WO2019154429A1 - 穿戴式ar系统、ar显示设备及其投射源模组 - Google Patents

穿戴式ar系统、ar显示设备及其投射源模组 Download PDF

Info

Publication number
WO2019154429A1
WO2019154429A1 PCT/CN2019/074863 CN2019074863W WO2019154429A1 WO 2019154429 A1 WO2019154429 A1 WO 2019154429A1 CN 2019074863 W CN2019074863 W CN 2019074863W WO 2019154429 A1 WO2019154429 A1 WO 2019154429A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection source
display device
augmented reality
beam splitter
mirror
Prior art date
Application number
PCT/CN2019/074863
Other languages
English (en)
French (fr)
Inventor
梁晓斌
肖冰
徐驰
Original Assignee
杭州太若科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810147336.9A external-priority patent/CN108319019A/zh
Priority claimed from CN201810147332.0A external-priority patent/CN110146978A/zh
Priority claimed from CN201810146915.1A external-priority patent/CN110161687A/zh
Priority claimed from CN201810147328.4A external-priority patent/CN108319018A/zh
Priority claimed from CN201810146905.8A external-priority patent/CN110161685A/zh
Priority claimed from CN201810146738.7A external-priority patent/CN110161683A/zh
Priority claimed from CN201810146912.8A external-priority patent/CN110161686A/zh
Priority claimed from CN201810146751.2A external-priority patent/CN110161684A/zh
Priority claimed from CN201810147326.5A external-priority patent/CN110161688A/zh
Priority claimed from CN201810147330.1A external-priority patent/CN110161689A/zh
Priority claimed from CN201810147325.0A external-priority patent/CN108181709A/zh
Application filed by 杭州太若科技有限公司 filed Critical 杭州太若科技有限公司
Priority to EP19750619.9A priority Critical patent/EP3754408A4/en
Priority to CN201980001716.4A priority patent/CN110573933A/zh
Publication of WO2019154429A1 publication Critical patent/WO2019154429A1/zh
Priority to US16/990,633 priority patent/US11500205B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1066Beam splitting or combining systems for enhancing image performance, like resolution, pixel numbers, dual magnifications or dynamic range, by tiling, slicing or overlapping fields of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/20Scenes; Scene-specific elements in augmented reality scenes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/013Head-up displays characterised by optical features comprising a combiner of particular shape, e.g. curvature
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0185Displaying image at variable distance
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/123The splitting element being a lens or a system of lenses, including arrays and surfaces with refractive power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/142Coating structures, e.g. thin films multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/281Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for attenuating light intensity, e.g. comprising rotatable polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another

Definitions

  • the present application relates to the field of Augmented Reality (AR) technology.
  • the present application relates to a wearable AR system, an AR display device, and a projection source module for an AR display device.
  • Augmented Reality (AR) technology is a technology that combines virtual images and real-world scenes in real time.
  • the basic optical principle of augmented reality technology is to simultaneously inject the real scene scene information and the virtual image information into the human eye, so that the image information transmitted on the two optical paths is fused at the human eye, so that the human eye simultaneously obtains the real scene.
  • a mixture of scene information and virtual images achieves augmented reality.
  • Transmissive display devices are key devices in augmented reality systems. According to different real scenes, transmissive display devices are classified into video see-through display devices and optical see-through display devices. Common augmented reality glasses or helmets (also known as AR glasses or AR helmets) are examples of optical see-through AR display devices.
  • the projection source module includes a projection source 1 and a lens 2 as a beam shaper
  • the optical path module includes a beam splitter 3 and a curved mirror 4.
  • the virtual image light emitted from the projection source 1 is incident into the lens 2, transmitted through the lens 2, and then leaves the lens 2 to realize shaping of the light, and the shaped light VL is incident on the beam splitting.
  • the mirror 3 On the mirror 3, a part of the light is reflected at the spectroscopic surface of the spectroscope 3 and is incident on the reflecting surface of the mirror 4 (a part of the light is transmitted through the spectroscope 3 and disappears in the external environment), is reflected on the mirror 4, and is incident again.
  • the virtual image light VL is transmitted through the beam splitter 3 into the human eye E.
  • the projection source 1 and the lens 2 are spaced apart by air, the refractive index of the air is low, the numerical aperture is difficult to increase, and the system limit resolution is limited; due to the interface between the air and the lens 2 - the incident surface The difference in refractive index is large, so that the light is more reflected at the interface, and more stray light is formed, and the ghost phenomenon is serious. Further, the projection source 1 and the lens 2 are scattered separation members, so that the optical structure is large in size, difficult to assemble, and easily damaged.
  • the purpose of the present application is to solve at least one of the above drawbacks, to provide a new projection source module that eliminates the gap between the projection source and the beam shaper, and to provide an AR display including the new projection source module.
  • an augmented reality display device including a projection source module and an optical path module, the projection source module including a projection source and a beam shaper integrated into a unitary piece, the optical path
  • the module includes a beam splitter and a mirror, wherein the virtual image light that carries the virtual image information from the projection source is shaped by the beam shaper and then emitted from the projection source module, first projected onto the beam splitter, and passed through the beam splitter.
  • the reflection reaches the mirror, the virtual image light is reflected at the mirror, and finally enters the human eye, and the actual light carrying the realistic scene information enters from the outside of the mirror, transmits through the mirror and the beam splitter Human eyes.
  • the projection source of the projection source module and the beam shaper are closely matched, which reduces the refractive index difference of the lens interface forming the beam shaper, improves the transmittance of the edge light, reduces the ghost image, and improves the image brightness.
  • the beam shaper is directly integrated into the projection source, for example, the beam shaper is bonded to the projection source by a face-to-face fit.
  • the projection source and the beam shaper have complementary contact surfaces that can be surface-fitted, the two can be directly attached and integrated, and the number of components is minimized in the case of achieving the above object. Simpler and more compact.
  • the beam shaper is indirectly integrated to the projection source via an intermediate matching component.
  • the projection source and the beam shaper do not have complementary contact surfaces that can be directly surface-fitted, the use of intermediate matching components achieves the purpose of integration into a single piece.
  • the intermediate matching member is formed by at least one medium selected from the group consisting of a liquid medium, a liquid crystal medium, a semi-solid medium, and a solid medium.
  • the intermediate matching member is formed by at least one medium selected from the group consisting of water, alcohol, glass, and resin.
  • the intermediate matching component is formed of a liquid medium and/or a liquid crystal medium
  • the projection source module further includes sealing a medium forming the intermediate piece component between the projection source and the light beam The sealing structure between the shapers.
  • the intermediate matching member has a medium refractive index of 1 to 2.7.
  • the beam shaper is configured as a convex lens, or as a concave lens, or as a combination of a convex lens and a concave lens.
  • the beam splitter is a planar beam splitter and has a spectroscopic surface on which the virtual image light from the projection source module is incident, the mirror being a curved mirror and having an optical axis.
  • the virtual image light reflected from the spectroscopic surface of the beam splitter is directly projected onto the reflecting surface of the mirror, reflected by the reflecting surface of the mirror, and then directly incident on the beam splitter, and then directly incident on the beam splitter. Transmission through the beam splitter.
  • the beam splitter is a polarization beam splitter
  • the augmented reality display device further includes a wave plate assembly disposed between the polarization beam splitter and the curved mirror, wherein the beam splitting is performed
  • the virtual image light reflected by the spectroscopic surface of the mirror is transmitted through the wave plate assembly and then projected onto the reflective surface of the mirror, reflected by the reflective surface, transmitted through the wave plate assembly and incident on the beam splitter, and then Transmission through the beam splitter.
  • the polarization beam splitter includes a polarizing film and a polarization beam splitting film, and the polarizing film and the polarization beam splitting film are configured such that a virtual image light from the projection source module is first incident on the polarization beam splitting film. And then incident on the polarizing film,
  • the polarizing beam splitting film defines the spectroscopic surface; or the polarizing beamsplitter further comprises a substrate, the polarizing beam splitting film defining the spectroscopic surface.
  • the wave plate assembly is a quarter wave plate, and preferably, the quarter wave plate is attached to the reflective surface of the mirror.
  • the spectroscopic surface of the beam splitter and the optical axis of the mirror have a first angle, a normal line of the projection source from the projection source module, and a spectroscopic surface of the beam splitter Having a second angle therebetween, wherein the first angle ranges from the second angle of -10° to the second angle of +10°, and the first angle is greater than 0 ° and less than 90 °.
  • the second angle is between 11° and 79°, preferably between 20° and 70°, more preferably between 30° and 60°, more It is preferably between 40 and 55, most preferably between 40 and 50.
  • a projection source module for the augmented reality display device described above is also provided.
  • a wearable augmented reality system comprising the augmented reality display device described above.
  • the wearable augmented reality system may be an augmented reality glasses or an augmented reality helmet.
  • the projection source providing the virtual image information is directly adhered to the beam shaper that provides shaping effect to the light from the projection source or via the intermediate matching component set.
  • the virtual image light emitted from the projection source enters the lens forming the beam shaper without passing through the air, reduces the refractive index difference at the lens interface, improves the light transmittance, increases the light efficiency, and can suppress or Reduce the generation of stray light and ghost images.
  • a larger numerical aperture can be realized with a relatively small aperture angle, which reduces the deflection angle of the edge light and reduces the design difficulty.
  • the present application also provides at least one of the following advantages: the optical system is more compact in structure, smaller in size, lighter in weight, easy to adjust, high in system strength, and comfortable to wear.
  • Figure 1 shows an embodiment of a prior art AR display device
  • FIG. 2 shows a first embodiment of a projection source module of an AR display device according to the present application
  • FIG. 3 shows a second embodiment of a projection source module of an AR display device according to the present application
  • Figure 4 shows a first embodiment of an AR display device according to the present application
  • Figure 5 shows a second embodiment of an AR display device according to the present application
  • FIG. 6 shows a schematic diagram of a beam splitter of the AR display device of FIG. 5.
  • the wearable AR system according to the present application may be an AR glasses or an AR helmet including the AR display device according to the present application.
  • the AR display device of the present application generally includes a projection source module and an optical path module.
  • the projection source module is for providing a light beam carrying virtual image information (hereinafter also referred to as virtual image light ray VL), and mainly includes a projection source and a beam shaper.
  • VL virtual image light ray
  • the projection source of the projection source module can be any suitable form of projection source.
  • the projection source can be a monochromatic source or a multi-color source.
  • the projection source can be a laser source or an LED source, such as an LED display.
  • the projection source can be a planar projection source such as a flat display screen, or a curved projection source such as a curved display.
  • the projection source can be an integrated light source or a single light source.
  • Illustrative examples of the projection source may include, but are not limited to, an OLED (Organic Light Emitting Diode), an LCOS (Liquid Crystal Liquid Crystal), an LCD (Liquid Crystal Display Device), a MEMS (Micro Electro Mechanical Display Device), a DMD (Digital Micromirror Element).
  • OLED Organic Light Emitting Diode
  • LCOS Liquid Crystal Liquid Crystal
  • LCD Liquid Crystal Display Device
  • MEMS Micro Electro Mechanical Display Device
  • DMD Digital Micromirror Element
  • the beam shaper of the projection source module is disposed on an outgoing light path of the virtual image light VL emitted from the projection source (herein, the traveling light path of the light beam emitted from an optical device is referred to as an "exit light path" of the optical device, The traveling optical path of the light beam incident on an optical device becomes the “incident optical path" of the optical device for collimating, shaping, and/or combining the light VL emitted from the projection source.
  • the beam shaper can be configured as a lens.
  • the lens forming the beam shaper of the present application may be a lens group composed of one lens or a plurality of lenses.
  • Each of the lenses or lens groups may be a convex lens, a concave lens, or any combination of a convex lens and a concave lens, etc.
  • the face shape of the lens may be a spherical surface, an aspheric surface, a free curved surface, or the like.
  • the beam shaper can be integrated into the projection source via a direct face fit such as bonding or integrated into the projection source via an intermediate matching component.
  • the projection source and beam shaper of the projection source module of the AR display device according to the present application are a monolith that is directly integrated or indirectly integrated via an intermediate matching component.
  • the intermediate matching component is made of a matching medium that is different from air and has a refractive index greater than one. In this way, the light VL emitted from the projection source carrying the virtual image information enters the beam shaper without passing through the air or enters the beam shaper via the matching medium having a refractive index greater than 1, and then passes through the beam shaper from the projection source mode. The group shoots.
  • the matching medium from which the intermediate matching member is made may have a refractive index of from 1 to 2.7.
  • the matching medium from which the intermediate matching member is made may be a liquid medium, a liquid crystal medium, a semi-solid medium or a solid medium, and the intermediate matching member may be formed of at least one of the above-described mediums.
  • the liquid medium can be, for example, a transparent medium such as water or alcohol.
  • the solid medium can be a transparent solid medium such as glass.
  • the matching medium may include a solid resin and/or a semi-solid resin and/or a liquid resin.
  • the projection source module includes means for sealing the liquid or liquid crystal medium to the projection source 12 and the light beam.
  • the sealing structure can be any suitable sealing structure in the art.
  • the sealing structure includes a sealing frame 18, the seal between the sealing frame 18 and the projection source 12 is achieved by bonding, and the seal between the sealing frame 18 and the lens forming the beam shaper 14 is achieved by insert bonding. .
  • the sealing frame 18 is also bonded to the lens forming the beam shaper 14.
  • the light emitted from the projection source 12 carrying the virtual image first enters the intermediate matching component 16 and then enters the beam shaper 14 in the form of a lens. Since the refractive index of the matching medium is greater than the refractive index of the air, at the interface of the intermediate matching member 16 and the beam shaper 14, the difference in refractive index between the lens medium forming the beam shaper 14 and the matching medium is smaller than that of forming the beam shaper. The difference in refractive index between the lens medium and the air of 14, so that more light is refracted, the light transmittance is increased, and the light efficiency of the projection source module is increased. Correspondingly, the reflected light at the interface is reduced, which suppresses or reduces the generation of stray light and ghost images.
  • R (0.61* ⁇ )/(n*sin ⁇ ) (where R is the diffraction spot radius, ⁇ is the light wavelength, n is the image surface refractive index, and ⁇ is the incident aperture angle), and the refractive index of the matching medium is increased. Large, the generated diffraction spot will be reduced and the imaging resolution will be improved. In addition, since the image square refractive index is improved, a larger numerical aperture can be realized with a relatively small aperture angle, the deflection angle of the edge light is reduced, and the design difficulty is lowered. Furthermore, the projection source is integrated with the beam shaper, the optical structure is more compact, easier to adjust, and more systemic.
  • FIG. 3 shows a second embodiment of a projection source module of an AR display device according to the present application.
  • the projection source 12 and the beam shaper 14 are directly integrated together in a face-to-face manner, with the projection source 12 and beam shaper 14 having complementary mating contact faces.
  • the lens forming beam shaper 14 is bonded to projection source 12.
  • Projection source 12 can also be closely attached to beam shaper 14 using any other suitable means known to those skilled in the art.
  • the source beam emitted from the projection source 12 enters the lens forming the beam shaper 14 without passing through the air.
  • This structure can provide all of the advantages described above with respect to Figure 2.
  • the projection source and the lens are directly bonded together, and the optical structure is more compact, smaller in size, lighter in weight, and comfortable to wear. Compact and easy to adjust.
  • a preferred embodiment of the projection source module in accordance with the present application is described in detail above with respect to Figures 2 and 3.
  • the above embodiments are not all embodiments of the projection source module of the present application, and the present application includes all embodiments that integrate the projection source and the beam shaper.
  • the projection source module of the present application can be used in combination with any component and any function optical path module, and the optical path module used in combination with the projection source module of the present application can include any number of opticals.
  • An AR display device including the projection source module shown in FIG. 2, which includes an optical path module composed of a beam splitter 20 and a mirror 60, will be described below with reference to FIG.
  • the projection source module has been described above and will not be described here.
  • the beam splitter 20 of the optical path module is configured as a beam splitter widely known in the art.
  • the beam splitter can be a planar beam splitter or a cube beam splitter.
  • the beam splitter is usually composed of two 45-degree right-angled prisms, the slopes of which are bonded to each other to form a beam splitting surface of the beam splitter; in the embodiment described with reference to the drawings
  • the beam splitter is a planar beam splitter, and the beam splitting surface of the beam splitter is parallel to the plane of the beam splitter on which the light is incident.
  • the spectroscopic film or the polarizing beam splitting film of the spectroscope defines the spectroscopic surface, and the effective portion of the spectroscopic film or the polarizing beam splitting film may be one or more layers having a thickness of from several tens of nanometers to several hundred micrometers.
  • a base film having a thickness of several tens of micrometers to several hundreds of micrometers may be included, and the base film serves as a support and protection.
  • the spectroscopic surface of the spectroscope is taken as an example, the reflection does not necessarily occur only on the spectroscopic surface of the spectroscope, but may occur over the entire effective thickness of the spectroscopic film or the polarizing beam splitter of the spectroscope. Inside.
  • Mirror 60 is configured as a concave mirror known in the art.
  • the mirror 60 may be a half mirror such that the virtual image light VL from the projection source module can enter the human eye E, and the realistic light AL of the real scene can also enter the human eye E.
  • the mirror may also be a total reflection mirror such that only virtual image light VL from the projection source module can enter the human eye E.
  • the light received on the reflective surface of the term "mirror" is partially transmitted and partially reflected.
  • the shaped light VL projected from the projection source module and carrying the virtual image information is incident on the beam splitter 20.
  • a part of the light is reflected, and a part of the light is refracted into the spectroscope 20, and leaves the spectroscope 20 and disappears into the external environment.
  • the reflected light is projected onto the mirror 60, reflected on the reflecting surface 60a of the mirror 60, and then re-projected onto the beam splitter 20, after which the beam is transmitted through the beam splitter 20 into the human eye E.
  • the human eye E can observe the virtual image from the projection source module, and in Figures 4 and 5 of the present application, the virtual image light is indicated by solid arrows.
  • the realistic light ray AL of the real scene enters the optical path module of the AR display device from the outside of the mirror 60 (the side opposite to the reflecting surface 60a on the right side of FIG. 4), first transmitted through the mirror 60, and incident on the beam splitter 20 And then transmitted through the beam splitter 20 to enter the human eye E.
  • the light VL carrying the virtual image information and the light AL carrying the scene information of the real scene enter the human eye E at the same time, and the human eye E simultaneously observes the scene image and the virtual image of the real scene.
  • the AR display device illustrated in FIG. 4 includes the projection source module described with respect to FIG. 2, capable of providing all of the technical advantages described above with respect to FIG. 2, including, but not limited to, due to the relationship between the projection source and the beam shaper
  • the optical system is compact, small in size, light in weight, easy to adjust, high in system strength, and comfortable to wear. It can be used due to the improved square refractive index.
  • the relatively small aperture angle achieves a larger numerical aperture and reduces the deflection angle of the edge ray; the edge light transmittance is improved by reducing the refractive index difference at the lens interface of the beam shaper, The technical advantage of reducing ghosts and enhancing brightness.
  • the AR display device shown in FIG. 4 may include a projection source module as shown in FIG.
  • the AR display device shown in FIG. 5 includes the projection source module structure of FIG. 3, that is, the projection source module includes a projection source 12 and a beam shaper 14 that are directly integrated together.
  • the projection source module includes a projection source 12 and a beam shaper 14 that are directly integrated together.
  • the optical path module of the AR display device includes a beam splitter 20 configured as a multilayer film polarization beam splitter, a mirror 60 configured as a curved half mirror, and a spectroscope 20 and a mirror 60.
  • the wave plate assembly 40 is between.
  • the multilayer film polarizing beam splitter forming the beam splitter 20 may include a substrate 22, a polarizing film 24 directly attached to the substrate 22, and a polarizing beam splitting film 26 attached to the polarizing film 24. This configuration causes the virtual image light VL from the projection source module to be first incident on the polarization beam splitting film 26 and then reach the polarizing film 24.
  • the polarizing film 24 is configured to pass or transmit polarized light having a polarization state of a first direction while absorbing polarized light of a second direction.
  • the polarization beam splitting film 26 is configured to pass or transmit polarized light having a polarization state of a first direction while reflecting a polarization state of polarized light of a second direction, wherein the first direction and the second direction are perpendicular to each other.
  • the waveplate assembly 40 is configured to convert incident second polarized light into circularly polarized light and to convert incident circularly polarized light into first polarized light.
  • the virtual image light VL projected from the projection source module is first incident on the beam splitter by using the AR display device of FIG. 5 .
  • a polarizing beam splitting film 26 of 20 Due to the action of the polarization beam splitting film 26 and the polarizing film 24 of the beam splitter 20, at the beam splitting surface 20a, most of the virtual image light ray VL is reflected onto the wave plate assembly 40.
  • This S-polarized light is transmitted through the wave plate assembly 40, converted into circularly polarized light, and incident on the reflecting surface 60a of the mirror 60.
  • the circularly polarized light incident on the reflecting surface 60a is reflected by the mirror 60 and then incident on the wave plate assembly 40 again.
  • the circularly polarized light is converted into P-polarized light by the wave plate assembly 40, that is, the polarization state is polarized light in the first direction.
  • the converted P-polarized light is again incident on the beam splitter 20, and since the polarization direction is the first direction, the light is transmitted through the beam splitter 20 formed by the polarization beam splitting film 26, the polarizing film 24, and the substrate 22 into the human eye. Enable users to see virtual images.
  • the real light AL is incident on the mirror 60 from the outside of the mirror 60. Except for being reflected and disappearing to a part of the external environment, most of the real light AL is sequentially transmitted through the mirror 60, the wave plate assembly 40 and the beam splitter 20, Enter the human eye E. In this way, the user can see the virtual image and the real environment at the same time.
  • the beam splitter 20 since the beam splitter 20 includes the polarizing film 24, it first reaches the substrate when it is incident from the outside through the side 20b of the spectroscope 20 opposite to the incident side of the virtual image light VL into the beam splitter 20. 22 and the polarizing film 24, at this time, the polarized light (S-polarized light) in the second direction is absorbed, and the polarized light (P-polarized light) in the first direction is transmitted. The polarized light (P-polarized light) in the first direction is then transmitted through the polarizing beam splitting film 26. As such, substantially all of the interfering light IL is prevented from entering the human eye by reflection through the beam splitter 20, reducing interference with the image seen by the human eye E.
  • the first direction polarized light may be polarized light having a polarization state of P direction
  • the second direction polarized light may be polarized light having a polarization state of S direction.
  • the first-direction polarized light may also be a polarized light having a polarization state and a P-direction at a certain angle, and second.
  • the directional polarized light may be polarized light having a polarization state and a certain angle in the S direction, and is not particularly limited.
  • the substrate 22, the polarizing film 24, and the polarization beam splitting film 26 forming the beam splitter 20 are configured such that the virtual image light rays from the projection source module are first incident on the polarization beam splitting film 26 and then reach the polarizing film 24.
  • the substrate 22, the polarizing film 24, and the polarization splitting film 26 of the beam splitter 20 can adopt an arrangement different from that shown in FIG.
  • the polarizing film 24 and the polarizing beam splitting film 26 may be respectively attached to opposite sides of the substrate 22, and the polarizing beam splitting film 26 defines the spectroscopic surface 20a on which the virtual image light is incident on the beam splitter 20 (ie, along the ray VL).
  • the multilayer film polarizing beamsplitter may also include no substrate, only the polarizing film 24 and the polarizing beam splitting film 26, and the polarizing beam splitting film 26 defines that the virtual image light is incident on the beam splitter 20.
  • the light splitting surface 20a ie, the incident direction D along the light ray VL: 20a-26-24).
  • the spectroscopic surface 20a of the spectroscope 20 is identified, the virtual image ray VL from the projection source module is incident on the incident direction D of the spectroscopic surface 20a, and the concave reflecting surface 60a of the mirror 60 is shown. And optical axis Z.
  • the spectroscopic surface 20a of the dichroic mirror 20 is at an angle ⁇ with respect to the optical axis Z of the mirror 60, and the angle between the incident direction D of the virtual image ray VL and the spectroscopic surface 20a of the spectroscope 20 is denoted by ⁇ .
  • the value of ⁇ ranges from ⁇ -10° to ⁇ +10°, and ⁇ is greater than 0° and less than 90°.
  • the term "between” includes an endpoint.
  • the value of ⁇ is between 11° and 79°, preferably between 20° and 70°, more preferably between 30° and 60°, more preferably between 40° and 55°. Most preferably between 40° and 50°.
  • the field of view of the image light is the largest, and the visible range of the image light is the largest.
  • a waveplate refers to an optical device that produces an additional optical path difference between two polarized lights that are perpendicular to each other, which may be separate devices, or devices attached or attached to other devices.
  • the wave plate assembly 40 can adopt a quarter wave plate or other wave plates, as long as the wave plate or the wave film or the optical device can implement or substantially implement the technical solution described in the present application.
  • the function is fine.
  • the 1/4 wave plate can be a planar structure or a curved structure. Specifically, the 1/4 wave plate may be a cylindrical structure; the 1/4 wave plate may also be a spherical or aspherical structure.
  • the wave plate assembly 40 configured as a quarter-wave plate may be disposed between the beam splitter 20 and the mirror 60 as shown, or may be directly attached to the concave reflecting surface 60a of the mirror 60. on.
  • the first polarized light and the second polarized light can be rotated in the direction of light propagation from 0 to 360° while satisfying the mutual verticality, and at this time, the polarizing film 24, the polarization beam splitting film 26, and 1/ of the wave plate assembly 40 are formed.
  • the 4 wave plate should also be selected accordingly, or the mounting angle should be changed accordingly.
  • the AR display device shown in FIG. 5 adopts an optical path module including a polarization beam splitter and a wave plate assembly, and can provide the light energy utilization rate in addition to the technical advantages that the AR display device shown in FIG. 4 can provide.
  • the energy efficiency of image light can be increased to about 25%, which improves the brightness of image light, while saving power consumption and reducing system heat.
  • the projection source module of the present application and the AR display device including the projection source module are described in detail above with reference to the embodiments shown in the accompanying drawings.
  • the projection source module of the present application can have any structure that integrates the projection source and the beam shaper.
  • the AR display device including the projection source module of the present application may include the optical path module of the example type described with reference to FIGS. 4 and 5, and may also include any other type of optical path module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种增强现实显示设备,包括投射源模组和光路模组,投射源模组包括被集成为一整体件的投射源(12)和光束整形器(14),光路模组包括分光镜(20)和反射镜(60)。从投射源(12)发出的携带虚拟图像信息的虚拟图像光线(VL)经过光束整形器(14)整形后从投射源模组发射出,首先投射到分光镜(20)上,经过分光镜(20)的反射到达反射镜(60),虚拟图像光线(VL)在反射镜(60)处被反射,并且最终进入人眼(E),携带现实场景信息的现实光线(AL)从反射镜(60)的外侧进入,透射经过反射镜(60)和分光镜(20)进入人眼(E)。还提供了包括增强现实显示设备的穿戴式增强现实系统以及用于增强现实显示设备的投射源模组。

Description

穿戴式AR系统、AR显示设备及其投射源模组 技术领域
本申请涉及增强现实(Augmented Reality,简称为AR)技术领域。具体而言,本申请涉及穿戴式AR系统、AR显示设备以及用于AR显示设备的投射源模组。
背景技术
增强现实(AR)技术是一种实时地将虚拟图像和现实场景结合展现的技术。增强现实技术的基础光学原理是向人眼同时入射真实场景景物信息和虚拟图像信息的光线,使在这两个光学路径上传输的图像信息在人眼处融合,以使人眼同时获得真实场景景物信息和虚拟图像的混合图像,达到增强现实的效果。
透射式显示设备是增强现实系统中的关键设备。按照真实场景的不同,透射式显示设备分为视频透视式显示设备和光学透视式显示设备。常见的增强现实眼镜或头盔(也称为AR眼镜或AR头盔)是光学透视式AR显示设备的例子。
图1是一种现有AR显示设备的光学示意图,该AR显示设备总体上包括投射源模组和光路模组。投射源模组包括投射源1和作为光束整形器的透镜2,光路模组包括分光镜3和曲面反射镜4。
人眼能够看到虚拟图像的原理是这样的:自投射源1发出的虚拟图像光线入射到透镜2内,透射经过透镜2后离开透镜2,实现光线的整形,整形后的光线VL入射到分光镜3上,一部分光线在分光镜3的分光面处发生反射而入射到反射镜4的反射面(一部分光线透射经过分光镜3而消失在外部环境中),在反射镜4上反射后再次入射到分光镜3,之后,虚拟图像光线VL透射经过分光镜3进入人眼E。
在此光学结构中,投射源1和透镜2之间以空气间隔开,空气折射率低,数值孔径较难提高,系统极限分辨率受限;由于空气与透镜2之间的分界面-入射面处的折射率差较大,使得光在该分界面处反射的较多,形成较多的杂散光,鬼影现象严重。此外,投射源1和透镜2是零散的分离部件,使得光学结构尺寸偏大,装调困难,并且容易损坏。
发明内容
本申请的目的是解决上述缺陷中至少一个,为客户提供一种消除了投射源和光束整形器之间的间隙的新式投射源模组,并且提供了包括这种新式投射源模组的AR显示设备以及包括该AR显示设备的穿戴式AR系统。
具体地,根据一个方面,提供了一种增强现实显示设备,包括投射源模组和光路模组,所述投射源模组包括被集成为一整体件的投射源和光束整形器,所述光路模组包括分光镜和反射镜,其中,从投射源发出的携带虚拟图像信息的虚拟图像光线经过光束整形器整形后从投射源模组发射出,首先投射到所述分光镜上,经过分光镜的反射到达反射镜,虚拟图像光线在反射镜处被反射,并且最终进入人眼,携带现实场景信息的现实光线从所述反射镜的外侧进入,透射经过所述反射镜和所述分光镜进入人眼。投射源模组的投射源和光束整形器紧密贴合,减少了形成光束整形器的透镜分界面的折射率差,提高边缘光线的透过率,减少了鬼像,提高了图像亮度。
在一个可行实施方式中,所述光束整形器被直接集成到所述投射源,例如,所述光束整形器通过面贴合方式粘接到所述投射源。在投射源和光束整形器具有互补的、能够实现面贴合的接触表面的情况下,两者能够直接贴合而集成在一起,在实现上述目的的情况下最大程度地减少了元件数量,结构更简单、紧凑。
在一个可行实施方式中,所述光束整形器经由中间匹配部件间接集成到所述投射源。在投射源和光束整形器不存在能够直接面贴合的互补接触表面的情况下,采用中间匹配部件实现了集成为一整体件的目的。
在一个可行实施方式中,所述中间匹配部件通过由液态介质、液晶介质、半固态介质和固态介质构成的组中的至少一种介质形成。例如,所述中间匹配部件通过由水、酒精、玻璃和树脂构成的组中的至少一种介质形成。
在一个可行实施方式中,所述中间匹配部件由液态介质和/或液晶介质形成,并且所述投射源模组还包括将形成所述中间匹部件的介质密封在所述投射源和所述光束整形器之间的密封结构。
在一个可行实施方式中,所述中间匹配部件的介质折射率为1~2.7。
在一个可行实施方式中,所述光束整形器被配置为凸透镜,或者被配 置为凹透镜,或者被配置成凸透镜和凹透镜的组合。
在一个可行实施方式中,所述分光镜是平面型分光镜并且具有来自投射源模组的虚拟图像光线入射于其上的分光面,所述反射镜是曲面反射镜并且具有光轴。
在一个可行实施方式中,从所述分光镜的分光面反射的虚拟图像光线直接投射到所述反射镜的反射面上,经所述反射镜的反射面反射后再直接入射到分光镜,然后透射经过分光镜。
在一个可行实施方式中,所述分光镜是偏振分光镜,所述增强现实显示设备还包括设置于所述偏振分光镜和所述曲面反射镜之间的波片组件,其中,从所述分光镜的分光面反射的虚拟图像光线被透射经过所述波片组件然后投射到所述反射镜的反射面上,经所述反射面反射后再透射经过所述波片组件入射到分光镜,然后透射经过分光镜。
在一个可行实施方式中,所述偏振分光镜包括偏振膜和偏振分光膜,所述偏振膜和偏振分光膜被配置为使得来自所述投射源模组的虚拟图像光线首先入射到偏振分光膜上、然后入射到所述偏振膜上,
优选地,所述偏振分光膜限定所述分光面;或者所述偏振分光镜还包括基片,所述偏振分光膜限定所述分光面。
在一个可行实施方式中,所述波片组件为1/4波片,优选地,所述1/4波片贴合于所述反射镜的反射面。
在一个可行实施方式中,所述分光镜的分光面和所述反射镜的光轴之间具有第一夹角,来自投射源模组的投射源的法线和所述分光镜的分光面之间具有第二夹角,其中所述第一夹角的取值范围为所述第二夹角-10°至所述第二夹角+10°之间,且所述第一夹角大于0°且小于90°。
在一个可行实施方式中,,所述第二夹角是在11°与79°之间、优选地是在20°与70°之间、更加优选地是在30°与60°之间、更加优选地是在40°与55°之间,最优选地是在40°与50°之间。
在本申请的第二方面中,还提供了一种用于上述的增强现实显示设备的投射源模组。
在本申请的第二方面中,还提供了一种包括上述增强现实显示设备的一种穿戴式增强现实系统。所述穿戴式增强现实系统可以是增强现实眼镜或增强现实头盔。
根据本申请的投射源组件、增强现实显示设备和穿戴式增强现实系统,提供虚拟图像信息的投射源与对来自投射源的光线提供整形作用的光束整形器直接紧密贴合或者经由中间匹配部件集成为一整体件。从投射源发出的虚拟图像光线不经过空气而进入到形成光束整形器的透镜中,减小了透镜分界面处的折射率差,提高了光线透过率,增加了光效率,同时能够抑制或减轻杂散光和鬼像的产生。通过提高像方折射率,能够用相对小的孔径角实现了较大的数值孔径,减少了边缘光线的偏折角,降低了设计难度。本申请还提供了下述优势中的至少一个:光学系统结构更加紧凑、体积更小、重量更轻、便于装调、系统强度高、佩戴舒适。
附图说明
为了更清楚、更详细地说明和示意本申请的上述和其他特征和优势,下面将结合附图中示出的若干实施例详细描述本申请的原理。本领域内技术人员应理解,附图中示出的实施例仅仅是为说明和阐述本申请的原理而给出的一部分实施例,并不是本申请的所有实施例。为了突出本申请的原理,附图没有按比例绘制,仅仅示意了本申请的光学原理性结构。图中:
图1示出了一种现有技术的AR显示设备的实施例;
图2示出了根据本申请的AR显示设备的投射源模组的第一实施例;
图3示出了根据本申请的AR显示设备的投射源模组的第二实施例;
图4示出了根据本申请的AR显示设备的第一实施例;
图5示出了根据本申请的AR显示设备的第二实施例;
图6示出了图5的AR显示设备的分光镜的示意图。
具体实施方式
根据本申请的穿戴式AR系统可以是AR眼镜或AR头盔,其包括根据本申请的AR显示设备。本申请的AR显示设备总体上包括投射源模组和光路模组。
投射源模组用于提供承载虚拟图像信息的光束(下文中也称为虚拟图像光线VL),并且主要包括投射源和光束整形器。
根据本申请,投射源模组的投射源可以是任何合适形式的投射源。在一些实施例中,投射源可以是单色光源或者多色光源。在一些实施例中, 投射源可以是激光光源或LED光源等,比如LED显示屏。在一些实施例中,投射源可以是诸如平面显示屏的平面型投射源,也可以是诸如曲面显示屏的曲面型投射源。在一些实施例中,投射源可以是集成光源或单一光源。投射源的示例性例子可以包括、但不仅限于:OLED(有机发光二极管)、LCOS(硅基液晶)、LCD(液晶显示设备)、MEMS(微机电显示设备)、DMD(数字微镜元件)。
投射源模组的光束整形器设置于从投射源发出的虚拟图像光线VL的出射光路上(在本文中,自一光学器件射出的光束的行进光路称为该光学器件的“出射光路”,入射到一光学器件上的光束的行进光路成为该光学器件的“入射光路”),用于对从投射源发出的光线VL进行准直、整形和/或合束处理。
根据本申请,光束整形器可被配置为透镜。形成本申请的光束整形器的透镜可以是一个透镜或多个透镜组成的透镜组。透镜或透镜组中的每个透镜可以是凸透镜、凹透镜、或凸透镜和凹透镜任意组合等,透镜的面型可以是球面、非球面、自由曲面等。
根据本申请的原理,光束整形器可以经由诸如粘接等的直接面贴合方式集成到投射源,或者经由中间匹配部件集成到投射源。换句话说,根据本申请的AR显示设备的投射源模组的投射源和光束整形器是直接集成或经由中间匹配部件间接地集成到一起的一整体件。中间匹配部件由不同于空气并且折射率大于1的匹配介质制成。以这种方式,从投射源射出的、承载着虚拟图像信息的光线VL不经过空气即进入光束整形器或者经由折射率大于1的匹配介质进入光束整形器,然后经由光束整形器从投射源模组射出。
优选地,制成中间匹配部件的匹配介质的折射率可以为1~2.7。制成中间匹配部件的匹配介质可以是液态介质、液晶介质、半固态介质或固态介质,中间匹配部件可以由上述介质中的至少一种形成。液态介质可以是例如诸如水或酒精等的透明介质。固态介质可以是诸如玻璃等的透明固态介质。所述匹配介质可以包括固态树脂和/或半固态树脂和/或液态树脂。
图2示出了根据本申请的AR显示设备的投射源模组的第一实施例。在本实施例中,投射源12和光束整形器14经由中间匹配部件16间接地集成到一起。在本实施例中,光束整形器14被提供为透镜,中间匹配部件16 由液态和/或液晶介质形成,相应地,投射源模组包括用于将液态或液晶介质密封于投射源12和光束整形器14之间的密封结构。该密封结构可以是本领域内任何适当的密封结构。
在一个可行实施例中,密封结构包括密封框18,密封框18与投射源12之间的密封通过粘接实现,密封框18与形成光束整形器14的透镜之间的密封通过嵌置接合实现。可选地,根据形成中间匹配部件16的介质形态,密封框18与形成光束整形器14的透镜之间还进行粘接连接。
利用此结构,从投射源12发出的、承载着虚拟图像的光线首先进入中间匹配部件16,之后进入透镜形式的光束整形器14。由于匹配介质的折射率大于空气的折射率,在中间匹配部件16和光束整形器14的分界面处,形成光束整形器14的透镜介质与匹配介质之间的折射率的差小于形成光束整形器14的透镜介质与空气之间的折射率的差,所以更多的光线被进行折射,提高了光线透过率,增加了投射源模组的光效率。相应地,该分界面处反射光线减少,抑制或减轻了杂散光和鬼像的产生。
由公式R=(0.61*λ)/(n*sinθ)(其中R为衍射斑半径,λ为光波长,n为像面折射率,θ为入射孔径角)得知,匹配介质的折射率增大,生成的衍射光斑会减小,成像分辨率提高。另外,因为像方折射率被提高了,所以能够用相对小的孔径角实现较大的数值孔径,减少了边缘光线的偏折角,降低了设计难度。再者,投射源与光束整形器集成到一起,光学结构更加紧凑,更易于装调,系统性更高。
图3示出了根据本申请的AR显示设备的投射源模组的第二实施例。在本第二实施例中,投射源12和光束整形器14被以面结合的方式直接集成到一起,投射源12和光束整形器14具有互补贴合的接触面。作为一个例子,形成光束整形器14的透镜被粘接到投射源12上。也可以利用本领域内技术人员已知的任何其他适当的方式将投射源12与光束整形器14紧密贴合到一起。
利用此结构,自投射源12发出的源光束不经过空气即进入形成光束整形器14的透镜中。此结构能够提供与上述关于图2所描述的所有优势。另外,此结构中投射源与透镜之间直接贴合,光学结构更加紧凑、体积更小、重量更轻、佩戴舒适。结构紧凑更便于装调。
上面关于图2和3详细描述了根据本申请的投射源模组的优选实施例。本领域内技术人员应理解,上述实施例不是本申请的投射源模组的所有实施例,本申请包含所有将投射源与光束整形器集成为一体的实施方式。本领域内技术人员还应理解,本申请的投射源模组能够与任何组成、任何功能的光路模组结合使用,与本申请的投射源模组结合使用的光路模组可以包含任何数目的光学器件、任何功能的光学器件、或者任何布置方式的光学器件的组合。
下面参考图4描述包括图2中示出的投射源模组的AR显示设备,其包括由分光镜20和反射镜60构成的光路模组。投射源模组在上面已经描述过,这里不再赘述。
光路模组的分光镜20配置为本领域内广泛已知的分光镜。分光镜可以是平面型分光镜或者立方体型分光镜。在分光镜是立方体型的情况下,其通常由两个45度直角三棱镜组成,这两个三棱镜的斜面相互贴合在一起,构成该分光镜的分光面;在参考附图描述的实施例中,分光镜是平面型分光镜,分光镜的分光面平行于光线入射于其上的分光镜的平面。入射到分光镜的分光面上的光线一部分发生反射一部分发生折射从而将光线分成反射光线部分和折射光线部分。分光镜的分光膜或偏振分光膜限定该分光面,分光膜或偏振分光膜的有效部分可以是一层或多层结构,具有从几十个纳米到几百个微米的厚度。如果是贴附的偏振分光膜,除了有效部分外,还可能包括厚度在几十微米到几百微米的基膜,基膜起支撑和保护作用。在本说明书中,虽然以分光镜的分光面为例进行了说明,但是反射不一定仅仅发生在分光镜的分光面上,而是可能发生在分光镜的分光膜或偏振分光膜的整个有效厚度内。
反射镜60配置为本领域内已知的凹反射镜。优选地,反射镜60可以是半反射镜,以使得来自投射源模组的虚拟图像光线VL能够进入人眼E,并且现实场景的现实光线AL也能够进入人眼E。在一个实施例中,反射镜也可以是全反射镜,以使得仅来自投射源模组的虚拟图像光线VL能够进入人眼E。在本申请的上下文中,除非特别说明,否则术语“反射镜”的反射面上接收到的光线被部分地透射且被部分地反射。
图4的AR显示设备,从投射源模组投射出的、经过整形的、承载着虚拟图像信息的光线VL被入射到分光镜20上。在分光镜20的分光面20a 处,一部分光线发生反射,一部分光线折射进入分光镜20内,离开分光镜20后消失在外界环境中。被反射的光线投射到反射镜60上,在反射镜60的反射面60a上反射后重新投射到分光镜20上,之后光束透射经过分光镜20进入人眼E。如此,人眼E能够观察到来自投射源模组的虚拟图像,在本申请的附图4和5中,虚拟图像光线用实心箭头表示。
现实场景的现实光线AL从反射镜60的外侧(图4的右侧,与反射面60a相反的一侧)进入AR显示设备的光路模组,首先透射经过反射镜60,入射到分光镜20上,再透射经过分光镜20而进入人眼E。如此,承载着虚拟图像信息的光线VL和承载着现实场景的景物信息的光线AL同时进入人眼E,人眼E同时观察到现实场景的景物图像和虚拟图像。
图4中示出的AR显示设备包括关于图2所描述的投射源模组,能够提供在上面关于图2所描述的所有技术优势,包括、但不仅限于:由于投射源与光束整形器之间紧密贴合或无间隙的结构而带来的光学系统结构紧凑、体积小、重量轻、便于装调、系统强度高、佩戴舒适的技术优势;由于提高了像方折射率而带来的能够用相对小的孔径角实现较大的数值孔径、减少边缘光线的偏折角的技术优势;由于减小了形成光束整形器的透镜分界面处的折射率差而带来的提高边缘光线透过率、减少鬼像以及增强亮度的技术优势。可替代地,图4中示出的AR显示设备可以包括如图3所示的投射源模组。
然而,在本结构中,还会有干扰光线IL(在图4和5中用双实心箭头表示)从分光镜20的与虚拟图像光线VL入射到分光面20a的入射侧相反的一侧入射到分光镜20上,在一部分被投射经过分光镜20的同时,一部分干扰光线IL被反射到人眼E中,一定程度上影响人眼E看到的图像的对比度。为了在此问题上加以改进,本申请提供了在图5中示出的AR显示设备的第二实施例。
图5示出的AR显示设备包括图3中的投射源模组结构,即,该投射源模组包括直接集成在一起的投射源12和光束整形器14。关于投射源模组的细节请参考上面关于图3的描述,这里不再进行赘述。
在本实施例中,AR显示设备的光路模组包括被配置为多层膜偏振分光镜的分光镜20,被配置为曲面半反射镜的反射镜60,以及设置于分光镜20和反射镜60之间的波片组件40。如图6所示,形成分光镜20的多层膜偏 振分光镜可以包括基片22、直接贴合于基片22上的偏光膜24、以及贴合于偏光膜24上的偏振分光膜26,这种结构使得来自投射源模组的虚拟图像光线VL首先入射到偏振分光膜26上然后到达偏光膜24。
偏光膜24被配置用于使偏振态为第一方向的偏振光通过或透过,同时吸收偏振态为第二方向的偏振光。偏振分光膜26用于使偏振态为第一方向的偏振光通过或透过,同时反射偏振态为第二方向的偏振光,其中第一方向和第二方向相互垂直。波片组件40被配置用于将入射的第二偏振光转变为圆偏振光以及将入射的圆偏振光转变为第一偏振光。
以第一方向的偏振光为P偏振光而第二方向的偏振光为S偏振光为例,利用图5的AR显示设备,从投射源模组投射出的虚拟图像光线VL首先入射到分光镜20的偏振分光膜26。由于分光镜20的偏振分光膜26和偏光膜24的作用,在分光面20a处,虚拟图像光线VL中的大部分、直至所有S偏振光被反射至波片组件40上。此S偏振光透射经过波片组件40,转变为圆偏振光而入射到反射镜60的反射面60a上。入射到反射面60a上的圆偏振光经反射镜60反射之后再次入射到波片组件40。此时圆偏振光被波片组件40变成P偏振光,即偏振态为第一方向的偏振光。转变后的P偏振光再次入射到分光镜20,由于偏振方向为第一方向,此时光线将透射经过由偏振分光膜26、偏光膜24和基片22形成的分光镜20进入到人眼中,使用户能看到虚拟图像。
现实光线AL从反射镜60的外侧入射到反射镜60上,除被反射而消失到外界环境的一部分之外,大部分现实光线AL依次透射经过反射镜60、波片组件40和分光镜20,进入人眼E。如此,用户能够同时看到虚拟图像和真实的外界环境。
对于干扰光线IL来说,由于分光镜20包括偏光膜24,所以当其从外界经由分光镜20的与虚拟图像光线VL的入射侧相反的一侧20b入射到分光镜20中时首先到达基片22和偏光膜24,此时第二方向的偏振光(S偏振光)被吸收,第一方向的偏振光(P偏振光)被透射。第一方向的偏振光(P偏振光)接着透射经过偏振分光膜26。如此,基本上所有的干扰光线IL被防止通过经分光镜20的反射而进入人眼,减少了对人眼E看到的图像的干扰。
本领域内技术人员可以理解,如上述,第一方向偏振光可以是偏振态为P方向的偏振光,第二方向偏振光可以是偏振态为S方向的偏振光。考虑到P偏振光和S偏振光可能在满足相互垂直的前提下绕光线传播方向旋转,在本申请中,第一方向偏振光也可以是偏振态与P方向呈一定角度的偏振光,第二方向偏振光也可以是偏振态与S方向呈一定角度的偏振光,不进行特殊限定。
根据上述原理,形成分光镜20的基片22、偏光膜24和偏振分光膜26被配置为使得来自投射源模组的虚拟图像光线首先入射到偏振分光膜26上然后到达偏光膜24。基于此原理,分光镜20的基片22、偏光膜24和偏振分光膜26可以采用不同于图6所示的布置(即沿着光线VL的入射方向D:20a-26-24-22),例如,偏光膜24和偏振分光膜26可以分别贴合于基片22的相反两侧,并且偏振分光膜26限定出虚拟图像光线入射到分光镜20上的分光面20a(即沿着光线VL的入射方向D:20a-26-22-24);再例如,基片22和偏光膜24分别直接贴合于偏振分光膜26的相反两侧(即沿着光线VL的入射方向D:22-20a-26-24)。
仍然基于上述原理,可选地,多层膜偏振分光镜也可以不包括基片,仅包括偏光膜24和偏振分光膜26,并且偏振分光膜26限定出虚拟图像光线入射到分光镜20上的分光面20a(即沿着光线VL的入射方向D:20a-26-24)。
如图4和5中所示,标识出了分光镜20的分光面20a,来自投射源模组的虚拟图像光线VL入射到该分光面20a的入射方向D,以及反射镜60的凹反射面60a和光轴Z。分光镜20的分光面20a与反射镜60的光轴Z呈α角,虚拟图像光线VL的入射方向D和分光镜20的分光面20a之间的夹角被标记为β。α的取值范围为β-10°至β+10°之间,且α大于0°且小于90°。在本说明书中术语“之间”包含端点。β的值是在11°与79°之间、优选地是在20°与70°之间、更加优选地是在30°与60°之间、更加优选地是在40°与55°之间,最优选地是在40°与50°之间。此时,图像光线的视场最大,图像光线的可视范围最大。
在本申请的上下文中,波片指能使互相垂直的两种偏振光间产生附加光程差的光学器件,其可以是独立的器件,或附着或贴附在其他器件上的器件。本领域技术人员可以理解,波片组件40可以采用1/4波片,也可以 采用其他波片,只要这种波片或波膜或光学器件能够使得实现或者基本上实现本申请描述的技术方案的功能即可。1/4波片可为平面结构或曲面结构。具体地,1/4波片可以是柱面结构;1/4波片还可以是球面或非球面结构。
根据本申请的原理,被配置为1/4波片的波片组件40可以如图所示设置于分光镜20和反射镜60之间,也可以直接贴合于反射镜60的凹反射面60a上。
如上述,第一偏振光和第二偏振光可以在满足相互垂直的前提下绕光线传播的方向0~360°旋转,此时偏光膜24,偏振分光膜26和形成波片组件40的1/4波片也应进行相应地选择,或者相应地改变安装角度。
图5中示出的AR显示设备采用了包括偏振分光镜和波片组件的光路模组,除了能够提供图4所示AR显示设备所能够提供的技术优势之外,还能够将光能利用率提高1倍以上,图像光线的能量效率可提升至约25%,提高了图像光线亮度,同时节省了功耗并且降低系统发热量。
上面参考附图中示出的实施例详细描述了本申请的投射源模组和包括所述投射源模组的AR显示设备。本申请的投射源模组可以具有将投射源和光束整形器集成到一起的任何结构。包括本申请的投射源模组的AR显示设备可以包括参考图4和5所描述的示例类型的光路模组,还可以包括任何其他类型的光路模组。
以上实施例仅是能够实现本申请的原理的一些实施方式,并不是所有实施方式。本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,都可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种增强现实显示设备,包括投射源模组和光路模组,所述投射源模组包括被集成为一整体件的投射源(12)和光束整形器(14),所述光路模组包括分光镜(20)和反射镜(60),其中,从投射源(12)发出的携带虚拟图像信息的虚拟图像光线(VL)经过光束整形器(14)整形后从投射源模组发射出,首先投射到所述分光镜(20)上,经过分光镜(20)的反射到达反射镜(60),虚拟图像光线(VL)在反射镜(60)处被反射,并且最终进入人眼(E),
    携带现实场景信息的现实光线(AL)从所述反射镜(60)的外侧进入,透射经过所述反射镜(60)和所述分光镜(20)进入人眼(E)。
  2. 根据权利要求1所述的增强现实显示设备,其中,所述光束整形器(14)被直接集成到所述投射源(12),例如,所述光束整形器(14)通过面贴合方式粘接到所述投射源(12)。
  3. 根据权利要求1所述的增强现实显示设备,其中,所述光束整形器(14)经由中间匹配部件(16)间接集成到所述投射源(12)。
  4. 根据权利要求3所述的增强现实显示设备,其中,所述中间匹配部件(16)通过由液态介质、液晶介质、半固态介质和固态介质构成的组中的至少一种介质形成。
  5. 根据权利要求3所述的增强现实显示设备,其中,所述中间匹配部件(16)通过由水、酒精、玻璃和树脂构成的组中的至少一种介质形成。
  6. 根据权利要求3所述的增强现实显示设备,其中,所述中间匹配部件(16)由液态介质和/或液晶介质形成,并且所述投射源模组还包括将形成所述中间匹配部件(16)的介质密封在所述投射源(12)和所述光束整形器(14)之间的密封结构。
  7. 根据权利要求3-6中任一项所述的增强现实显示设备,其中,所述中间匹配部件(16)的介质折射率为1~2.7。
  8. 根据权利要求1-7中任一项所述的增强现实显示设备,其中,所述光束整形器(14)被配置为凸透镜,或者被配置为凹透镜,或者被配置成凸透镜和凹透镜的组合。
  9. 根据权利要求1-8中任一项所述的增强现实显示设备,其中,所述分光镜(20)是平面型分光镜并且具有来自投射源模组的虚拟图像光线(VL)入射于其上的分光面(20a),所述反射镜(60)是曲面反射镜并且具有光轴(Z)。
  10. 根据权利要求9所述的增强现实显示设备,其中,从所述分光镜(20)的分光面(20a)反射的虚拟图像光线(VL)直接投射到所述反射镜(60)的反射面(60a)上,经所述反射镜(60)的反射面(60a)反射后再直接入射到分光镜(20),然后透射经过分光镜(20)。
  11. 根据权利要求9所述的增强现实显示设备,其中,所述分光镜(20)是偏振分光镜,所述增强现实显示设备还包括设置于所述偏振分光镜和所述曲面反射镜之间的波片组件(40),其中,从所述分光镜(20)的分光面(20a)反射的虚拟图像光线(VL)被透射经过所述波片组件(40)然后投射到所述反射镜(60)的反射面(60a)上,经所述反射面(60a)反射后再透射经过所述波片组件(40)入射到分光镜(20),然后透射经过分光镜(20)。
  12. 根据权利要求11所述的增强现实显示设备,其中,所述偏振分光镜包括偏振膜(24)和偏振分光膜(26),所述偏振膜(24)和偏振分光膜(26)被配置为使得来自所述投射源模组的虚拟图像光线(VL)首先入射到偏振分光膜(26)上、然后入射到所述偏振膜(24)上,
    优选地,所述偏振分光膜(26)限定所述分光面(20a);或者所述偏振分光镜还包括基片(22),所述偏振分光膜(26)限定所述分光面(20a)。
  13. 根据权利要求11或12所述的增强现实显示设备,其中,所述波片组件(40)为1/4波片,优选地,所述1/4波片贴合于所述反射镜(60)的反射面(60a)。
  14. 根据权利要求9-13中任一项所述的增强现实显示设备,其中,所述分光镜(20)的分光面(20a)和所述反射镜(60)的光轴(Z)之间具有第一夹角(α),来自投射源模组的投射源的法线和所述分光镜(20)的分光面(20a)之间具有第二夹角(β),其中所述第一夹角(α)的取值范围为所述第二夹角(β)-10°至所述第二夹角(β)+10°之间,且所述第一夹角(α)大于0°且小于90°。
  15. 根据权利要求14所述的增强现实显示设备,其中,所述第二夹角(β)是在11°与79°之间、优选地是在20°与70°之间、更加优选地是在30°与60°之间、更加优选地是在40°与55°之间,最优选地是在40°与50°之间。
  16. 一种投射源模组,其中所述投射源模组是用于根据权利要求1-15中任一项所述的增强现实显示设备的投射源模组。
  17. 一种穿戴式增强现实系统,包括根据权利要求1-15中任一项所述的增强现实显示设备,优选地,所述穿戴式增强现实系统是增强现实眼镜或增强现实头盔。
PCT/CN2019/074863 2018-02-12 2019-02-12 穿戴式ar系统、ar显示设备及其投射源模组 WO2019154429A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19750619.9A EP3754408A4 (en) 2018-02-12 2019-02-12 Wearable ar system, and ar display device and projection source module thereof
CN201980001716.4A CN110573933A (zh) 2018-02-12 2019-02-12 穿戴式ar系统、ar显示设备及其投射源模组
US16/990,633 US11500205B2 (en) 2018-02-12 2020-08-11 Wearable AR system, AR display device and its projection source module

Applications Claiming Priority (22)

Application Number Priority Date Filing Date Title
CN201810147326.5 2018-02-12
CN201810147336.9 2018-02-12
CN201810146738.7A CN110161683A (zh) 2018-02-12 2018-02-12 图像投射装置和ar显示设备
CN201810147332.0A CN110146978A (zh) 2018-02-12 2018-02-12 Ar显示装置和穿戴式ar设备
CN201810146912.8 2018-02-12
CN201810146751.2 2018-02-12
CN201810146751.2A CN110161684A (zh) 2018-02-12 2018-02-12 Ar成像装置和穿戴式ar设备
CN201810146905.8A CN110161685A (zh) 2018-02-12 2018-02-12 Ar显示装置和穿戴式ar设备
CN201810147332.0 2018-02-12
CN201810147330.1A CN110161689A (zh) 2018-02-12 2018-02-12 Ar显示装置和穿戴式ar设备
CN201810147328.4 2018-02-12
CN201810146905.8 2018-02-12
CN201810147325.0A CN108181709A (zh) 2018-02-12 2018-02-12 Ar显示装置和穿戴式ar设备
CN201810147326.5A CN110161688A (zh) 2018-02-12 2018-02-12 屈光矫正ar显示装置和穿戴式ar设备
CN201810147325.0 2018-02-12
CN201810147336.9A CN108319019A (zh) 2018-02-12 2018-02-12 Ar显示装置和穿戴式ar设备
CN201810146738.7 2018-02-12
CN201810147330.1 2018-02-12
CN201810146912.8A CN110161686A (zh) 2018-02-12 2018-02-12 Ar显示装置和穿戴式ar设备
CN201810147328.4A CN108319018A (zh) 2018-02-12 2018-02-12 一种增强现实装置、设备及实现增强现实的方法
CN201810146915.1 2018-02-12
CN201810146915.1A CN110161687A (zh) 2018-02-12 2018-02-12 Ar显示装置和穿戴式ar设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/990,633 Continuation-In-Part US11500205B2 (en) 2018-02-12 2020-08-11 Wearable AR system, AR display device and its projection source module

Publications (1)

Publication Number Publication Date
WO2019154429A1 true WO2019154429A1 (zh) 2019-08-15

Family

ID=67547836

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/CN2019/074857 WO2019154428A1 (zh) 2018-02-12 2019-02-12 增强现实设备及其中所采用的光学系统和半反射镜
PCT/CN2019/074852 WO2019154426A1 (zh) 2018-02-12 2019-02-12 增强现实设备及其中所采用的光学系统
PCT/CN2019/074863 WO2019154429A1 (zh) 2018-02-12 2019-02-12 穿戴式ar系统、ar显示设备及其投射源模组
PCT/CN2019/074868 WO2019154430A1 (zh) 2018-02-12 2019-02-12 穿戴式ar系统、ar显示设备及其投射源模组
PCT/CN2019/074876 WO2019154432A1 (zh) 2018-02-12 2019-02-12 增强现实设备及其中所采用的光学系统

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/074857 WO2019154428A1 (zh) 2018-02-12 2019-02-12 增强现实设备及其中所采用的光学系统和半反射镜
PCT/CN2019/074852 WO2019154426A1 (zh) 2018-02-12 2019-02-12 增强现实设备及其中所采用的光学系统

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/074868 WO2019154430A1 (zh) 2018-02-12 2019-02-12 穿戴式ar系统、ar显示设备及其投射源模组
PCT/CN2019/074876 WO2019154432A1 (zh) 2018-02-12 2019-02-12 增强现实设备及其中所采用的光学系统

Country Status (6)

Country Link
US (7) US11693244B2 (zh)
EP (5) EP3754411A4 (zh)
JP (3) JP7285579B2 (zh)
KR (3) KR102628264B1 (zh)
CN (5) CN110537134A (zh)
WO (5) WO2019154428A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114077051A (zh) * 2020-08-13 2022-02-22 京东方科技集团股份有限公司 一种近眼显示装置
US11330091B2 (en) 2020-07-02 2022-05-10 Dylan Appel-Oudenaar Apparatus with handheld form factor and transparent display with virtual content rendering

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7918793B2 (en) 2005-10-28 2011-04-05 Biosense Webster, Inc. Synchronization of ultrasound imaging data with electrical mapping
JP7285579B2 (ja) 2018-02-12 2023-06-02 マトリックスド、リアリティー、テクノロジー、カンパニー、リミテッド 拡張現実装置、およびそのための光学系
JP6695062B2 (ja) * 2018-03-29 2020-05-20 パナソニックIpマネジメント株式会社 表示システム、制御装置、制御方法、プログラム、及び移動体
US11579425B1 (en) 2019-08-05 2023-02-14 Meta Platforms Technologies, Llc Narrow-band peripheral see-through pancake lens assembly and display device with same
US11586024B1 (en) 2019-08-05 2023-02-21 Meta Platforms Technologies, Llc Peripheral see-through pancake lens assembly and display device with same
US11391948B2 (en) 2019-09-10 2022-07-19 Facebook Technologies, Llc Display illumination using a grating
US11726336B2 (en) 2019-09-10 2023-08-15 Meta Platforms Technologies, Llc Active zonal display illumination using a chopped lightguide
WO2021049694A1 (ko) * 2019-09-10 2021-03-18 엘지전자 주식회사 전자 디바이스
US11592608B2 (en) 2019-09-10 2023-02-28 Meta Platforms Technologies, Llc Switchable polarization retarder array for active zonal illumination of display
US10989928B2 (en) 2019-09-17 2021-04-27 Facebook Technologies, Llc Thin see-through pancake lens assembly and display device including the same
TWI717912B (zh) * 2019-11-25 2021-02-01 宏碁股份有限公司 頭戴式顯示裝置
CN111064876B (zh) * 2019-12-30 2021-08-10 维沃移动通信有限公司 电子设备、拍摄控制方法及装置、计算机可读存储介质
CN111158205B (zh) * 2019-12-31 2022-06-10 广景视睿科技(深圳)有限公司 一种投影仪及投影系统
US11360308B2 (en) 2020-01-22 2022-06-14 Facebook Technologies, Llc Optical assembly with holographic optics for folded optical path
CN111258070A (zh) * 2020-02-28 2020-06-09 歌尔股份有限公司 成像系统及增强现实设备
CN111273449A (zh) * 2020-03-23 2020-06-12 深圳惠牛科技有限公司 一种增强现实系统及增强现实装置
CN111290125A (zh) * 2020-03-31 2020-06-16 优奈柯恩(北京)科技有限公司 光学装置以及头戴式设备
JP7002061B2 (ja) * 2020-04-01 2022-02-10 パナソニックIpマネジメント株式会社 表示装置
US11366311B2 (en) 2020-04-01 2022-06-21 Panasonic Intellectual Property Management Co., Ltd. Display device
CN111399224A (zh) * 2020-04-21 2020-07-10 Oppo广东移动通信有限公司 显示光学系统及头戴显示设备
CN111474715A (zh) * 2020-04-23 2020-07-31 歌尔股份有限公司 光学系统及增强现实设备
CN113721402B (zh) * 2020-05-26 2023-11-03 Oppo广东移动通信有限公司 电子设备、控制方法、控制装置、电子装置和存储介质
CN112147783B (zh) * 2020-09-28 2023-04-25 维沃移动通信有限公司 穿戴设备
CN114355714A (zh) * 2020-10-13 2022-04-15 华为技术有限公司 一种照明系统和相关产品
CN112213860B (zh) * 2020-11-17 2023-04-18 闪耀现实(无锡)科技有限公司 一种增强现实装置、穿戴式增强现实设备及控制增强现实装置的方法
CN113341557B (zh) * 2021-08-02 2022-08-02 深圳纳德光学有限公司 一种反射式目镜光学系统及头戴近眼显示装置
US20230093721A1 (en) * 2021-09-23 2023-03-23 Valve Corporation Head-mounted display system with compact optics
US11726339B2 (en) 2021-11-30 2023-08-15 Samsung Electronics Co., Ltd. System for digital recording protection and electrochromic device frame
CN114236855A (zh) * 2022-02-14 2022-03-25 北京瑞波科技术有限公司 光学系统和ar设备
KR20230127737A (ko) * 2022-02-25 2023-09-01 주식회사 레티널 편광판을 구비하는 증강 현실용 광학 장치
WO2024043515A1 (ko) * 2022-08-25 2024-02-29 삼성전자 주식회사 몰입감 있는 영상을 제공하는 디스플레이 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540465A (zh) * 2011-12-09 2012-07-04 中航华东光电有限公司 一种头盔显示器的光学系统
CN202433604U (zh) * 2011-12-09 2012-09-12 中航华东光电有限公司 一种头盔显示器的光学系统
CN107589546A (zh) * 2017-10-23 2018-01-16 北京小米移动软件有限公司 光学系统及增强现实眼镜
CN108181709A (zh) * 2018-02-12 2018-06-19 杭州太若科技有限公司 Ar显示装置和穿戴式ar设备
CN108319019A (zh) * 2018-02-12 2018-07-24 杭州太若科技有限公司 Ar显示装置和穿戴式ar设备

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1282425A (en) 1914-05-19 1918-10-22 Burroughs Adding Machine Co Adding-machine.
GB1282425A (en) 1969-03-04 1972-07-19 Pilkington Perkin Elmer Ltd Improvements in or relating to optical systems
US6097543A (en) * 1992-02-07 2000-08-01 I-O Display Systems Llc Personal visual display
JP3197350B2 (ja) * 1992-08-05 2001-08-13 オリンパス光学工業株式会社 頭部又は顔面装着式ディスプレイ装置
JPH08278476A (ja) * 1995-04-07 1996-10-22 Omron Corp 液晶表示パネル及びヘッドマウントディスプレイ
JP3655666B2 (ja) * 1995-05-25 2005-06-02 オリンパス株式会社 頭部装着型ディスプレイ装置
JPH09304730A (ja) * 1996-05-15 1997-11-28 Sony Corp 光学視覚装置
US6215593B1 (en) * 1996-11-13 2001-04-10 Ian A. Bruce Portable wide-field optical system with microlenses and fiber-optic image transfer element
FR2759788B1 (fr) * 1997-02-14 1999-05-07 Sextant Avionique Reduction d'images parasites dans un viseur tete haute
JP3716625B2 (ja) * 1997-09-18 2005-11-16 コニカミノルタホールディングス株式会社 映像観察装置及びカメラ及び映像観察システム
JPH11237584A (ja) * 1997-12-19 1999-08-31 Sharp Corp 画像表示装置、該画像表示装置を用いた頭部装着型ディスプレイ及び映像通信装置
JPH11308640A (ja) * 1998-04-24 1999-11-05 Sony Corp 虚像結像方法及び虚像結像装置
JPH11326818A (ja) * 1998-05-14 1999-11-26 Sony Corp 頭部装着型表示装置及び拡大画像生成方法
US6271969B1 (en) * 1998-12-11 2001-08-07 Agilent Technolgoies, Inc. Folded optical system having improved image isolation
US6075651A (en) * 1999-01-28 2000-06-13 Kaiser Electro-Optics, Inc. Compact collimating apparatus
KR20010086594A (ko) * 2000-05-27 2001-09-15 김용민 고스트상 형성이 감소된 실상 또는 허상계
JP2002122806A (ja) * 2000-10-16 2002-04-26 Sony Corp 表示装置および拡大画像生成方法
JP2002148559A (ja) * 2000-11-15 2002-05-22 Mixed Reality Systems Laboratory Inc 画像観察装置及びそれを用いた画像観察システム
US6522474B2 (en) 2001-06-11 2003-02-18 Eastman Kodak Company Head-mounted optical apparatus for stereoscopic display
US6702442B2 (en) * 2002-03-08 2004-03-09 Eastman Kodak Company Monocentric autostereoscopic optical apparatus using resonant fiber-optic image generation
JP4725004B2 (ja) * 2003-09-01 2011-07-13 株式会社ニコン 表示装置
JP4616577B2 (ja) * 2004-04-22 2011-01-19 株式会社日立製作所 映像表示装置
JP4819354B2 (ja) * 2004-12-21 2011-11-24 キヤノン株式会社 画像表示装置
CN100538437C (zh) 2005-02-23 2009-09-09 北京理工大学 一种头盔显示器的光学系统
FR2883078B1 (fr) * 2005-03-10 2008-02-22 Essilor Int Imageur optique destine a la realisation d'un afficheur optique
CN1327264C (zh) * 2005-09-15 2007-07-18 上海交通大学 共焦内窥镜微小显微物镜探头
JP4883271B2 (ja) * 2005-12-05 2012-02-22 株式会社島津製作所 頭部装着型表示装置および頭部装着型表示システム
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
KR100841246B1 (ko) * 2006-11-15 2008-06-25 전자부품연구원 헤드 마운트 디스플레이용 광학계
CN101418927A (zh) * 2007-10-24 2009-04-29 富士迈半导体精密工业(上海)有限公司 光源组件
CN101201532A (zh) * 2007-11-26 2008-06-18 黄峰彪 一种光纤面板显示组件
US7733572B1 (en) * 2008-06-09 2010-06-08 Rockwell Collins, Inc. Catadioptric system, apparatus, and method for producing images on a universal, head-up display
GB2465786A (en) * 2008-11-28 2010-06-02 Sharp Kk An optical system for varying the perceived shape of a display surface
JP2010243751A (ja) * 2009-04-06 2010-10-28 Seiko Epson Corp 頭部装着型表示装置
JP5311654B2 (ja) * 2009-05-08 2013-10-09 日東電工株式会社 映像鑑賞設備
US8094377B2 (en) * 2009-05-13 2012-01-10 Nvis, Inc. Head-mounted optical apparatus using an OLED display
CN101702045B (zh) 2009-11-17 2011-02-09 长飞光纤光缆有限公司 一种高分辨率光纤传像束的制造方法
CN201946235U (zh) 2010-12-20 2011-08-24 北京同方瑞博数字技术有限公司 一种弧形图像放大导像屏
JP2012159681A (ja) * 2011-01-31 2012-08-23 Brother Ind Ltd ヘッドマウントディスプレイ
JP5494678B2 (ja) * 2011-02-17 2014-05-21 株式会社ニコン 照明光学系およびプロジェクタ装置
WO2012118575A2 (en) * 2011-02-28 2012-09-07 Osterhout Group, Inc. Alignment control in an augmented reality headpiece
CN202008041U (zh) * 2011-04-08 2011-10-12 深圳市金流明光电技术有限公司 一种led灯具
WO2013062932A1 (en) * 2011-10-24 2013-05-02 3M Innovative Properties Company Tilted dichroic polarizing beamsplitter
CN102520478A (zh) 2011-12-01 2012-06-27 长春理工大学 预拉酸溶单丝制造丝径为3~12μm光纤传像束的方法
CN202382166U (zh) * 2011-12-02 2012-08-15 霍永峰 Led灯具用的配光透镜
JP2014013320A (ja) 2012-07-04 2014-01-23 Sony Corp 頭部装着型表示装置並びに光学ユニット
CN104781723B (zh) 2012-08-21 2017-09-15 3M创新有限公司 观看装置
KR101511420B1 (ko) * 2012-10-10 2015-04-10 정보선 빔 스플리터를 갖는 도트사이트 장치
US8813410B2 (en) 2012-10-10 2014-08-26 In Jung Dot-sighting device
WO2014080129A1 (fr) * 2012-11-21 2014-05-30 Laster Module optique de réalité augmentée
US9057826B2 (en) 2013-01-31 2015-06-16 Google Inc. See-through near-to-eye display with eye prescription
US20140240843A1 (en) * 2013-02-28 2014-08-28 Joel S. Kollin Near-eye display system
CN103207426B (zh) * 2013-03-28 2015-09-16 京东方科技集团股份有限公司 一种偏光片及显示装置
CN203277499U (zh) * 2013-05-21 2013-11-06 杭州华普永明光电股份有限公司 一种led模组
CN103913806A (zh) 2014-03-28 2014-07-09 中国科学院上海技术物理研究所 Qwip-led与emccd间采用光纤耦合的红外成像探测系统
CN112904562A (zh) * 2014-04-09 2021-06-04 3M创新有限公司 作为组合器的具有薄膜的近眼显示系统
US9507066B2 (en) * 2014-06-30 2016-11-29 Microsoft Technology Licensing, Llc Eyepiece for near eye display system
KR20160059406A (ko) 2014-11-18 2016-05-26 삼성전자주식회사 가상 이미지를 출력하기 위한 웨어러블 장치 및 방법
US9778414B2 (en) * 2015-04-28 2017-10-03 Oculus Vr, Llc Curved electronic display element
CN105093556A (zh) * 2015-08-25 2015-11-25 深圳珑璟光电技术有限公司 一种微显示光机的结构及其成像方法
WO2017039718A1 (en) * 2015-09-03 2017-03-09 3M Innovative Properties Company Magnifying device
JP6636323B2 (ja) * 2015-12-28 2020-01-29 株式会社日立エルジーデータストレージ 調光器及びこれを用いた映像表示装置
CN205608290U (zh) * 2016-02-01 2016-09-28 深圳超多维光电子有限公司 头戴式显示设备
CN105572877B (zh) * 2016-02-03 2018-11-09 上海群英软件有限公司 一种头戴式增强现实智能显示装置
CN105700143A (zh) * 2016-03-01 2016-06-22 陈超平 一种面向增强现实的光学显示装置
US10228564B2 (en) 2016-03-03 2019-03-12 Disney Enterprises, Inc. Increasing returned light in a compact augmented reality/virtual reality display
CN205539729U (zh) * 2016-04-26 2016-08-31 北京亮亮视野科技有限公司 一种微型显示系统
CN105892058A (zh) * 2016-05-20 2016-08-24 成都理想境界科技有限公司 一种近眼显示系统及增强现实设备
CN106019591A (zh) * 2016-07-14 2016-10-12 联想(北京)有限公司 一种电子设备
CN206563849U (zh) * 2016-10-25 2017-10-17 中兴通讯股份有限公司 一种虚拟现实可穿戴设备
US9971150B1 (en) * 2017-04-28 2018-05-15 Microsoft Technology Licensing, Llc Compact display engine with MEMS scanners
US10422995B2 (en) 2017-07-24 2019-09-24 Mentor Acquisition One, Llc See-through computer display systems with stray light management
CN107422480A (zh) * 2017-08-03 2017-12-01 深圳市汇龙天成科技有限公司 一种半透半反曲面透镜显示结构及显示方法
CN107422481A (zh) 2017-08-07 2017-12-01 杭州太若科技有限公司 用于实现增强现实的装置和方法
CN108319018A (zh) * 2018-02-12 2018-07-24 杭州太若科技有限公司 一种增强现实装置、设备及实现增强现实的方法
JP7285579B2 (ja) * 2018-02-12 2023-06-02 マトリックスド、リアリティー、テクノロジー、カンパニー、リミテッド 拡張現実装置、およびそのための光学系

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540465A (zh) * 2011-12-09 2012-07-04 中航华东光电有限公司 一种头盔显示器的光学系统
CN202433604U (zh) * 2011-12-09 2012-09-12 中航华东光电有限公司 一种头盔显示器的光学系统
CN107589546A (zh) * 2017-10-23 2018-01-16 北京小米移动软件有限公司 光学系统及增强现实眼镜
CN108181709A (zh) * 2018-02-12 2018-06-19 杭州太若科技有限公司 Ar显示装置和穿戴式ar设备
CN108319019A (zh) * 2018-02-12 2018-07-24 杭州太若科技有限公司 Ar显示装置和穿戴式ar设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11330091B2 (en) 2020-07-02 2022-05-10 Dylan Appel-Oudenaar Apparatus with handheld form factor and transparent display with virtual content rendering
US11729303B2 (en) 2020-07-02 2023-08-15 Dylan Appel-Oudenaar Display with virtual content rendering
CN114077051A (zh) * 2020-08-13 2022-02-22 京东方科技集团股份有限公司 一种近眼显示装置

Also Published As

Publication number Publication date
EP3754408A4 (en) 2021-12-29
EP3754407B1 (en) 2024-04-03
KR20200118203A (ko) 2020-10-14
US11460704B2 (en) 2022-10-04
WO2019154432A1 (zh) 2019-08-15
EP3754407A1 (en) 2020-12-23
KR102628264B1 (ko) 2024-01-23
EP3754411A4 (en) 2022-03-30
KR102564295B1 (ko) 2023-08-04
JP2021513686A (ja) 2021-05-27
EP3754408A1 (en) 2020-12-23
KR20200118197A (ko) 2020-10-14
WO2019154428A1 (zh) 2019-08-15
US11042040B2 (en) 2021-06-22
US20200348522A1 (en) 2020-11-05
JP2021513685A (ja) 2021-05-27
US11988839B2 (en) 2024-05-21
US11500205B2 (en) 2022-11-15
US20200348521A1 (en) 2020-11-05
US11874466B2 (en) 2024-01-16
EP3754409A4 (en) 2021-04-14
EP3754410A4 (en) 2021-12-29
EP3754407A4 (en) 2021-12-29
KR20200118492A (ko) 2020-10-15
US20230296905A1 (en) 2023-09-21
JP7418706B2 (ja) 2024-01-22
CN110537135A (zh) 2019-12-03
US11693244B2 (en) 2023-07-04
EP3754411A1 (en) 2020-12-23
CN110546550A (zh) 2019-12-06
EP3754410A1 (en) 2020-12-23
US11693245B2 (en) 2023-07-04
JP7329207B2 (ja) 2023-08-18
EP3754409A1 (en) 2020-12-23
US20210271100A1 (en) 2021-09-02
US20200371371A1 (en) 2020-11-26
WO2019154426A1 (zh) 2019-08-15
CN110537133A (zh) 2019-12-03
JP2021513687A (ja) 2021-05-27
US20200348530A1 (en) 2020-11-05
KR102455328B1 (ko) 2022-10-14
JP7285579B2 (ja) 2023-06-02
CN110537134A (zh) 2019-12-03
US20200371368A1 (en) 2020-11-26
CN110573933A (zh) 2019-12-13
WO2019154430A1 (zh) 2019-08-15

Similar Documents

Publication Publication Date Title
WO2019154429A1 (zh) 穿戴式ar系统、ar显示设备及其投射源模组
US11867906B2 (en) Wearable AR system and AR display device
WO2020052535A1 (zh) 增强现实设备及其光学系统
US9740013B2 (en) Collimating optical device and system
WO2018233293A1 (zh) 一种成像显示系统
WO2020248539A1 (zh) 纳米波导镜片和三维显示装置及眼镜
TW201350909A (zh) 立體投影顯示裝置
KR20190028153A (ko) 투과형 헤드 마운트 디스플레이 장치
IL182705A (en) Compact optical component in conductive substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019750619

Country of ref document: EP

Effective date: 20200914