WO2019150839A1 - フィルムコンデンサ - Google Patents

フィルムコンデンサ Download PDF

Info

Publication number
WO2019150839A1
WO2019150839A1 PCT/JP2018/047226 JP2018047226W WO2019150839A1 WO 2019150839 A1 WO2019150839 A1 WO 2019150839A1 JP 2018047226 W JP2018047226 W JP 2018047226W WO 2019150839 A1 WO2019150839 A1 WO 2019150839A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric film
electrode
film
internal electrode
main electrode
Prior art date
Application number
PCT/JP2018/047226
Other languages
English (en)
French (fr)
Inventor
千一 小笹
拓也 阪本
智道 市川
Original Assignee
株式会社指月電機製作所
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社指月電機製作所, 株式会社村田製作所 filed Critical 株式会社指月電機製作所
Priority to JP2019568938A priority Critical patent/JP6923171B2/ja
Priority to CN201880088468.7A priority patent/CN111684554B/zh
Priority to KR1020207017362A priority patent/KR102363326B1/ko
Publication of WO2019150839A1 publication Critical patent/WO2019150839A1/ja
Priority to US16/918,403 priority patent/US11710603B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/015Special provisions for self-healing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials

Definitions

  • the present invention relates to a film capacitor.
  • capacitor As one type of capacitor, there is a film capacitor in which a dielectric film having a metal vapor deposition film serving as an internal electrode provided on its surface is wound or laminated.
  • the internal electrode (hereinafter also referred to as the main electrode portion) of the portion that forms the capacitance is thinned, while the internal electrode (hereinafter also referred to as the connection portion) of the portion that is connected to the external electrode provided on both end faces is thickened.
  • a so-called heavy edge structure is widely used.
  • a slit without metal is provided in the internal electrode to be divided into a plurality of divided electrodes, and the divided electrodes are connected in parallel by a fuse formed between the slits.
  • This forms a self-safety function in which a fuse around an insulation defect portion is blown by a short-circuit current at the time of self-recovery and the insulation defect portion is separated from an electric circuit.
  • thermosetting resins having high heat resistance are also known. .
  • an end portion (a boundary portion between the main electrode portion and the insulation margin) of the main electrode portion constituting one internal electrode constitutes the other internal electrode via a dielectric film.
  • a structure facing the connecting portion is described.
  • the end portion of the main electrode part constituting one internal electrode and the connection part constituting the other internal electrode overlap with each other, there is a possibility that electric discharge frequently occurs due to electric field concentration, resulting in dielectric breakdown.
  • a thermosetting resin as described in Patent Document 3 is used as the material for the dielectric film, the self-recovery is inferior to the case where a conventional PP film is used, and therefore dielectric breakdown is likely to occur.
  • the width of the connection portion is narrowed so that the end portion of the main electrode portion constituting one internal electrode is connected to the other internal portion through the dielectric film.
  • a structure that does not oppose the connecting portion constituting the electrode is conceivable.
  • the width of the connection portion is narrow, the connection with the external electrode becomes insufficient, and the current resistance performance may be impaired.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a film capacitor that has high self-healing properties and that suppresses the occurrence of dielectric breakdown.
  • the film capacitor of the present invention includes a first dielectric film having a first surface and a second surface opposite to the first surface, the first surface, and the first surface.
  • a second dielectric film having an opposite second surface and laminated on the first dielectric film; a first internal electrode provided on the first surface of the first dielectric film; A second internal part located between the first dielectric film and the second dielectric film, provided on the first surface of the second dielectric film or the second surface of the first dielectric film.
  • An electrode is provided on one end surface of the laminate in which the first dielectric film and the second dielectric film are laminated, and is connected to the first internal electrode and spaced apart from the second internal electrode.
  • the second internal A film capacitor including a second external electrode connected to the electrode and spaced apart from the first internal electrode, wherein the first internal electrode is connected to the first external electrode; A first main electrode portion that is connected to the first connection portion and is thinner than the first connection portion; and extends from the first main electrode portion toward the second external electrode, and more than the first main electrode portion.
  • Two main electrode portions, the first main electrode portion is opposed to the second main electrode portion through the first dielectric film, and the second connection portion is connected to the second external electrode from the second external electrode.
  • the first thin film portion has a reduction region in which the thickness decreases toward the second main electrode portion. Via the conductor film opposite the reduced region of the second connecting portion.
  • the second internal electrode further includes a second thin film portion that extends from the second main electrode portion toward the first external electrode and is thinner than the second main electrode portion.
  • 1 connection part has a reduction area
  • the reduced region of the second connection portion has a tapered shape.
  • the thickness of the first thin film portion decreases from the first main electrode portion toward the second external electrode. It is desirable to have a tapered shape.
  • the maximum value of the sum of the thickness of the reduced area of the second connection portion and the thickness of the first thin film portion at the position facing each other through the first dielectric film is the maximum thickness of the second connection portion and the above It is desirable that the difference is smaller than the maximum thickness of the second main electrode portion.
  • the thickness of the second connection portion facing the end of the first thin film portion on the second external electrode side is more than 1 time and not more than 2 times the maximum thickness of the second main electrode portion. desirable.
  • the reduced region of the second connection portion is longer than the first thin film portion.
  • the first thin film portion fits in a reduced region of the second connection portion when viewed from the direction in which the first dielectric film and the second dielectric film are laminated.
  • the second connection part is preferably made of a material having lower electrical conductivity than the first thin film part.
  • the second internal electrode is provided on the first surface of the second dielectric film, and the second connection portion has a side facing the first thin film portion through the first dielectric film, It is desirable that the second dielectric film is made of a material having lower electrical conductivity than the side facing the second dielectric film.
  • the second connection part is preferably made of a material mainly containing zinc
  • the first thin film part is preferably made of a material mainly containing aluminum.
  • the first dielectric film preferably includes a curable resin as a main component
  • the second dielectric film preferably includes a curable resin as a main component
  • the film capacitor of the present invention includes a first dielectric film having a first surface and a second surface opposite to the first surface, the first surface, and the first surface.
  • a second dielectric film having an opposite second surface and laminated on the first dielectric film; a first internal electrode provided on the first surface of the first dielectric film; A second internal part located between the first dielectric film and the second dielectric film, provided on the first surface of the second dielectric film or the second surface of the first dielectric film.
  • An electrode is provided on one end surface of a laminate in which the first dielectric film and the second dielectric film are laminated, and is connected to the second internal electrode and spaced apart from the first internal electrode.
  • the second internal A film capacitor including a second external electrode connected to the electrode and spaced apart from the first internal electrode, wherein the first internal electrode includes a first main electrode portion and a first main electrode portion A first thin film portion extending toward the second external electrode and thinner than the first main electrode portion, and the second internal electrode includes a first connection portion connected to the first external electrode; The second main electrode portion connected to the first connection portion and thinner than the first connection portion, the second connection portion connected to the second external electrode, and the second main electrode portion are spaced apart from the second main electrode portion.
  • a third main electrode portion that is connected to the second connection portion and is thinner than the second connection portion, and the first main electrode portion is connected to the second main electrode portion via the first dielectric film.
  • connection portion is opposed to the third main electrode portion, and the second connection portion is connected to the third external electrode from the second external electrode.
  • Has a reduced area thickness is reduced toward the electrode portion, the first thin section is opposed to the reduced region of the second connecting portion through the first dielectric film.
  • the first internal electrode further includes a second thin film portion extending from the first main electrode portion toward the first external electrode and being thinner than the first main electrode portion.
  • 1 connection part has a reduction area
  • the present invention it is possible to provide a film capacitor that has high self-healing properties and that suppresses the occurrence of dielectric breakdown.
  • FIG. 1 is a cross-sectional view schematically showing an example of a film capacitor according to the first embodiment of the present invention.
  • FIG. 2 is an enlarged view of a portion of the film capacitor shown in FIG. 1 excluding the first external electrode and the second external electrode.
  • FIG. 3 is a plan view schematically showing an example of a first internal electrode and a second internal electrode constituting the film capacitor shown in FIG.
  • FIG. 4 is a plan view schematically showing another example of the first internal electrode and the second internal electrode constituting the film capacitor shown in FIG.
  • FIG. 5A and FIG. 5B are cross-sectional views schematically showing an example of a method for forming the first internal electrode.
  • FIG. 6E are cross-sectional views schematically showing another example of the first connection portion.
  • FIG. 7A, FIG. 7B, FIG. 7C, FIG. 7D, and FIG. 7E are cross-sectional views schematically showing another example of the first thin film portion.
  • FIG. 8 is a cross-sectional view schematically showing an example of a film capacitor according to the second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing an example of a film capacitor according to the third embodiment of the present invention.
  • FIG. 10 is a cross-sectional view schematically showing an example of a film capacitor according to the fourth embodiment of the present invention.
  • the film capacitor of the present invention will be described.
  • the present invention is not limited to the following configurations, and can be applied with appropriate modifications without departing from the scope of the present invention.
  • a combination of two or more of the individual desirable configurations of the present invention described below is also the present invention.
  • the film capacitor of the present invention is characterized in that the thin film portion of the first internal electrode is opposed to the reduced region of the connection portion of the second internal electrode through the first dielectric film. That is, at the place where the end portion of the first internal electrode and the connection portion of the second internal electrode overlap each other, the first internal electrode is thinned and the connection portion of the second internal electrode is also thinned. Therefore, even if many discharges occur at the location, self-healing can be achieved and the occurrence of dielectric breakdown can be suppressed.
  • the film capacitor of the present invention may be a wound film capacitor that is wound in a state where a dielectric film having an internal electrode provided on the surface thereof is laminated, or the internal electrode is provided on the surface.
  • a laminated film capacitor in which dielectric films are laminated may be used.
  • the wound body of the dielectric film may be pressed into a flat shape such as an ellipse or an ellipse in a cross-sectional shape to have a more compact shape.
  • the winding axis is disposed on the central axis of the dielectric film in a wound state, and serves as a winding axis when winding the dielectric film.
  • the first external electrode is connected to the first internal electrode and spaced apart from the second internal electrode
  • the second external electrode is connected to the second internal electrode and the second 1 Separated from the internal electrode
  • the second internal electrode is provided on the first surface of the second dielectric film.
  • FIG. 1 is a cross-sectional view schematically showing an example of a film capacitor according to the first embodiment of the present invention.
  • FIG. 2 is an enlarged view of a portion of the film capacitor shown in FIG. 1 excluding the first external electrode and the second external electrode.
  • FIG. 3 is a plan view schematically showing an example of a first internal electrode and a second internal electrode constituting the film capacitor shown in FIG.
  • first dielectric film 11 and the second dielectric film 12 are shown separated from each other. However, in an actual film capacitor, the first dielectric film and the second dielectric film have no gap. It is piled up.
  • the film capacitor 1 includes a first dielectric film 11, a second dielectric film 12 laminated on the first dielectric film 11, and a first dielectric A first internal electrode 21 and a second internal electrode 22 facing each other through the film 11 are provided.
  • the film capacitor 1 is further connected to the first internal electrode 21 and separated from the second internal electrode 22.
  • the film capacitor 1 is connected to the second internal electrode 22 and separated from the first internal electrode 21.
  • the second external electrode 32 is provided.
  • FIG. 4 is a plan view schematically showing another example of the first internal electrode and the second internal electrode constituting the film capacitor shown in FIG.
  • the first internal electrode 21 may be formed with a fuse portion 21a in which a part of the electrode is thinned and a divided electrode 21c divided by an insulating slit 21b.
  • the second internal electrode 22 may be formed with a fuse portion 22a in which a part of the electrode is thinned and a divided electrode 22c divided by an insulating slit 22b.
  • the first dielectric film 11 has a first surface 11a and a second surface 11b opposite to the first surface 11a.
  • the second dielectric film 12 has a first surface 12a and a second surface 12b opposite to the first surface 12a.
  • the first dielectric film 11 and the second dielectric film 12 are laminated so that the second surface 11b of the first dielectric film 11 and the first surface 12a of the second dielectric film 12 face each other.
  • the first internal electrode 21 is provided on the first surface 11 a of the first dielectric film 11.
  • the first internal electrode 21 is provided on the first surface 11a of the first dielectric film 11 so as to reach one side edge but not to the other side edge. Therefore, an insulation margin 71 where the first internal electrode 21 is not provided is present on the other side edge of the first surface 11 a of the first dielectric film 11.
  • the second internal electrode 22 is provided on the first surface 12 a of the second dielectric film 12.
  • the second internal electrode 22 is provided on the first surface 12a of the second dielectric film 12 so as not to reach one side edge but to the other side edge. Therefore, an insulation margin 72 where the second internal electrode 22 is not provided exists on one side edge of the first surface 12a of the second dielectric film 12.
  • the end of the first internal electrode 21 reaching the side edge of the first dielectric film 11 and the side edge of the second dielectric film 12 in the second internal electrode 22 are reached.
  • the first dielectric film 11 and the second dielectric film 12 are stacked so as to be shifted from each other in the width direction (left-right direction in FIG. 1) so that the end portions on the side where they are present are exposed from the laminated film. .
  • the film capacitor 1 shown in FIG. 1 is a wound film capacitor
  • the first dielectric film 11 and the second dielectric film 12 are wound in a laminated state, whereby the first internal electrode 21 is wound. And the state which the 2nd internal electrode 22 exposed in the edge part is hold
  • the first external electrode 31 and the second external electrode 32 are formed by spraying, for example, zinc or the like on each end face of the laminate obtained as described above.
  • the first external electrode 31 is in contact with the exposed end of the first internal electrode 21, thereby being electrically connected to the first internal electrode 21.
  • the second external electrode 32 is in contact with the exposed end of the second internal electrode 22, thereby being electrically connected to the second internal electrode 22.
  • the first internal electrode 21 includes a first connection part 41 connected to the first external electrode 31, a first main electrode part 51 connected to the first connection part 41, and a second external part from the first main electrode part 51.
  • a first thin film portion 61 extending toward the electrode 32.
  • the first connection portion 41 includes a reduction region 41a in which the thickness decreases from the first external electrode 31 toward the first main electrode portion 51, and a flat region 41b in which the thickness is constant.
  • the reduction region 41a of the first connection portion 41 has a tapered shape.
  • the first main electrode part 51 is thinner than the first connection part 41.
  • the first thin film portion 61 is thinner than the first main electrode portion 51 and has a tapered shape in which the thickness decreases from the first main electrode portion 51 toward the second external electrode 32.
  • the second internal electrode 22 includes a second connection part 42 connected to the second external electrode 32, a second main electrode part 52 connected to the second connection part 42, and a first external part from the second main electrode part 52. And a second thin film portion 62 extending toward the electrode 31.
  • the second connection portion 42 includes a reduction region 42 a where the thickness decreases from the second external electrode 32 toward the second main electrode portion 52, and a flat region 42 b where the thickness is constant.
  • the reduction region 42a of the second connection portion 42 has a tapered shape.
  • the second main electrode part 52 is thinner than the second connection part 42.
  • the second thin film portion 62 is thinner than the second main electrode portion 52, and has a tapered shape in which the thickness decreases from the second main electrode portion 52 toward the first external electrode 31.
  • the first main electrode portion 51 faces the second main electrode portion 52 through the first dielectric film 11 in the thickness direction of the first dielectric film 11.
  • the first thin film portion 61 faces the reduction region 42 a of the second connection portion 42 through the first dielectric film 11 in the thickness direction of the first dielectric film 11.
  • the second thin film portion 62 faces the reduction region 41 a of the first connection portion 41 through the first dielectric film 11 in the thickness direction of the first dielectric film 11.
  • the first internal electrode 21 is desirably formed by the following method.
  • the second internal electrode 22 is also formed by a similar method.
  • FIG. 5A and FIG. 5B are cross-sectional views schematically showing an example of a method for forming the first internal electrode.
  • a metal such as aluminum is vapor-deposited on the first surface 11a of the first dielectric film 11 while forming an insulating margin 71 on the other side edge by the non-deposition portion.
  • the first metal deposition film 21A is formed.
  • the portion to be the first thin film portion can be formed by reducing the amount of metal vapor from the thick side to the thin side.
  • the first thin film portion has a tapered shape
  • a mask shape on the metal evaporation source side a method of adjusting the distance between the mask and the film, and the like can be mentioned.
  • a second metal vapor deposition film is formed by vapor-depositing a metal such as zinc on the first metal vapor deposition film 21A on the one side edge side of the first surface 11a of the first dielectric film 11. 21B is formed.
  • a portion that becomes a reduction region can be formed by reducing the amount of metal vapor from the thick side to the thin side.
  • the second metal vapor deposition film 21B is desirably thicker than the first metal vapor deposition film 21A. As a result, a first connection portion is formed on one side edge side of the first surface 11 a of the first dielectric film 11.
  • the first connection portion is made of a material mainly containing zinc, and the first main electrode portion and the first thin film portion are materials mainly containing aluminum. It is desirable to be composed of Similarly, when the second internal electrode is formed by the above method, the second connection portion is made of a material mainly containing zinc, and the second main electrode portion and the second thin film portion are mainly made of aluminum. It is desirable to be composed of the material.
  • the “main component” means a component having the largest existence ratio (% by weight), and preferably means a component having an existence ratio exceeding 50% by weight.
  • the reduction region 41 a of the first connection portion 41 has a linear taper shape without a step, but from the first external electrode 31 toward the first main electrode portion 51.
  • the shape of the reduced region of the first connection portion is not particularly limited.
  • the reduction region 42 a of the second connection portion 42 has a linear taper shape without a step, but from the second external electrode 32 to the second main electrode portion 52.
  • the shape of the reduced region of the second connection portion is not particularly limited.
  • the shape of the reduced area of the second connection portion may be the same as or different from the shape of the reduced area of the first connection portion. Further, the shape of the second connection portion may be the same as or different from the shape of the first connection portion.
  • FIG. 6A, FIG. 6B, FIG. 6C, FIG. 6D, and FIG. 6E are cross-sectional views schematically showing another example of the first connection portion.
  • Each region 341 a has a tapered shape in which the thickness decreases from the first external electrode (not shown) toward the first main electrode portion 51.
  • the reduction region 141a of the first connection portion 141 shown in FIG. 6A has a linear tapered shape with a step
  • the reduction region 341a of the first connection portion 341 shown in FIG. 6C has an upwardly convex curved taper shape. Further, the reduction region 441a of the first connection portion 441 shown in FIG. 6D has a flat shape, and the reduction region 541a of the first connection portion 541 shown in FIG. 6E has a step shape.
  • the first thin film portion 61 has a linear taper shape without a step, but the shape of the first thin film portion is particularly limited as long as it is thinner than the first main electrode portion 51. It is not limited.
  • the second thin film portion 62 has a linear taper shape without a step, but as long as it is thinner than the second main electrode portion 52, The shape is not particularly limited.
  • the shape of the second thin film portion may be the same as or different from the shape of the first thin film portion.
  • FIG. 7A, FIG. 7B, FIG. 7C, FIG. 7D, and FIG. 7E are cross-sectional views schematically showing another example of the first thin film portion.
  • the taper shape has a thickness that decreases from 51 toward a second external electrode (not shown).
  • the first thin film portion 161 shown in FIG. 7A has a linear taper shape with a step
  • the first thin film portion 261 shown in FIG. 7B has a curved taper shape protruding downward.
  • the first thin film portion 361 shown in FIG. 7C has an upwardly convex curved taper shape.
  • 7D has a flat shape
  • the first thin film portion 561 shown in FIG. 7E has a step shape.
  • the first internal electrode includes the first thin film portion, and the first thin film portion is connected to the second dielectric via the first dielectric film. It is characterized by facing the reduction area of the part.
  • the second internal electrode may not include the second thin film portion, but the second internal electrode includes the second thin film portion, and the second thin film portion. It is desirable to face the reduction region of the first connection portion through the first dielectric film. In addition to providing the first thin film portion on the first internal electrode, the dielectric breakdown can be further suppressed by providing the second thin film portion on the second internal electrode.
  • the second connection portion is made of a material having lower electrical conductivity than the first thin film portion. Specifically, it is desirable that the second connection portion is made of a material containing zinc as a main component, and the first thin film portion is made of a material containing aluminum as a main component.
  • the second connection portion is the first thin film portion via the first dielectric film.
  • the side opposite to the second dielectric film corresponds to the first metal vapor deposition film 21A in FIG. 5B.
  • the material is made of a material having lower electrical conductivity than the portion).
  • the side of the second connecting portion that faces the first thin film portion via the first dielectric film is made of a material mainly composed of zinc and faces the second dielectric film. Is preferably made of a material mainly composed of aluminum.
  • the first connection portion when the second internal electrode includes the second thin film portion, the first connection portion may be made of a material having lower electrical conductivity than the second thin film portion. desirable. Specifically, it is desirable that the first connection portion is made of a material containing zinc as a main component, and the second thin film portion is made of a material containing aluminum as a main component.
  • the first connection portion is the second thin film portion via the first dielectric film.
  • the side opposite to the side opposite to the side faces the second thin film part via the first dielectric film (FIG. 5B).
  • the side opposite to the side facing the second thin film part through the first dielectric film in the first connection part is made of a material mainly composed of zinc, and the first dielectric film is The side facing the second thin film portion is preferably made of a material mainly composed of aluminum.
  • the maximum value of the sum of the thickness of the reduced area of the second connection portion and the thickness of the first thin film portion at the position facing each other through the first dielectric film is: (in FIG. 2, the length represented by T 42) the maximum thickness of the second connecting portion (in FIG. 2, the length represented by T 52) the maximum thickness of the second main electrode to be smaller than the difference between desirable.
  • the second internal electrode when the second internal electrode includes the second thin film portion, the thickness of the reduced region of the first connection portion and the second thickness at the position facing each other with the first dielectric film interposed therebetween.
  • total maximum value of the thickness of 2 thin film portion in FIG. 2, the length represented by T 41
  • the maximum thickness of the first connecting part in a maximum thickness Fig. 2 of the first main electrode portions, at T 51 Desirably smaller than the difference between the indicated length).
  • the thickness of the internal electrode can be specified by observing a cross section cut in the thickness direction of the internal electrode using an electron microscope such as a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • the thickness of the second connection portion facing the end portion of the first thin film portion on the second external electrode side is 1 of the maximum thickness T 52 of the second main electrode portion. It is desirable to be more than twice and not more than twice.
  • the thickness of the first connection portion facing the end portion of the second thin film portion on the first external electrode side is Desirably, it exceeds 1 times the maximum thickness T 51 of the first main electrode portion and is 2 times or less.
  • the total thickness of the thin film portion and the opposing connection portion exceeds 1 times the maximum thickness of the main electrode portion, current resistance is not impaired. Further, if the total thickness is not more than twice the maximum thickness of the main electrode part, even if discharge frequently occurs at the place where the end part of one internal electrode and the connection part of the other internal electrode overlap, insulation Destruction can be suppressed.
  • the reduced region of the second connection portion is longer than the first thin film portion in the direction from the first external electrode to the second external electrode.
  • the first thin film portion be within the reduced region of the second connection portion. That is, the first thin film portion faces only the reduced region of the second connection portion through the first dielectric film, does not face the flat region of the second connection portion, and does not face the second main electrode portion. It is desirable. 2 and 3, the length of the reduced region of the second connection portion is indicated by L 42a , and the length of the first thin film portion is indicated by L 61 .
  • the reduction region of the first connection portion is the first It is desirable that the length is longer than two thin film portions.
  • the second thin film portion fits in the reduced region of the first connection portion when viewed from the direction in which the first dielectric film and the second dielectric film are laminated. That is, the second thin film portion faces only the reduced region of the first connection portion through the first dielectric film, does not face the flat region of the first connection portion, and does not face the first main electrode portion. It is desirable. 2 and 3, the length of the reduced region of the first connection portion is indicated by L 41a , and the length of the second thin film portion is indicated by L 62 .
  • the length of the internal electrode can be specified by observing a cross section cut in the thickness direction of the internal electrode using an electron microscope such as a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • the length L 42a of the second connection portion reduction region in the direction from the first external electrode to the second external electrode is equal to the maximum thickness T 42 of the second connection portion. it is preferably larger than the difference between the maximum thickness T 52 of the second main electrode portions.
  • the length L 42a of the reduced area of the second connection portion may be 10,000 times or more the difference between the maximum thickness T 42 of the second connection portion and the maximum thickness T 52 of the second main electrode portion. desirable.
  • the length L of the reduced region of the first connection portion in the direction from the first external electrode to the second external electrode. 41a is preferably greater than the difference between the maximum thickness T 51 of the maximum thickness T 41 of the first connecting portion first main electrode.
  • the length L 41a of the reduced region of the first connection portion is 10,000 times or more the difference between the maximum thickness T 41 of the first connection portion and the maximum thickness T 51 of the first main electrode portion. desirable.
  • the length L 61 of the first thin film portion in the direction from the first external electrode toward the second external electrode is larger than the maximum thickness T 51 of the first main electrode portion. It is desirable.
  • the length L 61 of the first thin film portion is 10,000 times or more the maximum thickness T 51 of the first main electrode portion.
  • the length L 62 of the second thin film portion in the direction from the first external electrode toward the second external electrode is: it is preferably larger than the maximum thickness T 52 of the second main electrode portions.
  • the length L 62 of the second thin film portion is desirably 10,000 times or more the maximum thickness T 52 of the second main electrode portion.
  • the first dielectric film may include a curable resin such as a thermosetting resin as a main component, or may include a thermoplastic resin as a main component.
  • the second dielectric film may contain a curable resin as a main component, or may contain a thermoplastic resin as a main component.
  • the second dielectric film may have a different configuration from the first dielectric film, but desirably has the same configuration as the first dielectric film.
  • the first dielectric film desirably includes a curable resin as a main component
  • the second dielectric film desirably includes a curable resin as a main component
  • the first dielectric film desirably includes a thermosetting resin as a main component
  • the second dielectric film desirably includes a thermosetting resin as a main component.
  • the film capacitor according to the first embodiment of the present invention is easily self-assembled even when a curable resin such as a thermosetting resin that is thermally stable as compared with PP is used as the material of the dielectric film. Since recovery and dielectric breakdown are suppressed, a highly reliable and heat-resistant capacitor can be obtained.
  • dielectric film when the first dielectric film and the second dielectric film are not particularly distinguished, they are simply referred to as “dielectric film”.
  • the “main component” means a component having the largest abundance ratio (% by weight), and desirably a component having an abundance ratio exceeding 50% by weight. Therefore, the dielectric film may include, as components other than the main component, for example, an additive such as a silicone resin and an uncured portion of a starting material such as a first organic material and a second organic material described later.
  • the curable resin may be a thermosetting resin or a photocurable resin.
  • the curable resin may or may not have at least one of a urethane bond and a urea bond.
  • the presence of urethane bonds and / or urea bonds can be confirmed using a Fourier transform infrared spectrophotometer (FT-IR).
  • FT-IR Fourier transform infrared spectrophotometer
  • thermosetting resin means a resin that can be cured by heat, and does not limit the curing method. Therefore, as long as the resin can be cured by heat, a resin cured by a method other than heat (for example, light, electron beam, etc.) is also included in the thermosetting resin.
  • a resin cured by a method other than heat for example, light, electron beam, etc.
  • the reaction may start due to the reactivity of the material itself, and those that proceed with curing without applying heat or light from the outside are also regarded as thermosetting resins. The same applies to the photocurable resin, and the curing method is not limited.
  • the dielectric film may contain a vapor deposition polymer film as a main component.
  • the vapor deposition polymer film may or may not have at least one of a urethane bond and a urea bond.
  • the vapor deposition polymer film is basically included in the curable resin.
  • the dielectric film is preferably made of a cured product of the first organic material and the second organic material.
  • cured material obtained by the reaction of the hydroxyl group (OH group) which a 1st organic material has, and the isocyanate group (NCO group) which a 2nd organic material has is mentioned.
  • the dielectric film may include at least one of an isocyanate group (NCO group) and a hydroxyl group (OH group).
  • the dielectric film may contain either an isocyanate group or a hydroxyl group, or may contain both an isocyanate group and a hydroxyl group.
  • FT-IR Fourier transform infrared spectrophotometer
  • the first organic material is preferably a polyol having a plurality of hydroxyl groups (OH groups) in the molecule.
  • the polyol include polyether polyol, polyester polyol, polyvinyl acetoacetal, and the like. Two or more organic materials may be used in combination as the first organic material. Among the first organic materials, a phenoxy resin belonging to the polyether polyol is desirable.
  • the second organic material is preferably an isocyanate compound, an epoxy resin or a melamine resin having a plurality of functional groups in the molecule. Two or more organic materials may be used in combination as the second organic material.
  • isocyanate compound examples include aromatic polyisocyanates such as diphenylmethane diisocyanate (MDI) and tolylene diisocyanate (TDI), and aliphatic polyisocyanates such as hexamethylene diisocyanate (HDI).
  • aromatic polyisocyanates such as diphenylmethane diisocyanate (MDI) and tolylene diisocyanate (TDI)
  • aliphatic polyisocyanates such as hexamethylene diisocyanate (HDI).
  • a modified product of these polyisocyanates for example, a modified product having carbodiimide or urethane may be used.
  • aromatic polyisocyanate is desirable, and MDI is more desirable.
  • the epoxy resin is not particularly limited as long as it has an epoxy ring, and examples thereof include bisphenol A type epoxy resin, biphenyl skeleton epoxy resin, cyclopentadiene skeleton epoxy resin, and naphthalene skeleton epoxy resin.
  • the melamine resin is not particularly limited as long as it is an organic nitrogen compound having a triazine ring at the center of the structure and three amino groups around it, and examples thereof include alkylated melamine resins.
  • a modified melamine may be used.
  • the dielectric film is desirably obtained by forming a resin solution containing the first organic material and the second organic material into a film, and then curing it by heat treatment.
  • thermoplastic resin examples include highly crystalline polypropylene, polyethersulfone, polyetherimide, and polyarylate.
  • the dielectric film can also contain additives for adding other functions. For example, smoothness can be imparted by adding a leveling agent.
  • an additive it is more desirable that it is a material which has a functional group which reacts with a hydroxyl group and / or an isocyanate group, and forms a part of crosslinked structure of hardened
  • the thickness of the dielectric film is not particularly limited, but if the film is too thin, it tends to be brittle. Therefore, the thickness of the dielectric film is preferably more than 0.5 ⁇ m, and more preferably 2 ⁇ m or more. On the other hand, if the film is too thick, defects such as cracks are likely to occur during film formation. Therefore, the thickness of the dielectric film is desirably less than 10 ⁇ m, and more desirably 6 ⁇ m or less. The thickness of the dielectric film can be measured using an optical film thickness meter.
  • the first external electrode is connected to the first internal electrode and is separated from the second internal electrode
  • the second external electrode is connected to the second internal electrode. Connected to the electrode and spaced apart from the first internal electrode.
  • the second internal electrode is provided on the second surface of the first dielectric film.
  • FIG. 8 is a cross-sectional view schematically showing an example of a film capacitor according to the second embodiment of the present invention.
  • the film capacitor 2 includes a first dielectric film 11, a second dielectric film 12 laminated on the first dielectric film 11, and a first dielectric.
  • a first internal electrode 21 and a second internal electrode 22 facing each other through the film 11 are provided.
  • the film capacitor 2 is further connected to the first internal electrode 21 and separated from the second internal electrode 22, and connected to the second internal electrode 22 and separated from the first internal electrode 21.
  • the second external electrode 32 is provided.
  • the first internal electrode 21 is provided on the first surface 11 a of the first dielectric film 11, similarly to the film capacitor 1 shown in FIG. 1.
  • the second internal electrode 22 is provided on the second surface 11 b of the first dielectric film 11.
  • the second dielectric film 12 is not provided with an internal electrode.
  • the first internal electrode 21 includes a first connection part 41 connected to the first external electrode 31, a first main electrode part 51 connected to the first connection part 41, and A first thin film portion 61 extending from the first main electrode portion 51 toward the second external electrode 32.
  • the first connection portion 41 includes a reduction region 41a in which the thickness decreases from the first external electrode 31 toward the first main electrode portion 51, and a flat region 41b in which the thickness is constant.
  • the second internal electrode 22 includes a second connection part 42 connected to the second external electrode 32, a second main electrode part 52 connected to the second connection part 42, and a second main electrode part 52 to a second main electrode part 52. 1 and a second thin film portion 62 extending toward the external electrode 31.
  • the second connection portion 42 includes a reduction region 42 a where the thickness decreases from the second external electrode 32 toward the second main electrode portion 52, and a flat region 42 b where the thickness is constant.
  • the first internal electrode and the second internal electrode are preferably formed by the method shown in FIGS. 5 (a) and 5 (b).
  • the second connection portion is a material having a lower electrical conductivity on the side opposite to the side facing the first thin film portion via the first dielectric film than on the side facing the first thin film portion via the first dielectric film. It is desirable to be composed of In addition, when the second internal electrode includes the second thin film portion, the first connection portion is opposite to the side facing the second thin film portion via the first dielectric film, and the side opposite to the side facing the second thin film portion via the first dielectric film. 2 It is desirable to be made of a material having lower electrical conductivity than the side facing the thin film portion.
  • the first external electrode and the second external electrode are both connected to the second internal electrode and separated from the first internal electrode. ing.
  • the second internal electrode is provided on the first surface of the second dielectric film.
  • FIG. 9 is a cross-sectional view schematically showing an example of a film capacitor according to the third embodiment of the present invention.
  • the film capacitor 3 includes a first dielectric film 11, a second dielectric film 12 laminated on the first dielectric film 11, and a first dielectric A first internal electrode 121 and a second internal electrode 122 facing each other with the film 11 interposed therebetween are provided.
  • the film capacitor 3 is further connected to the second internal electrode 122 and separated from the first internal electrode 121, and is connected to the second internal electrode 122 and separated from the first internal electrode 121.
  • the second external electrode 32 is provided.
  • the first internal electrode 121 is provided on the first surface 11 a of the first dielectric film 11.
  • the first internal electrode 121 is provided on the first surface 11 a of the first dielectric film 11 so as not to reach one side edge and the other side edge. Therefore, an insulation margin 71 where the first internal electrode 121 is not provided exists on one side edge and the other side edge of the first surface 11 a of the first dielectric film 11.
  • the second internal electrode 122 is provided on the first surface 12 a of the second dielectric film 12.
  • the second internal electrode 122 is provided on the first surface 12 a of the second dielectric film 12 so as to be separated into two. Therefore, an insulation margin 72 where the second internal electrode 122 is not provided exists in the central portion of the first surface 12 a of the second dielectric film 12.
  • the first internal electrode 121 includes a first main electrode portion 51, a first thin film portion 61 extending from the first main electrode portion 51 toward the second external electrode 32, and the first main electrode portion 51 to the first external electrode 31. And a second thin film portion 62 extending toward.
  • the first thin film portion 61 is thinner than the first main electrode portion 51, and the second thin film portion 62 is thinner than the first main electrode portion 51.
  • the second internal electrode 122 includes a first connection part 41 connected to the first external electrode 31, a second main electrode part 52 connected to the first connection part 41, and a second connection connected to the second external electrode 32.
  • 2 connection part 42 and the 3rd main electrode part 53 which was spaced apart from the 2nd main electrode part 52 and connected with the 2nd connection part 42 is provided.
  • the second main electrode portion 52 is thinner than the first connection portion 41, and the third main electrode portion 53 is thinner than the second connection portion 42.
  • the first connection portion 41 includes a reduction region 41a in which the thickness decreases from the first external electrode 31 toward the first main electrode portion 51, and a flat region 41b in which the thickness is constant.
  • the second connection portion 42 includes a reduction region 42 a where the thickness decreases from the second external electrode 32 toward the second main electrode portion 52, and a flat region 42 b where the thickness is constant.
  • the first main electrode portion 51 is connected to the second main electrode portion 52 and the third main electrode portion 53 via the first dielectric film 11 in the thickness direction of the first dielectric film 11. Opposite.
  • the first thin film portion 61 faces the reduction region 42a of the second connection portion 42 via the first dielectric film 11 in the thickness direction of the first dielectric film 11, and the second thin film portion 62 In the thickness direction of the first dielectric film 11, the first dielectric film 11 is opposed to the reduced region 41 a of the first connection portion 41.
  • the first internal electrode includes the first thin film portion, and the first thin film portion faces the reduction region of the second connection portion via the first dielectric film. It is characterized by.
  • the first internal electrode may not include the second thin film portion, but the first internal electrode includes the second thin film portion and the second thin film portion. It is desirable to face the reduction region of the first connection portion through the first dielectric film.
  • the first internal electrode is preferably formed by the method shown in FIG. 5A
  • the second internal electrode is preferably formed by the method shown in FIGS. 5A and 5B. It is desirable that the second connection portion is made of a material having a lower electrical conductivity on the side facing the first thin film portion via the first dielectric film than on the side facing the second dielectric film. Further, when the first internal electrode includes the second thin film portion, the first connection portion is more electrically on the side facing the second thin film portion via the first dielectric film than on the side facing the second dielectric film. It is desirable to be made of a material with low conductivity.
  • the first external electrode and the second external electrode are both connected to the second internal electrode and separated from the first internal electrode. ing.
  • the second internal electrode is provided on the second surface of the first dielectric film.
  • FIG. 10 is a cross-sectional view schematically showing an example of a film capacitor according to the fourth embodiment of the present invention.
  • the film capacitor 4 includes a first dielectric film 11, a second dielectric film 12 laminated on the first dielectric film 11, and a first dielectric.
  • a first internal electrode 121 and a second internal electrode 122 facing each other with the film 11 interposed therebetween are provided.
  • the film capacitor 4 is further connected to the second internal electrode 122 and separated from the first internal electrode 121, and the film capacitor 4 is connected to the second internal electrode 122 and separated from the first internal electrode 121.
  • the second external electrode 32 is provided.
  • the first internal electrode 121 is provided on the first surface 11 a of the first dielectric film 11, similarly to the film capacitor 3 shown in FIG. 9.
  • the second internal electrode 122 is provided on the second surface 11 b of the first dielectric film 11.
  • the second dielectric film 12 is not provided with an internal electrode.
  • the first internal electrode 121 includes a first main electrode portion 51, a first thin film portion 61 extending from the first main electrode portion 51 toward the second external electrode 32, and a first And a second thin film portion 62 extending from the main electrode portion 51 toward the first external electrode 31.
  • the second internal electrode 122 is connected to the first connection part 41 connected to the first external electrode 31, the second main electrode part 52 connected to the first connection part 41, and the second external electrode 32.
  • a third main electrode portion 53 that is spaced apart from the second main electrode portion 52 and connected to the second connection portion 42.
  • the first connection portion 41 includes a reduction region 41a in which the thickness decreases from the first external electrode 31 toward the first main electrode portion 51, and a flat region 41b in which the thickness is constant.
  • the second connection portion 42 includes a reduction region 42 a where the thickness decreases from the second external electrode 32 toward the second main electrode portion 52, and a flat region 42 b where the thickness is constant.
  • the first internal electrode is preferably formed by the method shown in FIG. 5A
  • the second internal electrode is preferably formed by the method shown in FIGS. 5A and 5B.
  • the second connection portion is a material having a lower electrical conductivity on the side opposite to the side facing the first thin film portion via the first dielectric film than on the side facing the first thin film portion via the first dielectric film. It is desirable to be composed of
  • the first connection portion is opposite to the side facing the second thin film portion via the first dielectric film, and the side opposite to the side facing the second thin film portion via the first dielectric film. 2
  • Example 1 By using a PP film having a thickness of 2.5 ⁇ m and depositing aluminum while forming an insulation margin by a non-deposition portion on one end side in the film width direction, by depositing zinc on the aluminum deposition film on the other end side, A connection portion (heavy edge) having a flat region thickness of 50 nm was formed.
  • the thickness of the main electrode portion was 15 nm, and an inclined portion having a width of 0.5 mm was formed as a thin film portion on the edge side of the main electrode portion. Further, when depositing zinc, an inclined portion having a width of 2 mm was formed as a reduction region in the connection portion.
  • the inclined portion was formed by guiding the metal vapor so that the amount of metal vapor decreased from the thick side to the thin side in the vapor deposition step.
  • About the obtained metallized film by aligning the edge of the thin film portion on the insulating margin side so that the thickness of the inclined portion of the opposing connection portion is 30 nm thick, by winding two layers, A capacitor (20 ⁇ F) of Example 1 was produced (see FIGS. 1, 2 and 3).
  • Comparative Example 1 A metallized film produced by the same method as in Example 1 except that the inclined part is not formed, so that the edge part of the main electrode part on the insulating margin side is located at the position of the flat part of the opposing connecting part.
  • the capacitor (20 ⁇ F) of Comparative Example 1 was fabricated by stacking and winding two sheets while adjusting to the above.
  • the capacitor of Example 1 did not cause dielectric breakdown unlike the capacitor of Comparative Example 1.
  • dielectric breakdown occurred at the location where the end portion of one internal electrode and the connection portion of the other internal electrode overlapped.
  • thermosetting film with a thickness of 3 ⁇ m made of a prepolymer of polyvinyl acetoacetal (PVAA) and tolylene diisocyanate (TDI) aluminum is deposited while forming an insulation margin by a non-deposition part at one end in the film width direction. After that, zinc was deposited on the aluminum deposited film on the other end side to form a connection portion (heavy edge) having a flat region thickness of 40 nm.
  • the thickness of the main electrode portion was 10 nm, and an inclined portion having a width of 0.5 mm was formed as a thin film portion on the edge side of the main electrode portion.
  • Example 2 when depositing zinc, an inclined portion having a width of 3 mm was formed as a reduction region in the connection portion.
  • a capacitor (20 ⁇ F) of Example 2 was produced (see FIGS. 1, 2 and 3).
  • Comparative Example 2 A capacitor (20 ⁇ F) of Comparative Example 2 was produced by stacking and winding two metallized films produced by the same method as in Example 2 except that the inclined portion was not formed.
  • the capacitor of Example 2 did not cause dielectric breakdown unlike the capacitor of Comparative Example 2.
  • dielectric breakdown occurred at the location where the end portion of one internal electrode and the connection portion of the other internal electrode overlapped.
  • Second dielectric film 11 First dielectric film 11a First surface 11b of first dielectric film Second surface 12 of first dielectric film 12 Second dielectric film 12a First of second dielectric film Surface 12b Second surface 21, 121 of second dielectric film First internal electrode 21a Fuse portion 21b of first internal electrode Insulation slit 21c of first internal electrode Split electrode 21A of first internal electrode First metal vapor deposition film 21B Two-metal vapor-deposited film 22, 122 Second internal electrode 22a Second internal electrode fuse portion 22b Second internal electrode insulating slit 22c Second internal electrode divided electrode 31 First external electrode 32 Second external electrode 41, 141, 241 , 341, 441, 541 First connection portion 41a, 141a, 241a, 341a, 441a, 541a Reduction region 41b of first connection portion of first connection portion Flat region 42 Second connection portion 42a Second connection portion reduction region 42b Second connection portion flat region 51 First main electrode portion 52 Second main electrode portion 53 Third main electrode portions 61, 161, 261, 361, 461 , 561 First thin film portion 62

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

本発明のフィルムコンデンサは、第1誘電体フィルムと、第2誘電体フィルムと、第1内部電極と、第2内部電極と、第1外部電極と、第2外部電極と、を備えるフィルムコンデンサであって、上記第1内部電極は、上記第1外部電極に接続された第1接続部と、上記第1接続部に連接され、上記第1接続部よりも薄い第1主電極部と、上記第1主電極部から上記第2外部電極に向かって伸び、上記第1主電極部よりも薄い第1薄膜部と、を備え、上記第2内部電極は、上記第2外部電極に接続された第2接続部と、上記第2接続部に連接され、上記第2接続部よりも薄い第2主電極部と、を備え、上記第1主電極部は、上記第1誘電体フィルムを介して上記第2主電極部に対向し、上記第2接続部は、上記第2外部電極から上記第2主電極部に向かって厚みが低減する低減領域を有し、上記第1薄膜部は、上記第1誘電体フィルムを介して上記第2接続部の低減領域に対向する。

Description

フィルムコンデンサ
本発明は、フィルムコンデンサに関する。
コンデンサの一種として、内部電極となる金属蒸着膜が表面に設けられた誘電体フィルムが巻回又は積層されてなるフィルムコンデンサがある。
フィルムコンデンサにおいては、自己回復性(絶縁欠陥部の放電に伴い、金属蒸着膜が飛散して絶縁性を回復する性質)を高めるために、特許文献1及び特許文献2に記載されているように、容量を形成する部分の内部電極(以下、主電極部ともいう)を薄くする一方、両端面に設けられた外部電極と接続する部分の内部電極(以下、接続部ともいう)を厚くした、いわゆるヘビーエッジ構造が広く用いられている。
また、特許文献1及び特許文献2に記載されているように、内部電極内に金属の無いスリットを設けて複数の分割電極に区分し、スリット間に形成したヒューズにより分割電極を並列接続した構成も提案されている。これは、自己回復時の短絡電流により絶縁欠陥部周囲のヒューズを溶断して絶縁欠陥部を電気回路から切り離す、自己保安機能を形成するものである。
フィルムコンデンサを構成する誘電体フィルムの材料としては、従来、ポリプロピレン(PP)が用いられてきたが、特許文献3に記載されているように、耐熱性の高い熱硬化性樹脂も知られている。
特開2013-219094号公報 特開2004-134561号公報 国際公開第2013/069485号
特許文献1の図1には、一方の内部電極を構成する主電極部の端部(主電極部と絶縁マージンとの境界部)が、誘電体フィルムを介して、他方の内部電極を構成する接続部に対向した構造が記載されている。しかし、一方の内部電極を構成する主電極部の端部と他方の内部電極を構成する接続部とが重なった箇所では、電界集中により放電が多発し、絶縁破壊を起こすおそれがある。特に、特許文献3に記載されているような熱硬化樹脂を誘電体フィルムの材料として用いた場合、従来のPPフィルムを用いた場合に比べて自己回復性が劣るため、絶縁破壊が起こりやすい。
そこで、特許文献2の図3に記載されているように、接続部の幅を狭くして、一方の内部電極を構成する主電極部の端部が、誘電体フィルムを介して、他方の内部電極を構成する接続部に対向しない構造が考えられる。しかし、このような構造では、接続部の幅が狭いために外部電極との接続が不充分となり、耐電流性能が損なわれるおそれがある。
本発明は、上記の問題を解決するためになされたものであり、自己回復性が高く、かつ、絶縁破壊の発生が抑制されたフィルムコンデンサを提供することを目的とする。
本発明のフィルムコンデンサは、第1の態様において、第1面、及び、上記第1面と反対側の第2面を有する第1誘電体フィルムと、第1面、及び、上記第1面と反対側の第2面を有し、上記第1誘電体フィルムに積層された第2誘電体フィルムと、上記第1誘電体フィルムの上記第1面に設けられた第1内部電極と、上記第1誘電体フィルムと上記第2誘電体フィルムとの間に位置し、上記第2誘電体フィルムの上記第1面、又は、上記第1誘電体フィルムの上記第2面に設けられた第2内部電極と、上記第1誘電体フィルム及び上記第2誘電体フィルムが積層された積層体の一方の端面に設けられ、上記第1内部電極に接続されるとともに上記第2内部電極と離間された第1外部電極と、上記積層体の他方の端面に設けられ、上記第2内部電極に接続されるとともに上記第1内部電極と離間された第2外部電極と、を備えるフィルムコンデンサであって、上記第1内部電極は、上記第1外部電極に接続された第1接続部と、上記第1接続部に連接され、上記第1接続部よりも薄い第1主電極部と、上記第1主電極部から上記第2外部電極に向かって伸び、上記第1主電極部よりも薄い第1薄膜部と、を備え、上記第2内部電極は、上記第2外部電極に接続された第2接続部と、上記第2接続部に連接され、上記第2接続部よりも薄い第2主電極部と、を備え、上記第1主電極部は、上記第1誘電体フィルムを介して上記第2主電極部に対向し、上記第2接続部は、上記第2外部電極から上記第2主電極部に向かって厚みが低減する低減領域を有し、上記第1薄膜部は、上記第1誘電体フィルムを介して上記第2接続部の低減領域に対向する。
第1の態様において、上記第2内部電極は、さらに、上記第2主電極部から上記第1外部電極に向かって伸び、上記第2主電極部よりも薄い第2薄膜部を備え、上記第1接続部は、上記第1外部電極から上記第1主電極部に向かって厚みが低減する低減領域を有し、上記第2薄膜部は、上記第1誘電体フィルムを介して上記第1接続部の低減領域に対向することが望ましい。
上記第1誘電体フィルム及び上記第2誘電体フィルムが積層された方向に沿った断面において、上記第2接続部の低減領域は、テーパー形状を有することが望ましい。
上記第1誘電体フィルム及び上記第2誘電体フィルムが積層された方向に沿った断面において、上記第1薄膜部は、上記第1主電極部から上記第2外部電極に向かって厚みが低減するテーパー形状を有することが望ましい。
上記第1誘電体フィルムを介して対向する位置にある上記第2接続部の低減領域の厚みと上記第1薄膜部の厚みとの合計の最大値は、上記第2接続部の最大厚みと上記第2主電極部の最大厚みとの差よりも小さいことが望ましい。
上記第2外部電極側にある上記第1薄膜部の端部に対向する上記第2接続部の厚みは、上記第2主電極部の最大厚みの1倍を超え、2倍以下であることが望ましい。
上記第1外部電極から上記第2外部電極に向かう方向において、上記第2接続部の低減領域は、上記第1薄膜部よりも長いことが望ましい。
上記第1誘電体フィルム及び上記第2誘電体フィルムが積層された方向から見て、上記第1薄膜部は、上記第2接続部の低減領域に収まることが望ましい。
上記第2接続部は、上記第1薄膜部よりも電気伝導性が低い材料から構成されることが望ましい。
上記第2内部電極は、上記第2誘電体フィルムの上記第1面に設けられており、上記第2接続部は、上記第1誘電体フィルムを介して上記第1薄膜部に対向する側が、上記第2誘電体フィルムに対向する側よりも電気伝導性が低い材料から構成されることが望ましい。
上記第2接続部は、亜鉛を主成分とする材料から構成され、上記第1薄膜部は、アルミニウムを主成分とする材料から構成されることが望ましい。
上記第1誘電体フィルムは、硬化性樹脂を主成分として含み、上記第2誘電体フィルムは、硬化性樹脂を主成分として含むことが望ましい。
本発明のフィルムコンデンサは、第2の態様において、第1面、及び、上記第1面と反対側の第2面を有する第1誘電体フィルムと、第1面、及び、上記第1面と反対側の第2面を有し、上記第1誘電体フィルムに積層された第2誘電体フィルムと、上記第1誘電体フィルムの上記第1面に設けられた第1内部電極と、上記第1誘電体フィルムと上記第2誘電体フィルムとの間に位置し、上記第2誘電体フィルムの上記第1面、又は、上記第1誘電体フィルムの上記第2面に設けられた第2内部電極と、上記第1誘電体フィルム及び上記第2誘電体フィルムが積層された積層体の一方の端面に設けられ、上記第2内部電極に接続されるとともに上記第1内部電極と離間された第1外部電極と、上記積層体の他方の端面に設けられ、上記第2内部電極に接続されるとともに上記第1内部電極と離間された第2外部電極と、を備えるフィルムコンデンサであって、上記第1内部電極は、第1主電極部と、上記第1主電極部から上記第2外部電極に向かって伸び、上記第1主電極部よりも薄い第1薄膜部と、を備え、上記第2内部電極は、上記第1外部電極に接続された第1接続部と、上記第1接続部に連接され、上記第1接続部よりも薄い第2主電極部と、上記第2外部電極に接続された第2接続部と、上記第2主電極部から離間されるとともに上記第2接続部に連接され、上記第2接続部よりも薄い第3主電極部と、を備え、上記第1主電極部は、上記第1誘電体フィルムを介して上記第2主電極部及び上記第3主電極部に対向し、上記第2接続部は、上記第2外部電極から上記第3主電極部に向かって厚みが低減する低減領域を有し、上記第1薄膜部は、上記第1誘電体フィルムを介して上記第2接続部の低減領域に対向する。
第2の態様において、上記第1内部電極は、さらに、上記第1主電極部から上記第1外部電極に向かって伸び、上記第1主電極部よりも薄い第2薄膜部を備え、上記第1接続部は、上記第1外部電極から上記第2主電極部に向かって厚みが低減する低減領域を有し、上記第2薄膜部は、上記第1誘電体フィルムを介して上記第1接続部の低減領域に対向することが望ましい。
本発明によれば、自己回復性が高く、かつ、絶縁破壊の発生が抑制されたフィルムコンデンサを提供することができる。
図1は、本発明の第1実施形態に係るフィルムコンデンサの一例を模式的に示す断面図である。 図2は、図1に示すフィルムコンデンサのうち、第1外部電極及び第2外部電極を除く部分の拡大図である。 図3は、図1に示すフィルムコンデンサを構成する第1内部電極及び第2内部電極の一例を模式的に示す平面図である。 図4は、図1に示すフィルムコンデンサを構成する第1内部電極及び第2内部電極の別の一例を模式的に示す平面図である。 図5(a)及び図5(b)は、第1内部電極を形成する方法の一例を模式的に示す断面図である。 図6(a)、図6(b)、図6(c)、図6(d)及び図6(e)は、第1接続部の別の例を模式的に示す断面図である。 図7(a)、図7(b)、図7(c)、図7(d)及び図7(e)は、第1薄膜部の別の例を模式的に示す断面図である。 図8は、本発明の第2実施形態に係るフィルムコンデンサの一例を模式的に示す断面図である。 図9は、本発明の第3実施形態に係るフィルムコンデンサの一例を模式的に示す断面図である。 図10は、本発明の第4実施形態に係るフィルムコンデンサの一例を模式的に示す断面図である。
以下、本発明のフィルムコンデンサについて説明する。
しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
以下において記載する本発明の個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
本発明のフィルムコンデンサにおいては、第1内部電極の薄膜部が、第1誘電体フィルムを介して第2内部電極の接続部の低減領域に対向することを特徴としている。すなわち、第1内部電極の端部と第2内部電極の接続部とが重なった箇所において、第1内部電極を薄くするとともに、第2内部電極の接続部も薄くしている。そのため、当該箇所で放電が多発しても自己回復し、絶縁破壊の発生を抑制することができる。
以下に示す各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもない。第2実施形態以降では、第1実施形態と共通の事項についての記述は省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については、実施形態毎には逐次言及しない。
本発明のフィルムコンデンサは、内部電極が表面に設けられた誘電体フィルムが積層された状態で巻回されてなる巻回型のフィルムコンデンサであってもよいし、内部電極が表面に設けられた誘電体フィルムが積層されてなる積層型のフィルムコンデンサであってもよい。
本発明のフィルムコンデンサが巻回型のフィルムコンデンサである場合、誘電体フィルムの巻回体は、断面形状が楕円又は長円のような扁平形状にプレスされ、よりコンパクトな形状とされてもよい。また、本発明のフィルムコンデンサが巻回型のフィルムコンデンサである場合、円柱状の巻回軸を備えていてもよい。巻回軸は、巻回状態の誘電体フィルムの中心軸線上に配置されるものであり、誘電体フィルムを巻回する際の巻軸となるものである。
[第1実施形態]
本発明の第1実施形態に係るフィルムコンデンサでは、第1外部電極が第1内部電極に接続されるとともに第2内部電極と離間され、第2外部電極が第2内部電極に接続されるとともに第1内部電極と離間されている。第1実施形態では、第2内部電極が第2誘電体フィルムの第1面に設けられている。
図1は、本発明の第1実施形態に係るフィルムコンデンサの一例を模式的に示す断面図である。図2は、図1に示すフィルムコンデンサのうち、第1外部電極及び第2外部電極を除く部分の拡大図である。図3は、図1に示すフィルムコンデンサを構成する第1内部電極及び第2内部電極の一例を模式的に示す平面図である。
図1では、便宜上、第1誘電体フィルム11と第2誘電体フィルム12とを離間させて図示しているが、実際のフィルムコンデンサでは、第1誘電体フィルム及び第2誘電体フィルムは隙間なく重ねられている。
図1には全体的な構成が示されていないが、フィルムコンデンサ1は、第1誘電体フィルム11と、第1誘電体フィルム11に積層された第2誘電体フィルム12と、第1誘電体フィルム11を介して互いに対向する第1内部電極21及び第2内部電極22と、を備えている。フィルムコンデンサ1は、さらに、第1内部電極21に接続されるとともに第2内部電極22と離間された第1外部電極31と、第2内部電極22に接続されるとともに第1内部電極21と離間された第2外部電極32と、を備えている。
図4は、図1に示すフィルムコンデンサを構成する第1内部電極及び第2内部電極の別の一例を模式的に示す平面図である。
図4に示すように、第1内部電極21には、電極の一部を細くしたヒューズ部21aと、絶縁スリット21bにより区分された分割電極21cとが形成されていてもよい。同様に、第2内部電極22には、電極の一部を細くしたヒューズ部22aと、絶縁スリット22bにより区分された分割電極22cとが形成されていてもよい。
図1に示すフィルムコンデンサ1において、第1誘電体フィルム11は、第1面11a、及び、第1面11aと反対側の第2面11bを有する。同様に、第2誘電体フィルム12は、第1面12a、及び、第1面12aと反対側の第2面12bを有する。第1誘電体フィルム11の第2面11bと第2誘電体フィルム12の第1面12aとが対向するように、第1誘電体フィルム11と第2誘電体フィルム12とが積層されている。
第1内部電極21は、第1誘電体フィルム11の第1面11aに設けられている。第1内部電極21は、第1誘電体フィルム11の第1面11aにおいて、一方側縁にまで届くが、他方側縁にまで届かないように設けられている。そのため、第1誘電体フィルム11の第1面11aの他方側縁には、第1内部電極21が設けられていない絶縁マージン71が存在する。
第2内部電極22は、第2誘電体フィルム12の第1面12aに設けられている。第2内部電極22は、第2誘電体フィルム12の第1面12aにおいて、一方側縁にまで届かないが、他方側縁にまで届くように設けられている。そのため、第2誘電体フィルム12の第1面12aの一方側縁には、第2内部電極22が設けられていない絶縁マージン72が存在する。
図1では、第1内部電極21における第1誘電体フィルム11の側縁にまで届いている側の端部、及び、第2内部電極22における第2誘電体フィルム12の側縁にまで届いている側の端部がともに積層されたフィルムから露出するように、第1誘電体フィルム11と第2誘電体フィルム12とが互いに幅方向(図1では左右方向)にずらされて積層されている。図1に示すフィルムコンデンサ1が巻回型のフィルムコンデンサである場合、第1誘電体フィルム11及び第2誘電体フィルム12は、積層された状態で巻回されることによって、第1内部電極21及び第2内部電極22が端部で露出した状態を保持して、積み重なった状態とされる。
第1外部電極31及び第2外部電極32は、上述のようにして得られた積層体の各端面上に、例えば亜鉛などを溶射することによって形成される。第1外部電極31は、第1内部電極21の露出端部と接触し、それによって第1内部電極21と電気的に接続される。他方、第2外部電極32は、第2内部電極22の露出端部と接触し、それによって第2内部電極22と電気的に接続される。
第1内部電極21は、第1外部電極31に接続された第1接続部41と、第1接続部41に連接された第1主電極部51と、第1主電極部51から第2外部電極32に向かって伸びる第1薄膜部61と、を備えている。第1接続部41は、第1外部電極31から第1主電極部51に向かって厚みが低減する低減領域41aと、厚みが一定である平坦領域41bと、を有する。第1接続部41の低減領域41aはテーパー形状を有している。第1主電極部51は第1接続部41よりも薄い。第1薄膜部61は第1主電極部51よりも薄く、第1主電極部51から第2外部電極32に向かって厚みが低減するテーパー形状を有している。
第2内部電極22は、第2外部電極32に接続された第2接続部42と、第2接続部42に連接された第2主電極部52と、第2主電極部52から第1外部電極31に向かって伸びる第2薄膜部62と、を備えている。第2接続部42は、第2外部電極32から第2主電極部52に向かって厚みが低減する低減領域42aと、厚みが一定である平坦領域42bと、を有する。第2接続部42の低減領域42aはテーパー形状を有している。第2主電極部52は第2接続部42よりも薄い。第2薄膜部62は第2主電極部52よりも薄く、第2主電極部52から第1外部電極31に向かって厚みが低減するテーパー形状を有している。
第1内部電極21のうち、第1主電極部51は、第1誘電体フィルム11の厚み方向において、第1誘電体フィルム11を介して第2主電極部52に対向している。そして、第1薄膜部61は、第1誘電体フィルム11の厚み方向において、第1誘電体フィルム11を介して第2接続部42の低減領域42aに対向している。
第2内部電極22のうち、第2薄膜部62は、第1誘電体フィルム11の厚み方向において、第1誘電体フィルム11を介して第1接続部41の低減領域41aに対向している。
第1内部電極21は、望ましくは、以下の方法により形成される。第2内部電極22についても、同様の方法により形成される。
図5(a)及び図5(b)は、第1内部電極を形成する方法の一例を模式的に示す断面図である。
まず、図5(a)に示すように、第1誘電体フィルム11の第1面11a上に、非蒸着部による絶縁マージン71を他方側縁に形成しながら、アルミニウムなどの金属を蒸着することにより第1金属蒸着膜21Aを形成する。第1金属蒸着膜21Aを形成する際、膜厚の厚い側から薄い側へ金属蒸気量を減少させることにより、第1薄膜部となる部分を形成することができる。例えば、第1薄膜部がテーパー形状を有する場合、金属蒸発源側のマスク形状や、マスクとフィルムとの距離を調整する方法等が挙げられる。その後、図5(b)に示すように、第1誘電体フィルム11の第1面11aの一方側縁側の第1金属蒸着膜21A上に亜鉛などの金属を蒸着することにより第2金属蒸着膜21Bを形成する。第2金属蒸着膜21Bを形成する際、膜厚の厚い側から薄い側へ金属蒸気量を減少させることにより、低減領域となる部分を形成することができる。例えば、低減領域がテーパー形状を有する場合、金属蒸発源側の噴出ノズルとフィルムとの距離を調整する方法等が挙げられる。第2金属蒸着膜21Bは、第1金属蒸着膜21Aよりも厚いことが望ましい。その結果、第1誘電体フィルム11の第1面11aの一方側縁側に第1接続部が形成される。
第1内部電極が上記の方法により形成される場合、第1接続部は、亜鉛を主成分とする材料から構成され、第1主電極部及び第1薄膜部は、アルミニウムを主成分とする材料から構成されることが望ましい。同様に、第2内部電極が上記の方法により形成される場合、第2接続部は、亜鉛を主成分とする材料から構成され、第2主電極部及び第2薄膜部は、アルミニウムを主成分とする材料から構成されることが望ましい。
本明細書において、「主成分」とは、存在割合(重量%)が最も大きい成分を意味し、望ましくは、存在割合が50重量%を超える成分を意味する。
図1に示すフィルムコンデンサ1では、第1接続部41の低減領域41aは、段差のない直線状のテーパー形状を有しているが、第1外部電極31から第1主電極部51に向かって厚みが低減する限り、第1接続部の低減領域の形状は特に限定されない。同様に、図1に示すフィルムコンデンサ1では、第2接続部42の低減領域42aは、段差のない直線状のテーパー形状を有しているが、第2外部電極32から第2主電極部52に向かって厚みが低減する限り、第2接続部の低減領域の形状は特に限定されない。第2接続部の低減領域の形状は、第1接続部の低減領域の形状と同じであってもよいし、異なっていてもよい。また、第2接続部の形状は、第1接続部の形状と同じであってもよいし、異なっていてもよい。
図6(a)、図6(b)、図6(c)、図6(d)及び図6(e)は、第1接続部の別の例を模式的に示す断面図である。
図6(a)に示す第1接続部141の低減領域141a、図6(b)に示す第1接続部241の低減領域241a、及び、図6(c)に示す第1接続部341の低減領域341aは、いずれも、第1外部電極(図示せず)から第1主電極部51に向かって厚みが低減するテーパー形状を有する。このうち、図6(a)に示す第1接続部141の低減領域141aは段差のある直線状のテーパー形状を有し、図6(b)に示す第1接続部241の低減領域241aは下に凸の曲線状のテーパー形状を有し、図6(c)に示す第1接続部341の低減領域341aは上に凸の曲線状のテーパー形状を有する。また、図6(d)に示す第1接続部441の低減領域441aは平坦形状を有し、図6(e)に示す第1接続部541の低減領域541aは階段形状を有する。
図1に示すフィルムコンデンサ1では、第1薄膜部61は、段差のない直線状のテーパー形状を有しているが、第1主電極部51よりも薄い限り、第1薄膜部の形状は特に限定されない。同様に、図1に示すフィルムコンデンサ1では、第2薄膜部62は、段差のない直線状のテーパー形状を有しているが、第2主電極部52よりも薄い限り、第2薄膜部の形状は特に限定されない。第2薄膜部の形状は、第1薄膜部の形状と同じであってもよいし、異なっていてもよい。
図7(a)、図7(b)、図7(c)、図7(d)及び図7(e)は、第1薄膜部の別の例を模式的に示す断面図である。
図7(a)に示す第1薄膜部161、図7(b)に示す第1薄膜部261、及び、図7(c)に示す第1薄膜部361は、いずれも、第1主電極部51から第2外部電極(図示せず)に向かって厚みが低減するテーパー形状を有する。このうち、図7(a)に示す第1薄膜部161は段差のある直線状のテーパー形状を有し、図7(b)に示す第1薄膜部261は下に凸の曲線状のテーパー形状を有し、図7(c)に示す第1薄膜部361は上に凸の曲線状のテーパー形状を有する。また、図7(d)に示す第1薄膜部461は平坦形状を有し、図7(e)に示す第1薄膜部561は階段形状を有する。
これまで説明してきたように、本発明の第1実施形態に係るフィルムコンデンサにおいては、第1内部電極が第1薄膜部を備え、第1薄膜部が第1誘電体フィルムを介して第2接続部の低減領域に対向することを特徴としている。
一方、本発明の第1実施形態に係るフィルムコンデンサにおいては、第2内部電極が第2薄膜部を備えていなくてもよいが、第2内部電極が第2薄膜部を備え、第2薄膜部が第1誘電体フィルムを介して第1接続部の低減領域に対向することが望ましい。第1内部電極に第1薄膜部を設けるだけでなく、第2内部電極にも第2薄膜部を設けることにより、絶縁破壊をさらに抑制することができる。
本発明の第1実施形態に係るフィルムコンデンサにおいて、第2接続部は、第1薄膜部よりも電気伝導性が低い材料から構成されることが望ましい。具体的には、第2接続部は、亜鉛を主成分とする材料から構成され、第1薄膜部は、アルミニウムを主成分とする材料から構成されることが望ましい。
第1内部電極及び第2内部電極が図5(a)及び図5(b)に示すような方法により形成される場合、第2接続部は、第1誘電体フィルムを介して第1薄膜部に対向する側(図5(b)中、第2金属蒸着膜21Bに相当する部分)が、第2誘電体フィルムに対向する側(図5(b)中、第1金属蒸着膜21Aに相当する部分)よりも電気伝導性が低い材料から構成されることが望ましい。具体的には、第2接続部のうち、第1誘電体フィルムを介して第1薄膜部に対向する側は、亜鉛を主成分とする材料から構成され、第2誘電体フィルムに対向する側は、アルミニウムを主成分とする材料から構成されることが望ましい。
本発明の第1実施形態に係るフィルムコンデンサにおいて、第2内部電極が第2薄膜部を備える場合、第1接続部は、第2薄膜部よりも電気伝導性が低い材料から構成されることが望ましい。具体的には、第1接続部は、亜鉛を主成分とする材料から構成され、第2薄膜部は、アルミニウムを主成分とする材料から構成されることが望ましい。
第1内部電極及び第2内部電極が図5(a)及び図5(b)に示すような方法により形成される場合、第1接続部は、第1誘電体フィルムを介して第2薄膜部に対向する側と反対側(図5(b)中、第2金属蒸着膜21Bに相当する部分)が、第1誘電体フィルムを介して第2薄膜部に対向する側(図5(b)中、第1金属蒸着膜21Aに相当する部分)よりも電気伝導性が低い材料から構成されることが望ましい。具体的には、第1接続部のうち、第1誘電体フィルムを介して第2薄膜部に対向する側と反対側は、亜鉛を主成分とする材料から構成され、第1誘電体フィルムを介して第2薄膜部に対向する側は、アルミニウムを主成分とする材料から構成されることが望ましい。
本発明の第1実施形態に係るフィルムコンデンサにおいて、第1誘電体フィルムを介して対向する位置にある第2接続部の低減領域の厚みと第1薄膜部の厚みとの合計の最大値は、第2接続部の最大厚み(図2中、T42で示される長さ)と第2主電極部の最大厚み(図2中、T52で示される長さ)との差よりも小さいことが望ましい。
本発明の第1実施形態に係るフィルムコンデンサにおいて、第2内部電極が第2薄膜部を備える場合、第1誘電体フィルムを介して対向する位置にある第1接続部の低減領域の厚みと第2薄膜部の厚みとの合計の最大値は、第1接続部の最大厚み(図2中、T41で示される長さ)と第1主電極部の最大厚み(図2中、T51で示される長さ)との差よりも小さいことが望ましい。
接続部の低減領域と、対向する薄膜部との合計厚みを、接続部の最大厚みと主電極部の最大厚みとの差よりも小さくすることにより、コンデンサ素子の両端の変形を抑制することができる。
なお、内部電極の厚みは、内部電極の厚み方向に切断した断面を、電界放出型走査電子顕微鏡(FE-SEM)等の電子顕微鏡を用いて観察することにより特定することができる。
本発明の第1実施形態に係るフィルムコンデンサにおいて、第2外部電極側にある第1薄膜部の端部に対向する第2接続部の厚みは、第2主電極部の最大厚みT52の1倍を超え、2倍以下であることが望ましい。
本発明の第1実施形態に係るフィルムコンデンサにおいて、第2内部電極が第2薄膜部を備える場合、第1外部電極側にある第2薄膜部の端部に対向する第1接続部の厚みは、第1主電極部の最大厚みT51の1倍を超え、2倍以下であることが望ましい。
薄膜部と、対向する接続部との合計厚みが、主電極部の最大厚みの1倍を超えると、耐電流性を損なうことがない。また、上記合計厚みが、主電極部の最大厚みの2倍以下であると、一方の内部電極の端部と他方の内部電極の接続部とが重なった箇所で放電が多発しても、絶縁破壊を抑制することができる。
本発明の第1実施形態に係るフィルムコンデンサでは、第1外部電極から第2外部電極に向かう方向において、第2接続部の低減領域は、第1薄膜部よりも長いことが望ましい。特に、第1誘電体フィルム及び第2誘電体フィルムが積層された方向から見て、第1薄膜部は、第2接続部の低減領域に収まることが望ましい。すなわち、第1薄膜部は、第1誘電体フィルムを介して、第2接続部の低減領域のみに対向し、第2接続部の平坦領域に対向せず、第2主電極部にも対向しないことが望ましい。
図2及び図3では、第2接続部の低減領域の長さをL42a、第1薄膜部の長さをL61で示している。
本発明の第1実施形態に係るフィルムコンデンサにおいて、第2内部電極が第2薄膜部を備える場合、第1外部電極から第2外部電極に向かう方向において、第1接続部の低減領域は、第2薄膜部よりも長いことが望ましい。特に、第1誘電体フィルム及び第2誘電体フィルムが積層された方向から見て、第2薄膜部は、第1接続部の低減領域に収まることが望ましい。すなわち、第2薄膜部は、第1誘電体フィルムを介して、第1接続部の低減領域のみに対向し、第1接続部の平坦領域に対向せず、第1主電極部にも対向しないことが望ましい。
図2及び図3では、第1接続部の低減領域の長さをL41a、第2薄膜部の長さをL62で示している。
なお、内部電極の長さは、内部電極の厚み方向に切断した断面を、電界放出型走査電子顕微鏡(FE-SEM)等の電子顕微鏡を用いて観察することにより特定することができる。
本発明の第1実施形態に係るフィルムコンデンサにおいて、第1外部電極から第2外部電極に向かう方向における第2接続部の低減領域の長さL42aは、第2接続部の最大厚みT42と第2主電極部の最大厚みT52との差よりも大きいことが望ましい。
この場合、第2接続部の低減領域の長さL42aは、第2接続部の最大厚みT42と第2主電極部の最大厚みT52との差の10,000倍以上であることが望ましい。
本発明の第1実施形態に係るフィルムコンデンサにおいて、第2内部電極が第2薄膜部を備える場合、第1外部電極から第2外部電極に向かう方向における第1接続部の低減領域の長さL41aは、第1接続部の最大厚みT41と第1主電極部の最大厚みT51との差よりも大きいことが望ましい。
この場合、第1接続部の低減領域の長さL41aは、第1接続部の最大厚みT41と第1主電極部の最大厚みT51との差の10,000倍以上であることが望ましい。
本発明の第1実施形態に係るフィルムコンデンサにおいて、第1外部電極から第2外部電極に向かう方向における第1薄膜部の長さL61は、第1主電極部の最大厚みT51よりも大きいことが望ましい。
この場合、第1薄膜部の長さL61は、第1主電極部の最大厚みT51の10,000倍以上であることが望ましい。
本発明の第1実施形態に係るフィルムコンデンサにおいて、第2内部電極が第2薄膜部を備える場合、第1外部電極から第2外部電極に向かう方向における第2薄膜部の長さL62は、第2主電極部の最大厚みT52よりも大きいことが望ましい。
この場合、第2薄膜部の長さL62は、第2主電極部の最大厚みT52の10,000倍以上であることが望ましい。
本発明の第1実施形態に係るフィルムコンデンサにおいて、第1誘電体フィルムは、熱硬化性樹脂等の硬化性樹脂を主成分として含んでもよいし、熱可塑性樹脂を主成分として含んでもよい。同様に、第2誘電体フィルムは、硬化性樹脂を主成分として含んでもよいし、熱可塑性樹脂を主成分として含んでもよい。第2誘電体フィルムは、第1誘電体フィルムと異なる構成を有していてもよいが、第1誘電体フィルムと同一の構成を有していることが望ましい。
中でも、第1誘電体フィルムは、硬化性樹脂を主成分として含むことが望ましく、第2誘電体フィルムは、硬化性樹脂を主成分として含むことが望ましい。特に、第1誘電体フィルムは、熱硬化性樹脂を主成分として含むことが望ましく、第2誘電体フィルムは、熱硬化性樹脂を主成分として含むことが望ましい。
本発明の第1実施形態に係るフィルムコンデンサは、誘電体フィルムの材料として、PPに比べて熱的に安定な熱硬化性樹脂等の硬化性樹脂を用いた場合であっても、容易に自己回復し、絶縁破壊が抑制されるため、信頼性の高い高耐熱性のコンデンサとすることができる。
以下、第1誘電体フィルム及び第2誘電体フィルムを特に区別しない場合、単に「誘電体フィルム」という。
上記のとおり、「主成分」とは、存在割合(重量%)が最も大きい成分を意味し、望ましくは、存在割合が50重量%を超える成分を意味する。したがって、誘電体フィルムは、主成分以外の成分として、例えば、シリコーン樹脂等の添加剤や、後述する第1有機材料及び第2有機材料等の出発材料の未硬化部分を含んでもよい。
誘電体フィルムが硬化性樹脂を主成分として含む場合、硬化性樹脂は、熱硬化性樹脂であってもよいし、光硬化性樹脂であってもよい。硬化性樹脂は、ウレタン結合及びユリア結合の少なくとも一方を有していてもよいし、有していなくてもよい。
なお、ウレタン結合及び/又はユリア結合の存在は、フーリエ変換赤外分光光度計(FT-IR)を用いて確認することができる。
本明細書において、熱硬化性樹脂とは、熱で硬化し得る樹脂を意味しており、硬化方法を限定するものではない。したがって、熱で硬化し得る樹脂である限り、熱以外の方法(例えば、光、電子ビームなど)で硬化した樹脂も熱硬化性樹脂に含まれる。また、材料によっては材料自体が持つ反応性によって反応が開始する場合があり、必ずしも外部から熱又は光等を与えずに硬化が進むものについても熱硬化性樹脂とする。光硬化性樹脂についても同様であり、硬化方法を限定するものではない。
誘電体フィルムは、蒸着重合膜を主成分として含んでもよい。蒸着重合膜は、ウレタン結合及びユリア結合の少なくとも一方を有していてもよいし、有していなくてもよい。なお、蒸着重合膜は、基本的には、硬化性樹脂に含まれる。
誘電体フィルムは、第1有機材料と第2有機材料との硬化物からなることが望ましい。例えば、第1有機材料が有する水酸基(OH基)と第2有機材料が有するイソシアネート基(NCO基)とが反応して得られる硬化物等が挙げられる。
上記の反応によって硬化物を得る場合、出発材料の未硬化部分がフィルム中に残留してもよい。例えば、誘電体フィルムは、イソシアネート基(NCO基)及び水酸基(OH基)の少なくとも一方を含んでもよい。この場合、誘電体フィルムは、イソシアネート基及び水酸基のいずれか一方を含んでもよいし、イソシアネート基及び水酸基の両方を含んでもよい。
なお、イソシアネート基及び/又は水酸基の存在は、フーリエ変換赤外分光光度計(FT-IR)を用いて確認することができる。
第1有機材料は、分子内に複数の水酸基(OH基)を有するポリオールであることが望ましい。ポリオールとしては、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリビニルアセトアセタール等が挙げられる。第1有機材料として、2種以上の有機材料を併用してもよい。第1有機材料の中では、ポリエーテルポリオールに属するフェノキシ樹脂が望ましい。
第2有機材料は、分子内に複数の官能基を有する、イソシアネート化合物、エポキシ樹脂又はメラミン樹脂であることが望ましい。第2有機材料として、2種以上の有機材料を併用してもよい。
イソシアネート化合物としては、例えば、ジフェニルメタンジイソシアネート(MDI)及びトリレンジイソシアネート(TDI)等の芳香族ポリイソシアネート、ヘキサメチレンジイソシアネート(HDI)等の脂肪族ポリイソシアネート等が挙げられる。これらのポリイソシアネートの変性体、例えば、カルボジイミド又はウレタン等を有する変性体であってもよい。中でも、芳香族ポリイソシアネートが望ましく、MDIがより望ましい。
エポキシ樹脂としては、エポキシ環を有する樹脂であれば特に限定されず、例えば、ビスフェノールA型エポキシ樹脂、ビフェニル骨格エポキシ樹脂、シクロペンタジエン骨格エポキシ樹脂、ナフタレン骨格エポキシ樹脂等が挙げられる。
メラミン樹脂としては、構造の中心にトリアジン環、その周辺にアミノ基3個を有する有機窒素化合物であれば特に限定されず、例えば、アルキル化メラミン樹脂等が挙げられる。その他、メラミンの変性体であってもよい。
誘電体フィルムは、望ましくは、第1有機材料及び第2有機材料を含む樹脂溶液をフィルム状に成形し、次いで、熱処理して硬化させることによって得られる。
誘電体フィルムが熱可塑性樹脂を主成分として含む場合、熱可塑性樹脂としては、例えば、高結晶性ポリプロピレン、ポリエーテルスルホン、ポリエーテルイミド、ポリアリレート等が挙げられる。
誘電体フィルムは、他の機能を付加するための添加剤を含むこともできる。例えば、レベリング剤を添加することで平滑性を付与することができる。添加剤は、水酸基及び/又はイソシアネート基と反応する官能基を有し、硬化物の架橋構造の一部を形成する材料であることがより望ましい。このような材料としては、例えば、エポキシ基、シラノール基及びカルボキシル基からなる群より選択される少なくとも1種の官能基を有する樹脂等が挙げられる。
誘電体フィルムの厚みは特に限定されないが、フィルムが薄すぎると脆くなりやすくなる。そのため、誘電体フィルムの厚みは、0.5μmを超えることが望ましく、2μm以上であることがより望ましい。一方、フィルムが厚すぎると、成膜時にクラック等の欠陥が発生しやすくなる。そのため、誘電体フィルムの厚みは、10μm未満であることが望ましく、6μm以下であることがより望ましい。
なお、誘電体フィルムの厚みは、光学式膜厚計を用いて測定することができる。
[第2実施形態]
本発明の第2実施形態に係るフィルムコンデンサでは、第1実施形態と同様、第1外部電極が第1内部電極に接続されるとともに第2内部電極と離間され、第2外部電極が第2内部電極に接続されるとともに第1内部電極と離間されている。第2実施形態では、第1実施形態と異なり、第2内部電極が第1誘電体フィルムの第2面に設けられている。
図8は、本発明の第2実施形態に係るフィルムコンデンサの一例を模式的に示す断面図である。
図8には全体的な構成が示されていないが、フィルムコンデンサ2は、第1誘電体フィルム11と、第1誘電体フィルム11に積層された第2誘電体フィルム12と、第1誘電体フィルム11を介して互いに対向する第1内部電極21及び第2内部電極22と、を備えている。フィルムコンデンサ2は、さらに、第1内部電極21に接続されるとともに第2内部電極22と離間された第1外部電極31と、第2内部電極22に接続されるとともに第1内部電極21と離間された第2外部電極32と、を備えている。
図8に示すフィルムコンデンサ2において、第1内部電極21は、図1に示すフィルムコンデンサ1と同様、第1誘電体フィルム11の第1面11aに設けられている。一方、第2内部電極22は、図1に示すフィルムコンデンサ1と異なり、第1誘電体フィルム11の第2面11bに設けられている。そして、第2誘電体フィルム12には、内部電極が設けられていない。
図1に示すフィルムコンデンサ1と同様、第1内部電極21は、第1外部電極31に接続された第1接続部41と、第1接続部41に連接された第1主電極部51と、第1主電極部51から第2外部電極32に向かって伸びる第1薄膜部61と、を備えている。第1接続部41は、第1外部電極31から第1主電極部51に向かって厚みが低減する低減領域41aと、厚みが一定である平坦領域41bと、を有する。また、第2内部電極22は、第2外部電極32に接続された第2接続部42と、第2接続部42に連接された第2主電極部52と、第2主電極部52から第1外部電極31に向かって伸びる第2薄膜部62と、を備えている。第2接続部42は、第2外部電極32から第2主電極部52に向かって厚みが低減する低減領域42aと、厚みが一定である平坦領域42bと、を有する。
第1内部電極及び第2内部電極は、望ましくは、図5(a)及び図5(b)に示す方法により形成される。第2接続部は、第1誘電体フィルムを介して第1薄膜部に対向する側と反対側が、第1誘電体フィルムを介して第1薄膜部に対向する側よりも電気伝導性が低い材料から構成されることが望ましい。また、第2内部電極が第2薄膜部を備える場合、第1接続部は、第1誘電体フィルムを介して第2薄膜部に対向する側と反対側が、第1誘電体フィルムを介して第2薄膜部に対向する側よりも電気伝導性が低い材料から構成されることが望ましい。
その他の構成は、第1実施形態と同様である。
このような構成を有する第2実施形態においても、第1実施形態と同様の作用効果が得られる。
[第3実施形態]
本発明の第3実施形態に係るフィルムコンデンサでは、第1実施形態と異なり、第1外部電極及び第2外部電極が、いずれも、第2内部電極に接続されるとともに第1内部電極と離間されている。第3実施形態では、第2内部電極が第2誘電体フィルムの第1面に設けられている。
図9は、本発明の第3実施形態に係るフィルムコンデンサの一例を模式的に示す断面図である。
図9には全体的な構成が示されていないが、フィルムコンデンサ3は、第1誘電体フィルム11と、第1誘電体フィルム11に積層された第2誘電体フィルム12と、第1誘電体フィルム11を介して互いに対向する第1内部電極121及び第2内部電極122と、を備えている。フィルムコンデンサ3は、さらに、第2内部電極122に接続されるとともに第1内部電極121と離間された第1外部電極31と、第2内部電極122に接続されるとともに第1内部電極121と離間された第2外部電極32と、を備えている。
第1内部電極121は、第1誘電体フィルム11の第1面11aに設けられている。第1内部電極121は、第1誘電体フィルム11の第1面11aにおいて、一方側縁及び他方側縁にまで届かないように設けられている。そのため、第1誘電体フィルム11の第1面11aの一方側縁及び他方側縁には、第1内部電極121が設けられていない絶縁マージン71が存在する。
第2内部電極122は、第2誘電体フィルム12の第1面12aに設けられている。第2内部電極122は、第2誘電体フィルム12の第1面12aにおいて、2つに分離されるように設けられている。そのため、第2誘電体フィルム12の第1面12aの中央部には、第2内部電極122が設けられていない絶縁マージン72が存在する。
第1内部電極121は、第1主電極部51と、第1主電極部51から第2外部電極32に向かって伸びる第1薄膜部61と、第1主電極部51から第1外部電極31に向かって伸びる第2薄膜部62と、を備えている。第1薄膜部61は第1主電極部51よりも薄く、第2薄膜部62は第1主電極部51よりも薄い。
第2内部電極122は、第1外部電極31に接続された第1接続部41と、第1接続部41に連接された第2主電極部52と、第2外部電極32に接続された第2接続部42と、第2主電極部52から離間されるとともに第2接続部42に連接された第3主電極部53と、を備えている。第2主電極部52は第1接続部41よりも薄く、第3主電極部53は第2接続部42よりも薄い。第1接続部41は、第1外部電極31から第1主電極部51に向かって厚みが低減する低減領域41aと、厚みが一定である平坦領域41bと、を有する。第2接続部42は、第2外部電極32から第2主電極部52に向かって厚みが低減する低減領域42aと、厚みが一定である平坦領域42bと、を有する。
第1内部電極121のうち、第1主電極部51は、第1誘電体フィルム11の厚み方向において、第1誘電体フィルム11を介して第2主電極部52及び第3主電極部53に対向している。そして、第1薄膜部61は、第1誘電体フィルム11の厚み方向において、第1誘電体フィルム11を介して第2接続部42の低減領域42aに対向し、第2薄膜部62は、第1誘電体フィルム11の厚み方向において、第1誘電体フィルム11を介して第1接続部41の低減領域41aに対向している。
本発明の第3実施形態に係るフィルムコンデンサにおいては、第1内部電極が第1薄膜部を備え、第1薄膜部が第1誘電体フィルムを介して第2接続部の低減領域に対向することを特徴としている。
一方、本発明の第3実施形態に係るフィルムコンデンサにおいては、第1内部電極が第2薄膜部を備えていなくてもよいが、第1内部電極が第2薄膜部を備え、第2薄膜部が第1誘電体フィルムを介して第1接続部の低減領域に対向することが望ましい。
第1内部電極は、望ましくは、図5(a)に示す方法により形成され、第2内部電極は、望ましくは、図5(a)及び図5(b)に示す方法により形成される。第2接続部は、第1誘電体フィルムを介して第1薄膜部に対向する側が、第2誘電体フィルムに対向する側よりも電気伝導性が低い材料から構成されることが望ましい。また、第1内部電極が第2薄膜部を備える場合、第1接続部は、第1誘電体フィルムを介して第2薄膜部に対向する側が、第2誘電体フィルムに対向する側よりも電気伝導性が低い材料から構成されることが望ましい。
その他の構成は、第1実施形態と同様である。
このような構成を有する第3実施形態においても、第1実施形態と同様の作用効果が得られる。
[第4実施形態]
本発明の第4実施形態に係るフィルムコンデンサでは、第3実施形態と同様、第1外部電極及び第2外部電極が、いずれも、第2内部電極に接続されるとともに第1内部電極と離間されている。第4実施形態では、第3実施形態と異なり、第2内部電極が第1誘電体フィルムの第2面に設けられている。
図10は、本発明の第4実施形態に係るフィルムコンデンサの一例を模式的に示す断面図である。
図10には全体的な構成が示されていないが、フィルムコンデンサ4は、第1誘電体フィルム11と、第1誘電体フィルム11に積層された第2誘電体フィルム12と、第1誘電体フィルム11を介して互いに対向する第1内部電極121及び第2内部電極122と、を備えている。フィルムコンデンサ4は、さらに、第2内部電極122に接続されるとともに第1内部電極121と離間された第1外部電極31と、第2内部電極122に接続されるとともに第1内部電極121と離間された第2外部電極32と、を備えている。
図10に示すフィルムコンデンサ4において、第1内部電極121は、図9に示すフィルムコンデンサ3と同様、第1誘電体フィルム11の第1面11aに設けられている。一方、第2内部電極122は、図9に示すフィルムコンデンサ3と異なり、第1誘電体フィルム11の第2面11bに設けられている。そして、第2誘電体フィルム12には、内部電極が設けられていない。
図9に示すフィルムコンデンサ3と同様、第1内部電極121は、第1主電極部51と、第1主電極部51から第2外部電極32に向かって伸びる第1薄膜部61と、第1主電極部51から第1外部電極31に向かって伸びる第2薄膜部62と、を備えている。また、第2内部電極122は、第1外部電極31に接続された第1接続部41と、第1接続部41に連接された第2主電極部52と、第2外部電極32に接続された第2接続部42と、第2主電極部52から離間されるとともに第2接続部42に連接された第3主電極部53と、を備えている。第1接続部41は、第1外部電極31から第1主電極部51に向かって厚みが低減する低減領域41aと、厚みが一定である平坦領域41bと、を有する。第2接続部42は、第2外部電極32から第2主電極部52に向かって厚みが低減する低減領域42aと、厚みが一定である平坦領域42bと、を有する。
第1内部電極は、望ましくは、図5(a)に示す方法により形成され、第2内部電極は、望ましくは、図5(a)及び図5(b)に示す方法により形成される。第2接続部は、第1誘電体フィルムを介して第1薄膜部に対向する側と反対側が、第1誘電体フィルムを介して第1薄膜部に対向する側よりも電気伝導性が低い材料から構成されることが望ましい。また、第1内部電極が第2薄膜部を備える場合、第1接続部は、第1誘電体フィルムを介して第2薄膜部に対向する側と反対側が、第1誘電体フィルムを介して第2薄膜部に対向する側よりも電気伝導性が低い材料から構成されることが望ましい。
その他の構成は、第3実施形態と同様である。
このような構成を有する第4実施形態においても、第1実施形態と同様の作用効果が得られる。
以下、本発明のフィルムコンデンサをより具体的に開示した実施例を示す。なお、本発明は、これらの実施例のみに限定されるものではない。
[コンデンサの作製]
(実施例1)
厚み2.5μmのPPフィルムを用いて、フィルム幅方向の一端側に非蒸着部による絶縁マージンを形成しながらアルミニウムを蒸着した後、他端側のアルミニウム蒸着膜上に亜鉛を蒸着することにより、平坦領域の厚みが50nmである接続部(ヘビーエッジ)を形成した。アルミニウムを蒸着する際、主電極部の厚みは15nmとし、主電極部の縁端部側には、薄膜部として幅0.5mmの傾斜部を形成した。また、亜鉛を蒸着する際、接続部には、低減領域として幅2mmの傾斜部を形成した。
なお、傾斜部は、蒸着工程において、膜厚の厚い側から薄い側へ金属蒸気量が減少するように金属蒸気を導くことで形成した。
得られた金属化フィルムについて、絶縁マージン側にある薄膜部の縁端部が、対向する接続部の傾斜部の厚み30nmの位置になるように合わせながら、2枚重ねて巻回することにより、実施例1のコンデンサ(20μF)を作製した(図1、図2及び図3参照)。
(比較例1)
傾斜部を形成しないことを除いて実施例1と同様の方法により作製した金属化フィルムを、絶縁マージン側にある主電極部の縁端部が、対向する接続部の平坦部の位置になるように合わせながら、2枚重ねて巻回することにより、比較例1のコンデンサ(20μF)を作製した。
[コンデンサの評価]
実施例1及び比較例1のコンデンサについて、耐電圧試験(105℃、750V、24時間印加)を実施した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
表1に示すように、実施例1のコンデンサでは、比較例1のコンデンサと異なり、絶縁破壊が生じなかった。なお、比較例1のコンデンサでは、いずれも、一方の内部電極の端部と他方の内部電極の接続部とが重なった箇所で絶縁破壊が生じていた。
[コンデンサの作製]
(実施例2)
ポリビニルアセトアセタール(PVAA)とトリレンジイソシアネート(TDI)のプレポリマー体からなる厚み3μmの熱硬化性フィルムを用いて、フィルム幅方向の一端側に非蒸着部による絶縁マージンを形成しながらアルミニウムを蒸着した後、他端側のアルミニウム蒸着膜上に亜鉛を蒸着することにより、平坦領域の厚みが40nmである接続部(ヘビーエッジ)を形成した。アルミニウムを蒸着する際、主電極部の厚みは10nmとし、主電極部の縁端部側には、薄膜部として幅0.5mmの傾斜部を形成した。また、亜鉛を蒸着する際、接続部には、低減領域として幅3mmの傾斜部を形成した。
得られた金属化フィルムについて、絶縁マージン側にある薄膜部の縁端部が、対向する接続部の傾斜部の厚み20nmの位置になるように合わせながら、2枚重ねて巻回することにより、実施例2のコンデンサ(20μF)を作製した(図1、図2及び図3参照)。
(比較例2)
傾斜部を形成しないことを除いて実施例2と同様の方法により作製した金属化フィルムを、2枚重ねて巻回することにより、比較例2のコンデンサ(20μF)を作製した。
[コンデンサの評価]
実施例2及び比較例2のコンデンサについて、耐電圧試験(125℃、750V、24時間印加)を実施した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
表2に示すように、実施例2のコンデンサでは、比較例2のコンデンサと異なり、絶縁破壊が生じなかった。なお、比較例2のコンデンサでは、いずれも、一方の内部電極の端部と他方の内部電極の接続部とが重なった箇所で絶縁破壊が生じていた。
1,2,3,4 フィルムコンデンサ
11 第1誘電体フィルム
11a 第1誘電体フィルムの第1面
11b 第1誘電体フィルムの第2面
12 第2誘電体フィルム
12a 第2誘電体フィルムの第1面
12b 第2誘電体フィルムの第2面
21,121 第1内部電極
21a 第1内部電極のヒューズ部
21b 第1内部電極の絶縁スリット
21c 第1内部電極の分割電極
21A 第1金属蒸着膜
21B 第2金属蒸着膜
22,122 第2内部電極
22a 第2内部電極のヒューズ部
22b 第2内部電極の絶縁スリット
22c 第2内部電極の分割電極
31 第1外部電極
32 第2外部電極
41,141,241,341,441,541 第1接続部
41a,141a,241a,341a,441a,541a 第1接続部の低減領域
41b 第1接続部の平坦領域
42 第2接続部
42a 第2接続部の低減領域
42b 第2接続部の平坦領域
51 第1主電極部
52 第2主電極部
53 第3主電極部
61,161,261,361,461,561 第1薄膜部
62 第2薄膜部
71,72 絶縁マージン
41a 第1接続部の低減領域の長さ
42a 第2接続部の低減領域の長さ
61 第1薄膜部の長さ
62 第2薄膜部の長さ
41 第1接続部の最大厚み
42 第2接続部の最大厚み
51 第1主電極部の最大厚み
52 第2主電極部の最大厚み

Claims (14)

  1. 第1面、及び、前記第1面と反対側の第2面を有する第1誘電体フィルムと、
    第1面、及び、前記第1面と反対側の第2面を有し、前記第1誘電体フィルムに積層された第2誘電体フィルムと、
    前記第1誘電体フィルムの前記第1面に設けられた第1内部電極と、
    前記第1誘電体フィルムと前記第2誘電体フィルムとの間に位置し、前記第2誘電体フィルムの前記第1面、又は、前記第1誘電体フィルムの前記第2面に設けられた第2内部電極と、
    前記第1誘電体フィルム及び前記第2誘電体フィルムが積層された積層体の一方の端面に設けられ、前記第1内部電極に接続されるとともに前記第2内部電極と離間された第1外部電極と、
    前記積層体の他方の端面に設けられ、前記第2内部電極に接続されるとともに前記第1内部電極と離間された第2外部電極と、を備えるフィルムコンデンサであって、
    前記第1内部電極は、前記第1外部電極に接続された第1接続部と、前記第1接続部に連接され、前記第1接続部よりも薄い第1主電極部と、前記第1主電極部から前記第2外部電極に向かって伸び、前記第1主電極部よりも薄い第1薄膜部と、を備え、
    前記第2内部電極は、前記第2外部電極に接続された第2接続部と、前記第2接続部に連接され、前記第2接続部よりも薄い第2主電極部と、を備え、
    前記第1主電極部は、前記第1誘電体フィルムを介して前記第2主電極部に対向し、
    前記第2接続部は、前記第2外部電極から前記第2主電極部に向かって厚みが低減する低減領域を有し、
    前記第1薄膜部は、前記第1誘電体フィルムを介して前記第2接続部の低減領域に対向する、フィルムコンデンサ。
  2. 前記第2内部電極は、さらに、前記第2主電極部から前記第1外部電極に向かって伸び、前記第2主電極部よりも薄い第2薄膜部を備え、
    前記第1接続部は、前記第1外部電極から前記第1主電極部に向かって厚みが低減する低減領域を有し、
    前記第2薄膜部は、前記第1誘電体フィルムを介して前記第1接続部の低減領域に対向する、請求項1に記載のフィルムコンデンサ。
  3. 前記第1誘電体フィルム及び前記第2誘電体フィルムが積層された方向に沿った断面において、前記第2接続部の低減領域は、テーパー形状を有する、請求項1又は2に記載のフィルムコンデンサ。
  4. 前記第1誘電体フィルム及び前記第2誘電体フィルムが積層された方向に沿った断面において、前記第1薄膜部は、前記第1主電極部から前記第2外部電極に向かって厚みが低減するテーパー形状を有する、請求項3に記載のフィルムコンデンサ。
  5. 前記第1誘電体フィルムを介して対向する位置にある前記第2接続部の低減領域の厚みと前記第1薄膜部の厚みとの合計の最大値は、前記第2接続部の最大厚みと前記第2主電極部の最大厚みとの差よりも小さい、請求項1又は2に記載のフィルムコンデンサ。
  6. 前記第2外部電極側にある前記第1薄膜部の端部に対向する前記第2接続部の厚みは、前記第2主電極部の最大厚みの1倍を超え、2倍以下である、請求項1又は2に記載のフィルムコンデンサ。
  7. 前記第1外部電極から前記第2外部電極に向かう方向において、前記第2接続部の低減領域は、前記第1薄膜部よりも長い、請求項1又は2に記載のフィルムコンデンサ。
  8. 前記第1誘電体フィルム及び前記第2誘電体フィルムが積層された方向から見て、前記第1薄膜部は、前記第2接続部の低減領域に収まる、請求項7に記載のフィルムコンデンサ。
  9. 前記第2接続部は、前記第1薄膜部よりも電気伝導性が低い材料から構成される、請求項1又は2に記載のフィルムコンデンサ。
  10. 前記第2内部電極は、前記第2誘電体フィルムの前記第1面に設けられており、
    前記第2接続部は、前記第1誘電体フィルムを介して前記第1薄膜部に対向する側が、前記第2誘電体フィルムに対向する側よりも電気伝導性が低い材料から構成される、請求項1、2又は9に記載のフィルムコンデンサ。
  11. 前記第2接続部は、亜鉛を主成分とする材料から構成され、
    前記第1薄膜部は、アルミニウムを主成分とする材料から構成される、請求項9又は10に記載のフィルムコンデンサ。
  12. 前記第1誘電体フィルムは、硬化性樹脂を主成分として含み、
    前記第2誘電体フィルムは、硬化性樹脂を主成分として含む、請求項1又は2に記載のフィルムコンデンサ。
  13. 第1面、及び、前記第1面と反対側の第2面を有する第1誘電体フィルムと、
    第1面、及び、前記第1面と反対側の第2面を有し、前記第1誘電体フィルムに積層された第2誘電体フィルムと、
    前記第1誘電体フィルムの前記第1面に設けられた第1内部電極と、
    前記第1誘電体フィルムと前記第2誘電体フィルムとの間に位置し、前記第2誘電体フィルムの前記第1面、又は、前記第1誘電体フィルムの前記第2面に設けられた第2内部電極と、
    前記第1誘電体フィルム及び前記第2誘電体フィルムが積層された積層体の一方の端面に設けられ、前記第2内部電極に接続されるとともに前記第1内部電極と離間された第1外部電極と、
    前記積層体の他方の端面に設けられ、前記第2内部電極に接続されるとともに前記第1内部電極と離間された第2外部電極と、を備えるフィルムコンデンサであって、
    前記第1内部電極は、第1主電極部と、前記第1主電極部から前記第2外部電極に向かって伸び、前記第1主電極部よりも薄い第1薄膜部と、を備え、
    前記第2内部電極は、前記第1外部電極に接続された第1接続部と、前記第1接続部に連接され、前記第1接続部よりも薄い第2主電極部と、前記第2外部電極に接続された第2接続部と、前記第2主電極部から離間されるとともに前記第2接続部に連接され、前記第2接続部よりも薄い第3主電極部と、を備え、
    前記第1主電極部は、前記第1誘電体フィルムを介して前記第2主電極部及び前記第3主電極部に対向し、
    前記第2接続部は、前記第2外部電極から前記第3主電極部に向かって厚みが低減する低減領域を有し、
    前記第1薄膜部は、前記第1誘電体フィルムを介して前記第2接続部の低減領域に対向する、フィルムコンデンサ。
  14. 前記第1内部電極は、さらに、前記第1主電極部から前記第1外部電極に向かって伸び、前記第1主電極部よりも薄い第2薄膜部を備え、
    前記第1接続部は、前記第1外部電極から前記第2主電極部に向かって厚みが低減する低減領域を有し、
    前記第2薄膜部は、前記第1誘電体フィルムを介して前記第1接続部の低減領域に対向する、請求項13に記載のフィルムコンデンサ。
PCT/JP2018/047226 2018-02-05 2018-12-21 フィルムコンデンサ WO2019150839A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019568938A JP6923171B2 (ja) 2018-02-05 2018-12-21 フィルムコンデンサ
CN201880088468.7A CN111684554B (zh) 2018-02-05 2018-12-21 薄膜电容器
KR1020207017362A KR102363326B1 (ko) 2018-02-05 2018-12-21 필름 콘덴서
US16/918,403 US11710603B2 (en) 2018-02-05 2020-07-01 Film capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018018222 2018-02-05
JP2018-018222 2018-02-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/918,403 Continuation US11710603B2 (en) 2018-02-05 2020-07-01 Film capacitor

Publications (1)

Publication Number Publication Date
WO2019150839A1 true WO2019150839A1 (ja) 2019-08-08

Family

ID=67478672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047226 WO2019150839A1 (ja) 2018-02-05 2018-12-21 フィルムコンデンサ

Country Status (5)

Country Link
US (1) US11710603B2 (ja)
JP (1) JP6923171B2 (ja)
KR (1) KR102363326B1 (ja)
CN (1) CN111684554B (ja)
WO (1) WO2019150839A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3916744A1 (de) * 2020-05-28 2021-12-01 Siemens Aktiengesellschaft Folienkondensatoren
WO2023017556A1 (ja) * 2021-08-10 2023-02-16 ルビコン株式会社 コンデンサおよびその製造方法
US11854748B2 (en) 2021-11-26 2023-12-26 Rubycon Corporation Thin film high polymer laminated capacitor manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7193070B2 (ja) * 2018-02-05 2022-12-20 株式会社指月電機製作所 フィルムコンデンサ
CN113628880A (zh) * 2021-07-02 2021-11-09 中国船舶重工集团公司第七一三研究所 一种内部串联型自愈式金属化膜及电容器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122527U (ja) * 1990-03-26 1991-12-13
JPH10303056A (ja) * 1997-04-25 1998-11-13 Toray Ind Inc 金属蒸着フィルム、その製造方法及びそれを用いたコンデンサ
WO2006112099A1 (ja) * 2005-04-08 2006-10-26 Matsushita Electric Industrial Co., Ltd. 金属化フィルムコンデンサと自動車用インバータ平滑用コンデンサ
JP2012222127A (ja) * 2011-04-08 2012-11-12 Okaya Electric Ind Co Ltd 金属化フィルムコンデンサ
WO2015041126A1 (ja) * 2013-09-20 2015-03-26 株式会社村田製作所 コンデンサ部品、コンデンサモジュール、電力変換装置、および、コンデンサ部品の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2619260C2 (de) * 1976-04-30 1983-05-05 Siemens AG, 1000 Berlin und 8000 München Verfahren zum Herstellen von Wickelkörpern selbstheilender Kondensatoren
DE3273861D1 (en) * 1982-03-06 1986-11-20 Steiner Kg Self restoring electric capacitor
IT1282594B1 (it) * 1996-02-09 1998-03-31 Icar Spa Ind Condensatori Film dielettrico metallizzato a resistenza variabile e relativo condensatore
DE19734477B4 (de) * 1996-08-09 2005-11-03 Matsushita Electric Industrial Co., Ltd., Kadoma Metallisierter Filmkondensator und Vorrichtung und Verfahren für die Herstellung eines metallisierten Films für den metallisierten Filmkondensator
DE19639877C2 (de) * 1996-09-27 1998-10-15 Siemens Matsushita Components Regenerierfähiger elektrischer Kondensator
JP3914854B2 (ja) 2002-10-10 2007-05-16 松下電器産業株式会社 金属化フィルムコンデンサとそれを用いたインバータ平滑用コンデンサと自動車用コンデンサ
JP5345662B2 (ja) 2011-09-21 2013-11-20 本田技研工業株式会社 燃料電池システム
WO2013069485A1 (ja) 2011-11-10 2013-05-16 株式会社村田製作所 フィルムコンデンサ、コンデンサモジュールおよび電力変換装置
JP2013219094A (ja) 2012-04-05 2013-10-24 Panasonic Corp 金属化フィルムコンデンサ
JP6330139B2 (ja) * 2013-11-29 2018-05-30 パナソニックIpマネジメント株式会社 金属化フィルムコンデンサ
KR101573247B1 (ko) * 2014-11-03 2015-12-02 주식회사 뉴인텍 3단식 커패시터용 증착 필름

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122527U (ja) * 1990-03-26 1991-12-13
JPH10303056A (ja) * 1997-04-25 1998-11-13 Toray Ind Inc 金属蒸着フィルム、その製造方法及びそれを用いたコンデンサ
WO2006112099A1 (ja) * 2005-04-08 2006-10-26 Matsushita Electric Industrial Co., Ltd. 金属化フィルムコンデンサと自動車用インバータ平滑用コンデンサ
JP2012222127A (ja) * 2011-04-08 2012-11-12 Okaya Electric Ind Co Ltd 金属化フィルムコンデンサ
WO2015041126A1 (ja) * 2013-09-20 2015-03-26 株式会社村田製作所 コンデンサ部品、コンデンサモジュール、電力変換装置、および、コンデンサ部品の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3916744A1 (de) * 2020-05-28 2021-12-01 Siemens Aktiengesellschaft Folienkondensatoren
WO2021239399A1 (de) * 2020-05-28 2021-12-02 Siemens Aktiengesellschaft Folienkondensator
WO2023017556A1 (ja) * 2021-08-10 2023-02-16 ルビコン株式会社 コンデンサおよびその製造方法
US11854748B2 (en) 2021-11-26 2023-12-26 Rubycon Corporation Thin film high polymer laminated capacitor manufacturing method

Also Published As

Publication number Publication date
KR102363326B1 (ko) 2022-02-15
KR20200085872A (ko) 2020-07-15
US20200335283A1 (en) 2020-10-22
JP6923171B2 (ja) 2021-08-18
US11710603B2 (en) 2023-07-25
JPWO2019150839A1 (ja) 2020-12-17
CN111684554A (zh) 2020-09-18
CN111684554B (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
WO2019150839A1 (ja) フィルムコンデンサ
JP6677358B2 (ja) フィルムコンデンサ、及び、フィルムコンデンサ用フィルム
CN111344825B (zh) 薄膜电容器
US11295898B2 (en) Film capacitor, film for film capacitor, method of producing film for film capacitor, and method of producing film capacitor
WO2019150840A1 (ja) フィルムコンデンサ
WO2021241151A1 (ja) フィルムコンデンサおよびフィルムコンデンサ用フィルム
EP2770516B1 (en) Dielectric resin composition for film capacitors, and film capacitor
WO2021024565A1 (ja) フィルムコンデンサ
WO2024142564A1 (ja) フィルムコンデンサ
WO2021038973A1 (ja) フィルムコンデンサ
US11948748B2 (en) Film capacitor, and film for film capacitors
JP7301974B2 (ja) フィルムコンデンサ
JP5737069B2 (ja) 樹脂フィルムおよびその製造方法、ならびにフィルムコンデンサ
US20230230769A1 (en) Film capacitor
CN118197804A (zh) 多层电子组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568938

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207017362

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904412

Country of ref document: EP

Kind code of ref document: A1