WO2019150951A1 - 熱膨張性微小球およびその用途 - Google Patents

熱膨張性微小球およびその用途 Download PDF

Info

Publication number
WO2019150951A1
WO2019150951A1 PCT/JP2019/001096 JP2019001096W WO2019150951A1 WO 2019150951 A1 WO2019150951 A1 WO 2019150951A1 JP 2019001096 W JP2019001096 W JP 2019001096W WO 2019150951 A1 WO2019150951 A1 WO 2019150951A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin hollow
thermally expandable
hollow particles
weight
resin
Prior art date
Application number
PCT/JP2019/001096
Other languages
English (en)
French (fr)
Inventor
直哉 太野垣
勝志 三木
Original Assignee
松本油脂製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松本油脂製薬株式会社 filed Critical 松本油脂製薬株式会社
Priority to JP2019526013A priority Critical patent/JP6587782B1/ja
Priority to KR1020207023868A priority patent/KR20200115541A/ko
Priority to SE2051007A priority patent/SE545122C2/en
Priority to US16/966,297 priority patent/US11746205B2/en
Priority to CN201980010671.7A priority patent/CN111684038B/zh
Publication of WO2019150951A1 publication Critical patent/WO2019150951A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/20Making expandable particles by suspension polymerisation in the presence of the blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • B01J13/185In situ polymerisation with all reactants being present in the same phase in an organic phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening
    • B01J13/22Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/12Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/224Surface treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/024Preparation or use of a blowing agent concentrate, i.e. masterbatch in a foamable composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/22Expandable microspheres, e.g. Expancel®
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators

Definitions

  • the present invention relates to a thermally expandable microsphere and use thereof.
  • Thermally expandable microspheres which are fine particles having a thermoplastic resin as an outer shell and encapsulating a foaming agent inside, can be expanded by heating.
  • thermally expandable microspheres it is common to add other base materials and expand the thermally expandable microspheres when heating the mixture. Instead, design properties and cushioning properties can be imparted to the substrate.
  • resin hollow particles close to true spheres obtained by expanding thermally expandable microspheres are used as a function-imparting agent for a substrate. For example, in order to improve the fuel efficiency of automobiles due to environmental problems such as global warming and air pollution, there is a strong demand for reducing the weight of automobiles.
  • thermoplastic resin that is the outer shell of the thermally expandable microsphere contains 95% by weight or more of (meth) acrylonitrile, and 70% by weight or more in (meth) acrylonitrile is acrylonitrile.
  • Thermally expandable microspheres which are a polymer of a monomer mixture and have a crosslinking degree of 60% by weight or more, have been developed. It has tolerable performance.
  • the thermally expandable microspheres such as Patent Document 1 have a performance that can withstand external force in a processing step before the expansion
  • the resin hollow particles obtained by expanding the thermally expandable microspheres are expanded.
  • the outer shell of the resin hollow particles becomes thinner when the film thickness of the outer shell is reduced compared to the previous case, the mechanical strength is lowered, and a high pressure load, particularly a pressure load of 20 MPa or more, which is applied when used for paint, is applied. It was confirmed that the substrate could not be reduced in weight because the resin hollow particles were deformed from a nearly spherical shape, such as tearing or denting.
  • An object of the present invention is to provide thermally expandable microspheres capable of obtaining resin hollow particles capable of suppressing deformation such as tearing and dents of the outer shell against a high pressure load, and use thereof.
  • thermoplastic resin constituting the outer shell of the thermally expandable microsphere is a polymer of a polymerizable component containing a specific crosslinkable monomer.
  • the present invention is a thermally expandable microsphere composed of an outer shell made of a thermoplastic resin and a foaming agent encapsulated therein and vaporized by heating, wherein the thermoplastic resin is (meth) A polymer of a polymerizable component having a crosslinkable monomer (A) having a molecular weight of 500 or more having at least two acryloyl groups and having a reactive carbon-carbon double bond in addition to the (meth) acryloyl group. Thermally expandable microspheres.
  • the thermally expandable microsphere of the present invention further satisfies at least one of the following 1) to 4).
  • the crosslinkable monomer (A) is a compound represented by the following general formula (1).
  • R 1 —O—R 2 —O—R 3 (1) (Wherein R 1 and R 3 are (meth) acryloyl groups, and R 2 has a structure having a reactive carbon-carbon double bond and a polymer chain.)
  • the polymer chain contains a diene as a structural unit.
  • the diene is butadiene and / or isoprene.
  • the polymerizable component contains a nitrile monomer.
  • the resin hollow particle of the present invention is an expanded body of the above-described thermally expandable microsphere.
  • the fine particle-attached resin hollow particles of the present invention are composed of the resin hollow particles and fine particles attached to the outer surface of the outer shell of the resin hollow particles.
  • the composition of the present invention comprises at least one selected from the above-mentioned thermally expandable microspheres, the above resin hollow particles, and the above fine particle-adhered resin hollow particles, and a base material component.
  • the molded product of the present invention is obtained by molding the above composition.
  • the thermally expandable microsphere of the present invention can obtain resin hollow particles in which deformation of the outer shell is suppressed against a high pressure load. Since the resin hollow particles of the present invention use the thermally expandable microspheres, deformation of the outer shell can be suppressed against a high pressure load. Since the fine particle-adhered resin hollow particles of the present invention use the thermally expandable microspheres, deformation of the outer shell can be suppressed against a high pressure load. Since the composition of the present invention contains at least one of the thermally expandable microspheres, the resin hollow particles, and the fine particle-adhered resin hollow particles, deformation can be suppressed against a high pressure load. Since the molded product of the present invention is obtained by molding the above composition, it is lightweight.
  • the thermally expandable microsphere of the present invention is a thermally expandable microsphere composed of an outer shell (shell) 6 made of a thermoplastic resin and an (core) 7 contained therein.
  • the thermally expandable microsphere has a core-shell structure, and the thermally expandable microsphere exhibits thermal expandability (property that the entire microsphere expands by heating) as a whole microsphere.
  • the thermoplastic resin is a polymer of a polymerizable component.
  • the polymerizable component means a monomer having at least one polymerizable group in the molecule, and is a component that becomes a thermoplastic resin that forms the outer shell of thermally expandable microspheres by polymerization.
  • the polymerizable component includes a non-crosslinkable monomer having one reactive carbon-carbon double bond (hereinafter simply referred to as a non-crosslinkable monomer), and two or more reactive carbon-carbon double bonds.
  • a crosslinkable monomer hereinafter simply referred to as a crosslinkable monomer.
  • a crosslinking structure can be introduced into the polymer by the crosslinkable monomer.
  • the reactive carbon-carbon double bond referred to here means a carbon-carbon double bond exhibiting radical reactivity, and is not a carbon-carbon double bond in an aromatic ring such as a benzene ring or a naphthalene ring, but vinyl.
  • the (meth) acryloyl group means an acryloyl group or a methacryloyl group.
  • the polymerizable component contains a crosslinkable monomer (A) having a molecular weight of 500 or more having at least two (meth) acryloyl groups and having a reactive carbon-carbon double bond in addition to the (meth) acryloyl group.
  • a crosslinkable monomer (A) having a molecular weight of 500 or more having at least two (meth) acryloyl groups and having a reactive carbon-carbon double bond in addition to the (meth) acryloyl group.
  • at least two (meth) acryloyl groups possessed by the crosslinkable monomer (A) may be the same or different.
  • the (meth) acryloyl group Since the (meth) acryloyl group has a structure having a reactive carbon-carbon double bond and a polar carbon-oxygen double bond, it has a very high radical reactivity. For this reason, the (meth) acryloyl group mainly contributes to the bridge structure of the polymer, and the outer shell portion of the thermally expandable microsphere has improved denseness and rigidity. Further, the polymer has a reactive carbon-carbon double bond in the molecule, and the molecular weight of the crosslinkable monomer (A) is 500 or more, so that the molecular weight of the polymer is further increased. And is considered to have high elasticity.
  • thermoplastic resin which is a polymer of the polymerizable component containing the crosslinkable monomer (A) has both rigidity and elasticity
  • the heat-expandable microscopic material having the thermoplastic resin as an outer shell. Even with resin hollow particles obtained from a sphere and having a very thin film thickness, deformation of the outer shell can be suppressed against a high pressure load.
  • the molecular weight of the crosslinkable monomer (A) is 500 or more, preferably 500 to 50,000. If the molecular weight of the crosslinkable monomer (A) is 500 or more, the thermoplastic resin that is a polymer of the polymerizable component containing the crosslinkable monomer (A) has both rigidity and elasticity. Even in the case of resin hollow particles having a very thin film thickness obtained from the thermally expandable microspheres having the thermoplastic resin as an outer shell, the deformation of the outer shell is suppressed against a high pressure load. be able to.
  • the more preferable upper limit of the molecular weight of the crosslinkable monomer (A) is 35000, the more preferable upper limit is 25000, and the particularly preferable upper limit is 15000.
  • a more preferred lower limit is 600, a still more preferred lower limit is 1000, and a particularly preferred lower limit is 1500.
  • the molecular weight of the crosslinkable monomer (A) exceeds 50,000, it may exist non-uniformly in the thermoplastic resin of the outer shell of the thermally expandable microsphere, so that the obtained resin hollow particles are high. The deformation of the outer shell may not be suppressed with respect to the pressure load.
  • the molecular weight of the crosslinkable monomer (A) is lower than 500, it cannot have high elasticity, and the resulting resin hollow particles cannot suppress deformation of the outer shell against a high pressure load.
  • thermoplastic resin of the outer shell of the thermally expandable microsphere can be given rigidity and elasticity, and the thermal expandability Even resin hollow particles obtained from microspheres and having a very thin film thickness are preferable because deformation of the outer shell can be suppressed against a high pressure load.
  • R 1 —O—R 2 —O—R 3 (1) (In the formula, R 1 and R 3 are (meth) acryloyl groups, and R 2 has a structure having a reactive carbon-carbon double bond and a polymer chain.)
  • R 2 has a structure having a reactive carbon-carbon double bond and a polymer chain.
  • the reactive carbon-carbon double bond may be contained in a polymer chain, or may be contained in a structural part other than the polymer chain.
  • the reactive carbon-carbon double bond is preferably contained in the polymer chain from the viewpoint of achieving the effect of the present application. Since the polymer chain has a reactive carbon-carbon double bond, the bending of R 2 can be suppressed, so the thermoplastic resin that forms the outer shell of the thermally expandable microsphere is considered to have high elasticity. It is done. From this, it is considered that even the resin hollow particles having a very thin film thickness obtained from the thermally expandable microspheres can suppress deformation of the outer shell against a high pressure load. It is done.
  • R 2 may have a structure composed only of a polymer chain, or a structure in which a polymer chain and an organic group and / or an inorganic group other than the polymer chain are bonded.
  • the organic group is defined as a functional group containing a carbon element.
  • the organic group is not particularly limited, but is an alkyl group; an alkylene group; an alkenyl group; an alkynyl group; an alkoxy group; an oxyalkylene group; a carboxyl group; an anhydrous carboxyl group; an ester group; a carbonyl group; A phenylene group; a (meth) acryloyl group having an reactive carbon-carbon double bond, an allyl group, and the like.
  • the inorganic group is defined as a functional group that does not contain a carbon element.
  • the inorganic group is not particularly limited, and examples thereof include a hydroxyl group; an ether group; an amino group; a sulfo group; a halogen group such as a fluoro group and a chloro group; and a silanol group.
  • one kind of the inorganic group may be bonded to the polymer chain, or two or more kinds may be bonded to the polymer chain.
  • R 2 may have a linear structure or a branched structure.
  • the molecular weight of R 2 is preferably a lower limit of 330, a more preferable lower limit of 430, a still more preferable lower limit of 830, and a particularly preferable lower limit of 1330.
  • a preferable upper limit is 49858
  • a more preferable upper limit is 34860
  • a still more preferable upper limit is 24860
  • a particularly preferable upper limit is 14860. If the molecular weight of R 2 exceeds 49858, it may exist non-uniformly in the thermoplastic resin of the outer shell of the thermally expandable microsphere. Shell deformation may not be suppressed.
  • the molecular weight of R 2 is lower than 330, it may not be possible to have high elasticity, so that the resulting resin hollow particles may not be able to suppress deformation of the outer shell against a high pressure load.
  • the polymer chain contains a diene as a structural unit
  • the number of reactive carbon-carbon double bonds contained in the crosslinkable monomer (A) increases, so that the outer shell of the thermally expandable microsphere
  • the resin hollow particles in a very thin film thickness obtained from the heat-expandable microspheres can give elasticity to the thermoplastic resin of the outer shell against a high pressure load. Can be suppressed.
  • diene examples include 1,3-butadiene (also simply referred to as butadiene in the present invention); 1,3-pentadiene; 1,3-hexadiene; 2,4-hexadiene; 1,3-heptadiene; Isoprene; chloroprene; 2-methyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 2-propyl-1,3-butadiene, 2-butyl-1,3-butadiene, 2-pentyl-1 2-alkyl-, such as 1,3-butadiene, 2-hexyl-1,3-butadiene, 2-heptyl-1,3-butadiene, 2-octyl-1,3-butadiene, 2-neopentyl-1,3-butadiene, etc.
  • 1,3-butadiene also simply referred to as butadiene in the present invention
  • 1,3-pentadiene 1,3-hexadiene; 2,
  • the diene may contain one kind or two or more kinds.
  • the polymer chain may be a polymer in which constituent units of each diene are randomly polymerized, such as a random copolymer, such as a block copolymer. Further, a polymer in which the constituent units of each diene are polymerized together may be used.
  • the polymer chain may contain a unit other than diene as long as the effects of the present invention are not impaired.
  • structural units other than dienes polyene-based structural units having three or more reactive carbon-carbon double bonds in structural units such as 1,3,5-hexatriene; acrylonitrile, methacrylonitrile, etc.
  • Nitrile-based structural units aromatic vinyl structural units such as styrene, p-methylstyrene, ⁇ -methylstyrene, vinylethylbenzene, vinylxylene, vinylnaphthalene, and diphenylethylene; olefin-based structural units such as ethylene, polypropylene, and isobutylene Can be mentioned.
  • the polymer chain may be a polymer in which a diene and other structural units are randomly polymerized, such as a random copolymer, or a diene, such as a block copolymer. Further, a polymer in which other structural units are polymerized together may be used.
  • the ratio of the degree of polymerization of the diene constituent units to the degree of polymerization of all the constituent units constituting the polymer chain is not particularly limited, but 1) 10% or more, 2) 20% or more, 3) 40% or more, 4 5) 65% or more, 6) 75% or more, 7) 90% or more, and 8) 100% in order (preferably those described later than those described above).
  • the proportion of the degree of polymerization of the diene constituent unit is lower than 10%, the elasticity of the thermoplastic resin, which is the outer shell of the thermally expandable microsphere, is reduced, and the outer shell of the resulting resin hollow particle is subjected to a high pressure load. It may be deformed.
  • the polymer chain includes a diene as a structural unit, the polymer chain may include at least one structure of a cis structure or a trans structure.
  • the weight ratio of the crosslinkable monomer (A) to the polymerizable component is preferably 0.1 to 10.0% by weight, based on 100% by weight of the entire polymerizable component.
  • the thermoplastic resin of the outer shell of the thermally expandable microsphere can be given rigidity and elasticity, and the thermally expandable micro Even a resin hollow particle obtained from a sphere and having a very thin film thickness can maintain a nearly spherical shape without breaking the outer shell of the resin hollow particle against a high pressure load, or After releasing from a high pressure load, it can instantaneously recover to a nearly spherical shape, and as a result, deformation of the outer shell of the resin hollow particles can be suppressed, which is preferable.
  • the weight ratio of the crosslinkable monomer (A) to the polymerizable component is less than 0.1% by weight, a sufficient effect of imparting rigidity and elasticity to the thermoplastic resin may not be obtained.
  • the rigidity of the outer shell portion is high, and light resin hollow particles may not be obtained.
  • the more preferable lower limit of the weight ratio of the crosslinkable monomer (A) to the polymerizable component is 0.2% by weight, the more preferable lower limit is 0.3% by weight, and the particularly preferable lower limit is 0.4% by weight.
  • a more preferred upper limit is 7.0% by weight, a still more preferred upper limit is 5.0% by weight, a particularly preferred upper limit is 3.0% by weight, and a most preferred upper limit is 2.0% by weight.
  • the polymerizable component may contain a crosslinkable monomer other than the crosslinkable monomer (A) (hereinafter sometimes referred to as other crosslinkable monomer) as long as the effects of the present invention are not impaired.
  • crosslinking monomers include, for example, ethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and 1,9-nonanediol di (Meth) acrylate, 1,10-decanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) acrylate, 2-methyl-1,8 octanediol Alkanediol di (meth) acrylate such as di (meth) acrylate; diethylene glycol di (meth) acrylate
  • the weight ratio of the other crosslinkable monomer to the polymerizable component is preferably 0.05 to 2.0% by weight, based on 100% by weight of the entire polymerizable component.
  • the weight ratio of the other crosslinkable monomer to the polymerizable component is within this range, it is preferable because the denseness of the thermoplastic resin of the outer shell of the thermally expandable microsphere is improved and rigidity can be imparted.
  • the weight ratio of the other crosslinkable monomer to the polymerizable component is less than 0.05%, the effect of sufficiently imparting the rigidity of the outer shell of the thermally expandable microsphere may not be obtained.
  • the weight ratio of the other cross-linkable monomer to the polymerizable component is more than 2.0% by weight, the rigidity of the outer shell part becomes too high, and it becomes impossible to obtain lightweight resin hollow particles, The outer shell of the resin hollow particles obtained because the elasticity of the thermoplastic resin constituting the outer shell of the expandable microsphere is lowered and becomes brittle may be deformed by a high pressure load.
  • the more preferable lower limit of the weight ratio of the other crosslinkable monomer to the polymerizable component is 0.1% by weight, the more preferable lower limit is 0.2% by weight, and the particularly preferable lower limit is 0.3% by weight.
  • a more preferred upper limit is 1.5% by weight, a still more preferred upper limit is 1.0% by weight, and a particularly preferred upper limit is 0.8% by weight.
  • the weight ratio of the crosslinkable monomer (A) to the entire crosslinkable monomer is preferably Is 10 to 100% by weight.
  • the more preferable lower limit of the weight ratio of the crosslinkable monomer (A) to the entire crosslinkable monomer is 20% by weight, the still more preferable lower limit is 30% by weight, the particularly preferable lower limit is 50% by weight, and the more preferable upper limit is 99% by weight. It is.
  • the weight ratio of the crosslinkable monomer (A) to the entire crosslinkable monomer is within this range, rigidity and elasticity can be imparted to the thermoplastic resin of the outer shell of the thermally expandable microsphere.
  • a resin hollow particle obtained from expandable microspheres and having a very thin film thickness can maintain a shape close to a true sphere without breaking the outer shell against a high pressure load, or After releasing from a high pressure load, it is possible to instantaneously recover to a nearly spherical shape, and as a result, deformation of the outer shell can be suppressed, which is preferable. If the weight ratio of the crosslinkable monomer (A) to the entire crosslinkable monomer is less than 10% by weight, sufficient effects that can impart rigidity and elasticity to the thermoplastic resin may not be obtained. .
  • the polymerizable component contains a non-crosslinkable monomer in addition to the crosslinkable monomer.
  • the non-crosslinkable monomer is not particularly limited, and examples thereof include nitrile monomers such as acrylonitrile, methacrylonitrile, fumaronitrile and maleonitrile; vinyl halide monomers such as vinyl chloride; vinylidene chloride and the like.
  • Vinylidene halide monomers vinyl ester monomers such as vinyl acetate, vinyl propionate and vinyl butyrate; unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid, cinnamic acid, Unsaturated dicarboxylic acids such as maleic acid, itaconic acid, fumaric acid, citraconic acid, chloromaleic acid, anhydrides of unsaturated dicarboxylic acids, monomethyl maleate, monoethyl maleate, monobutyl maleate, monomethyl fumarate, fumaric acid Monoethyl, monomethyl itaconate, monoethyl itaconate, itacon Carboxyl group-containing monomers such as unsaturated dicarboxylic acid monoesters such as monobutyl; methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (
  • carboxyl group-containing monomer some or all of the carboxyl groups may be neutralized during polymerization or after polymerization.
  • Acrylic acid or methacrylic acid may be collectively referred to as (meth) acrylic acid, (meth) acrylate means acrylate or methacrylate, and (meth) acryl means acryl or methacryl.
  • These non-crosslinkable monomers may be used individually by 1 type, and may use 2 or more types together.
  • the non-crosslinkable monomer contains a nitrile monomer
  • the gas barrier property of the thermoplastic resin constituting the outer shell of the thermally expandable microsphere increases, so that the foaming agent such as encapsulated hydrocarbon is vaporized.
  • the hollow portion of the resin hollow particles with a very thin film thickness can also maintain a high internal pressure due to the vaporized foaming agent. Therefore, the outer shell of the resin hollow particle is preferable because deformation can be suppressed against a high pressure load.
  • the weight ratio of the nitrile monomer to the non-crosslinkable monomer is not particularly limited, but is preferably a ratio of 30 to 100% by weight.
  • the more preferred lower limit of the weight ratio of the nitrile monomer to the non-crosslinkable monomer is 40% by weight, the still more preferred lower limit is 50% by weight, the particularly preferred lower limit is 60% by weight, and the most preferred lower limit is 70% by weight.
  • the more preferable upper limit of the weight ratio of the nitrile monomer to the non-crosslinkable monomer is 98% by weight, the more preferable upper limit is 95% by weight, and the particularly preferable upper limit is 90% by weight.
  • the non-crosslinkable monomer includes a nitrile monomer
  • AN acrylonitrile
  • the outer shell of the resin hollow particles obtained is preferable because it can be prevented from being deformed without being broken against a high pressure load.
  • the improvement in rigidity of the outer shell portion is preferable because the resistance to stress and frictional force received when the resin hollow particles are mixed with the base component is also improved.
  • the weight ratio of acrylonitrile to the non-crosslinkable monomer is not particularly limited, but is 25 to 100% by weight.
  • the more preferable lower limit of the weight ratio of acrylonitrile to the non-crosslinkable monomer is 40% by weight, the more preferable lower limit is 50%, the particularly preferable range is 60% by weight, and the most preferable lower limit is 65%.
  • the more preferable upper limit of the weight ratio of acrylonitrile to the non-crosslinkable monomer is 97% by weight.
  • the denseness of the outer shell of the thermally expandable microsphere is increased. Not only is it difficult to leak when vaporized, but lightweight resin hollow particles are obtained, and the hollow portion of the resin hollow particles in a very thin film state maintains a high internal pressure by the vaporized foaming agent. Therefore, the outer shell of the resin hollow particles is preferable because deformation can be suppressed against a higher pressure load.
  • the weight ratio of AN and MAN is within this range, the outer shell of the thermally expandable microsphere has a denseness, and as a result, the resulting resin hollow particles are very lightweight and are resistant to high pressure loads. Thus, deformation of the outer shell of the resin hollow particle can be suppressed.
  • the non-crosslinkable monomer contains a (meth) acrylic acid ester
  • the thermoplastic resin that is the outer shell of the thermally expandable microsphere is rich in stretchability during heat softening and excellent in toughness. Therefore, the resulting resin hollow particles are light in weight, and the outer shell of the resin hollow particles can suppress deformation against a high pressure load.
  • the weight ratio of the (meth) acrylic acid ester to the non-crosslinkable monomer is not particularly limited, but is preferably 1 to 50% by weight, more The amount is preferably 3 to 45% by weight, more preferably 5 to 40% by weight.
  • the weight ratio of the (meth) acrylic acid ester to the non-crosslinkable monomer is more than 50% by weight, the gas barrier property is lowered, and lightweight resin hollow particles cannot be obtained.
  • the outer shell of resin hollow particles obtained from thermally expandable microspheres may be deformed.
  • the weight ratio of the (meth) acrylic acid ester to the non-crosslinkable monomer is less than 1% by weight, the resin hollow particles having low stretchability at the time of heat softening may not be obtained.
  • the total weight ratio of acrylonitrile and (meth) acrylic acid ester to the non-crosslinking monomer is not particularly limited, but preferably 40 to 100% by weight.
  • the thermoplastic resin that is the outer shell of the thermally expandable microsphere has a high gas barrier property and is excellent in stretchability during heat softening. Since the resin hollow particles obtained are light in weight because of excellent toughness, the outer shell of the resin hollow particles can suppress deformation against a high pressure load.
  • a more preferred lower limit of the total weight ratio of acrylonitrile and (meth) acrylic acid ester is 50% by weight, a further preferred lower limit is 60% by weight, a more preferred lower limit is 75% by weight, and a more preferred upper limit is 99% by weight.
  • the amount is less than 40% by weight, sufficient gas barrier properties and stretchability at the time of heat softening are not imparted to the outer shell of the thermally expandable microspheres, so that lightweight resin hollow particles may not be obtained.
  • (meth) acrylic acid esters methyl methacrylate is preferable in that the effect of the present application is further exhibited.
  • the non-crosslinkable monomer contains a carboxyl group-containing monomer because the heat resistance of the thermally expandable microspheres can be improved.
  • carboxyl group-containing monomers acrylic acid, methacrylic acid, maleic acid, maleic anhydride and itaconic acid are preferable, acrylic acid and methacrylic acid are more preferable, and methacrylic acid is particularly preferable because it can further improve heat resistance. .
  • the polymerization ratio of the carboxyl group-containing monomer to the non-crosslinkable monomer is not particularly limited, but is preferably 5 to 70% by weight, more It is preferably 10 to 65% by weight, more preferably 13 to 60% by weight, particularly preferably 15 to 50% by weight, and most preferably 20 to 40% by weight.
  • the polymerization ratio of the carboxyl group-containing monomer is within this range, the rigidity of the thermoplastic resin, which is the outer shell of the thermally expandable microsphere, can be improved, and the resulting film thickness is very thin.
  • the outer shell of the resin hollow particle can suppress deformation against a high pressure load.
  • the weight ratio of the carboxyl group-containing monomer to the non-crosslinkable monomer is less than 5% by weight, the heat resistance becomes insufficient, and the resin hollow particles are used in the heating step in blending and manufacturing the resin hollow particles and the base material. May increase the specific gravity.
  • the weight ratio of the carboxyl group-containing monomer to the non-crosslinkable monomer exceeds 70% by weight, the gas barrier property is lowered, and not only lightweight resin hollow particles are obtained, but also the outer shell portion becomes brittle. In some cases, the outer shell of the resin hollow particle may be deformed under a high pressure load.
  • the total weight ratio of the nitrile monomer and the carboxyl group-containing monomer to the non-crosslinkable monomer is particularly limited However, it is preferably 50 to 100% by weight, more preferably 60 to 100% by weight.
  • the gas barrier property is high, and the outer shell of the thermally expandable microsphere has sufficient heat resistance. Since the resin hollow particles having a very thin film thickness are lightweight and have high thermal stability, deformation can be suppressed against a high pressure load. .
  • the outer shell of the resin hollow particles obtained by further increasing the rigidity of the outer shell of the thermally expandable microsphere is expanded against a high pressure.
  • surface treatment with an organic compound containing a metal belonging to Groups 3 to 12 of the periodic table, or formation of a crosslinked structure with a carboxyl group and metal ions may be performed.
  • the organic compound containing a metal belonging to Groups 3 to 12 of the periodic table include a compound having at least one bond represented by the general formula (2) and / or a metal amino acid compound.
  • MOC (2) (However, M is a metal atom belonging to Groups 3 to 12 of the periodic table, carbon atom C is bonded to oxygen atom O, and other than oxygen atom O, it is bonded only to hydrogen atoms and / or carbon atoms.) .
  • Examples of metals belonging to Groups 3 to 12 of the periodic table include Group 3 metals such as scandium, ytterbium and cerium; Group 4 metals such as titanium, zirconium and hafnium; Group 5 metals such as vanadium, niobium and tantalum; Chromium and molybdenum Group 6 metals such as tungsten, Group 7 metals such as manganese and rhenium; Group 8 metals such as iron, ruthenium and osmium; Group 9 metals such as cobalt and rhodium; Group 10 metals such as nickel and palladium; Copper, silver, Examples include Group 11 metals such as gold; Group 12 metals such as zinc and cadmium.
  • metal classification is “Chemical and Education” published by the Chemical Society of Japan, Volume 54, No. 4 (2006), and the “Periodic Table of Elements (2005)” (2006 Japanese Chemical Society atomic weight) Subcommittee).
  • metal ions forming the cross-linked structure those that form divalent or higher valent metal cations are preferable, and examples thereof include metal cations such as Al, Ca, Mg, Fe, Ti, Cu, and Zn.
  • the foaming agent is a component that is vaporized by heating, and is encapsulated in an outer shell made of a thermoplastic resin of thermally expandable microspheres. The whole shows a property of swelling by heating.
  • foaming agent For example, methane, ethane, propane, (iso) butane, (iso) pentane, (iso) hexane, (iso) heptane, (iso) octane, (iso) nonane, (iso C3-13 hydrocarbons such as decane, (iso) undecane, (iso) dodecane, (iso) tridecane; (iso) hexadecane, (iso) eicosane, etc.
  • Hydrocarbons such as pseudocumene, petroleum ether, petroleum fractions such as normal paraffin and isoparaffin having an initial boiling point of 150 to 260 ° C and / or distillation range of 70 to 360 ° C; methyl chloride, methylene chloride, chloroform, carbon tetrachloride, etc.
  • Halogenated hydrocarbons having 1 to 12 carbon atoms Fluorine-containing compounds such as hydrofluoroether; Tetramethylsilane Silanes having an alkyl group having 1 to 5 carbon atoms such as trimethylethylsilane, trimethylisopropylsilane, trimethyl-n-propylsilane; azodicarbonamide, N, N′-dinitrosopentamethylenetetramine, 4,4′-oxybis Examples thereof include compounds that are thermally decomposed by heating such as (benzenesulfonylhydrazide) and the like to generate a gas.
  • the foaming agent may be composed of one kind of compound or may be composed of a mixture of two or more kinds of compounds.
  • the blowing agent may be linear, branched or alicyclic, and is preferably aliphatic.
  • the resin hollow particles obtained by expanding the thermally expandable microspheres basically contain the foaming agent in a vaporized state in the hollow part, but in a state where a part of the foaming agent is liquefied or solidified. You may contain in the said hollow part.
  • the hollow resin particles having a very thin film thickness obtained by expanding the thermally expandable microspheres are prevented from being deformed against the high pressure load from the outside.
  • the thermally expandable microspheres contain a foaming agent having a vapor pressure at 25 ° C. exceeding 100 kPa so that the internal pressure of the part can be maintained at a high level. Examples of the blowing agent having a vapor pressure at 25 ° C.
  • the foaming agent whose vapor pressure at 25 ° C. exceeds 100 kPa may be composed of one kind or a mixture of two or more kinds.
  • the foaming agent contains a foaming agent having a vapor pressure at 25 ° C. exceeding 100 kPa
  • the weight ratio of the foaming agent having a vapor pressure at 25 ° C. exceeding 100 kPa with respect to the entire foaming agent is Is preferable.
  • the weight ratio of the foaming agent having a vapor pressure at 25 ° C. exceeding 100 kPa with respect to the entire foaming agent is within this range, the hollow part of the resin hollow particles obtained by expanding the thermally expandable microspheres can maintain a high internal pressure. Since it can have a high repulsive force against a high pressure load from the outside, deformation of the outer shell of the resin hollow particles can be suppressed.
  • the preferable lower limit of the weight ratio of the foaming agent having a vapor pressure at 25 ° C. exceeding 100 kPa with respect to the entire foaming agent is 35% by weight, the particularly preferable lower limit is 40% by weight, and the preferable upper limit is 99% by weight. Further, when at least one hydrocarbon having a vapor pressure of 100 kPa or less in 25 ° C. in the blowing agent is contained, not only can the maximum expansion temperature of the thermally expandable microspheres be improved, but also the hollow portion of the resulting resin hollow particles The internal pressure can be adjusted.
  • the encapsulating rate of the foaming agent of the thermally expandable microsphere is defined as a percentage of the weight of the foaming agent encapsulated in the thermally expandable microsphere with respect to the weight of the thermally expandable microsphere.
  • the encapsulation rate of the foaming agent is not particularly limited, but is preferably 2 to 35% by weight with respect to the weight of the thermally expandable microsphere. When the encapsulation rate is in this range, a high internal pressure can be obtained by heating, and as a result, lightweight resin hollow particles can be obtained. When the encapsulation rate is less than 2% by weight, sufficient internal pressure cannot be obtained during heating, and lightweight resin hollow particles may not be obtained.
  • the lower limit of the encapsulation rate is more preferably 3%, further preferably 4% by weight, and particularly preferably 5% by weight.
  • the upper limit of the encapsulation rate is more preferably 25% by weight, further preferably 18% by weight, particularly preferably 16% by weight, and most preferably 14% by weight.
  • the expansion start temperature (T s ) of the thermally expandable microsphere is not particularly limited, but is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, further preferably 90 ° C. or higher, particularly preferably 100 ° C. or higher, and most preferably. Is 110 ° C. or higher.
  • the upper limit of the expansion start temperature of the thermally expandable microsphere is preferably 250 ° C., more preferably 220 ° C., further preferably 200 ° C., particularly preferably 180 ° C., and most preferably 150 ° C. When the expansion start temperature of the thermally expandable microsphere is less than 70 ° C. or more than 250 ° C., the effect of the present application may not be achieved.
  • the maximum expansion temperature (T max ) of the thermally expandable microsphere is not particularly limited, but is preferably 90 ° C. or higher, more preferably 100 ° C. or higher, still more preferably 110 ° C. or higher, particularly preferably 120 ° C. or higher. Most preferably, it is 130 degreeC or more.
  • the upper limit value of the maximum expansion temperature of the thermally expandable microsphere is preferably 300 ° C. If the maximum expansion temperature of the thermally expandable microsphere is less than 90 ° C. or more than 300 ° C., the effect of the present application may not be achieved.
  • the expansion start temperature (T s ) and the maximum expansion temperature (T max ) of the thermally expandable microsphere are determined by the method measured in the examples.
  • the volume average particle diameter (hereinafter, also simply referred to as average particle diameter) (D50) (D50) of the thermally expandable microsphere is not particularly limited, but is preferably 5 to 80 ⁇ m. If the thickness is less than 5 ⁇ m, the thickness of the outer shell of the thermally expandable microspheres may be reduced, and sufficient gas barrier properties cannot be maintained, so that lightweight resin hollow particles may not be obtained. If it exceeds 80 ⁇ m, unevenness in the thickness of the outer shell tends to occur, and the foaming agent tends to leak, and lightweight resin hollow particles may not be obtained.
  • the lower limit of the volume average particle diameter is more preferably 10 ⁇ m, still more preferably 15 ⁇ m.
  • the upper limit of the volume average particle diameter is more preferably 70 ⁇ m, and still more preferably 60 ⁇ m.
  • a volume average particle diameter is based on the method measured in an Example.
  • the coefficient of variation CV of the particle size distribution of the heat-expandable microspheres is not particularly limited, but is preferably 35% or less, more preferably 30% or less, and particularly preferably 25% or less.
  • the variation coefficient CV is calculated by the following calculation formulas (1) and (2).
  • s is the standard deviation of the particle size, ⁇ x> is an average particle size, x i is the i-th particle diameter, n is the number of particles.
  • the maximum expansion ratio of the thermally expandable microsphere is not particularly limited, but is preferably 10 to 200 times. If it is less than 10 times, lightweight resin hollow particles with low expansion ratio cannot be obtained. On the other hand, if it exceeds 200 times, the rigidity of the outer shell portion may be lowered, and the resin hollow particles may be deformed by a high pressure load from the outside.
  • the lower limit of the maximum expansion ratio of the thermally expandable microsphere is more preferably 12 times, and still more preferably 14 times.
  • the upper limit of the maximum expansion ratio of the thermally expandable microsphere is more preferably 180 times, and further preferably 150 times. The maximum expansion ratio of the thermally expandable microsphere is determined by the method measured in the examples.
  • the heat-expandable microspheres of the present invention have the rigidity and elasticity of the thermoplastic resin that constitutes the outer shell, and are excellent in resistance to high pressure loads. Therefore, injection molding, extrusion molding, kneading molding, calendar molding, It is suitable for use in molding processes such as blow molding, compression molding, vacuum molding, and thermoforming. Moreover, it is also possible to mix and use for paste-like things, such as a vinyl chloride paste, and liquid compositions, such as EVA emulsion, an acrylic emulsion, and a urethane binder.
  • the method for producing thermally expandable microspheres of the present invention comprises an oily mixture containing a polymerizable component containing a non-crosslinkable monomer and a crosslinkable monomer (A), a foaming agent, and a polymerization initiator. It is a production method including a step of dispersing in an aqueous dispersion medium and polymerizing the polymerizable component (hereinafter sometimes referred to as a polymerization step).
  • peroxide examples include peroxydicarbonates such as diisopropyl peroxydicarbonate, di-sec-butylperoxydicarbonate, di-2-ethylhexylperoxydicarbonate, dibenzylperoxydicarbonate; lauroyl peroxide Diacyl peroxides such as benzoyl peroxide; ketone peroxides such as methyl ethyl ketone peroxide and cyclohexanone peroxide; peroxyketals such as 2,2-bis (t-butylperoxy) butane; cumene hydroperoxide, t-butyl Hydroperoxides such as hydroperoxides; Dialkyl peroxides such as dicumyl peroxide and di-t-butyl peroxide; t-hexylperoxypivalate, t-
  • Examples of the azo compound include 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4- Dimethylvaleronitrile), 2,2′-azobis (2-methylpropionate), 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), etc. Can be mentioned.
  • the blending amount of the polymerization initiator is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 8 parts by weight, and further preferably 0.2 to 5 parts by weight with respect to 100 parts by weight of the polymerizable component. .
  • amount of the polymerization initiator is less than 0.05 parts by weight, polymerizable components that are not polymerized may remain, and as a result, a shell having rigidity and elasticity may not be obtained, and the thermally expandable microspheres are expanded. The outer shell of the resin hollow particles obtained may be deformed against a high pressure.
  • the blending amount of the polymerization initiator is more than 10 parts by weight, the expansibility is lowered, and lightweight resin hollow particles may not be obtained.
  • a polymerization initiator having a 10-hour half-life higher than the polymerization temperature (hereinafter, also referred to as other polymerization initiator) is used in combination, and the residual is obtained by heating when producing expanded resin hollow particles.
  • a crosslinked structure derived from a reactive carbon-carbon double bond can be formed.
  • the 10-hour half-life temperature of the other polymerization initiators is preferably more than 90 ° C. and 170 ° C. or less.
  • the 10-hour half-life temperature of the polymerization initiator when the 10-hour half-life temperature of the polymerization initiator is within this range, it does not decompose in the thermal expansion microsphere polymerization process, but decomposes in the thermal expansion process to generate radicals, so that the remaining reactive carbon-carbon Since a bridge structure derived from a double bond can be formed, the obtained resin hollow particles may be able to suppress deformation against a high pressure load from the outside.
  • the lower limit of the 10-hour half-life temperature of the polymerization initiator is preferably 95 ° C, more preferably 110 ° C, and even more preferably 130 ° C.
  • the upper limit of the 10-hour half-life temperature of the polymerization initiator is preferably 167 ° C, more preferably 165 ° C, and further preferably 163 ° C.
  • examples of other polymerization initiators include 1,1-di (t-hexylperoxy) cyclohexane, 1,1-di (t-butylperoxy) cyclohexane, 2,2-di (4,4-di-).
  • the said other polymerization initiator may be used individually by 1 type, and may use 2 or more types together.
  • an aqueous suspension in which an oily mixture is dispersed in an aqueous dispersion medium is prepared, and a polymerizable component is polymerized.
  • An aqueous dispersion medium is a medium mainly composed of water such as ion-exchanged water in which an oily mixture is dispersed, and may further contain an alcohol such as methanol, ethanol or propanol, or a hydrophilic organic solvent such as acetone. Good.
  • the hydrophilicity in the present invention means that it can be arbitrarily mixed with water.
  • the amount of the aqueous dispersion medium to be used is not particularly limited, but it is preferable to use 100 to 1000 parts by weight of the aqueous dispersion medium with respect to 100 parts by weight of the polymerizable component.
  • the aqueous dispersion medium may further contain an electrolyte.
  • the electrolyte include sodium chloride, magnesium chloride, calcium chloride, sodium sulfate, magnesium sulfate, ammonium sulfate, and sodium carbonate. These electrolytes may be used individually by 1 type, and may use 2 or more types together.
  • the content of the electrolyte is not particularly limited, but is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the aqueous dispersion medium.
  • the aqueous dispersion medium includes polyalkylenimines having a structure in which an alkyl group substituted with a hydrophilic functional group selected from a carboxylic acid (salt) group and a phosphonic acid (salt) group is bonded to a nitrogen atom, a hydroxyl group, and a carboxylic acid (salt) ) And water-soluble 1,1-substituted compounds having a structure in which a hydrophilic functional group selected from a phosphonic acid (salt) group and a hetero atom are bonded to the same carbon atom, potassium dichromate, alkali metal nitrite Containing at least one water-soluble compound selected from salts, metal (III) halides, boric acid, water-soluble ascorbic acids, water-soluble polyphenols, water-soluble vitamin Bs and water-soluble phosphonic acids (salts) Also good.
  • the water solubility in this invention means the state which melt
  • the amount of the water-soluble compound contained in the aqueous dispersion medium is not particularly limited, but is preferably 0.0001 to 1.0 part by weight, more preferably 0.0003 to 100 parts by weight with respect to 100 parts by weight of the polymerizable component. 0.1 parts by weight, more preferably 0.001 to 0.05 parts by weight.
  • the aqueous dispersion medium may contain a dispersion stabilizer and a dispersion stabilization auxiliary agent in addition to the electrolyte and the water-soluble compound.
  • the dispersion stabilizer is not particularly limited, and examples thereof include tricalcium phosphate, magnesium pyrophosphate, calcium pyrophosphate obtained by the metathesis method, colloidal silica, alumina sol, magnesium hydroxide and the like. These dispersion stabilizers may be used alone or in combination of two or more.
  • the blending amount of the dispersion stabilizer is preferably 0.05 to 100 parts by weight, more preferably 0.2 to 70 parts by weight with respect to 100 parts by weight of the polymerizable component.
  • the dispersion stabilizing aid is not particularly limited, and examples thereof include a polymer type dispersion stabilizing aid, a cationic surfactant, an anionic surfactant, an amphoteric surfactant, a nonionic surfactant, and the like. Mention may be made of activators. These dispersion stabilizing aids may be used alone or in combination of two or more.
  • the aqueous dispersion medium is prepared, for example, by blending water (ion-exchanged water) with an electrolyte, a water-soluble compound, a dispersion stabilizer, a dispersion stabilization auxiliary agent, and the like as necessary.
  • the pH of the aqueous dispersion medium at the time of polymerization is appropriately determined depending on the type of the water-soluble compound, the dispersion stabilizer, and the dispersion stabilization aid.
  • polymerization may be performed in the presence of sodium hydroxide, sodium hydroxide and zinc chloride.
  • the oily mixture is suspended and dispersed in an aqueous dispersion medium so that spherical oil droplets having a predetermined particle diameter are prepared.
  • a method for suspending and dispersing the oily mixture for example, a method of stirring with a homomixer (for example, manufactured by Primix) or a method of using a static dispersion device such as a static mixer (for example, manufactured by Noritake Engineering Co., Ltd.). And general dispersion methods such as a membrane suspension method and an ultrasonic dispersion method.
  • suspension polymerization is started by heating the dispersion in which the oily mixture is dispersed as spherical oil droplets in the aqueous dispersion medium.
  • the stirring may be performed so gently as to prevent, for example, floating of the monomer and sedimentation of the thermally expandable microspheres after polymerization.
  • the polymerization temperature is freely set depending on the type of the polymerization initiator, but is preferably controlled in the range of 30 to 90 ° C, more preferably 40 to 88 ° C.
  • the time for maintaining the reaction temperature is preferably about 1 to 20 hours.
  • the initial polymerization pressure is not particularly limited, but is 0 to 5 MPa, more preferably 0.2 to 3 MPa in terms of gauge pressure.
  • the obtained slurry is filtered with a centrifuge, a pressure press, a vacuum dehydrator or the like, and a cake-like product having a water content of 10 to 50% by weight, preferably 15 to 45% by weight, more preferably 20 to 40% by weight.
  • the cake-like product is dried by a shelf-type dryer, an indirect heating dryer, a fluid dryer, a vacuum dryer, a vibration dryer, an air dryer, etc., and a moisture content is 5% by weight or less, preferably 3% by weight or less. More preferably, the dry powder is 1% by weight or less.
  • the cake-like product may be washed again with water and / or redispersed and then dried and dried.
  • the slurry may be dried by a spray dryer, a fluid dryer, or the like to obtain a dry powder.
  • the resin hollow particles of the present invention are particles obtained by heating and expanding the thermally expandable microspheres obtained by the above-described method for producing thermally expandable microspheres.
  • the resin hollow particles are lightweight and have excellent material properties when included in a composition or a molded product.
  • the resin hollow particles of the present invention are particles obtained by heating and expanding the thermally expandable microspheres obtained by the above-described method for producing thermally expandable microspheres, and are obtained by polymerizing a specific polymerizable component. Since it is comprised from the outer shell which consists of thermoplastic resins, a deformation
  • the resin hollow particles of the present invention can be obtained by thermally expanding the thermally expandable microspheres obtained by the above-described method for producing thermally expandable microspheres, preferably at 70 to 450 ° C.
  • a dry heating expansion method and a wet heating expansion method may be used.
  • the dry heating expansion method include the method described in JP-A-2006-213930, particularly the internal injection method.
  • a method described in JP-A-2006-96963 there is a method described in JP-A-2006-96963.
  • Examples of the wet heating expansion method include the method described in JP-A-62-201231.
  • the hollow resin part basically contains the foaming agent in a vaporized state in the hollow part.
  • the resin hollow particle may contain a part of the foaming agent in the hollow part in a liquefied or solidified state. .
  • the air etc. which were taken in from the external environment may be contained in the hollow part of the resin hollow particle.
  • the entrapment ratio of the foaming agent contained in the hollow part of the resin hollow particles means the weight ratio of the foaming agent to the resin hollow particles, and is defined in detail by the measurement method described in the examples.
  • the encapsulating rate of the foaming agent is not particularly limited, but is preferably 2 to 35% by weight. When the encapsulating rate of the foaming agent contained in the hollow part of the resin hollow particles is within this range, the internal pressure of the hollow part can be maintained at a high level, and the thickness of the outer shell part is maintained. The deformation can be suppressed with respect to the high pressure from.
  • the encapsulating rate of the foaming agent contained in the hollow part of the resin hollow particle is less than 2% by weight, a sufficient internal pressure cannot be obtained, and the outer shell of the resin hollow particle is deformed against a high external pressure load. May end up.
  • the encapsulation rate of the foaming agent contained in the hollow part of the resin hollow particle exceeds 35% by weight, the resin hollow particle becomes very thin. May be deformed.
  • the more preferable lower limit of the encapsulation rate of the foaming agent contained in the hollow part of the resin hollow particles is 4% by weight, and the more preferable lower limit is 5% by weight.
  • the more preferable upper limit is 28% by weight, and the more preferable upper limit is 23% by weight.
  • a particularly preferred upper limit is 18% by weight, and a particularly preferred upper limit is 17% by weight.
  • the average particle diameter of the hollow resin particles can be freely designed according to the use, and is not particularly limited. However, it is preferably 10 to 300 ⁇ m from the viewpoint of suppressing deformation of the outer shell of the hollow resin particles. .
  • the thickness is less than 10 ⁇ m, the thickness of the outer shell of the resin hollow particle may be reduced, and the outer shell of the resin hollow particle may be deformed by a high external pressure. If it exceeds 300 ⁇ m, the thickness of the outer shell of the resin hollow particles tends to be uneven, the foaming agent tends to leak, and the outer shell of the resin hollow particles will be deformed against a high external pressure load. There is.
  • the lower limit of the average particle diameter is more preferably 30 ⁇ m, still more preferably 40 ⁇ m, and the upper limit of the average particle diameter is more preferably 250 ⁇ m, still more preferably 200 ⁇ m.
  • the average particle diameter of resin hollow particle is based on the method measured in an Example. Further, the coefficient of variation CV of the particle size distribution of the resin hollow particles is not particularly limited, but is preferably 35% or less, more preferably 30% or less, and particularly preferably 25% or less.
  • the true specific gravity of the resin hollow particles is not particularly limited, but is preferably 0.005 to 0.6, more preferably 0.015 to 0.4, and particularly preferably 0.020 to 0.3.
  • the true specific gravity of the resin hollow particles is smaller than 0.005
  • the thickness of the outer shell of the resin hollow particles is thin, and the outer shell of the resin hollow particles may be deformed against a high pressure load from the outside.
  • the true specific gravity of the resin hollow particles is larger than 0.6, the effect of reducing the specific gravity is reduced. Therefore, when the composition is prepared using the resin hollow particles, the amount added is increased, and the composition or molding is performed. May lead to deterioration of physical properties.
  • the resin hollow particles (1) may be composed of fine particles (4 and 5) attached to the outer surface of the outer shell (2).
  • adheresion as used herein may simply mean that the fine particles 4 and 5 are adsorbed on the outer surface of the outer shell 2 of the fine particle-adhered resin hollow particles (the state of the fine particles 4 in FIG. 2).
  • the thermoplastic resin constituting the outer shell may be melted by heating, and the fine particle filler may sink into the outer surface of the outer shell of the fine particle-adhered resin hollow particle and be fixed (the state of the fine particle 5 in FIG. 2).
  • the particle shape of the fine particles may be indefinite or spherical. When the fine particles adhere to the resin hollow particles, scattering of the resin hollow particles can be suppressed and handling can be improved, and dispersibility in a base material component such as a binder or a resin can also be improved.
  • Various particles can be used as the fine particles, and any of inorganic materials and organic materials may be used.
  • the shape of the fine particles include a spherical shape, a needle shape, and a plate shape.
  • the inorganic material constituting the fine particles is not particularly limited, for example, wollastonite, sericite, kaolin, mica, clay, talc, bentonite, alumina silicate, pyrophyllite, montmorillonite, calcium silicate, calcium carbonate, magnesium carbonate, Dolomite, calcium sulfate, barium sulfate, glass flake, boron nitride, silicon carbide, silica, alumina, mica, titanium dioxide, zinc oxide, magnesium oxide, zinc oxide, hydrosartite, carbon black, molybdenum disulfide, tungsten disulfide, Examples thereof include ceramic beads, glass beads, crystal beads, and glass microballoons.
  • the organic substance constituting the fine particles is not particularly limited.
  • the inorganic and organic substances constituting the fine particles may be treated with a surface treatment agent such as a silane coupling agent, paraffin wax, fatty acid, resin acid, urethane compound, fatty acid ester, or may be un
  • the average particle diameter of the fine particles is preferably 0.001 to 30 ⁇ m, more preferably 0.005 to 25 ⁇ m, and particularly preferably 0.01 to 20 ⁇ m.
  • the average particle diameter of the fine particles is the particle diameter of the fine particles measured by a laser diffraction method.
  • the ratio of the average particle size of the fine particles to the average particle size of the resin hollow particles is preferably 1 or less from the viewpoint of adhesion of the fine particles to the resin hollow particle surface. More preferably, it is 0.1 or less, More preferably, it is 0.05 or less.
  • the weight ratio of the fine particles to the fine particle-adhered resin hollow particles is not particularly limited, but is preferably less than 95% by weight, more preferably less than 90% by weight, particularly preferably less than 85% by weight, and most preferably less than 80% by weight. is there.
  • the weight ratio of the fine particles is 95% by weight or more, when the composition is prepared using the fine particle-adhered resin hollow particles, the amount added is large, which may be uneconomical.
  • a preferable lower limit of the weight ratio of the fine particles is 20% by weight, and a particularly preferable lower limit is 40% by weight.
  • the true specific gravity of the fine particle-adhered resin hollow particles is not particularly limited, but is preferably 0.06 to 0.60. If the true specific gravity of the fine particle-adhered resin hollow particles is less than 0.06, the film thickness of the outer shell may be very thin, and the outer shell of the resin hollow particles deforms against a high external pressure load. May end up. On the other hand, if it exceeds 0.60, the effect of reducing the specific gravity is reduced, so when preparing a composition using resin hollow particles, the amount added is increased, leading to a decrease in physical properties as a composition or a molded body. There is.
  • the more preferable lower limit of the true specific gravity of the fine particle-adhered resin hollow particles is 0.10, and the particularly preferable lower limit is 0.12. On the other hand, the more preferable upper limit is 0.30, and the particularly preferable upper limit is 0.20.
  • the resin hollow particles or the resin-attached resin hollow particles may have expansion capacity.
  • the expansion capacity means a property (re-expansion) that further expands when the resin hollow particles or resin-attached resin hollow particles are heated.
  • the expansion capacity factor of the resin hollow particles or resin-adhered resin hollow particles is not particularly limited, but is preferably 5 to 85%. When the expansion capacity factor is less than 5%, the holding performance of the foaming agent contained in the outer shell of the resin hollow particles or resin-attached resin hollow particles may be lowered, and a sufficient amount of foaming agent is held. In some cases, the outer shell of the resin hollow particles or the resin-adhered resin hollow particles may be deformed against a high external pressure load.
  • the more preferable lower limit of the expansion residual power factor of the resin hollow particles or the resin-attached resin hollow particles is 10%, and the particularly preferable lower limit is 15%.
  • the more preferable upper limit of the expansion residual power factor is 80%, and the particularly preferable upper limit is 70%. is there.
  • the expansion power factor of the resin hollow particles or resin-adhered resin hollow particles is the degree of expansion relative to the resin hollow particles obtained by maximally expanding the thermally expandable microspheres (hereinafter sometimes referred to as the resin hollow particles at the maximum expansion).
  • the true specific gravity (d 2 ) of the resin hollow particles, the true specific gravity (d 4 ) of the resin hollow particles contained in the fine particle-adhered resin hollow particles, and the true specific gravity (d 5 ) of the resin hollow particles at the maximum expansion are shown in the examples. This is due to the method measured in
  • the fine particle-adhered resin hollow particles are useful as a coating composition or an adhesive composition when blended with the composition described later.
  • the fine particle-attached resin hollow particles can be obtained, for example, by heating and expanding fine particle-attached thermally expandable microspheres.
  • a step of mixing thermally expandable microspheres and fine particles mixing step
  • heating the mixture obtained in the mixing step to a temperature above the softening point
  • a production method including a step of attaching the fine particles to the outer surface of the resulting resin hollow particles (attachment step) while expanding the thermally expandable microspheres is preferable.
  • the mixing step is a step of mixing thermally expandable microspheres and fine particles.
  • the heat-expandable microspheres and fine particles used in the mixing step are as described above.
  • the weight ratio of the fine particles to the total of the thermally expandable microspheres and fine particles in the mixing step is not particularly limited, but is preferably less than 95% by weight, more preferably less than 90% by weight, particularly preferably less than 85% by weight, and most preferably. Is less than 80% by weight.
  • the weight ratio of the fine particles to the total of the heat-expandable microspheres and fine particles is larger than 95% by weight, the true specific gravity of the fine particle-adhered resin hollow particles is increased, and the effect of reducing the specific gravity may be reduced.
  • the apparatus used for mixing the heat-expandable microspheres and the fine particles is not particularly limited, and can be performed using an apparatus having a very simple mechanism such as a container and a stirring blade. Moreover, you may use the powder mixer which can perform a general rocking
  • the adhesion step is a step of heating the mixture containing the thermally expandable microspheres and fine particles obtained in the mixing step to a temperature above the softening point of the thermoplastic resin constituting the outer shell of the thermally expandable microsphere. It is.
  • the thermally expandable microspheres are expanded and the fine particles are attached to the outer surface of the outer shell portion of the obtained resin hollow particles.
  • Heating may be performed using a general contact heat transfer type or direct heating type mixed drying apparatus.
  • the function of the mixing type drying apparatus is not particularly limited, but it is preferable to be able to adjust the temperature and disperse and mix the raw materials, and optionally equipped with a decompression device and a cooling device for speeding up drying.
  • a Ladige mixer made by Matsubo Co., Ltd.
  • solid air Hosokawa Micron Co., Ltd.
  • the heating temperature condition depends on the type of thermally expandable microspheres, but the optimum expansion temperature is good, preferably 60 to 250 ° C., more preferably 70 to 230 ° C., still more preferably 80 to 220 ° C. is there.
  • the composition of the present invention comprises at least one selected from the above-described thermally expandable microspheres, resin hollow particles, and fine particle-adhered resin hollow particles, and a base material component.
  • the base material component is not particularly limited, and rubbers such as natural rubber, butyl rubber, silicon rubber, ethylene-propylene-diene rubber (EPDM); thermosetting resins such as unsaturated polyester, epoxy resin, phenol resin; polyethylene wax Waxes such as paraffin wax; ethylene-vinyl acetate copolymer (EVA), ionomer, polyethylene, polypropylene, polyvinyl chloride (PVC), acrylic resin, thermoplastic polyurethane, acrylonitrile-styrene copolymer (AS resin), Acrylonitrile-butadiene-styrene copolymer (ABS resin), polystyrene (PS), polyamide resin (nylon 6, nylon 66, etc.), polycarbonate, polyethylene terephthalate (
  • the composition of the present invention can be prepared by mixing these base material components and at least one selected from thermally expandable microspheres, resin hollow particles, and fine particle-adhered resin hollow particles.
  • a composition obtained by mixing a base material component and at least one selected from thermally expandable microspheres, resin hollow particles, and fine particle-adhered resin hollow particles is further mixed with another base material component. It can also be the composition of the invention.
  • the weight ratio of at least one selected from thermally expandable microspheres, resin hollow particles, and fine particle-adhered resin hollow particles with respect to 100 parts by weight of the base component is preferably 0.1 to 20 parts by weight, more preferably 0.3.
  • the mixing method is not particularly limited, but it is preferable to mix with a kneader, a roll, a mixing roll, a mixer, a single screw kneader, a twin screw kneader, a multi screw kneader or the like.
  • the resin hollow particles obtained by expanding the thermally expandable microspheres of the present invention can suppress deformation of the outer shell of the resin hollow particles against a high external pressure load as described above, These resin hollow particles are expected to be used for applications where the performance as a light weight filler could not be exhibited sufficiently. Examples of such applications include coating compositions and adhesive compositions.
  • the deformation ratio R of the outer shell of the resin hollow particles is not particularly limited, but is preferably 85% or less, more preferably 55% or less, still more preferably 35% or less, particularly preferably 20% or less, most preferably. 15% or less.
  • the deformation ratio R is more than 85%, it may not be possible to reduce the weight of a composition containing resin hollow particles and a base material component or a molded product obtained from a composition containing resin hollow particles and a base material component. Details of the deformation rate R of the outer shell of the resin hollow particle will be described in Examples.
  • composition of the present invention has a compound having a melting point lower than the expansion start temperature of the thermally expandable microsphere and / or a thermoplastic resin (for example, polyethylene wax, in particular) as a base component together with the thermally expandable microsphere.
  • a thermoplastic resin for example, polyethylene wax, in particular
  • Waxes such as paraffin wax, ethylene-vinyl acetate copolymer (EVA), polyethylene, modified polyethylene, polypropylene, modified polypropylene, modified polyolefin, polyvinyl chloride (PVC), acrylic resin, thermoplastic polyurethane, acrylonitrile-styrene copolymer Thermoplastic resins such as coalescence (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), polystyrene (PS), polycarbonate, polyethylene terephthalate (PET), polybutylene terephthalate (PBT); ethylene ionomer , Urethane ionomer, styrene ionomer, ionomer resins and fluorine-based ionomers; olefinic elastomers, styrenic elastomers, if it contains thermoplastic elastomers) such as polyester-based
  • this resin molding masterbatch composition is used for injection molding, extrusion molding, press molding, and the like, and is suitably used for introducing bubbles during resin molding.
  • the resin used at the time of resin molding is not particularly limited as long as it is selected from the above base material components.
  • ethylene-vinyl acetate copolymer polyethylene, modified polyethylene, polypropylene, modified polypropylene, modified polyolefin, Polyvinyl chloride (PVC), acrylic resin, thermoplastic polyurethane, acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), polystyrene (PS), polyamide resin (nylon 6, nylon 66), modified polyamide, polycarbonate, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyacetal (POM), polyphenylene sulfide (PPS), polyphenylene ether (PPE), Polyphenylene ether, ionomer resin, olefin elastomer, styrene elastomer, polyester elastomer, polylactic acid (PLA), cellulose acetate, PBS, PHA, star
  • reinforcing fibers such as glass fibers, carbon fibers, natural fibers; inorganic powders such as talc, titanium oxide, silica, and inorganic pigments; polymer fine particles such as acrylic fine particles, styrene fine particles, urethane fine particles, and silicon fine particles; It may contain organic powders such as organic pigments, flame retardants, chemical foaming agents and the like.
  • the molded product of the present invention is formed by molding the composition described above.
  • Examples of the molded product of the present invention include molded products such as coating films and molded products.
  • various physical properties such as lightness, porosity, sound absorption, heat insulation, low thermal conductivity, low dielectric constant, design, impact absorption, strength, and chipping properties are improved.
  • stabilization against sink marks and warpage, reduction in molding shrinkage, dimensional stability, and the like are also expected.
  • the ceramic filter etc. are obtained by further baking the molded object containing an inorganic substance as a base-material component.
  • thermally expandable microsphere of the present invention examples of the thermally expandable microsphere of the present invention will be specifically described. The present invention is not limited to these examples.
  • % means “% by weight” unless otherwise specified.
  • the heat-expandable microsphere may be referred to as “microsphere” for simplicity.
  • physical properties of the thermally expandable microspheres, resin hollow particles, and fine particle-adhered resin hollow particles listed in the following Examples and Comparative Examples were measured in the following manner, and the performance was further evaluated.
  • a microtrack particle size distribution meter (model 9320-HRA) manufactured by Nikkiso Co., Ltd. was used as a measuring device, and a D50 value obtained by volume-based measurement was defined as a volume average particle size.
  • a laser diffraction particle size distribution measuring apparatus (Mastersizer 3000) manufactured by Malvern was used, and measurement was performed by a dry measurement method.
  • the average particle diameter a D50 value obtained by volume-based measurement was adopted.
  • T s expansion start temperature
  • T max maximum expansion temperature of thermally expandable microspheres
  • DMA DMA Q800 type manufactured by TA instruments
  • a sample was prepared by placing 0.5 mg of microspheres in an aluminum cup having a diameter of 6.0 mm and a depth of 4.8 mm, and placing an aluminum lid (diameter 5.6 mm, thickness 0.1 mm) on top of the microsphere layer.
  • the sample height was measured in a state where a force of 0.01 N was applied to the sample with a pressurizer from above. Heating was performed from 20 ° C. to 300 ° C.
  • the displacement start temperature in the positive direction was defined as the expansion start temperature (T s ), and the temperature indicating the maximum displacement was defined as the maximum expansion temperature (T max ).
  • the true specific gravity (d 1 ) of the thermally expandable microspheres was measured by the following measurement method.
  • the true specific gravity was measured by an immersion method (Archimedes method) using isopropyl alcohol in an atmosphere having an environmental temperature of 25 ° C. and a relative humidity of 50%. Specifically, the volumetric flask with a capacity of 100 cc was emptied and dried, and the weight of the volumetric flask (W B1 (g)) was weighed.
  • the true specific gravity (d 4 ) of the resin hollow particles contained in the fine particle-adhered resin hollow particles was measured as follows. First, as a pretreatment, an operation of washing out the fine particles from the fine particle-adhered resin hollow particles was performed. Specifically, the fine particle-adhered resin hollow particles, water, and, if necessary, an acid or base were mixed, and the fine particles were decomposed or washed away by stirring. Subsequently, this was separated into solid and liquid by filtration. By repeating this operation several times, resin hollow particles in which the fine particles were removed from the fine particle-adhered resin hollow particles were obtained.
  • C 1 (% by weight) 100 ⁇ ⁇ 100 ⁇ (W 1 ⁇ W 2 ) /1.0 ⁇ C w1 ⁇ / (100 ⁇ C w1 ) (In the formula, the water content C w1 of the thermally expandable microsphere is measured by the above method.)
  • the resin hollow particles W 3 (g) were put in a stainless steel evaporation dish having a diameter of 80 mm and a depth of 15 mm, and the weight (W 4 (g)) was measured.
  • W 3 (g) is a value of about 0.2 to 0.5 g.
  • the encapsulating rate (C 2 ) of the foaming agent of the resin hollow particles is calculated by the following formula.
  • the encapsulating rate (C 3 ) of the foaming agent of the resin hollow particles in the fine particle-adhered resin hollow particles was measured as follows. First, as a pretreatment, an operation of washing out the fine particles from the fine particle-adhered resin hollow particles was performed. Specifically, the fine particle-adhered resin hollow particles, water, and, if necessary, an acid or base were mixed, and the fine particles were decomposed or washed away by stirring. Subsequently, this was separated into solid and liquid by filtration.
  • the maximum expansion ratio of the heat-expandable microsphere is defined as the expansion ratio, which is the volume ratio increased at the time of the maximum expansion after the heat expansion with respect to the volume of the heat-expandable microsphere.
  • the heating conditions were heating for 2 minutes each in the range from the expansion start temperature obtained above to a temperature 100 ° C. higher than the maximum expansion temperature.
  • a vinyl chloride paste was prepared by blending 56 parts by weight of a vinyl chloride resin, 92 parts by weight of diisononyl phthalate as a plasticizer and 52 parts by weight of calcium carbonate as a filler.
  • the specific gravity of the produced vinyl chloride paste was 1.3.
  • a predetermined amount of resin hollow particles or fine particle-adhered resin hollow particles were blended in this vinyl chloride paste, and defoaming was performed to obtain a vinyl chloride compound having a specific gravity of 1.0. It was confirmed using a specific gravity cup based on JIS K-5600 that the specific gravity of the vinyl chloride compound was 1.0.
  • Microsphere 1 Example 1 In 500 parts of ion-exchanged water, 126 parts of sodium chloride is dissolved, 0.45 part of polyvinylpyrrolidone, 0.1 part of carboxymethylated polyethyleneimine / Na salt (CMPEI) and 40 parts of colloidal silica (effective concentration 20%) are added. Then, the pH was adjusted to 3.0 to prepare an aqueous dispersion medium.
  • CMPEI carboxymethylated polyethyleneimine / Na salt
  • colloidal silica effective concentration 20%
  • the suspension was transferred to a 1.5 liter pressurized reaction vessel and purged with nitrogen, then the initial reaction pressure was 0.35 MPa, and the polymerization reaction was carried out at a polymerization temperature of 60 ° C. for 20 hours while stirring at 80 rpm. After the polymerization, the product was filtered and dried to obtain thermally expandable microspheres 1. Table 1 shows the physical properties of the obtained thermally expandable microspheres.
  • Example 1 The microspheres 1 obtained in Example 1 produced resin hollow particles 1 by a dry heating expansion method.
  • a dry heating expansion method an internal injection method described in JP-A-2006-213930 was adopted. Specifically, using the manufacturing apparatus provided with the foaming process section shown in FIG. 3, the thermally expandable microspheres were heated and expanded by the following procedure to manufacture resin hollow particles.
  • the foaming process section was installed at the outlet of the dispersion nozzle (11) and at the downstream portion of the dispersion nozzle (11) with a gas introduction pipe (not shown) arranged in the center.
  • a gas fluid (13) containing thermally expandable microspheres is caused to flow in the direction of the arrow in the gas introduction tube, and in the space formed between the gas introduction tube and the overheating prevention cylinder (10).
  • the gas flow (14) for improving the dispersibility of the thermally expandable microspheres and preventing the overheating of the gas introduction pipe and the collision plate is flowed in the direction of the arrow, and further, the overheating prevention cylinder (10) and the hot air nozzle
  • a hot air flow for thermal expansion flows in the direction of the arrow.
  • the hot air flow (15), the gas fluid (13), and the gas flow (14) are usually flows in the same direction.
  • a refrigerant flow (9) flows in the direction of the arrow inside the overheating prevention cylinder (10) for cooling.
  • the gaseous fluid (13) containing the thermally expandable microspheres is flowed through a gas introduction pipe provided with a dispersion nozzle (11) at the outlet and installed inside the hot air flow (15), and the gaseous fluid (13). From the dispersion nozzle (11).
  • the gas fluid (13) is caused to collide with the collision plate (12) installed downstream of the dispersion nozzle (11), so that the thermally expandable microspheres are uniformly dispersed in the hot air flow (15).
  • the gaseous fluid (13) exiting from the dispersion nozzle (11) is guided toward the collision plate (12) together with the gas flow (14) and collides with it.
  • the dispersed thermally expandable microspheres are heated and expanded above the expansion start temperature in the hot air flow (15). Thereafter, the obtained resin hollow particles are recovered by passing them through a cooling part.
  • Example 2 [Fine particle adhering hollow particle 2 Example 2]
  • 30 parts of the microspheres 2 obtained in Example 2 and 70 parts of calcium carbonate (Whiten SB red manufactured by Bihoku Powder Chemical Co., Ltd .; average particle diameter of about 1.8 ⁇ m by laser diffraction method) was added to a separable flask and mixed, and then the mixture was heated to a heating temperature of 155 ° C. over 5 minutes while stirring to obtain fine particle-adhered resin hollow particles 2.
  • the true specific gravity of the obtained fine particle-attached resin hollow particles 2 was 0.144, and the true specific gravity of the resin hollow particles contained in the fine particle-attached resin hollow particles was 0.045.
  • the encapsulation rate (C 3 ) of the foaming agent was 8.6%.
  • Example 1 It is obtained in Example 1 to a vinyl chloride resin sol (specific gravity 1.3) comprising 56 parts of vinyl chloride resin (product number ZEST-P-21, manufactured by Tokuyama Corporation), 92 parts of diisononyl phthalate and 52 parts of calcium carbonate. 1.67 parts of the hollow resin particles 1 were added and kneaded, and then defoamed with a stirring defoamer to obtain a vinyl chloride compound. The specific gravity of the obtained vinyl chloride compound was 1.0. Next, the obtained compound was evaluated for deformation resistance against an external pressure load in accordance with the procedure described above. The results are shown in Table 4.
  • the hollow resin particles of the present invention can suppress deformation against a high pressure load from the outside, the deformation rate of the hollow resin particles is low, and as a result, there is little variation in the specific gravity of the compound before and after pressing, and weight reduction is effective. is there.
  • Evaluation 2 to 20 evaluation was performed in the same manner as in Evaluation 1 except that the resin hollow particles blended as a weight reducing agent (adhesion of fine particles) were changed to those shown in Table 4. The results are shown in Tables 4-6. Furthermore, in Evaluation 2, the compound after being pressurized at 20 MPa for 1 hour was observed with an optical microscope to confirm the state of the fine particle-adhered resin hollow particles.
  • FIG. 4 shows the state of the fine particle-attached resin hollow particles before evaluation
  • FIG. 5 shows the state of the fine particle-attached resin hollow particles after evaluation. From the image of FIG. 5, many remaining fine particle-adhered resin hollow particles were confirmed as compared with FIG.
  • the present invention it is possible to obtain resin hollow particles capable of suppressing deformation such as tearing of the outer shell and dents with respect to a high pressure load as compared with conventional heat-expandable microspheres. Since the resin hollow particles obtained from the thermally expandable microspheres of the present invention can suppress deformations such as tearing and dents of the outer shell against a high pressure load, for example, body sealers for automobiles, underbody coating agents for automobiles Further, it can be suitably used for a coating type damping material for automobiles, a sealing material for buildings, and the like.
  • thermally expandable microspheres of the present invention can be used, for example, as a lightening material such as putty, paint, ink, sealing material, mortar, paper clay, pottery, etc. Further, it can be used for the production of a molded article having excellent sound insulation, heat insulation, heat insulation, sound absorption, etc. by performing injection molding, extrusion molding, press molding or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の目的は、高い圧力負荷に対して、外殻の破れや凹み等の変形を抑制できる樹脂中空粒子が得られる熱膨張性微小球、及びその用途を提供することである。 本発明の熱膨張性微小球は、熱可塑性樹脂からなる外殻とそれに内包され、かつ加熱することによって気化する発泡剤とから構成される熱膨張性微小球であって、前記熱可塑性樹脂が、(メタ)アクリロイル基を少なくとも2つ有し、かつ前記(メタ)アクリロイル基以外に反応性炭素-炭素二重結合を有する分子量500以上の架橋性単量体(A)を含む重合性成分の重合体である。

Description

熱膨張性微小球およびその用途
 本発明は、熱膨張性微小球及びその利用に関する。
 熱可塑性樹脂を外殻とし、内部に発泡剤を内包した微粒子である熱膨張性微小球(熱膨張性マイクロカプセル)は、加熱することで、膨張させることが可能である。
 熱膨張性微小球の使用方法としては、他の基材とを配合し、配合物を加熱する際に熱膨張性微小球を膨張させる方法が一般的であり、これにより基材の軽量化だけではなく、基材に意匠性やクッション性等を付与することができる。
 近年では、熱膨張性微小球を膨張させた真球状に近い樹脂中空粒子を、基材への機能性付与剤として使用する方法も開発されている。
 例えば、地球温暖化や大気汚染の環境上の問題から、自動車の燃費を向上させるため、自動車の軽量化が強く求められており、各部材の軽量化が図られるなか、塗料であるゾル状の有機材料に熱膨張性微小球を膨張させた樹脂中空粒子を配合して、塗料を軽量化する検討が実施されている。
 しかし、一般的な熱膨張性微小球を膨張させた樹脂中空粒子は、基材との配合工程や製造、加工工程、特に樹脂中空粒子を配合した塗料の圧送工程や塗布工程等で受ける高い圧力負荷により、樹脂中空粒子の外殻が破れたり、凹んだりと変形した状態となり、要求される機能が付与されないといった問題がある。
 近年では、特許文献1のように、熱膨張性微小球の外殻である熱可塑性樹脂が(メタ)アクリロニトリルを95重量%以上含有し、(メタ)アクリロニトリル中の70重量%以上がアクリロニトリルであるモノマー混合物の重合体で、かつ架橋度が60重量%以上の熱膨張性微小球が開発されており、得られる熱膨張性微小球は、その外殻の強度が大幅に向上し、加工工程に耐えうる性能を有するとなっている。
日本国特開2010-132860号公報
 特許文献1のような熱膨張性微小球は膨張前の状態では、加工工程の外力等に耐えうる性能を有しているが、前記熱膨張性微小球を膨張させた樹脂中空粒子は、膨張前と比較して外殻の膜厚が薄くなり、機械的強度が低下してしまい、高い圧力負荷、特に塗料への使用時に受ける20MPa以上の圧力負荷をかけた場合、樹脂中空粒子の外殻が破れたり、凹んだりと樹脂中空粒子が真球状に近い状態から変形した状態となる為、基材の軽量化ができないことを確認した。
 このように、高い圧力負荷に対して、外殻の破れや凹み等の変形を抑制できる樹脂中空粒子が得られる、熱膨張性微小球はこれまでなかった。
 本発明の目的は、高い圧力負荷に対して、外殻の破れや凹み等の変形を抑制できる樹脂中空粒子が得られる熱膨張性微小球、及びその用途を提供することである。
 本発明者らは、上記課題を解決するために鋭意検討した結果、熱膨張性微小球の外殻を構成する熱可塑性樹脂が特定の架橋性単量体を含む重合性成分の重合体であれば、上記課題を解決できることを見出し、本発明に到達した。
 すなわち、本発明は、熱可塑性樹脂からなる外殻とそれに内包され、かつ加熱することによって気化する発泡剤とから構成される熱膨張性微小球であって、前記熱可塑性樹脂が、(メタ)アクリロイル基を少なくとも2つ有し、かつ前記(メタ)アクリロイル基以外に反応性炭素-炭素二重結合を有する分子量500以上の架橋性単量体(A)を含む重合性成分の重合体である、熱膨張性微小球である。
 本発明の熱膨張性微小球が、以下の1)~4)のうちの少なくとも1つの要件をさらに満足すると好ましい。
1)前記架橋性単量体(A)が下記一般式(1)で示される化合物である。
 R-O-R-O-R    (1)
(式中、RおよびRは(メタ)アクリロイル基であり、Rは反応性炭素-炭素二重結合を有し、重合体鎖を含む構造である。)
2)前記重合体鎖が、構成単位としてジエンを含む。
3)前記ジエンが、ブタジエン及び/またはイソプレンである。
4)前記重合性成分がニトリル系単量体を含む。
 本発明の樹脂中空粒子は、上記の熱膨張性微小球の膨張体である。
 本発明の微粒子付着樹脂中空粒子は、上記樹脂中空粒子と、上記樹脂中空粒子の外殻部の外表面に付着した微粒子とからなるものである。
 本発明の組成物は、上記熱膨張性微小球、上記樹脂中空粒子、及び上記微粒子付着樹脂中空粒子から選ばれる少なくとも1種と、基材成分とを含むものである。
 本発明の成形物は、上記組成物を成形してなるものである。
 本発明の熱膨張性微小球は、高い圧力負荷に対して、外殻の変形が抑制された樹脂中空粒子を得ることができる。
 本発明の樹脂中空粒子は、上記熱膨張性微小球を用いているので、高い圧力負荷に対して、外殻の変形を抑制できる。
 本発明の微粒子付着樹脂中空粒子は、上記熱膨張性微小球を用いているので、高い圧力負荷に対して、外殻の変形を抑制できる。
 本発明の組成物は、上記熱膨張性微小球、上記樹脂中空粒子、及び上記微粒子付着樹脂中空粒子の少なくとも1種を含んでいるので、高い圧力負荷に対して変形を抑制できる。
 本発明の成形物は、上記組成物を成形して得られるので、軽量である。
熱膨張性微小球の一例を示す概略図である。 微粒子付着樹脂中空粒子の一例を示す概略図である。 樹脂中空粒子を乾式加熱膨張法で製造するための製造装置の発泡工程部の概略図である。 評価2において、20MPaで1時間加圧する前のコンパウンドの光学顕微鏡写真である。 評価2において、20MPaで1時間加圧した後のコンパウンドの光学顕微鏡写真である。 評価14において、20MPaで1時間加圧する前のコンパウンドの光学顕微鏡写真である。 評価14において、20MPaで1時間加圧した後のコンパウンドの光学顕微鏡写真である。
 本発明の熱膨張性微小球は図1に示すように、熱可塑性樹脂からなる外殻(シェル)6と、それに内包される(コア)7とから構成される熱膨張性微小球である。この熱膨張性微小球はコア-シェル構造をとっており、熱膨張性微小球は微小球全体として熱膨張性(微小球全体が加熱により膨らむ性質)を示す。熱可塑性樹脂は、重合性成分の重合体である。
 重合性成分は、分子内に少なくとも1つ以上の重合性基を有する単量体を意味し、重合することによって熱膨張性微小球の外殻を形成する熱可塑性樹脂となる成分である。重合性成分としては、反応性炭素-炭素二重結合を1個有する非架橋性単量体(以下、単に非架橋性単量体という)、及び反応性炭素-炭素二重結合を2個以上有する架橋性単量体(以下、単に架橋性単量体という)が挙げられる。架橋性単量体により橋架け構造を重合体に導入することができる。ここでいう反応性炭素-炭素二重結合は、ラジカル反応性を示す炭素-炭素二重結合を意味し、ベンゼン環やナフタレン環等の芳香環内にある炭素-炭素二重結合ではなく、ビニル基、(メタ)アクリロイル基、アリル基、ビニレン基等に含まれる炭素-炭素二重結合が挙げられる。ここで、(メタ)アクリロイル基は、アクリロイル基またはメタクリロイル基を意味するものとする。
 重合性成分は、(メタ)アクリロイル基を少なくとも2つ有し、かつ前記(メタ)アクリロイル基以外に反応性炭素-炭素二重結合を有する分子量500以上の架橋性単量体(A)を含む。ここで、架橋性単量体(A)が有する少なくとも2つの(メタ)アクリロイル基は、同一であってもよく、異なっていてもよい。
 (メタ)アクリロイル基は反応性炭素-炭素二重結合と極性を持った炭素-酸素二重結合を有した構造であるため、非常に高いラジカル反応性を持つ。
 このため、重合体の橋架け構造は、主に(メタ)アクリロイル基が寄与し、熱膨張性微小球の外殻部は緻密性が向上し、剛性が向上する。また、重合体はその分子中に反応性炭素-炭素二重結合を有した状態となり、さらに、架橋性単量体(A)の分子量は500以上であるため、重合体の分子量をより大きくすることが可能となり、高い弾性を有すると考えられる。
 このことから、架橋性単量体(A)を含む重合性成分の重合体である熱可塑性樹脂は、剛性と弾性とを持ち合わせている為、前記熱可塑性樹脂を外殻とした熱膨張性微小球より得られる、膜厚が非常に薄い状態にある樹脂中空粒子であっても、高い圧力負荷に対して、外殻の変形を抑制することができる。
 架橋性単量体(A)の分子量は500以上であり、好ましくは500~50000である。架橋性単量体(A)の分子量が、500以上であると、架橋性単量体(A)を含む重合性成分の重合体である熱可塑性樹脂は、剛性と弾性とを持ち合わせている為、前記熱可塑性樹脂を外殻とした熱膨張性微小球より得られる、膜厚が非常に薄い状態にある樹脂中空粒子であっても、高い圧力負荷に対して、外殻の変形を抑制することができる。
 架橋性単量体(A)の分子量のより好ましい上限は35000、さらに好ましい上限は25000、特に好ましい上限は15000である。一方、より好ましい下限は600、さらに好ましい下限は1000、特に好ましい下限は1500である。
 架橋性単量体(A)の分子量が50000を超えると、熱膨張性微小球の外殻の熱可塑性樹脂中で不均一に存在してしまうことがあるため、得られた樹脂中空粒子が高い圧力負荷に対して、外殻の変形を抑制できないことがある。
 一方、架橋性単量体(A)の分子量が500より低いと、高い弾性を有することができず、得られた樹脂中空粒子が高い圧力負荷に対して、外殻の変形を抑制できない。
 架橋性単量体(A)が下記一般式(1)で示される化合物であると、熱膨張性微小球の外殻の熱可塑性樹脂に剛性と弾性とを与えることができ、前記熱膨張性微小球から得られる、膜厚が非常に薄い状態にある樹脂中空粒子であっても、高い圧力負荷に対して、外殻の変形を抑制できるため、好ましい。
 R-O-R-O-R    (1)
(式中、R及びRは(メタ)アクリロイル基であり、Rは反応性炭素-炭素二重結合を有し、重合体鎖を含む構造である。)
 前記Rは、反応性炭素-炭素二重結合を有し、重合体鎖を含む構造である。前記反応性炭素-炭素二重結合は重合体鎖に含まれていてもよく、重合体鎖以外の構造部に含まれていてもよい。本願効果を奏する点で、反応性炭素-炭素二重結合は重合体鎖に含まれていることが好ましい。重合体鎖に反応性炭素-炭素二重結合を有することで、前記Rの屈曲を抑制することができるため、熱膨張性微小球の外殻となる熱可塑性樹脂が高い弾性を有すると考えられる。このことから、前記熱膨張性微小球より得られる、膜厚が非常に薄い状態にある樹脂中空粒子であっても、高い圧力負荷に対して、外殻の変形を抑制することができると考えられる。
 また、前記Rは、重合体鎖のみで構成された構造でもよく、重合体鎖と重合体鎖以外の有機基及び/又は無機基とが結合した構造でもよい。
 前記有機基は、炭素元素を含む機能性基と定義する。有機基としては、特に限定はないが、アルキル基;アルキレン基;アルケニル基;アルキニル基;アルコキシ基;オキシアルキレン基;カルボキシル基;無水カルボキシル基;エステル基;カルボニル基;アミド基;ウレタン基;フェニル基;フェニレン基;反応性炭素-炭素二重結合を有する(メタ)アクリロイル基、アリル基等が挙げられる。
 上記有機基は1種が重合体鎖に結合、または2種以上が重合体鎖に結合していてもよい。
 また、前記無機基は、炭素元素を含まない機能性基と定義する。無機基としては、特に限定はないが、ヒドロキシル基;エーテル基;アミノ基;スルホ基;フルオロ基やクロロ基等のハロゲン基;シラノール基等が挙げられる。
 上記無機基は前記有機基と同様に、1種が重合体鎖に結合、または2種以上が重合体鎖に結合していてもよい。
 さらに、前記Rは、直鎖状の構造又は枝分かれの構造となることがある。
 また、前記Rの分子量としては、好ましい下限が330、より好ましい下限は430、さらに好ましい下限は830、特に好ましい下限は1330である。一方、好ましい上限は49858、より好ましい上限は34860、さらに好ましい上限は24860、特に好ましい上限は14860である。
 Rの分子量が49858を超えると、熱膨張性微小球の外殻の熱可塑性樹脂中で不均一に存在してしまうことがあるため、得られる樹脂中空粒子が高い圧力負荷に対して、外殻の変形を抑制できないことがある。
 一方、Rの分子量が330より低いと、高い弾性を有することができないことがあるため、得られる樹脂中空粒子が高い圧力負荷に対して、外殻の変形を抑制できないことがある。
 さらに、前記重合体鎖が、構成単位としてジエンを含むと、架橋性単量体(A)に含まれる反応性炭素-炭素二重結合の数が多くなるため、熱膨張性微小球の外殻の熱可塑性樹脂に弾性を与えることができ、前記熱膨張性微小球から得られる、膜厚が非常に薄い状態にある樹脂中空粒子であっても、高い圧力負荷に対して、外殻の変形を抑制できるため、好ましい。
 前記ジエンとしては、1,3-ブタジエン(本発明では、単にブタジエンともいう);1,3-ペンタジエン;1,3-ヘキサジエン;2,4-ヘキサジエン;1,3-ヘプタジエン;1,3-オクタジエン;イソプレン;クロロプレン;2‐メチル‐1,3‐ブタジエン、2-エチル-1,3-ブタジエン、2-プロピル-1,3-ブタジエン、2-ブチル-1,3-ブタジエン、2-ペンチル-1,3-ブタジエン、2-ヘキシル-1,3-ブタジエン、2-ヘプチル-1,3-ブタジエン、2-オクチル-1,3-ブタジエン、2-ネオペンチル-1,3-ブタジエン等の2-アルキル-1,3-ブタジエン;2,3-ジメチル‐1,3-ブタジエン、2,3-ジエチル-1,3-ブタジエン、2-メチル-3-エチル-1,3-ブタジエン、2-メチル-3-イソプロピル-1,3-ブタジエン等の2,3-ジアルキル-1,3-ブタジエン;1-フェニル-1,3-ブタジエン;2-フェニル-1,3-ブタジエン等のアリール‐1,3‐ブタジエン;1-フェニル-2,4-ペンタジエン;2-クロロ-1,3-ブタジエン;2-シアノ-1,3-ブタジエン;3-メチル-1,3-ペンタジエン等の共役ジエン、1,4-ヘキサジエン;3-メチル-1,4-ヘキサジエン;4-メチル-1,4-ヘキサジエン;5-メチル-1,4-ヘキサジエン;4,5-ジメチル-1,4-ヘキサジエン;7-メチル-1,6-オクタジエン;8-メチル-4-エチリデン-1,7-ノナジエンおよび4-エチリデン-1,7-ウンデカジエン;メチルテトラヒドロインデン;5-エチリデン-2-ノルボルネン;5-メチレン-2-ノルボルネン;5-イソプロピリデン-2-ノルボルネン;5-ビニリデン-2-ノルボルネン;6-クロロメチル-5-イソプロペニル-2-ノルボルネン;5-ビニル-2-ノルボルネン;5-イソプロペニル-2-ノルボルネン;5-イソブテニル-2-ノルボルネン;シクロペンタジエン;ノルボルナジエン等の非共役ジエンが挙げられる。
 ジエンの中でも、本発明の効果をより奏する点で、ブタジエン、1,3-ペンタジエン、イソプレン、クロロプレン、1,3-ペンタジエン、1,3-ヘキサジエンが好ましく、ブタジエン、イソプレンがさらに好ましい。
 上記ジエンは1種又は2種以上含んでも良い。
 前記重合体鎖が、構成単位として2種以上のジエンを含む場合、重合体鎖はランダム共重合体のようにランダムに各ジエンの構成単位が重合した重合体でもよく、ブロック共重合体のように各ジエンの構成単位が各々纏まりをもって重合した重合体でもよい。
 前記重合体鎖については、本発明の効果を阻害しない範囲で、構成単位としてジエン以外を含んでも良い。ジエン以外の構成単位としては、1,3,5-ヘキサトリエン等の構成単位中に反応性炭素-炭素二重結合を3つ以上有しているポリエン系構成単位;アクリロニトリルやメタクリロニトリル等のニトリル系構成単位;スチレン、p-メチルスチレン、α-メチルスチレン、ビニルエチルベンゼン、ビニルキシレン、ビニルナフタレン、ジフェニルエチレン等の芳香族系ビニル構成単位;エチレン、ポリプロピレン、イソブチレン等のオレフィン系構成単位等が挙げられる。
 前記ジエン以外の構成単位は1種又は2種以上含んでも良い。
 重合体鎖にジエン以外の構成単位を含む場合は、重合体鎖はランダム共重合体のようにランダムにジエンとそれ以外の構成単位が重合した重合体でもよく、ブロック共重合体のようにジエンとそれ以外の構成単位が各々纏まりをもって重合した重合体でもよい。
 重合体鎖を構成する全構成単位の重合度に対する、ジエンの構成単位の重合度の割合は、特に限定はないが、1)10%以上、2)20%以上、3)40%以上、4)55%以上、5)65%以上、6)75%以上、7)90%以上、8)100%の順で好ましい(前に記載したものよりも、後で記載したものの方が好ましい)。
 ジエンの構成単位の重合度の割合が10%よりも低い場合、熱膨張性微小球の外殻である熱可塑性樹脂の弾性が低下し、得られる樹脂中空粒子の外殻が、高い圧力負荷により変形することがある。
 前記重合体鎖が、構成単位としてジエンを含む場合、前記重合体鎖はシス構造又はトランス構造の少なくとも1種の構造を含むことがある。
 重合性成分に対する架橋性単量体(A)の重量割合は、重合性成分全体を100重量%として、好ましくは0.1~10.0重量%である。
 重合性成分に対する架橋性単量体(A)の重量割合がこの範囲であると、熱膨張性微小球の外殻の熱可塑性樹脂に剛性と弾性とを与えることができ、前記熱膨張性微小球から得られる、膜厚が非常に薄い状態にある樹脂中空粒子であっても、高い圧力負荷に対して、樹脂中空粒子の外殻が破れることなく、真球状に近い形状を維持できる、または高い圧力負荷から解放した後、瞬時に真球状に近い形状へ回復することができ、結果として、樹脂中空粒子の外殻の変形を抑制できるため、好ましい。
 重合性成分に対する架橋性単量体(A)の重量割合が0.1重量%未満の場合は、前記熱可塑性樹脂に剛性と弾性とを与える十分な効果が得られないことがある。一方、10.0重量%を超える場合、外殻部の剛性が高く、軽量な樹脂中空粒子を得られないことがある。
 重合性成分に対する架橋性単量体(A)の重量割合のより好ましい下限は0.2重量%、さらに好ましい下限は0.3重量%、特に好ましい下限は0.4重量%である。一方、より好ましい上限は7.0重量%、さらに好ましい上限は5.0重量%、特に好ましい上限は3.0重量%、最も好ましい上限は2.0重量%である。
 また、重合性成分は本発明の効果を阻害しない範囲で、架橋性単量体(A)以外の架橋性単量体(以下、その他架橋性単量体ということがある)を含んでもよい。
 その他架橋性単量体としては、例えば、エチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5ペンタンジオールジ(メタ)アクリレート、2-メチル-1,8オクタンジオールジ(メタ)アクリレートなどのアルカンジオールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、PEG#200ジ(メタ)アクリレート、PEG#400ジ(メタ)アクリレート、PEG#600ジ(メタ)アクリレート、PEG#1000ジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコール#400ジ(メタ)アクリレート、ポリプロピレングリコール#700ジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコール#650ジ(メタ)アクリレート、エトキシ化ポリプロピレングリコール#700ジ(メタ)アクリレートなどのポリアルキレングリコールジ(メタ)アクリレート;エトキシ化ビスフェノールAジ(メタ)アクリレート(EO付加2~30)、プロポキシ化ビスフェノールAジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ジビニルベンゼン、エトキシ化グリセリントリアクリレート、1,3,5-トリ(メタ)アクリロイル・ヘキサヒドロ1,3,5-トリアジン、トリアリルイソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、1,2,4-トリビニルベンゼン、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の二官能架橋性単量体、三官能性単量体、及び四官能以上の架橋性単量体などが挙げられる。上記その他架橋性単量体は1種又は2種以上を併用しても良い。
 重合性成分に対するその他架橋性単量体の重量割合は、重合性成分全体を100重量%として、好ましくは0.05~2.0重量%である。
 重合性成分に対するその他架橋性単量体の重量割合がこの範囲であると、熱膨張性微小球の外殻の熱可塑性樹脂の緻密性が向上し、剛性を付与することができるため好ましい。
 重合性成分に対するその他架橋性単量体の重量割合が0.05%未満の場合は、熱膨張性微小球の外殻の剛性を十分な付与効果が得られないことがある。一方、重合性成分に対するその他架橋性単量体の重量割合が2.0重量%超の場合、外殻部の剛性が高くなりすぎることで、軽量な樹脂中空粒子を得られなくなることや、熱膨張性微小球の外殻を構成する熱可塑性樹脂の弾性が低下し脆くなるため得られる樹脂中空粒子の外殻が、高い圧力負荷に対して変形してしまうことがある。
 重合性成分に対するその他架橋性単量体の重量割合のより好ましい下限は0.1重量%、さらに好ましい下限は0.2重量%、特に好ましい下限は0.3重量%である。一方、より好ましい上限は1.5重量%、さらに好ましい上限は1.0重量%、特に好ましい上限は0.8重量%である。
 架橋性単量体(A)と架橋性単量体(A)以外の架橋性単量体とを含む場合、架橋性単量体全体に対する架橋性単量体(A)の重量割合は、好ましくは10~100重量%である。
 架橋性単量体全体に対する架橋性単量体(A)の重量割合のより好ましい下限は20重量%、さらに好ましい下限は30重量%、特に好ましい下限は50重量%、より好ましい上限は99重量%である。架橋性単量体全体に対する架橋性単量体(A)の重量割合がこの範囲であると、熱膨張性微小球の外殻の熱可塑性樹脂に剛性と弾性とを与えることができ、前記熱膨張性微小球から得られる、膜厚が非常に薄い状態にある樹脂中空粒子であっても、高い圧力負荷に対して、外殻が破れることなく、真球状に近い形状を維持できる、または、高い圧力負荷から解放した後、瞬時に真球状に近い形状へ回復することができ、結果として、外殻の変形を抑制できるため、好ましい。
 架橋性単量体全体に対する架橋性単量体(A)の重量割合が、10重量%未満であると、前記熱可塑性樹脂に剛性と弾性とを付与できる十分な効果が得られないことがある。
 重合性成分は、架橋性単量体の他に、非架橋性単量体を含む。
 非架橋性単量体としては、特に限定はないが、たとえば、アクリロニトリル、メタクリロニトリル、フマロニトリル、マレオニトリル等のニトリル系単量体;塩化ビニル等のハロゲン化ビニル系単量体;塩化ビニリデン等のハロゲン化ビニリデン系単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル系単量体;アクリル酸、メタクリル酸、エタクリル酸、クロトン酸、ケイ皮酸等の不飽和モノカルボン酸や、マレイン酸、イタコン酸、フマル酸、シトラコン酸、クロロマレイン酸等の不飽和ジカルボン酸や、不飽和ジカルボン酸の無水物や、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノブチル、フマル酸モノメチル、フマル酸モノエチル、イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノブチル等の不飽和ジカルボン酸モノエステル等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、フェニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート等の(メタ)アクリル酸エステル系単量体;アクリルアミド、置換アクリルアミド、メタクリルアミド、置換メタクリルアミド等の(メタ)アクリルアミド系単量体;N-フェニルマレイミド、N-シクロヘキシルマレイミド等のマレイミド系単量体;スチレン、α-メチルスチレン等のスチレン系単量体;エチレン、プロピレン、イソブチレン等のエチレン不飽和モノオレフィン系単量体;ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル等のビニルエーテル系単量体;ビニルメチルケトン等のビニルケトン系単量体;N-ビニルカルバゾール、N-ビニルピロリドン等のN-ビニル系単量体;ビニルナフタリン塩等を挙げることができる。カルボキシル基含有単量体は、一部または全部のカルボキシル基が重合時や重合後に中和されていてもよい。アクリル酸またはメタクリル酸を合わせて(メタ)アクリル酸ということもあり、(メタ)アクリレートは、アクリレートまたはメタクリレートを意味し、(メタ)アクリルは、アクリルまたはメタクリルを意味するものとする。これらの非架橋性単量体は、1種を単独で使用してもよく、2種以上を併用してもよい。
 非架橋性単量体がニトリル系単量体を含むと、熱膨張性微小球の外殻を構成する熱可塑性樹脂のガスバリア性が高くなるため、内包される炭化水素等の発泡剤が気化した際に漏えいしにくくなり、軽量な樹脂中空粒子が得られるだけでなく、膜厚が非常に薄い状態にある樹脂中空粒子の中空部は、気化した発泡剤による高い内圧を保持することも可能となるため、樹脂中空粒子の外殻が、高い圧力負荷に対して、変形を抑制できるため好ましい。
 非架橋性単量体に対するニトリル系単量体の重量割合は、特に限定はないが、好ましくは30~100重量%の割合である。
 非架橋性単量体に対するニトリル系単量体の重量割合の、より好ましい下限は40重量%、さらに好ましい下限は50重量%、特に好ましい下限は60重量%、最も好ましい下限は70重量%である。一方、非架橋性単量体に対するニトリル系単量体の重量割合のより好ましい上限は98重量%、さらに好ましい上限は95重量%、特に好ましい上限は90重量%である。
 非架橋性単量体がニトリル系単量体を含む場合、ニトリル系単量体としてアクリロニトリル(以下、単にANということもある)を用いると、熱膨張性微小球の外殻のガスバリア性に加えて剛性も向上するため、得られる樹脂中空粒子の外殻は、高い圧力負荷に対して破れることなく、より変形を抑制できるため好ましい。また、外殻部の剛性の向上により、特に樹脂中空粒子を基材成分と混合する際に受ける、応力や摩擦力に対する耐性も向上するため好ましい。さらに、アクリロニトリルを用いることで、熱膨張性微小球の外殻の耐溶剤性も向上するため、得られる樹脂中空粒子が有機溶剤等と共用される際の制限が緩和されるため好ましい。
 非架橋性単量体に対するアクリロニトリルの重量割合は、特に限定はないが、25~100重量%である。非架橋性単量体に対するアクリロニトリルの重量割合のより好ましい下限は40重量%、さらに好ましい下限は50%、特に好ましい範囲は60重量%、最も好ましい下限は65%である。一方、非架橋性単量体に対するアクリロニトリルの重量割合のより好ましい上限は97重量%である。
 ニトリル系単量体がアクリロニトリル及びメタクリロニトリル(以下、単にMANということもある)を含むと、熱膨張性微小球の外殻の緻密性が高くなるため、内包される炭化水素等の発泡剤が気化した際に漏えいしにくくなり、軽量な樹脂中空粒子が得られるだけでなく、膜厚が非常に薄い状態にある樹脂中空粒子の中空部は、気化した発泡剤により、高い内圧を保持することも可能となるため、樹脂中空粒子の外殻が、より一層高い圧力負荷に対して、変形を抑制できるため好ましい。
 非架橋性単量体がAN及びMANを含む場合、AN及びMANの重量比は、特に限定はないが、好ましくはAN:MAN=20:80~100:0、より好ましくはAN:MAN=35:65~95:5、さらに好ましくはAN:MAN=50:50~90:10、特に好ましくは65:35~85:15、最も好ましくはAN:MAN=70:30~80:20である。AN及びMANの重量比がこの範囲にあると、熱膨張性微小球の外殻は緻密性を有するため、結果として、得られる樹脂中空粒子は、非常に軽量であり且つ、高い圧力負荷に対して、前記樹脂中空粒子の外殻の変形を抑制することができる。
 非架橋性単量体が(メタ)アクリル酸エステルを含む場合、熱膨張性微小球の外殻である熱可塑性樹脂は、加熱軟化時の延伸性に富むとともに、靭性にも優れたものとなるため、得られる樹脂中空粒子は結果として軽量で、前記樹脂中空粒子の外殻は高い圧力負荷に対して、変形を抑制することができる。
 非架橋性単量体が(メタ)アクリル酸エステルを含む場合、非架橋性単量体に対する(メタ)アクリル酸エステルの重量割合は、特に限定はないが、好ましくは1~50重量%、より好ましくは3~45重量%、さらに好ましくは5~40重量%である。非架橋性単量体に対する(メタ)アクリル酸エステルの重量割合が50重量%超であると、ガスバリア性が低下し、軽量な樹脂中空粒子が得られないばかりか、高い圧力負荷に対して、熱膨張性微小球より得られる樹脂中空粒子の外殻が変形することがある。一方、非架橋性単量体に対する(メタ)アクリル酸エステルの重量割合が1重量%未満であると、加熱軟化時の延伸性が低く軽量な樹脂中空粒子が得られないことがある。
 非架橋単量体がアクリロニトリル(AN)と(メタ)アクリル酸エステルを含む場合、非架橋性単量体に対するアクリロニトリルと(メタ)アクリル酸エステルの合計の重量割合は特に限定はないが、好ましくは40~100重量%である。
 アクリロニトリルと(メタ)アクリル酸エステルの合計の重量割合がこの範囲であると、熱膨張性微小球の外殻である熱可塑性樹脂は、ガスバリア性が高く、加熱軟化時の延伸性に富むとともに、靭性にも優れたものとなるため、得られる樹脂中空粒子は結果として軽量で、前記樹脂中空粒子の外殻は高い圧力負荷に対して、変形を抑制することができる。
 アクリロニトリルと(メタ)アクリル酸エステルの合計の重量割合のより好ましい下限は50重量%、さらに好ましい下限は60重量%、より好ましい下限は75重量%であり、より好ましい上限は99重量%である。一方、40重量%未満であると熱膨張性微小球の外殻に十分なガスバリア性と加熱軟化時の延伸性が付与されないため軽量な樹脂中空粒子が得られないことがある。
 (メタ)アクリル酸エステルの中でも、本願効果をより奏する点で、メタクリル酸メチルが好ましい。
 非架橋性単量体がカルボキシル基含有単量体を含むと、熱膨張性微小球の耐熱性を向上させることができるため好ましい。カルボキシル基含有単量体のうち、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸及びイタコン酸が好ましく、アクリル酸及びメタクリル酸がさらに好ましく、より耐熱性を向上できる点で、メタクリル酸が特に好ましい。
 非架橋性単量体がカルボキシル基含有単量体を含む場合、非架橋性単量体に対するカルボキシル基含有単量体の重合割合が、特に限定はないが、好ましくは5~70重量%、より好ましくは10~65重量%、さらに好ましくは13~60重量%、特に好ましくは15~50重量%、最も好ましくは20~40重量%である。カルボキシル基含有単量体の重合割合がこの範囲にあると、前記熱膨張性微小球の外殻である熱可塑性樹脂の剛性も向上させることができ、得られる膜厚が非常に薄い状態にある樹脂中空粒子の外殻は、高い圧力負荷に対して、変形を抑制することができる。
 非架橋性単量体に対するカルボキシル基含有単量体の重量割合が5重量%未満の場合には、耐熱性が不十分となり、樹脂中空粒子と基材の配合や製造における加熱工程において樹脂中空粒子の比重が増加する可能性がある。一方、非架橋性単量体に対するカルボキシル基含有単量体の重量割合が70重量%を超えるとガスバリア性が低下し、軽量な樹脂中空粒子が得られないばかりか、外殻部が脆くなることがあり、高い圧力負荷に対して、樹脂中空粒子の外殻が変形することがある。
 非架橋性単量体がニトリル系単量体とカルボキシル基含有単量体を含む場合、非架橋性単量体に対するニトリル系単量体とカルボキシル基含有単量体の合計の重量割合は特に限定はないが、好ましくは50~100重量%、より好ましくは60~100重量%である。
 非架橋性単量体に対するニトリル系単量体とカルボキシル基含有単量体の合計の重量割合がこの範囲であると、ガスバリア性が高く、熱膨張性微小球の外殻は十分な耐熱性を有し且つ剛性を付与することができるため、得られる膜厚が非常に薄い状態にある樹脂中空粒子は軽量で、熱安定性が高く、高い圧力負荷に対して、変形を抑制することができる。
 非架橋性単量体にカルボキシル基含有単量体を含む場合、熱膨張性微小球の外殻の剛性をさらに高め、膨張させて得られる樹脂中空粒子の外殻が、高い圧力に対して、変形を抑制できるよう、周期表3~12族に属する金属を含有する有機化合物による表面処理や、カルボキシル基と金属イオンによる架橋構造の形成を行ってもよい。
 ここで、周期表3~12族に属する金属を含有する有機化合物としては、一般式(2)で示される結合を少なくとも1つ有する化合物および/または金属アミノ酸化合物等が挙げられる。
 M-O-C    (2)
(但し、Mは周期表3~12族に属する金属原子であり、炭素原子Cは酸素原子Oと結合し、酸素原子O以外には水素原子および/または炭素原子のみと結合している。)。
 周期表3~12族に属する金属としては、例えば、スカンジウム、イッテルビウム、セリウム等の3族金属;チタン、ジルコニウム、ハフニウム等の4族金属;バナジウム、ニオビウム、タンタル等の5族金属;クロム、モリブデン、タングステン等の6族金属;マンガン、レニウム等の7族金属;鉄、ルテニウム、オスミウム等の8族金属;コバルト、ロジウム等の9族金属;ニッケル、パラジウム等の10族金属;銅、銀、金等の11族金属;亜鉛、カドミウム等の12族金属等を挙げることができる。上記金属の分類は、社団法人日本化学会発行の「化学と教育」、54巻、4号(2006年)の末尾に綴じこまれた「元素の周期表(2005)」(2006日本化学会原子量小委員会)に基づいている。
架橋構造を形成する金属イオンとしては、2価以上の金属カチオンを形成するものが好ましく、例えばAl、Ca、Mg、Fe、Ti、Cu、Zn等の金属カチオンが挙げられる。
 発泡剤は、加熱することで気化する成分であり、熱膨張性微小球の熱可塑性樹脂からなる外殻に内包されることによって、熱膨張性微小球は微小球全体として熱膨張性(微小球全体が加熱により膨らむ性質)を示すようになる。
 発泡剤としては、特に限定されないが、たとえば、メタン、エタン、プロパン、(イソ)ブタン、(イソ)ペンタン、(イソ)ヘキサン、(イソ)ヘプタン、(イソ)オクタン、(イソ)ノナン、(イソ)デカン、(イソ)ウンデカン、(イソ)ドデカン、(イソ)トリデカン等の炭素数3~13の炭化水素;(イソ)ヘキサデカン、(イソ)エイコサン等の炭素数13超で20以下の炭化水素;プソイドクメン、石油エーテル、初留点150~260℃および/または蒸留範囲70~360℃であるノルマルパラフィンやイソパラフィン等の石油分留物等の炭化水素;塩化メチル、塩化メチレン、クロロホルム、四塩化炭素等の炭素数1~12の炭化水素のハロゲン化物;ハイドロフルオロエーテル等の含弗素化合物;テトラメチルシラン、トリメチルエチルシラン、トリメチルイソプロピルシラン、トリメチル-n-プロピルシラン等の炭素数1~5のアルキル基を有するシラン類;アゾジカルボンアミド、N,N’-ジニトロソペンタメチレンテトラミン、4,4’-オキシビス(ベンゼンスルホニルヒドラジド)等の加熱により熱分解してガスを生成する化合物等が挙げられる。
 発泡剤は、1種の化合物から構成されていてもよく、2種以上の化合物の混合物から構成されていてもよい。発泡剤は、直鎖状、分岐状、脂環状のいずれでもよく、脂肪族であるものが好ましい。
 また、熱膨張性微小球を膨張させて得られる樹脂中空粒子は、基本的には気化した状態の発泡剤を中空部に含有しているが、発泡剤の一部が液化又は固化した状態で前記中空部に含有していてもよい。
 熱膨張性微小球を膨張させて得られる膜厚が非常に薄い状態にある樹脂中空粒子が、外部からの高い圧力負荷に対して、樹脂中空粒子の外殻の変形を抑制するために、中空部の内圧を高い状態に維持できるよう、25℃における蒸気圧が100kPaを超える発泡剤を熱膨張性微小球に含有すると好ましい。
 前記25℃における蒸気圧が100kPaを超える発泡剤としては、例えば、塩化メチル、メタン、エタン、プロパン、(イソ)ブタンなどが挙げられ、これらの中でもイソブタンが特に好ましい。イソブタンであると、軽量な樹脂中空粒子が得られるだけでなく、得られる樹脂中空粒子の外殻から発泡剤が漏えいしにくくなるため、前記樹脂中空粒子の中空部の内圧を高い状態で維持できることがあり、外部からの高い圧力負荷に対して高い反発力を有することができるため、樹脂中空粒子の外殻の変形を抑制することができる。
 25℃における蒸気圧が100kPaを超える発泡剤は、1種から構成されていてもよく、2種以上の混合物から構成されていてもよい。
 発泡剤が前記25℃における蒸気圧が100kPaを超える発泡剤を含む場合、特に限定はないが、発泡剤全体に対する25℃における蒸気圧が100kPaを超える発泡剤の重量割合が、30~100重量%であると好ましい。発泡剤全体に対する25℃における蒸気圧が100kPaを超える発泡剤の重量割合がこの範囲であると、熱膨張性微小球を膨張して得られる樹脂中空粒子の中空部は、高い内圧を維持できるため、外部からの高い圧力負荷に対して高い反発力を有することができるため、樹脂中空粒子の外殻の変形を抑制できる。
 発泡剤全体に対する25℃における蒸気圧が100kPaを超える発泡剤の重量割合の好ましい下限は35重量%、特に好ましい下限は40重量%であり、好ましい上限は99重量%である。
 また、さらに、発泡剤に占める25℃における蒸気圧が100kPa以下の炭化水素を少なくとも1種含むと、熱膨張性微小球の最大膨張温度を向上できるだけでなく、得られる樹脂中空粒子の中空部の内圧を調整することができる。
 熱膨張性微小球の発泡剤の内包率は、熱膨張性微小球の重量に対する熱膨張性微小球に内包された発泡剤の重量の百分率で定義される。
 発泡剤の内包率については、特に限定されないが、熱膨張性微小球の重量に対して、好ましくは2~35重量%である。前記内包率がこの範囲にあると、加熱により高い内圧が得られるため、結果として軽量な樹脂中空粒子を得ることができる。前記内包率が2重量%未満であると、加熱時に十分な内圧が得られず、軽量な樹脂中空粒子が得られないことがある。一方、35重量%を超えると、熱膨張性微小球の外殻の膜厚が薄くなるため、ガスバリア性が低下し、結果として軽量な樹脂中空粒子が得られないことがある。
 前記内包率の下限は、より好ましくは3%、さらに好ましくは4重量%、特に好ましくは5重量%である。一方、前記内包率の上限は、より好ましくは25重量%、さらに好ましくは18重量%、特に好ましくは16重量%、最も好ましくは14重量%である。
 熱膨張性微小球の膨張開始温度(T)は、特に限定はないが、好ましくは70℃以上、より好ましくは80℃以上、さらに好ましくは90℃以上、特に好ましくは100℃以上、最も好ましくは110℃以上である。熱膨張性微小球の膨張開始温度の上限値は、好ましくは250℃、より好ましくは220℃、さらに好ましくは200℃、特に好ましくは180℃、最も好ましくは150℃である。
 熱膨張性微小球の膨張開始温度が70℃未満及び250℃超の場合、本願効果を奏することができないことがある。
 熱膨張性微小球の最大膨張温度(Tmax)については、特に限定はないが、好ましくは、90℃以上、より好ましくは100℃以上、さらに好ましくは110℃以上、特に好ましくは120℃以上、最も好ましくは130℃以上である。熱膨張性微小球の最大膨張温度の上限値は、好ましくは300℃である。
 熱膨張性微小球の最大膨張温度が90℃未満および300℃超の場合、本願効果を奏することができないことがある。
 なお、熱膨張性微小球の膨張開始温度(T)および最大膨張温度(Tmax)は、実施例で測定される方法によるものである。
 熱膨張性微小球の体積平均粒子径(以下、単に平均粒子径ということもある)(D50)は、特に限定されないが、好ましくは5~80μmである。5μm未満であると熱膨張性微小球の外殻部の厚みが薄くなることがあり十分なガスバリア性を維持できないため軽量な樹脂中空粒子が得られないことがある。80μmを超えると外殻部の厚みにムラが発生しやすく、発泡剤が漏えいしやすく軽量な樹脂中空粒子が得られないことがある。
 体積平均粒子径の下限は、より好ましくは10μm、さらに好ましくは15μmである。一方、体積平均粒子径の上限は、より好ましくは70μm、さらに好ましくは60μmである。
 なお、体積平均粒子径は、実施例で測定される方法によるものである。
 熱膨張性微小球の粒度分布の変動係数CVは、特に限定されないが、好ましくは35%以下、さらに好ましくは30%以下、特に好ましくは25%以下である。
 変動係数CVは、以下に示す計算式(1)及び(2)で算出される。
Figure JPOXMLDOC01-appb-M000001
(式中、sは粒子径の標準偏差、<x>は平均粒子径、xはi番目の粒子径、nは粒子の数である。)
 熱膨張性微小球の最大膨張倍率は、特に限定はないが、好ましくは10~200倍である。10倍未満であると膨張倍率が低く軽量な樹脂中空粒子が得られない。一方、200倍を超えると外殻部の剛直性が低くなることがあり、樹脂中空粒子は外部からの高い圧力負荷に対して変形することがある。
 熱膨張性微小球の最大膨張倍率の下限は、より好ましくは12倍、さらに好ましくは14倍である。一方、熱膨張性微小球の最大膨張倍率の上限は、より好ましくは180倍、さらに好ましくは150倍である。
 なお、熱膨張性微小球の最大膨張倍率は、実施例で測定される方法によるものである。
 本発明の熱膨張性微小球は、外殻を構成する熱可塑性樹脂が剛性および弾性を併せ持っており、高い圧力負荷に対する耐性に優れているため、射出成形、押出成形、混練成形、カレンダー成形、ブロー成形、圧縮成形、真空成型、熱成形等の成形加工の利用に好適である。また、塩ビペースト等のペースト状物や、EVAエマルション、アクリルエマルション、ウレタンバインダー等の液状組成物に混合して使用することも可能である。
〔熱膨張性微小球の製造方法〕
 本発明の熱膨張性微小球の製造方法は、非架橋性単量体と架橋性単量体(A)とを含む重合性成分と、発泡剤と、重合開始剤とを含有する油性混合物を水性分散媒中に分散させ、前記重合性成分を重合させる工程(以下では、重合工程ということがある。)を含む製造方法である。
 重合開始剤としては、特に限定はないが、過酸化物やアゾ化合物等を挙げることができる。
 過酸化物としては、例えば、ジイソプロピルパーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジベンジルパーオキシジカーボネート等のパーオキシジカーボネート;ラウロイルパーオキサイド、ベンゾイルパーオキサイド等のジアシルパーオキサイド;メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等のケトンパーオキサイド;2,2-ビス(t-ブチルパーオキシ)ブタン等のパーオキシケタール;クメンハイドロパーキサイド、t-ブチルハイドロパーオキサイド等のハイドロパーオキサイド;ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド等のジアルキルパーオキサイド;t-ヘキシルパーオキシピバレート、t-ブチルパーオキシイソブチレート等のパーオキシエステルを挙げることができる。
 アゾ化合物としては、例えば、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルプロピオネート)、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)等を挙げることができる。
 重合開始剤の配合量については、重合性成分100重量部に対して、0.05~10重量部が好ましく、0.1~8重量部がより好ましく、0.2~5重量部がさらに好ましい。重合開始剤の配合量が0.05重量部未満の場合、重合されない重合性成分が残存し、結果として剛性と弾性を有した外殻が得られないことがあり、熱膨張性微小球を膨張させて得られる樹脂中空粒子の外殻が、高い圧力に対して変形してしまうことがある。一方、重合開始剤の配合量が10重量部超の場合、膨張性が低下し、軽量な樹脂中空粒子が得られないことがある。これらの重合開始剤は1種を単独で使用してもよく、2種以上を併用して良い。
 さらに、例えば、重合温度よりも10時間半減期が高い重合開始剤(以後、その他重合開始剤ということもある。)を併用し、膨張させた樹脂中空粒子を作成する際に与える加熱により、残存する反応性炭素-炭素二重結合由来の橋かけ構造を形成することができる。
 その他重合開始剤については、その他重合開始剤の10時間半減期温度が、90℃超170℃以下が好ましい。その他重合開始剤の10時間半減期温度が、この範囲であると、熱膨張性微小球の重合工程においては分解せず、加熱膨張工程において分解しラジカルが発生するため残存する反応性炭素-炭素二重結合由来の橋かけ構造を形成することができるため、得られる樹脂中空粒子は外部からの高い圧力負荷に対して変形を抑制できることがある。
 その他重合開始剤の10時間半減期温度の下限は95℃が好ましく、110℃がより好ましく、130℃がさらに好ましい。また、重合開始剤の10時間半減期温度の上限は、167℃が好ましく、165℃がより好ましく、163℃がさらに好ましい。
 前記その他重合開始剤としては、例えば、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ジ(4,4-ジ-(t-ブチルパーオキシ)シクロヘキシル)プロパン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサネート、t-ブチルパーオキシラウレート、t-ヘキシルパーオキシベンゾネート、ジクミルパーオキサイド、ジ-t-ヘキシルパーオキシド等の過酸化物や、2,2’―アゾビス(N-(2-プロペニル)2-メチルプロピオンアマイド、1-(1-シアノ-1-メチルエチル)アゾフォルアマイド、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアマイド)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアマイド)、2,2’-アゾビス(2,4,4-トリメチルペンタン)等のアゾ化合物を挙げることができる。
 上記その他重合開始剤は1種を単独で使用してもよく、2種以上を併用してもよい。
 本発明の熱膨張性微小球の製造方法では、油性混合物を水性分散媒中に分散させた水系懸濁液を調製し、重合性成分を重合させる。
 水性分散媒は、油性混合物を分散させるイオン交換水等の水を主成分とする媒体であり、メタノール、エタノール、プロパノール等のアルコールや、アセトン等の親水性有機性の溶媒をさらに含有してもよい。本発明における親水性とは、水に任意に混和できる状態であることを意味する。水性分散媒の使用量については、特に限定はないが、重合性成分100重量部に対して、100~1000重量部の水性分散媒を使用するのが好ましい。
 水性分散媒は、電解質をさらに含有してもよい。電解質としては、例えば、塩化ナトリウム、塩化マグネシウム、塩化カルシウム、硫酸ナトリウム、硫酸マグネシウム、硫酸アンモニウム、炭酸ナトリウム等を挙げることができる。これらの電解質は、1種を単独で使用してもよく、2種以上を併用してもよい。電解質の含有量については、特に限定はないが、水性分散媒100重量部に対して0.1~50重量部含有するのが好ましい。
 水性分散媒は、カルボン酸(塩)基及びホスホン酸(塩)基から選ばれる親水性官能基が置換したアルキル基が窒素原子と結合した構造を有するポリアルキレンイミン類、水酸基、カルボン酸(塩)基及びホスホン酸(塩)基から選ばれる親水性官能基とヘテロ原子とが同一の炭素原子に結合した構造を有する水溶性1,1-置換化合物類、重クロム酸カリウム、亜硝酸アルカリ金属塩、金属(III)ハロゲン化物、ホウ酸、水溶性アスコルビン酸類、水溶性ポリフェノール類、水溶性ビタミンB類及び水溶性ホスホン酸(塩)類から選ばれる少なくとも1種の水溶性化合物を含有してもよい。なお、本発明における水溶性とは、水100gあたり1g以上溶解する状態であることを意味する。
 水性分散媒中に含まれる水溶性化合物の量については、特に限定はないが、重合性成分100重量部に対して、好ましくは0.0001~1.0重量部、より好ましくは0.0003~0.1重量部、さらに好ましくは0.001~0.05重量部である。
 水性分散媒は、電解質や水溶性化合物以外に、分散安定剤や分散安定補助剤を含有していてもよい。
 分散安定剤としては、特に限定はないが、例えば、第三リン酸カルシウム、複分解生成法により得られるピロリン酸マグネシウム、ピロリン酸カルシウムや、コロイダルシリカ、アルミナゾル、水酸化マグネシウム等を挙げることができる。これらの分散安定剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 分散安定剤の配合量は、重合性成分100重量部に対して、好ましくは0.05~100重量部、より好ましくは0.2~70重量部である。
 分散安定補助剤としては、特に限定はないが、例えば、高分子タイプの分散安定補助剤、カチオン性界面活性剤、アニオン性界面活性剤、両性イオン界面活性剤、ノニオン性界面活性剤等の界面活性剤を挙げることができる。これらの分散安定補助剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 水性分散媒は、例えば、水(イオン交換水)に、必要に応じて、電解質、水溶性化合物、分散安定剤、分散安定補助剤等を配合して調製される。重合時の水性分散媒のpHは、水溶性化合物、分散安定剤、分散安定補助剤の種類によって適宜決められる。
 重合工程では、水酸化ナトリウムや、水酸化ナトリウム及び塩化亜鉛の存在下で重合を行ってもよい。
 重合工程では、所定粒子径の球状油滴が調製されるように油性混合物を水性分散媒中に懸濁分散させる。
 油性混合物を懸濁分散させる方法としては、例えば、ホモミキサー(例えば、プライミクス社製)等により攪拌する方法や、スタティックミキサー(例えば、株式会社ノリタケエンジニアリング社製)等の静止型分散装置を用いる方法、膜懸濁法、超音波分散法等の一般的な分散方法を挙げることができる。
 次いで、油性混合物が球状油滴として水性分散媒に分散された分散液を加熱することにより、懸濁重合を開始する。重合反応中は、分散液を攪拌するのが好ましく、その攪拌は、例えば、単量体の浮上や重合後の熱膨張性微小球の沈降を防止できる程度に緩く行えばよい。
 重合温度は、重合開始剤の種類によって自由に設定されるが、好ましくは30~90℃、より好ましくは40~88℃の範囲で制御される。反応温度を保持する時間は、1~20時間程度が好ましい。重合初期圧力については特に限定はないが、ゲージ圧で0~5MPa、より好ましくは0.2~3MPaの範囲である。
 得られたスラリーを遠心分離機、加圧プレス機、真空脱水機等により濾過し、含水率10~50重量%、好ましくは15~45重量%、より好ましくは20~40重量%のケーキ状物とし、ケーキ状物を、棚型乾燥機、間接加熱乾燥機、流動乾燥機、真空乾燥機、振動乾燥機、気流乾燥機等により乾燥し、含水率5重量%以下、好ましくは3重量%以下、より好ましくは1重量%以下の乾燥粉体とする。
 イオン性物質の含有量を低減させる目的で、ケーキ状物を水洗及び/又は再分散後に再濾過し、乾燥させても構わない。また、スラリーを噴霧乾燥機、流動乾燥機等により乾燥し、乾燥粉体を得てもよい。
〔樹脂中空粒子〕
 本発明の樹脂中空粒子は、上記で説明した熱膨張性微小球の製造方法で得られる熱膨張性微小球を加熱膨張させて得られる粒子である。樹脂中空粒子は、軽量であり、組成物や成形物に含ませると材料物性に優れる。
 本発明の樹脂中空粒子は、上記で説明した熱膨張性微小球の製造方法で得られる熱膨張性微小球を加熱膨張させて得られる粒子であり、特定の重合性成分を重合して得られる熱可塑性樹脂からなる外殻から構成されるため、高い圧力に対して、前記樹脂中空粒子の外殻の変形を抑制することができる。
 本発明の樹脂中空粒子は、上記で説明した熱膨張性微小球の製造方法で得られる熱膨張性微小球を、好ましくは70~450℃で加熱膨張させることで得られる。加熱膨張の方法としては、特に限定はなく、乾式加熱膨張法、湿式加熱膨張法等のいずれでもよい。
 乾式加熱膨張法としては、特開2006-213930号公報に記載されている方法、特に内部噴射方法を挙げることができる。また、別の乾式加熱膨張法としては、特開2006-96963号公報に記載の方法等がある。湿式加熱膨張法としては、特開昭62-201231号公報に記載の方法等がある。
 樹脂中空粒子は前記のとおり、基本的には気化した状態の発泡剤を中空部に含有しているが、発泡剤の一部が液化又は固化した状態で前記中空部に含有していてもよい。また、樹脂中空粒子の中空部には外部環境から取り込まれた空気等が含まれていてもよい。
 樹脂中空粒子の中空部に発泡剤を含有すると、中空部の内圧を高い状態で維持することができ、外部からの高い圧力負荷が樹脂中空粒子にかかった際に、内部から樹脂中空粒子の外殻を押しささえるよう高い反発力を有することができるため、外殻の変形を抑制することができる。
 樹脂中空粒子の中空部に含有される発泡剤の内包率は、樹脂中空粒子に対する発泡剤の重量割合を意味するものであり、詳細には実施例に記載された測定方法によるものと定義する。発泡剤の内包率については、特に限定はないが、好ましくは2~35重量%である。樹脂中空粒子の中空部に含有される発泡剤の内包率がこの範囲にあると、中空部の内圧を高い状態で維持することができ、さらに外殻部の厚みを維持しているため、外からの高い圧力に対して変形を抑制することができる。
 樹脂中空粒子の中空部に含有される発泡剤の内包率が2重量%未満であると、十分な内圧が得られず、外部からの高い圧力負荷に対して樹脂中空粒子の外殻が、変形してしまうことがある。一方、樹脂中空粒子の中空部に含有される発泡剤の内包率が35重量%を超えると、樹脂中空粒子の膜厚が非常に薄くなるため、外部からの高い圧力負荷に対し、樹脂中空粒子の外殻が変形してしまうことがある。樹脂中空粒子の中空部に含有される発泡剤の内包率のより好ましい下限は4重量%、さらに好ましい下限は5重量%であり、一方、より好ましい上限は28重量%、さらに好ましい上限は23重量%、特に好ましい上限は18重量%、特に好ましい上限は17重量%である。
 樹脂中空粒子の平均粒子径については用途に応じて自由に設計することができるために、特に限定はないが、樹脂中空粒子の外殻の変形を抑制する点で、好ましくは10~300μmである。10μm未満であると、樹脂中空粒子の外殻の厚みが薄くなることがあり、外部からの高い圧力に対して、樹脂中空粒子の外殻が変形してしまうことがある。300μmを超えると、樹脂中空粒子の外殻の厚みにムラが発生しやすく、発泡剤が漏えいしやすくなり、外部からの高い圧力負荷に対して、樹脂中空粒子の外殻が変形してしまうことがある。
 平均粒子径の下限は、より好ましくは30μm、さらに好ましくは40μmであり、平均粒子径の上限は、より好ましくは250μm、さらに好ましくは200μmである。
 なお、樹脂中空粒子の平均粒子径は、実施例で測定される方法によるものである。
 また、樹脂中空粒子の粒度分布の変動係数CVについては、特に限定はないが、好ましくは35%以下、さらに好ましくは30%以下、特に好ましくは25%以下である。
 樹脂中空粒子の真比重については特に限定はないが、好ましくは0.005~0.6、さらに好ましくは0.015~0.4、特に好ましくは0.020~0.3である。樹脂中空粒子の真比重が0.005より小さい場合は、樹脂中空粒子の外殻の厚みが薄く、外部からの高い圧力負荷に対して、樹脂中空粒子の外殻が変形してしまうことがある。一方、樹脂中空粒子の真比重が0.6より大きい場合は、低比重化効果が小さくなるため、樹脂中空粒子を用いて組成物を調製する際、その添加量が大きくなり、組成物や成形体としての物性低下につながることがある。
 樹脂中空粒子(1)は、図2に示すように、その外殻(2)の外表面に付着した微粒子(4や5)から構成されていてもよく、以下では、微粒子付着中空粒子ということがある。
 ここでいう付着とは、単に微粒子付着樹脂中空粒子の外殻2の外表面に微粒子4及び5が、吸着された状態(図2の微粒子4の状態)であってもよく、外表面近傍の外殻を構成する熱可塑性樹脂が加熱によって融解し、微粒子付着樹脂中空粒子の外殻の外表面に微粒子充填剤がめり込み、固定された状態(図2の微粒子5の状態)であってもよいという意味である。微粒子の粒子形状は不定形であっても球状であってもよい。
 微粒子が樹脂中空粒子に付着することにより、樹脂中空粒子の飛散を抑制しハンドリングを向上させることができ、また、バインダーや樹脂等の基材成分への分散性も向上させることができる。
 微粒子としては、種々のものを使用することができ、無機物、有機物のいずれの素材であってもよい。微粒子の形状としては、球状、針状や板状等が挙げられる。
 微粒子を構成する無機物としては、特に限定はないが、例えば、ワラステナイト、セリサイト、カオリン、マイカ、クレー、タルク、ベントナイト、アルミナシリケート、パイロフィライト、モンモリロナイト、珪酸カルシウム、炭酸カルシウム、炭酸マグネシウム、ドロマイト、硫酸カルシウム、硫酸バリウム、ガラスフレーク、窒化ホウ素、炭化珪素、シリカ、アルミナ、雲母、二酸化チタン、酸化亜鉛、酸化マグネシウム、酸化亜鉛、ハイドロサルタイト、カーボンブラック、二硫化モリブデン、二硫化タングステン、セラミックビーズ、ガラスビーズ、水晶ビーズ、ガラスマイクロバルーン等が挙げられる。
 微粒子を構成する有機物としては、特に限定はないが、例えば、カルボキシメチルセルロースナトリウム、ヒドロキシエチルセルロース、メチルセルロース、エチルセルロース、ニトロセルロース、ヒドロキシプロピルセルロース、アルギン酸ナトリウム、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸ナトリウム、カルボキシビニルポリマー、ポリビニルメチルエーテル、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ポリエチレンワックス、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド、硬化ひまし油、(メタ)アクリル樹脂、ポリアミド樹脂、シリコーン樹脂、ウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、フッ素系樹脂等が挙げられる。
 微粒子を構成する無機物や有機物は、シランカップリング剤、パラフィンワックス、脂肪酸、樹脂酸、ウレタン化合物、脂肪酸エステル等の表面処理剤で処理されていてもよく、未処理のものでもよい。
 微粒子の平均粒子径は、好ましくは0.001~30μm、さらに好ましくは0.005~25μm、特に好ましくは0.01~20μmである。ここでいう微粒子の平均粒子径とは、レーザー回折法により測定された微粒子の粒子径である。
 微粒子の平均粒子径と樹脂中空粒子の平均粒子径との比率(微粒子の平均粒子径/樹脂中空粒子の平均粒子径)は、樹脂中空粒子表面への微粒子の付着性の観点から好ましくは1以下、より好ましくは0.1以下、さらに好ましくは0.05以下である。
 微粒子付着樹脂中空粒子に対する微粒子の重量割合については、特に限定はないが、95重量%未満が好ましく、さらに好ましくは90重量%未満、特に好ましくは85重量%未満、最も好ましくは80重量%未満である。微粒子の重量割合が95重量%以上である場合は、微粒子付着樹脂中空粒子を用いて組成物を調製する際、その添加量が大きくなり、非経済的であることがある。微粒子の重量割合の好ましい下限は20重量%であり、特に好ましい下限は40重量%である。
 微粒子付着樹脂中空粒子の真比重については、特に限定はないが、好ましくは0.06~0.60である。微粒子付着樹脂中空粒子の真比重が0.06未満であると、外殻部の膜厚が非常に薄くなることがあり、外部からの高い圧力負荷に対して、樹脂中空粒子の外殻が変形してしまうことがある。一方、0.60を超える場合、低比重化効果が小さくなるため、樹脂中空粒子を用いて組成物を調製する際、その添加量が大きくなり、組成物や成形体としての物性低下につながることがある。
 微粒子付着樹脂中空粒子の真比重のより好ましい下限は0.10、特に好ましい下限は0.12である。一方、より好ましい上限は0.30、特に好ましい上限は0.20である。
 樹脂中空粒子又は樹脂付着樹脂中空粒子は、膨張余力性を有するものであってもよい。膨張余力性とは、樹脂中空粒子又は樹脂付着樹脂中空粒子を加熱するとさらに膨張する性質(再膨張)を意味する。
 樹脂中空粒子又は樹脂付着樹脂中空粒子の膨張余力率は、特に限定されないが、好ましくは5~85%である。前記膨張余力率が5%未満であると、樹脂中空粒子又は樹脂付着樹脂中空粒子の外殻部が内包する発泡剤の保持性能が低くなることがあり、十分な発泡剤内包量を保持していないことがあり、結果として外部からの高い圧力負荷に対して、樹脂中空粒子又は樹脂付着樹脂中空粒子の外殻が変形してしまうことがある。一方、85%を超える場合は、十分な軽量化効果が得られないことがある。
 樹脂中空粒子又は樹脂付着樹脂中空粒子の膨張余力率のより好ましい下限は10%、特に好ましい下限は15%であり、一方、膨張余力率のより好ましい上限は80%、特に好ましい上限は70%である。
 なお、樹脂中空粒子又は樹脂付着樹脂中空粒子の膨張余力率は、熱膨張性微小球を最大膨張させて得られる樹脂中空粒子(以下、最大膨張時の樹脂中空粒子ということがある)に対する膨張程度を示しており、樹脂中空粒子の真比重(d)、又は微粒子付着樹脂中空粒子に含まれる樹脂中空粒子の真比重(d)および、最大膨張時の樹脂中空粒子の真比重(d)を測定し、以下に示す計算式で算出される。
 樹脂中空粒子の膨張余力率(%)=(1-d/d)×100   
 微粒子付着樹脂中空粒子の膨張余力率(%)=(1-d/d)×100   
 また、樹脂中空粒子の真比重(d)、微粒子付着樹脂中空粒子に含まれる樹脂中空粒子の真比重(d)、及び最大膨張時の樹脂中空粒子の真比重(d)は実施例で測定される方法によるものである。
 樹脂中空粒子が微粒子付着樹脂中空粒子の場合、微粒子付着樹脂中空粒子を後述の組成物に配合すると、塗料組成物や接着剤組成物として有用である。
 微粒子付着樹脂中空粒子は、例えば、微粒子付着熱膨張性微小球を加熱膨張させることによって得ることができる。微粒子付着樹脂中空粒子の製造方法としては、熱膨張性微小球と微粒子とを混合する工程(混合工程)と、前記混合工程で得られた混合物を前記軟化点超の温度に加熱して、前記熱膨張性微小球を膨張させるとともに、得られる樹脂中空粒子の外表面に微粒子を付着させる工程(付着工程)を含む製造方法が好ましい。
 前記混合工程は、熱膨張性微小球と微粒子とを混合する工程である。混合工程で使用する熱膨張性微小球及び微粒子は、上記で説明したとおりである。
 混合工程における熱膨張性微小球及び微粒子の合計に対する微粒子の重量割合は、特に限定はないが、好ましくは95重量%未満、より好ましくは90重量%未満、特に好ましくは85重量%未満、最も好ましくは80重量%未満である。熱膨張性微小球及び微粒子の合計に対する微粒子の重量割合が95重量%より大きい場合は、微粒子付着樹脂中空粒子の真比重が大きくなり、低比重化効果が小さくなることがある。
 前記混合工程において、熱膨張性微小球と微粒子とを混合するのに用いられる装置としては、特に限定はなく、容器と攪拌羽根といった極めて簡単な機構を備えた装置を用いて行うことができる。また、一般的な揺動または攪拌を行える粉体混合機を用いてもよい。粉体混合機としては、たとえば、リボン型混合機、垂直スクリュー型混合機等の揺動攪拌または攪拌を行える粉体混合機を挙げることができる。また、近年、攪拌装置を組み合わせたより効率のよい多機能な粉体混合機であるスーパーミキサー(株式会社カワタ製)およびハイスピードミキサー(株式会社深江製)、ニューグラムマシン(株式会社セイシン企業製)、SVミキサー(株式会社神鋼環境ソリューション社製)等も紹介されており、これらを用いてもよい。
 前記付着工程は、前記混合工程で得られた、熱膨張性微小球と微粒子とを含む混合物を、熱膨張性微小球の外殻を構成する熱可塑性樹脂の軟化点超の温度に加熱する工程である。付着工程では、熱膨張性微小球を膨張させるとともに、得られる樹脂中空粒子の外殻部の外表面に微粒子を付着させる。
 加熱は、一般的な接触伝熱型または直接加熱型の混合式乾燥装置を用いて行えばよい。混合式乾燥装置の機能については、特に限定はないが、温度調節可能で原料を分散混合する能力や、場合により乾燥を早めるための減圧装置や冷却装置を備えたものが好ましい。加熱に使用する装置としては、特に限定はないが、たとえば、レーディゲミキサー(株式会社マツボー製)、ソリッドエアー(株式会社ホソカワミクロン)等を挙げることができる。
 加熱の温度条件については、熱膨張性微小球の種類にもよるが最適膨張温度とするのが良く、好ましくは60~250℃、より好ましくは70~230℃、さらに好ましくは80~220℃である。
〔組成物及び成形物〕
 本発明の組成物は、上記で説明した熱膨張性微小球、樹脂中空粒子、及び微粒子付着樹脂中空粒子から選ばれる少なくとも1種と、基材成分とを含むものである。
 基材成分としては、特に限定はなく、天然ゴム、ブチルゴム、シリコンゴム、エチレン-プロピレン-ジエンゴム(EPDM)等のゴム類;不飽和ポリエステル、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂;ポリエチレンワックス、パラフィンワックス等のワックス類;エチレン-酢酸ビニル共重合体(EVA)、アイオノマー、ポリエチレン、ポリプロピレン、ポリ塩化ビニル(PVC)、アクリル樹脂、熱可塑性ポリウレタン、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリスチレン(PS)、ポリアミド樹脂(ナイロン6、ナイロン66など)、ポリカーボネート、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリアセタール(POM)、ポリフェニレンサルファイド(PPS)等の熱可塑性樹脂;オレフィン系エラストマー、スチレン系エラストマー等の熱可塑性エラストマー;ポリ乳酸(PLA)、酢酸セルロース、PBS、PHA、澱粉樹脂等のバイオプラスチック;シリコーン系、変性シリコーン系、ポリサルファイド系、変性ポリサルファイド系、ウレタン系、アクリル系、ポリイソブチレン系、ブチルゴム系等のシーリング材料;ウレタン系、エチレン-酢酸ビニル共重合物系、塩化ビニル系、アクリル系の塗料成分;セメントやモルタルやコージエライト等の無機物等が挙げられる。これらの基材成分は、1種単独で用いてもよく、2種以上を併用してもよい。
 本発明の組成物は、樹脂中空粒子及び基材成分以外に、用途に応じて適宜使用されるその他の成分を含んでいてもよい。
 本発明の組成物は、これらの基材成分と熱膨張性微小球、樹脂中空粒子、及び微粒子付着樹脂中空粒子から選ばれる少なくとも1種とを混合することによって調製することができる。また、基材成分と熱膨張性微小球、樹脂中空粒子、及び微粒子付着樹脂中空粒子から選ばれる少なくとも1種とを混合して得られた組成物を更に別の基材成分と混合して本発明の組成物とすることもできる。
 基材成分100重量部に対する熱膨張性微小球、樹脂中空粒子、及び微粒子付着樹脂中空粒子から選ばれる少なくとも1種の重量割合は、好ましくは0.1~20重量部、より好ましくは0.3~15重量部、さらに好ましくは0.5~13重量部、特に好ましくは1.0~10重量部である。この範囲であると、軽量で且つ基材成分が有する物性を維持した組成物が得ることができる。
 混合方法は、特に限定はないが、ニーダー、ロール、ミキシングロール、ミキサー、単軸混練機、二軸混練機、多軸混練機等により混合することが好ましい。
 特に、本発明の熱膨張性微小球を膨張して得られる樹脂中空粒子は、上述のとおり外部からの高い圧力負荷に対して樹脂中空粒子の外殻の変形を抑制できるものであるから、従来の樹脂中空粒子では十分に軽量化充填材としての性能を発揮することができなかった用途に対して利用することが期待される。そのような用途として、例えば、塗料組成物や接着剤組成物等が挙げられる。
 本発明の熱膨張性微小球を膨張して得られた樹脂中空粒子と塗料成分またはシーリング材料とを配合して得られた、塗料組成物や接着剤組成物に、高い圧力負荷をかけた際の、樹脂中空粒子の外殻の変形率Rは、特に限定はないが、好ましくは85%以下、より好ましくは55%以下、さらに好ましくは35%以下、特に好ましくは20%以下、最も好ましくは15%以下である。
 変形率Rが85%超であると、樹脂中空粒子と基材成分とを含む組成物や、樹脂中空粒子と基材成分とを含む組成物から得られる成形体を軽量化できないことがある。
 樹脂中空粒子の外殻の変形率Rについての詳細は、実施例にて記載する。
 また、本発明の組成物が、特に、熱膨張性微小球とともに、基材成分として、熱膨張性微小球の膨張開始温度より低い融点を有する化合物及び/又は熱可塑性樹脂(例えば、ポリエチレンワックス、パラフィンワックス等のワックス類、エチレン-酢酸ビニル共重合体(EVA)、ポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、変性ポリオレフィン、ポリ塩化ビニル(PVC)、アクリル樹脂、熱可塑性ポリウレタン、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリスチレン(PS)、ポリカーボネート、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等の熱可塑性樹脂;エチレン系アイオノマー、ウレタン系アイオノマー、スチレン系アイオノマー、フッ素系アイオノマー等のアイオノマー樹脂;オレフィン系エラストマー、スチレン系エラストマー、ポリエステル系エラストマー等の熱可塑性エラストマー)を含む場合は、樹脂成形用マスターバッチとして用いることができる。この場合、この樹脂成形用マスターバッチ組成物は、射出成形、押出成形、プレス成形等に利用され、樹脂成形時の気泡導入に好適に用いられる。樹脂成形時に用いられる樹脂としては、上記基材成分から選択されれば特に限定はないが、例えば、エチレン-酢酸ビニル共重合体(EVA)、ポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、変性ポリオレフィン、ポリ塩化ビニル(PVC)、アクリル樹脂、熱可塑性ポリウレタン、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリスチレン(PS)、ポリアミド樹脂(ナイロン6、ナイロン66等)、変性ポリアミド、ポリカーボネート、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリアセタール(POM)、ポリフェニレンサルファイド(PPS)、ポリフェニレンエーテル(PPE)、変性ポリフェニレンエーテル、アイオノマー樹脂、オレフィン系エラストマー、スチレン系エラストマー、ポリエステル系エラストマー、ポリ乳酸(PLA)、酢酸セルロース、PBS、PHA、澱粉樹脂、天然ゴム、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンーブタジエンゴム(SBR)、クロロプレンゴム(CR)、ニトリルゴム(NBR)、ブチルゴム、シリコンゴム、アクリルゴム、ウレタンゴム、フッ素ゴム、エチレン-プロピレン-ジエンゴム(EPDM)等、及びそれらの混合物等が挙げられる。また、ガラス繊維、カーボンファイバー、天然繊維等の補強繊維;タルク、酸化チタン、シリカ、無機顔料等の無機粉末;アクリル系微粒子、スチレン系微粒子、ウレタン系微粒子、シリコン系微粒子等の高分子微粒子や有機顔料等の有機粉末、難燃剤、化学発泡剤等を含有していてもよい。
 本発明の成形物は、上記で説明した組成物を成形してなるものである。本発明の成形物としては、たとえば、塗膜や成形品等の成形物を挙げることができる。
 本発明の成形物では、軽量性、多孔性、吸音性、断熱性、低熱伝導性、低誘電率化、意匠性、衝撃吸収性、強度、チッピング性等の諸物性が向上している。さらに、これら以外に得られる効果として、ヒケやソリに対する安定化、成形収縮率の低減、寸法安定性等も期待される。
 また、基材成分として無機物を含む成形物は、さらに焼成することによって、セラミックフィルタ等が得られる。
 以下に、本発明の熱膨張性微小球の実施例について、具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。以下の実施例及び比較例において、断りのない限り、「%」とは「重量%」を意味するものである。以下では、熱膨張性微小球を簡単のために「微小球」ということがある。また、以下の実施例および比較例で挙げた熱膨張性微小球、樹脂中空粒子、微粒子付着樹脂中空粒子について、次に示す要領で物性を測定し、さらに性能を評価した。
〔熱膨張性微小球の体積平均粒子径(D50)と粒度分布の測定〕
 測定装置として、日機装株式会社製のマイクロトラック粒度分布計(型式9320-HRA)を使用し、体積基準測定によるD50値を体積平均粒子径とした。
〔樹脂中空粒子の平均粒子径の測定〕
 測定装置として、Malvern社製のレーザー回折式粒度分布測定装置(マスタサイザー3000)を使用し、乾式測定法により測定した。平均粒子径は体積基準測定によるD50値を採用した。
〔熱膨張性微小球の膨張開始温度(T)及び最大膨張温度(Tmax)の測定〕
 測定装置として、DMA(DMA Q800型 TA instruments社製)を使用した。微小球0.5mgを直径6.0mm、深さ4.8mmのアルミカップに入れ、微小球層の上部にアルミ蓋(直径5.6mm、厚み0.1mm)をのせて試料を準備した。その試料に上から加圧子により0.01Nの力を加えた状態でサンプル高さを測定した。加圧子により0.01Nの力を加えた状態で20℃から300℃まで10℃/minの昇温速度で加熱し、加圧子の垂直方向における変位量を測定した。正方向への変位開始温度を膨張開始温度(T)とし、最大変位量を示した温度を最大膨張温度(Tmax)とした。
〔熱膨張性微小球の真比重(d)の測定〕
 熱膨張性微小球の真比重(d)は、以下の測定方法で測定した。
 真比重は環境温度25℃、相対湿度50%の雰囲気下においてイソプロピルアルコールを用いた液浸法(アルキメデス法)により測定した。
 具体的には、容量100ccのメスフラスコを空にし、乾燥後、メスフラスコ重量(WB1(g))を秤量した。秤量したメスフラスコにイソプロピルアルコールをメニスカスまで正確に満たした、イソプロピルアルコール100ccの充満されたメスフラスコの重量(WB2(g))を秤量した。また、容量100ccのメスフラスコを空にし、乾燥後、メスフラスコ重量(WS1(g))を秤量した。秤量したメスフラスコに約50ccの熱膨張性微小球を充填し、熱膨張性微小球の充填されたメスフラスコの重量(WS2(g))を秤量した。そして、熱膨張性微小球の充填されたメスフラスコに、イソプロピルアルコールを気泡が入らないようにメニスカスまで正確に満たした後の重量(WS3(g))を秤量した。そして、得られたWB1、WB2、WS1、WS2及びWS3を下式に導入して、熱膨張性微小球の真比重(d)を求めた。
={(WS2-WS1)×(WB2-WB1)/100}/{(WB2-WB1)-(WS3-WS2)}
〔樹脂中空粒子の真比重(d)の測定〕
 樹脂中空粒子の真比重(d)は、上記で説明した熱膨張性微小球の真比重(d)の測定と同様にして測定した。
〔微粒子付着樹脂中空粒子の真比重(d)の測定〕
微粒子付着樹脂中空粒子の真比重(d)は、上記で説明した熱膨張性微小球の真比重(d)の測定と同様にして測定した。
〔微粒子付着樹脂中空粒子中に含まれる樹脂中空粒子の真比重(d)の測定〕
 微粒子付着樹脂中空粒子中に含まれる樹脂中空粒子の真比重(d)は、以下のようにして測定した。
 まず、前処理として、微粒子付着樹脂中空粒子から微粒子を洗い流す操作を行った。具体的には、微粒子付着樹脂中空粒子と、水と、さらに必要に応じて酸又は塩基とを混合し、これを攪拌することにより、微粒子を分解又は洗い流した。ついで、これをろ過することにより固液分離した。この操作を数回繰り返すことにより、微粒子付着樹脂中空粒子から微粒子が取り除かれた樹脂中空粒子を得た。例えば、微粒子が炭酸カルシウムや水酸化マグネシウムである場合、塩酸等で洗浄後、さらに水洗工程を数回繰り返すことにより微粒子を付着しない樹脂中空粒子を取り出すことができる。
 次に、得られた樹脂中空粒子を乾燥した。そして、この樹脂中空粒子について、上記で説明した熱膨張性微小球の真比重(d)の測定と同様にして、真比重(d)を測定した。
〔熱膨張性微小球及び(微粒子付着)樹脂中空粒子の含水率の測定〕
 測定装置として、カールフィッシャー水分計(MKA-510N型 京都電子工業株式会社製)を用いて測定した。熱膨張性微小球及び(微粒子付着)樹脂中空粒子の含水率(重量%)を、それぞれCw1及びCw2とした。
 Cw1:熱膨張性微小球の含水率(重量%)
 Cw2:(微粒子付着)樹脂中空粒子の含水率(重量%)
〔熱膨張性微小球の発泡剤の内包率(C)の測定〕
 熱膨張性微小球1.0gを直径80mm、深さ15mmのステンレス製蒸発皿に入れ、その重量(W(g))を測定した。アセトニトリルを30ml加え均一に分散させ、24時間室温で放置した後に、130℃で2時間減圧乾燥後の重量(W(g))を測定した。
 熱膨張性微小球の発泡剤の内包率(C)は、下記の式により計算される。
 C(重量%)=100×{100×(W-W)/1.0-Cw1}/(100-Cw1
(式中、熱膨張性微小球の含水率Cw1は、上記方法で測定される。)
〔樹脂中空粒子の発泡剤の内包率(C)の測定〕
 樹脂中空粒子W(g)を直径80mm、深さ15mmのステンレス製蒸発皿に入れ、その重量(W(g))を測定した。ここで、通常、W(g)は0.2~0.5g程度の値である。アセトニトリルを30mL加え均一に分散させ、30分間室温で放置した後に、130℃で2時間加熱乾燥後の重量(W(g))を測定した。
 樹脂中空粒子の発泡剤の内包率(C)は、下記の式により計算される。
 C(重量%)=100×{100×(W-W)/W-Cw2}/(100-Cw2
(式中、樹脂中空粒子の含水率CW2は、上記方法で測定される。)
〔微粒子付着樹脂中空粒子中の樹脂中空粒子の発泡剤の内包率(C)の測定〕
 微粒子付着樹脂中空粒子中の樹脂中空粒子の発泡剤の内包率(C)は、以下のようにして測定した。
 まず、前処理として、微粒子付着樹脂中空粒子から微粒子を洗い流す操作を行った。具体的には、微粒子付着樹脂中空粒子と、水と、さらに必要に応じて酸又は塩基とを混合し、これを攪拌することにより、微粒子を分解又は洗い流した。ついで、これをろ過することにより固液分離した。この操作を数回繰り返すことにより、微粒子付着樹脂中空粒子から微粒子が取り除かれた樹脂中空粒子を得た。
 次に、得られた樹脂中空粒子を乾燥した。そして、この樹脂中空粒子について、上記で説明した樹脂中空粒子の発泡剤の内包率(C)の測定と同様の方法で、発泡剤の内包率(C)を測定した。
〔熱膨張性微小球の最大膨張倍率(Rex)〕
熱膨張性微小球の最大膨張倍率は、熱膨張性微小球の体積に対する加熱膨張後の最大膨張時に増大した体積割合を膨張倍率と定義する。
アルミコンテナー(アズワン社製 品番C-1)に熱膨張性微小球1gをいれ、アルミホイルで内容物が漏れないよう封をし、オーブン(エスペック社製 PHH-102)槽内の温度が安定な状態を確認し熱膨張性微小球封入したアルミコンテナーを入れ、静置した。
 加熱後得られた(膨張した)熱膨張性微小球の真比重の測定を実施した。真比重の測定は上記方法と同様に実施した。
 加熱条件は上記で得られた膨張開始温度から最大膨張温度より100℃高い温度までの範囲で各2分間加熱し、最も真比重の低い値が最大膨張と定義し最大膨張倍率とした。熱膨張性微小球の最大膨張倍率(Rex)は下記の式より算出した。
:熱膨張性微小球の真比重
:最大膨張時の(膨張した)熱膨張性微小球の真比重 (最大膨張時の樹脂中空粒子の真比重)
ex=(d÷d
〔耐圧評価〕
 塩化ビニル樹脂56重量部、可塑剤としてジイソノニルフタレート92重量部及び充填剤としての炭酸カルシウム52重量部を配合して塩化ビニルペーストを作製した。作製した塩化ビニルペーストの比重は1.3であった。この塩化ビニルペーストに樹脂中空粒子、又は微粒子付着樹脂中空粒子を所定量配合し、脱泡を実施し、比重1.0の塩化ビニル系コンパウンドとした。塩化ビニル系コンパウンドの比重が1.0であることを、JIS K-5600に基づき比重カップを用いて確認した。
 上記で調製した塩化ビニル系コンパウンドを耐圧容器に約180ml注入し、加圧プレス器を使用して、(i)20MPaで20分、(ii)20MPaで1時間、(iii)20MPaで5時間、又は(iv)20MPaで24時間、の各条件下で加圧し、取り出した加圧後のコンパウンドを攪拌脱泡機にて脱泡し、コンパウンド比重を50mlの比重カップを用いて測定した。これにより、樹脂中空粒子、微粒子付着樹脂中空粒子の外部からの圧力に対する変形の耐性について評価した。
また加圧後のコンパウンドを光学顕微鏡で観察し、樹脂中空粒子、微粒子付着樹脂中空粒子の状態を確認した。
〔耐圧評価後の樹脂中空粒子変形率R〕
 上記耐圧評価に使用した塩化ビニルペースト(比重 1.3)に樹脂中空粒子、又は微粒子付着樹脂中空粒子を所定量配合し、脱泡を実施し、比重1.0の塩化ビニル系コンパウンドとした。
 上記で調製した塩化ビニル系コンパウンドを耐圧容器に約180ml注入し、加圧プレス器を使用して、20MPaで1時間の条件で耐圧評価を実施した。耐圧評価後のコンパウンドを攪拌脱泡機にて脱泡し、コンパウンド比重(d)を50mlの比重カップを用いて測定した。
 上記耐圧評価にて得られた塩化ビニル系コンパウンドの測定比重(d)、配合した塩化ビニルペーストの真比重(d)及び重量(W)、配合した樹脂中空粒子又は微粒子付着樹脂中空粒子の重量(W)から、下記式により耐圧評価後の樹脂中空粒子又は微粒子付着樹脂中空粒子の真比重(d)を下記式によって算出した。
次に、樹脂中空粒子の変形率(R)を、耐圧評価後の樹脂中空粒子、又は微粒子付着樹脂中空粒子の真比重(d)、耐圧評価前の樹脂中空粒子、又は微粒子付着樹脂中空粒子の真比重(d)から、下記式により算出した。
=W÷[{(W+W)-d×(W÷d)}÷d
R={1-(d÷d)}×100
 また、得られた変形率(R)から、以下の指標により評価した。
×(不良である数値):R>85
○(問題ない数値):85≧R>55
○○(好ましい数値):55≧R
〔微小球1 実施例1〕
 イオン交換水500部に、塩化ナトリウム126部を溶解させ、ポリビニルピロリドン0.45部、カルボキシメチル化ポリエチレンイミン・Na塩(CMPEI)0.1部およびコロイダルシリカ(有効濃度20%)40部を添加し、pHを3.0に調整して水性分散媒を調製した。
 一方、アクリロニトリル120部、メタクリロニトリル120部、ポリブタジエンジアクリレート(サートマー社製 品番CN-307)2.3部、ジ(2-エチルヘキシル)パーオキシジカーボネート(P-OPP)3部、イソブタン30部を混合、溶解し油性混合物とした。
 水性分散媒と油性混合物を混合し、得られた混合液をホモミキサー(プラミクス社製、TKホモミキサー)により回転数10000rpmで1分間分散して、懸濁液を調製した。この懸濁液を容量1.5リットルの加圧反応容器に移して窒素置換をしてから反応初期圧0.35MPaにし、80rpmで攪拌しつつ重合温度60℃で20時間重合反応した。重合後、生成物を濾過、乾燥し、熱膨張性微小球1を得た。得られた熱膨張性微小球の物性は表1に示す。
〔微小球2~11、16~20 実施例2~16〕
 実施例8、10、12~13、15~16では実施例1と同様のポリブタジエンジアクリレート(サートマー社製 品番CN-307)、実施例2~4、9、11、14~16では架橋性単量体(A)として、ポリブタジエンジアクリレート(大阪有機化学工業社製 品番BAC-45)、実施例5、7では両末端メタクリル基導入ポリブタジエン ウレタン結合型(日本曹達株式会社製 品番TE-2000)、実施例6、11ではイソプレン重合物の無水マレイン酸付加物と2-ヒドロキシエチルメタクリレートとのエステル化物(クラレ社製 品番UC-203M)を使用し表1~2に示すように反応条件をそれぞれ変更する以外は、実施例1と同様にして、熱膨張性微小球2~11、16~20を得た。得られた各熱膨張性微小球の物性を表1~2に示す。
〔微小球12~15 比較例1~4〕
 比較例1~4では架橋性単量体(A)は使用せず、表3に示すように反応条件をそれぞれ変更する以外は、実施例1と同様にして熱膨張性微小球12~15を得た。さらにその物性を評価し、表3に示した。
〔樹脂中空粒子1 実施例1〕
 実施例1で得られた微小球1は乾式加熱膨張法により、樹脂中空粒子1を製造した。乾式加熱膨張法として特開2006-213930号公報に記載されている内部噴射方法を採用した。具体的には、図3に示す発泡工程部を備えた製造装置を用いて、以下の手順で熱膨張性微小球を加熱膨張させて、樹脂中空粒子を製造した。
(発泡工程部の説明)
 図3に示すとおり、発泡工程部は、出口に分散ノズル(11)を備え且つ中央部に配置された気体導入管(番号表記せず)と、分散ノズル(11)の下流部に設置された衝突板(12)と、気体導入管の周囲に間隔を空けて配置された過熱防止筒(10)と、過熱防止筒(10)の周囲に間隔を空けて配置された熱風ノズル(8)とを備える。この発泡工程部において、気体導入管内の矢印方向に熱膨張性微小球を含む気体流体(13)が流されており、気体導入管と過熱防止筒(10)との間に形成された空間には、熱膨張性微小球の分散性の向上及び気体導入管と衝突板の過熱防止のための気体流(14)が矢印方向に流されており、さらに、過熱防止筒(10)と熱風ノズル(8)との間に形成された空間には、熱膨張のための熱風流が矢印方向に流されている。ここで、熱風流(15)と気体流体(13)と気体流(14)とは、通常、同一方向の流れである。過熱防止筒(10)の内部には、冷却のために、冷媒流(9)が矢印方向に流されている。
(製造装置の操作)
 噴射工程では、熱膨張性微小球を含む気体流体(13)を、出口に分散ノズル(11)を備え且つ熱風流(15)の内側に設置された気体導入管に流し、気体流体(13)を前記分散ノズル(11)から噴射させる。
 分散工程では、気体流体(13)を分散ノズル(11)の下流部に設置された衝突板(12)に衝突させ、熱膨張性微小球が熱風流(15)中に万遍なく分散するように操作される。ここで、分散ノズル(11)から出た気体流体(13)は、気体流(14)とともに衝突板(12)に向かって誘導され、これと衝突する。
 膨張工程では、分散した熱膨張性微小球を熱風流(15)中で膨張開始温度以上に加熱して膨張させる。その後、得られた樹脂中空粒子を冷却部分に通過させる等して回収する。
(膨張条件及び結果)
 実施例1で得られた微小球1では、図3に示す製造装置を用い、膨張条件として、原料供給量0.8kg/min、原料分散気体量0.35m/min、熱風流量9.0m/min、熱風温度270℃に設定し、樹脂中空粒子1を得た。得られた樹脂中空粒子1の真比重(d)は0.035であった。発泡剤の内包率(C)は10.1%であった。
〔樹脂中空粒子6、9、14、18 実施例6、9、14、比較例3〕
実施例6で得られた微小球6では熱風処理温度330℃、実施例9で得られた微小球9では熱風処理温度280℃、実施例14で得られた微小球18では熱風処理温度360℃、比較例3で得られた微小球14では熱風処理温度275℃でそれぞれ樹脂中空粒子6、9、18、14を得た。得られた各樹脂中空粒子の物性を表1~3に示す。
〔微粒子付着中空粒子2 実施例2〕
 実施例2では、30部の実施例2で得られた微小球2と、70部の炭酸カルシウム(備北粉化工業株式会社製のホワイトンSB赤;レーザー回折法による平均粒子径約1.8μm)とを、セパラブルフラスコに添加して混合し、次いで、この混合物を攪拌しながら5分間かけて加熱温度155℃まで昇温して、微粒子付着樹脂中空粒子2を得た。得られた微粒子付着樹脂中空粒子2の真比重は0.144であり、微粒子付着樹脂中空粒子に含まれる樹脂中空粒子の真比重は0.045であった。発泡剤の内包率(C)は8.6%であった。
〔微粒子付着中空粒子3~5、7~8、10~11、16~17、19~20 実施例3~5、7~8、10~13、15~16〕
 実施例3~5、7~8、10~13、15~16では、実施例2と同様の方法で、それぞれ表1~2に示す配合に従い、微粒子付着樹脂中空粒子を製造した。なお、加熱温度について、実施例3では130℃、実施例4では155℃、実施例5では170℃、実施例7では158℃、実施例8では175℃、実施例10では175℃、実施例11では160℃、実施例12では170℃、実施例13では170℃、実施例15では180℃、実施例16では170℃で製造した。得られた各微粒子付着樹脂中空粒子の物性は表1~2に示す。
〔微粒子付着中空粒子12、13、15 比較例1、2、4〕
 比較例1、2、4では、実施例2と同様の方法で、それぞれ表3に示す配合に従い、微粒子付着樹脂中空粒子を製造した。なお、加熱温度について、比較例1では155℃、比較例2では160℃、比較例4では150℃の条件で製造した。得られた各微粒子付着樹脂中空粒子の物性は表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
〔評価1〕
 塩化ビニル樹脂(株式会社トクヤマ製 品番ZEST-P-21)56部、ジイソノニルフタレート92部及び炭酸カルシウム52部を配合してなる塩化ビニル樹脂ゾル(比重1.3)に、実施例1で得られた樹脂中空粒子1を1.67部添加し混練後、攪拌脱泡機にて脱泡し、塩化ビニル系コンパウンドとした。得られた塩化ビニル系コンパウンドの比重は1.0であった。
 ついで、得られたコンパウンドについて、上記で説明した要領に従い、外部からの圧力負荷に対する変形耐性の評価を行った。結果を表4に示す。本発明の樹脂中空粒子は、外からの高い圧力負荷に対して変形を抑制できるため樹脂中空粒子の変形率が低く、結果として加圧前後でのコンパウンドの比重変動が少なく軽量化が効果的である。
〔評価2~20〕
 評価2~20では、軽量化剤として配合される(微粒子付着)樹脂中空粒子が表4に示すものに変更する以外は、評価1と同様にして、評価を行った。結果を表4~6に示す。
 さらに評価2において、20MPaで1時間の条件で加圧した後のコンパウンドを光学顕微鏡で観察し、微粒子付着樹脂中空粒子の状態を確認した。評価前の微粒子付着樹脂中空粒子の状態を図4に、評価後の微粒子付着樹脂中空粒子の状態を図5に示す。図5の画像からは、図4と比較して、残存する微粒子付着樹脂中空粒子が多数確認できた。
 一方、評価12~15では、20MPaで1時間加圧後のコンパウンドの比重は全て1.31であり、軽量化材の効果が全く発揮されていなかった。評価14において、20MPaで1時間の条件で加圧した後のコンパウンドを光学顕微鏡で観察し、樹脂中空粒子の状態を確認した。評価前の樹脂中空粒子の状態を図6に、評価後の樹脂中空粒子の状態を図7に示す。図7の画像からは、図6と比較して、樹脂中空粒子は変形しているため樹脂中空粒子はほとんど確認できなかった。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表1~3では、表7に示す略号が用いられている。
Figure JPOXMLDOC01-appb-T000008
 本発明によれば、従来の熱膨張性微小球と比較して、高い圧力負荷に対して、外殻の破れや凹み等の変形を抑制できる樹脂中空粒子を得ることができる。
 本発明の熱膨張性微小球から得られる樹脂中空粒子は、高い圧力負荷に対して、外殻の破れや凹み等の変形を抑制できるため、例えば、自動車用ボディシーラー、自動車用アンダーボディコーティング剤、自動車用塗布型制振材、建築用シーリング材等に好適に使用することができる。
 また、本発明の熱膨張性微小球は、たとえば、パテ、塗料、インク、シーリング材、モルタル、紙粘土、陶器等の軽量化材として使用することができ、さらに、基材成分に配合して、射出成形、押出成形、プレス成形等の成形を行って、遮音性、断熱性、遮熱性、吸音性等に優れる成形物の製造に使用することもできる。
  1 微粒子付着樹脂中空粒子
  2 外殻部(外殻)
  3 中空部
  4 微粒子(吸着された状態)
  5 微粒子(めり込み、固定された状態)
  6 熱可塑性樹脂からなる外殻
  7 発泡剤
  8 熱風ノズル
  9 冷媒流
 10 過熱防止筒
 11 分散ノズル
 12 衝突板
 13 熱膨張性微小球を含む気体流体
 14 気体流
 15 熱風流

Claims (9)

  1.  熱可塑性樹脂からなる外殻とそれに内包され、かつ加熱することによって気化する発泡剤とから構成される熱膨張性微小球であって、
     前記熱可塑性樹脂が、(メタ)アクリロイル基を少なくとも2つ有し、かつ前記(メタ)アクリロイル基以外に反応性炭素-炭素二重結合を有する分子量500以上の架橋性単量体(A)を含む重合性成分の重合体である、
     熱膨張性微小球。
  2.  前記架橋性単量体(A)が下記一般式(1)で示される化合物である、請求項1に記載の熱膨張性微小球。
     R-O-R-O-R    (1)
    (式中、RおよびRは(メタ)アクリロイル基であり、Rは反応性炭素-炭素二重結合を有し、重合体鎖を含む構造である。)
  3.  前記重合体鎖が、構成単位としてジエンを含む、請求項2に記載の熱膨張性微小球。
  4.  前記ジエンが、ブタジエン及び/またはイソプレンである、請求項3に記載の熱膨張性微小球。
  5.  前記重合性成分がニトリル系単量体を含む、請求項1~4のいずれかに記載の熱膨張性微小球。
  6.  請求項1~5のいずれかに記載の熱膨張性微小球の膨張体である、樹脂中空粒子。
  7.  請求項6に記載の樹脂中空粒子と、前記樹脂中空粒子の外殻部の外表面に付着した微粒子とからなる、微粒子付着樹脂中空粒子。
  8.  請求項1~5のいずれかに記載の熱膨張性微小球、請求項6に記載の樹脂中空粒子、及び請求項7に記載の微粒子付着樹脂中空粒子から選ばれる少なくとも1種と、基材成分とを含む、組成物。
  9.  請求項8に記載の組成物を成形してなる、成形体。
PCT/JP2019/001096 2018-01-31 2019-01-16 熱膨張性微小球およびその用途 WO2019150951A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019526013A JP6587782B1 (ja) 2018-01-31 2019-01-16 熱膨張性微小球およびその用途
KR1020207023868A KR20200115541A (ko) 2018-01-31 2019-01-16 열팽창성 미소구 및 그 용도
SE2051007A SE545122C2 (en) 2018-01-31 2019-01-16 Heat-expandable microspheres and application thereof
US16/966,297 US11746205B2 (en) 2018-01-31 2019-01-16 Heat-expandable microspheres and applications thereof
CN201980010671.7A CN111684038B (zh) 2018-01-31 2019-01-16 热膨胀性微球及其用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-014704 2018-01-31
JP2018014704 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019150951A1 true WO2019150951A1 (ja) 2019-08-08

Family

ID=67479720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001096 WO2019150951A1 (ja) 2018-01-31 2019-01-16 熱膨張性微小球およびその用途

Country Status (6)

Country Link
US (1) US11746205B2 (ja)
JP (1) JP6587782B1 (ja)
KR (1) KR20200115541A (ja)
CN (1) CN111684038B (ja)
SE (1) SE545122C2 (ja)
WO (1) WO2019150951A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021221160A1 (ja) 2020-05-01 2021-11-04 積水化学工業株式会社 熱膨張性マイクロカプセル
WO2023127812A1 (ja) * 2021-12-28 2023-07-06 日本ゼオン株式会社 中空粒子
WO2024070841A1 (ja) * 2022-09-29 2024-04-04 日本ゼオン株式会社 中空粒子、中空粒子の製造方法、樹脂組成物、樹脂構造体、及び樹脂構造体の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102250270B1 (ko) * 2020-10-06 2021-06-03 주식회사 빌트존 교량 및 콘크리트 도로의 수밀성 아스팔트 콘크리트 포장체 조성물
JP2022076993A (ja) * 2020-11-10 2022-05-20 株式会社スリーボンド 光硬化性樹脂組成物、硬化物および積層体
CN113358434B (zh) * 2021-06-11 2024-03-01 常州硅源新能材料有限公司 硅负极材料表面包覆的评估方法
CN116120694A (zh) * 2022-12-20 2023-05-16 万华化学集团股份有限公司 一种具有核壳结构的热膨胀微球及其制备方法
CN117430911A (zh) * 2023-12-20 2024-01-23 中国科学院赣江创新研究院 一种轻质耐烧蚀闭孔复合材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046273A1 (ja) * 2005-10-20 2007-04-26 Matsumoto Yushi-Seiyaku Co., Ltd. 熱膨張性微小球およびその製造方法
JP2012102288A (ja) * 2010-11-12 2012-05-31 Yokohama Rubber Co Ltd:The スタッドレスタイヤトレッド用ゴム組成物
WO2014157188A1 (ja) * 2013-03-27 2014-10-02 積水化成品工業株式会社 改質ポリスチレン系架橋樹脂粒子とその製造方法、発泡性粒子とその製造方法、予備発泡粒子及び発泡成形体
JP2015003951A (ja) * 2013-06-19 2015-01-08 松本油脂製薬株式会社 熱膨張性微小球、その製造方法および用途
WO2017014064A1 (ja) * 2015-07-23 2017-01-26 松本油脂製薬株式会社 加硫成形用ゴム組成物、その製造方法及び用途

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201231A (ja) 1986-02-28 1987-09-04 Matsumoto Yushi Seiyaku Kk 微小発泡体の製造方法
US5180752A (en) * 1990-03-08 1993-01-19 Pierce & Stevens Corporation Process for making dry microspheres
US6617363B2 (en) 2001-01-18 2003-09-09 Sekisui Chemical Co., Ltd. Method of producing thermally expansive microcapsule
JP2006096963A (ja) 2004-09-28 2006-04-13 Matsumoto Yushi Seiyaku Co Ltd 蓄光性複合中空粒子およびその樹脂組成物
JP5033350B2 (ja) 2006-04-28 2012-09-26 松本油脂製薬株式会社 熱膨張性微小球の製造方法
JP5485611B2 (ja) 2008-08-07 2014-05-07 積水化学工業株式会社 熱膨張性マイクロカプセル及び発泡成形体
KR20110058095A (ko) * 2009-11-25 2011-06-01 제일모직주식회사 발포특성이 우수하고 입경이 균일한 열팽창성 미립자 및 그 제조방법
JP6144780B2 (ja) * 2013-12-26 2017-06-07 松本油脂製薬株式会社 熱膨張性微小球の製造方法およびその利用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046273A1 (ja) * 2005-10-20 2007-04-26 Matsumoto Yushi-Seiyaku Co., Ltd. 熱膨張性微小球およびその製造方法
JP2012102288A (ja) * 2010-11-12 2012-05-31 Yokohama Rubber Co Ltd:The スタッドレスタイヤトレッド用ゴム組成物
WO2014157188A1 (ja) * 2013-03-27 2014-10-02 積水化成品工業株式会社 改質ポリスチレン系架橋樹脂粒子とその製造方法、発泡性粒子とその製造方法、予備発泡粒子及び発泡成形体
JP2015003951A (ja) * 2013-06-19 2015-01-08 松本油脂製薬株式会社 熱膨張性微小球、その製造方法および用途
WO2017014064A1 (ja) * 2015-07-23 2017-01-26 松本油脂製薬株式会社 加硫成形用ゴム組成物、その製造方法及び用途

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021221160A1 (ja) 2020-05-01 2021-11-04 積水化学工業株式会社 熱膨張性マイクロカプセル
JP2021176951A (ja) * 2020-05-01 2021-11-11 積水化学工業株式会社 熱膨張性マイクロカプセル
JP6978640B1 (ja) * 2020-05-01 2021-12-08 積水化学工業株式会社 熱膨張性マイクロカプセル
CN114746172A (zh) * 2020-05-01 2022-07-12 积水化学工业株式会社 热膨胀性微囊
KR20230005804A (ko) 2020-05-01 2023-01-10 세키스이가가쿠 고교가부시키가이샤 열팽창성 마이크로캡슐
WO2023127812A1 (ja) * 2021-12-28 2023-07-06 日本ゼオン株式会社 中空粒子
WO2024070841A1 (ja) * 2022-09-29 2024-04-04 日本ゼオン株式会社 中空粒子、中空粒子の製造方法、樹脂組成物、樹脂構造体、及び樹脂構造体の製造方法

Also Published As

Publication number Publication date
CN111684038B (zh) 2023-06-02
SE2051007A1 (en) 2020-08-31
US11746205B2 (en) 2023-09-05
JPWO2019150951A1 (ja) 2020-02-06
JP6587782B1 (ja) 2019-10-09
KR20200115541A (ko) 2020-10-07
SE545122C2 (en) 2023-04-04
US20210363320A1 (en) 2021-11-25
CN111684038A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
JP6587782B1 (ja) 熱膨張性微小球およびその用途
JP6283456B1 (ja) 樹脂中空粒子及びその利用
KR102528970B1 (ko) 가황 성형용 고무 조성물, 그의 제조 방법 및 용도
EP2204428B1 (en) Heat-expandable microspheres, process for producing the same, and application thereof
JP6034992B2 (ja) 熱膨張性微小球及びその用途
JP5759194B2 (ja) 熱膨張性微小球、中空微粒子、その製造方法および用途
WO2013111688A1 (ja) 熱膨張性微小球、その製造方法および用途
JP5943555B2 (ja) 熱膨張性微小球およびその用途
KR20180110668A (ko) 열팽창성 미소구 및 그 용도
JP6534834B2 (ja) 熱膨張性微小球、その製造方法及び用途
CN107532065B (zh) 热膨胀性微球及其用途
JP7412653B2 (ja) 熱膨張性微小球、中空粒子及びそれらの用途
JP7369329B1 (ja) 熱膨張性微小球及びその用途
JP6026072B1 (ja) 熱膨張性微小球及びその用途
JP7394263B2 (ja) 熱膨張性微小球及びその用途
JP7259140B1 (ja) 熱膨張性微小球、組成物、及び成形体
JP2023077403A (ja) 遮熱組成物、遮熱材、及び遮熱組成物に用いられる中空粒子
JP2022147880A (ja) 熱膨張性微小球及びその用途

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019526013

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207023868

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19746806

Country of ref document: EP

Kind code of ref document: A1