WO2019151328A1 - 合わせガラス用中間膜及び合わせガラス - Google Patents
合わせガラス用中間膜及び合わせガラス Download PDFInfo
- Publication number
- WO2019151328A1 WO2019151328A1 PCT/JP2019/003181 JP2019003181W WO2019151328A1 WO 2019151328 A1 WO2019151328 A1 WO 2019151328A1 JP 2019003181 W JP2019003181 W JP 2019003181W WO 2019151328 A1 WO2019151328 A1 WO 2019151328A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laminated glass
- layer
- cured product
- interlayer film
- resin
- Prior art date
Links
- 239000005340 laminated glass Substances 0.000 title claims abstract description 179
- 150000001875 compounds Chemical class 0.000 claims abstract description 56
- 238000005259 measurement Methods 0.000 claims abstract description 34
- 239000010410 layer Substances 0.000 claims description 316
- 239000011229 interlayer Substances 0.000 claims description 106
- 229920005989 resin Polymers 0.000 claims description 96
- 239000011347 resin Substances 0.000 claims description 96
- 239000011521 glass Substances 0.000 claims description 34
- 238000003860 storage Methods 0.000 claims description 18
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 claims description 16
- 238000009413 insulation Methods 0.000 abstract description 41
- 239000000463 material Substances 0.000 abstract description 20
- 230000001965 increasing effect Effects 0.000 abstract description 12
- 238000000016 photochemical curing Methods 0.000 abstract description 2
- 238000013008 moisture curing Methods 0.000 abstract 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 56
- -1 5-hydroxypentyl Chemical group 0.000 description 52
- 239000002245 particle Substances 0.000 description 49
- 239000003795 chemical substances by application Substances 0.000 description 42
- 239000000203 mixture Substances 0.000 description 42
- 239000004014 plasticizer Substances 0.000 description 36
- 239000003963 antioxidant agent Substances 0.000 description 30
- 235000006708 antioxidants Nutrition 0.000 description 30
- 229920002554 vinyl polymer Polymers 0.000 description 29
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 28
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical group CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 25
- 239000011354 acetal resin Substances 0.000 description 25
- 229920006324 polyoxymethylene Polymers 0.000 description 25
- 230000003078 antioxidant effect Effects 0.000 description 24
- 229910052751 metal Inorganic materials 0.000 description 24
- 239000002184 metal Substances 0.000 description 24
- 150000003839 salts Chemical class 0.000 description 21
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 20
- 238000002156 mixing Methods 0.000 description 18
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 15
- 239000000126 substance Substances 0.000 description 15
- 229920005992 thermoplastic resin Polymers 0.000 description 15
- 229920000058 polyacrylate Polymers 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 12
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 12
- 125000004432 carbon atom Chemical group C* 0.000 description 12
- 238000006116 polymerization reaction Methods 0.000 description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 11
- 239000004372 Polyvinyl alcohol Substances 0.000 description 11
- 230000021736 acetylation Effects 0.000 description 11
- 238000006640 acetylation reaction Methods 0.000 description 11
- 238000001723 curing Methods 0.000 description 11
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 11
- 229910044991 metal oxide Inorganic materials 0.000 description 11
- 150000004706 metal oxides Chemical class 0.000 description 11
- 229920002451 polyvinyl alcohol Polymers 0.000 description 11
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 9
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 8
- 238000006359 acetalization reaction Methods 0.000 description 8
- 239000000654 additive Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 8
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical class N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 7
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 239000005020 polyethylene terephthalate Substances 0.000 description 7
- 239000011342 resin composition Substances 0.000 description 7
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 6
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 description 6
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 150000001299 aldehydes Chemical class 0.000 description 6
- OCWYEMOEOGEQAN-UHFFFAOYSA-N bumetrizole Chemical compound CC(C)(C)C1=CC(C)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O OCWYEMOEOGEQAN-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000005357 flat glass Substances 0.000 description 6
- 239000011787 zinc oxide Substances 0.000 description 6
- FRQDZJMEHSJOPU-UHFFFAOYSA-N Triethylene glycol bis(2-ethylhexanoate) Chemical compound CCCCC(CC)C(=O)OCCOCCOCCOC(=O)C(CC)CCCC FRQDZJMEHSJOPU-UHFFFAOYSA-N 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 229920001971 elastomer Polymers 0.000 description 5
- 230000002708 enhancing effect Effects 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 150000002895 organic esters Chemical class 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 229920002799 BoPET Polymers 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- 229910052753 mercury Inorganic materials 0.000 description 4
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 4
- 229940059574 pentaerithrityl Drugs 0.000 description 4
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 4
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N pentanal Chemical compound CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000010734 process oil Substances 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 229910001930 tungsten oxide Inorganic materials 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical group [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 4
- JEYLQCXBYFQJRO-UHFFFAOYSA-N 2-[2-[2-(2-ethylbutanoyloxy)ethoxy]ethoxy]ethyl 2-ethylbutanoate Chemical compound CCC(CC)C(=O)OCCOCCOCCOC(=O)C(CC)CC JEYLQCXBYFQJRO-UHFFFAOYSA-N 0.000 description 3
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 3
- IYXGSMUGOJNHAZ-UHFFFAOYSA-N Ethyl malonate Chemical group CCOC(=O)CC(=O)OCC IYXGSMUGOJNHAZ-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 125000004036 acetal group Chemical group 0.000 description 3
- 150000001241 acetals Chemical class 0.000 description 3
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 3
- 125000002015 acyclic group Chemical group 0.000 description 3
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 3
- 150000001278 adipic acid derivatives Chemical class 0.000 description 3
- 125000003368 amide group Chemical group 0.000 description 3
- 235000010208 anthocyanin Nutrition 0.000 description 3
- 229930002877 anthocyanin Natural products 0.000 description 3
- 239000004410 anthocyanin Substances 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 3
- 238000004049 embossing Methods 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 125000000962 organic group Chemical group 0.000 description 3
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 229920002725 thermoplastic elastomer Polymers 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- LWNGJAHMBMVCJR-UHFFFAOYSA-N (2,3,4,5,6-pentafluorophenoxy)boronic acid Chemical compound OB(O)OC1=C(F)C(F)=C(F)C(F)=C1F LWNGJAHMBMVCJR-UHFFFAOYSA-N 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 2
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 2
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 2
- BTJPUDCSZVCXFQ-UHFFFAOYSA-N 2,4-diethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC(CC)=C3SC2=C1 BTJPUDCSZVCXFQ-UHFFFAOYSA-N 0.000 description 2
- LZHUBCULTHIFNO-UHFFFAOYSA-N 2,4-dihydroxy-1,5-bis[4-(2-hydroxyethoxy)phenyl]-2,4-dimethylpentan-3-one Chemical compound C=1C=C(OCCO)C=CC=1CC(C)(O)C(=O)C(O)(C)CC1=CC=C(OCCO)C=C1 LZHUBCULTHIFNO-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 2
- OXQGTIUCKGYOAA-UHFFFAOYSA-N 2-Ethylbutanoic acid Chemical compound CCC(CC)C(O)=O OXQGTIUCKGYOAA-UHFFFAOYSA-N 0.000 description 2
- YJGHMLJGPSVSLF-UHFFFAOYSA-N 2-[2-(2-octanoyloxyethoxy)ethoxy]ethyl octanoate Chemical compound CCCCCCCC(=O)OCCOCCOCCOC(=O)CCCCCCC YJGHMLJGPSVSLF-UHFFFAOYSA-N 0.000 description 2
- NQXNYVAALXGLQT-UHFFFAOYSA-N 2-[4-[9-[4-(2-hydroxyethoxy)phenyl]fluoren-9-yl]phenoxy]ethanol Chemical compound C1=CC(OCCO)=CC=C1C1(C=2C=CC(OCCO)=CC=2)C2=CC=CC=C2C2=CC=CC=C21 NQXNYVAALXGLQT-UHFFFAOYSA-N 0.000 description 2
- PQJZHMCWDKOPQG-UHFFFAOYSA-N 2-anilino-2-oxoacetic acid Chemical group OC(=O)C(=O)NC1=CC=CC=C1 PQJZHMCWDKOPQG-UHFFFAOYSA-N 0.000 description 2
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 2
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 2
- VVBLNCFGVYUYGU-UHFFFAOYSA-N 4,4'-Bis(dimethylamino)benzophenone Chemical compound C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 VVBLNCFGVYUYGU-UHFFFAOYSA-N 0.000 description 2
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 2
- 241000282320 Panthera leo Species 0.000 description 2
- 239000005662 Paraffin oil Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- ZFOZVQLOBQUTQQ-UHFFFAOYSA-N Tributyl citrate Chemical compound CCCCOC(=O)CC(O)(C(=O)OCCCC)CC(=O)OCCCC ZFOZVQLOBQUTQQ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- GUCYFKSBFREPBC-UHFFFAOYSA-N [phenyl-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C(=O)C1=C(C)C=C(C)C=C1C GUCYFKSBFREPBC-UHFFFAOYSA-N 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 150000004636 anthocyanins Chemical class 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 2
- GCTPMLUUWLLESL-UHFFFAOYSA-N benzyl prop-2-enoate Chemical compound C=CC(=O)OCC1=CC=CC=C1 GCTPMLUUWLLESL-UHFFFAOYSA-N 0.000 description 2
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 2
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 150000001733 carboxylic acid esters Chemical class 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 150000004292 cyclic ethers Chemical group 0.000 description 2
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000005329 float glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- JARKCYVAAOWBJS-UHFFFAOYSA-N hexanal Chemical compound CCCCCC=O JARKCYVAAOWBJS-UHFFFAOYSA-N 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229920000554 ionomer Polymers 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 2
- 239000011654 magnesium acetate Substances 0.000 description 2
- 229940069446 magnesium acetate Drugs 0.000 description 2
- 235000011285 magnesium acetate Nutrition 0.000 description 2
- 159000000003 magnesium salts Chemical class 0.000 description 2
- JOADGALWHMAAKM-UHFFFAOYSA-L magnesium;2-ethylbutanoate Chemical compound [Mg+2].CCC(CC)C([O-])=O.CCC(CC)C([O-])=O JOADGALWHMAAKM-UHFFFAOYSA-L 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- QUAMTGJKVDWJEQ-UHFFFAOYSA-N octabenzone Chemical compound OC1=CC(OCCCCCCCC)=CC=C1C(=O)C1=CC=CC=C1 QUAMTGJKVDWJEQ-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 239000002530 phenolic antioxidant Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- 229910052701 rubidium Inorganic materials 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 2
- OLFPYUPGPBITMH-UHFFFAOYSA-N tritylium Chemical compound C1=CC=CC=C1[C+](C=1C=CC=CC=1)C1=CC=CC=C1 OLFPYUPGPBITMH-UHFFFAOYSA-N 0.000 description 2
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- KJYSXRBJOSZLEL-UHFFFAOYSA-N (2,4-ditert-butylphenyl) 3,5-ditert-butyl-4-hydroxybenzoate Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OC(=O)C1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 KJYSXRBJOSZLEL-UHFFFAOYSA-N 0.000 description 1
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 1
- UROHSXQUJQQUOO-UHFFFAOYSA-M (4-benzoylphenyl)methyl-trimethylazanium;chloride Chemical compound [Cl-].C1=CC(C[N+](C)(C)C)=CC=C1C(=O)C1=CC=CC=C1 UROHSXQUJQQUOO-UHFFFAOYSA-M 0.000 description 1
- QFMZQPDHXULLKC-UHFFFAOYSA-N 1,2-bis(diphenylphosphino)ethane Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)CCP(C=1C=CC=CC=1)C1=CC=CC=C1 QFMZQPDHXULLKC-UHFFFAOYSA-N 0.000 description 1
- MSAHTMIQULFMRG-UHFFFAOYSA-N 1,2-diphenyl-2-propan-2-yloxyethanone Chemical compound C=1C=CC=CC=1C(OC(C)C)C(=O)C1=CC=CC=C1 MSAHTMIQULFMRG-UHFFFAOYSA-N 0.000 description 1
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- DKEGCUDAFWNSSO-UHFFFAOYSA-N 1,8-dibromooctane Chemical compound BrCCCCCCCCBr DKEGCUDAFWNSSO-UHFFFAOYSA-N 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- KZVBBTZJMSWGTK-UHFFFAOYSA-N 1-[2-(2-butoxyethoxy)ethoxy]butane Chemical compound CCCCOCCOCCOCCCC KZVBBTZJMSWGTK-UHFFFAOYSA-N 0.000 description 1
- VKQJCUYEEABXNK-UHFFFAOYSA-N 1-chloro-4-propoxythioxanthen-9-one Chemical compound S1C2=CC=CC=C2C(=O)C2=C1C(OCCC)=CC=C2Cl VKQJCUYEEABXNK-UHFFFAOYSA-N 0.000 description 1
- DLZBUNUDESZERL-UHFFFAOYSA-N 1-o-heptyl 6-o-nonyl hexanedioate Chemical compound CCCCCCCCCOC(=O)CCCCC(=O)OCCCCCCC DLZBUNUDESZERL-UHFFFAOYSA-N 0.000 description 1
- STFXXRRQKFUYEU-UHFFFAOYSA-N 16-methylheptadecyl prop-2-enoate Chemical compound CC(C)CCCCCCCCCCCCCCCOC(=O)C=C STFXXRRQKFUYEU-UHFFFAOYSA-N 0.000 description 1
- XCTNDJAFNBCVOM-UHFFFAOYSA-N 1h-imidazo[4,5-b]pyridin-2-ylmethanamine Chemical compound C1=CC=C2NC(CN)=NC2=N1 XCTNDJAFNBCVOM-UHFFFAOYSA-N 0.000 description 1
- BRXKVEIJEXJBFF-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)-3-methylbutane-1,4-diol Chemical compound OCC(C)C(CO)(CO)CO BRXKVEIJEXJBFF-UHFFFAOYSA-N 0.000 description 1
- PIZHFBODNLEQBL-UHFFFAOYSA-N 2,2-diethoxy-1-phenylethanone Chemical compound CCOC(OCC)C(=O)C1=CC=CC=C1 PIZHFBODNLEQBL-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- BRKORVYTKKLNKX-UHFFFAOYSA-N 2,4-di(propan-2-yl)thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C(C)C)=CC(C(C)C)=C3SC2=C1 BRKORVYTKKLNKX-UHFFFAOYSA-N 0.000 description 1
- BVUXDWXKPROUDO-UHFFFAOYSA-N 2,6-di-tert-butyl-4-ethylphenol Chemical compound CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 BVUXDWXKPROUDO-UHFFFAOYSA-N 0.000 description 1
- CKQNDABUGIXFCL-UHFFFAOYSA-N 2-(2-octanoyloxyethoxy)ethyl octanoate Chemical compound CCCCCCCC(=O)OCCOCCOC(=O)CCCCCCC CKQNDABUGIXFCL-UHFFFAOYSA-N 0.000 description 1
- IEQWWMKDFZUMMU-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethyl)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)CCOC(=O)C=C IEQWWMKDFZUMMU-UHFFFAOYSA-N 0.000 description 1
- LHPPDQUVECZQSW-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4,6-ditert-butylphenol Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC(N2N=C3C=CC=CC3=N2)=C1O LHPPDQUVECZQSW-UHFFFAOYSA-N 0.000 description 1
- UNNGUFMVYQJGTD-UHFFFAOYSA-N 2-Ethylbutanal Chemical compound CCC(CC)C=O UNNGUFMVYQJGTD-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- GCDUWJFWXVRGSM-UHFFFAOYSA-N 2-[2-(2-heptanoyloxyethoxy)ethoxy]ethyl heptanoate Chemical compound CCCCCCC(=O)OCCOCCOCCOC(=O)CCCCCC GCDUWJFWXVRGSM-UHFFFAOYSA-N 0.000 description 1
- NBBXSWKUFZWAMU-UHFFFAOYSA-N 2-[2-(dimethylamino)ethyl]benzoic acid Chemical compound CN(C)CCC1=CC=CC=C1C(O)=O NBBXSWKUFZWAMU-UHFFFAOYSA-N 0.000 description 1
- SSKNCQWPZQCABD-UHFFFAOYSA-N 2-[2-[2-(2-heptanoyloxyethoxy)ethoxy]ethoxy]ethyl heptanoate Chemical compound CCCCCCC(=O)OCCOCCOCCOCCOC(=O)CCCCCC SSKNCQWPZQCABD-UHFFFAOYSA-N 0.000 description 1
- QSRJVOOOWGXUDY-UHFFFAOYSA-N 2-[2-[2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoyloxy]ethoxy]ethoxy]ethyl 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C)=CC(CCC(=O)OCCOCCOCCOC(=O)CCC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 QSRJVOOOWGXUDY-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- YQZZHMXSIYMFDK-UHFFFAOYSA-N 2-[bis(2-prop-2-enoyloxyethoxy)phosphoryloxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOP(=O)(OCCOC(=O)C=C)OCCOC(=O)C=C YQZZHMXSIYMFDK-UHFFFAOYSA-N 0.000 description 1
- VWSWIUTWLQJWQH-UHFFFAOYSA-N 2-butyl-6-[(3-butyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound CCCCC1=CC(C)=CC(CC=2C(=C(CCCC)C=C(C)C=2)O)=C1O VWSWIUTWLQJWQH-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- KTALPKYXQZGAEG-UHFFFAOYSA-N 2-propan-2-ylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C(C)C)=CC=C3SC2=C1 KTALPKYXQZGAEG-UHFFFAOYSA-N 0.000 description 1
- WJQOZHYUIDYNHM-UHFFFAOYSA-N 2-tert-Butylphenol Chemical compound CC(C)(C)C1=CC=CC=C1O WJQOZHYUIDYNHM-UHFFFAOYSA-N 0.000 description 1
- PFANXOISJYKQRP-UHFFFAOYSA-N 2-tert-butyl-4-[1-(5-tert-butyl-4-hydroxy-2-methylphenyl)butyl]-5-methylphenol Chemical compound C=1C(C(C)(C)C)=C(O)C=C(C)C=1C(CCC)C1=CC(C(C)(C)C)=C(O)C=C1C PFANXOISJYKQRP-UHFFFAOYSA-N 0.000 description 1
- ALKCLFLTXBBMMP-UHFFFAOYSA-N 3,7-dimethylocta-1,6-dien-3-yl hexanoate Chemical compound CCCCCC(=O)OC(C)(C=C)CCC=C(C)C ALKCLFLTXBBMMP-UHFFFAOYSA-N 0.000 description 1
- FLZYQMOKBVFXJS-UHFFFAOYSA-N 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoic acid Chemical compound CC1=CC(CCC(O)=O)=CC(C(C)(C)C)=C1O FLZYQMOKBVFXJS-UHFFFAOYSA-N 0.000 description 1
- QYBPUVGDDCVYPC-UHFFFAOYSA-N 3-[4,4-bis(5-tert-butyl-3-hydroxy-2-methylphenyl)butan-2-yl]-5-tert-butyl-2-methylphenol Chemical compound C=1C(C(C)(C)C)=CC(O)=C(C)C=1C(C)CC(C=1C(=C(O)C=C(C=1)C(C)(C)C)C)C1=CC(C(C)(C)C)=CC(O)=C1C QYBPUVGDDCVYPC-UHFFFAOYSA-N 0.000 description 1
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 1
- VSAWBBYYMBQKIK-UHFFFAOYSA-N 4-[[3,5-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-2,4,6-trimethylphenyl]methyl]-2,6-ditert-butylphenol Chemical compound CC1=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C1CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VSAWBBYYMBQKIK-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- NCAVPEPBIJTYSO-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate;2-(oxiran-2-ylmethoxymethyl)oxirane Chemical compound C1OC1COCC1CO1.OCCCCOC(=O)C=C NCAVPEPBIJTYSO-UHFFFAOYSA-N 0.000 description 1
- UZDMJPAQQFSMMV-UHFFFAOYSA-N 4-oxo-4-(2-prop-2-enoyloxyethoxy)butanoic acid Chemical compound OC(=O)CCC(=O)OCCOC(=O)C=C UZDMJPAQQFSMMV-UHFFFAOYSA-N 0.000 description 1
- IKVYHNPVKUNCJM-UHFFFAOYSA-N 4-propan-2-ylthioxanthen-9-one Chemical compound S1C2=CC=CC=C2C(=O)C2=C1C(C(C)C)=CC=C2 IKVYHNPVKUNCJM-UHFFFAOYSA-N 0.000 description 1
- 125000004864 4-thiomethylphenyl group Chemical group 0.000 description 1
- GPZYYYGYCRFPBU-UHFFFAOYSA-N 6-Hydroxyflavone Chemical compound C=1C(=O)C2=CC(O)=CC=C2OC=1C1=CC=CC=C1 GPZYYYGYCRFPBU-UHFFFAOYSA-N 0.000 description 1
- BJIUNQZHYLBUNL-UHFFFAOYSA-N 6-heptoxy-6-oxohexanoic acid Chemical compound CCCCCCCOC(=O)CCCCC(O)=O BJIUNQZHYLBUNL-UHFFFAOYSA-N 0.000 description 1
- OIUGWVWLEGLAGH-UHFFFAOYSA-N 6-nonoxy-6-oxohexanoic acid Chemical compound CCCCCCCCCOC(=O)CCCCC(O)=O OIUGWVWLEGLAGH-UHFFFAOYSA-N 0.000 description 1
- SXKCDRRSQHPBOI-UHFFFAOYSA-N 6-o-cyclohexyl 1-o-hexyl hexanedioate Chemical compound CCCCCCOC(=O)CCCCC(=O)OC1CCCCC1 SXKCDRRSQHPBOI-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- HUUJFOGLCYMPCS-UHFFFAOYSA-N C(C)(C)(C)C(CC(C(O[P])OC1=CC=CC=C1)CC)CCC(C)(C)C Chemical compound C(C)(C)(C)C(CC(C(O[P])OC1=CC=CC=C1)CC)CCC(C)(C)C HUUJFOGLCYMPCS-UHFFFAOYSA-N 0.000 description 1
- KCSNJGNNARNSOX-UHFFFAOYSA-N C(C=C)(=O)OCCOC1=CC=C(C=C1)C(C)(C)C1=CC=C(C=C1)OCCOC(C=C)=O.C(C=C)(=O)O Chemical compound C(C=C)(=O)OCCOC1=CC=C(C=C1)C(C)(C)C1=CC=C(C=C1)OCCOC(C=C)=O.C(C=C)(=O)O KCSNJGNNARNSOX-UHFFFAOYSA-N 0.000 description 1
- PPRZEPPKBKXKPD-UHFFFAOYSA-N C(CCCCCCCCC)C(O)(C(CO)(CO)CO)CCCCCCCCCC Chemical compound C(CCCCCCCCC)C(O)(C(CO)(CO)CO)CCCCCCCCCC PPRZEPPKBKXKPD-UHFFFAOYSA-N 0.000 description 1
- WMONOXOCMIPNNU-UHFFFAOYSA-N C=CC(=O)OCCCC(O)COC(=O)C1=CC=CC=C1C(O)=O Chemical compound C=CC(=O)OCCCC(O)COC(=O)C1=CC=CC=C1C(O)=O WMONOXOCMIPNNU-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- XTJFFFGAUHQWII-UHFFFAOYSA-N Dibutyl adipate Chemical compound CCCCOC(=O)CCCCC(=O)OCCCC XTJFFFGAUHQWII-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- RDOFJDLLWVCMRU-UHFFFAOYSA-N Diisobutyl adipate Chemical compound CC(C)COC(=O)CCCCC(=O)OCC(C)C RDOFJDLLWVCMRU-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- ZGFPUTOTEJOSAY-UHFFFAOYSA-N FC1=C([Ti])C(F)=CC=C1N1C=CC=C1 Chemical compound FC1=C([Ti])C(F)=CC=C1N1C=CC=C1 ZGFPUTOTEJOSAY-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FEXQDZTYJVXMOS-UHFFFAOYSA-N Isopropyl benzoate Chemical compound CC(C)OC(=O)C1=CC=CC=C1 FEXQDZTYJVXMOS-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- NQSMEZJWJJVYOI-UHFFFAOYSA-N Methyl 2-benzoylbenzoate Chemical compound COC(=O)C1=CC=CC=C1C(=O)C1=CC=CC=C1 NQSMEZJWJJVYOI-UHFFFAOYSA-N 0.000 description 1
- MOABYHZDQQELLG-UHFFFAOYSA-N OP(O)OP(O)O.C(CCCCCCCCCCCC)C(O)(C(CO)(CO)CO)CCCCCCCCCCCCC Chemical compound OP(O)OP(O)O.C(CCCCCCCCCCCC)C(O)(C(CO)(CO)CO)CCCCCCCCCCCCC MOABYHZDQQELLG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241001483078 Phyto Species 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- SLINHMUFWFWBMU-UHFFFAOYSA-N Triisopropanolamine Chemical compound CC(O)CN(CC(C)O)CC(C)O SLINHMUFWFWBMU-UHFFFAOYSA-N 0.000 description 1
- LFOXEOLGJPJZAA-UHFFFAOYSA-N [(2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl)phosphoryl]-(2,6-dimethoxyphenyl)methanone Chemical compound COC1=CC=CC(OC)=C1C(=O)P(=O)(CC(C)CC(C)(C)C)C(=O)C1=C(OC)C=CC=C1OC LFOXEOLGJPJZAA-UHFFFAOYSA-N 0.000 description 1
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- DBHQYYNDKZDVTN-UHFFFAOYSA-N [4-(4-methylphenyl)sulfanylphenyl]-phenylmethanone Chemical compound C1=CC(C)=CC=C1SC1=CC=C(C(=O)C=2C=CC=CC=2)C=C1 DBHQYYNDKZDVTN-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- ZEFSGHVBJCEKAZ-UHFFFAOYSA-N bis(2,4-ditert-butyl-6-methylphenyl) ethyl phosphite Chemical compound CC=1C=C(C(C)(C)C)C=C(C(C)(C)C)C=1OP(OCC)OC1=C(C)C=C(C(C)(C)C)C=C1C(C)(C)C ZEFSGHVBJCEKAZ-UHFFFAOYSA-N 0.000 description 1
- ZFMQKOWCDKKBIF-UHFFFAOYSA-N bis(3,5-difluorophenyl)phosphane Chemical compound FC1=CC(F)=CC(PC=2C=C(F)C=C(F)C=2)=C1 ZFMQKOWCDKKBIF-UHFFFAOYSA-N 0.000 description 1
- QDVNNDYBCWZVTI-UHFFFAOYSA-N bis[4-(ethylamino)phenyl]methanone Chemical compound C1=CC(NCC)=CC=C1C(=O)C1=CC=C(NCC)C=C1 QDVNNDYBCWZVTI-UHFFFAOYSA-N 0.000 description 1
- HXTBYXIZCDULQI-UHFFFAOYSA-N bis[4-(methylamino)phenyl]methanone Chemical compound C1=CC(NC)=CC=C1C(=O)C1=CC=C(NC)C=C1 HXTBYXIZCDULQI-UHFFFAOYSA-N 0.000 description 1
- FQUNFJULCYSSOP-UHFFFAOYSA-N bisoctrizole Chemical compound N1=C2C=CC=CC2=NN1C1=CC(C(C)(C)CC(C)(C)C)=CC(CC=2C(=C(C=C(C=2)C(C)(C)CC(C)(C)C)N2N=C3C=CC=CC3=N2)O)=C1O FQUNFJULCYSSOP-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- KKPMZLPPEXRJOM-UHFFFAOYSA-N butane-1,3-diol;hexanedioic acid Chemical compound CC(O)CCO.OC(=O)CCCCC(O)=O KKPMZLPPEXRJOM-UHFFFAOYSA-N 0.000 description 1
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- KBLWLMPSVYBVDK-UHFFFAOYSA-N cyclohexyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCCC1 KBLWLMPSVYBVDK-UHFFFAOYSA-N 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- KSMVZQYAVGTKIV-UHFFFAOYSA-N decanal Chemical compound CCCCCCCCCC=O KSMVZQYAVGTKIV-UHFFFAOYSA-N 0.000 description 1
- JBSLOWBPDRZSMB-FPLPWBNLSA-N dibutyl (z)-but-2-enedioate Chemical compound CCCCOC(=O)\C=C/C(=O)OCCCC JBSLOWBPDRZSMB-FPLPWBNLSA-N 0.000 description 1
- 229940100539 dibutyl adipate Drugs 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- 229940031769 diisobutyl adipate Drugs 0.000 description 1
- XWVQUJDBOICHGH-UHFFFAOYSA-N dioctyl nonanedioate Chemical compound CCCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCC XWVQUJDBOICHGH-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- KGGOIDKBHYYNIC-UHFFFAOYSA-N ditert-butyl 4-[3,4-bis(tert-butylperoxycarbonyl)benzoyl]benzene-1,2-dicarboperoxoate Chemical compound C1=C(C(=O)OOC(C)(C)C)C(C(=O)OOC(C)(C)C)=CC=C1C(=O)C1=CC=C(C(=O)OOC(C)(C)C)C(C(=O)OOC(C)(C)C)=C1 KGGOIDKBHYYNIC-UHFFFAOYSA-N 0.000 description 1
- MCPKSFINULVDNX-UHFFFAOYSA-N drometrizole Chemical compound CC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 MCPKSFINULVDNX-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000006081 fluorescent whitening agent Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- CQQJGTPWCKCEOQ-UHFFFAOYSA-L magnesium dipropionate Chemical compound [Mg+2].CCC([O-])=O.CCC([O-])=O CQQJGTPWCKCEOQ-UHFFFAOYSA-L 0.000 description 1
- OJXOOFXUHZAXLO-UHFFFAOYSA-M magnesium;1-bromo-3-methanidylbenzene;bromide Chemical compound [Mg+2].[Br-].[CH2-]C1=CC=CC(Br)=C1 OJXOOFXUHZAXLO-UHFFFAOYSA-M 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- WULHNIUKYXJEJE-UHFFFAOYSA-N n'-(2-ethoxyphenyl)oxamide Chemical compound CCOC1=CC=CC=C1NC(=O)C(N)=O WULHNIUKYXJEJE-UHFFFAOYSA-N 0.000 description 1
- FPZPOPVQWNRDHA-UHFFFAOYSA-N n'-(2-ethylphenyl)oxamide Chemical class CCC1=CC=CC=C1NC(=O)C(N)=O FPZPOPVQWNRDHA-UHFFFAOYSA-N 0.000 description 1
- ZBNMOUGFCKAGGQ-UHFFFAOYSA-N n'-(5-tert-butyl-2-ethoxyphenyl)-n-(2-ethylphenyl)oxamide Chemical compound CCOC1=CC=C(C(C)(C)C)C=C1NC(=O)C(=O)NC1=CC=CC=C1CC ZBNMOUGFCKAGGQ-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- GYHFUZHODSMOHU-UHFFFAOYSA-N nonanal Chemical compound CCCCCCCCC=O GYHFUZHODSMOHU-UHFFFAOYSA-N 0.000 description 1
- 229950002083 octabenzone Drugs 0.000 description 1
- NUJGJRNETVAIRJ-UHFFFAOYSA-N octanal Chemical compound CCCCCCCC=O NUJGJRNETVAIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 125000005461 organic phosphorous group Chemical group 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- YNXCGLKMOXLBOD-UHFFFAOYSA-N oxolan-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CCCO1 YNXCGLKMOXLBOD-UHFFFAOYSA-N 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 235000019809 paraffin wax Nutrition 0.000 description 1
- FZUGPQWGEGAKET-UHFFFAOYSA-N parbenate Chemical compound CCOC(=O)C1=CC=C(N(C)C)C=C1 FZUGPQWGEGAKET-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- HPAFOABSQZMTHE-UHFFFAOYSA-N phenyl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)C1=CC=CC=C1 HPAFOABSQZMTHE-UHFFFAOYSA-N 0.000 description 1
- LYXOWKPVTCPORE-UHFFFAOYSA-N phenyl-(4-phenylphenyl)methanone Chemical compound C=1C=C(C=2C=CC=CC=2)C=CC=1C(=O)C1=CC=CC=C1 LYXOWKPVTCPORE-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001296 polysiloxane Chemical class 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- ZUFQCVZBBNZMKD-UHFFFAOYSA-M potassium 2-ethylhexanoate Chemical compound [K+].CCCCC(CC)C([O-])=O ZUFQCVZBBNZMKD-UHFFFAOYSA-M 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- BWILYWWHXDGKQA-UHFFFAOYSA-M potassium propanoate Chemical compound [K+].CCC([O-])=O BWILYWWHXDGKQA-UHFFFAOYSA-M 0.000 description 1
- 239000004331 potassium propionate Substances 0.000 description 1
- 235000010332 potassium propionate Nutrition 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- UFUASNAHBMBJIX-UHFFFAOYSA-N propan-1-one Chemical compound CC[C]=O UFUASNAHBMBJIX-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- MUTNCGKQJGXKEM-UHFFFAOYSA-N tamibarotene Chemical compound C=1C=C2C(C)(C)CCC(C)(C)C2=CC=1NC(=O)C1=CC=C(C(O)=O)C=C1 MUTNCGKQJGXKEM-UHFFFAOYSA-N 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- QCRXMFTZTSTGJM-UHFFFAOYSA-N triacetyl 2-hydroxypropane-1,2,3-tricarboxylate Chemical compound CC(=O)OC(=O)CC(O)(C(=O)OC(C)=O)CC(=O)OC(C)=O QCRXMFTZTSTGJM-UHFFFAOYSA-N 0.000 description 1
- MGMXGCZJYUCMGY-UHFFFAOYSA-N tris(4-nonylphenyl) phosphite Chemical compound C1=CC(CCCCCCCCC)=CC=C1OP(OC=1C=CC(CCCCCCCCC)=CC=1)OC1=CC=C(CCCCCCCCC)C=C1 MGMXGCZJYUCMGY-UHFFFAOYSA-N 0.000 description 1
- QQBLOZGVRHAYGT-UHFFFAOYSA-N tris-decyl phosphite Chemical compound CCCCCCCCCCOP(OCCCCCCCCCC)OCCCCCCCCCC QQBLOZGVRHAYGT-UHFFFAOYSA-N 0.000 description 1
- PEXOFOFLXOCMDX-UHFFFAOYSA-N tritridecyl phosphite Chemical compound CCCCCCCCCCCCCOP(OCCCCCCCCCCCCC)OCCCCCCCCCCCCC PEXOFOFLXOCMDX-UHFFFAOYSA-N 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 238000001845 vibrational spectrum Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10009—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
- B32B17/10036—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10559—Shape of the cross-section
- B32B17/10577—Surface roughness
- B32B17/10587—Surface roughness created by embossing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10678—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising UV absorbers or stabilizers, e.g. antioxidants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10688—Adjustment of the adherence to the glass layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10706—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer being photo-polymerized
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10743—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing acrylate (co)polymers or salts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10761—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/22—Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/302—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/306—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/30—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/022—Mechanical properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/062—Copolymers with monomers not covered by C08L33/06
- C08L33/066—Copolymers with monomers not covered by C08L33/06 containing -OH groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/08—Homopolymers or copolymers of acrylic acid esters
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/162—Selection of materials
- G10K11/168—Plural layers of different materials, e.g. sandwiches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/03—3 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/40—Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/105—Metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/72—Cured, e.g. vulcanised, cross-linked
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/10—Properties of the layers or laminate having particular acoustical properties
- B32B2307/102—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/51—Elastic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/54—Yield strength; Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2315/00—Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
- B32B2315/08—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2419/00—Buildings or parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/08—Cars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/10—Trains
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/12—Ships
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/18—Aircraft
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F120/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F120/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F120/10—Esters
- C08F120/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F120/28—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1802—C2-(meth)acrylate, e.g. ethyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1804—C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1808—C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1811—C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/20—Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F220/28—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
- C08F220/281—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F220/28—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
- C08F220/282—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing two or more oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F220/30—Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
- C08L25/06—Polystyrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
Definitions
- the present invention relates to an interlayer film for laminated glass used for obtaining laminated glass. Moreover, this invention relates to the laminated glass using the said intermediate film for laminated glasses.
- Laminated glass is superior in safety even if it is damaged by an external impact and the amount of glass fragments scattered is small. For this reason, the said laminated glass is widely used for a motor vehicle, a rail vehicle, an aircraft, a ship, a building, etc.
- the laminated glass is manufactured by sandwiching an interlayer film for laminated glass between two glass plates.
- Patent Document 1 discloses a sound insulating layer formed of a composition (A) containing at least one resin (a1) selected from a thermoplastic resin and a thermosetting resin.
- An intermediate film comprising: is disclosed. Tan ⁇ obtained when the dynamic viscoelasticity of a sheet formed from the above composition having a thickness of 0.8 mm is measured in a frequency of 0.3 Hz and a tensile mode has a maximum value at the temperature T A (° C.).
- T A (° C.) is in the range of ⁇ 50 to 50 ° C.
- tan ⁇ at T A (° C.) is 2.5 or more.
- thermoplastic resin examples include polyvinyl acetal, polyvinyl alcohol, polyurethane, vinyl polycarboxylate, olefin-vinyl carboxylate copolymer, polyurethane elastomer, polyester elastomer, styrene-diene block copolymer, and chlorine.
- thermosetting resin examples include epoxy resins, phenol resins, urethane resins, melamine resins, and unsaturated polyester resins.
- Patent Document 1 it is described that the sound insulating property of the interlayer film is increased.
- the temperature having the largest average value and the sound transmission loss (average value at a plurality of frequencies) at the temperature having the largest average value of the sound transmission loss are described.
- Patent Document 2 discloses a photocurable resin composition for a laminated glass interlayer film.
- the photocurable resin composition contains a (meth) acrylic polymer, a methacrylic monomer, and a photopolymerization initiator.
- Patent Document 2 describes that a laminated glass that is difficult to break when an external impact is applied can be obtained.
- Laminated glass using an interlayer film is used in various temperature environments.
- a laminated glass using a conventional intermediate film may not be able to improve sound insulation over a wide temperature range. Even if a laminated glass has a high sound insulation at a specific temperature, if the laminated glass is used at a temperature different from that temperature, the sound insulation may be lowered.
- Patent Document 1 it is described that the sound insulating property of the interlayer film is increased.
- Patent Document 1 acoustic transmission loss at temperatures of 0 ° C., 5 ° C., 10 ° C., 15 ° C., 20 ° C., 25 ° C., 30 ° C., 35 ° C., and 40 ° C. is evaluated. The results of sound transmission loss at all temperatures are not listed.
- patent document 1 it is not shown by the Example that sound-insulation property becomes high over a wide temperature range.
- an interlayer film for laminated glass having a single-layer structure or a structure of two or more layers.
- the intermediate film includes a layer containing a cured product, and the cured product is photocurable.
- a cured product obtained by curing a compound or a moisture curable compound, or a cured product obtained by curing a curable compound having a (meth) acryloyl group, in a frequency of 1 Hz and a shear mode of a layer including the cured product In the viscoelasticity measurement, an interlayer film for laminated glass (hereinafter referred to as an interlayer film) having a tan ⁇ peak temperature of ⁇ 50 ° C. or higher and 30 ° C. or lower and a tan ⁇ at the tan ⁇ peak temperature of 2.0 or higher. May be provided).
- the cured product is a cured product obtained by curing a photocurable compound.
- cured material is 5.0 * 10 ⁇ 3 > Pa or more.
- the peak temperature of tan ⁇ is ⁇ 30 ° C. or higher and 20 ° C. or lower in the viscoelasticity measurement of the layer containing the cured product at a frequency of 1 Hz and a shear mode.
- the interlayer film is an interlayer film for laminated glass having a structure of two or more layers, and the interlayer film includes a layer containing a resin different from the cured product. .
- the intermediate film for laminated glass has a structure of two or more layers, and the intermediate film includes a layer containing a resin different from the cured product,
- the peak temperature of tan ⁇ of the layer containing a resin different from the cured product is ⁇ 100 ° C. or more and 100 ° C.
- the ratio of tan ⁇ at the peak temperature of tan ⁇ of the layer containing the cured product in the elasticity measurement to tan ⁇ at the peak temperature of tan ⁇ of the layer containing a resin different from the cured product is 2.0 or more and 10.0 or less. It is.
- the first laminated glass member, the second laminated glass member, and the interlayer film for laminated glass described above are provided, and the first laminated glass member and the second laminated glass are provided.
- the interlayer film for laminated glass according to the present invention has a structure of one layer or a structure of two or more layers.
- the interlayer film for laminated glass according to the present invention includes a layer containing a cured product.
- the cured product is a cured product obtained by curing a photocurable compound or a moisture curable compound, or a curable compound having a (meth) acryloyl group is cured. Cured product.
- the peak temperature of tan ⁇ is ⁇ 50 ° C. or higher and 30 ° C.
- the interlayer film for laminated glass according to the present invention has the above-described configuration, sound insulation can be improved over a wide temperature range of 10 ° C to 30 ° C.
- FIG. 1 is a cross-sectional view schematically showing an interlayer film for laminated glass according to the first embodiment of the present invention.
- FIG. 2 is a cross-sectional view schematically showing an interlayer film for laminated glass according to the second embodiment of the present invention.
- FIG. 3 is a cross-sectional view schematically showing an example of a laminated glass using the laminated glass interlayer film shown in FIG.
- FIG. 4 is a cross-sectional view schematically showing an example of a laminated glass using the laminated glass interlayer film shown in FIG.
- interlayer film for laminated glass The interlayer film for laminated glass according to the present invention (hereinafter sometimes referred to as an interlayer film) has a structure of one layer or a structure of two or more layers.
- the intermediate film according to the present invention includes a layer containing a cured product.
- the cured product is a cured product obtained by curing a photocurable compound or a moisture curable compound, or a cured product obtained by curing a curable compound having a (meth) acryloyl group. It is.
- the curable compound may be a photocurable compound or a moisture curable compound, or may be a curable compound having a (meth) acryloyl group. Further, the curable compound having a (meth) acryloyl group may be a photocurable compound or a moisture curable compound, and is different from both the photocurable compound and the moisture curable compound. It may be a compound. Generally, since the curable compound having a (meth) acryloyl group has a (meth) acryloyl group, it is cured by irradiation with light.
- the cured product contained in the layer containing the cured product is generally a resin.
- cured material may be described as a 1st resin layer.
- the peak temperature of tan ⁇ is ⁇ 50 ° C. or higher and 30 ° C. or lower in the viscoelasticity measurement at a frequency of 1 Hz and shear mode of the layer containing the cured product, and at the peak temperature of tan ⁇ .
- tan ⁇ (1) is 2.0 or more.
- the intermediate film according to the present invention has the above-described configuration, the sound insulation can be enhanced over a wide temperature range of 10 ° C. to 30 ° C. For example, sound insulation can be enhanced at all three of these temperatures, rather than at one of 10 ° C., 20 ° C., and 30 ° C. Therefore, the interlayer film according to the present invention can exhibit high sound insulation even when laminated glass using the interlayer film is used in various temperature environments.
- the intermediate film according to the present invention there is little migration of plasticizers and other additives, and even if these components migrate, the compatibility is good, so that the transparency is not easily lowered by storage. Even if stored, the haze is less likely to change.
- the peak temperature of the tan ⁇ of the layer containing the cured product is preferably ⁇ 45 ° C. or higher, more preferably ⁇ 40 ° C. or higher, and still more preferably ⁇ 35. ° C or higher, more preferably -30 ° C or higher, still more preferably -25 ° C or higher, particularly preferably -20 ° C or higher, most preferably -10 ° C or higher.
- the tan ⁇ peak temperature of the layer containing the cured product is preferably 25 ° C. or less, more preferably 20 ° C. or less, even more preferably 15 ° C. or less, particularly Preferably it is 10 degrees C or less.
- tan ⁇ (1) at the peak tan ⁇ temperature of the layer containing the cured product is preferably 2.2 or more, more preferably 2.4 or more, Still more preferably, it is 2.5 or more, Especially preferably, it is 2.6 or more, More preferably, it is 2.8 or more, More preferably, it is 3.0 or more.
- the upper limit of tan ⁇ (1) at the tan ⁇ peak temperature is not limited.
- the tan ⁇ (1) at the tan ⁇ peak temperature may be 6 or less.
- the storage elastic modulus G ′ at 100 ° C. of the layer containing the cured product is preferably 5.0 ⁇ 10 3 Pa or more, more preferably 1.0 ⁇ 10 4 Pa or more, and even more preferably 2.0 ⁇ 10. 4 Pa or more, more preferably 3.0 ⁇ 10 4 Pa or more, still more preferably 4.0 ⁇ 10 4 Pa or more, and particularly preferably 5.0 ⁇ 10 4 Pa or more.
- the storage elastic modulus G ′ at 100 ° C. of the layer containing the cured product is not less than the above lower limit, the sound insulation properties are further enhanced over a wide temperature range. Further, if the storage elastic modulus G ′ at 100 ° C. of the layer containing the cured product is not less than the lower limit, the sound insulation in the high frequency region of 5000 Hz to 10000 Hz is further enhanced, and the intermediate film is used for automobiles and the like. The load sound is reduced when there is.
- the curable compound is preferably a photocurable compound, and has a (meth) acryloyl group. It is preferable that it is a curable compound.
- the cured product is preferably a (meth) acrylic polymer.
- the intermediate film preferably includes a layer containing a resin different from the cured product.
- the resin contained in the layer containing the resin is preferably a cured product of a thermosetting compound or a thermoplastic resin.
- the curable compound is preferably a thermosetting compound.
- the layer containing a resin different from the cured product may be referred to as a second resin layer.
- the peak temperature of tan ⁇ is ⁇ 100 ° C. or higher in the viscoelasticity measurement of the layer containing the resin (second resin layer) at a frequency of 1 Hz and shear mode. It is preferable that it is 100 degrees C or less.
- the tan ⁇ peak temperature of the layer containing the resin (second resin layer) is preferably ⁇ 90 ° C. or higher, more preferably ⁇ 80 ° C. or higher, preferably Is 90 ° C. or lower, more preferably 80 ° C. or lower.
- the viscoelasticity of an intermediate film having a structure of two or more layers including a layer containing a resin different from the cured product is measured.
- Tan ⁇ (1) at the peak temperature of tan ⁇ of the layer containing the cured product (first resin layer) in the viscoelasticity measurement at a frequency of 1 Hz and shear mode of the intermediate film includes a resin different from the cured product.
- a ratio of the tan ⁇ peak temperature of the layer (second resin layer) to tan ⁇ (2) is defined as a ratio (tan ⁇ (1) / tan ⁇ (2)).
- the above ratio (tan ⁇ (1) / tan ⁇ (2)) is preferably 2.0 or more, and preferably 10.0 or less.
- the ratio (tan ⁇ (1) / tan ⁇ (2)) is preferably 2.2 or more, more preferably 2.3 or more, still more preferably 2.4 or more, still more preferably 2.5 or more, and even more preferably. Is 2.6 or more, even more preferably 2.7 or more, particularly preferably 2.8 or more, even more preferably 2.9 or more, and most preferably 3.0 or more.
- the ratio (tan ⁇ (1) / tan ⁇ (2)) is preferably 9.0 or less, more preferably 8.0 or less, even more preferably 7.0 or less, still more preferably 6.0 or less, most preferably 5.0 or less.
- the above viscoelasticity measurement is specifically measured as follows.
- the viscoelasticity is measured using a dynamic viscoelasticity measuring apparatus.
- the measurement is performed under the condition that the temperature is increased from ⁇ 50 ° C. to 200 ° C. at a temperature increase rate of 3 ° C./min, and under the conditions of frequency 1 Hz and strain 1%.
- Examples of the dynamic viscoelasticity measuring apparatus include a viscoelasticity measuring apparatus “DVA-200” manufactured by IT Measurement Control Co., Ltd.
- Viscoelasticity measurement may be performed using the interlayer film itself.
- the tan ⁇ peak derived from the layer containing the cured product, the tan ⁇ peak derived from the layer containing the resin, or the like may be read from the measurement result.
- the intermediate film is a multilayer intermediate film having a structure of two or more layers, each layer may be peeled off and viscoelasticity measurement may be performed.
- the laminated glass member and the intermediate film may be peeled after cooling the laminated glass with liquid nitrogen or the like, and viscoelasticity measurement may be performed using the peeled intermediate film.
- the layer containing the cured product can be directly used as a test piece, and viscoelasticity measurement can be easily performed.
- the thickness of the layer containing the cured product is less than 0.3 mm, a plurality of layers containing the cured product are stacked, or a layer containing a cured product with only the thickness adjusted is separately prepared. You may perform a viscoelasticity measurement using the test piece of 0.3 mm or more and 2 mm or less.
- the layer containing the cured product When the thickness of the layer containing the cured product exceeds 2 mm, the layer containing the cured product is sliced, pressed, or a layer containing the cured product with only the thickness adjusted is separately prepared. Viscoelasticity measurement may be performed using a test piece having a thickness of 0.3 mm to 2 mm.
- the viscoelasticity measurement of the layer containing the resin can be performed in the same manner as the viscoelasticity measurement of the layer containing the cured product by changing the test piece.
- the storage elastic modulus G ′ at 100 ° C. of the layer containing the cured product can be measured by measuring the viscoelasticity of the layer containing the cured product.
- the intermediate film according to the present invention may have a single-layer structure or a two-layer structure.
- the interlayer film according to the present invention may have a two-layer structure or may have a three-layer structure or more.
- the intermediate film according to the present invention may have a one-layer structure including only the first layer.
- the first layer is a layer containing the cured product.
- the intermediate film according to the present invention includes a first layer and a second layer disposed on the first surface side of the first layer. And may be provided.
- the first layer is a layer containing the cured product.
- the intermediate film according to the present invention includes a first layer and a second layer disposed on the first surface side of the first layer. And may further include a third layer disposed on the second surface side opposite to the first surface side of the first layer.
- the first layer is a layer containing the cured product.
- the layer containing the cured product is preferably not a surface layer in the interlayer film, and may be an interlayer in the interlayer film. preferable. However, the layer containing the cured product may be a surface layer in the intermediate film.
- the visible light transmittance of the interlayer film is preferably 70% or more, more preferably 80% or more, and still more preferably 85% or more.
- the visible light transmittance is measured at a wavelength of 380 to 780 nm using a spectrophotometer (“U-4100” manufactured by Hitachi High-Tech) in accordance with JIS R3211: 1998.
- the visible light transmittance of the intermediate film may be measured by placing an intermediate film between two clear glasses.
- the thickness of the clear glass is preferably 2.0 mm.
- FIG. 1 is a cross-sectional view schematically showing an interlayer film for laminated glass according to the first embodiment of the present invention.
- the intermediate film 11 shown in FIG. 1 is a multilayer intermediate film having a structure of two or more layers. Specifically, the intermediate film 11 has a three-layer structure. The intermediate film 11 is used to obtain a laminated glass.
- the intermediate film 11 is an intermediate film for laminated glass.
- the intermediate film 11 includes a first layer 1, a second layer 2, and a third layer 3. On the first surface 1a side of the first layer 1, the second layer 2 is disposed and laminated. On the second surface 1b side opposite to the first surface 1a of the first layer 1, the third layer 3 is disposed and laminated.
- the first layer 1 is an intermediate layer.
- Each of the second layer 2 and the third layer 3 is a protective layer, and is a surface layer in the present embodiment.
- the first layer 1 is arranged between the second layer 2 and the third layer 3 and is sandwiched between them. Therefore, the intermediate film 11 has a multilayer structure (second layer 2 / first layer 1 / third layer) in which the second layer 2, the first layer 1, and the third layer 3 are laminated in this order. Having layer 3).
- the 1st layer 1 is a layer containing the said hardened
- the second layer 2 may be a layer containing the cured product, and the third layer 3 may be a layer containing the cured product.
- the second layer 2 and the first layer 1 and between the first layer 1 and the third layer 3 are preferably laminated directly.
- An adhesive layer is mentioned as another layer.
- FIG. 2 is a cross-sectional view schematically showing an interlayer film for laminated glass according to the second embodiment of the present invention.
- the intermediate film 11A shown in FIG. 2 is a single-layer intermediate film having a single-layer structure.
- the intermediate film 11A is a first layer.
- the intermediate film 11A is used to obtain a laminated glass.
- the intermediate film 11A is an intermediate film for laminated glass.
- the intermediate film 11A itself is a layer containing the cured product.
- the intermediate film according to the present invention the layer containing the cured product, the layer containing the resin, the details of the first layer, the second layer, and the third layer, and the components used for the intermediate film Details will be described.
- the intermediate film includes a layer containing the cured product.
- the curable compound for forming the cured product in the layer containing the cured product is a photocurable compound or a moisture curable compound.
- the curable compound is preferably a curable compound having a (meth) acryloyl group, and more preferably a (meth) acrylic polymer.
- the (meth) acrylic polymer is preferably a polymer of a polymerizable composition containing a curable compound having a (meth) acryloyl group.
- the polymerizable composition includes a polymerization component.
- the polymerizable composition may contain a photoreaction initiator.
- the said polymeric composition may contain the adjuvant for accelerating hardening reaction with a photoinitiator.
- a typical example of the curable compound having the (meth) acryloyl group is a (meth) acrylic acid ester.
- the (meth) acrylic polymer is preferably a poly (meth) acrylic acid ester.
- the polymerization component includes (meth) acrylic acid ester having an alicyclic structure, (meth) acrylic acid ester having a cyclic ether structure, and (meth) acrylic acid having an aromatic ring. It is preferable to include an ester, a (meth) acrylic acid ester having a polar group, or an acyclic (meth) acrylic acid ester having 6 or less carbon atoms in the side chain. By using these preferable (meth) acrylic acid esters, it is possible to improve both sound insulation and foam suppression performance in a balanced manner.
- Examples of the (meth) acrylic acid ester having an alicyclic structure include isoboronyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl acrylate and the like.
- Examples of the (meth) acrylic acid ester having a cyclic ether structure include glycidyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate glycidyl ether, 3-hydroxypropyl (meth) acrylate glycidyl ether, and 4-hydroxybutyl acrylate glycidyl ether.
- Examples of the (meth) acrylic acid ester having an aromatic ring include benzyl acrylate and phenoxy polyethylene glycol acrylate.
- Examples of the (meth) acrylic acid ester having a polar group include (meth) acrylic acid esters having a hydroxyl group, an amide group, an amino group, an isocyanate group, a carboxyl group, or the like as a polar group.
- Examples of the (meth) acrylic acid ester having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate and the like. It is done.
- Examples of the (meth) acrylic acid ester having an amide group include N, N-dimethylaminopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, (meth) acryloylmorpholine, and N-isopropyl (meth) acrylamide. N-hydroxyethyl (meth) acrylamide and the like.
- Examples of the (meth) acrylic acid ester having an amide group or an amino group include N-dialkylaminoalkyl (meth) acrylamide, N, N-dialkylaminoalkyl (meth) acrylamide and the like.
- Examples of the (meth) acrylic acid ester having an isocyanate group include triallyl isocyanurate and derivatives thereof.
- Examples of the (meth) acrylic acid ester having a carboxyl group include acrylic acid, ⁇ -carboxypolycaprolactone monoacrylate, and 2-acryloyloxyethyl succinic acid.
- the (meth) acrylic acid ester may be a polyvalent carboxylic acid ester having a (meth) acryloyl group.
- examples of the polyvalent carboxylic acid ester having a (meth) acryloyl group include 2-acryloyloxyethyl succinate.
- a (meth) acrylic acid ester having a hydroxyl group is preferred, and in particular, 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, or 4-hydroxybutyl (meth) Acrylate is preferred.
- Examples of the acyclic (meth) acrylic acid ester having 6 or less carbon atoms in the side chain include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate. .
- the content of the acyclic (meth) acrylic acid ester having 8 or more carbon atoms in the side chain is less than 20% by weight in 100% by weight of the polymerization component. Is preferred.
- Examples of the (meth) acrylic acid ester include diethylene glycol monoethyl ether (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2-acryloyloxyethyl-2-hydroxypropyl phthalate, and 2-acryloyl other than the above-described compounds.
- Oxyethyl-2-hydroxylpropyl phthalate ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonane Diol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate 2,2-bis [4- (acryloxyethoxy) phenyl] propane di (meth) acrylate; trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, di Pentaerythritol penta (meth) acrylate, dipent
- the (meth) acrylic polymer may be a homopolymer of the above (meth) acrylic acid ester or a copolymer of polymerization components containing the above (meth) acrylic acid ester.
- the photoinitiator examples include 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4- Morpholinophenyl) -butanone-1,2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, 2,4,6 -Trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis ( ⁇ 5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro -3- (1H-pyrrol-1-yl) -phenyl) titanium, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane 1-one, 2-benzyl-2-dimethylamino-1- (4-methyl
- auxiliary agent examples include triethanolamine, triisopropanolamine, 4,4′-dimethylaminobenzophenone (Michler ketone), 4,4′-diethylaminobenzophenone, 2-dimethylaminoethylbenzoic acid, ethyl 4-dimethylaminobenzoate, 4-dimethylaminobenzoic acid (n-butoxy) ethyl, 4-dimethylaminobenzoic acid isoamyl, 4-dimethylaminobenzoic acid 2-ethylhexyl, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, etc. Can be mentioned. As for the said adjuvant, only 1 type may be used and 2 or more types may be used together.
- the auxiliary agents are benzyl dimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, benzoyl isopropyl ether, 4- (2-hydroxyethoxy) -phenyl (2-hydroxy-2-propyl) ketone, 2-hydroxy-2-methyl-1 -Phenylpropan-1-one or triphenylmethylium tetrakis (pentafluorophenyl) borate is preferred.
- the content of the photoinitiator in 100% by weight of the polymerizable composition is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 10% by weight or less, more preferably 5%. % By weight or less.
- content of the photoreaction initiator is not less than the above lower limit and not more than the above upper limit, photocurability and storage stability are further enhanced.
- the content of the cured product is preferably 50% by weight or more, more preferably 60% by weight or more, still more preferably 70% by weight or more, particularly Preferably it is 80 weight% or more.
- the effect of this invention can be exhibited more as content of the said hardened
- the content of the cured product in 100% by weight of the composition for forming the layer containing the cured product may be 100% by weight (total amount).
- a photocurable compound such as a photocurable compound having a (meth) acryloyl group
- a photo-curing device such as an ultraviolet irradiation device.
- the ultraviolet irradiation device include a box type and a belt conveyor type.
- the ultraviolet lamp installed in the ultraviolet irradiation apparatus include an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a chemical lamp, a metal halide lamp, an excimer lamp, and a UV-LED.
- the ultraviolet lamp is preferably a chemical lamp or a UV-LED.
- the ultraviolet ray irradiation amount is preferably 500 mJ or more, more preferably 1000 mJ or more, still more preferably 1500 mJ or more, particularly preferably. Is 2000 mJ or more.
- the ultraviolet irradiation amount (integrated irradiation amount) is preferably 20000 mJ or less, more preferably 10,000 mJ or less, and still more preferably 8000 mJ or less. Unreacted monomers can be reduced when the ultraviolet irradiation amount (integrated irradiation amount) is not less than the above lower limit.
- the irradiation intensity of the ultraviolet irradiation is preferably 0.1 mW or more, more preferably 0.5 mW or more, still more preferably 1 mW or more, and particularly preferably 2 mW or more.
- the intermediate film preferably includes a layer containing a resin different from the cured product.
- the layer containing the resin different from the cured product (second resin layer) is a cured product obtained by curing a photocurable compound, a cured product obtained by curing a moisture curable compound, and a curable product having a (meth) acryloyl group.
- the cured product obtained by curing the compound is a layer containing a different resin.
- the layer containing a resin different from the cured product is a resin layer different from the layer containing the cured product (first resin layer).
- the intermediate film may not include the second resin layer.
- Examples of the resin contained in the second resin layer include a cured product of a thermosetting compound, a thermoplastic resin, and the like.
- the thermoplastic resin may be a thermoplastic elastomer.
- thermoplastic resin is a resin that softens when heated and exhibits plasticity, and solidifies when cooled to room temperature.
- the thermoplastic elastomer means, among thermoplastic resins, a resin that softens when heated and exhibits plasticity, and solidifies when cooled to room temperature (25 ° C.) and exhibits rubber elasticity.
- thermoplastic resin examples include polyvinyl acetal resin, polyester resin, aliphatic polyolefin, polystyrene, ethylene-vinyl acetate copolymer resin, ethylene-acrylic acid copolymer resin, polyurethane resin, ionomer resin, polyvinyl alcohol resin, and polyacetic acid. Vinyl etc. are mentioned. Thermoplastic resins other than these may be used.
- thermoplastic resin exemplified above can become a thermoplastic elastomer by adjusting the molecular structure and degree of polymerization of the resin.
- the surface layer in the intermediate film preferably contains a thermoplastic resin.
- the second layer and the third layer in the intermediate film having the second layer / first layer / third layer structure preferably each include a thermoplastic resin.
- the thermoplastic resin is preferably a polyvinyl acetal resin, an ionomer resin or an ethylene-vinyl acetate copolymer resin. From the viewpoint of further improving the impact resistance and crack prevention properties of the laminated glass, the thermoplastic resin is more preferably a polyvinyl acetal resin.
- the polyvinyl acetal resin can be produced, for example, by acetalizing polyvinyl alcohol (PVA) with an aldehyde.
- PVA polyvinyl alcohol
- the polyvinyl acetal resin is preferably an acetalized product of polyvinyl alcohol.
- the polyvinyl alcohol can be obtained, for example, by saponifying polyvinyl acetate.
- the saponification degree of the polyvinyl alcohol is generally in the range of 70 to 99.9 mol%.
- the average degree of polymerization of the polyvinyl alcohol (PVA) is preferably 200 or more, more preferably 500 or more, still more preferably 1500 or more, still more preferably 1600 or more, preferably 5000 or less, more preferably 4000 or less, still more preferably. It is 3500 or less, particularly preferably 3000 or less.
- the average degree of polymerization is not less than the above lower limit, the penetration resistance of the laminated glass is further enhanced.
- the average degree of polymerization is not more than the above upper limit, the intermediate film can be easily molded.
- the average degree of polymerization of the polyvinyl alcohol is determined by a method based on JIS K6726 “Testing method for polyvinyl alcohol”.
- the carbon number of the acetal group contained in the polyvinyl acetal resin is not particularly limited.
- the aldehyde used when manufacturing the said polyvinyl acetal resin is not specifically limited.
- the acetal group in the polyvinyl acetal resin preferably has 3 to 5 carbon atoms, more preferably 3 or 4. When the carbon number of the acetal group in the polyvinyl acetal resin is 3 or more, the glass transition temperature of the intermediate film is sufficiently low.
- the aldehyde is not particularly limited. In general, aldehydes having 1 to 10 carbon atoms are preferably used. Examples of the aldehyde having 1 to 10 carbon atoms include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde, Examples thereof include n-nonyl aldehyde, n-decyl aldehyde, formaldehyde, acetaldehyde and benzaldehyde.
- Propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-hexylaldehyde or n-valeraldehyde is preferred, propionaldehyde, n-butyraldehyde or isobutyraldehyde is more preferred, and n-butyraldehyde is still more preferred.
- the said aldehyde only 1 type may be used and 2 or more types may be used together.
- the hydroxyl group content (hydroxyl content) of the polyvinyl acetal resin is preferably 15 mol% or more, more preferably 18 mol% or more, preferably 40 mol% or less, more preferably 35 mol% or less.
- the hydroxyl group content is at least the above lower limit, the adhesive strength of the interlayer film is further increased. Further, when the hydroxyl group content is not more than the above upper limit, the flexibility of the interlayer film is increased, and the handling of the interlayer film is facilitated.
- the degree of acetylation of the polyvinyl acetal resin is preferably 0.01 mol% or more, more preferably 0.5 mol% or more, preferably 10 mol% or less, more preferably 2 mol% or less.
- the acetylation degree is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer is increased.
- the acetylation degree is not more than the above upper limit, the moisture resistance of the interlayer film and the laminated glass is increased.
- the degree of acetylation is a value obtained by dividing the amount of ethylene groups to which the acetyl group is bonded by the total amount of ethylene groups in the main chain, as a percentage.
- the amount of ethylene group to which the acetyl group is bonded can be measured, for example, according to JIS K6728 “Testing method for polyvinyl butyral”.
- the degree of acetalization of the polyvinyl acetal resin is preferably 55 mol% or more, more preferably 60 mol% or more, preferably 75 mol% or less, more preferably 71 mol%. It is as follows. When the degree of acetalization is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer increases. When the degree of acetalization is less than or equal to the above upper limit, the reaction time required for producing a polyvinyl acetal resin is shortened.
- the degree of acetalization is obtained as follows. First, a value obtained by subtracting the amount of ethylene groups bonded with hydroxyl groups and the amount of ethylene groups bonded with acetyl groups from the total amount of ethylene groups in the main chain is obtained. The obtained value is divided by the total amount of ethylene groups in the main chain to obtain the mole fraction. A value indicating the mole fraction as a percentage is the degree of acetalization.
- the hydroxyl group content (hydroxyl content), acetalization degree (butyralization degree), and acetylation degree are preferably calculated from results measured by a method in accordance with JIS K6728 “Testing methods for polyvinyl butyral”. However, measurement by ASTM D1396-92 may be used.
- the polyvinyl acetal resin is a polyvinyl butyral resin
- the hydroxyl group content (hydroxyl amount), the acetalization degree (butyralization degree), and the acetylation degree are determined in accordance with JIS K6728 “Testing methods for polyvinyl butyral”. It can be calculated from the results measured by
- the intermediate film preferably contains a tackifier resin.
- the layer containing the cured product (first resin layer) preferably contains a tackifying resin.
- the layer containing the resin (second resin layer) preferably contains a tackifying resin.
- the first layer preferably contains a tackifier resin. As for the said tackifier resin, only 1 type may be used and 2 or more types may be used together.
- the tackifying resin examples include styrene resin, terpene resin, and rosin resin. From the viewpoint of improving sound insulation over a wide temperature range while maintaining good haze, the tackifier resin is preferably a styrene resin.
- the styrene resin is preferably a styrene oligomer. Examples of commercially available styrene oligomers include “YS Resin SX100” manufactured by Yasuhara Chemical Co., Ltd.
- the content of the tackifying resin with respect to 100 parts by weight of the resin excluding the tackifying resin contained in the resin layer is preferably 10 parts by weight or more, more preferably 20 parts by weight or more.
- the amount is preferably 30 parts by weight or more, preferably 150 parts by weight or less, more preferably 100 parts by weight or less.
- the interlayer film preferably contains a plasticizer.
- the layer containing the cured product preferably contains a plasticizer.
- the layer containing the resin preferably contains a plasticizer.
- the first layer preferably contains a plasticizer.
- the second layer preferably contains a plasticizer.
- the third layer preferably contains a plasticizer. Use of a plasticizer tends to further increase the adhesion between the layers. As for the said plasticizer, only 1 type may be used and 2 or more types may be used together.
- plasticizer examples include paraffin oil, benzoate plasticizer, organic ester plasticizer, and organic phosphate plasticizer.
- examples of the organic ester plasticizer include monobasic organic acid esters and polybasic organic acid esters.
- examples of the phosphoric acid plasticizer include organic phosphoric acid plasticizers and organic phosphorous acid plasticizers.
- the plasticizer is preferably a liquid plasticizer.
- paraffin oil examples include naphthenic process oil, white mineral oil, mineral oil, paraffin wax and liquid paraffin.
- paraffin oils examples include “Diana Process Oil PW-90” manufactured by Idemitsu Kosan Co., Ltd., “Diana Process Oil PW-100” manufactured by Idemitsu Kosan Co., Ltd., and “Diana Process Oil PW-32” manufactured by Idemitsu Kosan Co., Ltd. It is done.
- organic ester plasticizer examples include triethylene glycol di-2-ethylpropanoate, triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, Triethylene glycol di-n-octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene glycol di-2-ethylbutyrate, 1,3-propylene glycol di-2-ethyl butyrate, 1,4-butylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl Hexanoate, dipropylene glycol di-2-ethylbutyrate, triethylene glycol di-2-eth
- examples of the organic ester plasticizer include a diester plasticizer represented by the following formula (1).
- the plasticizer preferably contains triethylene glycol di-2-ethylhexanoate (3GO), triethylene glycol di-2-ethylbutyrate (3GH) or triethylene glycol di-2-ethylpropanoate. .
- the plasticizer preferably includes triethylene glycol di-2-ethylhexanoate or triethylene glycol di-2-ethylbutyrate, and further includes triethylene glycol di-2-ethylhexanoate. preferable.
- the content of the plasticizer with respect to 100 parts by weight of the resin is defined as content (2).
- the content (2) is preferably 5 parts by weight or more, more preferably 10 parts by weight or more, further preferably 20 parts by weight or more, preferably 60 parts by weight or less, more preferably 55 parts by weight or less, still more preferably 50 parts by weight. Less than parts by weight.
- the content (2) is equal to or higher than the lower limit, the sound insulation can be effectively enhanced.
- the content of the plasticizer is not more than the above upper limit, the penetration resistance of the laminated glass is further increased.
- the intermediate film may contain a heat shielding material.
- the layer containing the cured product may contain a heat shielding material.
- the layer containing the resin may contain a heat shielding material.
- the first layer may contain a heat shielding material.
- the second layer may contain a heat shielding material.
- the third layer may contain a heat shielding material.
- the said heat-shielding substance only 1 type may be used and 2 or more types may be used together.
- the heat shielding material may contain at least one component X of phthalocyanine compounds, naphthalocyanine compounds and anthracyanine compounds, or may contain heat shielding particles. In this case, the heat shielding material may contain both the component X and the heat shielding particles.
- the intermediate film may contain at least one component X among phthalocyanine compounds, naphthalocyanine compounds and anthracocyanine compounds.
- the layer containing the cured product may contain the component X.
- the layer containing the resin may contain the component X.
- the first layer may contain the component X.
- the second layer may contain the component X.
- the third layer may contain the component X.
- the component X is a heat shielding material. As for the said component X, only 1 type may be used and 2 or more types may be used together.
- Examples of the component X include phthalocyanine, a derivative of phthalocyanine, naphthalocyanine, a derivative of naphthalocyanine, an anthocyanin, and an anthocyanin derivative.
- the phthalocyanine compound and the phthalocyanine derivative preferably each have a phthalocyanine skeleton.
- the naphthalocyanine compound and the naphthalocyanine derivative preferably each have a naphthalocyanine skeleton. It is preferable that each of the anthocyanin compound and the derivative of the anthracyanine has an anthracyanine skeleton.
- the component X may contain a vanadium atom or a copper atom.
- the said component X may contain the vanadium atom and may contain the copper atom.
- the component X may be at least one of a phthalocyanine containing a vanadium atom or a copper atom and a phthalocyanine derivative containing a vanadium atom or a copper atom.
- the intermediate film may contain heat shielding particles.
- the layer containing the cured product may contain heat shielding particles.
- the layer containing the resin may contain heat shielding particles.
- the first layer may include the heat shielding particles.
- the second layer may include the heat shielding particles.
- the third layer may include the heat shielding particles.
- the heat shielding particles are heat shielding materials. By using heat shielding particles, infrared rays (heat rays) can be effectively blocked. As for the said heat-shielding particle, only 1 type may be used and 2 or more types may be used together.
- metal oxide particles can be used.
- particles (metal oxide particles) formed of a metal oxide can be used.
- Infrared rays having a wavelength longer than 780 nm longer than visible light have a smaller amount of energy than ultraviolet rays.
- infrared rays have a large thermal effect, and when infrared rays are absorbed by a substance, they are released as heat. For this reason, infrared rays are generally called heat rays.
- heat shielding particles By using the heat shielding particles, infrared rays (heat rays) can be effectively blocked.
- the heat shielding particles mean particles that can absorb infrared rays.
- Aluminum doped zinc oxide particles (AZO particles), niobium doped titanium oxide particles, sodium doped tungsten oxide particles, cesium doped tungsten oxide particles, thallium doped tungsten oxide particles, rubidium doped tungsten oxide particles, tin doped indium oxide particles (ITO particles) And metal oxide particles such as tin-doped zinc oxide particles and silicon-doped zinc oxide particles, and lanthanum hexaboride (LaB 6 ) particles. Heat shielding particles other than these may be used.
- the intermediate film may contain at least one metal salt (hereinafter sometimes referred to as metal salt M) among alkali metal salts, alkaline earth metal salts, and magnesium salts.
- the layer containing the cured product may contain the metal salt M.
- the layer containing the resin may contain the metal salt M.
- the first layer may contain the metal salt M.
- the second layer may contain the metal salt M.
- the third layer may contain the metal salt M.
- Use of the metal salt M makes it easy to control the adhesion between the interlayer film and a laminated glass member such as a glass plate or the adhesion between the layers in the interlayer film.
- the said metal salt M only 1 type may be used and 2 or more types may be used together.
- the metal salt M may contain at least one metal selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba.
- Examples of the C 2-16 carboxylic acid magnesium salt and the C 2-16 carboxylic acid potassium salt include magnesium acetate, potassium acetate, magnesium propionate, potassium propionate, magnesium 2-ethylbutyrate, 2-ethylbutanoic acid. Examples include potassium, magnesium 2-ethylhexanoate, and potassium 2-ethylhexanoate.
- the intermediate film may contain an ultraviolet shielding agent.
- the layer containing the cured product may contain an ultraviolet shielding agent.
- the layer containing the resin may contain an ultraviolet shielding agent.
- the first layer may contain an ultraviolet shielding agent.
- the second layer may contain an ultraviolet shielding agent.
- the third layer may contain an ultraviolet shielding agent.
- the ultraviolet shielding agent includes an ultraviolet absorber.
- the ultraviolet shielding agent is preferably an ultraviolet absorber.
- the ultraviolet shielding agent examples include an ultraviolet shielding agent containing a metal atom, an ultraviolet shielding agent containing a metal oxide, an ultraviolet shielding agent having a benzotriazole structure (benzotriazole compound), and an ultraviolet shielding agent having a benzophenone structure (benzophenone compound). ), An ultraviolet shielding agent having a triazine structure (triazine compound), an ultraviolet shielding agent having a malonic ester structure (malonic ester compound), an ultraviolet shielding agent having an oxalic acid anilide structure (oxalic acid anilide compound), and a benzoate structure Examples thereof include an ultraviolet shielding agent (benzoate compound).
- Examples of the ultraviolet shielding agent containing a metal atom include platinum particles, particles having platinum particles coated with silica, palladium particles, and particles having palladium particles coated with silica.
- the ultraviolet shielding agent is preferably not a heat shielding particle.
- Examples of the ultraviolet shielding agent containing the metal oxide include zinc oxide, titanium oxide, and cerium oxide. Furthermore, the surface may be coat
- the insulating metal oxide examples include silica, alumina and zirconia.
- the insulating metal oxide has a band gap energy of 5.0 eV or more, for example.
- Examples of the ultraviolet screening agent having the benzotriazole structure include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole (“TinvinP” manufactured by BASF), 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole (“Tinvin 320” manufactured by BASF), 2- (2′-hydroxy-3′-t-butyl-5-methylphenyl) -5-chlorobenzotriazole (BASF) And “Tinuvin 326” manufactured by BASF, etc.) and the like.
- Examples of the ultraviolet shielding agent having the benzophenone structure include octabenzone (“Chimasorb 81” manufactured by BASF).
- UV shielding agent having the triazine structure examples include “LA-F70” manufactured by ADEKA and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl). Oxy] -phenol (“Tinuvin 1577FF” manufactured by BASF) and the like.
- UV screening agent having a malonic ester structure examples include dimethyl 2- (p-methoxybenzylidene) malonate, tetraethyl-2,2- (1,4-phenylenedimethylidene) bismalonate, and 2- (p-methoxybenzylidene).
- 2- (p-methoxybenzylidene) malonate examples include dimethyl 2- (p-methoxybenzylidene) malonate, tetraethyl-2,2- (1,4-phenylenedimethylidene) bismalonate, and 2- (p-methoxybenzylidene).
- Examples of commercially available ultraviolet screening agents having a malonic ester structure include Hostavin B-CAP, Hostavin PR-25, and Hostavin PR-31 (all manufactured by Clariant).
- Examples of the ultraviolet shielding agent having the oxalic anilide structure include N- (2-ethylphenyl) -N ′-(2-ethoxy-5-tert-butylphenyl) oxalic acid diamide, N- (2-ethylphenyl)- Oxalic acid diamides having an aryl group substituted on the nitrogen atom such as N ′-(2-ethoxy-phenyl) oxalic acid diamide, 2-ethyl-2′-ethoxy-oxyanilide (“SlandorVSU” manufactured by Clariant)kind.
- ultraviolet shielding agent having the benzoate structure examples include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (“Tinuvin 120” manufactured by BASF). .
- the intermediate film may contain an antioxidant.
- the layer containing the cured product may contain an antioxidant.
- the layer containing the resin may contain an antioxidant.
- the first layer may contain an antioxidant.
- the second layer may contain an antioxidant.
- the third layer may contain an antioxidant. As for the said antioxidant, only 1 type may be used and 2 or more types may be used together.
- antioxidants examples include phenol-based antioxidants, sulfur-based antioxidants, and phosphorus-based antioxidants.
- the phenolic antioxidant is an antioxidant having a phenol skeleton.
- the sulfur-based antioxidant is an antioxidant containing a sulfur atom.
- the phosphorus antioxidant is an antioxidant containing a phosphorus atom.
- phenolic antioxidant examples include 2,6-di-t-butyl-p-cresol (BHT), butylhydroxyanisole (BHA), 2,6-di-t-butyl-4-ethylphenol, stearyl- ⁇ - (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2′-methylenebis- (4-methyl-6-butylphenol), 2,2′-methylenebis- (4-ethyl-6) -T-butylphenol), 4,4'-butylidene-bis- (3-methyl-6-t-butylphenol), 1,1,3-tris- (2-methyl-hydroxy-5-t-butylphenyl) butane Tetrakis [methylene-3- (3 ′, 5′-butyl-4-hydroxyphenyl) propionate] methane, 1,3,3-tris- (2-methyl-4-hydro) Loxy-5-t-butylphenol) butane, 1,3,5-trimethyl-2,4,6
- Examples of the phosphorus antioxidant include tridecyl phosphite, tris (tridecyl) phosphite, triphenyl phosphite, trinonylphenyl phosphite, bis (tridecyl) pentaerythritol diphosphite, bis (decyl) pentaerythritol diphos.
- antioxidants examples include “IRGANOX 245” manufactured by BASF, “IRGAFOS 168” manufactured by BASF, “IRGAFOS 38” manufactured by BASF, “Smilizer BHT” manufactured by Sumitomo Chemical Co., Ltd., and Sakai Chemical Industry Examples thereof include “H-BHT” and “IRGANOX 1010” manufactured by BASF.
- the intermediate film, the layer containing the cured product, the layer containing the resin, the first layer, the second layer, and the third layer may each include a coupling agent, a dispersing agent, and an interface as necessary.
- Additives such as activators, flame retardants, antistatic agents, pigments, dyes, adhesion modifiers other than metal salts, moisture resistance agents, fluorescent whitening agents, and infrared absorbers may be included. As for these additives, only 1 type may be used and 2 or more types may be used together.
- the thickness of the intermediate film is not particularly limited. From the viewpoint of practical use and from the viewpoint of sufficiently enhancing the penetration resistance and bending rigidity of the laminated glass, the thickness of the interlayer film is preferably 0.1 mm or more, more preferably 0.25 mm or more, preferably 3 mm or less, more Preferably it is 1.5 mm or less. When the thickness of the interlayer film is not less than the above lower limit, the penetration resistance and bending rigidity of the laminated glass are further increased. When the thickness of the interlayer film is not more than the above upper limit, the transparency of the interlayer film is further improved.
- T is the thickness of the intermediate film.
- the thickness of the layer containing the cured product is preferably 0.03 T or more, more preferably 0.06 T or more, and still more preferably. It is 0.1T or more, preferably 1T or less, more preferably 0.5T or less, and further preferably 0.2T or less.
- the thickness of the layer containing the resin is preferably 0.3 T or more, more preferably 0.35 T or more, and still more preferably 0. .4T or more, preferably 0.95T or less, more preferably 0.9T or less.
- the thickness of the layer containing the cured product is preferably 15 ⁇ m or more, more preferably 40 ⁇ m or more, still more preferably 80 ⁇ m or more, preferably Is 600 ⁇ m or less, more preferably 300 ⁇ m or less, and still more preferably 150 ⁇ m or less.
- the intermediate film may be an intermediate film having a uniform thickness or an intermediate film having a changed thickness.
- the cross-sectional shape of the intermediate film may be rectangular or wedge-shaped.
- the method for producing the interlayer film according to the present invention is not particularly limited.
- Examples of the method for producing an interlayer film according to the present invention include a method of extruding a resin composition using an extruder in the case of a single-layer interlayer film.
- a method for producing an intermediate film according to the present invention in the case of a multilayer intermediate film, for example, a method of laminating each obtained layer after forming each layer using each resin composition for forming each layer
- a method of laminating each layer by coextruding each resin composition for forming each layer using an extruder may be used. Since it is suitable for continuous production, an extrusion method is preferred.
- the same polyvinyl acetal resin is contained in the second layer and the third layer, and the second layer, the third layer, More preferably, the same polyvinyl acetal resin and the same plasticizer are included. Since the production efficiency of the intermediate film is excellent, it is more preferable that the second layer and the third layer are formed of the same resin composition.
- the intermediate film preferably has an uneven shape on at least one of the surfaces on both sides. More preferably, the intermediate film has a concavo-convex shape on both surfaces. It does not specifically limit as a method of forming said uneven
- the embossing roll method is preferable because it can form a large number of concavo-convex embossments that are quantitatively constant.
- the laminated glass according to the present invention includes a first laminated glass member, a second laminated glass member, and the interlayer film for laminated glass described above.
- the interlayer film for laminated glass is disposed between the first laminated glass member and the second laminated glass member.
- FIG. 3 is a cross-sectional view schematically showing an example of laminated glass using the interlayer film for laminated glass shown in FIG.
- the intermediate film 11 is disposed between the first laminated glass member 21 and the second laminated glass member 22 and is sandwiched.
- the first laminated glass member 21 is laminated on the first surface 11 a of the intermediate film 11.
- a second laminated glass member 22 is laminated on the second surface 11 b opposite to the first surface 11 a of the intermediate film 11.
- a first laminated glass member 21 is laminated on the outer surface 2 a of the second layer 2.
- a second laminated glass member 22 is laminated on the outer surface 3 a of the third layer 3.
- FIG. 4 is a cross-sectional view schematically showing an example of laminated glass using the interlayer film for laminated glass shown in FIG.
- a laminated glass 31A shown in FIG. 4 includes a first laminated glass member 21, a second laminated glass member 22, and an intermediate film 11A.
- 11 A of intermediate films are arrange
- the first laminated glass member 21 is laminated on the first surface 11a of the intermediate film 11A.
- a second laminated glass member 22 is laminated on the second surface 11b opposite to the first surface 11a of the intermediate film 11A.
- the laminated glass which concerns on this invention is equipped with the 1st laminated glass member, the 2nd laminated glass member, and the intermediate film, and this intermediate film is the intermediate film for laminated glasses which concerns on this invention. It is.
- the interlayer film is disposed between the first laminated glass member and the second laminated glass member.
- the first laminated glass member is preferably a first glass plate.
- the second laminated glass member is preferably a second glass plate.
- first and second laminated glass members include glass plates and PET (polyethylene terephthalate) films.
- the laminated glass includes not only laminated glass in which an intermediate film is sandwiched between two glass plates, but also laminated glass in which an intermediate film is sandwiched between a glass plate and a PET film or the like.
- the laminated glass is a laminate including a glass plate, and preferably at least one glass plate is used.
- Each of the first laminated glass member and the second laminated glass member is a glass plate or a PET film, and the laminated glass is one of the first laminated glass member and the second laminated glass member. It is preferable to provide a glass plate as at least one. It is particularly preferable that both the first and second laminated glass members are glass plates.
- the glass plate examples include inorganic glass and organic glass.
- the inorganic glass examples include float plate glass, heat ray absorbing plate glass, heat ray reflecting plate glass, polished plate glass, mold plate glass, and wire-containing plate glass.
- the organic glass is a synthetic resin glass substituted for inorganic glass.
- examples of the organic glass include polycarbonate plates and poly (meth) acrylic resin plates.
- Examples of the poly (meth) acrylic resin plate include a polymethyl (meth) acrylate plate.
- Each thickness of the first laminated glass member and the second laminated glass member is preferably 1 mm or more, preferably 5 mm or less, more preferably 3 mm or less.
- the thickness of the glass plate is preferably 0.5 mm or more, more preferably 0.7 mm or more, preferably 5 mm or less, more preferably 3 mm or less.
- the thickness of the PET film is preferably 0.03 mm or more, and preferably 0.5 mm or less.
- the method for producing the laminated glass is not particularly limited.
- the intermediate film is sandwiched between the first laminated glass member and the second laminated glass member, passed through a pressing roll, or put in a rubber bag and sucked under reduced pressure, and the first The air remaining between the laminated glass member, the second laminated glass member and the intermediate film is degassed. Thereafter, it is pre-adhered at about 70 to 110 ° C. to obtain a laminate.
- the laminate is put in an autoclave or pressed and pressed at about 120 to 150 ° C. and a pressure of 1 to 1.5 MPa. In this way, a laminated glass can be obtained. You may laminate
- the interlayer film and the laminated glass can be used for automobiles, railway vehicles, aircraft, ships, buildings, and the like.
- the said intermediate film and the said laminated glass can be used besides these uses.
- the interlayer film and the laminated glass are preferably an interlayer film and laminated glass for vehicles or buildings, and more preferably an interlayer film and laminated glass for vehicles.
- the intermediate film and the laminated glass can be used for an automobile windshield, side glass, rear glass, roof glass, or the like.
- the interlayer film and the laminated glass are suitably used for automobiles.
- the interlayer film is used for obtaining laminated glass for automobiles.
- the degree of acetalization degree of butyral
- the degree of acetylation degree of acetylation
- the hydroxyl group content was measured by a method in accordance with JIS K6728 “Testing methods for polyvinyl butyral”.
- ASTM D1396-92 the same numerical value as the method based on JIS K6728 “Testing method for polyvinyl butyral” was shown.
- the degree of acetal is similarly measured for the degree of acetylation and the hydroxyl group content, and the molar fraction is calculated from the obtained measurement results, It is calculated by subtracting the acetylation degree and the hydroxyl group content from 100 mol%.
- Polyvinyl acetal resin (1) (using n-butyraldehyde, polymerization degree 1700, hydroxyl group content 33.5 mol%, acetylation degree 1 mol%, butyralization degree 65.5 mol%)
- Polyvinyl acetal resin (2) (using n-butyraldehyde, polymerization degree 3000, hydroxyl group content 24 mol%, acetylation degree 12 mol%, butyralization degree 64 mol%)
- Acrylic (PMMA) polymer (thermoplastic resin (manufactured by Mitsubishi Rayon Co., Ltd., MF001, Vicat softening temperature 89 ° C. (JIS K7206), melt flow rate 14.0 g / 10 min (JIS K7210, 230 ° C., 37.3 N))
- (Cured product) (Meth) acrylic polymers (1) to (9), (11), (12), (A) and (B):
- the polymerizable composition having the composition shown in Tables 1 and 2 below is sandwiched between two single-sided release sheets (Nippa Corporation, thickness 50 ⁇ m), and the polymerizable composition is 100 ⁇ m in thickness. A physical layer was formed. A spacer was disposed around the two PET sheets.
- the polymerizable composition is cured by reaction by irradiating the polymerizable composition layer with ultraviolet rays at a dose of 3000 mJ / cm 2 using a high-pressure mercury UV lamp, and the (meth) acrylic polymers (1) to ( 9), (11), (12), (A) and (B) were obtained.
- (Meth) acrylic polymer (10) The polymerizable composition layer having the blending composition shown in Table 2 below is sandwiched between two single-sided release sheets (manufactured by Nippers, thickness 50 ⁇ m), and the polymerizable composition layer has a thickness of 810 ⁇ m. Formed. A spacer was disposed around the two PET sheets. The polymerizable composition was cured by reaction by irradiating the polymerizable composition layer with ultraviolet rays at a dose of 5000 mJ / cm 2 using a chemical lamp (“FL20SBL” manufactured by Toshiba Corporation). Furthermore, after releasing one PET sheet, the (meth) acrylic polymer (10) was obtained by heating and drying at 100 ° C. for 30 minutes.
- Metal salt M Mg mixture (50:50 (weight ratio) mixture of magnesium 2-ethylbutyrate and magnesium acetate)
- Tinuvin 326 (2- (2′-hydroxy-3′-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, “Tinuvin 326” manufactured by BASF)
- Example 1 Production of the first layer: The (meth) acrylic polymer (1) obtained above (a layer containing a cured product, thickness 100 ⁇ m) was prepared.
- Production of second and third layers The following blending components were mixed and sufficiently kneaded with a mixing roll to obtain a composition for forming the second and third layers.
- Polyvinyl acetal resin 100 parts by weight Plasticizer (3GO) 35 parts by weight Metal salt M (Mg mixture) in an amount of 70 ppm in the obtained second and third layers UV shielding agent (Tinvin 326) in an amount of 0.2% by weight in the obtained second and third layers Antioxidant (BHT) in an amount of 0.2% by weight in the obtained second and third layers
- the resulting composition for forming the second and third layers was extruded using an extruder to obtain second and third layers (each having a thickness of 380 ⁇ m).
- Preparation of interlayer film A two-layer laminate in which the release-treated PET sheet laminated on the first layer is peeled off and bonded to the second layer using a roll laminator, and the first layer and the second layer are pressure-bonded. Got. Subsequently, the other release-treated PET sheet laminated on the first layer is peeled off, and the first layer and the third layer are pressure-bonded in the same manner as described above, whereby the second layer / first An intermediate film having a structure of layer / third layer was obtained.
- the obtained interlayer film was cut into a size of 25 mm in width and 300 mm in length.
- Two glass plates (clear float glass, width 25 mm, length 300 mm, and thickness 2 mm) were prepared as the first laminated glass member and the second laminated glass member.
- An interlayer film was sandwiched between two glass plates to obtain a laminate.
- This laminated body is put in a rubber bag, deaerated at a vacuum degree of 2.6 kPa for 20 minutes, transferred to an oven while being deaerated, and further kept at 90 ° C. for 30 minutes and vacuum-pressed. Crimped.
- the pre-pressed laminate was pressed for 20 minutes in an autoclave at 135 ° C. and a pressure of 1.2 MPa to obtain a laminated glass.
- Preparation of laminated glass for haze evaluation The obtained interlayer film was cut into a size of 100 mm in width and 100 mm in length. Two glass plates (clear float glass, width 100 mm, length 100 mm and thickness 2 mm) were prepared as the first laminated glass member and the second laminated glass member. An interlayer film was sandwiched between two glass plates to obtain a laminate.
- This laminated body is put in a rubber bag, deaerated at a vacuum degree of 2.6 kPa for 20 minutes, transferred to an oven while being deaerated, and further kept at 90 ° C. for 30 minutes and vacuum-pressed. Crimped.
- the pre-pressed laminate was pressed for 20 minutes in an autoclave at 135 ° C. and a pressure of 1.2 MPa to obtain a laminated glass.
- Examples 2 to 9 An interlayer film was produced in the same manner as in Example 1 except that the types and blending amounts of the blending components were set as shown in Tables 3 and 4 below.
- the metal salt M, the ultraviolet shielding agent, and antioxidant were mix
- Laminated glass was obtained in the same manner as in Example 1 except that the obtained interlayer film was used.
- Example 10 As the intermediate film, the (meth) acrylic polymer (10) obtained above (a layer containing a cured product, a thickness of 810 ⁇ m) was prepared.
- Laminated glass was obtained in the same manner as in Example 1 except that the obtained interlayer film was used.
- Example 11 to 14 Production of the first layer: After mixing the compounding components in Table 4 and sufficiently kneading with a mixing roll to obtain a composition for forming the first layer, the composition is press-molded to a thickness of 100 ⁇ m, and the (meth) acrylic polymer (11) or A layer containing the cured product of (12) was obtained.
- interlayer film was produced in the same manner as in Example 1 except that the types and blending amounts of the blending components were set as shown in Table 4 below.
- the second and third layers were blended with the same kind and blending amount of the metal salt M, the ultraviolet shielding agent and the antioxidant as in Example 1 (omitted in Table 4).
- Laminated glass was obtained in the same manner as in Example 1 except that the obtained interlayer film was used.
- Comparative Example 1 100 parts by weight of the polyvinyl acetal resin (2), 75 parts by weight of a plasticizer (3GO), an ultraviolet shielding agent (Tinvin 326) in an amount of 0.2% by weight in the resulting intermediate film, and in the resulting intermediate film An antioxidant (BHT) in an amount of 0.2% by weight was mixed and sufficiently kneaded with a mixing roll to obtain a composition for forming the first layer.
- a plasticizer 3GO
- an ultraviolet shielding agent Tinvin 326
- BHT antioxidant
- Example 1 A composition for forming the same second and third layers as in Example 1 was prepared.
- composition for forming the obtained first layer and the composition for forming the obtained second and third layers are co-extruded using a co-extruder to produce the second layer.
- An intermediate film having a structure of / first layer / third layer (first layer thickness 100 ⁇ m, second and third layer thicknesses 380 ⁇ m) was obtained.
- Laminated glass was obtained in the same manner as in Example 1 except that the obtained interlayer film was used.
- Comparative Examples 2 and 3 An interlayer film was produced in the same manner as in Comparative Example 1 except that the types and amounts of the blending components were set as shown in Table 5 below, and the thickness was set as shown in Table 5 below.
- the metal salt M, the ultraviolet shielding agent, and the antioxidant were blended in the second and third layers in the same kind and blending amount as in Comparative Example 1 (omitted in Table 5).
- Laminated glass was obtained in the same manner as in Example 1 except that the obtained interlayer film was used.
- the composition for forming the obtained intermediate film was extruded using an extruder to obtain an intermediate film (thickness: 810 ⁇ m).
- Laminated glass was obtained in the same manner as in Example 1 except that the obtained interlayer film was used.
- Example 1 A composition for forming the same second and third layers as in Example 1 was prepared.
- composition for forming the obtained first layer and the composition for forming the obtained second and third layers are co-extruded using a co-extruder to produce the second layer.
- An intermediate film having a structure of / first layer / third layer (first layer thickness 100 ⁇ m, second and third layer thicknesses 380 ⁇ m) was obtained.
- Laminated glass was obtained in the same manner as in Example 1 except that the obtained interlayer film was used.
- Example 6 An interlayer film was produced in the same manner as in Example 1 except that the types and blending amounts of the blending components were set as shown in Table 5 below.
- the metal salt M, the ultraviolet shielding agent, and the antioxidant were blended in the same kind and blending amount as in Example 1 in the second and third layers (omitted in Table 5).
- Laminated glass was obtained in the same manner as in Example 1 except that the obtained interlayer film was used.
- ⁇ Primary loss coefficient is 0.35 or more ⁇ : Primary loss coefficient is 0.2 or more and less than 0.35 ⁇ : Primary loss coefficient is 0.1 or more and less than 0.2 ⁇ : Primary loss coefficient is less than 0.1
- Ratio of haze after storage to haze before storage is 0.99 or more and 1.01 or less
- Ratio of haze after storage to haze before storage is 0.5 or more and less than 0.99, or More than 1.01 and 1.5 or less
- Ratio of haze after storage to haze before storage is less than 0.5 or exceeds 1.5
- EA Ethyl acrylate (manufactured by Nippon Shokubai Co., Ltd.) HEA: 2-hydroxyethyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.) BzA: benzyl acrylate (Osaka Organic Chemical Industry Co., Ltd., Biscoat # 160) BA: n-butyl acrylate (manufactured by Nippon Shokubai Co., Ltd.) THF-A: Tetrahydrofurfuryl acrylate (Osaka Organic Chemical Industry Co., Ltd., Biscoat # 150) CHA: cyclohexyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., Biscoat # 155) HPA: Hydroxypropyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.) CTFA (# 200): cyclic trimethylolpropane formal acrylate (Osaka Organic Chemical Industry Co., Ltd.,
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Multimedia (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Acoustics & Sound (AREA)
- Joining Of Glass To Other Materials (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明に係る合わせガラス用中間膜(以下、中間膜と記載することがある)は、1層の構造又は2層以上の構造を有する。
上記中間膜は、上記硬化物を含む層を備える。上記硬化物を含む層における上記硬化物を形成するための硬化性化合物は、光硬化性化合物もしくは湿気硬化性化合物である。
上記中間膜は、上記硬化物とは異なる樹脂を含む層を備えることが好ましい。上記硬化物とは異なる樹脂を含む層(第2の樹脂層)は、光硬化性化合物を硬化させた硬化物、湿気硬化性化合物を硬化させた硬化物及び(メタ)アクリロイル基を有する硬化性化合物を硬化させた硬化物とはそれぞれ異なる樹脂を含む層である。上記硬化物とは異なる樹脂を含む層は、上記硬化物を含む層(第1の樹脂層)とは異なる樹脂層である。なお、上記中間膜は、上記第2の樹脂層を備えなくてもよい。
上記中間膜は、粘着付与樹脂を含むことが好ましい。上記硬化物を含む層(第1の樹脂層)は、粘着付与樹脂を含むことが好ましい。上記樹脂を含む層(第2の樹脂層)は、粘着付与樹脂を含むことが好ましい。上記第1の層は、粘着付与樹脂を含むことが好ましい。上記粘着付与樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記中間膜は、可塑剤を含むことが好ましい。遮音性を効果的に高める観点からは、上記硬化物を含む層(第1の樹脂層)は、可塑剤を含むことが好ましい。上記樹脂を含む層(第2の樹脂層)は、可塑剤を含むことが好ましい。上記第1の層は、可塑剤を含むことが好ましい。上記第2の層は、可塑剤を含むことが好ましい。上記第3の層は、可塑剤を含むことが好ましい。可塑剤の使用により、各層間の接着力がより一層高くなる傾向がある。上記可塑剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記中間膜は、遮熱性物質を含んでいてもよい。上記硬化物を含む層は、遮熱性物質を含んでいてもよい。上記樹脂を含む層は、遮熱性物質を含んでいてもよい。上記第1の層は、遮熱性物質を含んでいてもよい。上記第2の層は、遮熱性物質を含んでいてもよい。上記第3の層は、遮熱性物質を含んでいてもよい。上記遮熱性物質は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記中間膜は、アルカリ金属塩、アルカリ土類金属塩及びマグネシウム塩の内の少なくとも1種の金属塩(以下、金属塩Mと記載することがある)を含んでいてもよい。上記硬化物を含む層は、上記金属塩Mを含んでいてもよい。上記樹脂を含む層は、上記金属塩Mを含んでいてもよい。上記第1の層は、上記金属塩Mを含んでいてもよい。上記第2の層は、上記金属塩Mを含んでいてもよい。上記第3の層は、上記金属塩Mを含んでいてもよい。上記金属塩Mの使用により、中間膜とガラス板などの合わせガラス部材との接着性又は中間膜における各層間の接着性を制御することが容易になる。上記金属塩Mは、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記中間膜は、紫外線遮蔽剤を含んでいてもよい。上記硬化物を含む層は、紫外線遮蔽剤を含んでいてもよい。上記樹脂を含む層は、紫外線遮蔽剤を含んでいてもよい。上記第1の層は、紫外線遮蔽剤を含んでいてもよい。上記第2の層は、紫外線遮蔽剤を含んでいてもよい。上記第3の層は、紫外線遮蔽剤を含んでいてもよい。紫外線遮蔽剤の使用により、中間膜及び合わせガラスが長期間使用されても、可視光線透過率がより一層低下し難くなる。上記紫外線遮蔽剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記中間膜は、酸化防止剤を含んでいてもよい。上記硬化物を含む層は、酸化防止剤を含んでいてもよい。上記樹脂を含む層は、酸化防止剤を含んでいてもよい。上記第1の層は、酸化防止剤を含んでいてもよい。上記第2の層は、酸化防止剤を含んでいてもよい。上記第3の層は、酸化防止剤を含んでいてもよい。上記酸化防止剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記中間膜、上記硬化物を含む層、上記樹脂を含む層、上記第1の層、上記第2の層及び上記第3の層はそれぞれ、必要に応じて、カップリング剤、分散剤、界面活性剤、難燃剤、帯電防止剤、顔料、染料、金属塩以外の接着力調整剤、耐湿剤、蛍光増白剤及び赤外線吸収剤等の添加剤を含んでいてもよい。これらの添加剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記中間膜の厚みは特に限定されない。実用面の観点、並びに合わせガラスの耐貫通性及び曲げ剛性を充分に高める観点からは、中間膜の厚みは、好ましくは0.1mm以上、より好ましくは0.25mm以上、好ましくは3mm以下、より好ましくは1.5mm以下である。中間膜の厚みが上記下限以上であると、合わせガラスの耐貫通性及び曲げ剛性がより一層高くなる。中間膜の厚みが上記上限以下であると、中間膜の透明性がより一層良好になる。
本発明に係る合わせガラスは、第1の合わせガラス部材と、第2の合わせガラス部材と、上述した合わせガラス用中間膜とを備える。本発明に係る合わせガラスでは、上記第1の合わせガラス部材と上記第2の合わせガラス部材との間に、上記合わせガラス用中間膜が配置されている。
ポリビニルアセタール樹脂(1)(n-ブチルアルデヒドを使用、重合度1700、水酸基の含有率33.5モル%、アセチル化度1モル%、ブチラール化度65.5モル%)
ポリビニルアセタール樹脂(2)(n-ブチルアルデヒドを使用、重合度3000、水酸基の含有率24モル%、アセチル化度12モル%、ブチラール化度64モル%)
ポリ酢酸ビニル(重合度2400)
アクリル(PMMA)ポリマー(熱可塑性樹脂、(三菱レイヨン社製、MF001、ビカット軟化温度89℃(JIS K7206)、メルトフローレート14.0g/10min(JIS K7210、230℃、37.3N))
(メタ)アクリル重合体(1)~(9)、(11)、(12)、(A)及び(B):
下記の表1,2に示す配合組成を有する重合性組成物を、2枚の片面離型処理されたPETシート(ニッパ社製、厚み50μm)に挟み込んで、厚み100μmとなるように重合性組成物層を形成した。なお、2枚のPETシートの周囲にスペーサを配置した。高圧水銀UVランプを用いて、照射量3000mJ/cm2で紫外線を重合性組成物層に照射することにより、重合性組成物を反応により硬化させて、(メタ)アクリル重合体(1)~(9)、(11)、(12)、(A)及び(B)を得た。
下記の表2に示す配合組成を有する重合性組成物を、2枚の片面離型処理されたPETシート(ニッパ社製、厚み50μm)に挟み込んで、厚み810μmとなるように重合性組成物層を形成した。なお、2枚のPETシートの周囲にスペーサを配置した。ケミカルランプ(東芝社製「FL20SBL」)を用いて、照射量5000mJ/cm2で紫外線を重合性組成物層に照射することにより、重合性組成物を反応により硬化させた。さらに、一方のPETシートを離型した後、100℃で30分間加熱乾燥することにより、(メタ)アクリル重合体(10)を得た。
トリエチレングリコールジ-2-エチルヘキサノエート(3GO)
Mg混合物(2-エチル酪酸マグネシウムと酢酸マグネシウムとの50:50(重量比)混合物)
Tinuvin326(2-(2’-ヒドロキシ-3’-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、BASF社製「Tinuvin326」)
BHT(2,6-ジ-t-ブチル-p-クレゾール)
添加剤(1):9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン
添加剤(2):YSレジンSX100(スチレンオリゴマー、ヤスハラケミカル社製)
第1の層の作製:
上記で得られた(メタ)アクリル重合体(1)(硬化物を含む層、厚み100μm)を用意した。
以下の配合成分を混合し、ミキシングロールで充分に混練し、第2,第3の層を形成するための組成物を得た。
可塑剤(3GO)35重量部
得られる第2,第3の層中で70ppmとなる量の金属塩M(Mg混合物)
得られる第2,第3の層中で0.2重量%となる量の紫外線遮蔽剤(Tinuvin326)
得られる第2,第3の層中で0.2重量%となる量の酸化防止剤(BHT)
第1の層に積層された離型処理されたPETシートを剥離し、第2の層にロールラミネーターを用いて貼り合わせ、第1の層と第2の層とを圧着させ、2層積層体を得た。続いて第1の層に積層されたもう一方の離型処理されたPETシートを剥離し、上記同様に第1の層と第3の層とを圧着させることにより、第2の層/第1の層/第3の層の構造を有する中間膜を得た。
得られた中間膜を幅25mm及び長さ300mmの大きさに切断した。第1の合わせガラス部材及び第2の合わせガラス部材として、2つのガラス板(クリアフロートガラス、幅25mm、長さ300mm及び厚さ2mm)を用意した。2枚のガラス板の間に、中間膜を挟み込み、積層体を得た。この積層体をゴムバック内に入れ、2.6kPaの真空度で20分間脱気した後、脱気したままオーブン内に移し、更に90℃で30分間保持して真空プレスし、積層体を予備圧着した。オートクレーブ中で135℃及び圧力1.2MPaの条件で、予備圧着された積層体を20分間圧着し、合わせガラスを得た。
得られた中間膜を幅100mm及び長さ100mmの大きさに切断した。第1の合わせガラス部材及び第2の合わせガラス部材として、2つのガラス板(クリアフロートガラス、幅100mm、長さ100mm及び厚さ2mm)を用意した。2枚のガラス板の間に、中間膜を挟み込み、積層体を得た。この積層体をゴムバック内に入れ、2.6kPaの真空度で20分間脱気した後、脱気したままオーブン内に移し、更に90℃で30分間保持して真空プレスし、積層体を予備圧着した。オートクレーブ中で135℃及び圧力1.2MPaの条件で、予備圧着された積層体を20分間圧着し、合わせガラスを得た。
配合成分の種類及び配合量を下記の表3,4に示すように設定したこと以外は、実施例1と同様にして、中間膜を作製した。なお、第2,第3の層には、実施例1と同様の種類及び配合量で、金属塩M、紫外線遮蔽剤及び酸化防止剤を配合した(表3,4では省略)。
中間膜として、上記で得られた(メタ)アクリル重合体(10)(硬化物を含む層、厚み810μm)を用意した。
第1の層の作製:
表4の配合成分を混合し、ミキシングロールで充分に混練し、第1の層を形成するための組成物を得た後、厚み100μmにプレス成型し、(メタ)アクリル重合体(11)又は(12)の硬化物を含む層を得た。
表4の配合成分を混合し、ミキシングロールで充分に混練し、第2,第3の層を形成するための組成物を得た。
配合成分の種類及び配合量を下記の表4に示すように設定したこと以外は、実施例1と同様にして、中間膜を作製した。なお、第2,第3の層には、実施例1と同様の種類及び配合量の金属塩M、紫外線遮蔽剤及び酸化防止剤を配合した(表4では省略)。
ポリビニルアセタール樹脂(2)100重量部と、可塑剤(3GO)75重量部と、得られる中間膜中で0.2重量%となる量の紫外線遮蔽剤(Tinuvin326)と、得られる中間膜中で0.2重量%となる量の酸化防止剤(BHT)とを混合し、ミキシングロールで充分に混練し、第1の層を形成するための組成物を得た。
配合成分の種類及び配合量を下記の表5に示すように設定したこと、かつ厚みを下記の表5に示すように設定したこと以外は比較例1と同様にして、中間膜を作製した。なお、第2,第3の層には、比較例1と同様の種類及び配合量で、金属塩M、紫外線遮蔽剤及び酸化防止剤を配合した(表5では省略)。
以下の配合成分を混合し、ミキシングロールで充分に混練し、中間膜を形成するための組成物を得た。
可塑剤(3GO)75重量部
得られる中間膜中で70ppmとなる量の金属塩M(Mg混合物)
得られる中間膜中で0.2重量%となる量の紫外線遮蔽剤(Tinuvin326)
得られる中間膜中で0.2重量%となる量の酸化防止剤(BHT)
添加剤(添加剤(1):9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン)75重量部
アクリル(PMMA)ポリマーを第1の層を形成するための組成物として用意した。
配合成分の種類及び配合量を下記の表5に示すように設定したこと以外は、実施例1と同様にして、中間膜を作製した。なお、第2,第3の層には、実施例1と同様の種類及び配合量で、金属塩M、紫外線遮蔽剤及び酸化防止剤を配合した(表5では省略)。
(1)動的粘弾性測定
得られた第1の層のみの構造を有する中間膜、及び得られた第2の層/第1の層/第3の層の構造を有する中間膜について、動的粘弾性測定を行った。動的粘弾性測定装置(アイティー計測制御社製、DVA-200)を用いて、せん断モード、3℃/分の昇温速度で-50℃から200℃まで温度を昇温させる条件かつ周波数1Hz及び歪1%の条件にて動的粘弾性を測定することにより、以下の項目について評価を実施した。
第1の層のtanδのピーク温度でのtanδ(1)
第2,3の層のtanδのピーク温度
第2,3の層のtanδのピーク温度でのtanδ(2)
比(tanδ(1)/tanδ(2))
第1の層の100℃での第1の層の貯蔵弾性率G’
得られた合わせガラスをダンピング試験用の振動発生機(振研社製「加振機G21-005D」)により加振した。そこから得られた振動特性を機械インピーダンス測定装置(リオン社製「XG-81」)にて増幅し、振動スペクトルをFFTスペクトラムアナライザー(リオン社製「FFTアナライザー SA-01A2」)により解析した。
○○:一次損失係数が0.35以上
○:一次損失係数が0.2以上0.35未満
△:一次損失係数0.1以上0.2未満
×:一次損失係数が0.1未満
作製直後の合わせガラスのヘーズを測定した。また、作製直後の合わせガラスを23℃及び50%RHで4週間保管した後に、保管後の合わせガラスのヘーズを測定した。
○:ヘーズが2.5%以下
×:ヘーズが2.5%を超える
○:保管前のヘーズに対する保管後のヘーズの比が0.99以上1.01以下
△:保管前のヘーズに対する保管後のヘーズの比が0.5以上0.99未満であるか、又は、1.01を超え1.5以下
×:保管前のヘーズに対する保管後のヘーズの比が0.5未満、又は、1.5を超える
HEA:アクリル酸2-ヒドロキシエチル(大阪有機化学工業社製)
BzA:アクリル酸ベンジル(大阪有機化学工業社製、ビスコート#160)
BA:アクリル酸n-ブチル(日本触媒社製)
THF-A:テトラヒドロフルフリルアクリレート(大阪有機化学工業社製、ビスコート#150)
CHA:シクロヘキシルアクリレート(大阪有機化学工業社製、ビスコート#155)
HPA:ヒドロキシプロピルアクリレート(大阪有機化学工業社製)
CTFA(♯200):環状トリメチロールプロパンホルマールアクリレート(大阪有機化学工業社製、ビスコート#200)
2-EHA:アクリル酸2-エチルヘキシル(日本触媒社製)
ISTA:イソステアリルアクリレート(大阪有機化学工業社製)
4HBA:4-ヒドロキシブチルアクリレート(大阪有機化学工業社製)
IBOA:イソボルニルアクリレート(日本触媒社製)
IRGACURE 184:2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(BASF社製)
1a…第1の表面
1b…第2の表面
2…第2の層
2a…外側の表面
3…第3の層
3a…外側の表面
11…中間膜
11A…中間膜(第1の層)
11a…第1の表面
11b…第2の表面
21…第1の合わせガラス部材
22…第2の合わせガラス部材
31…合わせガラス
31A…合わせガラス
Claims (8)
- 1層の構造又は2層以上の構造を有する合わせガラス用中間膜であり、
前記中間膜は、硬化物を含む層を備え、
前記硬化物が、光硬化性化合物又は湿気硬化性化合物を硬化させた硬化物であり、
前記硬化物を含む層の周波数1Hz及びせん断モードでの粘弾性測定において、tanδのピーク温度が-50℃以上30℃以下であり、かつ前記tanδのピーク温度でのtanδが2.0以上である、合わせガラス用中間膜。 - 前記硬化物が、光硬化性化合物を硬化させた硬化物である、請求項1に記載の合わせガラス用中間膜。
- 1層の構造又は2層以上の構造を有する合わせガラス用中間膜であり、
硬化物を含む層を備え、
前記硬化物が、(メタ)アクリロイル基を有する硬化性化合物を硬化させた硬化物であり、
前記硬化物を含む層の周波数1Hz及びせん断モードでの粘弾性測定において、tanδのピーク温度が-50℃以上30℃以下であり、かつ前記tanδのピーク温度でのtanδが2以上である、合わせガラス用中間膜。 - 前記硬化物を含む層の100℃での貯蔵弾性率G’が5.0×103Pa以上である、請求項1~3のいずれか1項に記載の合わせガラス用中間膜。
- 前記硬化物を含む層の周波数1Hz及びせん断モードでの粘弾性測定において、tanδのピーク温度が-30℃以上20℃以下である、請求項1~4のいずれか1項に記載の合わせガラス用中間膜。
- 2層以上の構造を有する合わせガラス用中間膜であり、
前記中間膜は、前記硬化物とは異なる樹脂を含む層を備える、請求項1~5のいずれか1項に記載の合わせガラス用中間膜。 - 2層以上の構造を有する合わせガラス用中間膜であり、
前記中間膜は、前記硬化物とは異なる樹脂を含む層を備え、
前記中間膜の周波数1Hz及びせん断モードでの粘弾性測定において、前記硬化物とは異なる樹脂を含む層のtanδのピーク温度が-100℃以上100℃以下であり、前記中間膜の周波数1Hz及びせん断モードでの粘弾性測定における前記硬化物を含む層のtanδのピーク温度でのtanδの、前記硬化物とは異なる樹脂を含む層のtanδのピークの温度でのtanδに対する比が、2.0以上10.0以下である、請求項1~5のいずれか1項に記載の合わせガラス用中間膜。 - 第1の合わせガラス部材と、
第2の合わせガラス部材と、
請求項1~7のいずれか1項に記載の合わせガラス用中間膜とを備え、
前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に、前記合わせガラス用中間膜が配置されている、合わせガラス。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019516004A JP7316213B2 (ja) | 2018-02-02 | 2019-01-30 | 合わせガラス用中間膜及び合わせガラス |
CN202211356788.0A CN115648751A (zh) | 2018-02-02 | 2019-01-30 | 夹层玻璃用中间膜和夹层玻璃 |
BR112020014919-5A BR112020014919A2 (pt) | 2018-02-02 | 2019-01-30 | Película intermediária para vidro laminado e vidro laminado |
CN201980010737.2A CN111655650B (zh) | 2018-02-02 | 2019-01-30 | 夹层玻璃用中间膜和夹层玻璃 |
EP19747824.1A EP3747845A4 (en) | 2018-02-02 | 2019-01-30 | INTERMEDIATE FILM FOR LAMINATED GLASS AND LAMINATED GLASS |
MX2020007937A MX2020007937A (es) | 2018-02-02 | 2019-01-30 | Pelicula intermedia para vidrio laminado y vidrio laminado. |
KR1020207022053A KR20200118018A (ko) | 2018-02-02 | 2019-01-30 | 접합 유리용 중간막 및 접합 유리 |
US16/965,200 US20210060907A1 (en) | 2018-02-02 | 2019-01-30 | Intermediate film for laminated glass and laminated glass |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018017724 | 2018-02-02 | ||
JP2018-017724 | 2018-02-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019151328A1 true WO2019151328A1 (ja) | 2019-08-08 |
Family
ID=67478805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/003181 WO2019151328A1 (ja) | 2018-02-02 | 2019-01-30 | 合わせガラス用中間膜及び合わせガラス |
Country Status (9)
Country | Link |
---|---|
US (1) | US20210060907A1 (ja) |
EP (1) | EP3747845A4 (ja) |
JP (1) | JP7316213B2 (ja) |
KR (1) | KR20200118018A (ja) |
CN (2) | CN111655650B (ja) |
BR (1) | BR112020014919A2 (ja) |
MX (1) | MX2020007937A (ja) |
TW (1) | TWI798349B (ja) |
WO (1) | WO2019151328A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021002034A1 (ja) * | 2019-07-02 | 2021-01-07 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
WO2022145426A1 (ja) * | 2020-12-28 | 2022-07-07 | Agc株式会社 | 積層樹脂膜、及び積層体 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016158696A1 (ja) * | 2015-03-31 | 2016-10-06 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
WO2017023644A2 (en) * | 2015-07-31 | 2017-02-09 | Corning Incorporated | Laminate structures with enhanced damping properties |
WO2017170259A1 (ja) | 2016-03-28 | 2017-10-05 | 株式会社クラレ | 合わせガラス用中間膜 |
WO2017209013A1 (ja) | 2016-06-01 | 2017-12-07 | 日立化成株式会社 | 合わせガラスの中間膜用光硬化性樹脂組成物、合わせガラスの中間膜用フィルム材及び合わせガラスの製造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1176787A (en) * | 1980-05-26 | 1984-10-23 | Pierre Chevreux | Photosetting adhesive composition |
GB8828634D0 (en) * | 1988-12-08 | 1989-01-11 | Glaverbel | Composite glazing panel |
US5464659A (en) * | 1991-05-23 | 1995-11-07 | Minnesota Mining And Manufacturing Company | Silicone/acrylate vibration dampers |
ATE224300T2 (de) * | 1996-11-26 | 2002-10-15 | Saint Gobain | Verwendung einer verbundglasscheibe zur dämmung von durch festkörper geleiteten schwingungen in einem fahrzeug |
AU2004312250B2 (en) * | 2003-12-26 | 2009-09-03 | Sekisui Chemical Co., Ltd. | Intermediate film for laminated glass and laminated glass |
US20070036956A1 (en) * | 2005-08-15 | 2007-02-15 | Solutia, Inc. | Interlayers comprising an ultraviolet curable layer |
JP2007070200A (ja) * | 2005-09-09 | 2007-03-22 | Asahi Glass Co Ltd | 合わせガラス |
JP2009091434A (ja) * | 2007-10-05 | 2009-04-30 | Sekisui Chem Co Ltd | 中間膜用重合性組成物、中間膜及び透明積層体 |
BRPI0923529A2 (pt) * | 2008-12-22 | 2016-01-26 | Nippon Kayaku Kk | laminado para vidro laminado e película de intercamada para vidro laminado |
US20130143049A1 (en) * | 2010-08-24 | 2013-06-06 | Hirofumi Kitano | Interlayer film for laminated glass, and laminated glass |
JPWO2013051717A1 (ja) * | 2011-10-07 | 2015-03-30 | 旭硝子株式会社 | 積層体の製造方法 |
JP5827161B2 (ja) * | 2012-03-28 | 2015-12-02 | 富士フイルム株式会社 | コレステリック液晶性混合物、フィルム、赤外反射板、積層体および合わせガラス |
WO2017204342A1 (ja) * | 2016-05-27 | 2017-11-30 | 日本化薬株式会社 | 合わせガラス用中間膜及びこれを用いた合わせガラス |
JP7168445B2 (ja) * | 2017-02-03 | 2022-11-09 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラスの製造方法 |
KR20200034657A (ko) * | 2017-07-24 | 2020-03-31 | 세키스이가가쿠 고교가부시키가이샤 | 수지막 및 유리판 함유 적층체 |
-
2019
- 2019-01-30 WO PCT/JP2019/003181 patent/WO2019151328A1/ja unknown
- 2019-01-30 US US16/965,200 patent/US20210060907A1/en not_active Abandoned
- 2019-01-30 EP EP19747824.1A patent/EP3747845A4/en not_active Withdrawn
- 2019-01-30 JP JP2019516004A patent/JP7316213B2/ja active Active
- 2019-01-30 KR KR1020207022053A patent/KR20200118018A/ko not_active Application Discontinuation
- 2019-01-30 BR BR112020014919-5A patent/BR112020014919A2/pt not_active Application Discontinuation
- 2019-01-30 CN CN201980010737.2A patent/CN111655650B/zh active Active
- 2019-01-30 CN CN202211356788.0A patent/CN115648751A/zh active Pending
- 2019-01-30 MX MX2020007937A patent/MX2020007937A/es unknown
- 2019-02-01 TW TW108104083A patent/TWI798349B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016158696A1 (ja) * | 2015-03-31 | 2016-10-06 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
WO2017023644A2 (en) * | 2015-07-31 | 2017-02-09 | Corning Incorporated | Laminate structures with enhanced damping properties |
WO2017170259A1 (ja) | 2016-03-28 | 2017-10-05 | 株式会社クラレ | 合わせガラス用中間膜 |
WO2017209013A1 (ja) | 2016-06-01 | 2017-12-07 | 日立化成株式会社 | 合わせガラスの中間膜用光硬化性樹脂組成物、合わせガラスの中間膜用フィルム材及び合わせガラスの製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3747845A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021002034A1 (ja) * | 2019-07-02 | 2021-01-07 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
US11731399B2 (en) | 2019-07-02 | 2023-08-22 | Sekisui Chemical Co. Ltd. | Interlayer film for laminated glass, and laminated glass |
WO2022145426A1 (ja) * | 2020-12-28 | 2022-07-07 | Agc株式会社 | 積層樹脂膜、及び積層体 |
Also Published As
Publication number | Publication date |
---|---|
BR112020014919A2 (pt) | 2020-12-08 |
EP3747845A4 (en) | 2021-10-06 |
JP7316213B2 (ja) | 2023-07-27 |
US20210060907A1 (en) | 2021-03-04 |
KR20200118018A (ko) | 2020-10-14 |
TWI798349B (zh) | 2023-04-11 |
JPWO2019151328A1 (ja) | 2020-12-03 |
CN111655650A (zh) | 2020-09-11 |
CN115648751A (zh) | 2023-01-31 |
EP3747845A1 (en) | 2020-12-09 |
CN111655650B (zh) | 2022-11-18 |
MX2020007937A (es) | 2020-09-03 |
TW201936393A (zh) | 2019-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6763955B2 (ja) | 合わせガラス用中間膜及び合わせガラス | |
WO2019151329A1 (ja) | 合わせガラス用中間膜及び合わせガラス | |
WO2019151327A1 (ja) | 合わせガラス用中間膜及び合わせガラス | |
WO2019151328A1 (ja) | 合わせガラス用中間膜及び合わせガラス | |
WO2019151326A1 (ja) | 合わせガラス用中間膜、ロール体及び合わせガラス | |
JP7377109B2 (ja) | 合わせガラス用中間膜及び合わせガラス | |
JP7372840B2 (ja) | 合わせガラス用中間膜及び合わせガラス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019516004 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19747824 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019747824 Country of ref document: EP Effective date: 20200902 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020014919 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112020014919 Country of ref document: BR Kind code of ref document: A2 Effective date: 20200722 |