WO2019148975A1 - 音效调节方法以及装置、电视机及存储介质 - Google Patents

音效调节方法以及装置、电视机及存储介质 Download PDF

Info

Publication number
WO2019148975A1
WO2019148975A1 PCT/CN2018/120526 CN2018120526W WO2019148975A1 WO 2019148975 A1 WO2019148975 A1 WO 2019148975A1 CN 2018120526 W CN2018120526 W CN 2018120526W WO 2019148975 A1 WO2019148975 A1 WO 2019148975A1
Authority
WO
WIPO (PCT)
Prior art keywords
audio signal
intermediate audio
adjustment unit
sound effect
backend
Prior art date
Application number
PCT/CN2018/120526
Other languages
English (en)
French (fr)
Inventor
付华东
王余生
Original Assignee
深圳创维-Rgb电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳创维-Rgb电子有限公司 filed Critical 深圳创维-Rgb电子有限公司
Publication of WO2019148975A1 publication Critical patent/WO2019148975A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/81Monomedia components thereof
    • H04N21/8106Monomedia components thereof involving special audio data, e.g. different tracks for different languages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/439Processing of audio elementary streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/60Receiver circuitry for the reception of television signals according to analogue transmission standards for the sound signals

Definitions

  • Embodiments of the present application relate to audio signal processing, for example, to a sound effect adjustment method and apparatus, a television set, and a storage medium.
  • the key to the sound effect of the TV output is the sound adjustment processing process.
  • the related sound effect adjustment method is easy to produce obvious signal distortion, and the sound quality effect is poor.
  • the embodiment of the present application provides a sound effect adjustment method and device, a television set and a storage medium, which not only can improve the phenomenon that the related audio adjustment method is prone to signal distortion, thereby improving the audio quality and the competitiveness of the television product in the market.
  • An embodiment of the present application provides a sound effect adjustment method, including: acquiring an audio signal; performing attenuation processing on the audio signal by a front end adjustment unit to obtain a first intermediate audio signal; and using the backend adjustment unit to the first intermediate
  • the audio signal is processed to generate a second intermediate audio signal, wherein the backend adjustment unit includes an image equalizer, a parametric equalizer, and a sound effect component, and the highest gain frequency of the second intermediate audio signal is processed relative to the The same frequency point attenuation value of the audio signal is 0 dB.
  • the backend adjustment unit includes an image equalizer, a parametric equalizer, and a sound effect component that are sequentially connected; the first intermediate audio signal is received through an input end of the image equalizer, through the sound effect component The output of the second intermediate audio signal is output.
  • the processing, by the backend adjustment unit, the first intermediate audio signal to generate the second intermediate audio signal further includes: turning off the automatic volume control unit by the switch unit to enable the automatic volume The control unit exits the processing flow of the first intermediate audio signal.
  • the method before the processing, by the backend adjustment unit, the first intermediate audio signal to generate the second intermediate audio signal, the method further includes: the amplitude of the first intermediate audio signal is less than or equal to In the case of the amplitude value, the automatic volume control unit is turned off by the switch unit to cause the automatic volume control unit to exit the processing flow of the first intermediate audio signal.
  • the method further includes: adjusting, by the high and low sound adjustment unit, the The amplitude of the first intermediate audio signal to update the first intermediate audio signal.
  • the first intermediate audio signal is processed by the backend adjustment unit to generate a second intermediate audio signal, wherein the backend adjustment unit includes an image equalizer, a parameter equalizer, and a sound effect.
  • the method further includes: performing, by using a dynamic range adjustment part of the post-processing unit, the second middle The audio signal is dynamically sized to obtain the resulting audio signal.
  • the method before the acquiring the audio signal, the method further includes: acquiring a highest gain value of the backend adjustment unit; and determining the attenuation value and the gain according to the gain value and determining an attenuation value of the front end adjustment unit. Values and offset each other.
  • the embodiment of the present application further provides a sound effect adjusting apparatus, including: an audio signal acquiring module, an attenuation module, and a gain module.
  • An audio signal acquisition module configured to acquire an audio signal.
  • an attenuation module configured to attenuate the audio signal by the front end adjustment unit to obtain a first intermediate audio signal.
  • a gain module configured to process the first intermediate audio signal by a backend adjustment unit to generate a second intermediate audio signal, wherein the backend adjustment unit includes an image equalizer, a parametric equalizer, and a sound effect component,
  • the highest frequency frequency point after the processing of the second intermediate audio signal is 0 dB with respect to the same frequency point of the audio signal.
  • the method further includes: a parameter determining module configured to acquire a highest gain value of the backend adjusting unit; and to determine the attenuation value according to the gain value and determining an attenuation value of the front end adjusting unit And the gain values and cancel each other out.
  • a parameter determining module configured to acquire a highest gain value of the backend adjusting unit; and to determine the attenuation value according to the gain value and determining an attenuation value of the front end adjusting unit And the gain values and cancel each other out.
  • the embodiment of the present application further provides a television set, where the television set includes:
  • At least one processor At least one processor
  • a storage device configured to store at least one program
  • the at least one program is executed by the at least one processor such that the at least one processor implements the sound effect adjustment method described above.
  • Embodiments of the present application also provide a storage medium including computer executable instructions, wherein the computer executable instructions, when executed by a computer processor, are configured to perform the sound effect adjustment method described above.
  • FIG. 2 is a schematic structural diagram of a sound effect adjusting apparatus according to Embodiment 1 of the present application;
  • Embodiment 3 is a flowchart of a sound effect adjustment method provided in Embodiment 2 of the present application.
  • FIG. 4 is a schematic structural diagram of a sound effect adjusting apparatus provided in Embodiment 3 of the present application.
  • FIG. 5 is a schematic structural diagram of a television set according to Embodiment 4 of the present application.
  • FIG. 6 is a working principle diagram of a sound effect adjustment method according to Embodiment 2 of the present application.
  • 7A is a waveform diagram of an original audio input signal
  • 7B is a waveform diagram of a signal after the original audio input signal is first attenuated by the gain of the front end gain (0 dB) and then attenuated by the AVC (turning on the AVC function) under the condition of the conventional sound debugging method;
  • 7C is a waveform diagram of signals amplified by the AVC after the original audio input signal is attenuated under the condition of the conventional sound debugging method;
  • FIG. 8A is a waveform diagram of signals after the original audio input signal is attenuated by the front end gain (Prescaler) and is not attenuated by the AVC (the AVC function is turned off) according to the sound debugging method provided by the embodiment of the present invention;
  • FIG. 8B is a signal waveform diagram of the original audio input signal after being attenuated by AVC (turning off the AVC function) according to the sound effect debugging method provided by the embodiment of the present application.
  • FIG. 1 is a flowchart of a sound effect adjustment method according to Embodiment 1 of the present application.
  • the technical solution of this embodiment is applicable to the case of adjusting the sound effect of the television.
  • the method may be implemented by the sound adjustment device provided by the embodiment of the present application, and the device may be implemented by using at least one of software and hardware, and configured to be applied in a processor.
  • the method specifically includes the following steps S102 to S106.
  • the audio signal is attenuated by the front end adjustment unit to obtain a first intermediate audio signal.
  • the front end adjustment unit 21 disposed at the front end of the audio signal processing flow it is usually required to be attenuated by the front end adjustment unit 21 disposed at the front end of the audio signal processing flow to obtain an attenuated audio signal, that is, a first intermediate audio signal, and then The first intermediate audio signal is processed.
  • the adjustment of the high and low sounds is usually required during the playback of the audio signal.
  • the high and low sound adjustment unit 23 is disposed between the front end adjustment unit 21 and the rear end adjustment unit 24, by adjusting the first intermediate audio signal.
  • the amplitude is used to adjust the high and low frequencies of the audio signal.
  • the amplitude ratio relationship between the components of the first intermediate audio signal is the same as the amplitude ratio relationship between the components of the audio signal.
  • the amplitude relationship between the components of the first intermediate audio signal adjusted by the high and low sound adjustment unit 23 remains unchanged, so that a good sound effect can be maintained without signal distortion.
  • the first intermediate audio signal is processed by the backend adjustment unit to generate a second intermediate audio signal.
  • the backend adjustment unit includes an image equalizer, a parameter equalizer, and a sound effect component, and the highest frequency frequency point of the second intermediate audio signal processing is 0 dB with respect to the same frequency point of the audio signal.
  • the gain is usually performed before the playback of the audio signal processing.
  • the first intermediate audio signal is applied to the rear end adjustment unit 24 disposed behind the front end adjustment unit 21. Make the gain.
  • the rear end adjustment unit 24 may be disposed behind the high and low sound adjustment unit 23 to perform gain on the updated first intermediate audio signal output from the high and low sound adjustment unit 23.
  • the backend adjustment unit 24 of the present embodiment includes an image equalizer, a parametric equalizer, and a sound effect component.
  • the image equalizer, the parametric equalizer, and the sound effect component are sequentially connected, the image equalizer receives the first intermediate audio signal, and gains the same, and the parametric equalizer gains the output signal of the image equalizer, and The result is output to the sound component, and the sound component is again subjected to gain, and the second intermediate audio signal is output.
  • the highest frequency frequency point of the second intermediate audio signal processed by the back end adjustment unit 24 is 0 dB with respect to the same frequency point of the audio signal, and the second intermediate audio signal is prevented.
  • the overflow of a component relative to the corresponding portion of the audio signal causes distortion of the audio signal.
  • processing the signal amplitude in a certain range of the digital domain does not cause a problem of a decrease in the signal-to-noise ratio, and the dynamic range of the sound at a small volume becomes larger.
  • the second intermediate audio signal output by the backend adjustment unit 24 may also be post-processed to give the resulting audio signal a better sound effect. Therefore, the present embodiment is further provided with a post-processing unit 25 after the back-end adjustment unit 24, which is arranged to post-process the second audio signal.
  • the dynamic range adjustment of the second intermediate audio signal is performed by the dynamic range adjustment portion of the post-processing unit 25 to obtain a resultant audio signal, which is advantageous for preventing signal overflow, thereby effectively preventing distortion and overflow of the audio signal, and improving the audio signal. the quality of.
  • the audio signal is attenuated by the front end adjustment unit to obtain a first intermediate audio signal; and the first intermediate audio signal is processed by the back end adjustment unit to generate a second intermediate audio signal.
  • the back-end adjustment unit includes an image equalizer, a parameter equalizer and a sound effect component, and the highest gain frequency of the second intermediate audio signal is 0 dB relative to the same frequency point of the audio signal, so that the audio signal passes through Attenuation and gain, the proportional relationship between multiple components remains unchanged. Not only can the sound dynamics at a small volume be not damaged, but also the gain of each sound switch can be made larger, the effect is more obvious, the distortion is lower, and the distortion is not overflowed at a large volume.
  • processing the signal amplitude in a certain digital domain does not cause a problem of a decrease in signal-to-noise ratio.
  • the phenomenon that the audio signal is prone to distortion during transmission and processing is improved, and the technical effect of improving the sound effect of the audio signal is achieved.
  • FIG. 3 is a flowchart of a sound effect adjustment method provided in Embodiment 2 of the present application. Based on the above embodiment, the embodiment of the present application adds an automatic volume control unit to be turned off by the switch unit, so that the automatic volume control unit exits the processing flow of the first intermediate audio signal.
  • the audio signal is attenuated by the front end adjustment unit to obtain a first intermediate audio signal.
  • the automatic volume control unit is turned off by the switch unit to cause the automatic volume control unit to exit the processing flow of the first intermediate audio signal.
  • an automatic volume control unit 22 is usually provided between the front end adjustment unit 21 and the rear end adjustment unit 24.
  • the automatic volume control unit 22 is arranged to automatically adjust the first intermediate audio signal output by the front end adjustment unit 21 such that when the amplitude of a certain signal component of the first intermediate audio signal is greater than a preset value, Limited to this preset value.
  • a processing method tends to cause a change in the amplitude ratio relationship between the components, resulting in distortion of the resulting audio signal and affecting the sound effect.
  • the automatic volume control unit 22 is further connected to the switch unit 221, and the switch unit 221 is arranged to automatically turn off the automatic volume control unit 22 under the preset condition, so that the automatic volume control unit 22 exits the first intermediate audio signal.
  • the processing flow prevents the automatic volume control unit 22 from automatically limiting the amplitude of the first intermediate audio signal.
  • the automatic volume control unit 22 can be directly turned off by the switch unit 221; but when the amplitude of the first intermediate audio signal is greater than the preset amplitude, the working state of the automatic volume control unit can be maintained to lower the first intermediate The effect of the ultra-high amplitude component of the audio signal on the processing of the first intermediate audio signal.
  • the first intermediate audio signal is processed by the backend adjustment unit to generate a second intermediate audio signal.
  • the backend adjustment unit includes an image equalizer, a parameter equalizer, and a sound effect component, and the highest frequency frequency point of the second intermediate audio signal processing is 0 dB with respect to the same frequency point of the audio signal.
  • FIG. 6 is a working principle diagram of a sound effect adjustment method according to an embodiment of the present application.
  • the abscissa indicates the input level (Input Level); the ordinate indicates the output level (Output Level); the dotted line indicates the input and output amplitude of the original audio input signal when the Auto Volume Control (AVC) function is off (IfAVC off).
  • AVC Auto Volume Control
  • the solid line indicates the input/output amplitude curve of the original audio input signal when the AVC function is turned on (IfAVC on);
  • the amplitude limit (Limiter Level) is the value of the abscissa and the ordinate of the intersection of the two curves, wherein The two curves include the input and output amplitude curves of the original audio input signal when the automatic volume control function is off and the input and output amplitude curves of the original audio input signal when the automatic volume control function is on.
  • the gain (Gain) is the gain that the output amplitude can be increased after the AVC function is turned on (generally the default is 0).
  • FIG. 7A is a schematic diagram of waveforms of an original audio input signal according to Embodiment 2 of the present application.
  • the original audio input signal is two signals having different amplitudes and frequencies, and is represented by thick lines and thin lines in FIG. 7A, respectively.
  • FIG. 7B is a signal waveform diagram of the original audio input signal after being attenuated by AVC under the condition of the traditional sound debugging method
  • FIG. 7C is a signal waveform diagram of the original audio input signal after being attenuated by the AVC under the condition of the traditional sound debugging method.
  • the original audio input signals are 0.5Vrms 1kHz and 1Vrms 3kHz, respectively.
  • the thick line waveform in Fig. 7A is a 1 kHz (0.5 Vrms) signal of the Limiter Level, and the thin line waveform is a 3 kHz (1 Vrms) signal larger than the Limiter Level.
  • the traditional debugging sound effect is to reduce the gain of the front end gain (Prescaler) without attenuation (0dB).
  • the amplitude of the 1KHz signal does not change, but the amplitude of the 3 kHz signal is limited.
  • the Limiter Level (for example, 0.5 Vrms in this embodiment), it becomes 0.5 Vrms 3 kHz.
  • the amplitudes of the 1 kHz and 3 kHz signals are equal, the amplitudes of the re-amplification are still equal, for example, the two signals become 0.75 Vrms 1 kHz and 0.75 Vrms 3 kHz, respectively.
  • the original audio input signals are respectively 0.5 Vrms 1 kHz and 1 V rms 3 kHz as an example, that is, two waveform curves in FIG. 7A.
  • FIG. 8A is a waveform diagram of a signal after the original audio input signal is attenuated by the front end gain (Prescaler) and is not attenuated by the AVC (the AVC function is turned off), and FIG. 8B is an embodiment of the present application.
  • the original audio input signal is attenuated by the front end gain (Prescaler), and the signal waveform diagram is not amplified after AVC attenuation (turning off the AVC function). As shown in Fig.
  • both the 1 kHz and 3 kHz signals are attenuated, but the relative amplitude ratio does not change, for example, becomes 0.25 Vrms 1 kHz and 0.5 V rms 3 kHz.
  • the original audio input signal is attenuated by Prescaler, and after amplifying without AVC (turning off the AVC function), the signal amplitude ratio of 1KHz and 3KHz does not change, and the dynamic remains intact, for example, becomes 0.75Vrms 1kHz and 1.5Vrms 3kHz.
  • the AVC function is turned on to reduce the original audio input signal, resulting in a narrow dynamic range of the sound, so that the AVC function can be turned off.
  • the automatic volume control unit is turned off by the switch unit under the preset condition, so that the automatic volume control unit exits the processing flow of the first intermediate audio signal to prevent the automatic volume control unit from using the first intermediate audio signal.
  • a signal component is limited to a preset amplitude resulting in a narrow dynamic range of the input audio signal, which can be directly applied to devices that require sound adjustment without the need to improve the device hardware.
  • FIG. 4 is a schematic structural diagram of a sound effect adjusting apparatus according to Embodiment 3 of the present application.
  • the apparatus is for performing the sound effect adjustment method provided by any of the above embodiments, and the apparatus may be implemented by software or hardware.
  • the apparatus includes an audio signal acquisition module 11, an attenuation module 12, and a gain module 13.
  • the audio signal acquisition module 11 is configured to acquire an audio signal.
  • the attenuation module 12 is configured to attenuate the audio signal by the front end adjustment unit to obtain a first intermediate audio signal.
  • the gain module 13 is configured to process the first intermediate audio signal by a backend adjustment unit to generate a second intermediate audio signal, wherein the backend adjustment unit includes an image equalizer, a parameter equalizer, and a sound effect component,
  • the highest gain frequency point after the processing of the second intermediate audio signal is 0 dB with respect to the same frequency point of the audio signal.
  • the apparatus further includes a parameter determination module 14.
  • the parameter determination module 14 is configured to obtain the highest gain value of the backend adjustment unit; and to cancel the attenuation value and the gain value and cancel each other according to the gain value and determining the attenuation value of the front end adjustment unit.
  • the backend adjustment unit includes at least one.
  • the maximum gain of the image equalizer, parametric equalizer, and sound component is 6dB, 3dB, and 3dB, respectively, and the sum of these gain values is 12dB, so the attenuation value of the front-end adjustment unit is set to -12dB.
  • the input signal is attenuated by 12 dB after entering the front-end adjustment unit, that is, the first intermediate audio signal is attenuated by 12 dB with respect to the audio signal, and the first intermediate audio signal is sequentially attenuated in the front-end adjustment unit after the image equalizer, the parametric equalizer, and the sound effect component.
  • the highest gain frequency after processing returns to 0dB.
  • the sound effect adjusting device performs attenuation processing on the audio signal by the front end adjusting unit to obtain a first intermediate audio signal; and processes the first intermediate audio signal through the back end adjusting unit to generate a second intermediate audio signal
  • the backend adjustment unit includes an image equalizer, a parametric equalizer and a sound effect component, and the highest gain frequency point of the second intermediate audio signal processing is 0 dB with respect to the same frequency point of the audio signal, so that the audio signal is attenuated and Gain, the proportional relationship between the various components remains unchanged, which improves the phenomenon that the audio signal is prone to distortion during transmission and processing, and achieves the technical effect of improving the sound effect of the audio signal.
  • the sound effect adjusting device provided by the embodiment of the present application can perform the sound effect adjusting method provided by any embodiment of the present application, and has the corresponding functional modules and beneficial effects of the executing method.
  • FIG. 5 is a schematic structural diagram of a television set according to Embodiment 4 of the present application.
  • the television set includes a processor 301, a memory 302, an input device 303, and an output device 304.
  • the number of processors 301 in the television can be One or more, FIG. 5 is exemplified by a processor 301; the processor 301, the memory 302, the input device 303, and the output device 304 in the television can be connected by a bus or other means, and the bus is connected in FIG. For example.
  • the memory 302 is used as a computer readable storage medium, and can be used to store a software program, a computer executable program, and a module, such as a program instruction/module corresponding to the sound effect adjustment method in the embodiment of the present application (for example, the audio signal acquisition module 11 and the attenuation). Module 12 and gain module 13).
  • the processor 301 executes various functional applications and data processing of the device by executing software programs, instructions, and modules stored in the memory 302, that is, implementing the above-described sound effect adjustment method.
  • the memory 302 may mainly include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the terminal, and the like.
  • memory 302 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • memory 302 can include, in one embodiment, a memory remotely located relative to processor 301, which can be connected to the device over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Input device 303 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the device.
  • Output device 304 can include a display device such as a display screen, such as a display screen of a user terminal.
  • Embodiment 5 of the present application further provides a storage medium including computer executable instructions, which when executed by a computer processor, are configured to perform a sound effect adjustment method, the method comprising: acquiring an audio signal; The adjusting unit attenuates the audio signal to obtain a first intermediate audio signal; and processes the first intermediate audio signal by a backend adjusting unit to generate a second intermediate audio signal, wherein the backend adjustment
  • the unit includes an image equalizer, a parametric equalizer, and a sound effect component, and the highest frequency frequency of the second intermediate audio signal processed is 0 dB with respect to the same frequency point of the audio signal.
  • the storage medium containing the computer executable instructions provided by the embodiment of the present application is not limited to the method operation as described above, and may also be implemented in the sound effect adjustment method provided by any embodiment of the present application. Related operations.
  • the present application can be implemented by software and necessary general hardware, and of course can also be implemented by hardware, but in many cases, the former is a better implementation.
  • the technical solution of the present application which is essential or contributes to the related art, may be embodied in the form of a software product, which may be stored in a computer readable storage medium, such as a floppy disk of a computer, Read-Only Memory (ROM), Random Access Memory (RAM), Flash Memory (FLASH), hard disk or optical disk, etc., including a number of instructions to make a computer device (may be A personal computer, a server, or a network device, etc.) performs the sound effect adjustment method described in the various embodiments of the present application.
  • a computer readable storage medium such as a floppy disk of a computer, Read-Only Memory (ROM), Random Access Memory (RAM), Flash Memory (FLASH), hard disk or optical disk, etc.
  • each unit and module included is divided according to functional logic, but is not limited to the above-mentioned division, as long as the corresponding function can be realized;
  • the specific names of the functional units are also for convenience of distinguishing from each other and are not intended to limit the scope of protection of the present application.

Abstract

公开了一种音效调节方法以及装置、电视机及存储介质,该方法包括:获取音频信号;通过前端调节单元对音频信号进行衰减处理,以得到第一中间音频信号;通过后端调节单元对第一中间音频信号进行处理,以生成第二中间音频信号,其中,后端调节单元包括图像均衡器、参数均衡器和音效部件,第二中间音频信号处理后的最高增益频点相对于所述音频信号的相同频点衰减值为0dB。

Description

音效调节方法以及装置、电视机及存储介质
本申请要求在2018年02月05日提交中国专利局、申请号为201810110848.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及音频信号处理,例如涉及一种音效调节方法以及装置、电视机及存储介质。
背景技术
随着人们消费水平和生活水平的提高,对电视机的性能要求越来越高,比如,希望电视机音频处理部分可输出优美的声音。电视机输出的声音效果关键在于音效调节处理过程,相关的音效调节方法容易产生明显的信号失真,音质效果均较差。
发明内容
本申请实施例提供了一种音效调节方法以及装置、电视机及存储介质,不仅能改善相关的音频调节方法容易出现信号失真的现象,以提高音频质量,和电视机产品在市场的竞争力。
本申请实施例提供了一种音效调节方法,包括:获取音频信号;通过前端调节单元对所述音频信号进行衰减处理,以得到第一中间音频信号;通过后端调节单元对所述第一中间音频信号进行处理,以生成第二中间音频信号,其中,所述后端调节单元包括图像均衡器、参数均衡器和音效部件,所述第二中间音频信号处理后的最高增益频点相对于所述音频信号的相同频点衰减值为0dB。
在一实施例中,所述后端调节单元包括依次连接的图像均衡器、参数均衡器和音效部件;通过所述图像均衡器的输入端接收所述第一中间音频信号,通过所述音效部件的输出端输出第二中间音频信号。
在一实施例中,所述通过后端调节单元对所述第一中间音频信号进行处理,以生成第二中间音频信号之前还包括:通过开关单元关闭自动音量控制单元,以使所述自动音量控制单元退出对所述第一中间音频信号的处理流程。
在一实施例中,在所述通过后端调节单元对所述第一中间音频信号进行处 理,以生成第二中间音频信号之前,还包括:在第一中间音频信号的幅值小于或等于预设幅值的情况下,通过开关单元关闭自动音量控制单元,以使所述自动音量控制单元退出对所述第一中间音频信号的处理流程。
在一实施例中,所述通过开关单元关闭自动音量控制单元,以使所述自动音量控制单元退出对所述第一中间音频信号的处理流程之后,还包括:通过高低音调节单元调节所述第一中间音频信号的幅值,以更新所述第一中间音频信号。
在一实施例中,所述通过后端调节单元对所述第一中间音频信号进行处理,以生成第二中间音频信号,其中,所述后端调节单元包括图像均衡器、参数均衡器和音效部件,所述第二中间音频信号处理后的最高增益频点相对于所述音频信号的相同频点衰减值为0dB之后,还包括:通过后处理单元的动态范围调整部分对所述第二中间音频信号进行动态范围调整,以得到结果音频信号。
在一实施例中,所述获取音频信号之前,还包括:获取后端调节单元的最高增益值和;根据所述增益值和确定前端调节单元的衰减值,使所述衰减值与所述增益值和相互抵消。
本申请实施例还提供了一种音效调节装置,包括:音频信号获取模块、衰减模块以及增益模块。
音频信号获取模块,设置为获取音频信号。
衰减模块,设置为通过前端调节单元对所述音频信号进行衰减处理,以得到第一中间音频信号。
增益模块,设置为通过后端调节单元对所述第一中间音频信号进行处理,以生成第二中间音频信号,其中,所述后端调节单元包括图像均衡器、参数均衡器和音效部件,所述第二中间音频信号处理后的最高增益频点相对于所述音频信号的相同频点衰减值为0dB。
在一实施例中,还包括:参数确定模块;所述参数确定模块设置为获取后端调节单元的最高增益值和;根据所述增益值和确定前端调节单元的衰减值,使所述衰减值与所述增益值和相互抵消。
本申请实施例还提供了一种电视机,所述电视机包括:
至少一个处理器;
存储装置,设置为存储至少一个程序;
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理 器实现上述的音效调节方法。
本申请实施例还提供了一种包含计算机可执行指令的存储介质,其中,所述计算机可执行指令在由计算机处理器执行时设置为执行上述的音效调节方法。
附图概述
下面将对实施例描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例一提供的音效调节方法的流程图;
图2是本申请实施例一提供的音效调节装置的结构示意图;
图3是本申请实施例二提供的音效调节方法的流程图;
图4是本申请实施例三提供的音效调节装置的结构示意图;
图5为本申请实施例四提供的电视机的结构示意图;
图6为本申请实施例二提供的一种音效调控方法的工作原理图;
图7A为一种原始音频输入信号的波形示意图;
图7B为在传统音效调试方法条件下,原始音频输入信号先通过前端增益(Prescaler)的增益不做衰减(0dB),再经过AVC衰减(打开AVC功能)后的信号波形图;
图7C为在传统音效调试方法条件下,原始音频输入信号经过AVC衰减后再放大的信号波形图;
图8A为本申请实施例提供的音效调试方法条件下,原始音频输入信号通过前端增益(Prescaler)衰减后,没有经过AVC衰减(关闭AVC功能)后的信号波形图;
图8B为本申请实施例提供的音效调试方法条件下,原始音频输入信号没有经过AVC衰减(关闭AVC功能)后再放大的信号波形图。
具体实施方式
以下将参照本申请实施例中的附图,通过实施方式清楚、完整地描述本申请的技术方案,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例一
图1是本申请实施例一提供的音效调节方法的流程图。本实施例的技术方案适用于调节电视机音效的情况。该方法可以由本申请实施例提供的音效调节装置来执行,该装置可以采用软件和硬件中至少之一的方式实现,并配置在处理器中应用。该方法具体包括如下步骤S102-步骤S106。
在S102中,获取音频信号。
在S104中,通过前端调节单元对音频信号进行衰减处理,以得到第一中间音频信号。
如图2所示,在音频信号的处理过程中,通常需要通过设置于音频信号处理流程前端的前端调节单元21对其进行衰减,得到衰减后的音频信号,即第一中间音频信号,然后对第一中间音频信号进行处理。
在一实施例中,音频信号播放过程中通常需要进行高低音的调整,本实施例将高低音调节单元23设置于前端调节单元21和后端调节单元24之间,通过调节第一中间音频信号的幅值来调节音频信号的高低音。而且当前端调节单元21对音频信号各组成部分的衰减为同步衰减时,第一中间音频信号各组成部分之间的幅值比例关系与音频信号各组成部分之间的幅值比例关系相同,经过高低音调节单元23调节后的第一中间音频信号各组成部分之间的幅值关系也保持不变,进而可以保持良好的音效效果,不会产生信号失真。
在S106中,通过后端调节单元对第一中间音频信号进行处理,以生成第二中间音频信号。
其中,后端调节单元包括图像均衡器、参数均衡器和音效部件,所述第二中间音频信号处理后的最高增益频点相对于所述音频信号的相同频点衰减值为0dB。
为了能够使音频信号以较大的音量播放出来,在音频信号处理过程中通常在其播放前进行增益,本实施例通过设置在前端调节单元21后面的后端调节单元24对第一中间音频信号进行增益。后端调节单元24可设置在高低音调节单元23的后面,对高低音调节单元23输出的更新后的第一中间音频信号进行增益。
本实施例的后端调节单元24包括图像均衡器、参数均衡器和音效部件。在一实施例中,图像均衡器、参数均衡器和音效部件顺次连接,图像均衡器接收第一中间音频信号,并对其进行增益,参数均衡器对图像均衡器的输出信号进 行增益,并将结果输出至音效部件,音效部件再次进行增益后,输出第二中间音频信号。
为了防止音频信号出现失真,后端调节单元24输出的所述第二中间音频信号处理后的最高增益频点相对于所述音频信号的相同频点衰减值为0dB,防止第二中间音频信号的某组成部分相对于音频信号的对应部分存在溢出,使音频信号产生失真。而且在一定的数字域范围处理信号幅度,不会带来信噪比下降的问题,使小音量下的声音动态范围变得更大。
在一实施例中,经过后端调节单元24输出的第二中间音频信号往往还可以对其进行后处理,以使结果音频信号具有更好的音效效果。因此,本实施例在后端调节单元24之后还设置有后处理单元25,设置为对第二音频信号进行后处理。比如通过后处理单元25的动态范围调整部分对第二中间音频信号进行动态范围调整,以得到结果音频信号,有利于防止信号溢出,进而可以有效地防止音频信号出现失真和溢出,提高了音频信号的质量。
本实施例提供的音效调节方法,通过前端调节单元对音频信号进行衰减处理,以得到第一中间音频信号;通过后端调节单元对第一中间音频信号进行处理,以生成第二中间音频信号,后端调节单元包括图像均衡器、参数均衡器和音效部件,所述第二中间音频信号处理后的最高增益频点相对于所述音频信号的相同频点衰减值为0dB,使音频信号在经过衰减和增益,其多个组成部分之间的比例关系保持不变。不仅可以保证在小音量时的声音动态不受损,而且可以让每个音效开关的增益做的更大,效果更明显,失真更低,在大音量下不溢出失真。同时在一定的数字域范围处理信号幅度,不会带来信噪比下降的问题。改善了音频信号在传输和处理过程中容易出现失真的现象,达到了提高音频信号的音效效果的技术效果。
实施例二
图3是本申请实施例二提供的音效调节方法的流程图。本申请实施例在上述实施例的基础上,增加了通过开关单元关闭自动音量控制单元,以使自动音量控制单元退出对第一中间音频信号的处理流程。
在S102中,获取音频信号。
在S104中,通过前端调节单元对音频信号进行衰减处理,以得到第一中间音频信号。
在S105中,通过开关单元关闭自动音量控制单元,以使自动音量控制单元退出对第一中间音频信号的处理流程。
以电视机为例,音频信号处理装置中,为了防止音频信号溢出,通常在前端调节单元21和后端调节单元24之间设置有自动音量控制单元22。如图2所示,自动音量控制单元22设置为自动调整前端调节单元21输出的第一中间音频信号,使得当第一中间音频信号的某一信号组成部分的幅值大于预设值后将其限定在该预设值。但是,这样的处理方法容易导致各组成部分之间的幅值比例关系发生变化,导致结果音频信号失真,影响音效。
在一实施例中,自动音量控制单元22还连接开关单元221,开关单元221设置为在预设条件下,自动关闭自动音量控制单元22,使自动音量控制单元22退出对第一中间音频信号的处理流程,防止自动音量控制单元22自动对第一中间音频信号的幅值进行限定。一般情况下,可以直接通过开关单元221将自动音量控制单元22关闭;但在第一中间音频信号的幅值大于预设幅值时,可以保持自动音量控制单元的工作状态,以降低第一中间音频信号中幅值超高的组成部分对第一中间音频信号处理的影响。
在S106中,通过后端调节单元对第一中间音频信号进行处理,以生成第二中间音频信号。
其中,后端调节单元包括图像均衡器、参数均衡器和音效部件,所述第二中间音频信号处理后的最高增益频点相对于所述音频信号的相同频点衰减值为0dB。
如图6所示,图6为本申请实施例提供的一种音效调控方法的工作原理图。其中,横坐标表示输入幅度(Input Level);纵坐标表示输出幅度(Output Level);虚线表示自动音量控制(Auto Volume Control,AVC)功能关闭(IfAVC off)时,原始音频输入信号的输入输出幅度曲线图;实线表示AVC功能打开(IfAVC on)时,原始音频输入信号的输入输出幅度曲线图;幅度限值(Limiter Level)为两条曲线的交点的横坐标与纵坐标的数值,其中,两条曲线包括自动音量控制功能为关闭状态时的原始音频输入信号的输入输出幅度曲线和自动音量控制功能为打开状态时的原始音频输入信号的输入输出幅度曲线。其中,增益(Gain)为AVC功能打开后,输出幅度可以提升的增益(一般默认为0)。下面通过图7A-图7C的关于传统音效调试方法的效果图,以及图8A-图8C的关于本申请提供的音效调控方法的效果图举例进行说明。图7A为本申请实施例二提供的一种 原始音频输入信号的波形示意图。其中,原始音频输入信号为幅度与频率均不相同的两个信号,图7A中分别使用粗线和细线进行表示。图7B为在传统音效调试方法条件下,原始音频输入信号经过AVC衰减后的信号波形图,图7C为在传统音效调试方法条件下,原始音频输入信号经过AVC衰减后再放大的信号波形图。
例如,原始音频输入信号分别为0.5Vrms 1kHz和1Vrms 3kHz。图7A中的粗线波形为Limiter Level的1KHz(0.5Vrms)信号,细线波形为大于Limiter Level的3KHz(1Vrms)信号。如图7B所示,传统调试音效的做法,就是把前端增益(Prescaler)的增益不做衰减(0dB),原始音频输入信号经过AVC处理后,1KHz信号幅度没有变化,但3kHz信号的幅度被限制到Limiter Level(例如,本实施例中为0.5Vrms),变成了0.5Vrms 3kHz。如图7C所示,因为原始音频输入信号经过AVC处理后,1kHz和3kHz信号幅度相等,所以再放大的幅度仍然相等,例如,两个信号分别变为0.75Vrms 1kHz与0.75Vrms 3kHz。
在本实施例中,还是以原始音频输入信号分别为0.5Vrms 1kHz和1Vrms 3kHz为例进行说明,也即图7A中的两条波形曲线。图8A为本申请实施例提供的音效调试方法条件下,原始音频输入信号经过前端增益(Prescaler)衰减后,没有经过AVC衰减(关闭AVC功能)后的信号波形图,图8B为本申请实施例提供的音效调试方法条件下,原始音频输入信号经过前端增益(Prescaler)衰减后,没有经过AVC衰减(关闭AVC功能)后再放大的信号波形图。如图8A所示,原始音频输入信号经过Prescaler衰减处理后,1kHz和3kHz信号都得到衰减,但相对幅度比值没有变化,例如变成了0.25Vrms 1kHz与0.5Vrms 3kHz。如图8B所示,原始音频输入信号经过Prescaler衰减,没有经过AVC衰减(关闭AVC功能)后再放大后,1KHz和3KHz的信号幅度比值没有变化,动态保持完整,例如变成了0.75Vrms 1kHz与1.5Vrms 3kHz。
因此,如图7A-图7C以及图8A-图8B所示的波形示意图可知,打开AVC功能会对原始音频输入信号进行削减,导致声音的动态范围变窄,因此可以关闭AVC功能。
本申请实施例中,通过开关单元在预设条件下关闭自动音量控制单元,使自动音量控制单元退出对第一中间音频信号的处理流程,防止由于自动音量控制单元将第一中间音频信号的某一信号组成部分限制在预设幅值而导致输入的音频信号的动态范围变窄,可以直接应用于需要音效调节的设备上,无需对设 备硬件进行改进。
实施例三
图4是本申请实施例三提供的音效调节装置的结构示意图。该装置用于执行上述任意实施例所提供的音效调节方法,该装置可选为软件或硬件实现。如图4所示,该装置包括:音频信号获取模块11、衰减模块12和增益模块13。
音频信号获取模块11,设置为获取音频信号。
衰减模块12,设置为通过前端调节单元对所述音频信号进行衰减处理,以得到第一中间音频信号。
增益模块13,设置为通过后端调节单元对所述第一中间音频信号进行处理,以生成第二中间音频信号,其中,所述后端调节单元包括图像均衡器、参数均衡器和音效部件,所述第二中间音频信号处理后的最高增益频点相对于所述音频信号的相同频点衰减值为0dB。
在一实施例中,如图4所示,该装置还包括参数确定模块14。参数确定模块14设置为获取后端调节单元的最高增益值和;根据增益值和确定前端调节单元的衰减值,使衰减值与增益值和相互抵消。其中,后端调节单元包括至少一个。
假设图像均衡器、参数均衡器和音效部件对应的频率最大增益分别为6dB、3dB和3dB,这些增益值的和为12dB,因此将前端调节单元的衰减值设置为-12dB。那么输入信号进入前端调节单元后衰减12dB,即第一中间音频信号相对于音频信号衰减12dB,第一中间音频信号顺次图像均衡器、参数均衡器和音效部件后,将在前端调节单元衰减部分抵消,处理后的最高增益频点回到0dB。
本实施例提供的音效调节装置,通过前端调节单元对音频信号进行衰减处理,以得到第一中间音频信号;通过后端调节单元对第一中间音频信号进行处理,以生成第二中间音频信号,后端调节单元包括图像均衡器、参数均衡器和音效部件,第二中间音频信号处理后的最高增益频点相对于所述音频信号的相同频点衰减值为0dB,使音频信号在经过衰减和增益,其各个组成部分之间的比例关系保持不变,改善了音频信号在传输和处理过程中容易出现失真的现象,达到了提高音频信号的音效效果的技术效果。
本申请实施例所提供的音效调节装置可执行本申请任意实施例所提供的音效调节方法,具备执行方法相应的功能模块和有益效果。
实施例四
图5为本申请实施例四提供的电视机的结构示意图,如图5所示,该电视机包括处理器301、存储器302、输入装置303以及输出装置304;电视机中处理器301的数量可以是一个或多个,图5中以一个处理器301为例;电视机中的处理器301、存储器302、输入装置303以及输出装置304可以通过总线或其他方式连接,图5中以通过总线连接为例。
存储器302作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的音效调节方法对应的程序指令/模块(例如,音频信号获取模块11、衰减模块12以及增益模块13)。处理器301通过运行存储在存储器302中的软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现上述的音效调节方法。
存储器302可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器302可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器302可在一实施例中包括相对于处理器301远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置303可设置为接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。
输出装置304可包括显示屏等显示设备,例如,用户终端的显示屏。
实施例五
本申请实施例五还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时设置为执行一种音效调节方法,该方法包括:获取音频信号;通过前端调节单元对所述音频信号进行衰减处理,以得到第一中间音频信号;通过后端调节单元对所述第一中间音频信号进行处理,以生成第二中间音频信号,其中,所述后端调节单元包括图像均衡器、参数均衡器和音效部件,所述第二中间音频信号处理后的最高增益频点相对于所述音频信号的相同频点衰减值为0dB。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的音效调节方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(Flash Memory,FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的音效调节方法。
值得注意的是,上述音效调节装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。

Claims (11)

  1. 一种音效调节方法,包括:
    获取音频信号;
    通过前端调节单元对所述音频信号进行衰减处理,以得到第一中间音频信号;
    通过后端调节单元对所述第一中间音频信号进行处理,以生成第二中间音频信号,其中,所述后端调节单元包括图像均衡器、参数均衡器和音效部件,所述第二中间音频信号处理后的最高增益频点相对于所述音频信号的相同频点衰减值为0dB。
  2. 根据权利要求1所述的方法,其中,所述后端调节单元包括依次连接的图像均衡器、参数均衡器和音效部件;
    通过所述图像均衡器的输入端接收所述第一中间音频信号,通过所述音效部件的输出端输出所述第二中间音频信号。
  3. 根据权利要求1所述的方法,在所述通过后端调节单元对所述第一中间音频信号进行处理,以生成第二中间音频信号之前,还包括:
    通过开关单元关闭自动音量控制单元,以使所述自动音量控制单元退出对所述第一中间音频信号的处理流程。
  4. 根据权利要求1所述的方法,在所述通过后端调节单元对所述第一中间音频信号进行处理,以生成第二中间音频信号之前,还包括:
    在第一中间音频信号的幅值小于或等于预设幅值的情况下,通过开关单元关闭自动音量控制单元,以使所述自动音量控制单元退出对所述第一中间音频信号的处理流程。
  5. 根据权利要求3或4所述的方法,在所述通过开关单元关闭自动音量控制单元,以使所述自动音量控制单元退出对所述第一中间音频信号的处理流程之后,还包括:
    通过高低音调节单元调节所述第一中间音频信号的幅值,以更新所述第一中间音频信号。
  6. 根据权利要求1所述的方法,在所述通过后端调节单元对所述第一中间音频信号进行处理,以生成第二中间音频信号之后,还包括:
    通过后处理单元的动态范围调整部分对所述第二中间音频信号进行动态范围调整,以得到结果音频信号。
  7. 根据权利要求1所述的方法,在所述获取音频信号之前,还包括:
    获取所述后端调节单元的最高增益值和;
    根据所述增益值和确定所述前端调节单元的衰减值,使所述衰减值与所述增益值和相互抵消。
  8. 一种音效调节装置,包括:
    音频信号获取模块,设置为获取音频信号;
    衰减模块,设置为通过前端调节单元对所述音频信号进行衰减处理,以得到第一中间音频信号;
    增益模块,设置为通过后端调节单元对所述第一中间音频信号进行处理,以生成第二中间音频信号,其中,所述后端调节单元包括图像均衡器、参数均衡器和音效部件,所述第二中间音频信号处理后的最高增益频点相对于所述音频信号的相同频点衰减值为0dB。
  9. 根据权利要求8所述的装置,还包括:参数确定模块;
    所述参数确定模块设置为获取后端调节单元的最高增益值和;根据所述增益值和确定前端调节单元的衰减值,使所述衰减值与所述增益值和相互抵消。
  10. 一种电视机,所述电视机包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-7中任一项所述的音效调节方法。
  11. 一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时设置为执行如权利要求1-7中任一项所述的音效调节方法。
PCT/CN2018/120526 2018-02-05 2018-12-12 音效调节方法以及装置、电视机及存储介质 WO2019148975A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810110848.8A CN108307228B (zh) 2018-02-05 2018-02-05 音效调节方法、装置、电视机及存储介质
CN201810110848.8 2018-02-05

Publications (1)

Publication Number Publication Date
WO2019148975A1 true WO2019148975A1 (zh) 2019-08-08

Family

ID=62864120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120526 WO2019148975A1 (zh) 2018-02-05 2018-12-12 音效调节方法以及装置、电视机及存储介质

Country Status (2)

Country Link
CN (1) CN108307228B (zh)
WO (1) WO2019148975A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108307228B (zh) * 2018-02-05 2020-01-24 深圳创维-Rgb电子有限公司 音效调节方法、装置、电视机及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040032509A1 (en) * 2002-08-15 2004-02-19 Owens James W. Camera having audio noise attenuation capability
CN101635561A (zh) * 2009-08-19 2010-01-27 青岛海信电器股份有限公司 音频播放设备以及音量控制方法
CN105390144A (zh) * 2015-10-15 2016-03-09 广东欧珀移动通信有限公司 一种音频处理方法和音频处理装置
CN108307228A (zh) * 2018-02-05 2018-07-20 深圳创维-Rgb电子有限公司 音效调节方法、装置、电视机及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3496612B2 (ja) * 2000-02-04 2004-02-16 ヤマハ株式会社 電子ボリューム回路
CN101820563B (zh) * 2010-04-06 2014-01-29 瑞声声学科技(深圳)有限公司 扬声器保护系统
CN102404517A (zh) * 2010-09-10 2012-04-04 康佳集团股份有限公司 一种电视机装置及其伴音调试方法
CN102364931B (zh) * 2011-10-12 2013-08-07 深圳创维-Rgb电子有限公司 音量动态调整方法、装置及电视机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040032509A1 (en) * 2002-08-15 2004-02-19 Owens James W. Camera having audio noise attenuation capability
CN101635561A (zh) * 2009-08-19 2010-01-27 青岛海信电器股份有限公司 音频播放设备以及音量控制方法
CN105390144A (zh) * 2015-10-15 2016-03-09 广东欧珀移动通信有限公司 一种音频处理方法和音频处理装置
CN108307228A (zh) * 2018-02-05 2018-07-20 深圳创维-Rgb电子有限公司 音效调节方法、装置、电视机及存储介质

Also Published As

Publication number Publication date
CN108307228A (zh) 2018-07-20
CN108307228B (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
TWI535299B (zh) 低音強化系統及其方法
US11330385B2 (en) Audio device
WO2021203603A1 (zh) 啸叫抑制的方法、装置和电子设备
EP2352225A1 (en) Audio signal adjustment device and audio signal adjustment method
US10819305B2 (en) Method and device for adjusting sound quality
US8532803B2 (en) Apparatus for processing an audio signal and method thereof
US20110317841A1 (en) Method and device for optimizing audio quality
JPH06253398A (ja) オーディオ信号処理装置
US10567697B2 (en) Signal processing device and signal processing method
KR20160113224A (ko) 오디오 신호를 압축하는 오디오 압축 시스템
JPH11514823A (ja) 鮮鋭度制御
KR20160014027A (ko) 오디오 신호를 압축하는 디지털 압축기
US9628907B2 (en) Audio device and method having bypass function for effect change
WO2019148975A1 (zh) 音效调节方法以及装置、电视机及存储介质
CN114697810A (zh) 使麦克风信号静音和取消静音的方法
CA2671496A1 (en) Dynamic surround channel volume control
CN110211552B (zh) 音频处理方法及装置
US11190875B2 (en) Adjustment of dynamic range and tone mapping in audio system
US11622193B2 (en) Limiter system and method for avoiding clipping distortion or increasing maximum sound level of active speaker
US20230247358A1 (en) Signal processing method, apparatus and electronic device
CN117119358B (zh) 一种声像偏侧的补偿方法、装置、电子设备及存储设备
JP5040623B2 (ja) 自動音量補正装置
JP2007311874A (ja) ミュート回路
CN116189696A (zh) 齿音处理方法、装置、电子设备及存储介质
CN112700785A (zh) 语音信号处理方法、装置及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/12/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18903843

Country of ref document: EP

Kind code of ref document: A1