WO2019151133A1 - ボルテゾミブ結晶の製造方法 - Google Patents

ボルテゾミブ結晶の製造方法 Download PDF

Info

Publication number
WO2019151133A1
WO2019151133A1 PCT/JP2019/002459 JP2019002459W WO2019151133A1 WO 2019151133 A1 WO2019151133 A1 WO 2019151133A1 JP 2019002459 W JP2019002459 W JP 2019002459W WO 2019151133 A1 WO2019151133 A1 WO 2019151133A1
Authority
WO
WIPO (PCT)
Prior art keywords
bortezomib
solution
raw material
crystals
mass
Prior art date
Application number
PCT/JP2019/002459
Other languages
English (en)
French (fr)
Inventor
智樹 古屋
阿部 雅年
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2019569077A priority Critical patent/JP7263263B2/ja
Publication of WO2019151133A1 publication Critical patent/WO2019151133A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/69Boron compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/05Cyclic compounds having at least one ring containing boron but no carbon in the ring

Definitions

  • the present invention relates to a method for producing Bortezomib type II crystal form and N type crystal form useful for the treatment of multiple myeloma and mantle cell lymphoma.
  • Bortezomib is a drug that exerts its efficacy by inhibiting the enzyme activity of the proteasome, an enzyme that degrades unwanted proteins accumulated in the cells.
  • Jansen Pharma Co., Ltd. is used as a treatment for multiple myeloma and mantle cell lymphoma It is sold as Velcade (registered trademark).
  • bortezomib is [(1R) -3-methyl-1-[(2S) -3-phenyl-2- (pyrazine-2-carboxamido) propanamido] butyl] boronic acid, which has the following formula (1) This is the structure shown in FIG.
  • Bortezomib is a compound having an organic boronic acid group. It is known that an organic boronic acid group is dehydrated in an organic solvent to form a boroxine structure (trimer structure), and the boroxine structure is rapidly hydrolyzed to form a boronic acid structure in an aqueous solvent. .
  • bortezomib can also take the form of both the bortezomib monomer shown by Formula (1) which is a boronic acid structure, and the bortezomib dehydration trimer shown by Formula (2) which is a boroxine structure.
  • Formula (1) which is a boronic acid structure
  • Formula (2) which is a boroxine structure
  • Patent Document 1 discloses bortezomib type I and type II crystals and methods for producing them.
  • Patent Document 2 discloses A-type and B-type crystals of bortezomib and methods for producing them. It has been reported that the A-type crystal has a boronic acid structure and the B-type crystal has a boroxine structure.
  • Patent Document 3 discloses an N-type crystal of bortezomib and a method for producing the same. The document also states that the A-type and B-type crystals are the same as the I-type and II-type crystals, respectively.
  • Patent Document 4 discloses an SB type crystal of bortezomib and a method for producing the same. It has been reported that the SB type crystal is a monohydrate of a boronic acid structure.
  • Patent Document 5 discloses an AL-type crystal of bortezomib and a production method thereof.
  • Patent Document 6 discloses A1 and A2 type crystals of bortezomib and methods for producing them.
  • Patent Document 7 discloses an H1-type crystal of bortezomib and a method for producing the same.
  • powder X-ray diffraction has a peak at diffraction angles (2 ⁇ ) of 5.7, 7.5, 9.9, 11.5, 18.0, 20.8 ⁇ 0.2 °. Bortezomib crystal forms and methods for their production are disclosed.
  • bortezomib is dissolved by heating in an aliphatic ester or a mixed solution of an aliphatic ester and water, and after adding an aliphatic C6-C7 hydrocarbon solvent, the crystals are precipitated. It is characterized by letting.
  • the method for producing a B-type crystal is characterized in that an aromatic hydrocarbon solvent is added to an aliphatic ester in which bortezomib is dissolved to precipitate the crystal.
  • Both the II-type and N-type crystal production methods are characterized in that bortezomib is heated and dissolved in an aliphatic ester and then cooled to precipitate the crystal.
  • type II crystals are prepared by cooling a hot solution of bortezomib in ethyl acetate to 25-30 ° C., and N type crystals are stirred in a hot solution of bortezomib in ethyl acetate for 2 to 2.5 hours at room temperature. Only the fact that it is prepared by doing is described.
  • the problem to be solved by the present invention is to provide a production method capable of selectively and stably obtaining bortezomib type II crystals or bortezomib type N crystals prepared from an aliphatic ester solvent such as ethyl acetate as a solvent. There is to do.
  • the present inventors have determined that the water content in the system or both the water content and the crystallization temperature are within a specific range in the crystal production system containing bortezomib and a solvent.
  • the present invention relates to the production of bortezomib type II crystal according to the first aspect, which is a production method by controlling the water content, and the second production method by controlling both the water content and the crystallization temperature.
  • the third embodiment which is a production method by controlling the water content
  • the fourth embodiment which is a production method by controlling both the water content and the crystallization temperature.
  • the first aspect of the present application relates to a method for producing type II crystals of bortezomib dehydrated trimer, and the gist of the inventions according to the following [1] to [5].
  • [1] In powder X-ray diffraction, 4.6 ⁇ 0.2 °, 6.2 ⁇ 0.2 °, 8.6 ⁇ 0.2 °, 9.6 ⁇ 0.2 °, 12.4 ⁇ 0
  • the first aspect is to selectively and stably produce a type II crystal by controlling the water content in the crystallization system to 0.6% by mass or less based on the raw material bortezomib in the crystallization operation of bortezomib. It is something that can be done.
  • [2] The production method according to [1], wherein the water content of the solution is 0.3% by mass or less based on the raw material bortezomib.
  • [3] The production method according to [1] or [2], wherein the raw material bortezomib is bortezomib dehydrated trimer.
  • the second aspect of the present application is another method of producing bortezomib dehydrated trimer type II crystals, and the gist of the inventions according to the following [6] to [12].
  • [6] In powder X-ray diffraction, 4.6 ⁇ 0.2 °, 6.2 ⁇ 0.2 °, 8.6 ⁇ 0.2 °, 9.6 ⁇ 0.2 °, 12.4 ⁇ 0.
  • a process for producing bortezomib dehydrated trimer type II crystals having a peak at a diffraction angle (2 ⁇ ) of 2 °, 20.4 ⁇ 0.2 °, Bortezomib monomer, Bortezomib dehydrated trimer, and a mixture thereof a raw material Bortezomib selected from the group consisting of aliphatic ester is dissolved in a solvent containing an aliphatic ester to obtain a solution of Bortezomib from the solution; Including precipitating crystals, The water content of the solution is 3.2 mass% or less with respect to the raw material bortezomib, and the bortezomib crystals are precipitated by cooling the solution to a temperature of 35 ° C.
  • a method for producing a monomer type II crystal in the second embodiment, in the crystallization operation of bortezomib, the water content in the crystallization system is controlled to 3.2% by mass or less with respect to the raw material bortezomib, and the crystallization temperature is set to 35 ° C. or less to make the type II crystal. Can be produced selectively and stably. [7] The water content of the solution is 2.9% by mass or less based on the raw material bortezomib, and the crystals of bortezomib are precipitated by cooling the solution to a temperature of 25 ° C. or less. The production method according to [6] above.
  • the water content of the solution is 1.0% by mass or less based on the raw material bortezomib, and the bortezomib crystals are precipitated by cooling the solution to a temperature of 35 ° C. or less.
  • the production method according to any one of [6] to [9] wherein the raw material bortezomib is dissolved in a solvent containing an aliphatic ester at a temperature of 50 ° C. or higher.
  • a solution of bortezomib by dissolving type II crystals of bortezomib dehydrated trimer obtained by the production method according to any one of [1] to [12] in a pharmaceutically acceptable solvent The step of preparing, A method for producing a pharmaceutical preparation comprising bortezomib as an active ingredient, comprising a step of filling the preparation container with the solution, and optionally a step of freeze-drying the solution in the preparation container.
  • Bortezomib is suitable as a drug substance for pharmaceutical preparations because it is used as a therapeutic agent for multiple myeloma and mantle cell lymphoma. Therefore, a method for producing a pharmaceutical preparation using the bortezomib dehydrated trimer type II crystal prepared in the first aspect and / or the second aspect as a drug substance is also included in the present invention.
  • the third aspect of the present application is a method for producing an N-type crystal of bortezomib, and the gist of the invention according to the following [14] to [17].
  • [14] In powder X-ray diffraction, 3.7 ⁇ 0.2 °, 4.9 ⁇ 0.2 °, 5.7 ⁇ 0.2 °, 9.1 ⁇ 0.2 °, 16.9 ⁇ 0
  • a method for producing an N-type crystal of bortezomib having a peak at a diffraction angle (2 ⁇ ) of 2 °, Bortezomib monomer, Bortezomib dehydrated trimer, and a mixture thereof a raw material Bortezomib selected from the group consisting of aliphatic ester is dissolved in a solvent containing an aliphatic ester to obtain a solution of Bortezomib from the solution; Including precipitating crystals, The water content of the solution is 1.0 mass% or more and 10.0 mass%
  • a method for producing an N-type crystal of bortezomib in the third aspect, in the crystallization operation of bortezomib, the water content in the crystallization system is 1.0% by mass or more and 10.0% by mass or less with respect to the raw material bortezomib, and crystallization is performed at 39 ° C. or higher. A type crystal can be selectively and stably produced. [15] The production method according to [14], wherein the water content of the raw material bortezomib is 1.0% by mass or more and 10.0% by mass or less.
  • [16] It is characterized by precipitating bortezomib crystals by dissolving raw material bortezomib in a solvent containing an aliphatic ester at a temperature of 50 ° C. or higher, and cooling the solution to 39 ° C. or higher and lower than 50 ° C.
  • [17] The production method according to any one of [14] to [16], wherein the solvent containing the aliphatic ester is ethyl acetate.
  • a fourth aspect of the present application is a method for producing an N-type crystal of bortezomib, which is summarized as the following inventions [18] to [23].
  • [18] In powder X-ray diffraction, 3.7 ⁇ 0.2 °, 4.9 ⁇ 0.2 °, 5.7 ⁇ 0.2 °, 9.1 ⁇ 0.2 °, 16.9 ⁇ 0
  • the raw material bortezomib is treated with a solution or suspension containing 4.0% by mass or more and 10.0% by mass or less of water relative to the raw material bortezomib to selectively and stably form the N-type crystals.
  • a step of preparing a solution of bortezomib by dissolving bortezomib N-type crystals obtained by the production method according to any one of [14] to [23] in a pharmaceutically acceptable solvent A method for producing a pharmaceutical preparation comprising bortezomib as an active ingredient, comprising a step of filling the preparation container with the solution, and optionally a step of freeze-drying the solution in the preparation container.
  • Bortezomib is suitable as a drug substance for pharmaceutical preparations because it is used as a therapeutic agent for multiple myeloma and mantle cell lymphoma. Therefore, the present invention also encompasses a method for producing a pharmaceutical preparation using the N-type crystals of bortezomib prepared in the third aspect and / or the fourth aspect as a drug substance.
  • a bortezomib dehydrated trimer type II crystal or N type crystal that is mixed with a crystal form that is not intended in the conventional production method or has a possibility of obtaining a crystal form that is not the object, Each can be selectively and stably produced in a high yield.
  • the present invention relates to the production of bortezomib type II crystals by controlling the water content, or both the water content and the crystallization temperature, and the production of N-type crystals. It includes two production methods by controlling both the amount of water and the crystallization temperature. Details of each invention will be described below.
  • the crystalline form of bortezomib described in this specification is characterized by a powder X-ray diffraction pattern.
  • the powder X-ray analysis described in this specification uses a Bruker D2 PHASER, measures Cu-Ka radiation as an X-ray source, and uses 1.5418 mm as a wavelength. There is no need to limit the equipment as long as it is a measuring device.
  • the water content of a solution containing a raw material bortezomib selected from the group consisting of a bortezomib monomer, a bortezomib dehydrated trimer, and a mixture thereof in a solvent containing an aliphatic ester is determined.
  • the bortezomib dehydrated trimer crystals described above produced according to the first aspect are the same as the II and B type crystals of bortezomib dehydrated trimer described in Patent Document 1 and Patent Document 2. That is, it is the same in the peak pattern of powder X-ray diffraction (XRD), and the diffraction angle (2 ⁇ ) is 4.6 ⁇ 0.2 °, 6.2 ⁇ 0.2 °, 8.6 ⁇ 0.2 °, It is a type II crystal of bortezomib dehydrated trimer characterized by having peaks at 9.6 ⁇ 0.2 °, 12.4 ⁇ 0.2 °, 20.4 ⁇ 0.2 °.
  • XRD powder X-ray diffraction
  • the diffraction angle (2 ⁇ ) is 4.6 ⁇ 0.2 °, 6.2 ⁇ 0.2 °, 8.6 ⁇ 0.2 °, 9.6 ⁇ 0.2 °, 12 0.0 ⁇ 0.2 °, 12.4 ⁇ 0.2 °, 14.6 ⁇ 0.2 °, 16.4 ⁇ 0.2 °, 20.4 ⁇ 0.2 °, 22.7 ⁇ 0.
  • the raw material bortezomib in the production method in the first aspect is bortezomib used as a raw material in the crystallization method of the first aspect.
  • the raw material bortezomib is a bortezomib monomer having a boronic acid structure represented by the following formula (1) or a bortezomib dehydrated trimer having a boroxine structure represented by the following formula (2), and may be a mixture thereof.
  • the raw material bortezomib may be an anhydride, a hydrate or a solvate, or may be a known bortezomib described in the above prior art documents.
  • the crystal form is not particularly limited, and crystal forms such as I type (A type), II type (B type), N type, SB type, AL type, A1 type, A2 type, H1 type, etc., or amorphous It may be quality.
  • the raw material bortezomib may be crude or pure bortezomib obtained by any process / form.
  • the aliphatic ester in the first embodiment is a compound in which an aliphatic carboxylic acid and a lower alcohol are ester-bonded.
  • the aliphatic ester is used as a solvent for dissolving the raw material bortezomib.
  • the aliphatic ester preferably has sufficient solubility in the raw material bortezomib.
  • aliphatic ester may be used as a single solvent, or two or more aliphatic esters may be mixed and used. The amount of the aliphatic ester used is not particularly limited as long as the raw material bortezomib can be sufficiently dissolved.
  • the amount of the aliphatic ester relative to 1 part by mass of the raw material bortezomib may be 5 (v / w) to 200 (v / w), preferably 5 (v / w) to 180 (v / w). Part, more preferably 5 (v / w) part to 100 (v / w) part, particularly preferably 5 (v / w) part to 15 (v / w) part.
  • any other solvent may be added to the solution in which the raw material bortezomib is dissolved using an aliphatic ester as a solvent.
  • the other solvent to be added can be used without particular limitation as long as it dissolves the raw material bortezomib and does not prevent the subsequent precipitation of crystals.
  • examples of other solvents include halogenated alkanes, ketones, nitriles, and ether solvents.
  • the amount used is such that the raw material bortezomib is dissolved and does not interfere with the subsequent precipitation of crystals, and preferably 0.5 volume relative to 1 volume part of the aliphatic ester. Part or less, more preferably 0.3 part by volume or less.
  • the solution is preferably a solution containing only an aliphatic ester as a solvent, and more preferably a solution obtained by using ethyl acetate as the aliphatic ester and dissolving the raw material bortezomib as a single solvent.
  • the water content of the solution containing the raw material bortezomib needs to be strictly controlled. That is, the water content in the solution is 0.6% by mass or less, preferably 0.3% by mass or less, based on the raw material bortezomib.
  • the solution containing the raw material bortezomib contains a maximum of 0.6% by mass of water.
  • a solution containing a maximum of 0.3% by mass of water is preferable.
  • the water content of the solution containing the raw material bortezomib can be calculated from a value obtained by a measurement method by the Karl Fischer (KF) method. In the measurement by the KF method, bortezomib is solvolyzed to produce water.
  • the water content in the solution is calculated by subtracting the generated water.
  • the water content of the solution was determined by measuring the water content by the KF method for each component contained in the solution such as the raw material bortezomib, aliphatic ester and any other solvent, and the total was determined as the water content of the solution. It is also good.
  • what is necessary is just to remove water until it becomes a predetermined
  • the method for removing water is not particularly limited, and examples thereof include a method for azeotropically water and a method using a desiccant such as magnesium sulfate, sodium sulfate or molecular sieve.
  • the raw material bortezomib is preferably bortezomib dehydrated trimer.
  • the water content of the raw material bortezomib is 0.6% by mass or less, preferably 0.3% by mass or less, based on the raw material bortezomib.
  • the water content of the raw material bortezomib is a value determined by a measurement method by the KF method.
  • a raw material bortezomib having a water content of 0.6% by mass or less can be prepared with a predetermined water content by drying a bortezomib dehydrated trimer.
  • a solution of raw material bortezomib can be prepared by mixing raw material bortezomib, an aliphatic ester as a solvent, and any other solvent, and dissolving raw material bortezomib.
  • the preparation temperature of the solution is adjusted in any temperature range up to the boiling point of the solvent.
  • the dissolution temperature is 50 ° C. or higher, preferably 50 ° C. or higher to the boiling point of the solvent used, more preferably 50 to 80 ° C., particularly preferably 60 to 70 ° C. is there.
  • the amount of the solvent including the aliphatic ester and any other solvent is not particularly limited, and an amount capable of dissolving bortezomib may be used.
  • the solvent is preferably used in an amount of 5 (v / w) to 300 (v / w), more preferably 5 (v / w) to 270 (v / w) per 1 part by mass of the raw material bortezomib. Part), particularly preferably 5 (v / w) part to 130 (v / w) part, and particularly preferably 5 (v / w) part to 15 (v / w) part.
  • the raw material bortezomib when there is an insoluble substance when the raw material bortezomib is dissolved, it may be removed by techniques such as filtration, centrifugation, and decantation.
  • filtration When using a filtration device, it is desirable to properly warm the filtration device before use in order to avoid premature crystallization.
  • the method for precipitating bortezomib dehydrated trimer type II crystals from the solution is not particularly limited, and ordinary crystal precipitation operations can be applied. For example, a method of cooling a solution dissolved by heating, a method of adding a solvent having low solubility of bortezomib dehydrated trimer to the solution, a method of distilling off the solvent of the solution and concentrating or drying the solution, etc. . Further, bortezomib dehydrated trimer type II crystals may be added as seed crystals to the supersaturated solution.
  • the temperature range for depositing crystals is not particularly limited as long as it is not higher than the boiling point of the solvent. Considering the solubility of bortezomib, it is preferable to precipitate crystals at a low temperature, for example, it is preferable to precipitate at a temperature lower than 50 ° C.
  • the temperature after cooling is 50 ° C. or lower, preferably 40 ° C. or lower, more preferably 30 ° C. or lower.
  • the solvent to be added may be a solvent with low solubility of bortezomib.
  • the solvent to be added include aromatic hydrocarbon solvents and ether solvents, and specific examples include toluene, xylene, t-butyl methyl ether, diisopropyl ether and the like.
  • the usage-amount of the poor solvent added should just be the quantity which can fully precipitate a crystal
  • the amount of the aliphatic ester and the solvent containing the optional solvent and the poor solvent when the poor solvent is added to precipitate the crystals is 5 (v / w) to 700 (v / W) part, more preferably 5 (v / w) part to 450 (v / w) part, particularly preferably 5 (v / w) part to 130 (v / w) part. And more preferably 5 (v / w) part to 15 (v / w) part.
  • the precipitated bortezomib dehydrated trimer type II crystals are separated from the suspension from which the crystals are precipitated by techniques known in the art. For example, there are methods by gravity or suction filtration, centrifugation, decantation, etc., preferably suction filtration. Solvent removal from the wet crystals obtained after separation is possible by drying using various devices. Examples of equipment include shelf dryers, vacuum ovens, air ovens, fluidized bed dryers, spin flash dryers, flash dryers, and the like. Further, air drying or drying only by reduced pressure may be used without using these devices.
  • the temperature during the solvent removal operation may be a temperature from room temperature to the vicinity of the solvent used, and is preferably 40 to 80 ° C., more preferably 60 to 70 ° C. Moreover, you may dry under reduced pressure as needed.
  • the solvent removal time is a time during which the used solvent can be completely removed, and is preferably 1 hour or longer.
  • the water content of a solution containing a raw material bortezomib selected from the group consisting of a bortezomib monomer, bortezomib dehydrated trimer, and a mixture thereof in a solvent containing an aliphatic ester is determined. 3.2% by mass or less of the solution, and 35 ° C. or less from this solution, 4.6 ⁇ 0.2 °, 6.2 ⁇ 0.2 °, 8.6 in powder X-ray diffraction (XRD).
  • Bortezomib dehydration characterized by precipitating bortezomib crystals having peaks at ⁇ 0.2 °, 9.6 ⁇ 0.2 °, 12.4 ⁇ 0.2 °, 20.4 ⁇ 0.2 ° This is a method for producing a trimer crystal.
  • the aforementioned bortezomib dehydrated trimer crystal produced by the second aspect is synonymous with the type II crystal obtained in the first aspect, and is the same in the peak pattern of powder X-ray diffraction (XRD)
  • the diffraction angle (2 ⁇ ) is 4.6 ⁇ 0.2 °, 6.2 ⁇ 0.2 °, 8.6 ⁇ 0.2 °, 9.6 ⁇ 0.2 °, 12.4 ⁇ 0.2.
  • the diffraction angle (2 ⁇ ) is 4.6 ⁇ 0.2 °, 6.2 ⁇ 0.2 °, 8.6 ⁇ 0.2 °, 9.6 ⁇ 0.2 °, 12 0.0 ⁇ 0.2 °, 12.4 ⁇ 0.2 °, 14.6 ⁇ 0.2 °, 16.4 ⁇ 0.2 °, 20.4 ⁇ 0.2 °, 22.7 ⁇ 0.
  • the raw material bortezomib is synonymous with the raw material bortezomib in the first aspect described above, and is a bortezomib monomer or bortezomib dehydrated trimer, or a mixture thereof. .
  • an anhydride, a hydrate, or a solvate may be sufficient, and the crystal polymorphism can also be used without limitation.
  • the aliphatic ester in the second aspect is synonymous with the first aspect described above, for example, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, tertiary butyl acetate, ethyl propionate, butyric acid
  • examples thereof include ethyl, ethyl valerate, and the like, preferably ethyl acetate, isopropyl acetate, and butyl acetate, and more preferably ethyl acetate.
  • An aliphatic ester may be used by a single kind, and may mix and use 2 or more types of aliphatic ester.
  • the amount of the aliphatic ester used is not particularly limited as long as the raw material bortezomib can be sufficiently dissolved.
  • the amount of the aliphatic ester relative to 1 part by mass of the raw material bortezomib is 5 (v / w) part to 200 (v / w) part, preferably 5 (v / w) part to 180 (v / w) part, More preferred is 5 (v / w) part to 100 (v / w) part, and particularly preferred is 5 (v / w) part to 15 (v / w) part.
  • any other solvent may be added to the solution in which the raw material bortezomib is dissolved using an aliphatic ester as a solvent.
  • Any other solvent to be added can be used without particular limitation as long as it dissolves the raw material Bortezomib and does not prevent the subsequent precipitation of crystals, but halogenated alkanes, ketones, nitriles, ether solvents may be used.
  • the amount used is such that the raw material bortezomib is dissolved and does not interfere with the subsequent precipitation of crystals, and preferably 0.5 volume relative to 1 volume part of the aliphatic ester. Part or less, more preferably 0.3 part by volume or less.
  • the solution preferably contains only aliphatic ester as a solvent, more preferably a solution obtained by dissolving raw material bortezomib using ethyl acetate as a single solvent.
  • the water content of the solution containing the raw material bortezomib needs to be strictly controlled. That is, the water content in the solution is 3.2% by mass or less, preferably 2.9% by mass or less, more preferably 1.0% by mass or less, and particularly preferably 0.9% by mass with respect to the raw material bortezomib. % Or less.
  • the solution containing the raw material bortezomib contains a maximum of 3.2% by mass of water.
  • Preferred is a solution containing up to 2.9% by weight of water, more preferred is a solution containing up to 1.0% by weight of water, and particularly preferred is up to 0.9% by weight or less. It is a solution containing water.
  • the water content of the solution containing the raw material bortezomib can be calculated from the value obtained by the Karl Fischer (KF) method.
  • KF Karl Fischer
  • bortezomib is solvolyzed to produce water. Therefore, the water content in the solution is calculated by subtracting this generated water.
  • the water content of the solution was determined by measuring the water content by the KF method for each component contained in the solution such as the raw material bortezomib, aliphatic ester and any other solvent, and the total was determined as the water content of the solution. It is also good.
  • the method for removing water is not particularly limited, and examples thereof include a method for azeotropically water and a method using a desiccant such as magnesium sulfate, sodium sulfate or molecular sieve.
  • the aliphatic ester used as a solvent is available as a commercial product, and its water content is usually extremely low. For this reason, in order to adjust the water content in the solution to the above range, it is preferable to control the water content of the raw material bortezomib. That is, the raw material bortezomib is preferably bortezomib dehydrated trimer.
  • the water content of the raw material bortezomib is 3.2% by mass or less, preferably 2.9% by mass or less, more preferably 1.0% by mass or less, and particularly preferably 0.9% by mass or less with respect to the raw material bortezomib. It is.
  • the water content of the raw material bortezomib is a value determined by a measurement method by the KF method.
  • a raw material bortezomib having a water content of 3.2% by mass or less can be prepared with a predetermined water content by drying a bortezomib dehydrated trimer.
  • a solution of raw material bortezomib can be prepared by mixing raw material bortezomib, an aliphatic ester as a solvent, and any other solvent, and dissolving raw material bortezomib.
  • the preparation temperature of the solution is adjusted in a temperature range up to the boiling point of the solvent.
  • the dissolution temperature is 50 ° C. or higher, preferably 50 ° C. or higher to the boiling point of the solvent used, more preferably 50 to 80 ° C., particularly preferably 60 to 70 ° C. is there.
  • the amount of the solvent including the aliphatic ester and any other solvent is not particularly limited, and an amount capable of dissolving bortezomib may be used.
  • the aliphatic ester and other solvent are preferably used in an amount of 5 (v / w) to 300 (v / w), more preferably 5 (v / w) to 270, based on 1 part by mass of the raw material bortezomib. (V / w) part, particularly preferably 5 (v / w) part to 130 (v / w) part, and still more preferably 5 (v / w) part to 15 (v / w) part. .
  • the raw material bortezomib when there is an insoluble substance when the raw material bortezomib is dissolved, it may be removed by techniques such as filtration, centrifugation, decantation and the like.
  • filtration centrifugation, decantation and the like.
  • decantation When using a filtration device, it is desirable to properly warm the filtration device before use in order to avoid premature crystallization.
  • bortezomib dehydrated trimer type II crystals As a method for precipitating bortezomib dehydrated trimer type II crystals from the solution, ordinary crystal precipitation operations can be applied as long as the crystals can be precipitated under a temperature condition of 35 ° C. or lower. For example, a method of cooling a solution dissolved by heating, a method of adding a poor solvent having low solubility of bortezomib dehydrated trimer, a method of distilling off the solvent of the solvent and concentrating or drying the solution can be mentioned.
  • type II crystals of bortezomib dehydrated trimer may be added as seed crystals to the supersaturated solution described above.
  • the temperature range for depositing crystals is 35 ° C. or lower, preferably 30 ° C. or lower, more preferably 25 ° C. or lower.
  • a preferable production condition in the second embodiment is a production method in which the solution containing raw material bortezomib has a water content of 2.9% by mass or less with respect to the raw material bortezomib and precipitates bortezomib crystals at 25 ° C. or lower from this solution. is there.
  • the solution containing the raw material bortezomib has a water content of 1.0% by mass or less with respect to the raw material bortezomib, and is a production method in which bortezomib crystals are precipitated from this solution at 35 ° C. or lower.
  • the temperature after cooling is 35 ° C. or lower, preferably 30 ° C. or lower, more preferably 25 ° C. or lower. At this time, it is preferable that the rate of cooling the warmed solution to 35 ° C. or lower is faster.
  • the cooling rate is 0.5 ° C./min or more, more preferably 1.0 ° C./min.
  • the solvent to be added may be a solvent with low solubility of bortezomib.
  • the solvent to be added include aromatic hydrocarbon solvents and ether solvents, and specific examples include toluene, xylene, t-butyl methyl ether, diisopropyl ether and the like.
  • a method for controlling the crystallization temperature to 35 ° C. or lower is a method of adding a poor solvent to the solution of 35 ° C. or lower, and a poor solvent is added to a heated solution.
  • the method of cooling to 35 degrees C or less later, the method of adding the poor solvent cooled to the heating solution, and cooling to 35 degrees C or less, etc. can be mentioned.
  • the solution containing the raw material bortezomib and the aliphatic ester should not exceed the water content range described above.
  • an organic solvent with a controlled water content should be used.
  • the usage-amount of the poor solvent added should just be the quantity which can fully precipitate a crystal
  • the amount of the aliphatic ester and the solvent containing the optional solvent and the poor solvent when the poor solvent is added to precipitate the crystals is 5 (v / w) to 700 (v / W) part, more preferably 5 (v / w) part to 450 (v / w) part, particularly preferably 5 (v / w) part to 130 (v / w) part. And more preferably 5 (v / w) part to 15 (v / w) part.
  • the precipitated bortezomib dehydrated trimer type II crystals are separated from the suspension from which the crystals are precipitated by techniques known in the art. For example, there are methods by gravity or suction filtration, centrifugation, decantation, etc., preferably suction filtration. Solvent removal from the wet crystals obtained after separation is possible by drying using various devices. Examples of equipment include shelf dryers, vacuum ovens, air ovens, fluidized bed dryers, spin flash dryers, flash dryers, and the like. In addition, these devices may be used and air drying or drying only under reduced pressure may be used.
  • the temperature during the solvent removal operation may be a temperature from room temperature to the vicinity of the solvent used, and is preferably 40 to 80 ° C., more preferably 60 to 70 ° C. Moreover, you may dry under reduced pressure as needed.
  • the solvent removal time is a time during which the used solvent can be completely removed, and is preferably 1 hour or longer.
  • the bortezomib dehydrated trimer type II crystals prepared in the first and second aspects of the present application can be suitably used as a drug substance for a pharmaceutical preparation containing bortezomib as an active ingredient. Therefore, a pharmaceutical preparation comprising bortezomib prepared as an active ingredient by dissolving the type II crystals of bortezomib dehydrated trimer prepared in the first aspect and the second aspect and filling this into a preparation container.
  • a manufacturing method is also included in the present invention.
  • a method for producing a pharmaceutical preparation comprising bortezomib as an active ingredient includes the first step of preparing a solution by dissolving the type II crystals of bortezomib dehydrated trimer according to the first aspect and / or the second aspect described above, By the second step of filling the solution into the formulation container.
  • pharmaceuticals containing bortezomib as an active ingredient are provided as antitumor agents by intravenous or subcutaneous administration in the form of injections
  • the pharmaceutical preparations of the present invention are also preferably injectable preparations. That is, it is preferable to be a preparation type such as a freeze-dried preparation or an injection solution preparation.
  • the solvent for dissolving bortezomib dehydrated trimer type II crystals is not particularly limited as long as it is a soluble solvent, but is particularly limited if it is a pharmaceutically acceptable solvent.
  • a suitable solvent may be selected as appropriate. Examples include water, ethanol, isopropanol, tert-butanol, glycerin, propylene glycol, N-methylpyrrolidone, dimethyl sulfoxide, polyethylene glycol (macrogol), polysorbate (Tween), cremophor, and the like. You may use as a mixed solvent of a seed or more.
  • the solvent is preferably a solvent containing water selected from the group consisting of water, glycerin and tert-butanol.
  • the solution is preferably prepared with a concentration of bortezomib dehydrated trimer type II crystals of 0.1 to 100 mg / mL, more preferably 0.1 to 10 mg / mL.
  • the solution may contain other additives used in ordinary pharmaceutical preparations such as excipients, pH adjusters, solubilizers, and antioxidants. As these other additives, additives used in usual pharmaceutical preparations may be used as long as the stability of bortezomib of the pharmaceutical composition according to the present invention is maintained, and the application amount thereof may be appropriately set.
  • the content of the other additives is appropriately set in consideration of the stability of bortezomib, but is used at 30 parts by mass or less with respect to 1 part by mass of bortezomib or a derivative thereof as an active ingredient. It is preferable. More preferably, it is 15 parts by mass or less per 1 part by mass of bortezomib.
  • salts such as sodium chloride, saccharides such as mannitol, lactose, sucrose, maltose, trehalose or sugar alcohols can be used.
  • the pH adjusting agent examples include acidic agents such as inorganic acids such as hydrochloric acid, phosphoric acid, boric acid, and carbonic acid, and organic acids such as ascorbic acid and acetic acid.
  • acidic agents such as inorganic acids such as hydrochloric acid, phosphoric acid, boric acid, and carbonic acid
  • organic acids such as ascorbic acid and acetic acid.
  • alkali metal or alkaline earth metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide
  • inorganic acids such as sodium dihydrogen phosphate, disodium monohydrogen phosphate, sodium carbonate and sodium hydrogen carbonate
  • An alkaline agent such as an alkaline earth metal salt can be used.
  • solubilizer examples include polyols such as glycerin, thioglycerin, and propylene glycol, and polyether compounds such as polysorbate, polyethylene glycol, polypropylene glycol, and polyoxyethylene castor oil.
  • Antioxidants include butylated hydroxytoluene, propyl gallate, ⁇ -tocopherol, tocopherol polyethylene glycol succinate, L-cysteine, and the like.
  • the second step is a step of filling the preparation container with the solution.
  • Bortezomib is administered intravenously or subcutaneously, so it is required to be filled aseptically.
  • the pharmaceutical preparation can be prepared by sealing and sealing. In the case of a freeze-dried preparation, the dispensed vial may be freeze-dried and sealed aseptically.
  • the water content of a solution containing a raw material bortezomib selected from the group consisting of a bortezomib monomer, a bortezomib dehydrated trimer, and a mixture thereof in a solvent containing an aliphatic ester is determined. 1.0 mass% or more and 10.0 mass% or less of the solution, and 3.7 ⁇ 0.2 ° or 4.9 ⁇ 0.2 in the powder X-ray diffraction (XRD) at 39 ° C. or more from this solution.
  • XRD powder X-ray diffraction
  • a method for producing bortezomib crystals characterized by precipitating bortezomib crystals having peaks at °, 5.7 ⁇ 0.2 °, 9.1 ⁇ 0.2 °, and 16.9 ⁇ 0.2 °. is there.
  • the bortezomib crystal described above produced according to the third aspect is the same as the N-type crystal of bortezomib described in Patent Document 3. That is, it is the same in the XRD peak pattern, and the diffraction angle (2 ⁇ ) is 3.7 ⁇ 0.2 °, 4.9 ⁇ 0.2 °, 5.7 ⁇ 0.2 °, 9.1 ⁇ 0. Bortezomib N-type crystal characterized by having peaks at 2 ° and 16.9 ⁇ 0.2 °.
  • the diffraction angle (2 ⁇ ) is 3.7 ⁇ 0.2 °, 4.9 ⁇ 0.2 °, 5.7 ⁇ 0.2 °, 9.1 ⁇ 0.2 °, 9 .7 ⁇ 0.2 °, 11.3 ⁇ 0.2 °, 14.8 ⁇ 0.2 °, 15.7 ⁇ 0.2 °, 16.9 ⁇ 0.2 °, 18.3 ⁇ 0. Bortezomib N-type crystals characterized by 2 °, 19.0 ⁇ 0.2 °, 19.7 ⁇ 0.2 °, 21.8 ⁇ 0.2 °.
  • the raw material bortezomib is synonymous with the raw material bortezomib in the first aspect, and is a bortezomib monomer or bortezomib dehydrated trimer, or a mixture thereof.
  • an anhydride, a hydrate, or a solvate may be sufficient, and the crystal polymorphism can also be used without limitation.
  • the aliphatic ester in the third aspect has the same meaning as in the first aspect, and includes, for example, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, tertiary butyl acetate, ethyl propionate, and ethyl butyrate. , Ethyl valerate and the like, preferably ethyl acetate, isopropyl acetate and butyl acetate, more preferably ethyl acetate.
  • Aliphatic ester may be used by a single kind, and may mix and use 2 or more types of aliphatic ester.
  • the amount of the aliphatic ester used is not particularly limited as long as the raw material bortezomib can be sufficiently dissolved.
  • the aliphatic ester is 5 (v / w) part to 60 (v / w) part, preferably 5 (v / w) part to 40 (v / w) part with respect to 1 part by mass of the raw material bortezomib. More preferably, it is 5 (v / w) part to 14 (v / w) part.
  • the solution containing the raw material bortezomib, the aliphatic ester, and water is a solution containing a certain amount of water by dissolving the raw material bortezomib using the aliphatic ester as a solvent.
  • any other solvent may be added to the solution.
  • the other solvent to be added can be used without particular limitation as long as it dissolves the raw material Bortezomib and does not prevent the subsequent precipitation of crystals.
  • an alkyl halide, a ketone, a nitrile, an ether solvent may be used.
  • the amount used is such that the raw material bortezomib is dissolved and does not interfere with the subsequent precipitation of crystals, and preferably 0.5 volume relative to 1 volume part of the aliphatic ester. Part or less, more preferably 0.3 part by volume or less.
  • the solution preferably contains only an aliphatic ester as a solvent, and more preferably a solution in which raw material bortezomib is dissolved using ethyl acetate as a single solvent.
  • the raw material bortezomib solution is characterized by containing water as an essential constituent together with the aliphatic ester. That is, the water content of the solution is 1.0% by mass or more, preferably 1.1% by mass or more, and more preferably 1.5% by mass or more with respect to the raw material bortezomib.
  • the upper limit of the water content is a range that does not hinder the dissolution of the raw material bortezomib, and is, for example, 10.0% by mass or less, more preferably 7.5% by mass or less with respect to the raw material bortezomib. If the water content is too high, the yield of bortezomib crystals may be significantly reduced.
  • the water content of the solution in the third aspect needs to be controlled to 1.0% by mass or more and 10.0% by mass or less, preferably 1.1% by mass or more and 7.5% by mass with respect to the raw material bortezomib. % Or less, more preferably 1.5 mass% or more and 7.5 mass% or less.
  • the water content of the solution containing the raw material bortezomib, the aliphatic ester, and water can be calculated from a value obtained by a normal measurement method such as the Karl Fischer (KF) method. In the measurement by the KF method, bortezomib is solvolyzed to produce water. Therefore, the water content in the solution is calculated by subtracting the generated water.
  • the water content of the solution was determined by measuring the water content by the KF method for each component contained in the solution such as the raw material bortezomib, aliphatic ester and any other solvent, and the total was determined as the water content of the solution. It is also good.
  • a method of controlling water contained in the raw material bortezomib and / or aliphatic ester to a predetermined water content, a method of adding a necessary amount of water, or Examples include a method of removing water.
  • Examples of the adjustment method for removing water to lower the water content include a method of azeotropically water and a method using a desiccant such as magnesium sulfate, sodium sulfate, or molecular sieve, but are not particularly limited.
  • the solution should be measured in advance for the water-free content of the raw materials bortezomib and aliphatic ester, and any other solvent, and the water content can be adjusted by adding water as necessary. Can do.
  • the aliphatic ester used as a solvent is available as a commercial product, and its water content is usually very low. For this reason, in order to adjust the water content in the solution to the above range, it is preferable to control the water content of the raw material bortezomib. That is, the water content of the raw material bortezomib is 1.0% by mass or more, preferably 1.1% by mass or more, more preferably 1.5% by mass or more with respect to the raw material bortezomib. In addition, the upper limit of the water content of raw material bortezomib is 10.0 mass% or less with respect to raw material bortezomib, More preferably, it is 7.5 mass% or less.
  • the water content of the raw material bortezomib is 1.0% by mass or more and 10.0% by mass or less, preferably 1.1% by mass or more and 7.5% by mass or less, more preferably 1.5% by mass with respect to the raw material bortezomib. It is mass% or more and 7.5 mass or less.
  • the water content of the raw material bortezomib can be calculated from the value obtained by the measurement method by the KF method.
  • the raw material bortezomib having a water content of 1.0% by mass or more and 10.0% by mass or less can be prepared with a predetermined water content by a drying operation or a wet operation.
  • the solution containing the raw material bortezomib, the aliphatic ester and water in the third embodiment is prepared by mixing the raw material bortezomib, the aliphatic ester as a solvent, and any other solvent to dissolve the raw material bortezomib.
  • the water having a content of 1.0% by mass or more and 10.0% by mass or less with respect to the raw material bortezomib is preliminarily set to the water-free content of the raw material bortezomib and the aliphatic ester used in the solution preparation and any other solvent. It is prepared by measuring and adding or removing water as necessary.
  • the solution is prepared in a temperature range up to the boiling point of the solvent.
  • the dissolution temperature is 50 ° C. or higher, preferably 50 ° C. or higher to the boiling point of the solvent used, more preferably 50 to 80 ° C., and particularly preferably 60 to 70 ° C. .
  • the amount of the solvent including the aliphatic ester and any other solvent is not particularly limited, and an amount capable of dissolving bortezomib may be used.
  • the aliphatic ester is preferably used in 5 (v / w) part to 90 (v / w) part, preferably 5 (v / w) part to 60 (v / w), relative to 1 part by mass of the raw material bortezomib.
  • the raw material bortezomib when there is an insoluble substance when the raw material bortezomib is dissolved, it may be removed by techniques such as filtration, centrifugation, decantation and the like. When using a filtration device, it is desirable to properly warm the filtration device before use in order to avoid premature crystallization.
  • a normal crystal precipitation operation can be applied as long as the crystals can be precipitated under a temperature condition of 39 ° C. or higher.
  • a method of cooling a heated and dissolved solution to a temperature range of 39 ° C. or higher a method of adding a poor solvent having low solubility of bortezomib to the solution, or distilling off the solvent of the solution to concentrate or dry up Methods and the like.
  • a method of adding Bortezomib N-type crystals as seed crystals to the supersaturated solution may be used.
  • the temperature range for depositing crystals is 39 ° C.
  • the temperature after cooling is 39 ° C. or higher and lower than 50 ° C.
  • the solvent to be added may be a solvent having low solubility of bortezomib.
  • an aliphatic hydrocarbon solvent can be used, and specific examples thereof include normal hexane and normal heptane.
  • the poor solvent is used while maintaining the temperature in the heated solution. After cooling, the method of cooling to a temperature zone of 39 ° C. or higher, the method of adding a poor solvent heated to a temperature zone of 39 ° C.
  • the amount of the poor solvent to be added is not particularly limited as long as it is an amount capable of sufficiently depositing crystals.
  • the amount of the aliphatic ester and the solvent containing the optional solvent and the poor solvent when the poor solvent is added to precipitate the crystals is 5 (v / w) part to 210 (v) with respect to 1 part by mass of the raw material bortezomib. / W) part, preferably 5 (v / w) part to 100 (v / w) part, particularly preferably 5 (v / w) part to 130 (v / w) part. And more preferably 5 (v / w) part to 15 (v / w) part.
  • the precipitated Bortezomib N-type crystals are separated from the suspension from which the crystals are deposited by techniques known in the art. For example, there are methods by gravity or suction filtration, centrifugation, decantation, etc., preferably suction filtration. Solvent removal from the wet crystals obtained after separation is possible by drying using various devices. Examples of equipment include shelf dryers, vacuum ovens, air ovens, fluidized bed dryers, spin flash dryers, flash dryers, and the like. In addition, these devices may be used and air drying or drying only under reduced pressure may be used.
  • the temperature during the solvent removal operation may be a temperature from room temperature to the vicinity of the solvent used, and is preferably 40 to 80 ° C., more preferably 60 to 70 ° C. Moreover, you may dry under reduced pressure as needed.
  • the solvent removal time is a time during which the used solvent can be completely removed, and is preferably 1 hour or longer.
  • the water content of a solution or suspension containing a raw material bortezomib selected from the group consisting of bortezomib monomers, bortezomib dehydrated trimers, and mixtures thereof in a solvent containing an aliphatic ester Is 4.0% by mass or more and 10.0% by mass or less with respect to the raw material bortezomib, and 3.7 ⁇ 0.2 °, 4.9 in the powder X-ray diffraction (XRD) from this solution or suspension.
  • XRD powder X-ray diffraction
  • the bortezomib crystal produced by the fourth aspect is synonymous with the N-type crystal of bortezomib of the third aspect described above. That is, it is the same in the XRD peak pattern, and the diffraction angle (2 ⁇ ) is 3.7 ⁇ 0.2 °, 4.9 ⁇ 0.2 °, 5.7 ⁇ 0.2 °, 9.1 ⁇ 0. Bortezomib N-type crystal characterized by having peaks at 2 ° and 16.9 ⁇ 0.2 °.
  • the diffraction angle (2 ⁇ ) is 3.7 ⁇ 0.2 °, 4.9 ⁇ 0.2 °, 5.7 ⁇ 0.2 °, 9.1 ⁇ 0.2 °, 9 .7 ⁇ 0.2 °, 11.3 ⁇ 0.2 °, 14.8 ⁇ 0.2 °, 15.7 ⁇ 0.2 °, 16.9 ⁇ 0.2 °, 18.3 ⁇ 0.
  • the raw material bortezomib is synonymous with the raw material bortezomib in the first aspect, and is a bortezomib monomer or bortezomib dehydrated trimer, or a mixture thereof.
  • an anhydride, a hydrate, or a solvate may be sufficient, and the crystal polymorphism can also be used without limitation.
  • the aliphatic ester in the fourth aspect has the same meaning as in the first aspect, and includes, for example, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, tertiary butyl acetate, ethyl propionate, and ethyl butyrate. , Ethyl valerate and the like, preferably ethyl acetate, isopropyl acetate and butyl acetate, more preferably ethyl acetate.
  • Aliphatic ester may be used by a single kind, and may mix and use 2 or more types of aliphatic ester.
  • any other solvent may be added to the solution or suspension containing the raw material bortezomib, the aliphatic ester, and water in order to adjust the solubility of the raw material bortezomib.
  • the other solvent to be added can be used without particular limitation as long as it dissolves or suspends the raw material bortezomib and does not hinder the subsequent precipitation of crystals or the stirring of the suspension.
  • Alkyl chloride, ketone, nitrile, ether solvent can be used, and specific examples include dichloromethane, chloroform, 1,2-dichloroethane, acetone, acetonitrile, t-butyl methyl ether, tetrahydrofuran, diisopropyl ether and the like.
  • the amount used is such that it dissolves or suspends the raw material bortezomib and does not interfere with the subsequent precipitation of crystals or maintenance of stirring of the suspension. It is 0.5 volume part or less with respect to 1 volume part, More preferably, it is 0.3 volume part or less.
  • the solution or suspension preferably contains only aliphatic ester as a solvent, more preferably a solution or suspension of raw material bortezomib using ethyl acetate as a single solvent.
  • the solution or suspension containing the raw material bortezomib is characterized in that water is an essential constituent component together with the aliphatic ester. That is, the water content of the solution or suspension is 4.0 to 10.0% by mass, preferably 4.8 to 7.5% by mass, based on the raw material bortezomib.
  • the water content of the solution or suspension containing the raw material bortezomib, the aliphatic ester, and water can be calculated from a value obtained by a normal measurement method such as the Karl Fischer (KF) method. In the measurement by the KF method, bortezomib is solvolyzed to produce water. Therefore, the water content in the solution or suspension is calculated by subtracting the generated water.
  • KF Karl Fischer
  • the water content of the solution or suspension is determined by measuring the water content by the KF method for each constituent component such as raw material bortezomib, aliphatic ester, and any other solvent, and the sum of the water content is the solution or suspension.
  • the water content of the liquid may be used.
  • a method for controlling water contained in the raw material bortezomib and / or aliphatic ester to a predetermined water content, or a necessary amount of water is used.
  • the method of adding or the method of removing water is mentioned.
  • Examples of the adjustment method for removing water to lower the water content include a method of azeotropically water and a method using a desiccant such as magnesium sulfate, sodium sulfate, or molecular sieve, but are not particularly limited.
  • the solution or suspension is preliminarily measured for the water content of the raw material bortezomib and the aliphatic ester, and any other solvent, and the water content is adjusted by adding water as necessary. Can be adjusted.
  • the aliphatic ester used as a solvent is available as a commercial product, and its water content is usually extremely low. For this reason, in order to adjust the water content in the solution or suspension to the above range, it is preferable to control the water content of the raw material bortezomib.
  • the water content of the raw material bortezomib may be controlled. That is, the water content of the raw material bortezomib is 4.0% by mass or more and 10.0% by mass or less, preferably 4.8% by mass or more and 7.5% by mass or less with respect to the raw material bortezomib.
  • the water content of the raw material bortezomib can be calculated from the value obtained by the measurement method by the KF method.
  • the raw material bortezomib having a water content of 4.0% by mass or more and 10.0% by mass or less can be prepared with a predetermined water content by a drying operation or a wet operation.
  • N-type crystals of bortezomib can be obtained by a method of crystal form transition from a suspension containing raw material bortezomib, an aliphatic ester and water, and a method of precipitating crystals from the solution.
  • the amount of the solvent of the aliphatic ester is an amount capable of preparing the suspension described above. It may be used and is not particularly limited.
  • the aliphatic ester is 5 (v / w) part to 200 (v / w) part, preferably 5 (v / w) part to 180 (v / w) part with respect to 1 part by mass of the raw material bortezomib. More preferably, it is 5 (v / w) part to 100 (v / w) part, and particularly preferably 5 (v / w) part to 25 (v / w) part.
  • the amount of the solvent including the aliphatic ester and any other solvent is not particularly limited, and the amount capable of suspending bortezomib Use it.
  • the aliphatic ester may be used in an amount of 5 (v / w) to 300 (v / w), preferably 5 (v / w) to 270 (v / w) per 1 part by mass of the raw material bortezomib. ) Part, more preferably 5 (v / w) part to 130 (v / w) part, and particularly preferably 5 (v / w) part to 25 (v / w) part.
  • the suspension is prepared at any temperature up to the boiling point of the solvent.
  • the temperature at which the N-type crystals of bortezomib undergo a crystal form transition from the suspension is in the temperature range below the boiling point of the solvent used, for example, in the temperature range of 25-50 ° C.
  • the suspension is stirred at the same temperature for 1 hour or more, preferably 2 hours or more, whereby the raw material bortezomib can be completely prepared as bortezomib N-type crystals.
  • a solvent having a low solubility of bortezomib may be added to this suspension, and stirring may be continued.
  • an aliphatic hydrocarbon solvent can be used, and specific examples thereof include normal hexane and normal heptane.
  • the amount of the aliphatic ester and the solvent containing the optional solvent and the poor solvent when the poor solvent is added to precipitate crystals is 5 (v / w) part to 700 (v) with respect to 1 part by mass of the raw material bortezomib. / W) part, more preferably 5 (v / w) part to 450 (v / w) part, particularly preferably 5 (v / w) part to 130 (v / w) part. More preferably, it is 5 (v / w) part to 25 (v / w) part.
  • the solvent amount of the aliphatic ester is not particularly limited, and an amount capable of dissolving bortezomib may be used.
  • the aliphatic ester is 5 (v / w) part to 200 (v / w) part, preferably 5 (v / w) part to 180 (v / w) part with respect to 1 part by mass of the raw material bortezomib. More preferably, it is 5 (v / w) part to 100 (v / w) part, and particularly preferably 5 (v / w) part to 15 (v / w) part.
  • the amount of the solvent including the aliphatic ester and any other solvent is not particularly limited, and an amount capable of dissolving bortezomib is used. That's fine.
  • the aliphatic ester may be used in an amount of 5 (v / w) to 300 (v / w), preferably 5 (v / w) to 270 (v / w) per 1 part by mass of the raw material bortezomib. Part, more preferably 5 (v / w) part to 130 (v / w) part, and particularly preferably 5 (v / w) part to 15 (v / w) part.
  • the preparation temperature of the said solution is not specifically limited, What is necessary is just the temperature range to the boiling point of a solvent. If there is an insoluble material when the raw material bortezomib is dissolved, it may be removed by techniques such as filtration, centrifugation, and decantation. When using a filtration device, it is desirable to properly warm the filtration device before use in order to avoid premature crystallization.
  • the method for precipitating bortezomib N-type crystals from the solution is not particularly limited, and normal crystal precipitation operations can be applied. For example, a method of cooling a solution dissolved by heating, a method of adding a solvent having low solubility of bortezomib to the solution, or a method of distilling off the solvent of the solution and concentrating or drying the solution can be mentioned. Further, Bortezomib N-type crystals may be added as seed crystals to the supersaturated solution.
  • the temperature range for depositing crystals is not particularly limited as long as it is not higher than the boiling point of the solvent.
  • the solubility of bortezomib it is preferable to precipitate crystals at a low temperature, for example, it is preferable to precipitate at a temperature lower than 50 ° C.
  • the temperature after cooling is 50 ° C or lower, more preferably 40 ° C or lower.
  • the solvent to be added is not particularly limited as long as it is a solvent having low solubility of bortezomib.
  • the solvent to be added an aliphatic hydrocarbon solvent is preferable, and specific examples thereof include normal hexane and normal heptane.
  • the amount of the poor solvent to be added is not particularly limited as long as it is an amount capable of sufficiently depositing crystals.
  • the amount of the aliphatic ester and the solvent containing the optional solvent and the poor solvent when the poor solvent is added to precipitate the crystals is 5 (v / w) to 700 (v / W) part, more preferably 5 (v / w) part to 450 (v / w) part, particularly preferably 5 (v / w) part to 130 (v / w) part. And more preferably 5 (v / w) part to 15 (v / w) part.
  • the precipitated Bortezomib N-type crystals are separated from the suspension from which the crystals are deposited by techniques known in the art. For example, there are methods based on gravity or suction filtration, centrifugal separation, decantation, etc., preferably suction filtration. Solvent removal from the wet crystals obtained after separation is possible by drying using various devices. Examples of equipment include shelf dryers, vacuum ovens, air ovens, fluidized bed dryers, spin flash dryers, flash dryers, and the like. Further, air drying or drying only by reduced pressure may be used without using these devices.
  • the temperature during the solvent removal operation may be a temperature from room temperature to the vicinity of the solvent used, and is preferably 40 to 80 ° C., more preferably 60 to 70 ° C. Moreover, you may dry under reduced pressure as needed.
  • the solvent removal time is a time during which the used solvent can be completely removed, and is preferably 1 hour or longer.
  • the N-type crystals of bortezomib prepared in the third and fourth aspects can be suitably used as a drug substance for a pharmaceutical preparation containing bortezomib as an active ingredient. Therefore, a method for producing a pharmaceutical preparation comprising bortezomib prepared as an active ingredient by dissolving the N-type crystals of bortezomib prepared in the third aspect and the fourth aspect and filling the preparation container with the N-type crystals is also provided. It is included in the present invention.
  • a method for producing a pharmaceutical preparation comprising bortezomib as an active ingredient includes the first step of preparing a solution by dissolving the type II crystals of bortezomib dehydrated trimer according to the first aspect and / or the second aspect described above, By the second step of filling the solution into the formulation container.
  • pharmaceuticals containing bortezomib as an active ingredient are provided as antitumor agents by intravenous or subcutaneous administration in the form of injections
  • the pharmaceutical preparations of the present invention are also preferably injectable preparations. That is, it is preferable to be a preparation type such as a freeze-dried preparation or an injection solution preparation.
  • the method relating to the first step and the second step includes a method for producing a pharmaceutical preparation containing bortezomib as an active ingredient using a type II crystal of bortezomib trimer prepared in the first and second aspects. It is the same operation.
  • Bortezomib used in Examples and Reference Examples is Bortezomib type I crystals prepared by referring to the method described in Patent Document 1, and when other crystal forms are used, the crystal forms are described. did.
  • the water content of the raw material bortezomib was measured by the Karl Fischer (KF) method.
  • bortezomib dehydrated trimer boroxin structure
  • an alcohol component such as methanol contained in the dehydrating solvent
  • bortezomib monomer boronic acid structure
  • bortezomib monomer reacts with alcohol components such as methanol contained in the dehydrating solvent to produce 9.4 mass% (2 mol) of water with respect to bortezomib monomer.
  • the moisture value of the raw material bortezomib needs to be quantified by subtracting water generated by solvolysis with a dehydrating solvent.
  • the structure of raw material bortezomib is a boroxine structure It is estimated to be.
  • the moisture value of the raw material bortezomib is calculated by subtracting 4.9% by mass of the solvolysis-generated water described above from the measured value.
  • the moisture value of the raw material bortezomib 100.0 mg measured as 6.4% by mass deducts 4.9% by mass of the solvolysis-generated moisture from the measured value 6.4%. 1.5% by mass (1.5 mg).
  • the water content with respect to the raw material bortezomib in the raw material bortezomib is 1.5% by mass obtained by dividing the water value of 1.5 mg by the raw material bortezomib content of 98.5 mg.
  • the structure of the raw material bortezomib is estimated to be a boronic acid structure.
  • the moisture value of the raw material bortezomib is calculated by subtracting 9.4% by mass of the solvolysis-generated water described above from the measured value.
  • the bortezomib crystals obtained in the present invention are considered to be both bortezomib dehydrated trimers, both type II crystals and N-type crystals are converted from bortezomib monomers, which are raw bortezomib, to bortezomib dehydrated trimers.
  • the water content with respect to the raw material bortezomib in the raw material bortezomib in the present invention is 6.7% by mass obtained by dividing the water content of 6.6 mg by the raw material bortezomib content of 98.0 mg.
  • An appropriate amount of dehydrated solvent was placed in a titration flask, a titrant was added to make the flask anhydrous, and the titer of the titrant was measured.
  • 36.7 mg of raw material bortezomib was weighed, immediately put into a titration flask, stirred for 5 minutes, and titrated to the end point with a titrant while stirring. As a result, the water content calculated from the titration value was 6.4. It was mass%.
  • the raw material bortezomib calculated to be 6.4% by mass by the KF method is presumed to be a bortezomib dehydrated trimer.
  • the moisture value is 1.5% by mass (0.55 mg) obtained by subtracting 4.9% by mass, which is the theoretical value of solvolysis-generated water, from the measured value. Therefore, the water content with respect to the raw material bortezomib in the raw material bortezomib is 1.5% by mass obtained by dividing the moisture value of 0.55 mg by the raw material bortezomib content of 36.15 mg.
  • Measured values were calculated by subtracting blank values. * Blank and sample measurements were performed once each.
  • the crystalline form of bortezomib according to the present application is characterized by a powder X-ray diffraction pattern.
  • the powder X-ray analysis of the examples was performed with the following equipment and measurement conditions. ⁇ Analysis conditions> Powder X-ray crystal diffractometer: Bruker D2 PHASER X-ray source: Cu-Ka radiation wavelength: 1.5418 angstrom Detector: Lynxey Data range: 3-30 ° (2 ⁇ ) Step width: 0.02 ° (2 ⁇ ) Measurement speed: Any speed from 0.2 to 2.0 (sec / step)
  • the solution containing raw material bortezomib and ethyl acetate (water content 0.8 mass% with respect to the raw material bortezomib) was prepared by heating and dissolving.
  • the solution was cooled to 25 ⁇ 2 ° C. at a cooling rate of 0.9 ° C./min. After stirring at the same temperature and confirming the precipitation of crystals, the mixture was further stirred for 11 hours to collect crystals.
  • the collected wet crystals were dried under reduced pressure to obtain bortezomib crystals. Powder X-ray diffraction measurement (measurement speed: 0.2 (sec / step)) of the obtained crystal was performed.
  • Example 2 Bortezomib crystals obtained by the method of Example 1 were dried under reduced pressure at 40 ⁇ 1 ° C. for 9 hours to prepare raw material bortezomib (type II crystals) having a water content of 0.3 mass%.
  • the collected wet crystals were dried under reduced pressure to obtain bortezomib crystals.
  • Powder X-ray diffraction measurement (measurement speed: 1.0 (sec / step)) of the obtained crystal was performed.
  • It has a peak at a diffraction angle (2 ⁇ ) of 4 ⁇ 0.2 °, confirming that it is a type II crystal of bortezomib dehydrated trimer.
  • the solution containing raw material bortezomib and ethyl acetate (water content 0.9 mass% with respect to the raw material bortezomib) was prepared by heating and dissolving.
  • the solution was cooled to a temperature range of 25 ⁇ 2 ° C. at a cooling rate of 0.5 ° C./min.
  • the mixture was further stirred for 2 hours to collect crystals.
  • the collected wet crystals were dried under reduced pressure to obtain bortezomib crystals. Powder X-ray diffraction measurement (measurement speed: 0.5 (sec / step)) of the obtained crystal was performed.
  • the solution containing raw material bortezomib and ethyl acetate (water content 0.5 mass% with respect to the raw material bortezomib) was prepared by heating and dissolving.
  • the solution was cooled to a temperature range of 25 ⁇ 2 ° C. at a cooling rate of 2.9 ° C./min.
  • the mixture was further stirred for 2 hours. Furthermore, it stirred for 6.5 hours in the temperature range of 22 +/- 7 degreeC, and the crystal
  • Example 7 Bortezomib produced by the method of Example 1 was dried under reduced pressure at 64 ⁇ 2 ° C. for 2 hours to prepare raw material bortezomib (type II crystal) having a water content of 0.1% by mass.
  • Ethyl acetate (water content 0.003% by mass) 149 mL (with respect to raw material bortezomib, water content 0.0% by mass), 9.4 g of raw material bortezomib with water content 0.1% by mass and 80 ⁇ L of water (with respect to raw material bortezomib) Then, a solution containing raw bortezomib and ethyl acetate (water content 1.0% by weight with respect to raw bortezomib) is obtained by heating and dissolving at 60 to 70 ° C. Prepared. The solution was cooled to a temperature range of 25 ⁇ 2 ° C. at a cooling rate of 1.9 ° C./min.
  • the obtained crystals were 4.6 ⁇ 0.2 °, 6.2 ⁇ 0.2 °, 8.6 ⁇ 0.2 °, 9.6 ⁇ 0.2 °, 12.4 ⁇ 0. It had a peak at a diffraction angle (2 ⁇ ) of 2 °, 20.4 ⁇ 0.2 ° (FIG. 2). Therefore, the obtained crystal form was a type II crystal of bortezomib dehydrated trimer, and it was confirmed that it did not transfer to an N type crystal under these conditions.
  • Example 9 The bortezomib produced with reference to the method described in Patent Document 1 was dried at 37 ° C. under reduced pressure for 1 hour, and then conditioned at a humidity of 32 RH% and a temperature of 22 ⁇ 1 ° C. for 13 minutes.
  • the solution containing the raw material bortezomib and ethyl acetate (water content 1.1% by mass with respect to the raw material bortezomib) was prepared by heating and dissolving.
  • the solution was cooled to 39 ⁇ 1 ° C. at a cooling rate of 6.4 ° C./min. After confirming the precipitation of crystals by stirring at the same temperature, the mixture was further stirred for 1 hour to collect crystals.
  • the collected wet crystals were dried under reduced pressure to obtain bortezomib crystals. Powder X-ray diffraction measurement (measurement speed: 1.0 (sec / step)) of the obtained crystal was performed.
  • Example 10 To 17.94 g of ethyl acetate containing 0.002% by mass of water, 38 ⁇ L of water was added to prepare ethyl acetate having a water content of 0.21% by mass. To 5.0 mL of this ethyl acetate (water content 4.8% by mass with respect to the raw material bortezomib), 0.2 g of bortezomib dehydrated trimer type II crystals obtained in Example 1 was added at room temperature, and the raw material bortezomib and acetic acid were added. A suspension containing ethyl (water content 4.8% by mass with respect to the raw material bortezomib) was prepared.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

ボルテゾミブは多様な結晶形態を有する。医薬品用原薬は、溶解性等の物性や品質を均一にするために単一の結晶形態であることが要求される。しかしながら、ボルテゾミブのII型結晶とN型結晶は、溶媒及び晶析温度がほぼ同じであり、それら2つの結晶形が混在する可能性は極めて高く、また安定して一方の結晶形態を取得することは、非常に困難である。したがって、ボルテゾミブのII型結晶又はN型結晶を選択的にかつ安定して製造する方法の開発が必要であった。 ボルテゾミブの結晶を取得する操作において、晶析系内の含水量若しくは含水量及び晶析温度を特定の範囲にコントロールすることにより、ボルテゾミブのII型結晶あるいはN型結晶を選択的にかつ安定して、高収率で取得する製造方法を提供する。

Description

ボルテゾミブ結晶の製造方法
 本発明は、多発性骨髄腫及びマントル細胞リンパ腫の治療に有用なボルテゾミブのII型結晶形態、並びにN型結晶形態の製造方法に関するものである。
 ボルテゾミブは、細胞内に蓄積した不要なタンパクを分解する酵素であるプロテアソームの酵素活性を阻害することにより薬効を発揮する薬剤であり、多発性骨髄腫及びマントル細胞リンパ腫の治療薬としてヤンセンファーマ株式会社よりベルケイド(登録商標)として販売されている。
 ボルテゾミブの化学名は、[(1R)-3-メチル-1-[(2S)-3-フェニル-2-(ピラジン-2-カルボキサミド)プロパンアミド]ブチル]ボロン酸であり、下記式(1)に示す構造である。
Figure JPOXMLDOC01-appb-C000001
 ボルテゾミブは有機ボロン酸基を有する化合物である。有機ボロン酸基は、有機溶媒中では脱水してボロキシン構造(三量体構造)を形成すること、ボロキシン構造は水系溶媒中において速やかに加水分解されてボロン酸構造となることが知られている。このため、ボルテゾミブもボロン酸構造である式(1)で示されるボルテゾミブ単量体と、ボロキシン構造である式(2)で示されるボルテゾミブ脱水三量体の両方の化学種の形態を取り得る。しかしながら、現在臨床で使用されているボルテゾミブ原薬の構造は、式(2)で示されるボルテゾミブ脱水三量体のボロキシン構造であることが審査報告書に記載されている。
Figure JPOXMLDOC01-appb-C000002
 ボルテゾミブの結晶形態について、ボロン酸及びボロキシンの構造の違いを含めて多数報告されている。
 例えば特許文献1では、ボルテゾミブのI型及びII型結晶、並びにそれらの製造方法が開示されている。また特許文献2は、ボルテゾミブのA型及びB型結晶、並びにそれらの製造方法を開示している。なお、A型結晶はボロン酸構造、B型結晶はボロキシン構造である旨を報告している。特許文献3は、ボルテゾミブのN型結晶及びその製造方法を開示している。また当該文献では、上記A型及びB型結晶は、それぞれI型及びII型結晶と同一であると述べている。特許文献4は、ボルテゾミブのSB型結晶及びその製造方法を開示している。なお、SB型結晶はボロン酸構造の1水和物である旨を報告している。特許文献5は、ボルテゾミブのAL型結晶及びその製造方法を開示している。特許文献6は、ボルテゾミブのA1型及びA2型結晶、並びにそれらの製造方法を開示している。特許文献7は、ボルテゾミブのH1型結晶及びその製造方法を開示している。また、特許文献8では、粉末X線回折において5.7、7.5、9.9、11.5、18.0、20.8±0.2゜の回折角(2θ)にピークを有するボルテゾミブ結晶形態及びそれらの製造方法が開示されている。
 ところで、上記ボルテゾミブの結晶形態のうち、特許文献1記載のII型結晶、特許文献2記載のB型結晶、特許文献3記載のN型結晶並びに特許文献4記載のSB型結晶は、酢酸エチル等の脂肪族エステル溶媒を使用することにより調製される。
 すなわちSB型結晶の製造方法は、ボルテゾミブを脂肪族エステル、若しくは脂肪族エステルと水の混合液に加温溶解させ、脂肪族C6~C7炭化水素溶媒を添加してから冷却することにより結晶を析出させることを特徴としている。B型結晶の製造方法は、ボルテゾミブを溶解させた脂肪族エステルに、芳香族炭化水素溶媒を添加して結晶を析出させることを特徴としている。II型及びN型結晶の製造方法は、どちらもボルテゾミブを脂肪族エステルに加温溶解させた後、冷却して結晶を析出させることを特徴としている。具体的に特許文献では、II型結晶はボルテゾミブの酢酸エチル熱溶液を25~30℃に冷却することにより調製され、N型結晶はボルテゾミブの酢酸エチル熱溶液を室温で2~2.5時間撹拌することにより調製される旨のみ、記載されている。
国際公開第2008/075376号 特表2010-539183号公報 国際公開第2014/097306号 特表2015-536342号公報 国際公開第2012/131707号 国際公開第2011/107912号 国際公開第2011/099018号 国際公開第2015/122702号
 一般に合成化合物を医薬として用いる場合には、溶解性等の物性や品質を均一にするために、単一の結晶形態が要求される。ところが、前述のようにボルテゾミブのII型結晶とN型結晶は、同じ溶媒、同じ温度範囲による結晶化で調製されることから、それら2つの結晶形態が混在する可能性は極めて高く、また安定して一方の結晶形態を取得することは、非常に困難である。したがって、ボルテゾミブの医薬品原薬としてII型あるいはN型結晶を用いる場合には、それぞれ単一の結晶形態であることが求められるため、それぞれの結晶形態を選択的に、且つ安定して製造できる方法の開発が必要である。
 本発明が解決しようとする課題は、溶媒として酢酸エチル等の脂肪族エステル溶媒から調製されるボルテゾミブのII型結晶又はボルテゾミブのN型結晶を、選択的にかつ安定して取得できる製造方法を提供することにある。
 本発明者等は、前記課題を解決すべく鋭意検討を行った結果、ボルテゾミブと溶媒を含有する結晶生成系において、系内の含水量、あるいは含水量と晶析温度の両方を特定の範囲にコントロールすることにより、ボルテゾミブのII型結晶あるいはN型結晶を選択的に、且つ安定して取得できることを見出し、本発明を完成させるに至った。すなわち、本発明は、ボルテゾミブのII型結晶の製造について、含水量を制御することによる製造方法である第1の態様、含水量と晶析温度の両方を制御することによる製造方法である第2の態様、並びにN型結晶の製造について、含水量を制御することによる製造方法である第3の態様、若しくは含水量と晶析温度の両方を制御することによる製造方法である第4の態様を包含する。
 本願の第1の態様は、ボルテゾミブ脱水三量体のII型結晶の製造方法に関し、以下の[1]~[5]に係る発明を要旨とする。
[1] 粉末X線回折において、4.6±0.2゜、6.2±0.2゜、8.6±0.2゜、9.6±0.2゜、12.4±0.2゜、20.4±0.2゜の回折角(2θ)にピークを有するボルテゾミブ脱水三量体のII型結晶の製造方法であって、
 ボルテゾミブ単量体、ボルテゾミブ脱水三量体及びそれらの混合物からなる群から選択される原料ボルテゾミブを、脂肪族エステルを含む溶媒に溶解して、原料ボルテゾミブの溶液を得ること、及び
 前記溶液からボルテゾミブの結晶を析出させること
を含み、
 前記溶液の含水量が、原料ボルテゾミブに対して0.6質量%以下であることを特徴とする、ボルテゾミブ脱水三量体のII型結晶の製造方法。
 第1の態様は、ボルテゾミブの晶析操作において、晶析系内の含水量を原料ボルテゾミブに対して0.6質量%以下に制御することによりII型結晶を選択的、且つ安定に製造することができるものである。
[2] 前記溶液の含水量が、原料ボルテゾミブに対して0.3質量%以下であることを特徴とする、前記[1]に記載の製造方法。
[3] 原料ボルテゾミブが、ボルテゾミブ脱水三量体である、前記[1]又は[2]に記載の製造方法。
[4] 原料ボルテゾミブを、脂肪族エステルを含む溶媒に50℃以上の温度で溶解すること、及び
 前記溶液を50℃より低い温度に冷却することによりボルテゾミブの結晶を析出させること
を特徴とする、前記[1]~[3]の何れか一項に記載の製造方法。
[5] 脂肪族エステルを含む溶媒が、酢酸エチルである、前記[1]~[4]の何れか一項に記載の製造方法。
 本願の第2の態様は、ボルテゾミブ脱水三量体のII型結晶の製造方法の別法であって、以下の[6]~[12]に係る発明を要旨とする。
[6] 粉末X線回折において、4.6±0.2゜、6.2±0.2゜、8.6±0.2゜、9.6±0.2゜、12.4±0.2゜、20.4±0.2゜の回折角(2θ)にピークを有するボルテゾミブ脱水三量体のII型結晶の製造方法であって、
 ボルテゾミブ単量体、ボルテゾミブ脱水三量体及びそれらの混合物からなる群から選択される原料ボルテゾミブを、脂肪族エステルを含む溶媒に溶解して、原料ボルテゾミブの溶液を得ること、及び
 前記溶液からボルテゾミブの結晶を析出させること
を含み、
 前記溶液の含水量が、原料ボルテゾミブに対して3.2質量%以下であり、及び
 前記溶液を35℃以下の温度に冷却することによりボルテゾミブの結晶を析出させること
を特徴とする、ボルテゾミブ脱水三量体のII型結晶の製造方法。
 第2の態様は、ボルテゾミブの晶析操作において、晶析系内の含水量を原料ボルテゾミブに対して3.2質量%以下に制御し、晶析温度を35℃以下とすることによりII型結晶を選択的、且つ安定に製造することができるものである。
[7] 前記溶液の含水量が、原料ボルテゾミブに対して2.9質量%以下であり、及び
 前記溶液を25℃以下の温度に冷却することによりボルテゾミブの結晶を析出させることを特徴とする、前記[6]に記載の製造方法。
[8] 前記溶液の含水量が、原料ボルテゾミブに対して1.0質量%以下であり、及び
 前記溶液を35℃以下の温度に冷却することによりボルテゾミブの結晶を析出させることを特徴とする、前記[6]に記載の製造方法。
[9] 原料ボルテゾミブが、ボルテゾミブ脱水三量体である、前記[6]~[8]の何れか一項に記載の製造方法。
[10] 原料ボルテゾミブを、脂肪族エステルを含む溶媒に50℃以上の温度で溶解することを特徴とする、前記[6]~[9]の何れか一項に記載の製造方法。
[11] 前記溶液を0.5℃/分以上の冷却速度で冷却することによりボルテゾミブの結晶を析出させることを特徴とする、前記[6]~[10]の何れか一項に記載の製造方法。
[12] 脂肪族エステルを含む溶媒が、酢酸エチルである、前記[6]~[11]の何れか一項に記載の製造方法。
[13] 前記[1]~[12]の何れか一項に記載の製造方法により得られたボルテゾミブ脱水三量体のII型結晶を医薬的に許容される溶媒に溶解して、ボルテゾミブの溶液を調製する工程、
 前記溶液を製剤用容器に充填する工程、及び
 任意選択的に、前記製剤用容器中の前記溶液を凍結乾燥する工程
を含む、ボルテゾミブを有効成分とする医薬製剤の製造方法。
 ボルテゾミブは、多発性骨髄腫及びマントル細胞リンパ腫等の治療薬として用いられることから、医薬製剤用の原薬として好適である。したがって、第1の態様及び/又は第2の態様で調製されるボルテゾミブ脱水三量体のII型結晶を原薬として用いる医薬製剤の製造方法も本発明に包含される。
 本願の第3の態様は、ボルテゾミブのN型結晶の製造方法であって、以下の[14]~[17]に係る発明を要旨とする。
[14] 粉末X線回折において、3.7±0.2゜、4.9±0.2゜、5.7±0.2゜、9.1±0.2゜、16.9±0.2゜の回折角(2θ)にピークを有するボルテゾミブのN型結晶の製造方法であって、
 ボルテゾミブ単量体、ボルテゾミブ脱水三量体及びそれらの混合物からなる群から選択される原料ボルテゾミブを、脂肪族エステルを含む溶媒に溶解して、原料ボルテゾミブの溶液を得ること、及び
 前記溶液からボルテゾミブの結晶を析出させること
を含み、
 前記溶液の含水量が、原料ボルテゾミブに対して1.0質量%以上10.0質量%以下であり、及び
 前記溶液を39℃以上の温度に冷却することによりボルテゾミブの結晶を析出させること
を特徴とする、ボルテゾミブのN型結晶の製造方法。
 第3の態様は、ボルテゾミブの晶析操作において、晶析系内の含水量を原料ボルテゾミブに対して1.0質量%以上10.0質量%以下とし、39℃以上で晶析することによりN型結晶を選択的、且つ安定に製造することができるものである。
[15] 原料ボルテゾミブの含水量が、1.0質量%以上10.0質量%以下である、前記[14]に記載の製造方法。
[16] 原料ボルテゾミブを、脂肪族エステルを含む溶媒に50℃以上の温度で溶解すること、及び
 前記溶液を39℃以上50℃未満に冷却することにより、ボルテゾミブの結晶を析出させること
を特徴とする、前記[14]又は[15]に記載の製造方法。
[17] 脂肪族エステルを含む溶媒が、酢酸エチルである、前記[14]~[16]の何れか一項に記載の製造方法。
 本願の第4の態様は、ボルテゾミブのN型結晶の製造方法であって、以下の[18]~[23]に係る発明を要旨とする。
[18] 粉末X線回折において、3.7±0.2゜、4.9±0.2゜、5.7±0.2゜、9.1±0.2゜、16.9±0.2゜の回折角(2θ)にピークを有するボルテゾミブのN型結晶の製造方法であって、
 ボルテゾミブ単量体、ボルテゾミブ脱水三量体及びそれらの混合物からなる群から選択される原料ボルテゾミブを、脂肪族エステルを含む溶媒に溶解又は懸濁して、原料ボルテゾミブの溶液又は懸濁液を得ること、及び、
 前記溶液からボルテゾミブの結晶を析出、又は前記懸濁液からボルテゾミブの結晶を取得すること
を含み、
 前記溶液又は懸濁液の含水量が、原料ボルテゾミブに対して4.0質量%以上10.0質量%以下であることを特徴とする、ボルテゾミブのN型結晶の製造方法。
 第4の態様は、原料ボルテゾミブを、原料ボルテゾミブに対して4.0質量%以上10.0質量%以下の水を含む溶液又は懸濁液で処理することによりN型結晶を選択的、且つ安定に製造することができるものである。
[19] 原料ボルテゾミブの含水量が、4.0質量%以上10.0質量%以下である、前記[18]に記載の製造方法。
[20] 前記溶液又は懸濁液の含水量が、原料ボルテゾミブに対して4.8質量%以上10.0質量%以下である、前記[18]又は[19]に記載の製造方法。
[21] 前記懸濁液を脂肪族エステルの沸点以下の温度で2時間以上撹拌することを特徴とする、前記[18]~[20]の何れか一項に記載の製造方法。
[22] 原料ボルテゾミブを、脂肪族エステルを含む溶媒に50℃以上の温度で溶解し、
 前記溶液を50℃より低い温度に冷却することによりボルテゾミブの結晶を析出させることを特徴とする、前記[18]~[20]の何れか一項に記載の製造方法。
[23] 脂肪族エステルを含む溶媒が、酢酸エチルである、前記[18]~[22]の何れか一項に記載の製造方法。
[24] 前記[14]~[23]の何れか一項に記載の製造方法により得られたボルテゾミブのN型結晶を医薬的に許容される溶媒に溶解して、ボルテゾミブの溶液を調製する工程、
 前記溶液を製剤用容器に充填する工程、及び
 任意選択的に、前記製剤用容器中の前記溶液を凍結乾燥する工程
を含む、ボルテゾミブを有効成分とする医薬製剤の製造方法。
 ボルテゾミブは、多発性骨髄腫及びマントル細胞リンパ腫等の治療薬として用いられることから、医薬製剤用の原薬として好適である。したがって、第3の態様及び/又は第4の態様で調製されるボルテゾミブのN型結晶を原薬として用いる医薬製剤の製造方法も本発明に包含される。
 本発明の製造方法により、従来の製造方法では目的としない結晶形態が混入する、若しくは目的としない結晶形態を取得する可能性のあったボルテゾミブ脱水三量体のII型結晶又はN型結晶を、それぞれ選択的に、かつ安定して高収率で製造することが可能になった。
本発明の実施例1に係るボルテゾミブ脱水三量体のII型結晶の粉末X線回折パターンの例示である。 本発明の参考例1に係るボルテゾミブ脱水三量体のII型結晶の粉末X線回折パターンの例示である。 本発明の実施例8に係るボルテゾミブのN型結晶の粉末X線回折パターンの例示である。
 本発明は、ボルテゾミブのII型結晶の製造について、含水量、若しくは含水量と晶析温度の両方を、制御することによる2通りの製造方法、並びにN型結晶の製造について、含水量、若しくは含水量と晶析温度の両方を、制御することによる2通りの製造方法を包含する。以下に、それぞれの発明の詳細について説明する。
 なお、本明細書に記載したボルテゾミブの結晶形態は、粉末X線回折パターンによって特徴づけられる。本明細書に記載した粉末X線解析は、Bruker D2 PHASERを使用して、X線源としてCu-Ka放射線を、波長には1.5418Åを使用して測定しているが、同様の性能を有する測定装置であれば特に機器を限定する必要はない。
 本願の第1の態様は、脂肪族エステルを含む溶媒中に、ボルテゾミブ単量体、ボルテゾミブ脱水三量体及びそれらの混合物からなる群から選択される原料ボルテゾミブを含む溶液の含水量を、原料ボルテゾミブに対し0.6質量%以下に制御し、この溶液から粉末X線回折(XRD)において4.6±0.2゜、6.2±0.2゜、8.6±0.2゜、9.6±0.2゜、12.4±0.2゜、20.4±0.2゜にピークを有するボルテゾミブの結晶を析出させることを特徴とする、ボルテゾミブ脱水三量体結晶の製造方法である。
 第1の態様によって製造される前記記載のボルテゾミブ脱水三量体結晶は、特許文献1及び特許文献2に記載されているボルテゾミブ脱水三量体のII型及びB型結晶と同じである。すなわち、粉末X線回折(XRD)のピークパターンにおいて同じであり、回折角(2θ)で4.6±0.2゜、6.2±0.2゜、8.6±0.2゜、9.6±0.2゜、12.4±0.2゜、20.4±0.2゜にピークを有することで特徴づけられるボルテゾミブ脱水三量体のII型結晶である。より詳細に説明すると、回折角(2θ)で、4.6±0.2゜、6.2±0.2゜、8.6±0.2゜、9.6±0.2゜、12.0±0.2゜、12.4±0.2゜、14.6±0.2゜、16.4±0.2゜、20.4±0.2゜、22.7±0.2゜、23.6±0.2゜で特徴付けられるボルテゾミブ脱水三量体のII型結晶である。
 第1の態様中の製造方法における原料ボルテゾミブとは、第1の態様の結晶化方法において原料として使用されるボルテゾミブのことである。原料ボルテゾミブは、下記式(1)に示すボロン酸構造であるボルテゾミブ単量体、又は下記式(2)に示すボロキシン構造であるボルテゾミブ脱水三量体であり、それらの混合物であっても良い。また、原料ボルテゾミブは、無水物、水和物あるいは溶媒和物でも良く、上記の先行技術文献に記載されている公知のボルテゾミブであっても良い。つまり、その結晶形態は特に限定されず、I型(A型)、II型(B型)、N型、SB型、AL型、A1型、A2型、H1型等の結晶形態、若しくは非晶質であっても良い。なお、原料ボルテゾミブは、任意のプロセス/形態によって得られた粗製又は純粋なボルテゾミブであっても良い。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 第1の態様における脂肪族エステルとは、脂肪族カルボン酸と低級アルコールがエステル結合した化合物である。脂肪族エステルは、原料ボルテゾミブを溶解するための溶媒として用いられる。該脂肪族エステルは、原料ボルテゾミブに対して十分な溶解度を有することが好ましい。具体的には、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸第三級ブチル、プロピオン酸エチル、酪酸エチル、吉草酸エチル等が挙げられ、好ましくは酢酸エチル、酢酸イソプロピル、酢酸ブチル、より好ましくは酢酸エチルである。さらに、脂肪族エステルは、単一の溶媒として用いても良く、2種以上の脂肪族エステルを混合して用いても良い。
 脂肪族エステルの使用量は、原料ボルテゾミブが十分に溶解できる量であれば良く、特に限定されない。例えば、原料ボルテゾミブ1質量部に対する脂肪族エステルの量は5(v/w)部~200(v/w)部で用いれば良く、好ましくは5(v/w)部~180(v/w)部、より好ましくは5(v/w)部~100(v/w)部、特に好ましくは5(v/w)部~15(v/w)部である。
 脂肪族エステルを溶媒として原料ボルテゾミブを溶解させた溶液には、原料ボルテゾミブの溶解度を調整するために、任意の他の溶媒を添加しても良い。添加する他の溶媒は、原料ボルテゾミブを溶解し、その後の結晶の析出を妨げないものであれば特に制限されることなく用いることができる。他の溶媒としては、例えば、ハロゲン化アルカン、ケトン、ニトリル、エーテル溶媒が使用でき、具体的にはジクロロメタン、クロロホルム、1,2-ジクロロエタン、アセトン、アセトニトリル、t-ブチルメチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル等である。
 他の溶媒を添加する場合、その使用量は、原料ボルテゾミブを溶解し、その後の結晶の析出を妨げない程度の量であって、好ましくは脂肪族エステルの1容量部に対して0.5容量部以下、より好ましくは0.3容量部以下である。
 第1の態様における溶媒では、他の溶媒を添加しない方が好ましい。実質的に、前記溶液は脂肪族エステルのみを溶媒とする溶液であることが好ましく、より好ましくは脂肪族エステルとして酢酸エチル用い、これを単一溶媒として原料ボルテゾミブを溶解した溶液である。
 第1の態様において、原料ボルテゾミブを含む溶液の含水量は、厳密に制御される必要がある。すなわち、その溶液中の含水量は、原料ボルテゾミブに対して0.6質量%以下であり、好ましくは0.3質量%以下である。若しくは、原料ボルテゾミブを含む溶液は、最大で0.6質量%の水を含む。好ましくは、最大で0.3質量%の水を含む溶液である。
 原料ボルテゾミブを含む溶液の含水量は、カールフィッシャー(KF)法による測定方法によって求められる値から算出することができる。なお、KF法による測定では、ボルテゾミブは加溶媒分解して水を生成する。そのため、前記溶液中の含水量は、生成水を控除して算出される。該溶液の含水量は、原料ボルテゾミブ、脂肪族エステル及び任意の他の溶媒等の溶液に含まれる各構成成分について、それぞれKF法により含水量を測定しておき、その総和を当該溶液の含水量としても良い。
 なお、該溶液中の含水量が0.6質量%を超える場合には、所定の含水量になるまで水を除去すれば良い。水を除去する方法としては、特に限定されるものではないが、水を共沸する方法、硫酸マグネシウム、硫酸ナトリウム若しくはモレキュラーシーブ等の乾燥剤を用いる方法が挙げられる。
 溶媒として用いられる脂肪族エステルは、市販品として入手可能であり、その含水量は、通常極めて低い値である。このため、該溶液中の含水量を前記範囲に調整するためには、原料ボルテゾミブの含水量を管理することが好ましい。つまり、原料ボルテゾミブは、ボルテゾミブ脱水三量体であることが好ましい。また、原料ボルテゾミブの含水量は原料ボルテゾミブに対して0.6質量%以下であり、好ましくは0.3質量%以下である。原料ボルテゾミブの含水量は、KF法による測定方法によって求められる値である。
 含水量が0.6質量%以下の原料ボルテゾミブは、ボルテゾミブ脱水三量体を乾燥操作により所定の含水量のものを調製することができる。
 原料ボルテゾミブの溶液は、原料ボルテゾミブ及び溶媒である脂肪族エステル、並びに任意の他の溶媒を混合し、原料ボルテゾミブを溶解させることで調製できる。前記溶液の調製温度は、溶媒の沸点までの任意の温度範囲で調整される。加温により原料ボルテゾミブを溶解する場合、溶解温度は、50℃以上であり、好ましくは50℃以上から用いる溶媒の沸点までの温度、より好ましくは50~80℃、特に好ましくは60~70℃である。
 また、脂肪族エステル、並びに任意の他の溶媒を含む溶媒の量は、特に限定されることなく、ボルテゾミブを溶解することができる量を用いればよい。例えば、原料ボルテゾミブ1質量部に対して、溶媒は5(v/w)部~300(v/w)部で用いることが好ましく、より好ましくは5(v/w)部~270(v/w)部であり、特に好ましくは5(v/w)部~130(v/w)部であり、殊更好ましくは5(v/w)部~15(v/w)部である。
 なお、原料ボルテゾミブの溶解時に不溶物がある場合には、濾過、遠心分離、デカンテーション等の技術によって除去すれば良い。濾過装置を使用する場合には、尚早な結晶化を回避するために、使用前に適切に濾過装置を加温することが望ましい。
 前記溶液からボルテゾミブ脱水三量体のII型結晶を析出させる方法としては特に限定されるものではなく、通常の結晶析出操作を適用することができる。例えば、加温溶解した溶液を冷却する方法、ボルテゾミブ脱水三量体の溶解度が低い溶媒を前記溶液に添加する方法、若しくは前記溶液の溶媒を留去して濃縮又は乾固する方法等が挙げられる。また、過飽和状態である前記溶液に種晶としてボルテゾミブ脱水三量体のII型結晶を添加しても良い。
 結晶を析出させる温度範囲は、溶媒の沸点以下であればよく、特に限定されない。ボルテゾミブの溶解度を考慮すると、低温にて結晶析出させることが好ましく、例えば50℃より低い温度で析出させることが好ましい。
 50℃以上に加温溶解した前記溶液を冷却することで結晶を析出させる場合、冷却後の温度は50℃以下であり、好ましくは40℃以下、より好ましくは30℃以下である。
 なお、結晶析出後も完全に結晶を析出させるため、1時間以上、同温度又はより低温にて撹拌を継続することが望ましい。
 貧溶媒を添加して結晶を析出させる場合、添加する溶媒は、ボルテゾミブの溶解度が低い溶媒であれば良い。添加する溶媒としては、芳香族炭化水素溶媒やエーテル溶媒が挙げられ、具体的にはトルエン、キシレン、t-ブチルメチルエーテル、ジイソプロピルエーテル等である。なお、添加する溶媒中に含まれる水についても考慮する必要がある。つまり、上記の溶媒を加えることで、原料ボルテゾミブを含む溶液が前記記載の含水量範囲を超えてはいけない。このため溶媒を添加する際は、含水量を制御した有機溶媒を用いるべきである。また、添加する貧溶媒の使用量は、結晶を十分に析出させることができる量であれば良く、特に限定されない。
 貧溶媒を添加して結晶を析出させる際の脂肪族エステル、並びに任意の溶媒及び貧溶媒を含む溶媒の量は、原料ボルテゾミブ1質量部に対して、5(v/w)部~700(v/w)部で用いることが好ましく、より好ましくは5(v/w)部~450(v/w)部であり、特に好ましくは5(v/w)部~130(v/w)部であり、殊更好ましくは5(v/w)部~15(v/w)部である。
 なお、結晶析出後も完全に結晶を析出させるため、1時間以上、同温度又はより低温にて撹拌を継続することが望ましい。
 析出したボルテゾミブ脱水三量体のII型結晶は、結晶を析出させた懸濁液から当該分野において公知である技術により分離される。例えば、重力又は吸引による濾過、遠心分離、デカンテーション等による方法があり、好ましくは吸引濾過による方法である。
 分離後得られた湿結晶からの溶媒除去は、各種機器を用いた乾燥によって可能である。機器の例を挙げると、棚型乾燥機、真空オーブン、エアオーブン、流動床乾燥機、スピンフラッシュ乾燥機、フラッシュ乾燥機等がある。またこれらの機器を使用せずに風乾又は減圧のみによる乾燥でも良い。この溶媒除去操作の際の温度は、室温から使用する溶媒付近までの温度で良く、好ましくは40~80℃、より好ましくは60~70℃である。また、必要に応じて減圧下で乾燥を実施してもよい。溶媒除去の時間は、使用した溶媒を完全に除去できる時間であり、好ましくは1時間以上である。
 本願の第2の態様は、脂肪族エステルを含む溶媒中に、ボルテゾミブ単量体、ボルテゾミブ脱水三量体及びそれらの混合物からなる群から選択される原料ボルテゾミブを含む溶液の含水量を、原料ボルテゾミブに対して3.2質量%以下に制御し、この溶液から35℃以下で、粉末X線回折(XRD)において4.6±0.2゜、6.2±0.2゜、8.6±0.2゜、9.6±0.2゜、12.4±0.2゜、20.4±0.2゜にピークを有するボルテゾミブの結晶を析出させることを特徴とする、ボルテゾミブ脱水三量体結晶の製造方法である。
 第2の態様によって製造される前記記載のボルテゾミブ脱水三量体結晶は、前述の第1の態様で得られるII型結晶と同義であり、粉末X線回折(XRD)のピークパターンにおいて同じであり、回折角(2θ)で4.6±0.2゜、6.2±0.2゜、8.6±0.2゜、9.6±0.2゜、12.4±0.2゜、20.4±0.2゜にピークを有することで特徴づけられるボルテゾミブ脱水三量体のII型結晶である。より詳細に説明すると、回折角(2θ)で、4.6±0.2゜、6.2±0.2゜、8.6±0.2゜、9.6±0.2゜、12.0±0.2゜、12.4±0.2゜、14.6±0.2゜、16.4±0.2゜、20.4±0.2゜、22.7±0.2゜、23.6±0.2゜で特徴付けられるボルテゾミブ脱水三量体のII型結晶である。
 第2の態様中の製造方法における、原料ボルテゾミブとは、前述の第1の態様における原料ボルテゾミブと同義であり、ボルテゾミブ単量体又はボルテゾミブ脱水三量体であり、それらの混合物であっても良い。また、無水物、水和物あるいは溶媒和物でもよく、その結晶多形も限定されずに用いることができる。
 第2の態様における脂肪族エステルとは、前述の第1の態様と同義であり、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸第三級ブチル、プロピオン酸エチル、酪酸エチル、吉草酸エチル等が挙げられ、好ましくは酢酸エチル、酢酸イソプロピル、酢酸ブチルが挙げられ、より好ましくは、酢酸エチルである。脂肪族エステルは単一種類で用いても良く、2種以上の脂肪族エステルを混合して用いてもよい。
 脂肪族エステルの使用量は、原料ボルテゾミブが十分に溶解できる量であれば良く、特に限定されない。例えば、原料ボルテゾミブ1質量部に対する脂肪族エステルの量は5(v/w)部~200(v/w)部であり、好ましくは5(v/w)部~180(v/w)部、より好ましくは5(v/w)部~100(v/w)部、特に好ましくは5(v/w)部~15(v/w)部である。
 脂肪族エステルを溶媒として原料ボルテゾミブを溶解させた溶液には、原料ボルテゾミブの溶解度を調整するために、任意の他の溶媒を添加しても良い。添加する任意の他の溶媒は、原料ボルテゾミブを溶解し、その後の結晶の析出を妨げないものであれば特に制限されることなく用いることができるが、ハロゲン化アルカン、ケトン、ニトリル、エーテル溶媒が使用でき、具体的にはジクロロメタン、クロロホルム、1、2-ジクロロエタン、アセトン、アセトニトリル、t-ブチルメチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル等を挙げることができる。
 他の溶媒を添加する場合、その使用量は、原料ボルテゾミブを溶解し、その後の結晶の析出を妨げない程度の量であって、好ましくは脂肪族エステルの1容量部に対して0.5容量部以下、より好ましくは0.3容量部以下である。
 第2の態様における溶媒では、他の溶媒は添加しない方が好ましい。実質的に、前記溶液は脂肪族エステルのみを溶媒とすることが好ましく、より好ましくは酢酸エチルを単一の溶媒として原料ボルテゾミブ溶解した溶液である。
 第2の態様において、原料ボルテゾミブを含む溶液の含水量は、厳密に制御される必要がある。すなわち、その溶液中の含水量は、原料ボルテゾミブに対して3.2質量%以下であり、好ましくは2.9質量%以下、より好ましくは1.0質量%以下、特に好ましくは0.9質量%以下である。若しくは、原料ボルテゾミブを含む溶液が、最大で3.2質量%の水を含む。好ましくは、最大で2.9質量%以下の水を含む溶液であり、より好ましくは最大で1.0質量%以下の水を含む溶液であり、特に好ましくは、最大で0.9質量%以下の水を含む溶液である。
 原料ボルテゾミブを含む溶液の含水量は、カールフィッシャー(KF)法の測定方法によって求められる値から算出することができる。なお、KF法による測定では、ボルテゾミブは加溶媒分解して水を生成する。そのため、前記溶液中の含水量は、この生成水を控除して算出される。該溶液の含水量は、原料ボルテゾミブ、脂肪族エステル及び任意の他の溶媒等の溶液に含まれる各構成成分について、それぞれKF法により含水量を測定しておき、その総和を当該溶液の含水量としても良い。
 なお、該溶液中の含水量が3.2質量%を超える場合には、水を除去すれば良い。水を除去する方法としては、特に限定されるものではないが、水を共沸する方法、硫酸マグネシウム、硫酸ナトリウム若しくはモレキュラーシーブ等の乾燥剤を用いる方法が挙げられる。
 溶媒として用いられる脂肪族エステルは、市販品として入手可能であり、通常、その含水量は極めて低い値である。このため、該溶液中の含水量を前記範囲に調整するためには、原料ボルテゾミブの含水量を管理することが好ましい。つまり、原料ボルテゾミブはボルテゾミブ脱水三量体であることが好ましい。また、原料ボルテゾミブの含水量は原料ボルテゾミブに対して3.2質量%以下であり、好ましくは2.9質量%以下、より好ましくは1.0質量%以下、特に好ましくは0.9質量%以下である。原料ボルテゾミブの含水量は、KF法による測定方法によって求められる値である。
 含水量が3.2質量%以下の原料ボルテゾミブは、ボルテゾミブ脱水三量体を乾燥操作により所定の含水量のものを調製することができる。
 原料ボルテゾミブの溶液は、原料ボルテゾミブ及び溶媒である脂肪族エステル、並びに任意の他の溶媒を混合し、原料ボルテゾミブを溶解させることで調製できる。前記溶液の調製温度は、溶媒の沸点までの温度範囲で調整される。加温により原料ボルテゾミブを溶解する場合、溶解温度は、50℃以上であり、好ましくは50℃以上から用いる溶媒の沸点までの温度、より好ましくは50~80℃、特に好ましくは60~70℃である。
 また、脂肪族エステル、並びに任意の他の溶媒を含む溶媒の量は、特に限定されることなく、ボルテゾミブを溶解することができる量を用いればよい。原料ボルテゾミブ1質量部に対して、脂肪族エステル及び他の溶媒は5(v/w)部~300(v/w)部で用いることが好ましく、より好ましくは5(v/w)部~270(v/w)部であり、特に好ましくは5(v/w)部~130(v/w)部であり、殊更好ましくは5(v/w)部~15(v/w)部である。
 なお、原料ボルテゾミブの溶解時に不溶物がある場合には、濾過、遠心分離、デカンテーション等の技術によって、除去すれば良い。濾過装置を使用する場合には、尚早な結晶化を回避するために、使用前に適切に濾過装置を加温することが望ましい。
 前記溶液からボルテゾミブ脱水三量体のII型結晶を析出させる方法としては、35℃以下の温度条件で結晶析出させることができれば、通常の結晶析出操作を適用することができる。例えば、加温溶解した溶液を冷却する方法、ボルテゾミブ脱水三量体の溶解度が低い貧溶媒を添加する方法、若しくは前記溶媒の溶媒を留去して濃縮又は乾固する方法等が挙げられる。また、過飽和状態である前記記載の溶液に種晶としてボルテゾミブ脱水三量体のII型結晶を添加しても良い。
 結晶を析出させる温度範囲は35℃以下であり、好ましくは30℃以下、より好ましくは25℃以下である。
 第2の態様における好ましい製造条件としては、原料ボルテゾミブを含む溶液が、原料ボルテゾミブに対して2.9質量%以下の含水量であり、この溶液から25℃以下でボルテゾミブ結晶を析出させる製造方法である。若しくは、原料ボルテゾミブを含む溶液が、原料ボルテゾミブに対して1.0質量%以下の含水量であり、この溶液から35℃以下でボルテゾミブ結晶を析出させる製造方法である。
 50℃以上で加温溶解した前記溶液を冷却することで結晶を析出させる場合、冷却後の温度は35℃以下であり、好ましくは30℃以下、より好ましくは25℃以下である。この際、加温溶液を35℃以下に冷却する速度は速い方が好ましい。冷却速度は0.5℃/分以上であり、より好ましくは1.0℃/分である。
 なお、結晶析出後も完全に結晶を析出させるため、1時間以上、同温度又はより低温にて撹拌を継続することが望ましい。
 貧溶媒を添加して結晶を析出させる場合、添加する溶媒は、ボルテゾミブの溶解度が低い溶媒であれば良い。添加する溶媒としては、芳香族炭化水素溶媒やエーテル溶媒が挙げられ、具体的にはトルエン、キシレン、t-ブチルメチルエーテル、ジイソプロピルエーテル等である。なお、貧溶媒を添加して結晶析出する場合、晶析温度を35℃以下に制御する方法としては、35℃以下の前記溶液に貧溶媒を添加する方法、加温溶液に貧溶媒を添加した後に35℃以下に冷却する方法、加温溶液に冷却した貧溶媒を添加して35℃以下に冷却する方法等を挙げることができる。
 また、添加する溶媒中に含まれる水についても考慮する必要があり、上記の溶媒を加えることで、原料ボルテゾミブ及び脂肪族エステルを含む溶液が前記記載の含水量範囲を超えてはいけない。このため溶媒を添加する際は、含水量を制御した有機溶媒を用いられるべきである。また、添加する貧溶媒の使用量は、結晶を十分に析出させることができる量であれば良く、特に限定されない。
 貧溶媒を添加して結晶を析出させる際の脂肪族エステル、並びに任意の溶媒及び貧溶媒を含む溶媒の量は、原料ボルテゾミブ1質量部に対して、5(v/w)部~700(v/w)部で用いることが好ましく、より好ましくは5(v/w)部~450(v/w)部であり、特に好ましくは5(v/w)部~130(v/w)部であり、殊更好ましくは5(v/w)部~15(v/w)部である。
 なお、結晶析出後も完全に結晶を析出させるため、1時間以上、同温度又はより低温にて撹拌を継続することが望ましい。
 析出したボルテゾミブ脱水三量体のII型結晶は、結晶を析出させた懸濁液から当該分野において公知である技術により分離される。例えば、重力又は吸引による濾過、遠心分離、デカンテーション等による方法があり、好ましくは吸引濾過による方法である。
 分離後得られた湿結晶からの溶媒除去は、各種機器を用いた乾燥によって可能である。機器の例を挙げると、棚型乾燥機、真空オーブン、エアオーブン、流動床乾燥機、スピンフラッシュ乾燥機、フラッシュ乾燥機等がある。またこれらの機器を使用せず風乾又は減圧のみによる乾燥でも良い。この溶媒除去操作の際の温度は、室温から使用する溶媒付近までの温度で良く、好ましくは40~80℃、より好ましくは60~70℃である。また、必要に応じて減圧下で乾燥を実施してもよい。溶媒除去の時間は、使用した溶媒を完全に除去できる時間であり、好ましくは1時間以上である。
 本願の第1の態様及び第2の態様で調製されるボルテゾミブ脱水三量体のII型結晶は、ボルテゾミブを有効成分とする医薬製剤用の原薬として好適に用いることができる。したがって、第1の態様及び第2の態様で調製されるボルテゾミブ脱水三量体のII型結晶を溶解し、これを製剤用容器に充填することにより調製されるボルテゾミブを有効成分とする医薬製剤の製造方法も、本願発明に含まれる。
 ボルテゾミブを有効成分とする医薬製剤の製造方法は、前述した第1の態様及び/又は第2の態様に係るボルテゾミブ脱水三量体のII型結晶を溶解して溶液を調製する第1工程、前記溶液を製剤用容器に充填する第2工程による。
 ボルテゾミブを有効成分とする医薬品は、注射剤の製剤形で静脈内投与又は皮下投与にて抗腫瘍剤として提供されていることから、本発明の医薬製剤も注射用製剤であることが好ましい。すなわち凍結乾燥製剤若しくは注射液製剤等の製剤型であることが好ましい。
 第1工程において、ボルテゾミブ脱水三量体のII型結晶を溶解するための溶媒は、可溶性溶媒であれば特に限定されるものではないが、医薬的に許容される溶剤であれば特に限定されるものではなく、適宜選択して適当な溶剤を用いて良い。例えば、水、エタノール、イソプロパノール、tert-ブタノール、グリセリン、プロピレングリコール、N-メチルピロリドン、ジメチルスルホキシド、ポリエチレングリコール(マクロゴール)、ポリソルベート(Tween)、クレモホール等が挙げられ、これらの単独使用若しくは、2種以上の混合溶剤として用いても良い。該溶媒は、水、グリセリン及びtert-ブタノールからなる群から選択される水を含む溶剤を選択することが望ましい。
 該溶液は、ボルテゾミブ脱水三量体II型結晶の濃度として0.1~100mg/mLで調製することが好ましく、0.1~10mg/mLの溶液であることがより好ましい。
 該溶液には賦形剤、pH調整剤、溶解補助剤、抗酸化剤等の通常の医薬製剤に用いられる他の添加剤を含有していても良い。これらの他の添加剤は、本発明に係る医薬組成物のボルテゾミブの安定性を維持する範囲において通常の医薬製剤に用いられる添加剤を用いて良く、その適用量も適宜設定されて良い。他の添加剤の含有量は、ボルテゾミブの安定性を考慮して適切な量を適宜設定して用いられるが、有効成分であるボルテゾミブ又はその誘導体1質量部に対し、それぞれ30質量部以下で用いることが好ましい。より好ましくは、ボルテゾミブ1質量部に対し、それぞれ15質量部以下である。
 賦形剤は、塩化ナトリウム等の塩類、マンニトール、ラクトース、スクロース、マルトース、トレハロース等の糖又は糖アルコールを用いることができる。
 pH調整剤は、塩酸、リン酸、ホウ酸、炭酸等の無機酸、アスコルビン酸、酢酸等の有機酸、といった酸性剤が挙げられる。また、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属又はアルカリ土類金属の水酸化物、リン酸二水素ナトリウム、リン酸一水素二ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム等の無機酸のアルカリ土類金属塩等といったアルカリ性剤を挙げることができる。また、前記酸性剤及びアルカリ性剤を混合してpH調整した緩衝剤を用いても良い。
 溶解補助剤は、グリセリン、チオグリセリン、プロピレングリコール等のポリオール類、ポリソルベート、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンヒマシ油等のポリエーテル系化合物等を挙げることができる。
 抗酸化剤は、ブチル化ヒドロキシトルエン、没食子酸プロピル、α‐トコフェロール、トコフェロールポリエチレングリコールスクシナート、L‐システイン等が挙げられる。
 第2工程は、前記溶液を製剤用容器に充填する工程である。ボルテゾミブは静脈内又は皮下へ注射にて投与されることから、無菌的に充填されることが要求され、例えば、前記溶液をメンブランフィルターにて濾過滅菌してバイアルに分注し、これを無菌的に封止密栓することで当該医薬製剤を調製することができる。凍結乾燥製剤とする場合は、分注したバイアルを凍結乾燥して無菌的に封止すれば良い。
 以上の工程により、ボルテゾミブを有効成分とする医薬製剤を製造することができる。
 本願の第3の態様は、脂肪族エステルを含む溶媒中に、ボルテゾミブ単量体、ボルテゾミブ脱水三量体及びそれらの混合物からなる群から選択される原料ボルテゾミブを含む溶液の含水量を、原料ボルテゾミブに対して1.0質量%以上10.0質量%以下に制御し、この溶液から39℃以上で粉末X線回折(XRD)において3.7±0.2゜、4.9±0.2゜、5.7±0.2゜、9.1±0.2゜、16.9±0.2゜にピークを有するボルテゾミブの結晶を析出させることを特徴とする、ボルテゾミブ結晶の製造方法である。
 第3の態様によって製造される前記記載のボルテゾミブ結晶は、特許文献3に記載されているボルテゾミブのN型結晶と同じである。すなわち、XRDのピークパターンにおいて同じであり、回折角(2θ)で3.7±0.2゜、4.9±0.2゜、5.7±0.2゜、9.1±0.2゜、16.9±0.2゜にピークを有することで特徴づけられるボルテゾミブのN型結晶である。より詳細に説明すると、回折角(2θ)で、3.7±0.2゜、4.9±0.2゜、5.7±0.2゜、9.1±0.2゜、9.7±0.2゜、11.3±0.2゜、14.8±0.2゜、15.7±0.2゜、16.9±0.2゜、18.3±0.2゜、19.0±0.2゜、19.7±0.2゜、21.8±0.2゜で特徴付けられるボルテゾミブのN型結晶である。
 第3の態様において、原料ボルテゾミブとは前述の第1の態様における原料ボルテゾミブと同義であり、ボルテゾミブ単量体又はボルテゾミブ脱水三量体であり、それらの混合物であっても良い。また、無水物、水和物あるいは溶媒和物でもよく、その結晶多形も限定されずに用いることができる。
 第3の態様における脂肪族エステルは、前述の第1の態様と同義であり、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸第三級ブチル、プロピオン酸エチル、酪酸エチル、吉草酸エチル等が挙げられ、好ましくは酢酸エチル、酢酸イソプロピル、酢酸ブチルが挙げられ、より好ましくは、酢酸エチルである。脂肪族エステルは、単一種類で用いても良く、2種以上の脂肪族エステルを混合して用いてもよい。
 脂肪族エステルの使用量は、原料ボルテゾミブが十分に溶解できる量であれば良く、特に限定されない。例えば、原料ボルテゾミブ1質量部に対して、脂肪族エステルは5(v/w)部~60(v/w)部であり、好ましくは5(v/w)部~40(v/w)部、より好ましくは5(v/w)部~14(v/w)部である。
 原料ボルテゾミブ、脂肪族エステル、及び水を含む溶液とは、脂肪族エステルを溶媒として原料ボルテゾミブを溶解させ、ある一定の水分を含む溶液である。なお、原料ボルテゾミブの溶解度を調整するために、該溶液には任意の他の溶媒を添加しても良い。添加する他の溶媒は、原料ボルテゾミブを溶解し、その後の結晶の析出を妨げないものであれば特に制限されることなく用いることができるが、例えば、ハロゲン化アルキル、ケトン、ニトリル、エーテル溶媒が使用でき、具体的にはジクロロメタン、クロロホルム、1、2-ジクロロエタン、アセトン、アセトニトリル、t-ブチルメチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル等を挙げることができる。
 他の溶媒を添加する場合、その使用量は、原料ボルテゾミブを溶解し、その後の結晶の析出を妨げない程度の量であって、好ましくは脂肪族エステルの1容量部に対して0.5容量部以下、より好ましくは0.3容量部以下である。
 第3の態様において、他の溶媒は添加しない方が好ましい。実質的に、前記溶液は脂肪族エステルのみを溶媒とすることが好ましく、より好ましくは、酢酸エチルを単一の溶媒とした原料ボルテゾミブを溶解した溶液である。
 第3の態様において、原料ボルテゾミブの溶液は、脂肪族エステルと共に、水を必須の構成成分とすることを特徴とする。すなわち、該溶液の含水量は、原料ボルテゾミブに対して1.0質量%以上であり、好ましくは1.1質量%以上、より好ましくは1.5質量%以上の水を含む溶液である。なお、含水量の上限は、原料ボルテゾミブの溶解を妨げない範囲であって、例えば原料ボルテゾミブに対して10.0質量%以下であり、より好ましくは7.5質量%以下である。
 含水量が高すぎる場合、ボルテゾミブ結晶の得量が著しく低下するおそれがある。したがって、第3の態様における前記溶液の含水量は、原料ボルテゾミブに対して1.0質量%以上10.0質量%以下に管理する必要があり、好ましくは1.1質量%以上7.5質量%以下、より好ましくは1.5質量%以上7.5質量%以下である。
 原料ボルテゾミブ、脂肪族エステル及び水を含む溶液の含水量は、カールフィッシャー(KF)法等の通常の測定方法によって求められる値から算出することができる。なお、KF法による測定では、ボルテゾミブは加溶媒分解して水を生成する。そのため、前記溶液中の含水量は、生成水を控除して算出される。該溶液の含水量は、原料ボルテゾミブ、脂肪族エステル及び任意の他の溶媒等の溶液に含まれる各構成成分について、それぞれKF法により含水量を測定しておき、その総和を当該溶液の含水量としても良い。
 該溶液中の含水量を前記記載の範囲に調整する方法としては、原料ボルテゾミブ及び/又は脂肪族エステルに含まれる水を所定の含水量に制御する方法、若しくは必要量の水を添加する方法又は水を除去する方法等が挙げられる。
 水を除去して含水量を下げるための調整方法は、水を共沸する方法、硫酸マグネシウムや硫酸ナトリウム若しくはモレキュラーシーブ等の乾燥剤を用いる方法が挙げられるが、特に限定されない。
 水を添加する場合、該溶液は、原料ボルテゾミブ及び脂肪族エステル、並びに任意の他の溶媒の不含水量を予め測定しておき、必要に応じ、水を添加することで含水量を調整することができる。
 溶媒として用いられる脂肪族エステルは、市販品として入手可能であり、通常、その含水量は、極めて低い値である。このため、該溶液中の含水量を前記範囲に調整するためには、原料ボルテゾミブの含水量を管理することが好ましい。つまり、原料ボルテゾミブの含水量は原料ボルテゾミブに対して1.0質量%以上であり、好ましくは、1.1質量%以上、より好ましくは1.5質量%以上である。なお、原料ボルテゾミブの含水量の上限は、原料ボルテゾミブに対して10.0質量%以下であり、より好ましくは7.5質量%以下である。したがって、原料ボルテゾミブの含水量は、原料ボルテゾミブに対して1.0質量%以上10.0質量%以下であり、好ましくは1.1質量%以上7.5質量%以下、より好ましくは1.5質量%以上7.5質量以下である。原料ボルテゾミブの含水量は、KF法による測定方法によって求められる値から算出することができる。
 なお、含水量が1.0質量%以上10.0質量%以下の原料ボルテゾミブは、乾燥操作若しくは湿潤操作により所定の含水量のものを調製することができる。
 第3の態様における原料ボルテゾミブ、脂肪族エステル及び水を含む溶液は、原料ボルテゾミブ及び溶媒である脂肪族エステル、並びに任意の他の溶媒を混合し原料ボルテゾミブを溶解させることで調製される。その際、原料ボルテゾミブに対して1.0質量%以上10.0質量%以下の含有量の水は、溶液調製に用いる原料ボルテゾミブ及び脂肪族エステル、並びに任意の他の溶媒の不含水量を予め測定しておき、必要に応じ、水を添加若しくは除去することで調製される。
 前記溶液は、溶媒の沸点までの温度範囲で調製される。加温により原料ボルテゾミブを溶解する場合、溶解温度は50℃以上であり、好ましくは50℃以上から用いる溶媒の沸点までの温度、より好ましくは50~80℃、特に好ましくは60~70℃である。
 また、脂肪族エステル、並びに任意の他の溶媒を含む溶媒の量は、特に限定されることなく、ボルテゾミブを溶解することができる量を用いればよい。原料ボルテゾミブ1質量部に対して、脂肪族エステルは5(v/w)部~90(v/w)部で用いることが好ましいであり、好ましくは5(v/w)部~60(v/w)部、より好ましくは5(v/w)部~18(v/w)部、特に好ましくは5(v/w)部~14(v/w)部である。
 なお、原料ボルテゾミブの溶解時に不溶物がある場合には、濾過、遠心分離、デカンテーション等の技術によって、除去すれば良い。濾過装置を使用する場合には、尚早な結晶化を回避するために、使用前に適切に濾過装置を加温することが望ましい。
 前記溶液からボルテゾミブのN型結晶を析出させる方法としては、39℃以上の温度条件で結晶析出させることができれば、通常の結晶析出操作を適用することができる。例えば、加温溶解した溶液を39℃以上の温度帯まで冷却する方法や、ボルテゾミブの溶解度が低い貧溶媒を前記溶液に添加する方法、若しくは前記溶液の溶媒を留去して濃縮又は乾固する方法等が挙げられる。また、過飽和状態である前記溶液に種晶としてボルテゾミブのN型結晶を添加する方法を用いても良い。
 結晶を析出させる温度範囲は、39℃以上であり、好ましくは40℃以上50℃未満である。
 50℃以上で加温溶解した前記溶液を冷却することで結晶を析出させる場合、冷却後の温度は、39℃以上50℃未満である。
 なお、結晶析出後も完全に結晶を析出させるため、1時間以上、同温で撹拌を継続することが望ましい。
 貧溶媒を添加して結晶を析出させる場合、添加する溶媒としては、ボルテゾミブの溶解度が低い溶媒であれば良い。添加する溶媒としては、脂肪族炭化水素溶媒が使用でき、具体的にはノルマルヘキサン、ノルマルヘプタンが挙げられる。なお、貧溶媒を添加して結晶析出する場合においても晶析温度を39℃以上に制御する必要があり、温度を制御する方法としては、加温された前記溶液に温度を維持しながら貧溶媒を添加した後、39℃以上の温度帯に冷却する方法、加温溶液を39℃以上の温度帯に冷却した後、39℃以上に加温した貧溶媒を添加する方法、加温溶液に冷却した貧溶媒を添加して39℃以上の温度帯まで冷却する方法等を挙げることができる。
 また、添加する溶媒中に含まれる水についても考慮する必要があり、上記の溶媒を加えることで、原料ボルテゾミブ及び脂肪族エステルを含む溶液の前記記載の含水量の上限を超えてはいけない。さらに、添加する貧溶媒の使用量は、結晶を十分に析出させることができる量であれば良く特に限定されない。
 貧溶媒を添加して結晶を析出させる際の脂肪族エステル、並びに任意の溶媒及び貧溶媒を含む溶媒の量は、原料ボルテゾミブ1質量部に対して、5(v/w)部~210(v/w)部で用いることが好ましく、より好ましくは5(v/w)部~100(v/w)部であり、特に好ましくは5(v/w)部~130(v/w)部であり、殊更好ましくは5(v/w)部~15(v/w)部である。なお、結晶析出後も完全に結晶を析出させるため、1時間以上、同温にて撹拌を継続することが望ましい。
 析出したボルテゾミブのN型結晶は、結晶を析出させた懸濁液から当該分野において公知である技術により分離される。例えば、重力又は吸引による濾過、遠心分離、デカンテーション等による方法があり、好ましくは吸引濾過による方法である。
 分離後得られた湿結晶からの溶媒除去は、各種機器を用いた乾燥によって可能である。機器の例を挙げると、棚型乾燥機、真空オーブン、エアオーブン、流動床乾燥機、スピンフラッシュ乾燥機、フラッシュ乾燥機等がある。またこれらの機器を使用せず風乾又は減圧のみによる乾燥でも良い。この溶媒除去操作の際の温度は、室温から使用する溶媒付近までの温度で良く、好ましくは40~80℃、より好ましくは60~70℃である。また、必要に応じて減圧下で乾燥を実施してもよい。溶媒除去の時間は、使用した溶媒を完全に除去できる時間であり、好ましくは1時間以上である。
 本願の第4の態様は、脂肪族エステルを含む溶媒中に、ボルテゾミブ単量体、ボルテゾミブ脱水三量体及びそれらの混合物からなる群から選択される原料ボルテゾミブを含む溶液又は懸濁液の含水量を、原料ボルテゾミブに対して4.0質量%以上10.0質量%以下に制御し、この溶液又は懸濁液から粉末X線回折(XRD)において3.7±0.2゜、4.9±0.2゜、5.7±0.2゜、9.1±0.2゜、16.9±0.2゜にピークを有するボルテゾミブの結晶を析出又は取得することを特徴とする、ボルテゾミブ結晶の製造方法である。
 第4の態様によって製造されるボルテゾミブ結晶は、前述の第3の態様のボルテゾミブのN型結晶と同義である。すなわち、XRDのピークパターンにおいて同じであり、回折角(2θ)で3.7±0.2゜、4.9±0.2゜、5.7±0.2゜、9.1±0.2゜、16.9±0.2゜にピークを有することで特徴づけられるボルテゾミブのN型結晶である。より詳細に説明すると、回折角(2θ)で、3.7±0.2゜、4.9±0.2゜、5.7±0.2゜、9.1±0.2゜、9.7±0.2゜、11.3±0.2゜、14.8±0.2゜、15.7±0.2゜、16.9±0.2゜、18.3±0.2゜、19.0±0.2゜、19.7±0.2゜、21.8±0.2゜で特徴付けられるボルテゾミブ脱水三量体のN型結晶である。
 第4の態様において、原料ボルテゾミブは前述の第1の態様における原料ボルテゾミブと同義であり、ボルテゾミブ単量体又はボルテゾミブ脱水三量体であり、それらの混合物であっても良い。また、無水物、水和物あるいは溶媒和物でもよく、その結晶多形も限定されずに用いることができる。
 第4の態様における脂肪族エステルは、前述の第1の態様と同義であり、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸第三級ブチル、プロピオン酸エチル、酪酸エチル、吉草酸エチル等が挙げられ、好ましくは酢酸エチル、酢酸イソプロピル、酢酸ブチルが挙げられ、より好ましくは、酢酸エチルである。脂肪族エステルは、単一種類で用いても良く、2種以上の脂肪族エステルを混合して用いてもよい。
 第4の態様における、原料ボルテゾミブ、脂肪族エステル及び水を含有する溶液又は懸濁液には、原料ボルテゾミブの溶解度を調整するために、任意の他の溶媒を添加しても良い。添加する他の溶媒は、原料ボルテゾミブを溶解又は懸濁し、その後の結晶の析出又は懸濁液の撹拌の維持を妨げないものであれば特に制限されることなく用いることができるが、例えば、ハロゲン化アルキル、ケトン、ニトリル、エーテル溶媒が使用でき、具体的にはジクロロメタン、クロロホルム、1、2-ジクロロエタン、アセトン、アセトニトリル、t-ブチルメチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル等を挙げることができる。
 他の溶媒を添加する場合、その使用量は、原料ボルテゾミブを溶解又は懸濁し、その後の結晶の析出又は懸濁液の撹拌の維持を妨げない程度の量であって、好ましくは脂肪族エステルの1容量部に対して0.5容量部以下、より好ましくは0.3容量部以下である。
 第4の態様において、他の溶媒は添加しない方が好ましい。実質的に、前記溶液又は懸濁液は脂肪族エステルのみを溶媒とすることが好ましく、より好ましくは、酢酸エチルを単一の溶媒とした原料ボルテゾミブの溶液又は懸濁液である。
 第4の態様において、原料ボルテゾミブを含む溶液又は懸濁液は、脂肪族エステルと共に、水を必須の構成成分とすることを特徴とする。すなわち、該溶液又は懸濁液の含水量は、原料ボルテゾミブに対して4.0質量%以上10.0質量%以下、好ましくは4.8質量%以上7.5質量%以下である。
 原料ボルテゾミブ、脂肪族エステル及び水を含む溶液又は懸濁液の含水量は、カールフィッシャー(KF)法等の通常の測定方法によって求められる値から算出することができる。なお、KF法による測定では、ボルテゾミブは加溶媒分解して水を生成する。そのため、前記溶液又は懸濁液中の含水量は、生成水を控除して算出される。該溶液又は懸濁液の含水量は、原料ボルテゾミブ、脂肪族エステル及び任意の他の溶媒等の各構成成分について、それぞれKF法により含水量を測定しておき、その総和を当該溶液又は懸濁液の含水量としても良い。
 該溶液又は懸濁液中の含水量を前記記載の範囲に調整する方法としては、原料ボルテゾミブ及び/又は脂肪族エステルに含まれる水を所定の含水量に制御する方法、若しくは必要量の水を添加する方法又は水を除去する方法が挙げられる。水を除去して含水量を下げるための調整方法は、水を共沸する方法、硫酸マグネシウムや硫酸ナトリウム若しくはモレキュラーシーブ等の乾燥剤を用いる方法が挙げられるが、特に限定されない。
 水を添加する場合、該溶液又は懸濁液は、原料ボルテゾミブ及び脂肪族エステル、並びに任意の他の溶媒の含水量を予め測定しておき、必要に応じ、水を添加することで含水量を調整することができる。
 溶媒として用いられる脂肪族エステルは、市販品として入手可能であり、通常、その含水量は極めて低い値である。このため、該溶液又は懸濁液中の含水量を前記範囲に調整するためには、原料ボルテゾミブの含水量を管理することが好ましい。該溶液又は懸濁液の含水量を前記範囲に調整するためには、原料ボルテゾミブの含水量を管理すれば良い。つまり、原料ボルテゾミブの含水量は、原料ボルテゾミブに対して4.0質量%以上10.0質量%以下であり、好ましくは4.8質量%以上7.5質量%以下である。原料ボルテゾミブの含水量は、KF法による測定方法によって求められる値から算出することができる。
 なお、含水量が4.0質量%以上10.0質量%以下の原料ボルテゾミブは、乾燥操作若しくは湿潤操作により所定の含水量のものを調製することができる。
 第4の態様において、ボルテゾミブのN型結晶は、原料ボルテゾミブ、脂肪族エステル及び水を含有する懸濁液から結晶形転移をさせる方法と、前記溶液から結晶を析出させる方法により取得できる。
 前記溶液又は懸濁液が懸濁液であって、懸濁液からボルテゾミブのN型結晶へ結晶形転移をさせる場合、脂肪族エステルの溶媒量は、前記記載の懸濁液を調製できる量を用いればよく、特に限定されない。例えば、原料ボルテゾミブ1質量部に対して、脂肪族エステルは5(v/w)部~200(v/w)部であり、好ましくは5(v/w)部~180(v/w)部であり、より好ましくは5(v/w)部~100(v/w)部であり、特に好ましくは5(v/w)部~25(v/w)部である。また、脂肪族エステルに任意の他の溶媒を添加する場合、脂肪族エステル、並びに任意の他の溶媒を含む溶媒の量は、特に限定されることなく、ボルテゾミブを懸濁することができる量を用いればよい。例えば、原料ボルテゾミブ1質量部に対して、脂肪族エステルを5(v/w)部~300(v/w)部で用いれば良く、好ましくは5(v/w)部~270(v/w)部であり、より好ましくは5(v/w)部~130(v/w)部であり、特に好ましくは5(v/w)部~25(v/w)部である。
 前記懸濁液は、溶媒の沸点までの任意の温度によって調製される。ボルテゾミブのN型結晶を前記懸濁液から結晶形転移をさせる場合の温度は、使用する溶媒の沸点以下の温度範囲であって、例えば25~50℃の温度範囲である。
 前記懸濁液は、同温度にて1時間以上、好ましくは2時間以上撹拌することで、原料ボルテゾミブを完全にボルテゾミブのN型結晶を調製することができる。なお、原料ボルテゾミブの結晶形をN型結晶に完全に転移させ、かつ完全に結晶を析出させるため、より長時間の撹拌を継続することが望ましい。
 場合によって、この懸濁液にボルテゾミブの溶解度が低い溶媒を添加して、攪拌を継続しても良い。添加する溶媒としては、脂肪族炭化水素溶媒が使用でき、具体的にはノルマルヘキサン、ノルマルヘプタンが挙げられる。なお、添加する溶媒中に含まれる水についても考慮する必要があり、上記の溶媒を加えることで、前記記載の含水量範囲を超えてはいけない。また、添加する貧溶媒の使用量は、結晶を十分に析出させることができる量であれば良く、特に限定されない。
 貧溶媒を添加して結晶を析出させる際の脂肪族エステル、並びに任意の溶媒及び貧溶媒を含む溶媒の量は、原料ボルテゾミブ1質量部に対して、5(v/w)部~700(v/w)部で用いることが好ましく、より好ましくは5(v/w)部~450(v/w)部であり、特に好ましくは5(v/w)部~130(v/w)部であり、殊更好ましくは5(v/w)部~25(v/w)部である。
 前記溶液又は懸濁液が溶液であって、該溶液からボルテゾミブの結晶を析出させる場合、脂肪族エステルの溶媒量は、特に限定されることなく、ボルテゾミブを溶解することができる量を用いればよい。例えば、原料ボルテゾミブ1質量部に対して、脂肪族エステルは5(v/w)部~200(v/w)部であり、好ましくは5(v/w)部~180(v/w)部であり、より好ましくは5(v/w)部~100(v/w)部であり、特に好ましくは5(v/w)部~15(v/w)部である。
 また、脂肪族エステルに任意の他の溶媒を添加する場合、脂肪族エステル、並びに任意の他の溶媒を含む溶媒の量は、特に限定されることなく、ボルテゾミブを溶解することができる量を用いればよい。例えば、原料ボルテゾミブ1質量部に対して、脂肪族エステルは5(v/w)部~300(v/w)部で用いれば良く、好ましくは5(v/w)部~270(v/w)部であり、より好ましくは5(v/w)部~130(v/w)部であり、特に好ましくは5(v/w)部~15(v/w)部である。
 当該溶液の調製温度は、特に限定されず、溶媒の沸点までの温度範囲であれば良い。
 原料ボルテゾミブの溶解時に不溶物がある場合には、濾過、遠心分離、デカンテーション等の技術によって、除去すれば良い。濾過装置を使用する場合には、尚早な結晶化を回避するために、使用前に適切に濾過装置を加温することが望ましい。
 前記溶液からボルテゾミブのN型結晶を析出させる方法としては特に限定されるものではなく、通常の結晶析出操作を適用することができる。例えば、加温溶解した溶液を冷却する方法、ボルテゾミブの溶解度が低い溶媒を前記溶液に添加する方法、若しくは前記溶液の溶媒を留去して濃縮又は乾固する方法が挙げられる。また、過飽和状態である前記溶液に種晶としてボルテゾミブのN型結晶を添加しても良い。
 結晶を析出させる温度範囲は、溶媒の沸点以下であればよく、特に限定されない。ボルテゾミブの溶解度を考慮すると、低温にて結晶析出させることが好ましく、例えば50℃より低い温度で析出させることが好ましい。
 50℃以上で加温溶解した前記溶液を冷却することで結晶を析出させる場合、冷却後の温度は50℃以下であり、より好ましくは40℃以下である。
 なお、結晶析出後も完全に結晶を析出させるため、1時間以上、同温度又はより低温にて撹拌を継続することが望ましい。
 貧溶媒を添加して結晶を析出させる場合、添加する溶媒としては、ボルテゾミブの溶解度が低い溶媒であれば特に限定されるものではなく用いることができる。添加する溶媒としては、脂肪族炭化水素溶媒が好ましく、具体的にはノルマルヘキサン、ノルマルヘプタン等が挙げられる。また、添加する溶媒中に含まれる水についても考慮する必要があり、上記溶媒を加えることで、原料ボルテゾミブを含む脂肪族エステル溶液の前記記載の含水量範囲を超えてはいけない。さらに、添加する貧溶媒の使用量は、結晶を十分に析出させることができる量であれば良く、特に限定されない。
 貧溶媒を添加して結晶を析出させる際の脂肪族エステル、並びに任意の溶媒及び貧溶媒を含む溶媒の量は、原料ボルテゾミブ1質量部に対して、5(v/w)部~700(v/w)部で用いることが好ましく、より好ましくは5(v/w)部~450(v/w)部であり、特に好ましくは5(v/w)部~130(v/w)部であり、殊更好ましくは5(v/w)部~15(v/w)部である。なお、結晶析出後も完全に結晶を析出させるため、1時間以上、同温度又はより低温にて撹拌を継続することが望ましい。
 析出したボルテゾミブのN型結晶は、結晶を析出させた懸濁液から当該分野において公知である技術により分離される。例えば、重力又は吸引による濾過、遠心分離、デカンテーション等による方法があり、好ましくは吸引濾過による方法が挙である。
 分離後得られた湿結晶からの溶媒除去は、各種機器を用いた乾燥によって可能である。機器の例を挙げると、棚型乾燥機、真空オーブン、エアオーブン、流動床乾燥機、スピンフラッシュ乾燥機、フラッシュ乾燥機等がある。またこれらの機器を使用せずに風乾又は減圧のみによる乾燥でも良い。この溶媒除去操作の際の温度は、室温から使用する溶媒付近までの温度で良く、好ましくは40~80℃、より好ましくは60~70℃である。また、必要に応じて減圧下で乾燥を実施してもよい。溶媒除去の時間は、使用した溶媒を完全に除去できる時間であり、好ましくは1時間以上である。
 第3の態様及び第4の態様で調製されるボルテゾミブのN型結晶は、ボルテゾミブを有効成分とする医薬製剤用の原薬として好適に用いることができる。したがって、第3の態様及び第4の態様で調製されるボルテゾミブのN型結晶を溶解し、これを製剤用容器に充填することにより調製されるボルテゾミブを有効成分とする医薬製剤の製造方法も、本願発明に含まれる。
 ボルテゾミブを有効成分とする医薬製剤の製造方法は、前述した第1の態様及び/又は第2の態様に係るボルテゾミブ脱水三量体のII型結晶を溶解して溶液を調製する第1工程、前記溶液を製剤用容器に充填する第2工程による。
 ボルテゾミブを有効成分とする医薬品は、注射剤の製剤形で静脈内投与又は皮下投与にて抗腫瘍剤として提供されていることから、本発明の医薬製剤も注射用製剤であることが好ましい。すなわち凍結乾燥製剤若しくは注射液製剤等の製剤型であることが好ましい。
 前記第1工程及び第2工程に関する方法は、前述の第1の態様及び第2の態様で調製されるボルテゾミブ三量体のII型結晶を用いたボルテゾミブを有効成分とする医薬製剤の製造方法と同様の操作である。
 以下、実施例及び参考例により本発明を説明するが、本発明はこれらに限定されるものではない。なお、実施例及び参考例に使用したボルテゾミブは、特許文献1に記載された方法を参考に調製したボルテゾミブのI型結晶を用い、その他の結晶形態を用いた場合には、その結晶形態を記載した。
 原料ボルテゾミブの含水量は、カールフィッシャー(KF)法により含水量を測定した。ここで、ボルテゾミブ脱水三量体(ボロキシン構造)は、脱水溶剤に含まれるメタノール等のアルコール成分と反応することで、ボルテゾミブ脱水三量体に対して4.9質量%分(3mol分)の水を生成する(化5)。一方、ボルテゾミブ単量体(ボロン酸構造)は、脱水溶剤に含まれるメタノール等のアルコール成分と反応することで、ボルテゾミブ単量体に対して9.4質量%分(2mol分)の水を生成する(化6)。このため、原料ボルテゾミブの水分値は、脱水溶剤による加溶媒分解で生成する水を控除して定量する必要がある。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 原料ボルテゾミブの加溶媒分解によって水を生成する物性があることから、KF法における原料ボルテゾミブの測定値が4.9~9.4質量%未満であった場合、原料ボルテゾミブの構造はボロキシン構造であると推定される。このため、該原料ボルテゾミブの水分値は、測定値から前記記載の加溶媒分解生成水である4.9質量%を控除することで算出することになる。
 例を挙げて説明すると、測定値が6.4質量%と測定された原料ボルテゾミブ100.0mgの水分値は、測定値6.4質量%から加溶媒分解生成水分の4.9質量%を控除した1.5質量%(1.5mg)となる。したがって、原料ボルテゾミブ中の原料ボルテゾミブに対する含水量は、その水分値1.5mgを原料ボルテゾミブ含量の98.5mgで除した1.5質量%となる。
 一方、KF法における原料ボルテゾミブの測定値が9.4質量%以上であった場合、原料ボルテゾミブの構造はボロン酸構造であると推定される。このため、該原料ボルテゾミブの水分値は、測定値から前記記載の加溶媒分解生成水である9.4質量%を控除することで算出される。
 さらに、本発明において得られるボルテゾミブ結晶はII型結晶及びN型結晶は、共にボルテゾミブ脱水三量体であると考えられるため、原料ボルテゾミブであるボルテゾミブ単量体からボルテゾミブ脱水三量体へ変化する際に生成される4.7質量%分の水を考慮する必要がある(化7)。
Figure JPOXMLDOC01-appb-C000007
 以上のことから、KF法による測定値が9.4質量%以上の原料ボルテゾミブを用いる場合、測定値より加溶媒分解生成水分の9.4質量%を控除し、更にボルテゾミブ脱水三量体への構造変換により生成する脱水分の4.7質量%を加えることで算出される。
 例を挙げて説明すると、測定値が11.4質量%と測定された原料ボルテゾミブ100.0mgの場合、測定値11.4質量%から加溶媒分解生成水分の9.4質量%を控除した2.0質量%(2.0mg)が実質の水分量となり、更に三量体への脱水縮合による構造変換に伴う脱水生成水分の4.6mg(4.7質量%)を加えた6.6mgが本発明における水分値となる。したがって、本発明における原料ボルテゾミブ中の原料ボルテゾミブに対する含水量は、その水分値6.6mgを原料ボルテゾミブ含量の98.0mgで除した6.7質量%となる。
<試験方法> KF法によるボルテゾミブの水分値測定方法
 脱水溶剤適量を滴定フラスコにとり、滴定剤を添加してフラスコ内を無水状態にした後、滴定剤の力価を測定した。ブランク試験後、原料ボルテゾミブ36.7mgを秤量し、速やかに滴定フラスコに入れ、5分間撹拌した後、撹拌しながら滴定剤で終点まで滴定した結果、滴定値から算出される含水量は6.4質量%であった。
 KF法による測定値が6.4質量%と算出された原料ボルテゾミブは、ボルテゾミブ脱水三量体と推定される。また、その水分値は、測定値から加溶媒分解生成水分の理論値である4.9質量%を差し引いた1.5質量%(0.55mg)となる。したがって、原料ボルテゾミブ中の原料ボルテゾミブに対する含水量は、その水分値0.55mgを原料ボルテゾミブ含量の36.15mgで除した1.5質量%となる。
※測定値は、ブランク値を差し引いた値を採用した。
※ブランク、試料測定はそれぞれ1回行い実施した。
※ボルテゾミブの水分値(%)は同様の方法で測定し、滴定値-4.9%より算出した。
<分析条件>
KF測定装置:CA-200(株式会社三菱ケミカルアナリテック)
滴定開始遅延時間(Delay)     :        5分
滴定継続時間(min Titr)    :        0分
滴定継続終了時間(Titr Stop) :        0分
終点待ち時間(End Sense)   :       30秒
終点電位(End mV)        :     140mV
プリント書式番号(Print Form):         3
濃度計算式(Calc Form)    :         6
単位(Calc Form)       :         0
ブランク測定回数(Blank Test):         1
B1最小滴下量(B1 min Dro) :      10μL
B1滴定ゲイン(B1 Gain)    :         1
B1最大滴下量(B1 Max Vol) :      50mL
脱水溶剤        :アクアミクロン脱水溶剤GEX
滴定剤         :アクアミクロン滴定剤SS-Z 1mg
 本願に係るボルテゾミブの結晶形態は、粉末X線回折パターンによって特徴づけられる。実施例の粉末X線解析は、以下の機器及び測定条件にて行った。
<分析条件>
粉末X線結晶回折測定装置:Bruker D2 PHASER
X線源:Cu-Ka放射線
波長:1.5418オングストローム
検出器:Lynxeye
データ範囲:3~30°(2θ)
ステップ幅:0.02°(2θ)
測定速度:0.2~2.0(sec/ステップ)の任意の速度
<ボルテゾミブのII型結晶の製造>
[実施例1]
 特許文献1に記載された方法を参考に製造したボルテゾミブを、減圧下36±1℃で1時間乾燥することにより、含水量0.8質量%である原料ボルテゾミブ(I型結晶)を調製した。
 酢酸エチル(含水量0.003質量%)258mL(原料ボルテゾミブに対して、含水量0.0質量%)に含水量0.8質量%の原料ボルテゾミブ20.0gを加えた後、60~70℃で加温溶解させることで、原料ボルテゾミブと酢酸エチルを含む溶液(原料ボルテゾミブに対して、含水量0.8質量%)を調製した。この溶液を25±2℃まで、冷却速度0.9℃/分で冷却した。同温で撹拌して結晶の析出を確認した後、更に11時間撹拌し、結晶を採取した。採取した湿結晶を減圧乾燥し、ボルテゾミブ結晶を得た。
 得られた結晶の粉末X線回折測定(測定速度:0.2(sec/ステップ))を行った。その結果、4.6±0.2゜、6.2±0.2゜、8.6±0.2゜、9.6±0.2゜、12.4±0.2゜、20.4±0.2゜の回折角(2θ)にピークを有しており、ボルテゾミブ脱水三量体のII型結晶であることが確認できた(図1)。
[実施例2]
 実施例1の方法で取得したボルテゾミブ結晶を、減圧下40±1℃で9時間乾燥することにより、含水量0.3質量%の原料ボルテゾミブ(II型結晶)を調製した。
 酢酸エチル(含水量0.002質量%)9.2mL(原料ボルテゾミブに対して、含水量0.0質量%)に含水量0.3質量%の原料ボルテゾミブ0.6gを加えた後、60~70℃で加温溶解させることで、原料ボルテゾミブと酢酸エチルを含む溶液(原料ボルテゾミブに対して、含水量0.3質量%)を調製した。この溶液を40~43℃まで、冷却速度0.6℃/分で冷却した。同温で撹拌して結晶の析出を確認した後、更に3時間撹拌し、結晶を採取した。採取した湿結晶を減圧乾燥し、ボルテゾミブ結晶を得た。
 得られた結晶の粉末X線回折測定(測定速度:1.0(sec/ステップ))を行った。その結果、4.6±0.2゜、6.2±0.2゜、8.6±0.2゜、9.6±0.2゜、12.4±0.2゜、20.4±0.2゜の回折角(2θ)にピークを有しており、ボルテゾミブ脱水三量体のII型結晶であることが確認できた。
[実施例3]
 特許文献1に記載された方法を参考に製造したボルテゾミブを、減圧下40±1℃で3時間乾燥することにより、含水量1.0質量%である原料ボルテゾミブ(I型結晶)を調製した。
 酢酸エチル(含水量0.002質量%)15.0mL(原料ボルテゾミブに対して、含水量0.0質量%)に含水量1.0質量%の原料ボルテゾミブ1.0gを加えた後、60~70℃で加温溶解させることで、原料ボルテゾミブと酢酸エチルを含む溶液(原料ボルテゾミブに対して、含水量1.0質量%)を調製した。この溶液を34±1℃の温度範囲まで、冷却速度3.3℃/分で冷却した。同温で撹拌して結晶の析出を確認した後、更に3時間撹拌し、結晶を採取した。採取した湿結晶を減圧乾燥し、ボルテゾミブ結晶を得た。
 得られた結晶の粉末X線回折測定(測定速度:1.0(sec/ステップ))を行った。その結果、4.6±0.2゜、6.2±0.2゜、8.6±0.2゜、9.6±0.2゜、12.4±0.2゜、20.4±0.2゜の回折角(2θ)にピークを有しており、ボルテゾミブ脱水三量体のII型結晶であることが確認できた。
[実施例4]
 特許文献1に記載された方法を参考に製造したボルテゾミブを、減圧下38±2℃で1時間乾燥した原料ボルテゾミブを、引き続き湿度53~61RH%、温度27~28℃にて79分間調湿させることで、含水量2.9質量%である原料ボルテゾミブ(I型結晶)を調製した。
 酢酸エチル(含水量0.003質量%)225mL(原料ボルテゾミブに対して、含水量0.0質量%)に含水量2.9質量%の原料ボルテゾミブ15.0gを加えた後、60~70℃で加温溶解させることで、原料ボルテゾミブと酢酸エチルを含む溶液(原料ボルテゾミブに対して、含水量2.9質量%)を調製した。この溶液を25±2℃の温度範囲まで、冷却速度0.8℃/分で冷却した。同温で撹拌して結晶の析出を確認した後、更に2時間撹拌し、結晶を採取した。採取した湿結晶を減圧乾燥し、ボルテゾミブ結晶を得た。
 得られた結晶の粉末X線回折測定(測定速度:2.0(sec/ステップ))を行った。その結果、4.6±0.2゜、6.2±0.2゜、8.6±0.2゜、9.6±0.2゜、12.4±0.2゜、20.4±0.2゜の回折角(2θ)にピークを有しており、ボルテゾミブ脱水三量体のII型結晶であることが確認できた。
[実施例5]
 特許文献1に記載された方法を参考に製造したボルテゾミブを、減圧下40±1℃で9時間乾燥することにより、含水量0.8質量%である原料ボルテゾミブ(I型結晶)を調製した。
 酢酸エチル(含水量0.003質量%)225mL(原料ボルテゾミブに対して、含水量0.1質量%)に含水量0.8質量%の原料ボルテゾミブ15.0gを加えた後、60~70℃で加温溶解させることで、原料ボルテゾミブと酢酸エチルを含む溶液(原料ボルテゾミブに対して、含水量0.9質量%)を調製した。この溶液を25±2℃の温度範囲まで、冷却速度0.5℃/分で冷却した。同温で撹拌して結晶の析出を確認した後、更に2時間撹拌し、結晶を採取した。採取した湿結晶を減圧乾燥し、ボルテゾミブ結晶を得た。
 得られた結晶の粉末X線回折測定(測定速度:0.5(sec/ステップ))を行った。その結果、4.6±0.2゜、6.2±0.2゜、8.6±0.2゜、9.6±0.2゜、12.4±0.2゜、20.4±0.2゜の回折角(2θ)にピークを有しており、ボルテゾミブ脱水三量体のII型結晶であることが確認できた。
[実施例6]
 特許文献1に記載された方法を参考に製造したボルテゾミブを、減圧下38±1℃で5時間乾燥することにより、含水量0.4質量%である原料ボルテゾミブ(I型結晶、HPLCによる純度:99.88area%)を調製した。
 酢酸エチル(含水量0.003質量%)327mL(原料ボルテゾミブに対して、含水量0.1質量%)に含水量0.4質量%の原料ボルテゾミブ22.0gを加えた後、60~70℃で加温溶解させることで、原料ボルテゾミブと酢酸エチルを含む溶液(原料ボルテゾミブに対して、含水量0.5質量%)を調製した。この溶液を25±2℃の温度範囲まで、冷却速度2.9℃/分で冷却した。同温で撹拌して結晶の析出を確認した後、更に2時間撹拌した。さらに、22±7℃の温度範囲で6.5時間撹拌し、結晶を採取した。採取した湿結晶を減圧乾燥し、ボルテゾミブ結晶を得た。
  収量(収率):19.1g(87%)
  HPLCによる純度:99.98area%
 得られた結晶の粉末X線回折測定(測定速度:0.5(sec/ステップ))を行った。その結果、4.6±0.2゜、6.2±0.2゜、8.6±0.2゜、9.6±0.2゜、12.4±0.2゜、20.4±0.2゜の回折角(2θ)にピークを有しており、ボルテゾミブ脱水三量体のII型結晶であることが確認できた。
[実施例7]
 実施例1の方法で製造したボルテゾミブを、減圧下64±2℃で2時間乾燥することにより、含水量0.1質量%である原料ボルテゾミブ(II型結晶)を調製した。
 酢酸エチル(含水量0.003質量%)149mL(原料ボルテゾミブに対して、含水量0.0質量%)に含水量0.1質量%の原料ボルテゾミブ9.4g及び水80μL(原料ボルテゾミブに対して、含水量0.9質量%)を加えた後、60~70℃で加温溶解させることで、原料ボルテゾミブと酢酸エチルを含む溶液(原料ボルテゾミブに対して、含水量1.0質量%)を調製した。この溶液を25±2℃の温度範囲まで、冷却速度1.9℃/分で冷却した。同温で撹拌して結晶の析出を確認した後、更に2時間撹拌した。さらに、21±10℃の温度範囲で5時間撹拌し、結晶を採取した。採取した湿結晶を減圧乾燥し、ボルテゾミブ結晶を得た。
  収量(収率):7.9g(84%)
 得られた結晶の粉末X線回折測定(測定速度:0.5(sec/ステップ))を行った。その結果、4.6±0.2゜、6.2±0.2゜、8.6±0.2゜、9.6±0.2゜、12.4±0.2゜、20.4±0.2゜の回折角(2θ)にピークを有しており、ボルテゾミブ脱水三量体のII型結晶であることが確認できた。
[参考例1]
 酢酸エチル(含水量0.002質量%)17.94gに水1.7μLを加え、含水量0.01質量%の酢酸エチルを調製した。この含水酢酸エチル10.0mL(原料ボルテゾミブに対して、含水量0.6質量%)に、実施例1で得たボルテゾミブ脱水三量体のII型結晶0.2gを室温で加え、ボルテゾミブと含水酢酸エチルを含む懸濁液(原料ボルテゾミブに対して、含水量1.0質量%)を調製した。
 この懸濁液を25±2℃で2時間撹拌し、その後、結晶を濾取した。採取した湿結晶を減圧乾燥し、ボルテゾミブ結晶を得た。
 得られた結晶の粉末X線回折測定(測定速度:2.0(sec/ステップ))を行った。その結果、得られた結晶は、4.6±0.2゜、6.2±0.2゜、8.6±0.2゜、9.6±0.2゜、12.4±0.2゜、20.4±0.2゜の回折角(2θ)にピークを有していた(図2)。したがって、得られた結晶形態はボルテゾミブ脱水三量体のII型結晶であり、本条件ではN型結晶へ転移しないことが確認できた。
<ボルテゾミブのN型結晶の製造>
[実施例8]
 特許文献1に記載された方法を参考に製造したボルテゾミブを、減圧下38±2℃で4時間乾燥することにより、含水量1.5質量%である原料ボルテゾミブ(I型結晶)を調製した。
 酢酸エチル(含水量0.003質量%)21.7mL(原料ボルテゾミブに対して、含水量0.0質量%)に含水量1.5質量%の原料ボルテゾミブ1.5gを加えた後、60~70℃で加温溶解させることで、原料ボルテゾミブと酢酸エチルを含む溶液(原料ボルテゾミブに対して、含水量1.5質量%)を調製した。この溶液を40±1℃まで、冷却速度6.4℃/分で冷却した。同温で撹拌して結晶の析出を確認した後、更に1時間撹拌し、結晶を採取した。採取した湿結晶を減圧乾燥し、ボルテゾミブ結晶を得た。
 得られた結晶の粉末X線回折測定(測定速度:2.0(sec/ステップ))を行った。その結果、3.7±0.2゜、4.9±0.2゜、5.7±0.2゜、9.1±0.2゜、16.9±0.2°にピークを有しており、ボルテゾミブのN型結晶であることが確認できた(図3)。
[実施例9]
 特許文献1に記載された方法を参考に製造したボルテゾミブを、減圧下37℃で1時間乾燥した後、湿度32RH%、温度22±1℃にて13分間調湿させることで、含水量1.0質量%である原料ボルテゾミブ(I型結晶)を調製した。
 酢酸エチル(含水量0.007質量%)225mL(原料ボルテゾミブに対して、含水量0.1質量%)に含水量1.0質量%の原料ボルテゾミブ15.0gを加えた後、60~70℃で加温溶解させることで、原料ボルテゾミブと酢酸エチルを含む溶液(原料ボルテゾミブに対して、含水量1.1質量%)を調製した。この溶液を39±1℃まで、冷却速度6.4℃/分で冷却した。同温度撹拌して結晶の析出を確認した後、更に1時間撹拌し、結晶を採取した。採取した湿結晶を減圧乾燥し、ボルテゾミブ結晶を得た。
 得られた結晶の粉末X線回折測定(測定速度:1.0(sec/ステップ))を行った。その結果、3.7±0.2゜、4.9±0.2゜、5.7±0.2゜、9.1±0.2゜、16.9±0.2°にピークを有しており、ボルテゾミブのN型結晶であることが確認できた。
[実施例10]
 水を0.002質量%含む酢酸エチル17.94gに、水38μLを加え含水量0.21質量%の酢酸エチルを調製した。この酢酸エチル5.0mL(原料ボルテゾミブに対して、含水量4.8質量%)に、実施例1で取得したボルテゾミブ脱水三量体のII型結晶0.2gを室温で加え、原料ボルテゾミブと酢酸エチルを含む懸濁液(原料ボルテゾミブに対して、含水量4.8質量%)を調製した。この懸濁液を25±2℃で2時間撹拌し、結晶を採取した。採取した湿結晶を減圧乾燥し、ボルテゾミブ結晶を得た。
 得られた結晶の粉末X線回折測定(測定速度:1.0(sec/ステップ))を行った。その結果、3.7±0.2゜、4.9±0.2゜、5.7±0.2゜、9.1±0.2゜、16.9±0.2°にピークを有しており、ボルテゾミブのN型結晶であることが確認できた。したがって、実施例8の製造方法において、II型結晶からN型結晶へ完全に転移したことが確認できた。

Claims (24)

  1.  粉末X線回折において、4.6±0.2゜、6.2±0.2゜、8.6±0.2゜、9.6±0.2゜、12.4±0.2゜、20.4±0.2゜の回折角(2θ)にピークを有するボルテゾミブ脱水三量体のII型結晶の製造方法であって、
     ボルテゾミブ単量体、ボルテゾミブ脱水三量体及びそれらの混合物からなる群から選択される原料ボルテゾミブを、脂肪族エステルを含む溶媒に溶解して、原料ボルテゾミブの溶液を得ること、及び
     前記溶液からボルテゾミブの結晶を析出させること
    を含み、
     前記溶液の含水量が、原料ボルテゾミブに対して0.6質量%以下であることを特徴とする、ボルテゾミブ脱水三量体のII型結晶の製造方法。
  2.  前記溶液の含水量が、原料ボルテゾミブに対して0.3質量%以下であることを特徴とする、請求項1に記載の製造方法。
  3.  原料ボルテゾミブが、ボルテゾミブ脱水三量体である、請求項1又は2に記載の製造方法。
  4.  原料ボルテゾミブを、脂肪族エステルを含む溶媒に50℃以上の温度で溶解すること、及び
     前記溶液を50℃より低い温度に冷却することによりボルテゾミブの結晶を析出させること
    を特徴とする、請求項1~3の何れか一項に記載の製造方法。
  5.  脂肪族エステルを含む溶媒が、酢酸エチルである、請求項1~4の何れか一項に記載の製造方法。
  6.  粉末X線回折において、4.6±0.2゜、6.2±0.2゜、8.6±0.2゜、9.6±0.2゜、12.4±0.2゜、20.4±0.2゜の回折角(2θ)にピークを有するボルテゾミブ脱水三量体のII型結晶の製造方法であって、
     ボルテゾミブ単量体、ボルテゾミブ脱水三量体及びそれらの混合物からなる群から選択される原料ボルテゾミブを、脂肪族エステルを含む溶媒に溶解して、原料ボルテゾミブの溶液を得ること、及び
     前記溶液からボルテゾミブの結晶を析出させること
    を含み、
     前記溶液の含水量が、原料ボルテゾミブに対して3.2質量%以下であり、及び
     前記溶液を35℃以下の温度に冷却することによりボルテゾミブの結晶を析出させること
    を特徴とする、ボルテゾミブ脱水三量体のII型結晶の製造方法。
  7.  前記溶液の含水量が、原料ボルテゾミブに対して2.9質量%以下であり、及び
     前記溶液を25℃以下の温度に冷却することによりボルテゾミブの結晶を析出させることを特徴とする、請求項6に記載の製造方法。
  8.  前記溶液の含水量が、原料ボルテゾミブに対して1.0質量%以下であり、及び
     前記溶液を35℃以下の温度に冷却することによりボルテゾミブの結晶を析出させることを特徴とする、請求項6に記載の製造方法。
  9.  原料ボルテゾミブが、ボルテゾミブ脱水三量体である、請求項6~8の何れか一項に記載の製造方法。
  10.  原料ボルテゾミブを、脂肪族エステルを含む溶媒に50℃以上の温度で溶解することを特徴とする、請求項6~9の何れか一項に記載の製造方法。
  11.  前記溶液を0.5℃/分以上の冷却速度で冷却することによりボルテゾミブの結晶を析出させることを特徴とする、請求項6~10の何れか一項に記載の製造方法。
  12.  脂肪族エステルを含む溶媒が、酢酸エチルである、請求項6~11の何れか一項に記載の製造方法。
  13.  請求項1~12の何れか一項に記載の製造方法により得られたボルテゾミブ脱水三量体のII型結晶を医薬的に許容される溶媒に溶解して、ボルテゾミブの溶液を調製する工程、
     前記溶液を製剤用容器に充填する工程、及び
     任意選択的に、前記製剤用容器中の前記溶液を凍結乾燥する工程
    を含む、ボルテゾミブを有効成分とする医薬製剤の製造方法。
  14.  粉末X線回折において、3.7±0.2゜、4.9±0.2゜、5.7±0.2゜、9.1±0.2゜、16.9±0.2゜の回折角(2θ)にピークを有するボルテゾミブのN型結晶の製造方法であって、
     ボルテゾミブ単量体、ボルテゾミブ脱水三量体及びそれらの混合物からなる群から選択される原料ボルテゾミブを、脂肪族エステルを含む溶媒に溶解して、原料ボルテゾミブの溶液を得ること、及び
     前記溶液からボルテゾミブの結晶を析出させること
    を含み、
     前記溶液の含水量が、原料ボルテゾミブに対して1.0質量%以上10.0質量%以下であり、及び
     前記溶液を39℃以上の温度に冷却することによりボルテゾミブの結晶を析出させること
    を特徴とする、ボルテゾミブのN型結晶の製造方法。
  15.  原料ボルテゾミブの含水量が、1.0質量%以上10.0質量%以下である、請求項14に記載の製造方法。
  16.  原料ボルテゾミブを、脂肪族エステルを含む溶媒に50℃以上の温度で溶解すること、及び
     前記溶液を39℃以上50℃未満に冷却することにより、ボルテゾミブの結晶を析出させること
    を特徴とする、請求項14又は15に記載の製造方法。
  17.  脂肪族エステルを含む溶媒が、酢酸エチルである、請求項14~16の何れか一項に記載の製造方法。
  18.  粉末X線回折において、3.7±0.2゜、4.9±0.2゜、5.7±0.2゜、9.1±0.2゜、16.9±0.2゜の回折角(2θ)にピークを有するボルテゾミブのN型結晶の製造方法であって、
     ボルテゾミブ単量体、ボルテゾミブ脱水三量体及びそれらの混合物からなる群から選択される原料ボルテゾミブを、脂肪族エステルを含む溶媒に溶解又は懸濁して、原料ボルテゾミブの溶液又は懸濁液を得ること、及び、
     前記溶液からボルテゾミブの結晶を析出、又は前記懸濁液からボルテゾミブの結晶を取得すること
    を含み、
     前記溶液又は懸濁液の含水量が、原料ボルテゾミブに対して4.0質量%以上10.0質量%以下であることを特徴とする、ボルテゾミブのN型結晶の製造方法。
  19.  原料ボルテゾミブの含水量が、4.0質量%以上10.0質量%以下である、請求項18に記載の製造方法。
  20.  前記溶液又は懸濁液の含水量が、原料ボルテゾミブに対して4.8質量%以上10.0質量%以下である、請求項18又は19に記載の製造方法。
  21.  前記懸濁液を脂肪族エステルの沸点以下の温度で2時間以上撹拌することを特徴とする、請求項18~20の何れか一項に記載の製造方法。
  22.  原料ボルテゾミブを、脂肪族エステルを含む溶媒に50℃以上の温度で溶解し、
     前記溶液を50℃より低い温度に冷却することによりボルテゾミブの結晶を析出させることを特徴とする、請求項18~20の何れか一項に記載の製造方法。
  23.  脂肪族エステルを含む溶媒が、酢酸エチルである、請求項18~22の何れか一項に記載の製造方法。
  24.  請求項14~23の何れか一項に記載の製造方法により得られたボルテゾミブのN型結晶を医薬的に許容される溶媒に溶解して、ボルテゾミブの溶液を調製する工程、
     前記溶液を製剤用容器に充填する工程、及び
     任意選択的に、前記製剤用容器中の前記溶液を凍結乾燥する工程
    を含む、ボルテゾミブを有効成分とする医薬製剤の製造方法。
PCT/JP2019/002459 2018-02-01 2019-01-25 ボルテゾミブ結晶の製造方法 WO2019151133A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019569077A JP7263263B2 (ja) 2018-02-01 2019-01-25 ボルテゾミブ結晶の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018016543 2018-02-01
JP2018-016543 2018-02-01

Publications (1)

Publication Number Publication Date
WO2019151133A1 true WO2019151133A1 (ja) 2019-08-08

Family

ID=67479298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002459 WO2019151133A1 (ja) 2018-02-01 2019-01-25 ボルテゾミブ結晶の製造方法

Country Status (3)

Country Link
JP (1) JP7263263B2 (ja)
TW (1) TW201940491A (ja)
WO (1) WO2019151133A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075376A1 (en) * 2006-12-18 2008-06-26 Natco Pharma Limited Polymorphic forms of bortezomib and process for their preparation
JP2010539183A (ja) * 2007-09-12 2010-12-16 ドクター・レディーズ・ラボラトリーズ・リミテッド ボルテゾミブおよびその生成のためのプロセス
CN103613640A (zh) * 2013-11-19 2014-03-05 重庆泰濠制药有限公司 硼替佐米晶型j及其制备方法
WO2014097306A1 (en) * 2012-12-21 2014-06-26 Natco Pharma Limited Stable and pure polymorphic form of bortezomib
IN2012CH02984A (ja) * 2012-07-20 2015-04-10 Gland Pharma Ltd

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075376A1 (en) * 2006-12-18 2008-06-26 Natco Pharma Limited Polymorphic forms of bortezomib and process for their preparation
JP2010539183A (ja) * 2007-09-12 2010-12-16 ドクター・レディーズ・ラボラトリーズ・リミテッド ボルテゾミブおよびその生成のためのプロセス
IN2012CH02984A (ja) * 2012-07-20 2015-04-10 Gland Pharma Ltd
WO2014097306A1 (en) * 2012-12-21 2014-06-26 Natco Pharma Limited Stable and pure polymorphic form of bortezomib
CN103613640A (zh) * 2013-11-19 2014-03-05 重庆泰濠制药有限公司 硼替佐米晶型j及其制备方法

Also Published As

Publication number Publication date
JPWO2019151133A1 (ja) 2021-02-04
TW201940491A (zh) 2019-10-16
JP7263263B2 (ja) 2023-04-24

Similar Documents

Publication Publication Date Title
US10065947B1 (en) Forms of R)-3-(4-(2-(2-methyltetrazol-5-yl)pyridin-5-yl)-3-fluorophenyl)-5-hydroxymethyl oxazolidin-2-one dihydrogen phosphate
JP6969848B2 (ja) プリナブリン組成物
KR101626506B1 (ko) 에리트로마이신염의 수화물, 그의 제조방법 및 용도
US20170189385A1 (en) Pharmaceutical compositions comprising rifaximin and amino acids, preparation methods and use thereof
CZ292423B6 (cs) Krystalický, bezvodý mykofenolát mofetilu a intravenózní prostředek, ve kterém je obsažen
WO2011113361A1 (zh) 头孢唑肟钠结晶水合物及其制备方法和用途
JP6248189B2 (ja) 安定な抗がん剤のアルギニン塩とそれを含む組成物
IE42013B1 (en) Pharmaceutical compositions
TW522015B (en) Pharmaceutical compositions for freeze drying
US9795695B2 (en) Process for the preparation of gadobenate dimeglumine complex in a solid form
WO2019151133A1 (ja) ボルテゾミブ結晶の製造方法
US5972912A (en) Method for lyophilizing ifosfamide
WO2001047542A1 (fr) Preparations de vancomycine
JP7045795B2 (ja) 結晶性β-ラクタマーゼ阻害剤
JP7431815B2 (ja) トレオスルファンの結晶形
US8507463B2 (en) Nucleotide analogue prodrug and the preparation thereof
WO2014023647A1 (en) Bortezomib esters and formulations thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569077

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19746744

Country of ref document: EP

Kind code of ref document: A1