WO2019151272A1 - 親水性多孔質膜の製造方法 - Google Patents

親水性多孔質膜の製造方法 Download PDF

Info

Publication number
WO2019151272A1
WO2019151272A1 PCT/JP2019/003049 JP2019003049W WO2019151272A1 WO 2019151272 A1 WO2019151272 A1 WO 2019151272A1 JP 2019003049 W JP2019003049 W JP 2019003049W WO 2019151272 A1 WO2019151272 A1 WO 2019151272A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous membrane
hydrophilizing
mass
hydrophilic
liquid
Prior art date
Application number
PCT/JP2019/003049
Other languages
English (en)
French (fr)
Inventor
勇也 元村
陽大 石井
健志 梅原
三ツ井 哲朗
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2019151272A1 publication Critical patent/WO2019151272A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Definitions

  • the present invention relates to a method for producing a hydrophilic porous membrane.
  • Porous membranes made of various polymers such as polysulfone and polyolefin are used as filtration membranes in water purification and blood treatment. Since these materials are generally hydrophobic and difficult to wet with water, they are used after being hydrophilized depending on the application.
  • Patent Document 1 discloses a method for imparting hydrophilicity by precipitating a hydrophilicity imparting substance on a polysulfone porous membrane using a poor solvent and adhering and holding it.
  • Patent Document 2 discloses a method for imparting hydrophilicity to a polysulfone porous membrane using a hydrophilic organic polymer such as polyvinyl alcohol. Specifically, a solution containing a hydrophilic organic polymer such as polyvinyl alcohol is applied to the porous membrane, and then heated and dried to adhere and hold the hydrophilic organic polymer on the pore surfaces of the porous membrane. A method is disclosed.
  • Patent Document 3 has a monomer (A) composed of one or more polyfunctional (meth) acrylates and a hydrocarbon residue having 5 to 20 carbon atoms on the surface of at least some of the pores of the polyolefin porous membrane.
  • A a monomer composed of one or more polyfunctional (meth) acrylates and a hydrocarbon residue having 5 to 20 carbon atoms on the surface of at least some of the pores of the polyolefin porous membrane.
  • a heat-resistant hydrophilized porous membrane in which a cross-linked copolymer with a monomer (B) composed of one or more types of monofunctional (meth) acrylate is retained, and further a hydrophilic polymer is retained thereon.
  • Patent Document 3 after immersing a polyolefin porous membrane in a solution containing the above monomer, the solvent is volatilized and removed, and then the monomer is polymerized to form a cross-linked copolymer. A polymer is formed.
  • the hydrophilic polysulfone porous membrane obtained by the method described in Patent Document 1 or 2 has a problem that the hydrophilicity is lowered after sterilization because the hydrophilicity of the organic polymer is low.
  • Patent Document 3 heat resistance and hydrophilicity are realized at the same time by a hydrophilization treatment in which a crosslinked copolymer is formed from a composition permeated into a porous membrane.
  • An object of the present invention is to provide a method for producing a hydrophilic porous membrane which has high hydrophilicity and does not deteriorate water permeability and wettability even after high-pressure steam sterilization.
  • the present invention provides the following ⁇ 1> to ⁇ 17>.
  • a method for producing a hydrophilic porous membrane The hydrophilic porous membrane includes a porous membrane and a hydrophilic coating that covers at least a part of the outer surface of the porous membrane,
  • the above manufacturing method is Impregnating the porous membrane with the hydrophilizing liquid for forming the hydrophilizing coating, and subjecting the porous membrane after permeating the hydrophilizing liquid to a curing reaction,
  • the hydrophilizing liquid contains a polymerizable monomer and a mixed solvent of a polar organic solvent and water,
  • the total mass of the polar organic solvent is 10 to 60% by mass with respect to the total mass of the mixed solvent,
  • the part where the curing reaction is a part of the porous membrane in which the hydrophilizing liquid has permeated throughout the thickness direction, and the mass is 3 to 16 times the mass before the hydrophilizing liquid is infiltrated
  • the said manufacturing method performed by irradiating with light.
  • a method for producing a hydrophilic porous membrane The hydrophilic porous membrane includes a porous membrane and a hydrophilic coating that covers at least a part of the outer surface of the porous membrane,
  • the above manufacturing method is Impregnating the porous membrane with the hydrophilizing liquid for forming the hydrophilizing coating, and subjecting the porous membrane after permeating the hydrophilizing liquid to a curing reaction,
  • the hydrophilizing liquid contains a polymerizable monomer and a mixed solvent of a polar organic solvent and water,
  • the total mass of the polar organic solvent is 10 to 60% by mass with respect to the total mass of the mixed solvent,
  • the production method as described above, wherein the permeation of the hydrophilizing liquid is performed by setting the mass of the porous membrane to 3 to 16 times the mass before permeating the hydrophilizing liquid.
  • ⁇ 3> The production method according to ⁇ 1> or ⁇ 2>, wherein the permeation is performed by immersing the porous membrane in the hydrophilic liquid.
  • ⁇ 4> The production method according to ⁇ 3>, wherein the porous membrane is pulled up from the hydrophilized liquid after the immersion.
  • ⁇ 5> The production according to any one of ⁇ 1> to ⁇ 4>, comprising drying the porous membrane after the permeation of the hydrophilizing solution and before the curing reaction to volatilize a part of the mixed solvent Method.
  • ⁇ 6> The production method according to any one of ⁇ 1> to ⁇ 5>, wherein the light irradiation is ultraviolet irradiation.
  • ⁇ 7> The production method according to any one of ⁇ 1> to ⁇ 6>, wherein the polar organic solvent is an organic solvent miscible with water.
  • the polar organic solvent contains at least one alcohol having 5 or less carbon atoms.
  • ⁇ 9> The production method according to any one of ⁇ 1> to ⁇ 8>, wherein the polymerizable monomer is an acrylic monomer.
  • the polymerizable monomer is an acrylic monomer.
  • the acrylic monomer is a trifunctional to hexafunctional monomer.
  • the acrylic monomer has a ClogP value of 2.0 or less.
  • the acrylic monomer is (meth) acrylamide.
  • the hydrophilizing liquid contains an acrylic monomer having 1 to 2 functional groups.
  • ⁇ 14> The mass ratio of the trifunctional to hexafunctional acrylic monomer and the monofunctional to bifunctional acrylic monomer in the hydrophilization liquid is 20:80 to 80:20 in ⁇ 13>.
  • ⁇ 15> The production method according to ⁇ 13> or ⁇ 14>, wherein the acrylic monomer having a functionality of 1 to 2 is (meth) acrylamide.
  • ⁇ 16> The production method according to any one of ⁇ 1> to ⁇ 15>, wherein the porous membrane contains polysulfone.
  • ⁇ 17> The production method according to any one of ⁇ 1> to ⁇ 16>, wherein the porous membrane has a pore size distribution.
  • the present invention provides a novel method for producing a hydrophilic porous membrane.
  • a hydrophilic porous membrane that has high hydrophilicity and does not deteriorate water permeability and wettability even after high-pressure steam sterilization.
  • (meth) acryloyl group means acryloyl group (H 2 C ⁇ CH—C ( ⁇ O) —) and methacryloyl group (H 2 C ⁇ C (CH 3 ) —C ( ⁇ O) —). Represents one or both of the above.
  • the “acrylic monomer” include (meth) acrylate and (meth) acrylamide.
  • (meth) acrylamide” represents one or both of acrylamide and methacrylamide.
  • the hydrophilic porous membrane means a membrane obtained by subjecting a porous membrane serving as a base material to a hydrophilic treatment.
  • a hydrophilic porous membrane is a membrane having a plurality of pores. The hole can be confirmed by, for example, a scanning electron microscope (SEM) image or a transmission electron microscope (TEM) image of the film cross section.
  • the hydrophilic porous membrane of the present invention includes a porous membrane and a hydrophilic coating that covers at least a part of the outer surface of the porous membrane.
  • the outer surface of the porous membrane refers to the surface of the porous membrane (the front surface or the back surface of the membrane) and the surface of the porous membrane facing each pore inside the porous membrane (this book In the specification, it is sometimes referred to as “the surface of the pore”.
  • the surface of at least one of the porous membranes and the surface of the porous membrane facing at least some of the plurality of pores inside the porous membrane are hydrophilized It is preferable that it is covered with a coating, and it is more preferable that substantially all of the outer surface of the porous membrane is covered with a hydrophilic coating.
  • the porous membrane may be coated on either one of the membrane surfaces or on both membrane surfaces, but it is preferable that both membrane surfaces are coated. As described later, when any one of the porous membranes having a pore size distribution is coated, it is preferable that the membrane surface having a smaller pore size is coated.
  • the porous membrane is hydrophobic, the water permeability is particularly lowered at a site where the pore diameter is small due to the surface tension of water. Therefore, a decrease in water permeability can be efficiently suppressed by coating a highly crosslinked polymer with a hydrophilic coating at a site where the pore diameter is small.
  • the part is, for example, any one of the porous membranes As long as it is in the vicinity of the film surface.
  • the film surface at that time is preferably a coated film surface.
  • any one of the porous membranes having a pore size distribution is coated, it is preferable that the pores in the vicinity of the membrane surface having a smaller pore size are coated.
  • the surface of the porous membrane facing all the pores of the plurality of pores inside the porous membrane is covered.
  • the coating with the hydrophilic coating may be performed to such an extent that the hydrophilic porous membrane is not easily peeled off during storage or use.
  • the coating may be carried out by covalent bonding between the compound in the hydrophilic coating and the residue on the outer surface of the porous membrane, but the hydrophilic coating is formed on the membrane surface or by forming a cured product network described later. It is preferably in a state held in the pores.
  • the hydrophilic coating only needs to be applied to the porous film as the base material in an arbitrary mass in consideration of necessary wettability and water permeability. About 25 to 20% by mass, and preferably about 0.5 to 15% by mass.
  • the hydrophilic porous membrane is produced by performing a hydrophilization treatment that forms a hydrophilic coating on the porous membrane as a substrate.
  • the hydrophilic coating is formed by infiltrating a hydrophilic film containing a polymerizable monomer and a solvent into the porous film, and then subjecting the porous film infiltrated with the hydrophilized liquid to a curing reaction. You may perform a washing process, a sterilization process, etc. further to the porous membrane in which the hydrophilic coating was formed.
  • each process used in the manufacturing method of this invention and each material used for the manufacturing method of this invention is demonstrated.
  • a porous membrane refers to a membrane having a plurality of pores.
  • the pores can be confirmed by, for example, a scanning electron microscope (SEM) image or a transmission electron microscope (TEM) image of the film cross section.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the pore diameter of the pores of the porous membrane can be appropriately selected depending on the size of the object to be filtered, but may be 0.01 ⁇ m to 10 ⁇ m, more preferably 0.01 ⁇ m to 5 ⁇ m, and more preferably 0.01 ⁇ m. More preferably, it is ⁇ 2 ⁇ m. What is necessary is just to measure a hole diameter from the photograph of the film
  • the porous membrane is cut with a microtome or the like, and a photograph of the cross section of the porous membrane can be obtained as a slice of a thin film whose cross section can be observed.
  • the pore size of the pores of the hydrophilic porous membrane may be smaller than the pore size of the porous membrane of the base material as a result of the hydrophilization treatment, but usually approximated to be the same as the pore size of the porous membrane. it can.
  • the structure of the porous membrane may be either a structure having a pore size distribution in the thickness direction or a homogeneous structure having no pore size distribution in the thickness direction.
  • a structure having a pore size distribution in the thickness direction a structure (asymmetric structure) that is asymmetric in the thickness direction having a pore size distribution so that the pore size of the front surface and the back surface of the membrane are different is preferable.
  • asymmetric structures include a structure in which the pore diameter continuously increases in the thickness direction from one membrane surface to the other membrane surface, and has a layered dense portion in which the pore diameter is minimized.
  • the porous membrane has a layered dense portion in which the pore diameter is minimized, and the pore diameter continuously increases in the thickness direction from the dense portion toward at least one surface of the porous membrane.
  • a structure is preferred.
  • the SEM photograph of the film cross section is divided in the film thickness direction.
  • the number of divisions can be appropriately selected from the thickness of the film.
  • the number of divisions is at least 5 or more.
  • the size of the division width means the size of the width in the thickness direction of the film, and does not mean the width size in the photograph.
  • the pore diameter is compared as the average pore diameter of each section.
  • the average pore diameter of each section may be, for example, an average value of 50 holes in each section of the membrane cross-sectional view.
  • the film cross-sectional view in this case may be obtained, for example, with a width of 80 ⁇ m (a distance of 80 ⁇ m in a direction parallel to the surface).
  • the layered dense part having the smallest pore diameter refers to the layered part of the porous film corresponding to the section having the smallest average pore diameter among the sections of the membrane cross section. Even if the dense part consists of parts corresponding to one section, such as two, three, etc., from parts corresponding to a plurality of sections having an average pore diameter within 1.1 times that of the section having the smallest average pore diameter It may be.
  • the dense part may have a thickness of 0.5 ⁇ m to 50 ⁇ m, and preferably 0.5 ⁇ m to 30 ⁇ m. In this specification, the average pore size of the dense part is defined as the minimum pore size of the porous membrane.
  • the minimum pore size of the porous membrane is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less. This is because at least normal cell permeation can be prevented with such a minimum pore size of the porous membrane.
  • the average pore diameter of the dense part is measured by ASTM F316-80.
  • the porous membrane preferably has a dense portion inside. “Inside” means not in contact with the surface of the film, and “having a dense part inside” means that the dense part is not the closest segment to any surface of the film.
  • the dense part is biased to one of the surface sides with respect to the central part of the thickness of the porous film.
  • the dense part is preferably at a distance within one third of the thickness of the porous film from one of the surfaces of the porous film, and more preferably at a distance within two fifths. More preferably, the distance is within a quarter. This distance may be determined in the above-mentioned film cross-sectional photograph.
  • the surface of the porous membrane closer to the dense part is referred to as “surface X”.
  • the pore diameter continuously increases in the thickness direction from the dense part toward at least one of the surfaces.
  • the pore diameter may continuously increase in the thickness direction from the dense portion toward the surface X, and the pore diameter continuously increases in the thickness direction from the dense portion toward the surface opposite to the surface X.
  • the pore diameter may be continuously increased from the dense part to any surface of the porous membrane in the thickness direction.
  • the pore diameter is continuously increased in the thickness direction from at least the dense portion toward the surface opposite to the surface X, and when moving from the dense portion to any surface of the porous film in the thickness direction. More preferably, the pore diameter continuously increases.
  • the pore diameter increases continuously in the thickness direction means that the average pore diameter difference between adjacent sections in the thickness direction is 50% or less of the difference between the maximum average pore diameter (maximum pore diameter) and the minimum average pore diameter (minimum pore diameter). , Preferably 40% or less, more preferably 30% or less. “Successively increasing” essentially means that there is no decrease and that the increase is uniform, but a decreasing site may occur accidentally. For example, when two sections are combined from the surface, the average value of the combination increases uniformly (decreases uniformly when going from the surface to the dense part). It can be determined that the pore diameter continuously increases in the thickness direction.
  • the maximum pore size of the porous membrane is preferably more than 0.1 ⁇ m, more preferably more than 0.1 ⁇ m, further preferably more than 1.5 ⁇ m, more preferably not more than 25 ⁇ m, and 23 ⁇ m Or less, more preferably 21 ⁇ m or less.
  • the average pore diameter of the section having the maximum average pore diameter among the sections of the membrane cross section is defined as the maximum pore diameter of the porous film.
  • Ratio of the average pore size of the dense part to the maximum pore size of the porous membrane (the ratio of the minimum pore size of the porous membrane to the maximum pore size, the value obtained by dividing the maximum pore size by the minimum pore size, Is preferably 3 or more, more preferably 4 or more, and still more preferably 5 or more. This is to increase the average pore size other than the dense part and increase the material permeability of the porous membrane.
  • the anisotropy ratio is preferably 25 or less, and more preferably 20 or less. This is because the effect such as the above-described multi-stage filtration is efficiently obtained when the anisotropy ratio is 25 or less.
  • the section having the largest average pore diameter is preferably a section closest to any surface of the membrane or a section in contact with the section.
  • the average pore size is preferably more than 0.05 ⁇ m and 25 ⁇ m or less, more preferably more than 0.08 ⁇ m and 23 ⁇ m or less, and more than 0.1 ⁇ m and 21 ⁇ m or less. Is more preferable.
  • the ratio of the average pore diameter of the section closest to any surface of the membrane to the average pore diameter of the dense portion is preferably 1.2 or more and 20 or less, more preferably 1.5 or more and 15 or less. More preferably, it is 2 or more and 13 or less.
  • the thickness of the porous membrane is not particularly limited, but it may be 10 ⁇ m to 1000 ⁇ m from the viewpoint of membrane strength, handleability, and filtration performance, preferably 10 ⁇ m to 500 ⁇ m, more preferably 30 ⁇ m to 300 ⁇ m. preferable.
  • the thickness of the hydrophilic porous film may be larger than the thickness of the porous film of the base material as a result of the hydrophilization treatment, it is usually almost the same as the thickness of the porous film.
  • the porous membrane includes a polymer.
  • the porous membrane is preferably composed essentially of a polymer.
  • the polymer preferably has a number average molecular weight (Mn) of 1,000 to 10,000,000, more preferably 5,000 to 1,000,000.
  • polystyrene-acrylonitrile copolymer examples include polysulfone, sulfonated polysulfone, polyethersulfone (PES), sulfonated polyethersulfone, cellulose acylate, nitrocellulose, polyacrylonitrile, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, ethylene- Saponified vinyl acetate copolymer, polyvinyl alcohol, polycarbonate, organosiloxane-polycarbonate copolymer, polyester carbonate, organopolysiloxane, polyphenylene oxide, polyamide, polyimide, polyamideimide, polybenzimidazole, ethylene vinyl alcohol copolymer, polytetrafluoroethylene (PTFE), polyethylene, polypropylene, polyfluoroethylene, polyethylene Terephthalate, polyamide, polyimide, 6'6- nylon, polyvinylidene fluor fluor fluor
  • polysulfone, polyethersulfone, PVDF, sulfonated polysulfone, sulfonated polyethersulfone, 6′6-nylon, and cellulose acylate are preferable, and polysulfone is more preferable.
  • the porous membrane may contain components other than the polymer as additives.
  • the additives include metal salts of inorganic acids such as sodium chloride, lithium chloride, sodium nitrate, potassium nitrate, sodium sulfate and zinc chloride, metal salts of organic acids such as sodium acetate and sodium formate, polyethylene glycol, polyvinyl pyrrolidone and the like.
  • examples include molecules, polymer electrolytes such as sodium polystyrene sulfonate and polyvinylbenzyltrimethylammonium chloride, and ionic surfactants such as sodium dioctylsulfosuccinate and sodium alkylmethyl taurate.
  • the additive may act as a swelling agent for the porous structure.
  • the porous membrane preferably further contains polyvinylpyrrolidone.
  • the polyvinylpyrrolidone may be held in the porous film.
  • Hydrophobic polysulfone or polyethersulfone is highly hydrophilic by containing polyvinylpyrrolidone. That is, the porous film of the substrate may already have a certain degree of hydrophilicity before the hydrophilization treatment.
  • Polyvinyl pyrrolidone is added as a pore-forming agent in a polysulfone membrane or a polyethersulfone membrane forming stock solution as described in, for example, JP-A No. 64-34403. Most of the polyvinylpyrrolidone in the film-forming stock solution is dissolved and removed in the coagulated water during the film-forming process, but a part remains on the film surface.
  • the porous film is preferably a film formed from one composition as a single layer, and preferably not a multi-layer laminated structure.
  • the method for producing the porous membrane reference can be made to JP-A-4-349927, JP-B-4-68966, JP-A-4-351645, JP-A-2010-235808, and the like.
  • a commercially available product may be used as the porous membrane.
  • Sumilite FS-1300 manufactured by Sumitomo Bakelite Co., Ltd.
  • Micro PES 1FPH manufactured by Membrana Co., Ltd.
  • PSEUH20 polysulfone membrane, manufactured by Fuji Film Co., Ltd.
  • Durapore PVDF membrane, manufactured by Merck Millipore
  • 15406 PES membrane, manufactured by Sartorius
  • the hydrophilizing liquid contains a polymerizable monomer and a mixed solvent of a polar organic solvent and water.
  • the total mass of the polar organic solvent is less than 10 mass% or more than 60 mass% with respect to the total mass of the mixed solvent.
  • the hydrophilization liquid may contain other components such as a polymerization initiator in addition to the polymerizable monomer and the mixed solvent of the polar organic solvent and water.
  • the polymerizable monomer is a compound having a polymerizable functional group and a molecular weight of about 2500 or less.
  • the polymerizable monomer include acrylic monomers, styrene monomers, monomers having an epoxy group or monomers having an oxetane group, and acrylic monomers are preferred.
  • “Acrylic monomer” means a monomer having a (meth) acryloyl group.
  • the acrylic monomer include (meth) acrylate and (meth) acrylamide.
  • the polymerizable monomer is more preferably (meth) acrylamide.
  • the polymerizable monomer is preferably polyfunctional, more preferably 2 or more and 6 or less, and still more preferably 3 or more and 4 or less.
  • the hydrophilization liquid may contain 2 or more types of monomers as a polymerizable monomer.
  • a preferred example of a combination of two or more monomers is a combination of a trifunctional or higher and hexafunctional polymerizable monomer and a bifunctional polymerizable monomer.
  • the hydrophilization liquid contains a predetermined acrylic monomer described as a “first acrylic monomer” in the present specification as a polymerizable monomer.
  • the first acrylic monomer is an acrylic monomer having a trifunctional or higher and hexafunctional or lower and a ClogP value of 2.0 or lower.
  • the first acrylic monomer is preferably trifunctional or higher and tetrafunctional or lower.
  • the functional number of an acrylic monomer shows the number of (meth) acryloyl groups.
  • the ClogP value is a value obtained by calculating the common logarithm logP of the distribution coefficient P to 1-octanol and water.
  • the ClogP value is a hydrophilicity index. Any known method or software may be used to calculate the ClogP value. In the present invention, unless otherwise specified, a ClogP program incorporated in ChemBioDraw Ultra 13.0 of Cambridge software is used. To do.
  • the ClogP value of the first acrylic monomer is 2.0 or less, more preferably 1.0 or less, and further preferably 0.0 or less. The lower limit is preferably ⁇ 6.0, more preferably ⁇ 2.0, and even more preferably ⁇ 1.0.
  • the ClogP value of the first acrylic monomer is, for example, preferably from ⁇ 6.0 to 2.0, more preferably from ⁇ 2.0 to 1.0, and from ⁇ 1.0 to 0 More preferably, it is 0.0 or less.
  • first acrylic monomer Preferred examples of the first acrylic monomer are shown below, but the first acrylic monomer is not limited to the following examples.
  • the value in parentheses is the ClogP value of each monomer.
  • FAM-401 and FAM-301 are product names. FAM-401 and FAM-301 are available from FUJIFILM Corporation. ATM-35E is a product name. ATM-35E is available from Shin-Nakamura Chemical Co., Ltd.
  • the hydrophilizing liquid containing the first acrylic monomer further contains a second acrylic monomer.
  • the second acrylic monomer is an acrylic monomer having 1 to 2 functional groups.
  • the ClogP value of the second acrylic monomer is not particularly limited, but is preferably from -6.0 to 2.0, more preferably from -2.0 to 1.0, and -1. More preferably, it is 0 or more and 0.0 or less.
  • FAM-201 and FAM-101 are product names.
  • FAM-201 and FAM-101 are available from FUJIFILM Corporation.
  • N, N-methylenebisacrylamide is available from, for example, Tokyo Chemical Industry Co., Ltd.
  • the mass ratio of the first acrylic monomer to the second acrylic monomer in the hydrophilizing liquid is preferably 20:80 to 80:20, and more preferably 30:70 to 70:30.
  • the total mass of the polymerizable polymer in the hydrophilization liquid is preferably 0.05 to 10% by mass with respect to the total mass of the hydrophilization liquid.
  • a hydrophilic component can fully be fixed to a film
  • it can prevent that there are too many hydrophilic components to fix
  • the hydrophilizing liquid preferably contains a polymerization initiator.
  • the polymerization initiator is not particularly limited, but is preferably soluble in a mixed solvent of water and a polar organic solvent. Moreover, what has absorption in the wavelength of 300 nm or more is preferable.
  • Preferable examples of the polymerization initiator include FAI-101L (manufactured by FUJIFILM Corporation), Irg2959 (manufactured by BASF), TPO-L (manufactured by BASF), L0290 (manufactured by Tokyo Chemical Industry Co., Ltd.), H1361 (Tokyo Chemical Industry).
  • the addition amount of the polymerization initiator is desirably 0.01 to 0.5% by mass with respect to the total mass of the hydrophilizing liquid.
  • solvent a mixed solvent of a polar organic solvent and water is used.
  • the amount of the polar organic solvent is 10 to 60% by mass with respect to the total mass of the mixed solvent.
  • the hydrophilic porous membrane which water permeability and wettability do not fall after high-pressure-steam sterilization processing can be manufactured.
  • the polar organic solvent is more volatile than water, it is possible to prevent the porous membrane impregnated with the hydrophilizing liquid from being dried too quickly during production.
  • the amount of the polar organic solvent is 10% by mass or more with respect to the total mass of the mixed solvent, the light transmittance is improved, so that when the ultraviolet ray irradiation is used for the curing reaction, the ultraviolet ray reaches the porous film. Can be easier. Thereby, the polymerization cross-linking can be sufficiently achieved up to the inside of the porous membrane.
  • the amount of the polar organic solvent is preferably 20 to 55% by mass and more preferably 30 to 50% by mass with respect to the total mass of the mixed solvent.
  • the polar organic solvent may be an organic solvent having a property of being miscible with water.
  • the polar organic solvent preferably contains at least one or more lower alcohols, and more preferably consists of lower alcohols.
  • the lower alcohol include alcohols having 5 or less carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, ethylene glycol, propylene glycol, and glycerin.
  • methanol, ethanol and isopropanol are particularly preferable, and ethanol is more preferable.
  • the method for penetrating the hydrophilic liquid into the porous membrane is not particularly limited, and examples thereof include a dipping method, a coating method, a transfer method, and a spray method.
  • a dipping method or a coating method is preferable, and a dipping method is more preferable.
  • the permeation is performed so that the hydrophilization liquid permeates the entire thickness direction of the porous membrane at least at a portion subjected to light irradiation described later.
  • the porous film is impregnated with the hydrophilizing liquid by immersing the porous film in the hydrophilizing liquid. What is necessary is just to remove an excess hydrophilization liquid by raising a porous membrane from a hydrophilization liquid after immersion. Immersion may be performed under pressure.
  • the hydrophilization liquid can be efficiently injected into each pore of the porous membrane by pressurization.
  • the dipping time or press-fitting time in the dipping treatment or press-fitting treatment is not particularly limited, but is generally about 0.5 seconds to 30 minutes, and preferably about 0.5 seconds to 10 minutes.
  • the immersion time can be shortened by selecting a solvent or the like.
  • the porous membrane may be dried after the permeation of the hydrophilizing liquid into the porous membrane and before the curing reaction. By drying and removing at least a part of the solvent in the hydrophilized liquid by drying, the pores of the porous membrane are not blocked, and the composition can easily adhere uniformly over the entire pore surface of the porous membrane. Become. Drying may be semi-dry. In the present specification, semi-drying means that the solvent is volatilized and removed to the extent that the solvent that can volatilize remains. Examples of drying means include heating, wind, reduced pressure, and the like, and are not particularly limited. However, air drying and warm drying are preferable and air drying is more preferable because of the simplicity of the manufacturing process. Drying may be achieved simply by leaving it to stand.
  • the curing reaction is achieved by monomer polymerization.
  • the polymerization may be photopolymerization, and photopolymerization using ultraviolet rays is preferable.
  • a light source that emits light having a wavelength with which the polymerization initiator reacts can be arbitrarily selected.
  • a halogen xenon lamp, a metal halide lamp, a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a sterilization lamp, a xenon lamp, an LED (Light Emitting Diode) light source lamp, or the like can be used.
  • the light irradiation may be performed from at least one surface of the porous film, but is preferably performed from both surfaces.
  • the curing reaction proceeds sufficiently in the entire porous film, and a hydrophilic porous film having higher water permeability can be obtained.
  • the curing reaction is performed using a porous film having a pore size distribution as a base material, it is preferable that at least the film surface having a smaller pore size is irradiated with light. Hydrophobic coating using a highly cross-linked polymer that facilitates the curing reaction on the membrane surface with a small pore diameter that is most difficult to permeate water due to the surface tension of water. It is for suppressing the fall of water permeability.
  • the atmosphere at the time of light irradiation is preferably air or an inert gas replacement atmosphere, and more preferably an atmosphere in which air is replaced with nitrogen until the oxygen concentration becomes 1% or less.
  • Irradiation energy when irradiated with ultraviolet rays as the light irradiation is preferably 20mJ / cm 2 ⁇ 50J / cm 2, 50mJ / cm 2 ⁇ 1500mJ / cm 2 is more preferable.
  • the illuminance is preferably 10mW / cm 2 ⁇ 2000mW / cm 2, more preferably 20mW / cm 2 ⁇ 1500mW / cm 2, further preferably 40mW / cm 2 ⁇ 1000mW / cm 2.
  • crosslinking occurs simultaneously with polymerization, and a network of crosslinked polymers is formed on at least a part of the outer surface of the porous membrane.
  • the degree of polymerization of the cross-linked polymer in the hydrophilic coating is not particularly limited.
  • the curing reaction is initiated when the porous membrane is semi-dry. Specifically, after the hydrophilic film has permeated the porous film, the porous film retains the hydrophilic liquid so that the mass of the porous film before the hydrophilic film has permeated the hydrophilic film is reduced.
  • the curing reaction starts when the mass is larger than a certain amount.
  • the inventors of the present invention have higher water permeability and wettability due to a curing reaction in which light irradiation is performed with a porous film having a mass of 3 to 16 times the mass before infiltrating the hydrophilizing liquid. It has been found that a hydrophilic porous membrane having a high thickness can be obtained.
  • the mass is preferably 3 to 12 times, and more preferably 3 to 8 times.
  • a hydrophilic porous membrane having higher water permeability and higher wettability can be obtained.
  • the comparison of the mass may be performed on the entire porous membrane, but at least the above-described mass relationship should be obtained at the site where the hydrophilizing liquid penetrates the entire thickness direction and the curing reaction is performed. That's fine.
  • the part irradiated with light can be appropriately set according to the production conditions, and may be a part or the whole of the entire area of the porous membrane.
  • the entire area of the porous membrane may be subjected to the curing reaction by performing multiple times of light irradiation satisfying the above-mentioned mass conditions at different sites.
  • the entire region in the TD (transverse direction) direction within a certain distance range in the MD (machine direction) direction of the roll-like porous membrane is defined as the above-mentioned site.
  • the light may be sequentially irradiated in the MD direction.
  • the above-described permeation process and drying process, as well as a washing process and a sterilization process described later, can also be sequentially performed in the MD direction.
  • the entire porous film (sheet type not in a roll shape) having an area that can be irradiated with light once may be irradiated with light as the portion.
  • the porous membrane When the porous membrane is in the form of a roll, it may be difficult to compare the masses of specific parts.
  • a part of the porous membrane to be used may be sampled, and the semi-drying conditions for obtaining the above-mentioned mass after permeation of the used hydrophilizing solution may be confirmed in advance.
  • the light irradiation satisfying the above-mentioned mass condition can be performed.
  • the first light irradiation may be started when the part is in the above mass range. In any light irradiation, it is preferable that the same part is in the above mass range.
  • the hydrophilization liquid has penetrated into the porous membrane (for example, when it is pulled up after immersion), the mass of the porous membrane has already become 3 to 16 times the total mass of the porous membrane before the hydrophilization liquid has penetrated. If it is, it can be subjected to a curing reaction without further removing the solvent by volatilization. When it exceeds 16 times, it can be semi-dried until it reaches 3 to 16 times the total mass of the porous membrane before the permeation of the hydrophilizing liquid, and subjected to a curing reaction.
  • the cleaning method is not particularly limited, but the cleaning solvent may be permeated into the membrane surface and the pore surface of the hydrophilic porous membrane by dipping or press-fitting, and then removed.
  • the cleaning solvent include the solvents exemplified as the solvent for the hydrophilizing liquid.
  • the washing solvent may be permeated and removed two or more times. At this time, the washing solvent may be the same or different in two or more washings, but is preferably different.
  • the washing solvent used at the end of washing is preferably water. It is particularly preferable to immerse in water. This is to remove organic solvent components such as alcohol.
  • the sterilization treatment of the hydrophilic porous membrane for example, high-pressure steam sterilization treatment can be performed. In particular, it is preferable to perform treatment using high-temperature and high-pressure steam using an autoclave.
  • the hydrophilic porous membrane of the present invention is hydrophilized with a hydrophilic coating formed from a polyfunctional acrylic monomer having 3 to 6 functional groups, so that wettability and water permeability can be obtained even if sterilization is performed. Is difficult to decrease.
  • the autoclave sterilization treatment for plastic is performed by pressurizing with saturated steam and treating for 10 to 30 minutes in an environment of about 110 to 140 ° C.
  • Examples of the autoclave used for sterilization include SS325 manufactured by Tommy Seiko Co., Ltd.
  • the hydrophilic porous membrane of the present invention can be processed into a shape according to the application and used for various applications.
  • Examples of the shape of the hydrophilic porous membrane include a flat membrane shape, a tubular shape, a hollow fiber shape, a pleated shape, a fiber shape, a spherical particle shape, a crushed particle shape, and a massive continuous body shape. It may be processed into a shape according to the application before the hydrophilic treatment of the porous membrane, or may be processed into a shape according to the application after the hydrophilic treatment of the porous membrane.
  • the hydrophilic porous membrane may be mounted on a cartridge that can be easily removed in an apparatus used for various applications.
  • the hydrophilic porous membrane is preferably held in a form that can function as a filtration membrane.
  • a cartridge holding a hydrophilic porous membrane can be produced in the same manner as a known porous membrane cartridge, and for example, refer to WO2005 / 037413 and JP2012-045524A.
  • the hydrophilic porous membrane of the present invention can be used in various applications as a filtration membrane.
  • Filtration membranes are applied to the separation, purification, recovery, concentration, etc. of liquids containing or suspending various polymers, microorganisms, yeasts, and fine particles, especially from liquids containing fine fine particles that require filtration. It can be applied when it is necessary to separate.
  • a filtration membrane can be used when separating fine particles from various suspensions containing fine particles, a fermentation broth, a culture solution, or the like, or a pigment suspension.
  • the hydrophilic porous membrane of the present invention is required for the production of drugs in the pharmaceutical industry, the production of alcoholic beverages such as beer in the food industry, the fine processing in the electronics industry, the production of purified water, and the like. It can be used as a microfiltration membrane.
  • This porous membrane has an asymmetric structure with a pore diameter of 0.2 ⁇ m and a thickness of 130 ⁇ m.
  • the membrane surface side with a large pore diameter is the primary surface
  • the membrane surface side with the small pore diameter is the secondary surface.
  • the whole porous membrane was immersed in a hydrophilizing solution for 2 minutes, and the porous membrane was pulled up.
  • the porous membrane was suspended and dried at 25 ° C. with a wind speed of 0.8 m / second to dry the porous membrane for 0 to 10 minutes.
  • the porous film was irradiated with UV.
  • UV irradiation was performed from both film surfaces, and UV irradiation was performed on the secondary surface immediately after UV irradiation was performed on the primary surface.
  • UV irradiation was performed only from the secondary surface. All UV irradiations were performed at 200 mW / cm 2 and 100 mJ / cm 2 using a high pressure mercury lamp (Fusion, lighthammer 10).
  • a hydrophilic porous membrane was put into an autoclave apparatus (SS325, manufactured by Tommy Seiko Co., Ltd.), heated and pressurized to 121 ° C. and 2 atm with water vapor, and kept in that state for 30 minutes for sterilization.
  • the sterilized hydrophilic porous membrane was used for the following evaluation.
  • the sterilization resistance was evaluated using a hydrophilic porous membrane before and after sterilization.
  • the ClogP values of the monomers used are as follows. FAM-401 (-0.1926) FAM-301 (-0.194) FAM-201 (-0.403) FAM-101 (-5.161) Pentaerythritol tetraacrylate (3.49)

Abstract

本発明により、多孔質膜と上記多孔質膜の外面の少なくとも一部を被覆する親水化コーティングとを含む親水性多孔質膜の製造方法であって、上記多孔質膜に、親水化コーティング形成用の親水化液を浸透させること、および親水化液を浸透させた後の多孔質膜を硬化反応に付すことを含み、上記親水化液は重合性モノマーおよび極性有機溶媒と水との混合溶媒を含み、上記混合溶媒の総質量に対して上記極性有機溶媒の総質量が10~60質量%であり、上記硬化反応が多孔質膜において親水化液を厚み方向全体に浸透させた部位であって質量が親水化液を浸透させる前の質量の3~16倍となっている部位に光照射することにより行われる製造方法が提供される。本発明の製造方法により高い親水性を有しており、かつ高圧蒸気滅菌処理後にも透水性や濡れ性が低下しない親水性多孔質膜を製造することができる。

Description

親水性多孔質膜の製造方法
 本発明は、親水性多孔質膜の製造方法に関する。
 ポリスルホンやポリオレフィン等の各種ポリマーを材料とする多孔質膜は水浄化や血液処理などにおいて濾過膜として使用されている。これらの材料は一般的に疎水性であり水に濡れにくいため、用途に応じて親水化処理して用いられる。
 例えば、特許文献1には、ポリスルホン多孔質膜に親水性付与物質を貧溶媒を用いて析出させて付着保持することにより、親水性を付与する方法が開示されている。また、特許文献2には、ポリビニルアルコールのような親水性の有機重合体を用いてポリスルホン多孔質膜に親水性を付与する方法について開示されている。具体的には多孔質膜に、ポリビニルアルコールのような親水性の有機重合体を含む溶液を塗布し、その後加熱乾燥させ、多孔質膜の細孔表面に親水性の有機重合体を付着保持させる方法が開示されている。
 一方、特許文献3には、ポリオレフィン多孔質膜の少なくとも一部の細孔表面に多官能(メタ)アクリレートの1種以上からなるモノマー(A)と炭素数5~20の炭化水素残基を有する単官能(メタ)アクリレートの1種以上からなるモノマー(B)との架橋共重合体が保持され、更にその上に親水性重合体が保持されてなる耐熱性親水化多孔質膜が開示されている。特許文献3においては、ポリオレフィン多孔質膜を上記モノマーを含む溶液中に浸漬したあと、溶媒を揮発除去し、その後モノマーを重合することにより架橋共重合体を形成し、さらに同様の手順で親水性重合体を形成している。
特開平8-131792号公報 特開平11-179176号公報 特開平5-212256号公報
 特許文献1または2に記載の方法で得られる親水化ポリスルホン多孔質膜においては、親水性の有機重合体の付着保持力が低いため、滅菌処理後に親水性が低下するという問題がある。
 特許文献3においては多孔質膜に浸透させた組成物から架橋共重合体を形成する親水化処理により、耐熱性と親水性とが同時に実現されている。しかし、高圧蒸気滅菌処理が必要な用途の濾過膜など様々な用途に適用される濾過膜として利用するためには、さらなる改良の余地がある。
 本発明は、高い親水性を有しており、かつ高圧蒸気滅菌処理後にも透水性や濡れ性が低下しない親水性多孔質膜の製造方法を提供することを課題とする。
 本発明者らは上記課題の解決のため、多孔質膜表面や膜内の孔の表面の親水化をこれらの表面での親水性モノマーの重合により行うときの手順について、鋭意検討を重ねて、上記課題の解決に至った。
 すなわち、本発明は以下の<1>~<17>を提供するものである。
<1>親水性多孔質膜の製造方法であって、
上記親水性多孔質膜は多孔質膜と上記多孔質膜の外面の少なくとも一部を被覆する親水化コーティングとを含み、
上記製造方法は、
上記多孔質膜に、上記親水化コーティング形成用の親水化液を浸透させること、および
上記親水化液を浸透させた後の上記多孔質膜を硬化反応に付すこと
を含み、
上記親水化液は重合性モノマーおよび極性有機溶媒と水との混合溶媒を含み、
上記混合溶媒の総質量に対して上記極性有機溶媒の総質量が10~60質量%であり、
上記硬化反応が、上記多孔質膜において上記親水化液が厚み方向全体に浸透している部位であって質量が上記親水化液を浸透させる前の質量の3~16倍となっている上記部位に光照射することにより行われる上記製造方法。
<2>親水性多孔質膜の製造方法であって、
上記親水性多孔質膜は多孔質膜と上記多孔質膜の外面の少なくとも一部を被覆する親水化コーティングとを含み、
上記製造方法は、
上記多孔質膜に、上記親水化コーティング形成用の親水化液を浸透させること、および
上記親水化液を浸透させた後の上記多孔質膜を硬化反応に付すこと
を含み、
上記親水化液は重合性モノマーおよび極性有機溶媒と水との混合溶媒を含み、
上記混合溶媒の総質量に対して上記極性有機溶媒の総質量が10~60質量%であり、
上記親水化液の浸透は、上記多孔質膜の質量を、上記親水化液を浸透させる前の質量の3~16倍とすることにより行われる上記製造方法。
<3>上記浸透が上記多孔質膜を上記親水化液に浸漬することにより行われる<1>または<2>に記載の製造方法。
<4>上記浸漬後に上記多孔質膜が上記親水化液から引き上げられる<3>に記載の製造方法。
<5>上記親水化液の浸透後かつ上記硬化反応前に上記多孔質膜を乾燥して上記混合溶媒の一部を揮発させることを含む<1>~<4>のいずれかに記載の製造方法。
<6>上記光照射が紫外線照射である<1>~<5>のいずれかに記載の製造方法。
<7>上記極性有機溶媒が水と混和する有機溶媒である<1>~<6>のいずれかに記載の製造方法。
<8>上記極性有機溶媒が少なくとも1種類の炭素数5以下のアルコールを含む<7>に記載の製造方法。
<9>上記重合性モノマーがアクリル系モノマーである<1>~<8>のいずれかに記載の製造方法。
<10>上記アクリル系モノマーが3官能以上6官能以下のモノマーである<9>に記載の製造方法。
<11>上記アクリル系モノマーのClogP値が2.0以下である<10>に記載の製造方法。
<12>上記アクリル系モノマーが(メタ)アクリルアミドである<10>または<11>に記載の製造方法。
<13>上記親水化液が1官能以上2官能以下のアクリル系モノマーを含む<10>~<12>のいずれかに記載の製造方法。
<14>上記親水化液における3官能以上6官能以下の上記アクリル系モノマーと1官能以上2官能以下の上記アクリル系モノマーとの質量比が、20:80~80:20である<13>に記載の製造方法。
<15>1官能以上2官能以下の上記アクリル系モノマーが(メタ)アクリルアミドである<13>または<14>に記載の製造方法。
<16>上記多孔質膜がポリスルホンを含む<1>~<15>のいずれかに記載の製造方法。
<17>上記多孔質膜が孔径分布を有する<1>~<16>のいずれかに記載の製造方法。
 本発明により、新規な親水性多孔質膜の製造方法が提供される。本発明の製造方法により、高い親水性を有しており、かつ高圧蒸気滅菌処理後にも透水性や濡れ性が低下しない親水性多孔質膜を製造することができる。
 以下、本発明を詳細に説明する。
 本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、「(メタ)アクリロイル基」はアクリロイル基(HC=CH-C(=O)-)およびメタクリロイル基(HC=C(CH)-C(=O)-)のいずれか一方または双方を表す。「アクリル系モノマー」としては、(メタ)アクリレート、(メタ)アクリルアミドなどが挙げられる。本明細書において、「(メタ)アクリルアミド」はアクリルアミドおよびメタクリルアミドのいずれか一方または双方を表す。
<親水性多孔質膜>
 本明細書において、親水性多孔質膜は基材となる多孔質膜に親水化処理を施した膜を意味する。
 親水性多孔質膜は、複数の細孔を有する膜である。孔は例えば膜断面の走査型電子顕微鏡(SEM)撮影画像または透過型電子顕微鏡(TEM)撮影画像で確認することができる。
 本発明の親水性多孔質膜は、多孔質膜と、この多孔質膜の外面の少なくとも一部を被覆する親水化コーティングとを含む。本明細書において、多孔質膜の外面とは、多孔質膜の膜表面(膜のおもて面または裏面)および多孔質膜内部の各細孔に面している多孔質膜の面(本明細書において「細孔の表面」ということがある)を意味する。本発明の親水性多孔質膜においては、多孔質膜の少なくとも一方の膜表面および多孔質膜内部の複数の細孔の少なくとも一部の細孔に面している多孔質膜の面が親水化コーティングにより被覆されていることが好ましく、多孔質膜の外面の実質的に全てが親水化コーティングにより被覆されていることがより好ましい。
 多孔質膜の1つの膜表面が被覆されているというときは、その膜表面の実質的に全面が被覆されていることが好ましい。多孔質膜は、いずれか一方の膜表面が被覆されていても、両膜表面が被覆されていてもよいが、両膜表面が被覆されていることが好ましい。後述のように孔径分布を有する多孔質膜のいずれか一方の膜表面が被覆されているときは、より孔径の小さい膜表面が被覆されていることが好ましい。多孔質膜が疎水的であると、水の表面張力のため、孔径が小さい部位において特に透水性が低下する。そのため、孔径が小さい部位において、高度に架橋した重合体の親水化コーティングによる被覆を行うことにより、効率的に透水性の低下を抑制することができる。
 本発明の親水性多孔質膜において、内部で被覆されている細孔が、多孔質膜内部の複数の細孔の一部であるとき、その一部は、例えば、多孔質膜のいずれか一方の膜表面の近傍であればよい。そのときの膜表面は被覆されている膜表面であることが好ましい。後述のように孔径分布を有する多孔質膜のいずれか一方の膜表面が被覆されているときは、より孔径の小さい膜表面の近傍の細孔が被覆されていることが好ましい。
 本発明の一態様として、多孔質膜内部の複数の細孔の全ての細孔に面している多孔質膜の面が被覆されていることが好ましい。
 親水化コーティングによる被覆は、親水性多孔質膜の保存時や使用時に容易に剥離しない程度になされていればよい。被覆は、親水化コーティング中の化合物と多孔質膜の外面の残基との共有結合によってなされていてもよいが、後述の硬化物のネットワークが形成されることにより、親水化コーティングが膜表面または細孔に保持された状態であることが好ましい。
 親水化コーティングは、基材である多孔質膜に対して、必要な濡れ性や透水性を考慮した任意の質量でなされていればよいが、基材である多孔質膜の質量に対して0.25~20質量%程度であればよく、0.5~15質量%程度であることが好ましい。
<親水性多孔質膜の製造方法>
 本発明において、親水性多孔質膜は基材である多孔質膜に親水化コーティングを形成する親水化処理を行うことにより製造される。
 親水化コーティングは、重合性モノマーおよび溶媒を含む親水化液を多孔質膜に浸透させ、その後、親水化液を浸透させた多孔質膜を硬化反応に付すことにより、形成する。親水化コーティングが形成された多孔質膜に、さらに洗浄処理、滅菌処理等を行ってもよい。
 以下、本発明の製造方法に用いられる各材料および本発明の製造方法における各工程について説明する。
[多孔質膜]
(多孔質膜の構造)
 多孔質膜は複数の細孔を有する膜をいう。細孔は、例えば膜断面の走査型電子顕微鏡(SEM)撮影画像または透過型電子顕微鏡(TEM)撮影画像で確認することができる。
 多孔質膜の細孔の孔径は、濾過対象物の大きさによって適宜選択することができるが、0.01μm~10μmであればよく、0.01μm~5μmであることがより好ましく、0.01μm~2μmであることがさらに好ましい。孔径は電子顕微鏡によって得られた膜断面の写真から測定すればよい。多孔質膜はミクロトーム等により切断し、断面が観察できる薄膜の切片として、多孔質膜断面の写真を得ることができる。
 なお、親水性多孔質膜の細孔の孔径は、親水化処理の結果、基材の多孔質膜の孔径より小さくなっていてもよいが、通常、多孔質膜の孔径と同じであると近似できる。
 多孔質膜の構造は、厚み方向に孔径分布を持つ構造、厚み方向に孔径分布を持たない均質構造のいずれでもよい。親水性多孔質膜も同様である。厚み方向に孔径分布を持つ構造としては、膜のおもて面の孔径および裏面の孔径が異なるように孔径分布を有する厚み方向に非対称である構造(非対称構造)が好ましい。非対称構造の例としては、一方の膜表面から他方の膜表面に向かって厚み方向で孔径が連続的に増加している構造、孔径が最小となる層状の緻密部位を内部に有し、この緻密部位から多孔質膜の少なくとも一方の膜表面に向かって厚み方向で孔径が連続的に増加している構造などが挙げられる。
 特に、多孔質膜は、孔径が最小となる層状の緻密部位を内部に有し、この緻密部位から多孔質膜の少なくとも一方の膜表面に向かって厚み方向で孔径が連続的に増加している構造であることが好ましい。
 本明細書において、膜の厚み方向の孔径の比較を行なう場合、膜断面のSEM撮影写真を膜の厚み方向に分割して行なうものとする。分割数は膜の厚みから適宜選択できる。分割数は少なくとも5以上とし、例えば、200μm厚の膜では後述する表面Xから20分割して行う。なお、分割幅の大きさは、膜における厚み方向の幅の大きさを意味し、写真での幅大きさを意味するものではない。膜の厚み方向の孔径の比較において、孔径は、各区分の平均孔径として比較される。各区分の平均孔径は、例えば、膜断面図の各区分の50個の孔の平均値であればよい。この場合の膜断面図は例えば80μm幅(表面と平行な方向において80μmの距離)で得てもよい。このとき、孔が大きく、50個測定できない区分については、その区分でとれる数だけ測定したものであればよい。また、このとき、孔が大きくその区分に収まるものでない場合は、ほかの区分にわたってその孔の大きさを計測する。
 孔径が最小となる層状の緻密部位は、上記膜断面の区分のうちで平均孔径が最小となる区分に相当する多孔質膜の層状の部位をいう。緻密部位は1つの区分に相当する部位からなっていても、2つ、3つなどの、平均孔径が最少となる区分の1.1倍以内の平均孔径を有する複数の区分に相当する部位からなっていてもよい。緻密部位の厚みは、0.5μm~50μmであればよく、0.5μm~30μmであることが好ましい。本明細書において、緻密部位の平均孔径を多孔質膜の最小孔径とする。多孔質膜の最小孔径は0.01μm以上であることが好ましく、0.02μm以上であることがより好ましく、また、10μm以下であることが好ましく、5μm以下であることがより好ましい。このような多孔質膜の最小孔径で少なくとも通常の細胞の透過を阻止することができるからである。ここで、緻密部位の平均孔径はASTM F316-80により測定したものとする。
 多孔質膜は、緻密部位を内部に有することが好ましい。内部とは膜の表面に接していないことを意味し、「緻密部位を内部に有する」とは、緻密部位が、膜のいずれかの表面にもっとも近い区分ではないことを意味する。緻密部位を内部に有する構造の多孔質膜を用いることによっては、同じ緻密部位を表面に接して有する多孔質膜を用いた場合よりも、透過させることが意図された物質の透過性が低下しにくい。いかなる理論にも拘泥するものではないが、緻密部位が内部にあることによりタンパク質の吸着が起こりにくくなっているためと考えられる。
 緻密部位は、多孔質膜の厚みの中央部位よりもいずれか一方の表面側に偏っていることが好ましい。具体的には、緻密部位が多孔質膜のいずれか一方の表面から多孔質膜の厚みの3分の1以内の距離にあることが好ましく、5分の2以内の距離にあることがより好ましく、4分の1以内の距離にあることがさらに好ましい。この距離は上述の膜断面写真において判断すればよい。本明細書において、緻密部位がより近い側の多孔質膜の表面を「表面X」という。
 多孔質膜においては緻密部位から少なくともいずれか一方の表面に向かって厚み方向で孔径が連続的に増加していることが好ましい。多孔質膜において、緻密部位から表面Xに向かって厚み方向で孔径が連続的に増加していてもよく、緻密部位から表面Xと反対側の表面に向かって厚み方向で孔径が連続的に増加していてもよく、緻密部位から多孔質膜のいずれの表面に厚み方向で向かうときも孔径が連続的に増加していてもよい。これらのうち、少なくとも緻密部位から表面Xと反対側の表面に向かって厚み方向で孔径が連続的に増加していることが好ましく、緻密部位から多孔質膜のいずれの表面に厚み方向で向かうときも孔径が連続的に増加していることがより好ましい。「厚み方向で孔径が連続的に増加」とは、厚み方向に隣り合う区分の間の平均孔径の差異が、最大平均孔径(最大孔径)と最小平均孔径(最小孔径)の差異の50%以下、好ましくは40%以下、より好ましくは30%以下となるように増加していることをいう。「連続的に増加」は、本質的には、減少がなく一律に増加することを意味するものであるが、減少している部位が偶発的に生じていてもよい。例えば、区分を表面から2つずつ組み合わせたときに、組み合わせの平均値が、一律に増加(表面から緻密部位に向かう場合は一律に減少)している場合は、「緻密部位から膜の表面に向かって厚み方向で孔径が連続的に増加している」と判断できる。
 多孔質膜の最大孔径は0.1μm超であることが好ましく、0.1μm以上であることがより好ましく、1.5μm超であることがさらに好ましく、また、25μm以下であることが好ましく、23μm以下であることがより好ましく、21μm以下であることがさらに好ましい。本明細書において、上記膜断面の区分のうちで平均孔径が最大となる区分のその平均孔径を多孔質膜の最大孔径とする。
 緻密部の平均孔径と多孔質膜の最大孔径との比(多孔質膜の最小孔径と最大孔径との比であって最大孔径を最小孔径で割った値、本明細書において「異方性比」ということもある。)は、3以上が好ましく、4以上がより好ましく、5以上がさらに好ましい。緻密部位以外の平均孔径を大きくし、多孔質膜の物質透過性を高くするためである。また、異方性比は、25以下であることが好ましく、20以下であることがより好ましい。上記の多段濾過のような効果は異方性比が25以下の範囲で効率よく得られるためである。
 平均孔径が最大となる区分は膜のいずれかの表面にもっとも近い区分またはその区分に接する区分であることが好ましい。
 膜のいずれかの表面にもっとも近い区分においては、平均孔径が0.05μm超25μm以下であることが好ましく、0.08μm超23μm以下であることがより好ましく、0.1μm超21μm以下であることがさらに好ましい。また、膜のいずれかの表面にもっとも近い区分の平均孔径の緻密部の平均孔径との比は、1.2以上20以下であることが好ましく、1.5以上15以下であることがより好ましく、2以上13以下であることがさらに好ましい。
 多孔質膜の厚みは、特に限定されないが、膜強度、取扱性、および濾過性能の観点から、10μm~1000μmであればよく、10μm~500μmであることが好ましく、30μm~300μmであることがより好ましい。
 なお、親水性多孔質膜の厚みは、親水化処理の結果、基材の多孔質膜の厚みより大きくなっていてもよいが、通常、多孔質膜の厚みとほぼ同じとなる。
(多孔質膜の組成)
 多孔質膜はポリマーを含む。多孔質膜は本質的にポリマーから構成されていることが好ましい。ポリマーは数平均分子量(Mn)が1,000~10,000,000であるものが好ましく、5,000~1,000,000であるものがより好ましい。
 ポリマーの例としては、熱可塑性または熱硬化性のポリマーが挙げられる。ポリマーの具体的な例としては、ポリスルホン、スルホン化ポリスルホン、ポリエーテルスルホン(PES)、スルホン化ポリエーテルスルホン、セルロースアシレート、ニトロセルロース、ポリアクリロニトリル、スチレン-アクリロニトリルコポリマー、スチレン-ブタジエンコポリマー、エチレン-酢酸ビニルコポリマーのケン化物、ポリビニルアルコール、ポリカーボネート、オルガノシロキサン-ポリカーボネートコポリマー、ポリエステルカーボネート、オルガノポリシロキサン、ポリフェニレンオキシド、ポリアミド、ポリイミド、ポリアミドイミド、ポリベンズイミダゾール、エチレンビニルアルコール共重合体、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリプロピレン、ポリフルオロエチレン、ポリエチレンテレフタレート、ポリアミド、ポリイミド、6’6-ナイロン、ポリフッ化ビニリデン(PVDF)等を挙げることができる。これらは、溶解性、光学的物性、電気的物性、強度、弾性等の観点から、ホモポリマーであってもよいし、コポリマーやポリマーブレンド、ポリマーアロイとしてもよい。
 これらのうち、ポリスルホン、ポリエーテルスルホン、PVDF,スルホン化ポリスルホン、スルホン化ポリエーテルスルホン、6’6-ナイロン、セルロースアシレートが好ましく、ポリスルホンがより好ましい。
 多孔質膜はポリマー以外の他の成分を添加剤として含んでいてもよい。
 上記添加剤としては、食塩、塩化リチウム、硝酸ナトリウム、硝酸カリウム、硫酸ナトリウム、塩化亜鉛等の無機酸の金属塩、酢酸ナトリウム、ギ酸ナトリウム等の有機酸の金属塩、ポリエチレングリコール、ポリビニルピロリドン等の高分子、ポリスチレンスルホン酸ナトリウム、ポリビニルベンジルトリメチルアンモニウムクロライド等の高分子電解質、ジオクチルスルホコハク酸ナトリウム、アルキルメチルタウリン酸ナトリウム等のイオン系界面活性剤等を挙げることができる。添加剤は多孔質構造のための膨潤剤として作用していてもよい。
 例えば、ポリマーとしてポリスルホンまたはポリエーテルスルホンを用いる場合、多孔質膜は、さらにポリビニルピロリドンを含むことが好ましい。このとき、ポリビニルピロリドンは多孔質膜に保持されている状態であってもよい。疎水性であるポリスルホンまたはポリエーテルスルホンはポリビニルピロリドンを含むことにより親水性が高くなる。すなわち、基材の多孔質膜は親水化処理前に既にある程度の親水性を有していてもよい。ポリビニルピロリドンは、例えば、特開昭64-34403号公報に記載があるようにポリスルホン膜またはポリエーテルスルホン膜の製膜原液中に孔形成剤として添加されるものである。製膜原液中のポリビニルピロリドンは製膜過程でそのほとんどが凝固水中に溶解して除去されるが、一部が膜表面に残留するものである。
 多孔質膜は単一の層として1つの組成物から形成された膜であることが好ましく、複数層の積層構造ではないことが好ましい。
 多孔質膜の製造方法については、特開平4-349927号公報、特公平4-68966号公報、特開平04-351645号公報、特開2010-235808号公報等を参照することができる。
 多孔質膜としては市販品を使用してもよい。例えば、スミライトFS-1300(住友ベークライト社製)、マイクロPES 1FPH(メンブラーナ社製)、PSEUH20(ポリスルホン膜、富士フイルム株式会社製)、Durapore(PVDF膜、メルクミリポア(Merkmillipore)社製)、15406(PES膜、Sartorius社製)等が挙げられる。
[親水化液]
 親水化液は、重合性モノマーおよび極性有機溶媒と水との混合溶媒を含む。本発明において混合溶媒の総質量に対して極性有機溶媒の総質量は10質量%未満または60質量%超である。
 親水化液は、重合性モノマーおよび極性有機溶媒と水との混合溶媒に加えて、重合開始剤などの他の成分を含んでいてもよい。
(重合性モノマー)
 重合性モノマーは、重合性を有する官能基を有する分子量2500程度以下の化合物である。重合性モノマーの例としては、例えば、アクリル系モノマー、スチレン系モノマー、エポキシ基を有するモノマーまたはオキセタン基を有するモノマー等が挙げられ、アクリル系モノマーが好ましい。「アクリル系モノマー」は、(メタ)アクリロイル基を有するモノマーを意味する。
 アクリル系モノマーとしては、(メタ)アクリレート、(メタ)アクリルアミドなどが挙げられる。重合性モノマーは、(メタ)アクリルアミドであることがより好ましい。
 重合性モノマーは多官能であることが好ましく、2官能以上6官能以下であることがより好ましく、3官能以上4官能以下であることがさらに好ましい。
 親水化液は、重合性モノマーとして、2種以上のモノマーを含んでいてもよい。2種以上のモノマーの組み合わせとしては、3官能以上6官能以下の重合性モノマーと2官能の重合性モノマーとの組み合わせが好ましい例として挙げられる。
 親水化液は、重合性モノマーとして、本明細書において「第1のアクリル系モノマー」として説明する所定のアクリル系モノマーを含むことが好ましい。
 第1のアクリル系モノマーは、3官能以上6官能以下であって、ClogP値は2.0以下であるアクリル系モノマーである。
 第1のアクリル系モノマーは3官能以上4官能以下であることが好ましい。
 なお、本明細書において、アクリル系モノマーの官能数は(メタ)アクリロイル基の数を示す。
 ClogP値とは、1-オクタノールと水への分配係数Pの常用対数logPを計算によって求めた値である。ClogP値は親水性指標となる。ClogP値の計算には、公知の方法やソフトウェアのいずれを用いてもよいが、本発明においては、特に断らない限り、Cambridge soft社の ChemBioDraw Ultra 13.0に組み込まれたClogPプログラムを用いることとする。第1のアクリル系モノマーのClogP値は、2.0以下であるが、1.0以下であることがより好ましく、0.0以下であることがさらに好ましい。下限値は-6.0であることが好ましく、-2.0であることがより好ましく、-1.0であることがさらに好ましい。第1のアクリル系モノマーのClogP値は、例えば、-6.0以上2.0以下であることが好ましく、-2.0以上1.0以下であることがより好ましく、-1.0以上0.0以下であることがさらに好ましい。
 第1のアクリル系モノマーの好ましい例を以下に示すが、第1のアクリル系モノマーは以下の例に限定されるものではない。なお、括弧内の値は各モノマーのClogP値である。
Figure JPOXMLDOC01-appb-C000001
 FAM-401およびFAM-301は製品名である。FAM-401およびFAM-301は富士フイルム株式会社より入手可能である。ATM-35Eは製品名である。ATM-35Eは新中村化学工業株式会社より入手可能である。
 第1のアクリル系モノマーを含む親水化液は、さらに、第2のアクリル系モノマーを含むことが好ましい。第2のアクリル系モノマーは1官能以上2官能以下のアクリル系モノマーである。
 第2のアクリル系モノマーのClogP値は、特に限定されないが、-6.0以上2.0以下であることが好ましく、-2.0以上1.0以下であることがより好ましく、-1.0以上0.0以下であることがさらに好ましい。
 第2のアクリル系モノマーの好ましい例を以下に示すが、第2のアクリル系モノマーは以下の例に限定されるものではない。なお、括弧内の値は各モノマーのClogP値である。
Figure JPOXMLDOC01-appb-C000002
 FAM-201およびFAM-101は製品名である。FAM-201およびFAM-101は富士フイルム株式会社より入手可能である。N,N-メチレンビスアクリルアミドは、例えば、東京化成工業株式会社より入手可能である。
 親水化液における第1のアクリル系モノマーと第2のアクリル系モノマーとの質量比は、20:80~80:20であることが好ましく、30:70~70:30であることがより好ましい。
 親水化液における、重合性ポリマーの総質量は、親水化液全質量に対して、0.05~10質量%であることが望ましい。0.05質量%以上とすることにより、膜に十分に親水成分を定着させることができる。また10質量%以下とすることにより、定着する親水成分が多すぎて孔に目詰まりを起こし透水性が劣化することを防止できる。
(重合開始剤)
 親水化液は重合開始剤を含んでいることが好ましい。重合開始剤は、特に限定されないが、水と極性有機溶媒の混合溶媒に可溶なものが好ましい。また、300nm以上の波長に吸収を持つものが好ましい。重合開始剤の好ましい例としては、FAI-101L(富士フイルム株式会社製)、Irg2959(BASF社製)、TPO-L(BASF社製)、L0290(東京化成工業株式会社製)、H1361(東京化成工業株式会社製)、A2735(東京化成工業株式会社製)、A3012(東京化成工業株式会社製)、QuantacureQTX(Tront Reserch Chemicals社製)、QuantacureABQ(Tront Reserch Chemicals社製)等が挙げられる。
 重合開始剤の添加量は親水化液全質量に対して、0.01~0.5質量%であることが望ましい。0.01質量%以上とすることにより重合を開始させることができ、また、0.5質量%以下とすることにより、乾燥過程で重合開始剤が析出し目詰まりすることを防止できる。
(溶媒)
 溶媒としては極性有機溶媒と水との混合溶媒が用いられる。
 水と極性有機溶媒の混合溶媒において、極性有機溶媒の量は、混合溶媒の総質量に対して、10~60質量%である。この範囲とすることにより、高圧蒸気滅菌処理後にも透水性や濡れ性が低下しない親水性多孔質膜を製造することができる。特に、60質量%以下であることにより、極性有機溶媒中の酸素などの影響で重合が阻害されることを防止できる。また、極性有機溶媒が水より揮発性が高い場合は、製造時に、親水化液を浸透させた多孔質膜の乾燥が早く進み過ぎることを防止できる。一方、極性有機溶媒の量が混合溶媒の総質量に対して10質量%以上であると光透過率が向上することにより、硬化反応に紫外線照射を用いる場合に、紫外線が多孔質膜内に到達しやすくすることができる。これにより、多孔質膜内部まで十分に重合架橋を達成することができる。
 極性有機溶媒の量は、混合溶媒の総質量に対して、20~55質量%が好ましく、30~50質量%がより好ましい。
 極性有機溶媒は水と混和する性質を持つ有機溶媒であればよい。極性有機溶媒は少なくとも1種類以上の低級アルコールを含むことが好ましく、低級アルコールからなることがより好ましい。低級アルコールとしては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール、グリセリン等の炭素数が5以下のアルコールが挙げられる。低級アルコールとしては、特にメタノール、エタノール、イソプロパノールが好ましく、エタノールがさらに好ましい。
[浸透]
 多孔質膜への親水化液の浸透方法は、特に限定されないが、例えば、浸漬法、塗布法、転写法、噴霧法等が挙げられる。多孔質膜内部まで親水化液を効率よく浸透させるために浸漬法や塗布法が好ましく、浸漬法がより好ましい。浸透は、少なくとも後述する光照射に付される部位において、多孔質膜の厚み方向全体に親水化液が浸透するように行う。
 浸漬法においては、親水化液中に多孔質膜を浸漬することにより親水化液を多孔質膜に含浸させる。浸漬後は親水化液から、多孔質膜を引き上げることによって余分な親水化液を除去すればよい。
 浸漬は加圧下で行ってもよい。加圧により多孔質膜の各細孔内に効率よく親水化液を注入することができる。
 浸漬処理あるいは圧入処理する場合の浸漬時間または圧入時間は特に限定されないが一般的には0.5秒~30分間程度であればよく、0.5秒~10分間程度が好ましい。溶媒等の選択により、浸漬時間の短縮を図ることができる。
 多孔質膜の親水化液中への浸漬時間や親水化液中のモノマー濃度を適宜選択することによってモノマーの付着量を適宜調節することができる。
[乾燥]
 多孔質膜への親水化液の浸透後、硬化反応の前には、多孔質膜を乾燥させてもよい。乾燥により親水化液中の溶媒の少なくとも一部が揮発除去されることによって、多孔質膜の細孔をふさぐことがなくなり、多孔質膜の細孔表面の全体にわたって組成物を均一に付着させ易くなる。乾燥は半乾燥であればよい。本明細書において、半乾燥は揮発しうる溶媒が残留する程度に溶媒を揮発除去させることを意味する。
 乾燥の手段としては、加温、風、減圧、等が挙げられ、特に限定されないが、製造工程の簡便性から風乾燥、加温乾燥が好ましく、風乾燥がより好ましい。乾燥は、単に放置することにより達成されていてもよい。
[硬化反応]
 硬化反応は、モノマーの重合により達成される。重合は光重合であればよく、紫外線を用いた光重合が好ましい。
 光重合のための光照射で用いられる光源としては、重合開始剤が反応する波長の光を発する光源を任意に選択することができる。例えば、ハロゲンキセノンランプ、メタルハライドランプ、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、殺菌ランプ、キセノンランプ、LED(Light Emitting Diode)光源ランプなどを用いることができる。光照射は多孔質膜の少なくとも一方の面から行えばよいが、両面から行うことが好ましい。多孔質膜全体で硬化反応が十分に進み、より透水性の高い親水性多孔質膜が得られるからである。また、孔径分布を有する多孔質膜を基材として硬化反応を行うときは、少なくとも、より孔径の小さい膜表面に光照射されていることが好ましい。疎水的であると水の表面張力のため最も水が透過しにくい孔径が小さい膜表面において硬化反応を進めやすくして高度に架橋した重合体を用いた親水化コーティングとすることにより、効率的に透水性の低下を抑制するためである。
 光照射時の雰囲気は、空気または不活性ガス置換雰囲気であることが好ましく、酸素濃度1%以下になるまで空気を窒素置換した雰囲気であることがより好ましい。
 光照射として紫外線照射を行うときの照射エネルギーは、20mJ/cm~50J/cmが好ましく、50mJ/cm~1500mJ/cmがより好ましい。照度は10mW/cm~2000mW/cmであることが好ましく、20mW/cm~1500mW/cmであることがより好ましく、40mW/cm~1000mW/cmであることがさらに好ましい。
 組成物の硬化反応によって、重合と同時に架橋も生じ、多孔質膜の外面の少なくとも一部に架橋重合体のネットワークが形成される。親水化コーティングにおける架橋重合体の重合度(架橋しているものを含む)は特に限定されない。
 本発明の製造方法において、硬化反応は、多孔質膜が半乾燥であるときに開始される。具体的には、多孔質膜に親水化液を浸透したあと、多孔質膜が親水化液を保持していることにより、多孔質膜の質量が親水化液を浸透させる前の多孔質膜の質量より一定量以上大きくなっているときに硬化反応を開始する。本発明者らは、特に、多孔質膜において、多孔質膜の質量を親水化液を浸透させる前の質量の3~16倍として光照射する硬化反応により、より透水性が高く、また濡れ性が高い親水性多孔質膜が得られることを見出した。取扱性の観点から、上記質量は、3~12倍であることが好ましく、3~8倍であることがより好ましい。なお、親水化液が厚み方向全体に浸透しているとより透水性が高く、また濡れ性が高い親水性多孔質膜が得られる。また、質量の比較は、多孔質膜全体で行ってもよいが、親水化液が厚み方向全体に浸透している部位であって硬化反応を施す部位において少なくとも上記の質量の関係になっていればよい。
 光照射される上記部位は、製造条件に応じて適宜設定することができ、多孔質膜全面積に対して、一部であってもよいが、全体であってもよい。異なる部位で、上記の質量の条件を満たす複数回の光照射を行うことにより多孔質膜全面積が硬化反応に付されていてもよい。例えば、ロールツーロールで親水性多孔質膜を製造する場合などにおいて、ロール状の多孔質膜のMD(マシンダイレクション)方向の一定の距離の範囲のTD(トランスバースダイレクション)方向全体を上記部位とし、MD方向で順次光照射されてもよい。この場合、上述の浸透工程および乾燥工程ならびに後述の洗浄工程および滅菌処理工程もMD方向で順次行うことができる。または、一度の光照射が可能な面積の多孔質膜(ロール状ではないシート式のもの)の全体が上記部位として光照射されていてもよい。
 多孔質膜がロール状である場合においては、特定部位の質量の比較が困難であることも考えられる。このような場合は、例えば、使用する多孔質膜から一部をサンプリングし、使用する親水化液を浸透後に上記の質量となる半乾燥条件を予め確認すればよい。確認された半乾燥条件で半乾燥後の部位に光照射を行なうことにより、上記の質量の条件を満たす光照射を行うことができる。
 同じ部位に光照射を複数回行う場合は、少なくとも最初の光照射を同部位が上記の質量の範囲であるときに開始すればよい。いずれの光照射のときも同部位が上記の質量の範囲であることが好ましい。
 多孔質膜に親水化液を浸透したとき(例えば、浸漬後引き上げたとき)にすでに多孔質膜の質量が親水化液を浸透させる前の多孔質膜の総質量の3~16倍となっている場合は、溶媒をさらに揮発除去させることなく硬化反応に付すことができる。16倍を超えている場合は、親水化液を浸透させる前の多孔質膜の総質量の3~16倍となるまで半乾燥させて硬化反応に付すことができる。
[洗浄]
 硬化反応により架橋重合体のネットワークが形成された後は、洗浄溶媒を用いた洗浄を行うことが好ましい。未反応のモノマーや過剰な架橋重合体などを除去することができるからである。また、洗浄により、原料の多孔質膜に含まれる不要な成分も除去することができる。洗浄方法は特に限定されないが、浸漬あるいは圧入法で親水性多孔質膜の膜表面および細孔表面に洗浄溶媒を浸透させ、その後、除去すればよい。洗浄溶媒としては、親水化液の溶媒として例示した溶媒を例示することができる。2回以上洗浄溶媒の浸透および除去を行ってもよい。このとき2回以上の洗浄において洗浄溶媒は同じであってもよく、異なっていてもよいが、異なっていることが好ましい。洗浄の最後に用いられる洗浄溶媒は水であることが好ましい。特に水に浸漬することが好ましい。アルコールなど有機溶媒成分を除くためである。
[滅菌処理]
 親水性多孔質膜の滅菌処理としては、例えば、高圧蒸気滅菌処理を行うことができる。特にオートクレーブを用いた高温高圧の水蒸気を用いた処理を行うことが好ましい。本発明の親水性多孔質膜は、3官能以上6官能以下の多官能のアクリル系モノマーから形成された親水化コーティングで親水化されていることにより、滅菌処理を行っても濡れ性や透水性が低下しにくい。
 通常、プラスチックに対する高圧蒸気滅菌処理は、飽和水蒸気によって加圧され110~140℃程度の環境下で10~30分間処理することによって行われる。
 滅菌処理に用いられるオートクレーブとしては、例えば、株式会社トミー精工製のSS325が挙げられる。
<親水性多孔質膜の用途>
 本発明の親水性多孔質膜は、用途に応じた形状に加工して、種々の用途に用いることができる。親水性多孔質膜の形状としては、平膜状、管状、中空糸状、プリーツ状、繊維状、球状粒子状、破砕粒子状、塊状連続体状などが挙げられる。多孔質膜の親水化処理前に用途に応じた形状に加工してもよく、多孔質膜の親水化処理後に用途に応じた形状に加工してもよい。
 親水性多孔質膜は、各種用途に用いられる装置において容易に取り外し可能であるカートリッジに装着されてもよい。カートリッジにおいて親水性多孔質膜は濾過膜として機能しうる形態で保持されていることが好ましい。親水性多孔質膜を保持したカートリッジは、公知の多孔質膜カートリッジと同様に製造することができ、例えば、WO2005/037413号、特開2012-045524号公報を参照することができる。
 本発明の親水性多孔質膜は濾過膜として各種用途で使用することができる。濾過膜は、種々の高分子、微生物、酵母、微粒子を含有あるいは懸濁する液体の分離、精製、回収、濃縮などに適用され、特に濾過を必要とする微細な微粒子を含有する液体からその微粒子を分離する必要のある場合に適用することができる。例えば、微粒子を含有する各種の懸濁液、発酵液あるいは培養液などの他、顔料の懸濁液などから微粒子を分離するときに濾過膜を使用することができる。本発明の親水性多孔質膜は、具体的には、製薬工業における薬剤の製造、食品工業におけるビールなどのアルコール飲料製造、電子工業分野での微細な加工、精製水の製造などにおいて必要となる精密濾過膜として使用することができる。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<実施例および比較例の親水性多孔質膜の作製>
[親水化液の調製]
 表1に記載の重合性モノマーと混合溶媒とを混合し、30分間撹拌した。その後、重合開始剤を0.12質量%となるように混合し、30分間撹拌して、親水化液とした。重合開始剤としては実施例7ではFAI-101L(富士フイルム株式会社製)を用い、その他の実施例および比較例ではIrg2959(BASF社製)を用いた。
[浸透およびUV照射]
 多孔質膜として、富士フイルム株式会社製のポリスルホン膜(PSEUH20)を21cm×15cmに切断したものを用意した。この多孔質膜は、孔径0.2μm、厚み130μmの非対称構造を有する。実施例において、孔径の大きい膜表面側を1次面、孔径の小さい膜表面側を2次面とする。
 上記多孔質膜全体を親水化液に2分間浸漬し、多孔質膜を引き上げた。多孔質膜を吊り下げて25℃において0.8m/秒の風速の風を当てて多孔質膜を0~10分半乾燥させた。半乾燥後の膜質量が、上記浸漬前の膜質量に対し表1に記載の質量となった時点で、多孔質膜にUVを照射した。UV照射は両膜表面から行い、1次面においてUV照射を行った後直ぐに2次面においてUV照射を行った。ただし、実施例8においては2次面からのみUV照射を行った。いずれのUV照射も、高圧水銀ランプ(Fusion社製、lighthammer10)によって、200mW/cm、100mJ/cmで行った。
[洗浄および乾燥]
 UV照射後の親水性多孔質膜を、IPA75%水溶液(IPA(イソプロピルアルコール)と純水を質量比3:1で混合したIPA75%水溶液)を70℃に加温したものに10分間浸漬した後、常温の純水に3分間浸漬し、常温で乾燥させた。親水性多孔質膜はさらに、エタノールと純水を質量比3:7で混合した常温のエタノール30%水溶液に30分間浸漬した後、純水に5分間浸漬し、最後に70℃99%の温湿度環境下で26時間乾燥させた。
[滅菌処理]
 オートクレーブ装置(株式会社トミー精工製、SS325)に親水性多孔質膜を投入し、水蒸気によって121℃、2気圧まで加温および加圧し、その状態で30分間保持し滅菌処理をした。滅菌処理後の親水性多孔質膜を以下の評価に用いた。なお、滅菌処理耐性については、滅菌処理前後の親水性多孔質膜を用いて評価した。
<実施例・比較例の親水性多孔質膜の評価>
[透水性]
 親水性多孔質膜を47mm直径の円形に切りぬき、容器(メルクミリポア社製、ステンレスプレッシャーフィルターホルダーXX4004700)の底部にセットした。このとき親水性多孔質膜の上記1次面が容器上部側となるようにセットした。容器上部から純水を導入し、親水性多孔質膜に100kpaの圧力がかかるまで昇圧した。この状態で多孔質膜を透過する純水の流水量により透水性を評価した。単位面積当たり、1分間に膜を通って流れ出た水の体積を測定し流水量(ml/cm/min)とした。結果を表1に示す。
[コーヒー吸上げ]
 コーヒー吸上げ試験は以下の手順で行った。親水性多孔質膜の一端を、インスタントコーヒー(ゴールドブレンド、ネスレ社)を1.6質量%の濃度となるように溶かした水溶液中に10分間浸漬した。浸漬後、常温で乾燥し、コーヒーに浸した液面の位置から親水性多孔質膜がコーヒーによって着色されている部分の高さを測定した。1次面および2次面について、それぞれ測定し、以下の評価基準で評価した。結果を表1に示す。
[滅菌処理耐性]
 滅菌処理耐性として、滅菌処理前後での流水量(上記の透水性の評価において記載した手順で測定される流水量)の変化を評価した。滅菌処理前の流水量をQb、滅菌処理後の流水量をQaとして、P=Qa/Qbを計算し、下記のような評価基準で滅菌処理耐性を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-I000004
 用いたモノマーのClogP値は以下のとおりである。
FAM-401 (-0.1926)
FAM-301 (-0.194)
FAM-201 (-0.403)
FAM-101 (-5.161)
ペンタエリスリトールテトラアクリレート(3.49)

Claims (17)

  1. 親水性多孔質膜の製造方法であって、
    前記親水性多孔質膜は多孔質膜と前記多孔質膜の外面の少なくとも一部を被覆する親水化コーティングとを含み、
    前記製造方法は、
    前記多孔質膜に、前記親水化コーティング形成用の親水化液を浸透させること、および
    前記親水化液を浸透させた後の前記多孔質膜を硬化反応に付すこと
    を含み、
    前記親水化液は重合性モノマーおよび極性有機溶媒と水との混合溶媒を含み、
    前記混合溶媒の総質量に対して前記極性有機溶媒の総質量が10~60質量%であり、
    前記硬化反応が、前記多孔質膜において前記親水化液が厚み方向全体に浸透している部位であって質量が前記親水化液を浸透させる前の質量の3~16倍となっている前記部位に光照射することにより行われる前記製造方法。
  2. 親水性多孔質膜の製造方法であって、
    前記親水性多孔質膜は多孔質膜と前記多孔質膜の外面の少なくとも一部を被覆する親水化コーティングとを含み、
    前記製造方法は、
    前記多孔質膜に、前記親水化コーティング形成用の親水化液を浸透させること、および
    前記親水化液を浸透させた後の前記多孔質膜を硬化反応に付すこと
    を含み、
    前記親水化液は重合性モノマーおよび極性有機溶媒と水との混合溶媒を含み、
    前記混合溶媒の総質量に対して前記極性有機溶媒の総質量が10~60質量%であり、
    前記親水化液の浸透は、前記多孔質膜の質量を、前記親水化液を浸透させる前の質量の3~16倍とすることにより行われる前記製造方法。
  3. 前記浸透が前記多孔質膜を前記親水化液に浸漬することにより行われる請求項1または2に記載の製造方法。
  4. 前記浸漬後に前記多孔質膜が前記親水化液から引き上げられる請求項3に記載の製造方法。
  5. 前記親水化液の浸透後かつ前記硬化反応前に前記多孔質膜を乾燥して前記混合溶媒の一部を揮発させることを含む請求項1~4のいずれか一項に記載の製造方法。
  6. 前記光照射が紫外線照射である請求項1~5のいずれか一項に記載の製造方法。
  7. 前記極性有機溶媒が水と混和する有機溶媒である請求項1~6のいずれか一項に記載の製造方法。
  8. 前記極性有機溶媒が少なくとも1種類の炭素数5以下のアルコールを含む請求項7に記載の製造方法。
  9. 前記重合性モノマーがアクリル系モノマーである請求項1~8のいずれか一項に記載の製造方法。
  10. 前記アクリル系モノマーが3官能以上6官能以下のモノマーである請求項9に記載の製造方法。
  11. 前記アクリル系モノマーのClogP値が2.0以下である請求項10に記載の製造方法。
  12. 前記アクリル系モノマーが(メタ)アクリルアミドである請求項10または11に記載の製造方法。
  13. 前記親水化液が1官能以上2官能以下のアクリル系モノマーを含む請求項10~12のいずれか一項に記載の製造方法。
  14. 前記親水化液における3官能以上6官能以下の前記アクリル系モノマーと1官能以上2官能以下の前記アクリル系モノマーとの質量比が、20:80~80:20である請求項13に記載の製造方法。
  15. 1官能以上2官能以下の前記アクリル系モノマーが(メタ)アクリルアミドである請求項13または14に記載の製造方法。
  16. 前記多孔質膜がポリスルホンを含む請求項1~15のいずれか一項に記載の製造方法。
  17. 前記多孔質膜が孔径分布を有する請求項1~16のいずれか一項に記載の製造方法。
PCT/JP2019/003049 2018-01-31 2019-01-30 親水性多孔質膜の製造方法 WO2019151272A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-015067 2018-01-31
JP2018015067 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019151272A1 true WO2019151272A1 (ja) 2019-08-08

Family

ID=67478995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003049 WO2019151272A1 (ja) 2018-01-31 2019-01-30 親水性多孔質膜の製造方法

Country Status (1)

Country Link
WO (1) WO2019151272A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020075710A1 (ja) * 2018-10-09 2020-04-16 Jnc株式会社 微多孔膜を親水性にするためのコーティング組成物および親水性の微多孔膜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002062880A2 (en) * 2001-02-06 2002-08-15 Usf Filtration And Separations Group Inc. Asymmetric hydrophilic membrane by grafting
JP2005537129A (ja) * 2002-09-03 2005-12-08 ワットマン ピーエルシー 多孔質複合膜及びその製造法
JP2013534464A (ja) * 2010-06-01 2013-09-05 スリーエム イノベイティブ プロパティズ カンパニー 被覆された多孔質材料
JP2014069155A (ja) * 2012-09-28 2014-04-21 Fujifilm Corp 高分子機能性膜及びその製造方法
JP2014171952A (ja) * 2013-03-07 2014-09-22 Fujifilm Corp 高分子機能性膜及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002062880A2 (en) * 2001-02-06 2002-08-15 Usf Filtration And Separations Group Inc. Asymmetric hydrophilic membrane by grafting
JP2005537129A (ja) * 2002-09-03 2005-12-08 ワットマン ピーエルシー 多孔質複合膜及びその製造法
JP2013534464A (ja) * 2010-06-01 2013-09-05 スリーエム イノベイティブ プロパティズ カンパニー 被覆された多孔質材料
JP2014069155A (ja) * 2012-09-28 2014-04-21 Fujifilm Corp 高分子機能性膜及びその製造方法
JP2014171952A (ja) * 2013-03-07 2014-09-22 Fujifilm Corp 高分子機能性膜及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUBOTA, HITOSHI ET AL.: "Characteristics of Methacrylic Acid-Grafted Polyethylene Films Prepared by Photografting in the Presence of Polyfunctional Monomers", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 100, 2006, pages 1262 - 1268, XP055628511 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020075710A1 (ja) * 2018-10-09 2020-04-16 Jnc株式会社 微多孔膜を親水性にするためのコーティング組成物および親水性の微多孔膜

Similar Documents

Publication Publication Date Title
EP1545739B1 (en) Porous composite membrane and method for making the same
JP5350327B2 (ja) 空間的に制御された改質多孔膜
JP2008543546A (ja) ポリマー膜の架橋処理
KR101580702B1 (ko) 복합 분리막
CN101637704B (zh) 一种水处理用接枝改性的高分子滤膜及其制备方法
US20200222860A1 (en) Method for preparing membrane selective layers by interfacial free radical polymerization
JP6896642B2 (ja) 非対称複合膜および供給流から水を除去する方法
CN107469650B (zh) 一种疏水大孔聚酰亚胺纳米纤维正渗透膜的制备方法
Ghaee et al. Chitosan/polyethersulfone composite nanofiltration membrane for industrial wastewater treatment
US20210260538A1 (en) Method for manufacturing porous membrane and porous membrane
WO2019151272A1 (ja) 親水性多孔質膜の製造方法
WO2019151271A1 (ja) 親水性多孔質膜
US20210086139A1 (en) Hydrophilic porous membrane and method for producing hydrophilic porous membrane
JP2019130481A (ja) 親水性多孔質膜の製造方法
CN113574162A (zh) 生物学粒子的浓缩膜、浓缩设备、浓缩系统及浓缩方法、以及生物学粒子的检测方法
CN113544203A (zh) 亲水性复合多孔质膜
KR101243939B1 (ko) 폴리설폰의 친수화를 이용한 분리막의 제조방법 및 이에 따라 제조되는 폴리설폰 분리막
CN113474078A (zh) 亲水性多孔膜及亲水性多孔膜的制造方法
WO2019018587A1 (en) MICROPOROUS MATERIAL AND SYSTEMS AND METHODS FOR MANUFACTURING THE SAME
CN114749035B (zh) 低压大通量中空纤维纳滤膜、其制备方法及其应用
JP7351064B2 (ja) 濃縮膜
WO2023276483A1 (ja) 正浸透膜、及びそれを含む正浸透膜モジュール
WO2020075713A1 (ja) 微多孔膜を親水性にするためのコーティング組成物および親水性の微多孔膜
JP2004154613A (ja) 機能性多孔膜の製造方法
WO2020075712A1 (ja) 微多孔膜を親水性にするためのコーティング組成物および親水性の微多孔膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19748006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19748006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP