WO2019151259A1 - ライダー装置 - Google Patents

ライダー装置 Download PDF

Info

Publication number
WO2019151259A1
WO2019151259A1 PCT/JP2019/003009 JP2019003009W WO2019151259A1 WO 2019151259 A1 WO2019151259 A1 WO 2019151259A1 JP 2019003009 W JP2019003009 W JP 2019003009W WO 2019151259 A1 WO2019151259 A1 WO 2019151259A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
light receiving
plate
shielding plate
Prior art date
Application number
PCT/JP2019/003009
Other languages
English (en)
French (fr)
Inventor
浩平 遠山
俊平 鈴木
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112019000621.5T priority Critical patent/DE112019000621T5/de
Priority to CN201980011252.5A priority patent/CN111670377B/zh
Publication of WO2019151259A1 publication Critical patent/WO2019151259A1/ja
Priority to US16/942,393 priority patent/US20200355800A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors

Definitions

  • the present disclosure relates to a rider apparatus including a deflection mirror that is rotationally driven.
  • a rotationally driven deflection mirror is used as one of the optical deflection devices that realize scanning by deflecting light. Rider is also written as LIDAR and is an abbreviation for Light Detection and Ranging.
  • Patent Document 1 when light projection and light reception are performed using the same deflection mirror, a light projecting space in which a light projecting unit used for light projection is installed by attaching a light shielding plate to the polarizing mirror, and A technique for separating a light receiving space in which a light receiving unit used for light reception is installed is described.
  • the light shielding plate rotates together with the polarizing mirror, it is necessary to provide a gap between the light shielding plate and the surrounding members. If light from the light projecting part leaks to the light receiving part through this gap, there is a problem that an obstacle that does not actually exist is detected at a close distance or an obstacle is detected in a direction that does not actually exist. It was.
  • One aspect of the present disclosure is to provide a technique for suppressing a decrease in detection performance based on light leakage between the light projecting unit and the light receiving unit in the rider apparatus.
  • the rider apparatus includes a light projecting unit, a light receiving unit, a scanning unit, a housing, a partition plate, and a light shielding plate.
  • the light projecting section emits light in a preset direction.
  • the light receiving unit receives light coming from a preset direction.
  • the scanning unit includes a deflection mirror that reflects light incident from the light projecting unit.
  • the scanning unit rotates the deflection mirror with respect to a preset rotation axis so that the light incident from the light projecting unit is reflected by the deflection mirror and emitted. It is changed along the main scanning direction orthogonal to.
  • the scanning unit reflects the reflected light from the test object existing in the scanning range by the deflection mirror and guides it to the light receiving unit.
  • the housing houses a light projecting unit, a light receiving unit, and a scanning unit.
  • the partition plate is made of a material that blocks light transmission, and partitions the internal space of the housing into a light projecting space in which the light projecting unit is installed and a light receiving space in which the light receiving unit is installed.
  • the light shielding plate is made of a material that blocks light transmission, and is provided between a light projecting deflection unit that is a part of a deflection mirror used for light projection and a light receiving deflection unit that is a part of a deflection mirror used for light reception. , Rotate integrally with the deflection mirror.
  • the partition plate has an overlap portion where the plate surface of the partition plate and the plate surface of the light shielding plate overlap each other in a non-contact manner at least at a part of the peripheral edge of the light shielding plate.
  • the light passing through the overlap portion is attenuated by repeating reflection during the passage. For this reason, the intensity of light leaking from the light projecting space to the light receiving space via the overlap portion can be suppressed. As a result, it is possible to suppress a decrease in detection performance due to an obstacle that does not actually exist detected at a close distance or an obstacle detected in a direction that does not actually exist.
  • a rider apparatus 1 according to this embodiment shown in FIG. 1 is used by being mounted on a vehicle, and is used for detecting various objects existing around the vehicle.
  • the rider is also described as LIDAR.
  • LIDAR is an abbreviation for Light Detection and Ranging.
  • the rider apparatus 1 includes a housing 100 and an optical window 200 as shown in FIG.
  • the housing 100 is a resin box formed in a rectangular parallelepiped shape with one side opened, and houses a light detection module 2 described later.
  • the optical window 200 is a resin lid that is fixed to the housing 100 so as to cover the opening of the housing 100 and transmits laser light emitted from the light detection module 2 installed inside the housing 100. is there.
  • the direction along the longitudinal direction of the opening of the casing 100 having a substantially rectangular shape is the X-axis direction
  • the direction along the short direction of the opening is the Y-axis direction
  • the direction orthogonal to the XY plane is Z Axial direction.
  • left and right in the X-axis direction and up and down in the Y-axis direction are defined as viewed from the opening side of the housing 100.
  • the opening side of the housing 100 is defined as the front, and the depth side is defined as the rear.
  • the light detection module 2 includes a light projecting unit 10, a scanning unit 20, and a light receiving unit 30.
  • the light detection module 2 is assembled inside the housing 100 via the frame 40.
  • FIG. 3 is a schematic diagram showing a schematic configuration of each part in the light detection module 2, and in particular, does not accurately show the arrangement or the like of the parts constituting the light projecting unit 10 and the light receiving unit 30.
  • the scanning unit 20 includes a mirror module 21, a light shielding plate 22, and a motor 23.
  • the mirror module 21 is a plate-like member in which two deflecting mirrors that reflect light are attached to both surfaces.
  • the mirror module 21 is erected on the motor 23 and rotates according to the driving of the motor 23.
  • the light shielding plate 22 is a circular and plate-like member provided near the center in the vertical direction of the mirror module 21 so as to be integrated with the mirror module 21 and so that the plate surface is orthogonal to the rotational axis of the rotational motion.
  • a material that blocks light transmission is used for the light shielding plate 22.
  • a portion above the light shielding plate 22 is referred to as a light projecting deflection unit 20a
  • a portion below the light shielding plate 22 is referred to as a light receiving deflection unit 20b.
  • the reflection surface of the mirror module 21 is formed so that the light receiving deflection unit 20b is wider than the light projection deflection unit 20a.
  • the light receiving deflection unit 20b is set to a width equal to the diameter of the light shielding plate 22, and the light projecting deflection unit 20a is set to a width that is about half of that.
  • the width of the light receiving deflection unit 20b may be smaller than the diameter of the light shielding plate 22, and the width of the light projecting deflection unit 20a may be narrower than the width of the light receiving deflection unit 20b.
  • the light projecting unit 10 includes two light emitting modules 11 and 12.
  • the light projecting unit 10 may include a light projecting mirror 15.
  • the light-emitting module 11 is a composite part in which the light source 111 and the light-emitting lens 112 are integrated via a cylindrical holding portion 113 so that the two are opposed to each other.
  • a semiconductor laser is used for the light source 111.
  • the light emitting lens 112 is a lens that narrows the beam width of light emitted from the light source 111.
  • the light emitting module 12 includes a light source 121, a light emitting lens 122, and a holding unit 123. Since the light emitting module 12 is the same as the light emitting module 11, the description thereof is omitted.
  • the floodlight return mirror 15 is a mirror that changes the traveling direction of light.
  • the light emitting module 11 is arranged so that light output from the light emitting module 11 is directly incident on the light projecting deflection unit 20a.
  • the light emitting module 12 is arranged so that the light output from the light emitting module 12 is incident on the light projecting deflecting unit 20a after being bent by approximately 90 ° in the light projecting mirror 15.
  • the light emitting module 11 is arranged so as to output light from left to right in the X-axis direction.
  • the light emitting module 12 is arranged to output light from the rear to the front in the Z-axis direction.
  • the light projecting mirror 15 is disposed so as not to block the light path from the light emitting module 11 toward the light projecting deflection unit 20a.
  • the light emitting module 12 and the light projecting mirror 15 are not illustrated, and only the light emitting module 11 is illustrated.
  • the light receiving unit 30 includes a light receiving element 31.
  • the light receiving unit 30 may include a light receiving lens 32 and a light receiving folding mirror 33.
  • the light receiving element 31 has an APD array in which a plurality of APDs are arranged in one row.
  • APD is an avalanche photodiode.
  • the light receiving lens 32 is a lens that restricts light coming from the light receiving deflection unit 20b.
  • the light receiving folding mirror 33 is a mirror that is arranged behind the light receiving lens 32 and is not shown in the drawing, but is arranged on the left side of the light receiving lens 32 in the X-axis direction and changes the traveling direction of light.
  • the light receiving element 31 is disposed below the light receiving folding mirror 33.
  • the light receiving folding mirror 33 is arranged to bend the light path downward by approximately 90 ° so that the light incident from the light receiving deflection unit 20b via the light receiving lens 32 reaches the light receiving element 31.
  • the light receiving lens 32 is disposed between the light receiving deflection unit 20 b and the light receiving folding mirror 33.
  • the light receiving lens 32 narrows the beam diameter of the light beam incident on the light receiving element 31 so as to be about the element width of the APD.
  • the frame 40 is a member for assembling the components of the light projecting unit 10, the scanning unit 20, and the light receiving unit 30 into one body in a state where the arrangement of these components is determined. It is.
  • the frame 40 includes a frame lower portion 41, a frame side surface portion 42, a frame back surface portion 43, and a partition portion 44.
  • the partition 44 corresponds to a partition plate.
  • a material that blocks light transmission is used for the frame 40.
  • a light receiving substrate 51 on which the light receiving element 31 is assembled and a motor substrate 52 on which the scanning unit 20 is assembled are attached. For this reason, holes are provided in the lower part 41 of the frame at a part serving as a light path from the light receiving folding mirror 33 to the light receiving element 31 and a part where the motor 23 of the scanning unit 20 is disposed.
  • the light emitting substrate 53 on which the light emitting module 11 is assembled is attached to the frame side surface portion 42.
  • the light-emitting substrate 54 on which the light-emitting module 12 is assembled is attached to the frame back surface portion 43.
  • the partition unit 44 is provided at a position that partitions a space in which each component belonging to the light projecting unit 10 is arranged and a space in which each component belonging to the light receiving unit 30 is arranged.
  • the light projecting mirror 15, the light receiving mirror 33, and the light receiving lens 32 are assembled to the partition 44.
  • FIG. 3 only the partition portion 44 of the frame 40 is shown to make it easy to see the characteristic portion of the present disclosure.
  • the internal space of the housing 100 is divided into two spaces positioned in the vertical direction by the partitioning portion 44 of the frame 40 and the light shielding plate 22 of the scanning portion 20. Of these two spaces, the upper space where the light projecting unit 10 is installed is called a light projecting space 101, and the lower space where the light receiving unit 30 is installed is called a light receiving space 102.
  • the partition portion 44 has an overlap portion 60 that faces the plate surface of the partition portion 44 and the plate surface of the light shielding plate 22 with a gap at least at a part of the peripheral portion of the light shielding plate 22.
  • the overlap unit 60 is provided at least between the light receiving lens 32 and the rotation axis of the scan unit 20.
  • the partition 44 is arranged on the light projecting space 101 side as viewed from the light shielding plate 22.
  • the interval W between the plate surfaces in the overlap portion 60 is set to be equal to or larger than a minimum width so that the partition portion 44 does not interfere with the rotation operation of the scan portion 20.
  • the width L of the overlap portion 60 is set to such a length that the light incident on the overlap portion 60 at an incident angle assumed in advance is reflected at the overlap portion 60 one or more times.
  • the assumed incident angle is output from, for example, at least one of the size and shape of the housing 100, at least one of the size, shape, and arrangement of components housed in the housing 100, and the light emitting module 11. It depends on the characteristics of the light to be emitted.
  • the light output from the light emitting module 11 is incident on the light projecting deflection unit 20a.
  • the light output from the light emitting module 12 is incident on the light projecting deflection unit 20a after the traveling direction is bent by approximately 90 ° by the light projecting mirror 15.
  • the light incident on the light projecting deflection unit 20 a is emitted through the optical window 200 in a direction corresponding to the rotation angle of the mirror module 21.
  • a range irradiated with light through the mirror module 21 is a scanning range. For example, a range of ⁇ 60 ° extending along the X-axis direction with the front direction along the Z-axis as 0 degrees is set as the scanning range.
  • Reflected light (hereinafter referred to as incoming light) from a test object positioned in a predetermined direction according to the rotational position of the mirror module 21 passes through the optical window 200 and is reflected by the light receiving deflection unit 20b, and receives the light receiving lens 32 and the light receiving folded. Light is received by the light receiving element 31 through the mirror 33.
  • the predetermined direction according to the rotational position of the mirror module 21 is the light emission direction from the light projecting deflection unit 20a.
  • the light output from the light emitting module 11, reflected by the light projecting deflection unit 20 a and the like and directed to the overlap unit 60 is sufficiently reflected by the overlap unit 60 once or more. And reaches the light receiving space 102. Similarly, light traveling from the light receiving space 102 to the light projecting space 101 is attenuated by the overlap unit 60.
  • the overlap part 60 is provided in the boundary part of the light-shielding plate 22 and the partition part 44, and the light which passes the overlap part 60 attenuate
  • an obstacle that does not actually exist is detected at a close distance or an obstacle is detected in a direction that does not actually exist due to the influence of light leaking from the light projecting space 101 to the light receiving space 102. By doing so, it is possible to suppress a decrease in detection performance.
  • the light shielding plate 22 is provided on the light projecting space 101 side from the partition portion 44, the light reflected from the optical window 200 toward the optical window 200 from the light emitting modules 11 and 12 is Leakage to the light receiving space 102 side can be effectively suppressed. That is, as shown in FIG. 4, the light that is directed from the light emitting module 11 to the scanning unit 20 and reflected by the scanning unit 20 may be directly incident on the overlap unit 60 as it is. On the other hand, as shown in FIG. 5, light that is directed from the light emitting module 11 to the optical window 200 and reflected by the optical window 200 is rarely directly incident on the overlap portion 60. That is, in the case of light leakage from the light projecting space 101 to the light receiving space 102, the reflected light from the optical window 200 has a greater influence than the reflected light from the scanning unit 20, and this embodiment The configuration is valid.
  • the light projecting deflection unit 20a is formed to be narrower than the light receiving deflection unit 20b, and the partition 44 is overlapped with the recessed portion of the light projecting deflection unit 20a than the light receiving deflection unit 20b. I am letting. For this reason, the light receiving deflection unit 20b having a wide width not only improves the detection performance because the amount of received light increases, but also makes effective use of the shape of the scanning unit 20 having a step to make the space in the housing 100 effective. Available.
  • the shape of the light shielding plate 22a is different from that of the first embodiment.
  • the light shielding plate 22 a includes a plate-shaped portion 221 and a cylindrical portion 222.
  • the plate-shaped part 221 has the same shape as the light shielding plate 22 in the first embodiment.
  • the cylindrical portion 222 is a cylindrical portion that is formed coaxially with the rotation axis of the scanning unit 20 and is provided so as to protrude upward from the plate-like portion 221, that is, to the light projecting space 101 side.
  • the cylindrical portion 222 has a thickness such that the upper surface thereof is flush with or higher than the upper plate surface of the partition portion 44. That is, the cylindrical portion 222 is formed so as to face the distal end portion of the partition portion 44.
  • an overlap portion 60a having an L-shaped gap is formed between the light shielding plate 22a and the partition portion 44, as shown in FIG. Therefore, the light incident on the overlap portion 60a is always reflected by the overlap portion 60a regardless of the angle. In addition, since the gap is bent, the number of reflections until it passes increases.
  • the use of the light shielding plate 22a not only reduces the light incident on the overlap portion 60a, but also increases the number of reflections of the light incident on the overlap portion 60a. Leakage can be more effectively suppressed.
  • the third embodiment is different from the first embodiment in that the vertical arrangement between the light shielding plate 22 and the partition 44 is opposite.
  • the partition 44 is disposed on the light receiving space 102 side as viewed from the light shielding plate 22.
  • the partition 44 since the partition 44 is provided on the light receiving space 102 side from the light shielding plate 22, it is directed from the light emitting modules 11 and 12 to the light projecting deflector 20 a and reflected from the light projecting deflector 20 a. It is possible to effectively suppress the incoming light from leaking to the light receiving space 102 side. That is, as shown in FIG. 8, the light that travels from the light emitting module 11 to the scanning unit 20 and is reflected by the scanning unit 20 is not directly incident on the overlap unit 60. However, as shown in FIG. 9, the light reflected from the optical window 200 from the light emitting module 11 toward the optical window 200 may be incident on the overlap portion 60. That is, in the case of light leakage from the light projecting space 101 to the light receiving space 102, the reflected light from the scanning unit 20 has a greater influence than the reflected light from the optical window 200. The configuration is valid.
  • the light shielding plate 22 and the partitioning portion 44 are arranged so that a part of each plate surface overlaps.
  • the light shielding plate 22 and the partitioning portion 44 are arranged on the same surface, and the opposing walls 223 and 441 are provided at the tip portions of the two facing each other, thereby overlapping.
  • the part 60b may be formed.
  • the interval W between the opposing walls 223 and 441 and the vertical width L of the opposing wall 223.441 may be designed based on the same concept as the interval W and the width L of the overlap portion 60 in the above embodiment.
  • the upper space is the light projecting space 101 and the lower space is the light receiving space 102.
  • This space may be the light receiving space 102 and the lower space may be the light projecting space 101.
  • a plurality of functions of one constituent element in the above embodiment may be realized by a plurality of constituent elements, or a single function of one constituent element may be realized by a plurality of constituent elements. . Further, a plurality of functions possessed by a plurality of constituent elements may be realized by one constituent element, or one function realized by a plurality of constituent elements may be realized by one constituent element. Moreover, you may abbreviate
  • the present disclosure can be realized in various forms such as a system including the rider device 1 as a component.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

仕切板(44)は、光の透過を阻止する材料で構成され、筐体(100)の内部空間を、投光部(10)が設置される投光用空間と受光部(30)が設置される受光用空間とに仕切る。遮光板(22)は、光の透過を阻止する材料で構成され、投光に用いる偏向ミラーの部位である投光偏向部と受光に用いる偏向ミラーの部位である受光偏向部との間に設けられ、偏向ミラーと一体に回転する。また、仕切板は、遮光板の周縁部の少なくとも一部に、仕切板の板面と、遮光板の板面とが、互いに非接触かつ重なり合うオーバラップ部(60)を有する。

Description

ライダー装置 関連出願の相互参照
 本国際出願は、2018年1月31日に日本国特許庁に出願された日本国特許2018-015602号に基づく優先権を主張するものであり、日本国特許出願第2018-015602号の全内容を本国際出願に参照により援用する。
 本開示は、回転駆動される偏向ミラーを備えたライダー装置に関する。
 ライダー装置では、光を偏向して走査を実現する光偏向デバイスの一つとして、回転駆動される偏向ミラーが用いられる。ライダーは、LIDARとも表記され、Light Detection and Rangingの略語である。
 下記特許文献1には、投光と受光とを同じ偏向ミラーを用いて行う場合、偏光ミラーに遮光板を取り付けることで、投光に用いられる投光部が設置される投光用空間と、受光に用いられる受光部が設置される受光用空間と、を分離する技術が記載されている。
特表2013-546009号公報
 しかしながら、遮光板は、偏光ミラーと共に回転するため、遮光板とその周囲の部材との間に、隙間を設ける必要がある。この隙間を介して投光部からの光が受光部に漏洩すると、実際には存在しない障害物が至近距離で検出されたり、実際に存在しない方向で障害物が検出されたりするという問題があった。
 本開示の1つの局面は、ライダー装置において、投光部及び受光部間の光の漏洩に基づく検出性能の低下を抑制する技術を提供することにある。
 本開示の一態様によるライダー装置は、投光部と、受光部と、スキャン部と、筐体と、仕切板と、遮光板とを備える。
 投光部は、予め設定された方向に光を発する。受光部は、予め設定された方向から到来する光を受光する。スキャン部は、投光部から入射される光を反射する偏向ミラーを有する。スキャン部は、偏向ミラーを予め設定された回転軸に対して回転させることにより、投光部から入射される光を偏向ミラーに反射させて出射する方向である出射方向を、回転軸の軸方向に直交する主走査方向に沿って変化させる。スキャン部は、走査範囲内に存在する被検物からの反射光を偏向ミラーで反射して、受光部に導く。筐体は、投光部、受光部、スキャン部を収納する。仕切板は、光の透過を阻止する材料で構成され、筐体の内部空間を、投光部が設置される投光用空間と受光部が設置される受光用空間とに仕切る。遮光板は、光の透過を阻止する材料で構成され、投光に用いられる偏向ミラーの部位である投光偏向部と受光に用いられる偏向ミラーの部位である受光偏向部との間に設けられ、偏向ミラーと一体に回転する。また、仕切板は、遮光板の周縁部の少なくとも一部に、仕切板の板面と、遮光板の板面とが、互いに非接触かつ重なり合うオーバラップ部を有する。
 このような構成によれば、オーバラップ部を通過する光は、通過の際に反射を繰り返すことで減衰する。このため、オーバラップ部を介して投光用空間から受光用空間に漏洩する光の強度を抑制できる。その結果、実際には存在しない障害物が至近距離で検出されたり、実際に存在しない方向で障害物が検出されたりすることによる、検出性能の低下を抑制できる。
ライダー装置の外観を示す斜視図である。 ライダー装置の筐体内に収納される光検出モジュールの構成を示す斜視図である。 第1実施形態における、遮光板に対する仕切板の位置を示す説明図である。 第1実施形態のライダー装置を正面から見た概略構成と、オーバラップ部の作用とを示す説明図である。 第1実施形態のライダー装置を側面から見た概略構成と、オーバラップ部の作用とを示す説明図である。 第2実施形態のライダー装置を正面から見た概略構成と、オーバラップ部の作用とを示す説明図である。 第2実施形態における遮光板の構成を示す斜視図である。 第3実施形態のライダー装置を正面から見た概略構成と、オーバラップ部の作用とを示す見た説明図である。 第3実施形態のライダー装置を側面から見た概略構成と、オーバラップ部の作用とを示す側面から見た説明図である。 他の実施形態のライダー装置を正面から見た概略構成と、オーバラップ部の作用とを示す説明図である。
 以下、図面を参照しながら、本開示の実施形態を説明する。
 [第1実施形態]
 [1-1.構成]
 図1に示す本実施形態のライダー装置1は、車両に搭載して使用され、車両の周囲に存在する様々な物体の検出等に用いられる。ライダーは、LIDARとも表記される。LIDARは、Light Detection and Rangingの略語である。
 ライダー装置1は、図1に示すように、筐体100と光学窓200とを備える。
 筐体100は、1面が開口された直方体状に形成された樹脂製の箱体であり、後述する光検出モジュール2が収納される。
 光学窓200は、筐体100の開口部を覆うように筐体100に固定され、筐体100の内部に設置される光検出モジュール2から照射されるレーザ光を透過する樹脂性の蓋体である。
 以下、筐体100の略長方形を有した開口部の長手方向に沿った方向をX軸方向、開口部の短手方向に沿った方向をY軸方向、X-Y平面に直交する方向をZ軸方向とする。なお、X軸方向における左右と、Y軸方向における上下とは、筐体100の開口部側から見て定義する。また、Z軸方向における前後は、筐体100の開口部側を前、奥行き側を後と定義する。
 [1-2.光検出モジュール]
 光検出モジュール2は、図2及び図3に示すように、投光部10と、スキャン部20と、受光部30と、を備える。光検出モジュール2は、フレーム40を介して筐体100の内部に組みつけられる。図3は、光検出モジュール2における各部の概略的な構成を示す模式図であり、特に投光部10及び受光部30を構成する部品の配置等を正確に示すものではない。
 [1-2-1.スキャン部]
 スキャン部20は、ミラーモジュール21と、遮光板22と、モータ23とを備える。
 ミラーモジュール21は、光を反射する二つの偏向ミラーが両面に取り付けられた平板状の部材である。ミラーモジュール21は、モータ23上に立設され、モータ23の駆動に従って回転運動をする。
 遮光板22は、ミラーモジュール21の上下方向の中心付近に、ミラーモジュール21と一体、かつ、板面が回転運動の回転軸と直交するように設けられた円形かつ板状の部材である。遮光板22には、光の透過を阻止する材料が用いられる。
 以下、ミラーモジュール21のうち、遮光板22より上側の部位を投光偏向部20a、遮光板22より下側の部位を受光偏向部20bという。また、ミラーモジュール21の反射面は、受光偏向部20bの方が投光偏向部20aより幅広に形成される。具体的には、受光偏向部20bは、遮光板22の直径と等しい幅に、投光偏向部20aは、その半分程度の幅に設定される。なお、受光偏向部20bの幅は、遮光板22の直径以下の大きさを有し、投光偏向部20aの幅は、受光偏向部20bの幅より狭く形成されてもよい。
 [1-2-2.発光部]
 投光部10は、二つの発光モジュール11,12を備える。投光部10は、投光折返ミラー15を備えてもよい。
 発光モジュール11は、光源111と発光レンズ112とを、両者が対向して配置されるように、筒状の保持部113を介して一体化した複合部品である。光源111には、半導体レーザが用いられる。発光レンズ112は、光源111から発せられる光のビーム幅を絞るレンズである。同様に、発光モジュール12は、光源121と発光レンズ122と保持部123とを有する。発光モジュール12は発光モジュール11と同様であるため、説明を省略する。
 投光折返ミラー15は、光の進行方向を変化させるミラーである。
 発光モジュール11は、当該発光モジュール11から出力される光が、直接、投光偏向部20aに入射されるように配置される。
 発光モジュール12は、当該発光モジュール12から出力される光が、投光折返ミラー15にて略90°進行方向が曲げられて、投光偏向部20aに入射されるように配置される。
 ここでは、発光モジュール11は、X軸方向の左から右に向けて光を出力するように配置される。発光モジュール12は、Z軸方向の後から前に向けて光を出力するように配置される。また、投光折返ミラー15は、発光モジュール11から投光偏向部20aに向かう光の経路を遮ることがないように配置される。図3では、投光部10が設置される空間を象徴的に示すために、発光モジュール12及び投光折返ミラー15の図示を省略し、発光モジュール11のみを示す。
 [1-2-3.受光部]
 受光部30は、受光素子31を備える。受光部30は、受光レンズ32と、受光折返ミラー33とを備えてもよい。
 受光素子31は、複数のAPDを1列に配置したAPDアレイを有する。APDは、アバランシェフォトダイオードである。受光レンズ32は、受光偏向部20bから到来する光を絞るレンズである。受光折返ミラー33は、図2では、受光レンズ32に隠れて図示されないが、受光レンズ32のX軸方向における左側に配置され、光の進行方向を変化させるミラーである。 受光素子31は、受光折返ミラー33の下部に配置される。
 受光折返ミラー33は、受光偏向部20bから、受光レンズ32を介して入射する光が受光素子31に到達するように、光の経路を下方に略90°屈曲させるように配置される。
 受光レンズ32は、受光偏向部20bと受光折返ミラー33との間に配置される。受光レンズ32は、受光素子31に入射する光ビームのビーム径が、APDの素子幅程度となるように絞る。
 [1-2-4.フレーム]
 フレーム40は、投光部10、スキャン部20、及び受光部30が有する各部品を1体に組みつけることで、これら部品の配置が確定された状態で、筐体100内に組み付けるための部材である。
 フレーム40は、フレーム下部41と、フレーム側面部42と、フレーム背面部43と、仕切部44とを有する。仕切部44が仕切板に相当する。フレーム40には、光の透過を阻止する材料が用いられる。
 フレーム下部41には、その下側から、受光素子31が組み付けられた受光基板51と、スキャン部20が組み付けられたモータ基板52とが取り付けられる。このため、フレーム下部41には、受光折返ミラー33から受光素子31に至る光の経路となる部位と、スキャン部20のモータ23が配置される部位とに、孔が設けられる。
 フレーム側面部42には、発光モジュール11が組み付けられた発光基板53が取り付けられる。
 フレーム背面部43には、発光モジュール12が組み付けられた発光基板54が取り付けられる。
 仕切部44は、投光部10に属する各部品が配置される空間と、受光部30に属する各部品が配置される空間とを仕切る位置に設けられる。仕切部44には、投光折返ミラー15と、受光折返ミラー33と、受光レンズ32とが組み付けられる。図3では、本開示の特徴部分を見やすくするために、フレーム40のうち、仕切部44のみを示す。
 筐体100の内部空間は、フレーム40の仕切部44と、スキャン部20の遮光板22とにより、上下方向に位置する二つの空間に区分けされる。これら二つの空間のうち、投光部10が設置される上側の空間を投光用空間101、受光部30が設置される下側の空間を受光用空間102という。
 仕切部44は、図3に示すように、遮光板22の周縁部の少なくとも一部に、仕切部44の板面と、遮光板22の板面とが隙間を空けて対向するオーバラップ部60を形成する形状を有する。オーバラップ部60は、少なくとも、受光レンズ32とスキャン部20の回転軸との間に設けられる。なお、仕切部44は、遮光板22からみて投光用空間101側に配置される。
 オーバラップ部60における板面間の間隔Wは、仕切部44がスキャン部20の回転動作に干渉しないために最低限確保すべき幅以上に設定される。オーバラップ部60の幅Lは、予め想定される入射角度でオーバラップ部60に入射する光が、オーバラップ部60にて1回以上反射する長さに設定される。想定される入射角度は、例えば、筐体100の大きさ及び形状のうち少なくとも一方、筐体100に収納される部品の大きさ、形状、及び配置のうち少なくとも一つ、並びに発光モジュール11から出力される光の特性等によって決まる。
 [1-3.光検出モジュールの動作]
 発光モジュール11から出力された光は、投光偏向部20aに入射される。また、発光モジュール12から出力された光は、投光折返ミラー15で進行方向が略90°曲げられて投光偏向部20aに入射される。投光偏向部20aに入射された光は、光学窓200を介して、ミラーモジュール21の回転角度に応じた方向に向けて出射される。ミラーモジュール21を介して光が照射される範囲が走査範囲である。例えば、Z軸に沿った前方向を0度としてX軸方向に沿って広がる±60°の範囲を走査範囲とする。
 ミラーモジュール21の回転位置に応じた所定方向に位置する被検物からの反射光(以下、到来光)は、光学窓200を透過し、受光偏向部20bで反射し、受光レンズ32及び受光折返ミラー33を介して受光素子31で受光される。ミラーモジュール21の回転位置に応じた所定方向とは、投光偏向部20aからの光の出射方向である。
 図3中に点線で示すように、発光モジュール11から出力され、投光偏向部20a等で反射してオーバラップ部60に向かう光は、オーバラップ部60にて1回以上反射することにより十分に減衰されて、受光用空間102に到達する。受光用空間102から投光用空間101に向かう光も同様に、オーバラップ部60にて減衰される。
 [1-4.効果]
 以上詳述した本実施形態によれば、以下の効果を奏する。
 (1a)本実施形態では、遮光板22と仕切部44との境界部分に、オーバラップ部60が設けられ、オーバラップ部60を通過する光は、通過する際に反射を繰り返すことにより減衰する。このため、オーバラップ部60を介して投光用空間101から受光用空間102へ漏洩する光、及び受光用空間102から投光用空間101へ漏洩する光の強度をいずれも抑制できる。その結果、特に、投光用空間101から受光用空間102に漏洩する光の影響によって、実際には存在しない障害物が至近距離で検出されたり、実際に存在しない方向で障害物が検出されたりすることによる、検出性能の低下を抑制できる。
 (1b)本実施形態では、仕切部44より投光用空間101側に遮光板22が設けられるため、発光モジュール11,12から光学窓200に向かい、光学窓200から反射してくる光が、受光用空間102側に漏洩することを効果的に抑制できる。即ち、図4に示すように、発光モジュール11からスキャン部20に向かい、スキャン部20にて反射した光は、そのままオーバラップ部60に直接入射される可能性がある。これに対して、図5に示すように、発光モジュール11から光学窓200に向かい、光学窓200にて反射した光は、オーバラップ部60に直接入射されることは少ない。つまり、投光用空間101から受光用空間102への光の漏洩において、スキャン部20からの反射光より、光学窓200からの反射光の方が、影響が大きい場合には、本実施形態の構成が有効となる。
 (1c)本実施形態では、投光偏向部20aが、受光偏向部20bより幅が狭く形成されており、投光偏向部20aにおける受光偏向部20bよりへこんだ部分に、仕切部44をオーバラップさせている。このため、幅の広い受光偏向部20bにより、受光量が増加するため検知性能を向上させることができるだけでなく、段差を有するスキャン部20の形状を利用して、筐体100内の空間を有効利用できる。
 [2.第2実施形態]
 [2-1.第1実施形態との相違点]
 第2実施形態は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
 本実施形態では、遮光板22aの形状が第1実施形態とは相違する。
 図6及び図7に示すように、遮光板22aは、板状部位221と、円筒状部位222とを備える。
 板状部位221は、第1実施形態における遮光板22と同様の形状を有する。円筒状部位222は、スキャン部20の回転軸と同軸に形成され、板状部位221から上方、即ち、投光用空間101側に突出するように設けられた円筒状の部位である。円筒状部位222は、その上面が、仕切部44の上側の板面と同一面、又はそれより高くなるような厚さを有する。つまり、円筒状部位222は、仕切部44の先端部と対向するように形成される。
 このような遮光板22aを用いた場合、図6に示すように、遮光板22aと仕切部44との間には、L字型の隙間を有したオーバラップ部60aが形成される。従って、オーバラップ部60aに入射する光は、どのような角度で入射しても、オーバラップ部60aにおいて必ず反射する。しかも、隙間が屈曲しているため、通過するまでの反射回数も増加する。
 [2-2.効果]
 以上詳述した第2実施形態によれば、前述した第1実施形態の効果(1a)~(1c)を奏し、さらに、以下の効果を奏する。
 (2a)遮光板22aを用いることにより、オーバラップ部60aに入射する光が減少するだけでなく、オーバラップ部60aに入射した光の反射回数も増大するため、オーバラップ部60aを介した光の漏洩をより効果的に抑制できる。
 [3.第3実施形態]
 [3-1.第1実施形態との相違点]
 第3実施形態は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
 第3実施形態では、図8及び図9に示すように、遮光板22と、仕切部44との間の上下方向の配置が反対である点が、第1実施形態とは異なる。
 即ち、仕切部44は、遮光板22からみて受光用空間102側に配置される。
 [3-2.効果]
 第3実施形態によれば、前述した第1実施形態の効果(1a)を奏し、さらに、以下の効果を奏する。
 (3a)本実施形態では、仕切部44は、遮光板22より受光用空間102側に設けられるため、発光モジュール11,12から投光偏向部20aに向かい、投光偏向部20aから反射してくる光が、受光用空間102側に漏洩することを効果的に抑制できる。即ち、図8に示すように、発光モジュール11からスキャン部20に向かい、スキャン部20にて反射した光は、オーバラップ部60に直接入射されない。但し、図9に示すように、発光モジュール11から光学窓200に向かい、光学窓200にて反射した光が、オーバラップ部60に入射される可能性がある。つまり、投光用空間101から受光用空間102への光の漏洩において、光学窓200からの反射光より、スキャン部20からの反射光の方が、影響が大きい場合には、本実施形態の構成が有効となる。
 [4.他の実施形態]
 以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
 (4a)上記実施形態では、遮光板22と仕切部44とは、互いの板面の一部が重なり合うように配置される。これに対して、図10に示すように、遮光板22と仕切部44とを同一面に配置し、両者が対向し合う互いの先端部分に、対向壁223,441を設けることで、オーバラップ部60bを形成してもよい。この場合、対向壁223,441間の間隔W及び対向壁223.441の上下方向の幅Lは、上記実施形態におけるオーバラップ部60の間隔W及び幅Lと同様の考え方で設計すればよい。
 (4b)上記実施形態では、仕切部44にて上下に仕切られた2つの空間のうち、上側の空間を投光用空間101、下側の空間を受光用空間102としているが、逆に上側の空間を受光用空間102、下側の空間を投光用空間101としてもよい。
 (4c)上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。。
 (4d)上述したライダー装置1の他、当該ライダー装置1を構成要素とするシステムなど、種々の形態で本開示を実現することもできる。

Claims (6)

  1.  予め設定された方向に光を発するように構成された投光部(10)と、
     予め設定された方向から到来する光を受光するように構成された受光部(30)と、
     前記投光部から入射される光を反射する偏向ミラーを有し、前記偏向ミラーを予め設定された回転軸に対して回転させることにより、前記投光部から入射される光を前記偏向ミラーに反射させて出射する方向である出射方向を、前記回転軸の軸方向に直交する主走査方向に沿って変化させると共に、走査範囲内に存在する被検物からの反射光を前記偏向ミラーで反射して、前記受光部に導くように構成されたスキャン部(20)と、
     前記投光部、前記受光部、及び前記スキャン部をいずれも収納する筐体(100)と、
     光の透過を阻止する材料で構成され、前記筐体の内部空間を、前記投光部が設置される投光用空間と前記受光部が設置される受光用空間とに仕切るように構成された仕切板(44)と、
     光の透過を阻止する材料で構成され、投光に用いられる前記偏向ミラーの部位である投光偏向部と受光に用いられる前記偏向ミラーの部位である受光偏向部との間に設けられ、前記偏向ミラーと一体に回転するように構成された遮光板(22,22a)と、
     を備え、
     前記仕切板は、前記遮光板の周縁部の少なくとも一部に、前記仕切板の板面と、前記遮光板の板面とが、互いに非接触かつ重なり合うオーバラップ部(60,60a,60b)を有するように構成された、
     ライダー装置。
  2.  請求項1に記載のライダー装置であって、
     前記遮光板(22a)は、前記仕切板が位置する側に突出する円筒状部位(222)を有し、
     前記仕切板は、前記オーバラップ部の先端が、前記円筒状部位と対向するように構成された、
     ライダー装置。
  3.  請求項1又は請求項2に記載のライダー装置であって、
     前記仕切板は、前記遮光板に対して前記投光用空間側に位置するように構成された、
     ライダー装置。
  4.  請求項3に記載のライダー装置であって、
     前記偏向ミラーは、前記回転軸に直交する方向に沿った前記受光偏向部の幅が、前記遮光板の直径と同じもしくは前記遮光板の直径以下の大きさを有し、前記投光偏向部の幅が、前記受光偏向部の幅より狭く形成された
     ライダー装置。
  5.  請求項1又は請求項2に記載のライダー装置であって、
     前記仕切板は、前記遮光板に対して前記受光用空間側に位置するように構成された、
     ライダー装置。
  6.  請求項1から請求項5までのいずれか1項に記載のライダー装置であって、
     前記オーバラップ部における前記遮光板と前記仕切板との間隔及び前記オーバラップ部の幅は、前記オーバラップ部への入射が想定される光の入射角度に基づき、前記オーバラップ部にて1回以上の光の反射が行われるように設定された
     ライダー装置。
PCT/JP2019/003009 2018-01-31 2019-01-29 ライダー装置 WO2019151259A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019000621.5T DE112019000621T5 (de) 2018-01-31 2019-01-29 Lidar-vorrichtung
CN201980011252.5A CN111670377B (zh) 2018-01-31 2019-01-29 激光雷达装置
US16/942,393 US20200355800A1 (en) 2018-01-31 2020-07-29 Lidar apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018015602A JP7087415B2 (ja) 2018-01-31 2018-01-31 ライダー装置
JP2018-015602 2018-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/942,393 Continuation US20200355800A1 (en) 2018-01-31 2020-07-29 Lidar apparatus

Publications (1)

Publication Number Publication Date
WO2019151259A1 true WO2019151259A1 (ja) 2019-08-08

Family

ID=67479395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003009 WO2019151259A1 (ja) 2018-01-31 2019-01-29 ライダー装置

Country Status (5)

Country Link
US (1) US20200355800A1 (ja)
JP (1) JP7087415B2 (ja)
CN (1) CN111670377B (ja)
DE (1) DE112019000621T5 (ja)
WO (1) WO2019151259A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102486473B1 (ko) * 2020-08-20 2023-01-09 주식회사 오토센스 차량용 스캐닝 라이다 광학계 및 그를 포함하는 차량용 스캐닝 라이다
USD955906S1 (en) * 2020-12-08 2022-06-28 Beijing Voyager Technology Co., Ltd. Light detection and ranging (LIDAR) component
USD1018343S1 (en) * 2020-12-08 2024-03-19 Beijing Voyager Technology Co., Ltd. Light detection and ranging (LIDAR) component
USD1035470S1 (en) * 2020-12-08 2024-07-16 Beijing Voyager Technology Co., Ltd. Light detection and ranging (LIDAR) component
USD955904S1 (en) * 2020-12-08 2022-06-28 Beijing Voyager Technology Co., Ltd. Light detection and ranging (LIDAR) component
USD955905S1 (en) * 2020-12-08 2022-06-28 Beijing Voyager Technology Co., Ltd. Light detection and ranging (LIDAR) component
JP7548171B2 (ja) 2021-09-10 2024-09-10 株式会社デンソー 光検出装置
WO2023045457A1 (zh) * 2021-09-26 2023-03-30 杭州欧镭激光技术有限公司 一种用于激光雷达的窗罩及激光雷达
CN113671463A (zh) * 2021-09-26 2021-11-19 杭州欧镭激光技术有限公司 一种用于激光雷达的窗罩及激光雷达
CN113985385A (zh) * 2021-10-18 2022-01-28 探维科技(北京)有限公司 一种激光雷达

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373931U (ja) * 1989-11-21 1991-07-25
JPH1082851A (ja) * 1996-09-06 1998-03-31 Nissan Motor Co Ltd レーザ距離測定装置
US20110255070A1 (en) * 2010-04-14 2011-10-20 Digital Ally, Inc. Traffic scanning lidar
JP2012225821A (ja) * 2011-04-21 2012-11-15 Ihi Corp レーザセンサ装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373931A (ja) * 1989-08-15 1991-03-28 Citizen Watch Co Ltd Mim素子
JPH10132934A (ja) * 1996-10-29 1998-05-22 Mitsubishi Electric Corp 車両用光レーダ装置
JP6111617B2 (ja) * 2012-07-03 2017-04-12 株式会社リコー レーザレーダ装置
JP5835182B2 (ja) * 2012-10-11 2015-12-24 オムロン株式会社 熱式流量計およびその異常判定方法
JP5683648B2 (ja) * 2013-03-27 2015-03-11 オムロンオートモーティブエレクトロニクス株式会社 レーザレーダ装置
KR101674062B1 (ko) * 2015-11-09 2016-11-08 주식회사 오토시스 광 스캐너
CN106324582A (zh) * 2016-10-28 2017-01-11 深圳市镭神智能系统有限公司 一种基于时间飞行法的激光雷达系统
US10001551B1 (en) * 2016-12-19 2018-06-19 Waymo Llc Mirror assembly
US10591598B2 (en) * 2018-01-08 2020-03-17 SOS Lab co., Ltd Lidar device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373931U (ja) * 1989-11-21 1991-07-25
JPH1082851A (ja) * 1996-09-06 1998-03-31 Nissan Motor Co Ltd レーザ距離測定装置
US20110255070A1 (en) * 2010-04-14 2011-10-20 Digital Ally, Inc. Traffic scanning lidar
JP2012225821A (ja) * 2011-04-21 2012-11-15 Ihi Corp レーザセンサ装置

Also Published As

Publication number Publication date
DE112019000621T5 (de) 2020-10-08
JP2019132723A (ja) 2019-08-08
US20200355800A1 (en) 2020-11-12
JP7087415B2 (ja) 2022-06-21
CN111670377A (zh) 2020-09-15
CN111670377B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
WO2019151259A1 (ja) ライダー装置
CN111656215B (zh) 激光雷达装置、驾驶辅助系统以及车辆
JP6737296B2 (ja) 対象物検出装置
WO2020250942A1 (ja) 測距装置
JP2019138675A (ja) 対象物検出装置
JP2015184037A (ja) レーザレーダ装置
WO2019146598A1 (ja) ライダー装置
JP2015184026A (ja) レーザレーダ装置
CN111630408B (zh) 激光雷达装置
JP6676974B2 (ja) 対象物検出装置
JP5911987B1 (ja) レーザ測距装置
JP7151630B2 (ja) 測距装置
WO2022176806A1 (ja) ミラーモジュール及び測距装置
JP7159983B2 (ja) 測距装置
CN212275965U (zh) 遮光组件
JP7155526B2 (ja) ライダー装置
JP5013472B2 (ja) 光電センサ
WO2021182577A1 (ja) 測距装置
KR20230044947A (ko) 전자 방해 잡음 및 빛샘을 차폐하여 노이즈를 제거하는 라이다 센서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746632

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19746632

Country of ref document: EP

Kind code of ref document: A1