan lasting 28 days is generated. The complex products are placed in the associated containers.
  • the tyre building operation generates containers of complex products at a known frequency and with a known distribution (approximately 1 or 2 containers per hour). However, during changeovers in the nature of complex products, the extrusion operation generates 3 or 4 containers.
  • the mean fluidity value for a pallet is calculated, and the mean values are compared in order to find a variance from one pallet to another pallet.
  • the first campaign is represented by the numeral“1” in the following table and in Figures 8 and 9.
  • the second campaign is represented by the numeral“2” in the following table and in Figures 8 and 9.
  • the magnitude of the effect is a tool that is used to understand the difference between groups without the effect of sample size. Significant effects are indicated by magnitude-of-the- effect values > 0.3 (reference Cohen 1988).
  • Figures 8 and 9 show a greater variation in Mooney for the FIFO method as compared with the method of the invention.
  • the mean value for a pallet does not change between the two methods, without the method of the invention, the variance of the Mooney properties changes from one pallet to another with a significant impact on the industrial operations that use the recovered products.
  • the method of the invention smooths the variance across the recovered products that are used in rubber mixing.
  • the method of the invention limits the need for new extrusion dies needed to adapt to the variations and thus guarantees uniformity of extrusion of the complex products.
  • One cycle of the method can be performed under the control of one or more PLCs and may include pre-programming of management information. For example, a total number of containers are required when these are offered with a certain number of natures, a total number of empty pallets are available, a number of pallets are on standby, a storage time for a container or for a pallet is determined, etc.
  • the PLC controls the list of containers ordered, the list of pallets ordered and the containers associated with each pallet.
  • a PLC may be configured to arrange the containers in the container subsystem 110 and the pallets in the pallet subsystem 200.
  • the PLC may identify the containers arranged so that specific containers can be found and retrieved at any moment. Groups of containers 10 are created and may be placed in
  • the PLC may arrange the containers so that identified containers can be found and retrieved at any moment in order to construct the pallets.
  • the system allows the unused complex products to be converted into recovered products. For example, throughput forecasts and the space required for pallets in storage can be improved.
  • the system 100 may be part of a tyre production plant.
  • the system 100 may be part of several identical systems supplied to the same plant. Identical systems may be placed in other plants, the containers of one plant being stored in the system of another plant in order to satisfy the production requirements thereof (for example, they may be situated in plants that are geographically remote from one another). In such a case, steps of the method may be carried out in different plants.
  • a container subsystem 110 may receive containers filled with complex products originating from plants that are geographically remote.
  • a container subsystem 110 of a first plant may supply containers filled with recovered products to construct the pallets that are ordered by one or more pallet subsystems 200 at one or more plants that are geographically remote.
  • the system therefore provides a solution that adapts itself according to the level of production activity.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Theoretical Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Development Economics (AREA)
  • Tyre Moulding (AREA)
  • General Factory Administration (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Tires In General (AREA)

Abstract

Dans le domaine de la production de pneumatique, l'invention concerne un procédé d'identification et d'utilisation de produits récupérés selon un plan de production d'un procédé de mélange de caoutchouc qui utilise les produits récupérés identifiés.
PCT/EP2019/051980 2018-02-07 2019-01-28 Procédé d'identification et d'utilisation de produits récupérés dans un cycle de mélange WO2019154657A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980010874.6A CN111670447B (zh) 2018-02-07 2019-01-28 识别和使用混合周期中的回收产品的方法
MX2020008102A MX2020008102A (es) 2018-02-07 2019-01-28 Metodo para identificar y para usar productos recuperados en ciclo de mezcla.
EP19702385.6A EP3750117A1 (fr) 2018-02-07 2019-01-28 Procédé d'identification et d'utilisation de produits récupérés dans un cycle de mélange

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1851018 2018-02-07
FR1851018 2018-02-07

Publications (1)

Publication Number Publication Date
WO2019154657A1 true WO2019154657A1 (fr) 2019-08-15

Family

ID=65243543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/051980 WO2019154657A1 (fr) 2018-02-07 2019-01-28 Procédé d'identification et d'utilisation de produits récupérés dans un cycle de mélange

Country Status (4)

Country Link
EP (1) EP3750117A1 (fr)
CN (1) CN111670447B (fr)
MX (1) MX2020008102A (fr)
WO (1) WO2019154657A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070005180A1 (en) * 2002-03-13 2007-01-04 Stingel Frederick J Iii Automated container storage and delivery system
WO2008096016A1 (fr) * 2007-02-09 2008-08-14 Nv Engineering Systems Système configurable, procédé et logiciel associé pour gérer la fabrication et traitement de grande quantités de marchandises de grande valeur
US20090112675A1 (en) * 2007-10-31 2009-04-30 Jeff Servais Automated order fulfillment system and method
US20170091704A1 (en) * 2015-09-29 2017-03-30 Lineage Logistics, LLC Warehouse rack space optimization

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7650297B1 (en) * 2003-12-04 2010-01-19 Honda Motor Co., Ltd. System and method for managing returnable containers
JP2005208772A (ja) * 2004-01-20 2005-08-04 Aisin Seiki Co Ltd 生産進捗管理機能を備えた通箱配送管理方法及び装置
JP5439275B2 (ja) * 2010-05-07 2014-03-12 株式会社日立製作所 情報処理装置、原価見通し算出方法、および原価見通し算出プログラム
EP3218288A4 (fr) * 2014-11-14 2018-08-01 Lacey, Brian Jason David Station de transfert de déchets modulaire (mwts)
CN104392326B (zh) * 2014-12-01 2017-05-24 冶金自动化研究设计院 一种用于钢铁企业含铁固废循环利用的监控方法
PL3256406T3 (pl) * 2015-02-10 2023-05-02 Marel A/S System paletyzacji i sposób obsługi takiego systemu paletyzacji
CN106444643B (zh) * 2016-09-30 2018-09-07 华中科技大学 一种订单分派调度与混合产品排序系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070005180A1 (en) * 2002-03-13 2007-01-04 Stingel Frederick J Iii Automated container storage and delivery system
WO2008096016A1 (fr) * 2007-02-09 2008-08-14 Nv Engineering Systems Système configurable, procédé et logiciel associé pour gérer la fabrication et traitement de grande quantités de marchandises de grande valeur
US20090112675A1 (en) * 2007-10-31 2009-04-30 Jeff Servais Automated order fulfillment system and method
US20170091704A1 (en) * 2015-09-29 2017-03-30 Lineage Logistics, LLC Warehouse rack space optimization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Automated storage and retrieval system - Wikipedia", 4 February 2018 (2018-02-04), XP055576833, Retrieved from the Internet <URL:https://en.wikipedia.org/w/index.php?title=Automated_storage_and_retrieval_system&oldid=824028165> [retrieved on 20190402] *

Also Published As

Publication number Publication date
EP3750117A1 (fr) 2020-12-16
CN111670447A (zh) 2020-09-15
MX2020008102A (es) 2020-09-25
CN111670447B (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
US20050171825A1 (en) Method for purchase order rescheduling in a linear program
EP1947598A2 (fr) Optimisation de calendrier de fabrication
CN115700639B (zh) 智能生产排程方法、装置、设备及存储介质
EP3750123A1 (fr) Système d&#39;identification et d&#39;utilisation de produits récupérés pour une réutilisation dans un cycle de mélange
CN113762893A (zh) 一种基于物联网技术的车间智能配送器模型及其求解算法
JP2004083233A (ja) 巡回集荷配送計画策定方法
CN107357270A (zh) 一种eps泡塑制造中的任务调度方法
CN112990644A (zh) 作业计划制作装置以及作业计划制作方法
US20180349824A1 (en) Determining a production plan
WO2019154657A1 (fr) Procédé d&#39;identification et d&#39;utilisation de produits récupérés dans un cycle de mélange
KR102425156B1 (ko) 자동 적재창고 연동 생산관리 시스템
US11922369B2 (en) Automated flow management in a compounding station
CN111582776A (zh) 物料配送方法、装置及设备
JP4340089B2 (ja) 配置計画作成方法及び装置、配置物流制御方法及び装置、コンピュータ読み取り可能な記憶媒体、並びにコンピュータプログラム
JPS60242944A (ja) Fmsにおける工具管理方法
JP4308303B1 (ja) 原材料貯槽への入槽計画作成方法、装置及びプログラム
Ozturk et al. Exact and metaheuristic algorithms to minimize the total tardiness of cutting tool sharpening operations
US20170147967A1 (en) Real-time pallet allocation
JP2023536290A (ja) タイヤマーキング装置、方法、コンピュータプログラム製品及びタイヤ
JP4994797B2 (ja) 連続又は関連する工程に対する生産・物流計画作成装置及び方法、生産・物流制御装置及び方法、コンピュータプログラム、並びにコンピュータ読み取り可能な記録媒体
WO2006077930A1 (fr) Systeme de programmation de la production
JP5096985B2 (ja) 容器管理装置、容器管理方法、及びプログラム
JP5068623B2 (ja) 原材料貯槽への入槽計画作成方法およびその装置
CN114240021B (zh) 一种钢铁料场上料自动排程方法
JPH08118209A (ja) 製造・部品ラインの制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19702385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019702385

Country of ref document: EP

Effective date: 20200907