WO2019154146A1 - 一种mems加速度计 - Google Patents

一种mems加速度计 Download PDF

Info

Publication number
WO2019154146A1
WO2019154146A1 PCT/CN2019/073334 CN2019073334W WO2019154146A1 WO 2019154146 A1 WO2019154146 A1 WO 2019154146A1 CN 2019073334 W CN2019073334 W CN 2019073334W WO 2019154146 A1 WO2019154146 A1 WO 2019154146A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
axis
electrode group
substrate
mems accelerometer
Prior art date
Application number
PCT/CN2019/073334
Other languages
English (en)
French (fr)
Inventor
邹波
郑青龙
Original Assignee
深迪半导体(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深迪半导体(上海)有限公司 filed Critical 深迪半导体(上海)有限公司
Priority to SG11202007406UA priority Critical patent/SG11202007406UA/en
Priority to US16/967,141 priority patent/US11105829B2/en
Publication of WO2019154146A1 publication Critical patent/WO2019154146A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0831Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type having the pivot axis between the longitudinal ends of the mass, e.g. see-saw configuration

Definitions

  • the present invention relates to the field of microelectromechanical systems, and more particularly to a MEMS accelerometer.
  • Micro-Electro-Mechanical Systems are micro-structures, micro-sensors, control processing circuits, and even interfaces, communications, and power supplies that are fabricated on one or more chips using integrated circuit fabrication techniques and micromachining techniques. Integrated system. Due to its small size, low cost, good integration and excellent performance, MEMS has been used more and more in a wide range of fields such as industry, medical, civil and military. Accelerometers, as the most typical devices using MEMS technology, have become almost standard equipment for mobile terminals, cameras, game controllers, and navigation devices. Microelectromechanical accelerometers can be classified into capacitive, resistive, and piezoelectric types depending on their detection methods. Among them, the capacitive accelerometer has become the most popular type of accelerometer because of its simple structure, low cost, and high sensitivity and linearity in the low frequency range.
  • the mass of three axes is usually used to reduce the chip area.
  • the existing three-axis accelerometers are often affected by the following two interference factors, resulting in higher accelerometer zero-bias parameters: First, stress warping caused by manufacturing process or external environmental temperature changes, that is, the substrate plane is not Completely flat; the second is the deflection of the anchor point caused by the manufacturing process, etc., resulting in the MEMS structure plane and the fixed electrode plane are not parallel. Since the accuracy of the capacitive accelerometer cannot be further improved due to the above two factors, and the application of the capacitive accelerometer is limited, those skilled in the art are working to develop a capacitive accelerometer capable of overcoming the above two kinds of interference.
  • the present invention provides a MEMS three-axis accelerometer to solve the stress warping caused by the manufacturing process or the external environment temperature change of the current accelerometer and the deflection of the anchor point caused by the manufacturing process and the like, thereby causing the MEMS The problem of zero offset caused by the parallel relationship between the structural plane and the fixed electrode plane.
  • the present invention provides the following technical solutions:
  • a MEMS accelerometer includes: a substrate, a movable member, and a fixed electrode group; the substrate surface has an anchoring region; the movable member is connected to the anchoring region through a support beam, and is suspended on the substrate Upper, the movable component includes a first mass and a second mass; a middle portion of the first mass has a first hollow region, the first hollow region is a "work" shape, and the second mass Located in the first hollow region; the fixed electrode group includes a first electrode group, the first electrode group is fixed on the surface of the substrate, between the substrate and the movable member, and The first mass and the second mass form a Z-axis detection capacitor set to detect an acceleration input along the Z-axis, which is a direction perpendicular to a plane in which the movable member is located.
  • the first electrode group includes at least five pairs of fixed electrode pairs E1-E5, which are sequentially disposed along the Y-axis direction, wherein the fixed electrode pairs E1, E3, and E5 form a first Z-axis detecting capacitance with the first mass.
  • the set, the fixed electrode pair E2, E4 and the second mass form a second Z-axis detecting capacitor group, the Y-axis direction being located in a plane of the movable member and perpendicular to the Z-axis direction.
  • each of the pair of fixed electrodes E1-E5 includes two fixed electrodes disposed along the X-axis, respectively, on both sides of the anchoring region, and the X-axis is perpendicular to both the Y-axis and the Z-axis.
  • the fixed electrode pairs E2 and E4 are each an integral electrode.
  • the fixed electrode group further includes a second electrode group and a third electrode group, which are fixed above the substrate by anchor points, and are located in the same layer as the movable component, the second electrode group and the
  • the third electrode group forms an X-axis detection capacitor group and a Y-axis detection capacitor group with the first mass, respectively.
  • the first mass has a second hollow region and a third hollow region, the second electrode group is located in the second hollow region, and the third electrode group is located in the third hollow region.
  • the second hollow region and the third hollow region respectively comprise an even number of sub-regions located on both sides of the anchor region along the X-axis.
  • the second electrode group and the third electrode group are comb-shaped electrodes.
  • the first mass and the second mass are connected by a rotating beam set such that the first mass and the second mass are flat in the Z-axis direction when subjected to acceleration input along the Z-axis. Move and move in the opposite direction.
  • the rotating beam set includes four rotating beams, and the rotating beam is connected to the first mass and the second mass through an elastic beam, and a middle portion of the rotating beam is connected to the supporting beam.
  • the first mass and the second mass are caused to form a lever structure through the rotating beam set.
  • the anchoring area is divided into two parts by the first hollow area, each part having at least one anchor point.
  • the accelerometer structure of the present invention is bilaterally symmetrical, and the distribution of the Z-axis detection area of the first mass and the second mass is equivalent to the anchor point, thereby not only reducing the influence of warpage caused by stress, but also reducing Zero offset caused by deflection of the initial state of the mass;
  • the accelerometer of the invention adopts a symmetric lever design such that the first mass and the second mass are translational on the Z axis, thereby increasing the torque of the mass and improving the efficiency of the mass movement, that is, the improvement.
  • the sensitivity of the accelerometer; at the same time, the form of motion along the Z axis eliminates the effect of mass rotation on the X-axis and Y-axis detection;
  • the anchoring area When the anchoring area is set, it is concentrated toward the center, and the number of anchor points is reduced as much as possible, thereby reducing the sensitivity of the chip to temperature and stress changes, and the inconsistent offset of different anchor points caused by temperature and stress changes.
  • FIG. 1 is a top plan view of a MEMS structural layer of a MEMS accelerometer according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic view of a first mass of the MEMS accelerometer shown in FIG. 1;
  • FIG. 3 is a PP' cross-sectional view of the MEMS accelerometer shown in FIG. 1;
  • FIG. 4 is a schematic diagram of a Z-axis motion state of a mass block of the MEMS accelerometer shown in FIG. 1;
  • FIG. 5 is a schematic diagram showing the principle of detecting the acceleration input along the Z axis by the MEMS accelerometer shown in FIG. 1;
  • FIG. 6 is a schematic view showing a warpage of a substrate of the MEMS accelerometer shown in FIG. 1;
  • FIG. 7 is a schematic perspective view of a MEMS structural layer of the MEMS accelerometer shown in FIG. 1.
  • the MEMS accelerometer of the present invention is mainly improved in the acceleration detection of the Z-axis input.
  • One is to divide the detection quality into a first mass and a second mass, respectively, and the two masses are respectively combined with the Z-axis detection capacitor group of the fixed electrode in the plane of the MEMS structure layer with respect to the anchor region on the X-axis or Y.
  • the distribution distances of the axes in one direction are equivalent, that is, the Z-axis detection capacitor groups respectively composed of the fixed electrodes can be compensated by differential mutual compensation when subjected to substrate warpage or deflection of the MEMS structure layer in this direction;
  • the second is through a special connection structure setting, so that the detection quality is translated in the Z-axis direction when the acceleration is input by the Z-axis direction, so that the detection quality increases the effective displacement of the detection quality within a finite distance from the substrate.
  • the range increases the sensitivity of the accelerometer. In addition, it also increases the restoring force of the proof mass and prevents the risk of device failure due to adsorption.
  • 1-3 shows a MEMS accelerometer according to a preferred embodiment of the present invention, including a substrate 100, a movable component 200, and a fixed electrode group E.
  • the surface of the substrate 100 has an anchoring area A1; the movable member 200 is connected to the anchoring area A1 through the support beam B1 and suspended above the substrate 100.
  • the movable member 200 includes a first mass M1 and a second mass M2; the middle portion of the first mass M1 has a first hollow region K1, the first hollow region K1 is substantially "work", and the second mass M2 is located at A hollow area K1.
  • the fixed electrode group E includes a first electrode group, and the first electrode group is fixed on the surface of the substrate 100 between the substrate 100 and the movable member 200, and forms a Z-axis detection capacitor group Cz with the first mass M1 and the second mass M2. To detect the acceleration input along the Z axis, where the Z axis is perpendicular to the plane of the movable component.
  • the first electrode group includes at least five pairs of fixed electrode pairs E1-E5, which are sequentially disposed along the Y-axis direction, and each pair of fixed electrode pairs E1-E5 includes two fixed electrodes disposed along the X-axis, respectively, on both sides of the anchoring region.
  • the fixed electrode pair E1, E3, E5 and the first mass M1 form a first Z-axis detecting capacitor group Cz1
  • the fixed electrode pair E2, E4 and the second mass M2 form a second Z-axis detecting capacitor group Cz2, wherein the Y-axis
  • the direction is in the plane of the movable part and is perpendicular to the Z-axis direction
  • the X-axis is perpendicular to both the Y-axis and the Z-axis.
  • the fixed electrode pairs E2, E4 can also be combined into the integral electrodes E2 and E4, respectively.
  • the first mass M1 and the second mass M2 are connected by the rotating beam group such that the first mass M1 and the second mass M2 are translated in the Z-axis direction when subjected to the acceleration input along the Z-axis, and the moving direction is opposite.
  • the rotating beam set includes four rotating beams B2 distributed at four corners between the first mass M1 and the second mass M2.
  • the rotating beam B2 is coupled to the first mass M1 and the second mass M2 through the elastic beam S1 such that the rotating beam B2 can form a certain angle with the first mass M1 and the second mass M2.
  • the middle portion of the rotating beam B2 is connected to the supporting beam B1 through the guiding beam S2 as the rotating shaft of the rotating beam B2. Referring to Fig.
  • each rotating beam B2 is equivalent to a lever, so that the first mass and the second mass pass through the rotating beam.
  • the group forms a lever structure to cause movement in the opposite direction in the Z-axis direction. Since the four rotating beams B2 are distributed at four corners between the first mass M1 and the second mass M2, and the first mass M1, the second mass M2, and the rotating beam group are both opposite to the anchoring region A1. It is completely symmetrical, so when subjected to the acceleration input in the Z-axis direction, the first mass M1 and the second mass M2 will translate in the Z-axis direction.
  • the second mass M2 is located in the first hollow area K1 in the first mass M1, and its structure is also substantially "work" shape, so that the distance distribution of the second mass M2 relative to the anchor area and the first mass M1 quite.
  • the second mass M2 also divides the anchoring area A1 into two parts, each having an anchor point. These two anchor points are placed as close as possible to the center of the entire accelerometer structure so that the overall structure is subject to changes in environmental impact.
  • the fixed electrode group further includes a second electrode group E6 and a third electrode group E7, which are fixed above the substrate 100 by anchor points and are located in the same layer as the movable member 200.
  • the second electrode group E6 and the third electrode group E7 form an X-axis detection capacitance group Cx and a Y-axis detection capacitance group Cy, respectively, with the first mass M1.
  • the second electrode group E6 is located in the second hollow region K2 of the first mass M1
  • the third electrode group E7 is located in the third hollow region K3 of the first mass M1 to reduce the overall structure of the MEMS structure. area.
  • the second electrode group E6 and the third electrode group E7 may also be disposed in the hollow region inside the second mass M2 or outside the structure of the first mass M1.
  • the second electrode group E6 and the third electrode group E7 are preferably comb-shaped electrodes that are symmetrically distributed with respect to the anchor point region.
  • the arrangement of its specific structure and distribution has been described in the prior publications, such as CN107271722A, which will not be elaborated here.
  • the structure of the MEMS three-axis accelerometer provided by the preferred embodiment of the present invention is described above, and the process of detecting the input acceleration will be specifically described below in conjunction with the structure of the accelerometer. Since the acceleration in any direction can be decomposed into three components in the XYZ direction, the following will be specifically explained from the three directions of XYZ.
  • the accelerometer When the accelerometer is subjected to the acceleration along the positive direction of the Z axis (the vertical paper faces outward), as shown in FIG. 5, since the lead beam S2 is stiff in the Z-axis direction, the detection quality will be leveraged by the rotating beam B2. Translation in the Z-axis direction. At this time, the overall mass of the first mass M1 is higher than the second mass M2, so the first mass M1 moves out of the paper, and the second mass M2 moves into the paper surface, so that the first Z-axis detecting capacitor group Cz1 The plate spacing increases, and the plate spacing of the second Z-axis detection capacitor group Cz2 decreases.
  • the rotating beam B2 is symmetrical with respect to its rotation axis, so that the first Z-axis detecting capacitor group Cz1 and the second Z-axis detecting capacitor group Cz2 have the same amplitude and opposite direction changes, then the detecting circuit detects the first Z
  • the difference between the amount of change in the axis detection capacitor group Cz1 ( ⁇ Cz1) and the amount of change in the second Z-axis detection capacitor group Cz2 ( ⁇ Cz2), and the acceleration input along the Z axis is calculated, that is, the detection circuit measures the differential signal ⁇ Cz1- ⁇
  • the size of Cz2 is reversed to get the magnitude of the acceleration of the input Z-axis.
  • the lead beam S2 between the support beam B1 and the rotating beam B2 is A slight displacement can occur in the X-axis direction, so both the first mass M1 and the second mass M2 serve as effective detection qualities, improving the sensitivity of the X-axis detection.
  • the specific detection process is similar to CN107271722A and will not be elaborated here.
  • the accelerometer When the accelerometer is subjected to acceleration along the Y-axis, the first mass M1 and the second mass M2 will be slightly displaced in the Y-axis direction due to the deformation of the elastic beam S1 and the lead beam S2, but the moving directions are opposite.
  • the magnitude of the acceleration is detected by the Y-axis detection capacitor group Cy formed by the third electrode group E7 and the first mass M1.
  • the accelerometer of the present invention has a better performance in dealing with the case where the substrate is warped by environmental influences or the deflection of the MEMS structural layer.
  • the capacitances of the first Z-axis detecting capacitor group Cz1 and the second Z-axis detecting capacitor group Cz2 are spaced apart from each other with respect to the anchoring region A1.
  • the first Z-axis detection capacitor group Cz1 and the second Z-axis detection capacitor group Cz2 are completely symmetrical with respect to the anchor region as a whole.
  • the distance between the first mass M1 and the second mass M2 in the initial state and the substrate 100 gradually increases from the anchor region to the edge of the device structure. Reduced. At this time, the amount of capacitance change between the fixed electrode pair E3 and the first mass M1 is the smallest, the capacitance change between the fixed electrode pair E2, E4 and the second mass M2 is second, and the fixed electrode pair E1, E5 and the first mass are The amount of capacitance change between blocks M1 is the largest.
  • the fixed electrode pair E1, E3, E5 and the first mass M1 constitute the first Z-axis detection capacitor group Cz1
  • the fixed electrode pair E2, E4 and the second mass M2 constitute the second Z-axis detection capacitor group Cz2
  • the first The Z-axis detection capacitor group Cz1 and the second Z-axis detection capacitor group Cz2 are generally affected by the warpage effect.
  • the differential signal ⁇ Cz1- ⁇ Cz2 is greatly affected by the warpage. Reduced, thereby increasing the reliability of the device.
  • the distance between the first mass M1 and the second mass M2 in the initial state from the substrate is from the edge side of the device structure to the other side.
  • the direction is gradually increasing.
  • the amount of change in capacitance between the fixed electrode pair E1-E3 and the mass is sequentially decreased, and the amount of change in capacitance between the fixed electrode pair E3-E5 and the mass sequentially increases.
  • the fixed electrode pair E1, E3, E5 and the first mass M1 constitute the first Z-axis detection capacitor group Cz1
  • the fixed electrode pair E2, E4 and the second mass M2 constitute the second Z-axis detection capacitor group Cz2
  • the first The capacitances of the Z-axis detection capacitor group Cz1 and the second Z-axis detection capacitor group Cz2 are substantially unchanged, so when detecting the acceleration of the Z-axis, the differential signals ⁇ Cz1- ⁇ Cz2 are not affected by the deflection, thereby improving the reliability of the device. Sex.
  • the fixed electrode pairs E1-E5 are symmetrically distributed along the X-axis direction with respect to the anchor region, they have the same capacitance change amount as the mass block, and thus can be differentially The effect of this warpage is eliminated.
  • the movable member 200 When the movable member 200 has a deflection in the X-axis direction, since the fixed electrode pairs E1-E5 are symmetrically distributed with respect to the anchor region in the X-axis direction, they are combined with the first Z-axis detection capacitor group Cz1 composed of the masses.
  • the capacitance of the second Z-axis detection capacitor group Cz2 is substantially constant, and will not be affected by the deflection in the differential calculation.
  • the accelerometer structure of the present invention has a symmetrical structure along the X axis and the Y axis, and the distribution distance of the Z axis detection region corresponding to the first mass block M1 and the second mass block M2 is relatively equal to the anchor region, Therefore, not only the zero offset caused by the initial state deflection of the movable structural layer can be reduced, but also the influence of the substrate caused by the warpage caused by the environment can be reduced.
  • the accelerometer of the present invention adopts a symmetric lever design such that the movement of the first mass M1 and the second mass M2 on the Z axis is translational, thereby increasing the torque and displacement distance of the mass and improving the mass.
  • the efficiency of the motion increases the sensitivity of the accelerometer; at the same time, the form of motion along the Z axis eliminates the effect of mass rotation on the X-axis and Y-axis detection. Further, since the torque of the first mass M1 and the second mass M2 is increased, the restoring force of the mass can be improved, so that the mass is less likely to be attracted to the fixed electrode or the peripheral fixing structure, thereby avoiding sensor damage. . Finally, since the anchoring area is concentrated toward the center and the number of anchor points is reduced as much as possible, the sensitivity of the chip to temperature and stress changes and the inconsistent offset of different anchor points due to temperature and stress changes can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Abstract

一种MEMS加速度计,包括:基板(100)、可动部件(200)以及固定电极组(E);基板(100)表面具有锚定区域(A1);可动部件(200)通过支撑梁(B1)与锚定区域(A1)连接,并悬置于基板(100)上方,可动部件(200)包括第一质量块(M1)和第二质量块(M2);第一质量块(M1)的中部具有第一镂空区域(K1),第一镂空区域(K1)为"工"形,第二质量块(M2)位于第一镂空区域(K1)中;固定电极组(E)包括第一电极组,第一电极组固定于基板(100)表面,位于基板(100)与可动部件(200)之间,并与第一质量块(M1)和第二质量块(M2)形成Z轴检测电容组,以检测沿Z轴输入的加速度。该MEMS加速度计的两个质量块在Y轴方向上间隔设置,使得加速度计不仅可以减小应力引起的基板翘曲的影响,还可以减小质量块初始状态的偏转引起的零偏。

Description

一种MEMS加速度计 技术领域
本发明涉及微机电系统领域,更具体地说,涉及一种MEMS加速度计。
背景技术
微机电系统(Micro-Electro-Mechanical Systems,MEMS)是利用集成电路制造技术和微加工技术把微结构、微传感器、控制处理电路甚至接口、通信和电源等制造在一块或多块芯片上的微型集成系统。微机电系统因其体积小、成本低、集成性好、性能优良等诸多优点已在工业,医疗,民用,军事等非常广泛的领域得到了越来越多的应用。加速度传感器作为最典型的使用微机电技术的器件,也已几乎成为各类移动终端、相机、游戏手柄、导航仪等产品的标准配置。微机电加速度计以其检测方式的不同可分为电容式、电阻式、压电式等。其中电容式加速度计因其结构简单,成本低廉,并可在低频范围内拥有较高的灵敏度和线性度等优势,成为最为流行的一类加速度计。
对于目前的三轴加速度计来说,通常会采用共享三个轴的质量块来达到减小芯片面积的目的。然而现有的三轴加速度计,常会受到以下两个干扰因素的影响,导致加速度计的零偏参数较高:一是由于制造过程或外部环境温度变化等引起的应力翘曲,即基板平面并非完全平整;二是由于制造工艺等引起的锚点偏转,从而导致MEMS结构平面与固定电极平面不平行。由于以上两个因素导致电容式加速度计的精度一直无法进一步提高,限制了电容式加速度计的应用,因此本领域技术人员致力于研发一种能够克服以上两种干扰的电容式加速度计。
发明内容
有鉴于此,本发明提供了一种MEMS三轴加速度计,以解决目前加速度计存在的由于制造过程或外部环境温度变化等引起的应力翘曲以及由于制造工艺等引起的锚点偏转从而导致MEMS结构平面与固定电极平面不平行产生的零偏的问题。
为实现上述目的,本发明提供如下技术方案:
一种MEMS加速度计,包括:基板、可动部件以及固定电极组;所述基板表面具有锚定区域;所述可动部件通过支撑梁与所述锚定区域连接,并悬置于所述基板上方,所述可动部件包括第一质量块和第二质量块;所述第一质量块的中部具有第一镂空区域,所述第一镂空区域为“工”形,所述第二质量块位于所述第一镂空区域中;所述固定电极组包括第一电极组,所述第一电极组固定于所述基板表面,位于所述基板与所述可动部件之间,并与所述第一质量块和所述第二质量块形成Z轴检测电容组,以检测沿Z轴输入的加速度,所述Z轴为垂直于所述可动部件所在平面的方向。
优选的,所述第一电极组包括至少5对固定电极对E1-E5,沿Y轴方向依次设置,其中固定电极对E1、E3、E5与所述第一质量块形成第一Z轴检测电容组,固定电极对E2、E4与所述第二质量块形成第二Z轴检测电容组,所述Y轴方向位于所述可动部件所在平面内,并与所述Z轴方向垂直。
进一步地,所述每对固定电极E1-E5分别包括沿X轴设置的两个固定电极,位于锚定区域的两侧,所述X轴与所述Y轴和所述Z轴均垂直。
可选的,所述固定电极对E2与E4分别都为一个整体电极。
优选的,所述固定电极组还包括第二电极组和第三电极组,通过锚点固定于所述基板上方,并与所述可动部件位于同一层,所述第二电极组和所述第三电极组分别与所述第一质量块形成X轴检测电容组和Y轴检测电容组。
进一步地,所述第一质量块具有第二镂空区域和第三镂空区域,所述第二电极组位于所述第二镂空区域中,所述第三电极组位于所述第三镂空区域中。
进一步地,所述第二镂空区域和所述第三镂空区域分别包括偶数个子区域,沿X轴位于所述锚定区域的两侧。
进一步地,所述第二电极组和所述第三电极组均为梳齿电极。
优选的,所述第一质量块和所述第二质量块通过转动梁组连接,使得所述第一质量块与所述第二质量块受到沿Z轴输入的加速度时在Z轴方向上平动,且运动方向相反。
进一步地,所述转动梁组包括4个转动梁,所述转动梁通过弹性梁与所述第一质量块和所述第二质量块连接,所述转动梁的中部连接至所述支撑梁,使得所述第一质量块和所述第二质量块通过所述转动梁组形成杠杆结构。
优选的,所述锚定区域被所述第一镂空区域分隔为两部分,每部分至少具有一个锚点。
与现有技术相比,本发明所提供的技术方案具有以下优点:
1.本发明的加速度计结构左右对称,且第一质量块与第二质量块的Z轴检测区域相对锚点的分布相当,因此不仅可以减小应力引起的翘曲的影响,还可以减小质量块初始状态的偏转引起的零偏;
2.本发明的加速度计采用对称杠杆设计使得第一质量块与第二质量块在Z轴上为平动,从而增大了质量块的转矩,提高了质量块运动的效率,即提高了加速度计的灵敏度;同时,沿Z轴平动的运动形式排除了质量块转动对X轴和Y轴检测的影响;
3.由于第一质量块与第二质量块的转矩增大也可以提高质量块的回复力,使得质量块与固定电极或周边固定结构更不容易发生吸合,从而避免传感器损坏;
4.锚定区域设置时向中心集中,且锚点数量尽可能减少,从而降低芯片对温度和应力变化的敏感度,以及不同锚点受温度和应力变化引起的不一致的偏移。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明优选实施例提供的一种MEMS加速度计的MEMS结构层俯视图;
图2为图1所示的MEMS加速度计的第一质量块示意图;
图3为图1所示的MEMS加速度计的PP’面截面图;
图4为图1所示的MEMS加速度计的质量块的Z轴运动状态示意图;
图5为图1所示的MEMS加速度计检测沿Z轴输入的加速度的原理示意图;
图6为图1所示的MEMS加速度计的基板翘曲示意图;
图7为图1所示的MEMS加速度计的MEMS结构层倾斜示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的MEMS加速度计主要在对Z轴输入的加速度检测上做了改进。其一是将检测质量分为第一质量块和第二质量块,这两个质量块分别与固定电极组成的Z轴检测电容组在MEMS结构层平面内相对于锚定区域在X轴或Y轴其中一个方向上的分布距离是相当的,也即它们分别与固定电极组成的Z轴检测电容组在受到在这个方向上的基板翘曲或MEMS结构层偏转的影响时可以通过差分相互补偿;其二是通过特殊的连接结构设置,使得检测质量在受到Z轴方向输入的加速度时,检测质量沿Z轴方向平动,从而使检测质量在与基底的有限距离内增加了检测质量的有效位移范围,提高了加速度计的灵敏度,此外,还同时可以增大检测质量受到的回复力,防止吸附导致的器件失效风险。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面具体以三轴加速度计的结构为例,结合附图对本发明作进一步详细地说明。
如图1-3所示为本发明优选实施例提供的MEMS加速度计,包括基板100、可动部件200以及固定电极组E。基板100表面具有锚定区域A1;可动部件200通过支撑梁B1与锚定区域A1连接,并悬置于基板100上方。可动部件200包括第一质量块M1和第二质量块M2;第一质量块M1的中部具有第一镂空区域K1,第一镂空区域K1大致为“工”形,第二质量块M2位于第一镂空区域K1中。固定电极组E包括第一电极组,第一电极组固定于基板100表面,位于基板100与可动部件200之间,与第一质量块M1和第二质量块M2形成Z轴检测电容组Cz,以检测沿Z轴输入的加速度,其中Z轴为垂直于可动部件所在平面的方向。
第一电极组包括至少5对固定电极对E1-E5,沿Y轴方向依次设置,每对固定电极对E1-E5分别包括沿X轴设置的两个固定电极,位于锚定区域的两侧。其中固定电极对E1、E3、E5与第一质量块M1形成第一Z轴检测电容组 Cz1,固定电极对E2、E4与第二质量块M2形成第二Z轴检测电容组Cz2,其中Y轴方向位于可动部件所在平面内,并与Z轴方向垂直,X轴与Y轴和Z轴均垂直。在本实施例中,由于固定电极对E2、E4之上的第二质量块M2为完整结构,因此固定电极对E2、E4也可分别合并为整体电极E2和E4。
第一质量块M1和第二质量块M2通过转动梁组连接,使得第一质量块M1与第二质量块M2在受到沿Z轴输入的加速度时在Z轴方向上平动,且运动方向相反。在本实施例中,转动梁组包括4个转动梁B2,分布于第一质量块M1和第二质量块M2之间的四个角。转动梁B2通过弹性梁S1与第一质量块M1和第二质量块M2连接,使得转动梁B2可以与第一质量块M1和第二质量块M2形成一定的夹角。转动梁B2的中部通过引梁S2连接至支撑梁B1,作为转动梁B2的转轴,参见图4,每个转动梁B2都相当于一个杠杆,使得第一质量块和第二质量块通过转动梁组形成杠杆结构,从而在Z轴方向上产生相反方向的运动。由于4个转动梁B2分布于第一质量块M1和第二质量块M2之间的四个角,且第一质量块M1、第二质量块M2和转动梁组相对于锚定区域A1都是完全对称的,因此在受到Z轴方向输入的加速度时,第一质量块M1和第二质量块M2将沿Z轴方向平动。
第二质量块M2位于第一质量块M1中的第一镂空区域K1中,其结构也大致为“工”形,使得第二质量块M2相对于锚定区域的距离分布与第一质量块M1相当。然而,第二质量块M2也将锚定区域A1分隔为两部分,每部分都具有一个锚点。这两个锚点在设置上尽可能靠近整个加速度计结构的中心,以使整体结构受环境影响产生的变化趋近一致。
固定电极组还包括第二电极组E6和第三电极组E7,通过锚点固定于基板100上方,并与可动部件200位于同一层。第二电极组E6和第三电极组E7分别与第一质量块M1形成X轴检测电容组Cx和Y轴检测电容组Cy。在本实施例中,第二电极组E6位于第一质量块M1的第二镂空区域K2中,第三电极组 E7位于第一质量块M1的第三镂空区域K3中,以减少MEMS结构的整体面积。在其他的实施例中,第二电极组E6和第三电极组E7也可以设置在第二质量块M2内部的镂空区域中,或设置在第一质量块M1结构的外部。
第二电极组E6和第三电极组E7优选为梳齿电极,相对于锚点区域对称分布。其具体结构与分布的设置在此前的公开文献中多有描述,例如CN107271722A,此处不再详细阐述。
以上介绍了本发明优选实施例提供的MEMS三轴加速度计的结构,下面将结合加速度计的结构,具体说明其检测输入加速度的过程。由于任意方向的加速度均可分解为XYZ方向的三个分量,因此以下将从XYZ三个方向具体说明。
当加速度计受到沿Z轴正向的加速度时(垂直纸面向外),如图5所示,由于引梁S2在Z轴方向上刚度较大,因此检测质量将通过转动梁B2的杠杆作用,在Z轴方向上平动。此时第一质量块M1整体质量高于第二质量块M2,因此第一质量块M1向纸面外运动,第二质量块M2向纸面内运动,从而使得第一Z轴检测电容组Cz1的极板间距增大,第二Z轴检测电容组Cz2的极板间距减小。优选的,在本实施例中转动梁B2相对其转轴对称,因此第一Z轴检测电容组Cz1与第二Z轴检测电容组Cz2具有幅度相同且方向相反的变化,那么检测电路检测第一Z轴检测电容组Cz1的变化量(△Cz1)与第二Z轴检测电容组Cz2的变化量(△Cz2)的差值,计算沿Z轴输入的加速度,即检测电路测量差分信号△Cz1-△Cz2的大小,反推得到输入Z轴的加速度的大小。
当加速度计受到沿X轴的加速度时,由于第一质量块M1和第二质量块M2均通过转动梁B2间接连接至支撑梁B1,而支撑梁B1与转动梁B2之间的引梁S2在X轴方向上可以发生微小位移,因此第一质量块M1和第二质量块M2均 作为有效检测质量,提高了X轴检测的灵敏度。具体检测过程与CN107271722A类同,此处不再详细阐述。
当加速度计受到沿Y轴的加速度时,由于弹性梁S1和引梁S2的形变,第一质量块M1和第二质量块M2将在Y轴方向上发生微小位移,但运动方向相反。通过第三电极组E7与第一质量块M1形成的Y轴检测电容组Cy检测该加速度的大小。
如前文所述,本发明的加速度计在应对基板受环境影响产生翘曲或MEMS结构层偏转的情况时具有较好的表现。结合图1可以看出,由于固定电极对E1-E5沿Y轴方向依次设置,使得第一Z轴检测电容组Cz1和第二Z轴检测电容组Cz2的电容相对于锚定区域A1间隔分布。而且,第一Z轴检测电容组Cz1和第二Z轴检测电容组Cz2在整体上相对于锚定区域都是完全对称的。当基板100有沿Y轴方向的翘曲时,如图6所示,第一质量块M1和第二质量块M2在初始状态下与基板100间的间距从锚定区域向器件结构边缘方向逐渐减小。此时,固定电极对E3与第一质量块M1间的电容变化量最小,固定电极对E2、E4与第二质量块M2间的电容变化量次之,固定电极对E1、E5与第一质量块M1间的电容变化量最大。由于固定电极对E1、E3、E5与第一质量块M1构成第一Z轴检测电容组Cz1,固定电极对E2、E4与第二质量块M2构成第二Z轴检测电容组Cz2,因此第一Z轴检测电容组Cz1和第二Z轴检测电容组Cz2受翘曲影响产生的变化总体相当,那么在检测Z轴的加速度时,差分信号△Cz1-△Cz2受翘曲的影响将被极大降低,从而提高了器件的可靠性。
当可动部件200有沿Y轴方向的偏转时,如图7所示,第一质量块M1和第二质量块M2在初始状态下与基板间的间距从器件结构边缘一侧向另一侧的方向逐渐增大。此时,固定电极对E1-E3与质量块间的电容变化量依次减小,固定电极对E3-E5与质量块间的电容变化量依次增大。由于固定电极对E1、E3、E5与第一质量块M1构成第一Z轴检测电容组Cz1,固定电极对E2、E4 与第二质量块M2构成第二Z轴检测电容组Cz2,因此第一Z轴检测电容组Cz1和第二Z轴检测电容组Cz2的电容大致不变,那么在检测Z轴的加速度时,差分信号△Cz1-△Cz2将不受偏转的影响,从而提高了器件的可靠性。
当基板100有沿X轴方向的翘曲时,由于固定电极对E1-E5相对锚定区域沿X轴方向均为对称分布,因此它们与质量块间的电容变化量一致,那么可以通过差分将该翘曲产生的影响消除。
当可动部件200有沿X轴方向的偏转时,由于固定电极对E1-E5相对锚定区域沿X轴方向均为对称分布,因此它们与质量块组成的第一Z轴检测电容组Cz1和第二Z轴检测电容组Cz2的电容大致不变,那么在差分计算时将不受该偏转的影响。
综上所述,由于本发明的加速度计结构沿X轴与Y轴均为对称结构,且第一质量块M1与第二质量块M2对应的Z轴检测区域相对锚定区域的分布距离相当,因此不仅可以减小可动结构层初始状态偏转引起的零偏,还可以减小基板受环境引起的翘曲的影响。此外,本发明的加速度计采用对称杠杆设计使得第一质量块M1与第二质量块M2在Z轴上的运动为平动,从而增大了质量块的转矩及位移距离,提高了质量块运动的效率,即提高了加速度计的灵敏度;同时,沿Z轴平动的运动形式排除了质量块转动对X轴和Y轴检测的影响。进一步地,由于第一质量块M1与第二质量块M2的转矩增大也可以提高质量块的回复力,使得质量块与固定电极或周边固定结构更不容易发生吸合,从而避免传感器损坏。最后,由于锚定区域设置时向中心集中,且锚点数量尽可能减少,从而可以降低芯片对温度和应力变化的敏感度,以及不同锚点受温度和应力变化引起的不一致的偏移。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易 见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (11)

  1. 一种MEMS加速度计,其特征在于,包括:基板、可动部件以及固定电极组;
    所述基板表面具有锚定区域;
    所述可动部件通过支撑梁与所述锚定区域连接,并悬置于所述基板上方,所述可动部件包括第一质量块和第二质量块;
    所述第一质量块的中部具有第一镂空区域,所述第一镂空区域为“工”形,所述第二质量块位于所述第一镂空区域中;
    所述固定电极组包括第一电极组,所述第一电极组固定于所述基板表面,位于所述基板与所述可动部件之间,并与所述第一质量块和所述第二质量块形成Z轴检测电容组,以检测沿Z轴输入的加速度,所述Z轴为垂直于所述可动部件所在平面的方向。
  2. 如权利要求1所述的MEMS加速度计,其特征在于,所述第一电极组包括至少5对固定电极对E1-E5,沿Y轴方向依次设置,其中固定电极对E1、E3、E5与所述第一质量块形成第一Z轴检测电容组,固定电极对E2、E4与所述第二质量块形成第二Z轴检测电容组,所述Y轴方向位于所述可动部件所在平面内,并与所述Z轴方向垂直。
  3. 如权利要求2所述的MEMS加速度计,其特征在于,所述每对固定电极对E1-E5分别包括沿X轴设置的两个固定电极,位于锚定区域的两侧,所述X轴与所述Y轴和所述Z轴均垂直。
  4. 如权利要求2所述的MEMS加速度计,其特征在于,所述固定电极对E2与E4分别都为一个整体电极。
  5. 如权利要求2所述的MEMS加速度计,其特征在于,所述固定电极组还包括第二电极组和第三电极组,通过锚点固定于所述基板上方,并与所述 可动部件位于同一层,所述第二电极组和所述第三电极组分别与所述第一质量块形成X轴检测电容组和Y轴检测电容组。
  6. 如权利要求5所述的MEMS加速度计,其特征在于,所述第一质量块具有第二镂空区域和第三镂空区域,所述第二电极组位于所述第二镂空区域中,所述第三电极组位于所述第三镂空区域中。
  7. 如权利要求6所述的MEMS加速度计,其特征在于,所述第二镂空区域和所述第三镂空区域分别包括偶数个子区域,沿X轴位于所述锚定区域的两侧。
  8. 如权利要求5所述的MEMS加速度计,其特征在于,所述第二电极组和所述第三电极组均为梳齿电极。
  9. 如权利要求1所述的MEMS加速度计,其特征在于,所述第一质量块和所述第二质量块通过转动梁组连接,使得所述第一质量块与所述第二质量块受到沿Z轴输入的加速度时在Z轴方向上平动,且运动方向相反。
  10. 如权利要求9所述的MEMS加速度计,其特征在于,所述转动梁组包括4个转动梁,所述转动梁通过弹性梁与所述第一质量块和所述第二质量块连接,所述转动梁的中部连接至所述支撑梁,使得所述第一质量块和所述第二质量块通过所述转动梁组形成杠杆结构。
  11. 如权利要求1所述的MEMS加速度计,其特征在于,所述锚定区域被所述第一镂空区域分隔为两部分,每部分至少具有一个锚点。
PCT/CN2019/073334 2018-02-06 2019-01-28 一种mems加速度计 WO2019154146A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11202007406UA SG11202007406UA (en) 2018-02-06 2019-01-28 Mems accelerometer
US16/967,141 US11105829B2 (en) 2018-02-06 2019-01-28 MEMS accelerometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810117097.2 2018-02-06
CN201810117097.2A CN108020687B (zh) 2018-02-06 2018-02-06 一种mems加速度计

Publications (1)

Publication Number Publication Date
WO2019154146A1 true WO2019154146A1 (zh) 2019-08-15

Family

ID=62075251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073334 WO2019154146A1 (zh) 2018-02-06 2019-01-28 一种mems加速度计

Country Status (5)

Country Link
US (1) US11105829B2 (zh)
CN (1) CN108020687B (zh)
SG (1) SG11202007406UA (zh)
TW (2) TWM585900U (zh)
WO (1) WO2019154146A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108020687B (zh) 2018-02-06 2024-03-19 深迪半导体(绍兴)有限公司 一种mems加速度计
CN109270298B (zh) * 2018-10-24 2020-04-07 清华大学 Mems加速度计
CN109540118A (zh) * 2018-12-24 2019-03-29 中国航空工业集团公司西安飞行自动控制研究所 一种低温度系数的微机械陀螺
CN109444467B (zh) * 2018-12-29 2021-07-06 深迪半导体(绍兴)有限公司 一种共享质量块的三轴电容式加速度计
CN110308308B (zh) * 2019-06-27 2021-07-13 深迪半导体(绍兴)有限公司 一种带补偿电极的面内平动式加速度计
EP3792637B1 (en) * 2019-09-11 2023-05-03 Murata Manufacturing Co., Ltd. Low-noise multi-axis mems accelerometer
CN111208317B (zh) 2020-02-26 2021-07-02 深迪半导体(绍兴)有限公司 Mems惯性传感器及应用方法和电子设备
JP2022014567A (ja) * 2020-07-07 2022-01-20 セイコーエプソン株式会社 慣性センサー及び慣性計測装置
CN116601500A (zh) 2020-12-18 2023-08-15 美国亚德诺半导体公司 具有质量平移运动的加速度计
CN117396761A (zh) * 2021-06-16 2024-01-12 罗姆股份有限公司 加速度传感器
CN114280331B (zh) * 2021-12-16 2024-05-17 绍兴圆方半导体有限公司 一种z轴加速度计
CN114487480A (zh) * 2022-01-14 2022-05-13 瑞声开泰科技(武汉)有限公司 微机电系统加速度计
CN114487483B (zh) * 2022-04-18 2022-07-01 苏州敏芯微电子技术股份有限公司 Mems三轴加速度计
CN116338246B (zh) * 2023-03-16 2024-02-20 瑞声开泰科技(武汉)有限公司 一种加速度计

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6393913B1 (en) * 2000-02-08 2002-05-28 Sandia Corporation Microelectromechanical dual-mass resonator structure
CN101738496A (zh) * 2008-11-18 2010-06-16 财团法人工业技术研究院 多轴电容式加速度计
CN102435777A (zh) * 2011-11-02 2012-05-02 重庆理工大学 一种硅微电容式二维集成加速度传感器
CN104730289A (zh) * 2013-12-23 2015-06-24 因文森斯公司 具有垂直于基底平面沿逆相方向移动的检测质量块的mems加速计
CN106915721A (zh) * 2015-12-28 2017-07-04 财团法人工业技术研究院 具有中央固定座的微机电装置
CN107271722A (zh) * 2017-07-19 2017-10-20 深迪半导体(上海)有限公司 一种三轴电容式加速度计
CN107407695A (zh) * 2015-01-28 2017-11-28 因文森斯公司 平移式z轴加速度计
WO2018004113A1 (ko) * 2016-06-29 2018-01-04 주식회사 신성씨앤티 멤스 기반의 3축 가속도 센서
CN108020687A (zh) * 2018-02-06 2018-05-11 深迪半导体(上海)有限公司 一种mems加速度计
CN208314017U (zh) * 2018-02-06 2019-01-01 深迪半导体(上海)有限公司 一种mems加速度计

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060039A (en) * 1988-01-13 1991-10-22 The Charles Stark Draper Laboratory, Inc. Permanent magnet force rebalance micro accelerometer
EP0822415B1 (en) * 1996-07-31 2003-03-26 STMicroelectronics S.r.l. Semiconductor integrated capacitive acceleration sensor and relative fabrication method
DE69726718T2 (de) * 1997-07-31 2004-10-07 St Microelectronics Srl Verfahren zum Herstellen hochempfindlicher integrierter Beschleunigungs- und Gyroskopsensoren und Sensoren, die derartig hergestellt werden
DE10148858A1 (de) * 2001-10-04 2003-04-10 Bosch Gmbh Robert Mikromechanischer Sensor mit Selbsttestfunktion und Optimierungsverfahren
US6701786B2 (en) * 2002-04-29 2004-03-09 L-3 Communications Corporation Closed loop analog gyro rate sensor
US6938483B1 (en) * 2004-03-28 2005-09-06 Hai Yan Phase-locked mechanical resonator pair and its application in micromachined vibration gyroscope
US7640803B1 (en) * 2004-05-26 2010-01-05 Siimpel Corporation Micro-electromechanical system inertial sensor
US7617729B2 (en) * 2006-02-21 2009-11-17 Physical Logic Ag Accelerometer
US7814794B2 (en) * 2007-09-07 2010-10-19 Pixart Imaging Inc. Micromachined sensors
US20090183570A1 (en) * 2008-01-18 2009-07-23 Custom Sensors & Technologies, Inc. Micromachined cross-differential dual-axis accelerometer
JP5243988B2 (ja) * 2009-02-10 2013-07-24 本田技研工業株式会社 多軸力覚センサおよび加速度センサ
WO2012037540A2 (en) * 2010-09-18 2012-03-22 Fairchild Semiconductor Corporation Micromachined monolithic 3-axis gyroscope with single drive
JP2012183612A (ja) * 2011-03-07 2012-09-27 Toyota Central R&D Labs Inc Memsデバイス
US8689631B1 (en) * 2011-06-23 2014-04-08 The United States Of America As Represented By Secretary Of The Navy High sensitivity mechanical gyro with reduced quadrature error
JP6206650B2 (ja) * 2013-07-17 2017-10-04 セイコーエプソン株式会社 機能素子、電子機器、および移動体
CN103645343B (zh) * 2013-12-06 2016-07-13 杭州士兰微电子股份有限公司 多轴电容式加速度计
CN105699693B (zh) * 2014-12-11 2019-04-12 意法半导体股份有限公司 具有减少漂移功能的z轴微机电检测结构
EP3298414A1 (en) * 2015-05-20 2018-03-28 Lumedyne Technologies Incorporated Extracting inertial information from nonlinear periodic signals
CN105158511B (zh) * 2015-06-29 2018-11-30 歌尔股份有限公司 一种mems三轴加速度计
US10352960B1 (en) * 2015-10-30 2019-07-16 Garmin International, Inc. Free mass MEMS accelerometer
US10393770B2 (en) * 2016-04-28 2019-08-27 Semiconductor Components Industries, Llc Multi-axis accelerometer with reduced stress sensitivity
JP6926099B2 (ja) * 2016-09-23 2021-08-25 住友精密工業株式会社 センサ
JP6816603B2 (ja) * 2017-03-27 2021-01-20 セイコーエプソン株式会社 物理量センサー、電子機器、および移動体
JP7415444B2 (ja) * 2019-10-30 2024-01-17 セイコーエプソン株式会社 振動デバイス、電子機器および移動体

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6393913B1 (en) * 2000-02-08 2002-05-28 Sandia Corporation Microelectromechanical dual-mass resonator structure
CN101738496A (zh) * 2008-11-18 2010-06-16 财团法人工业技术研究院 多轴电容式加速度计
CN102435777A (zh) * 2011-11-02 2012-05-02 重庆理工大学 一种硅微电容式二维集成加速度传感器
CN104730289A (zh) * 2013-12-23 2015-06-24 因文森斯公司 具有垂直于基底平面沿逆相方向移动的检测质量块的mems加速计
CN107407695A (zh) * 2015-01-28 2017-11-28 因文森斯公司 平移式z轴加速度计
CN106915721A (zh) * 2015-12-28 2017-07-04 财团法人工业技术研究院 具有中央固定座的微机电装置
WO2018004113A1 (ko) * 2016-06-29 2018-01-04 주식회사 신성씨앤티 멤스 기반의 3축 가속도 센서
CN107271722A (zh) * 2017-07-19 2017-10-20 深迪半导体(上海)有限公司 一种三轴电容式加速度计
CN108020687A (zh) * 2018-02-06 2018-05-11 深迪半导体(上海)有限公司 一种mems加速度计
CN208314017U (zh) * 2018-02-06 2019-01-01 深迪半导体(上海)有限公司 一种mems加速度计

Also Published As

Publication number Publication date
SG11202007406UA (en) 2020-09-29
TWM585900U (zh) 2019-11-01
TWI748157B (zh) 2021-12-01
CN108020687A (zh) 2018-05-11
US11105829B2 (en) 2021-08-31
TW201940886A (zh) 2019-10-16
CN108020687B (zh) 2024-03-19
US20200355722A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
WO2019154146A1 (zh) 一种mems加速度计
CN101639487B (zh) 三轴加速度传感器
US20070034007A1 (en) Multi-axis micromachined accelerometer
US10024881B2 (en) MEMS sensor
US10330471B2 (en) Triaxial micro-electromechanical gyroscope
US20140252509A1 (en) Mems device and corresponding micromechanical structure with integrated compensation of thermo-mechanical stress
US20120160029A1 (en) Acceleration sensor
US11255873B2 (en) Increased sensitivity z-axis accelerometer
WO2016119418A1 (zh) 一种加速度计中的z轴结构
CN110426534B (zh) 具有单个检验质量块和多感测轴能力的惯性传感器
US20060169044A1 (en) Mems accelerometers
US10732196B2 (en) Asymmetric out-of-plane accelerometer
CN208314017U (zh) 一种mems加速度计
JP2015125124A (ja) 多軸センサ
TW594016B (en) Z-axis solid state gyroscope and three-axis inertial measurement apparatus
JPH11248737A (ja) 静電容量型多軸加速度センサ
CN112014597A (zh) 三轴谐振电容式微机电加速度计
US20150059476A1 (en) Acceleration sensor
CN212410634U (zh) 三轴谐振电容式微机电加速度计
Masunishi et al. Wide Dynamic Range of a MEMS Differential Resonant Accelerometer with Asymmetric T-Shaped Electrodes
CN115078769B (zh) Mems加速度计
CN110501522B (zh) 一种微机电系统的电容式加速度计
JPH11248741A (ja) 静電容量型多軸加速度センサ
KR101090697B1 (ko) 정전용량형 마이크로 경사계 및 그 제조 방법
CN105589559A (zh) 一种用于人机交互中的运动惯性追踪系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750668

Country of ref document: EP

Kind code of ref document: A1