WO2019148345A1 - 一种多器械通路平台 - Google Patents

一种多器械通路平台 Download PDF

Info

Publication number
WO2019148345A1
WO2019148345A1 PCT/CN2018/074678 CN2018074678W WO2019148345A1 WO 2019148345 A1 WO2019148345 A1 WO 2019148345A1 CN 2018074678 W CN2018074678 W CN 2018074678W WO 2019148345 A1 WO2019148345 A1 WO 2019148345A1
Authority
WO
WIPO (PCT)
Prior art keywords
access platform
passage
device access
tube
platform
Prior art date
Application number
PCT/CN2018/074678
Other languages
English (en)
French (fr)
Inventor
张伦文
Original Assignee
三雷斯医疗科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三雷斯医疗科技(深圳)有限公司 filed Critical 三雷斯医疗科技(深圳)有限公司
Priority to PCT/CN2018/074678 priority Critical patent/WO2019148345A1/zh
Priority to CN201890000017.9U priority patent/CN209032467U/zh
Publication of WO2019148345A1 publication Critical patent/WO2019148345A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges

Definitions

  • the utility model relates to the field of medical instruments, in particular to a multi-device access platform.
  • transanal minimally invasive surgery TAMIS
  • transanal total mesorectal excision TaTME
  • TAMIS transanal minimally invasive surgery
  • TaTME transanal total mesorectal excision
  • the transanal approach provides surgeons and patients with many benefits, such as easier viewing and easier access to important areas for anatomy and/or resection, but primarily because of the ability to increase the "cutting edge" (distance) between the cancer site and the cancer site. And the evidence suggests that maintaining a "cutting edge” can significantly reduce cancer recurrence. This advantage alone has led to the increasing use of transanal surgery.
  • the access system on which the device is placed into the body cavity has not been specifically developed or designed to overcome the anatomical variations and physiological challenges of such surgery, so that patients can benefit from it.
  • Current access systems such as the Applied Gelpoint Path, are primarily designed for abdominal techniques and do not consider the expertise and surgical environment required for transanal surgery.
  • the use of existing access systems limits the positioning and placement of surgical instruments because such access systems are designed to be secured with sutures, and cannot vary in depth and position of lesions in the rectum or anal canal variations (lengths in individual patients) And the diameter is repositioned when it is obvious, and in addition, it is not easy to manipulate the tissue under aseptic conditions in the limited space of the anal canal.
  • the utility model provides a multi-device access platform.
  • a multi-device access platform comprising a passage platform cover and a passage tube, the passage platform cover being covered on the passage tube; the passage platform cover comprising a semi-flexible rubber top cover and a rigid annular frame fixed at Together, the semi-flexible rubber cap is provided with at least three instrument channels, the instrument channels being connected to the semi-flexible rubber cap by pleats; the rigid ring frame mating with the passage tube; the rigid ring An integrally formed inflation inlet is further provided on the frame, the inflation inlet is provided with an outlet and an inlet on opposite sides of the passage platform cover; a variable-direction ratchet is disposed on the passage tube, and the variable-direction ratchet is connected with the support ring .
  • the support ring is provided with a suture hole at a circumferential position.
  • the access platform cover is capped to the access tube by a push latch.
  • the inlet is connected to a cigarette ring injection port at one end of the passage pipe.
  • the lumen diameter of the inlet tapers in a direction into the passage tube.
  • the diameter of the lumen of the outlet gradually increases in the direction of entering the passage tube.
  • the passage tube is provided with a rubber flange
  • the passage platform cover is provided with an integrally formed tapered surface on the inner side connected to the rigid annular frame, and the tapered surface matches the rubber flange Docking.
  • the rigid ring frame is made of a hard rubber material.
  • the inflation inlet is a straight tube and is connected to an inflation valve and a joint, the joint being connected to a pneumoperitone machine.
  • the present invention also provides a system for laparoscopic surgery, comprising a multi-device access platform as described above.
  • the utility model has the beneficial effects of providing a multi-device access platform for the transanal method, wherein the insertion depth of the access tube can be adjusted during surgery, and the angle of the device entering the human body can be adjusted, thereby better positioning the access tube according to the lesion position or Work more efficiently under different rectal conditions; at the same time, provide better instrument positioning during the procedure, and if the tissue needs to be removed during surgery, it is easy to remove and install the cover with one hand.
  • Embodiment 1 is a schematic structural view of a multi-device access platform in Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural view of still another multi-device access platform in Embodiment 1 of the present invention.
  • Figure 3 is a plan view of the access platform cover of the first embodiment of the present invention.
  • FIG. 4 is a schematic view showing the internal structure of a multi-device access platform in Embodiment 1 of the present invention.
  • Fig. 5 is a schematic cross-sectional view showing a multi-device access platform in the first embodiment of the present invention.
  • Figure 6 is a cross-sectional view of the multi-device access platform of the first embodiment of the present invention.
  • Figure 7 is a partial enlarged view of a cut-away view of the multi-device access platform in the first embodiment of the present invention.
  • FIG. 8 is a schematic structural view of still another multi-device access platform in Embodiment 1 of the present invention.
  • Figure 9 is a schematic view showing the use of the surgical smoke evacuation device in the second embodiment of the present invention.
  • Figure 10 is a schematic view showing the use of another surgical smoke evacuation device in Embodiment 2 of the present invention.
  • Figure 11 is a schematic view showing the structure of a gas storage container in Embodiment 2 of the present invention.
  • Figure 12 is a schematic view showing the structure of the surgical access system in the third embodiment of the present invention.
  • the utility model provides a multi-device access platform, including a passage platform cover 1 and a passage tube 2, the passage platform cover 1 is covered on the passage tube 2;
  • the passage platform cover 1 comprises a semi-flexible
  • the rubber top cover 8 and the rigid annular frame 10 are fixed together, and the semi-flexible rubber top cover 8 is provided with at least three instrument passages 7 through which the instrument passage 7 is connected with the semi-flexible rubber top cover 8;
  • the rigid annular frame 10 is further provided with an integrally formed inflation inlet 11 which is provided with an outlet 14 and an inlet 15 on the opposite side of the passage platform cover 1;
  • the passage tube 2 is provided with a variable direction ratchet 3, which is variable The ratchet 3 is connected to the support ring 4.
  • the support ring 4 is provided with a suture hole 5 at a circumferential position; the access platform cover 1 is closed on the passage tube by pressing the latch 6; the rigid annular frame 10 is made of a hard rubber material; The inlet 11 is a straight tube and is connected to the inflation valve 12 and the joint 13, and the joint 13 is connected to the pneumoperitone machine.
  • FIG. 2 it is a multi-device access platform when the access platform cover 1 is covered by the passage tube 2.
  • the access platform cover 1 is sealed when it is closed.
  • FIG. 3 it is a top view of the access platform cover 1.
  • three instrument passages 7 are disposed on the semi-flexible rubber top cover 8. It can be understood that four or five can be set according to the needs of the operation. More instrument passages, the arrangement of the instrument passages on the semi-flexible rubber top cover are also not limited, and can be arranged according to actual needs.
  • Figure 4 is a schematic illustration of the internal structure of the multi-device access platform showing the internal lumen of the inlet 15 and outlet 14 connecting the aerated stabilization and exhaust system.
  • the lumen diameter at the inlet 15 gradually decreases in the direction of entering the access tube, so that the filtered gas used in the flue gas removal of the access tube 2 and the surgical site begins to accelerate, while the lumen diameter of the outlet 14 follows the entry.
  • the direction of the access tube is gradually increased to reduce the flow resistance between the air bag and the surgical site, thereby making the operating cavity and the air bag an integral response.
  • Figure 5 shows a cross-section of the access platform showing the smoke ring injection port 16 at the proximal connection inlet 15, which directs the filtered puff gas from the inflation and exhaust circuits.
  • the lance jet 16 directs the flow of air to the distal end to "clear" the surgical site at the distal end of the access tube 2 and the surrounding flue gas. These flue gases and residues are then removed via outlet 14 and filtered through an aerated stabilization and exhaust system for recycling.
  • Figure 5 also better shows the pleats 9, which are designed to allow the instrument channel 7 to rotate with low resistance around the central fulcrum of the pleats 9.
  • Smoke ring ejection port 16 of the air-jet in particular for causing air flow along the axis of the passage pipe 2, CO 2 stream thereby forming around the surgical site.
  • the nozzle ring opening close to the access platform cover 1 is the result of careful experimentation and testing. This position avoids the smoke ring ejection opening 16 from interfering with the instrument introduced through the instrument channel 7, and also prevents the ejection from being too close to the patient's tissue, which in extreme cases may dry or dehydrate the tissue.
  • the smoke ring injection port 16 also has the function of heating and humidifying the circulating gas, such as heating the inside and outside of the air belly machine, the gas in the gas storage container or the pump.
  • Figure 6 shows a schematic view of the cross section of the multi-device access platform.
  • the enlarged portion of the circle in the figure is shown in Figure 7.
  • the sealing connection of the passage platform cover 1 and the passage pipe 2 is such that a rubber flange 25 is provided through the passage pipe 2, and the passage platform cover 1 is disposed inside the connection with the rigid annular frame 10.
  • the integrally formed tapered surface 26, the tapered surface 26 and the rubber flange 25 are mated and matched, and can be effectively sealed.
  • the tapered face 26 and the rubber flange 25 cooperate with the internal pressurized cavity to apply additional sealing pressure to the rubber flange 25 to maintain the pneumoperitoneum and do not require a gel or foam pad to prevent leakage from the pressurized area. .
  • Figure 8 shows the access platform cover 1 overlying the access tube 2.
  • the variable-direction ratchet 3 is coupled to the support ring 4, and the support ring 4 is fully retracted, at which time the access tube 2 is inserted deepest; the support ring 4 in Fig. 2 is fully extended, at which time the insertion tube 2 has the smallest insertion depth.
  • the support ring 4 can be extended or retracted according to the anatomy, and the suture hole 5 is distributed in the circumferential position of the support ring 4, and then fixed to the patient through the suture to provide stability for the instrument under operation.
  • the multi-device access platform includes a passage platform cover 1 and a passage tube 2 for adjusting the height and the depth of penetration by a height/depth adjustment mechanism controlled by the variable-direction ratchet mechanism 3,
  • the passage platform cover 1 part consists of a semi-flexible rubber top cover 8, which carefully balances the elasticity and rigidity so that it can maintain the in-situ condition while inflating and allows the user to confirm the inflation process; it allows passage through the instrument channel The fulcrum position of the instrument of 7 is not moved, and the instrument is allowed to move/rotate freely around the pivot point.
  • the semi-flexible rubber top cover 8 is provided with three or more instrument passages 7, and the connection between the instrument passages 7 and the semi-flexible rubber top cover 8 is a specially designed pleat 9 which is compared with the planar configuration of the semi-flexible rubber top cover 8. Provides more flexibility and less resistance to movement and positioning of the instrument as it passes through the sealing valve of the instrument channel 7.
  • the semi-flexible rubber top cover 8 is fixed on the rigid annular frame 10, the top end of the passage tube 2 abuts the rigid annular frame 10, and the rigid annular frame 10 has a plurality of integrally formed connecting tubes: the inflation inlet 11 is a straight tube connected to the inflation valve 12 and joint 13, the joint 13 is connected to a conventional pneumothorax; the opposite side of the inflated inlet 11 is an outlet 14 and an inlet 15, which form an outflow portion of the gas-filled stabilization and flue gas filtration system, which is used later.
  • the multi-device access platform provided by the utility model can be applied to a system for laparoscopic surgery or other operations.
  • the multi-device access platform of the present invention has the following advantages:
  • the multi-device access platform includes a support ring that allows the insertion depth of the access tube to be adjusted during surgery to better position the access tube depending on the location of the lesion or to work more effectively under different rectal conditions (relative to the longer or shorter rectum of the common rectum). .
  • the multi-device access platform is capable of removing and reinstalling the access platform cover, rotating and repositioning the access platform cover and instrument channels to provide better instrument positioning during the procedure and to facilitate tissue removal during surgery. Remove and install the cover with one hand.
  • the multi-device access platform has a fold at the junction of the semi-flexible rubber cap and the instrument channel, and the instrument and visualization system (laparoscopic) can move over a greater range of fulcrums while maintaining a fixed pivot point for pivoting the instrument.
  • the sealing mechanism of the multi-device access platform prevents gas leakage in the pressurized space, the rubber flange in the sealing cover presses the tapered surface, and the air pressure in the passage tube also applies additional pressure on the rubber flange to help form a completely sealed Access pipe.
  • the multi-device access platform includes an inflation inlet channel for inflation, and the other inlet and outlet are dedicated to forming a field of view smoke removal and gas circulation system.
  • the outlet passage of the multi-device access platform is specially designed as a wide-bore passage, the inlet passage is gradually narrowed, and the narrow end is connected to an injection port close to the passage platform cover to the distal end of the passage tube to guide the gas along parallel to The direction of the passage tube flows and thus forms a purge loop that diverts gases, fumes and toxic materials from the surgical site with a dedicated inflow and outflow filter system.
  • the multi-device access platform also includes a smoke ring ejection port that directs gas flow from the proximal end of the access platform cover to the distal surgical site to avoid potential risk of tissue damage within the surgical cavity. This risk is caused by the drying and cooling effects of cold gas flushing human tissue at the surgical site, such as drying and dehydration.
  • the multi-device access platform not only controls different insertion depths, but also the easy-to-remove rotatable and repositioned access platform cover, and there are three integrated ports on the access platform cover for inflation, smoke exhaust, and inflation stabilization.
  • the utility model provides a surgical smoke exhausting device, comprising a gas storage container 20, wherein the gas storage container 20 comprises an inflow filter 21 and an outflow filter 23 respectively disposed at the inlet hole and/or the outlet hole, and the inflow filtering
  • the ejector 21 and the effluent filter 23 are connected to the inflow pipe 19 and the outflow pipe 24, respectively;
  • the gas storage container 20 further includes a variable volume chamber.
  • the surgical smoke evacuation device includes a pump 22 disposed on an outflow tube 24 that connects the outflow filter 23; the pump 22 is powered by an integrated battery or power source; and the pump 22 is a variable speed pump.
  • a surgical smoke evacuation device of the present invention is shown in a schematic sectional view of a typical surgical cavity 36, and a pathological operation in which electrosurgical anatomy or coagulation is embedded in the surgical site 17 is shown.
  • the pneumoperitone machine 27 is coupled to the joint 13 of the multi-device access platform 33 via a standard sterile flexible tube 28 to expand the surgical lumen, wherein the multi-device access platform 33 is secured in the incision through the abdominal wall 32 of the patient.
  • the gas of the pneumothorax machine 27 flows through the standard sterile flexible tube 28 in the direction indicated by the gas flow direction 34 to maintain stable intra-abdominal pressure and provide for visual observation of human tissue 35 and surgical site 17, processing anatomy and removal. space.
  • the multi-device access platform 33 has three or more instrument channels 7.
  • a sealing valve is provided in the instrument channel 7, the purpose of which is to allow the surgical instrument to travel, remove and move without losing pressure within the surgical cavity 36.
  • Laparoscope 29 is placed in an instrument channel 7 for the convenience of viewing internal organs, in most cases connected to the camera and external screen for viewing by a clinician; electrosurgical head is placed in another instrument channel 7 31, which is used for cutting and solidifying tissue by cutting and solidifying with high frequency heat.
  • the electrosurgical electrosurgical head 31 When the electrosurgical electrosurgical head 31 is in contact with tissue during surgery, these instruments will form a stream of smoke and vaporized tissue that will obscure the surgeon's field of view and adhere to the laparoscope 29.
  • a cutting instrument 30 placed in the instrument channel 7, which can also be a grasping device for manipulating, retracting and moving tissue.
  • the pneumoperitone machine 27 will measure the pressure of both the surgical cavity 36 and the gas storage container 20, and the effective volume of the surgical cavity 36 can be more effective in stabilizing the intra-abdominal pressure by increasing the external gas storage, thus eliminating the description of Boyle's law
  • the effect of the anatomy, particularly the abdominal wall 32 and other flexible structures that may oscillate or bulge, is effectively stabilized because the pneumothorax machine 27 maintains a stable pressure and compensates for pressure loss by leakage of the instrument in and out of the instrument channel 7 and physiological absorption of the gas.
  • the gas storage container 20 is connected to the other outflow filter 23 that flows out from the inside, and the gas enters the pump 22 embedded in the outflow pipe 24 via the flexible pipe through the outflow filter 23, and then enters the multi-device access platform 33 via the connector. .
  • Connecting the pump motor 18 to push the pump 22 promotes gas flow into the surgical site 17, and completes the helium reflux while flowing the gas containing smoke and harmful smoke in its circulation path toward the filtered gas storage container 20.
  • the completion of the loop creates a stable gas circulation, and the gas carrying the smoke and harmful gases is filtered and returned through the inflow filter 21 and the outflow filter 23, thereby creating a clear line of sight and a smoke-free environment to complete the surgery, and combining
  • the stabilizing effect of the gas storage container 20 creates a stable surgical site and instrument that does not bulge.
  • a more conventional laparoscopic approach is shown: using a standard laparoscopic trocar instrument channel 7 to access the abdomen or surgical lumen.
  • a pneumoperitoneum is formed such that a pneumoperitone 27, which typically provides carbon dioxide gas, is insufflated to the surgical lumen 36 via a standard sterile flexible tubing 28 and is connected to a Luer connector or fitting located on the laparoscopic orifice housing. 13.
  • the gas will enter the surgical site 17, and a pressure of 10-20 mmHg is typically set depending on the condition of the patient.
  • the puff machine 27 maintains a steady pressure as quickly as possible to compensate for pressure loss due to leakage or absorption through other orifices and instruments to prevent excessive pressure or excessive absorption of gas into surrounding tissues and organs.
  • two or more additional laparoscopic instrument channels 7 are positioned to facilitate easy contact and direct viewing of the instrument in order to initiate operational anatomy or electrotherapy of the tissue and lesions of the surgery.
  • the position of the visualization laparoscope 29 and in this case the electrosurgical electrosurgical head 31 or the grasping or cutting instrument 30 will vary during the procedure, wherein the instrument channel 7 is more fixed by contact with the puncture at the surgical site 17 to contact Lesion.
  • the surgeon can choose to connect only the insufflation pressure or connect only the exhaust circuit or both if you notice the swelling or movement of the tissue, as follows:
  • Blowing is stable: one end of the inflow tube 19 is connected to the outlet 14 of the instrument channel 7, and the other end is connected to the inflow filter 21 and into the gas storage container 20, in combination with the volume of the gas storage container 20 and the increased effective volume of the surgical site 17 volume. Will stabilize the pneumoperitoneum. If smoke removal and stabilization are desired after the blow has stabilized, the effluent filter 23 connects the inlet connection with the outlet tube 24 of the pump 22 to the inlet 15 of the instrument channel 7, initiating the pump motor 18 to promote gas flow and complete the degassing loop. The smoke and steam are transferred from the surgical site 17 via a filtered and activated circulatory system.
  • Fig. 11 is an illustration of an expandable volume gas storage container 20, in which case the expandable volume reservoir 20 is shown coupled to a filter, wherein 19 represents an inflow tube and 24 represents an outflow tube.
  • the variable volume gas storage container 20 can be fabricated from a variety of materials, such as medical grade plastics, cellophane, or biodegradable plastic materials to aid in handling and avoid environmental contamination. It is also possible to include at least one air bag, which is separated from the adjacent second air bag 37 by a pressure-sealed zipper wire 38 (which is opened by the slide zipper 39) and is separately sealed, so that the air bag 37 starts There is a certain volume, and the effective volume is gradually increased as the zipper line is gradually opened.
  • a pressure-sealed zipper wire 38 which is opened by the slide zipper 39
  • the object of the present invention is to provide a surgical smoke evacuation device which can ensure stable pressure during operation, minimize movement of the cavity or cavity wall, thereby creating a stable surgical environment, and at the same time allowing the pneumoperitone machine to be safe and effective in the cavity.
  • the insufflation of the gas flows regardless of the size of the cavity and the amount of leakage during the operation.
  • Energy source instruments for laparoscopic procedures such as electrocautery, laser systems, and ultrasonic scalpels, produce gaseous by-products of aerosols, including viable and non-viable cellular material.
  • This surgical smoke can obscure the surgical field and can adversely affect the human body.
  • Most laparoscopic surgeons focus on maintaining a good view of the surgical field, most commonly releasing or discharging smoke into the operating room environment.
  • Some medical centers use filters for surgical smog, but these filters focus on removing smoke to keep the surgeon's view, rather than protecting the health of the personnel inside the surgical facility.
  • the surgeon will periodically discharge the effluent to the atmosphere by opening and closing the laparoscopic access port (trocar) or its valve, or in some cases, connecting the access port to a dedicated A smoke removal system that effectively removes smoke from the abdomen into specially designed and filtered containers.
  • Another object of the present invention is to create a system that removes the smoke generated during laparoscopic surgery regardless of the size of the surgical cavity and does not affect the operational safety of the pneumoperitone machine used.
  • Yet another object of the present invention is to solve the two separate but related problems of simultaneous evacuation while maintaining a stable belly during insufflation in a simple and cost effective manner.
  • a surgical access system comprising an insufflation device, an instrument access platform into the surgical site as described in embodiment 1, and a surgical smoke evacuation device as described in embodiment 2; the access platform having an outlet and an inlet connected to the surgical row
  • the air storage bag or the gas storage container of the smoke device stabilizes the inflation in the system; the gas storage container circulates the smoke by means of an integrated battery or a power supply pump, and clears the visual path through the filtering system to prevent potentially harmful particulate smoke. Recycling.
  • the insufflation device in the surgical access system is a pneumoperitoneum, and more preferably a pulsed pneumoperitoneum.
  • the access platform or surgical smoke evacuation device in the system can function independently of each other.
  • the multi-device access platform provides improved access through natural or artificial incisions, allowing the depth of access to the lumen or incision to be adjusted and fixed as needed, facilitating manipulation of instruments and visualization equipment, such as multi-device access platforms
  • the pleats placed around the instrument channel on the access platform cover make laparoscopic and laparoscopic instruments (scissors, grasping forceps, and endoscopic surgical instruments) easier to operate, and use a secure and easily controlled push latch
  • the access platform cover is easy to fix and disassemble.
  • the system is capable of rotating the access platform cover during placement or during surgery, and the user can flexibly adjust to the surgical condition, patient anatomy, or user preferences.
  • any of the multi-device access platform and the surgical smoke evacuation device in the surgical access system can be used to maintain the pneumoperitoneum and/or smoke exhaust independently of the conventional laparoscopic channel (sometimes referred to as a trocar).
  • the conventional laparoscopic channel sometimes referred to as a trocar.
  • the gas storage container 20 can also achieve complete pneumoperitoneum stabilization.
  • the outlet 14 of the multi-device access platform is coupled to a silica gel or other inflow tube 19 having a similar soft lumen, and the inflow tube 19 delivers gas and toxic fumes to the gas storage container 20, the gas storage container 20
  • the primary function is the principle explained in Example 1 to inflate and pressurize the cavity by increasing and expanding the effective volume.
  • the gas containing microorganisms and carbonization upon entry enters the inflow filter 21 through the inflow pipe 19 to filter the gas and the smoke stream, and then is sent to the gas storage container 20, and the filtered gas is then passed through the outflow filter 23, at the battery or the power source.
  • the dedicated pump 22 (shown with a separate pump, which can be disposable or reusable) is connected to the inlet 15 of the multi-device access platform through the silicone outflow tube 24, and the gas is sprayed on the multi-device access platform. Under the acceleration effect of the mouth, the flue gas around the surgical site at the distal end of the access tube of the instrument access platform is removed. This process allows the smoke generated by electrosurgery to circulate continuously through the smoke evacuation and filtration system of the surgical access system, while at the same time maintaining a stable pneumoperitoneum.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Endoscopes (AREA)
  • Surgical Instruments (AREA)

Abstract

本实用新型提供一种多器械通路平台,包括通路平台封盖和通路管,所述通路平台封盖盖合在所述通路管上;所述通路平台封盖上包括半柔性橡胶顶盖和刚性环形框固定在一起,所述半柔性橡胶顶盖上设置至少三个器械通道,所述器械通道通过褶皱与所述半柔性橡胶顶盖连接;所述刚性环形框与所述通路管匹配对接;所述刚性环形框上还设置一体成型的充气入口,所述充气入口在所述通路平台封盖的对侧设置出口和入口;所述通路管上设置可变向棘轮,所述可变向棘轮与支撑环连接。手术中通路管插入深度能够调整和器械进入人体的角度可以调整,从而根据病变位置更好地定位通路管或在不同直肠条件下更有效的工作。

Description

一种多器械通路平台 技术领域
本实用新型涉及医疗器械领域,尤其涉及一种多器械通路平台。
背景技术
在经肛门微创手术(TAMIS)和经肛门全直肠系膜切除术(TaTME)期间,大部分手术通过经由肛门和肛管进入直肠和下结肠的方式进行。经肛方法为外科医生和患者提供许多好处,例如更容易观察、更容易进入重要部位来进行解剖和/或切除,但主要是因为能够增加与癌症部位之间的“切缘”(距离),而证据表明维持“切缘”可以显著减少癌症复发。仅这一优势已经让经肛手术越来越多的被使用。然而,器械赖以进入人体体腔的通路系统,尚未得到专门地开发或设计,来克服这种手术带来的解剖变异和生理学的挑战,使患者能从中受益。目前的通路系统,例如Applied Gelpoint Path,主要是为腹腔技术设计的,没有考虑经肛手术所需要的专门技术和手术环境。使用现有通路系统会限制手术器械的定位和放置,因为此类通路系统设计上是要用缝线固定住的,不能在直肠内病变处深度和位置变化时或个别患者的肛管变异(长度和直径)明显时重新定位,另外,也不能在肛管的有限空间内很容易的在无菌状态下操纵组织。
所以,现有技术中缺乏一种专门用于经肛方法的通路平台。
发明内容
本实用新型为了解决现有技术中缺乏一种专门用于经肛方法的通路平台的问题,提供一种多器械通路平台。
为了解决上述问题,本实用新型采用的技术方案如下所述:
一种多器械通路平台,包括通路平台封盖和通路管,所述通路平台封盖盖合在所述通路管上;所述通路平台封盖上包括半柔性橡胶顶盖和刚性环形框固定在一起,所述半柔性橡胶顶盖上设置至少三个器械通道,所述器械通道通过褶皱与所述半柔性橡胶顶盖连接;所述刚性环形框与所述通路管匹配对接;所述刚性环形框上还设置一体成型的充气入口,所述充气入口在所述通路平台封盖的对侧设置出口和入口;所述通路管上设置可变向棘轮,所述可变向棘轮与支撑环连接。
优选地,所述支撑环周向位置设置缝合孔。
优选地,所述通路平台封盖通过按压闩扣盖合在所述通路管上。
优选地,所述入口通向所述通路管的一端连接有烟圈喷射口。
优选地,所述入口的管腔直径沿着进入通路管的方向逐渐减小。
优选地,所述出口的管腔直径沿着进入通路管的方向逐渐增大。
优选地,所述通路管上设置橡胶凸缘,所述通路平台封盖在与所述刚性环形框连接的内侧设置有一体成型的锥形面,所述锥形面和所述橡胶凸缘匹配对接。
优选地,刚性环形框为硬性橡胶材质。
优选地,所述充气入口是一个直管且连接着充气阀门和接头,所述接头连接气腹机。
本实用新型还提供一种腹腔镜手术的系统,包括如上任一所述的多器械通路平台。
本实用新型的有益效果为:提供一种用于经肛方法的多器械通路平台,手术中通路管插入深度能够调整,器械进入人体的角度可以调整,从而根据病变位置更好地定位通路管或在不同直肠条件下更有效的工作;同时,在手术过程中提供更好的器械定位,并且如果术中需要切除组织,便于单手移除和安装封盖。
附图说明
图1是本实用新型实施例1中多器械通路平台的结构示意图。
图2是本实用新型实施例1中又一种多器械通路平台的结构示意图。
图3是本实用新型实施例1中通路平台封盖的俯视图。
图4是本实用新型实施例1中多器械通路平台的内部结构示意图。
图5是本实用新型实施例1中多器械通路平台的截面示意图。
图6是本实用新型实施例1中多器械通路平台的切面图。
图7是本实用新型实施例1中多器械通路平台的切面图中的局部放大图。
图8是本实用新型实施例1中再一种多器械通路平台的结构示意图。
图9是本实用新型实施例2中手术排烟装置的使用示意图。
图10是本实用新型实施例2中又一种手术排烟装置的使用示意图。
图11是本实用新型实施例2中储气容器的结构示意图。
图12是本实用新型实施例3中手术通路系统的结构示意图。
其中,1-通路平台封盖,2-通路管,3-可变向棘轮,4-支撑环,5-缝合孔,6-按压闩扣,7-器械通道,8-半柔性橡胶顶盖,9-褶皱,10-刚性环形框,11-充 气入口,12-充气阀门,13-接头,14-出口,15-入口,16-烟圈喷射口,17-手术部位,18-泵电机,19-流入管,20-储气容器,21-流入过滤器,22-泵,23-流出过滤器,24-流出管,25-橡胶凸缘,26-锥形面,27-气腹机,28-标准无菌柔性管,29-腹腔镜,30-切割仪器,31-电外科电刀头,32-腹壁,33-多器械通路平台,34-气体流向,35-人体组织,36-手术腔,37-储气袋,38-拉链线,39-滑动拉链。
具体实施方式
下面结合附图通过具体实施例对本实用新型进行详细的介绍,以使更好的理解本实用新型,但下述实施例并不限制本实用新型范围。另外,需要说明的是,下述实施例中所提供的图示仅以示意方式说明本实用新型的基本构思,附图中仅显示与本实用新型中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的形状、数量及比例可为一种随意的改变,且其组件布局形态也可能更为复杂。
实施例1
如图1所示,本实用新型提供一种多器械通路平台,包括通路平台封盖1和通路管2,通路平台封盖1盖合在通路管2上;通路平台封盖1上包括半柔性橡胶顶盖8和刚性环形框10固定在一起,半柔性橡胶顶盖8上设置至少三个器械通道7,器械通道7通过褶皱9与半柔性橡胶顶盖8连接;刚性环形框10与通路管2匹配对接;刚性环形框10上还设置一体成型的充气入口11,充气入口11在通路平台封盖1的对侧设置出口14和入口15;通路管2上设置可变向棘轮3,可变向棘轮3与支撑环4连接。
在本实用新型的变通实施例中,支撑环4周向位置设置缝合孔5;通路平台封盖1通过按压闩扣6盖合在所述通路管上;刚性环形框10为硬性橡胶材质;充气入口11是一个直管且连接着充气阀门12和接头13,接头13连接气腹机。
如图2所示,是通路平台封盖1盖合在通路管2时的多器械通路平台,优选的,通路平台封盖1盖合时是密封的。
如图3所示,是通路平台封盖1的俯视图,本实施例中半柔性橡胶顶盖8上设置了三个器械通道7,可以理解的是根据手术的需要可以设置4个、5个甚至更多个的器械通道,器械通道在半柔性橡胶顶盖上的排布也不受限制,根据实 际需要排布即可。
图4是多器械通路平台的内部结构示意图,展示连接充气稳定和排烟系统的入口15和出口14的内部管腔。应注意,入口15处管腔直径沿着进入通路管的方向逐渐减小,从而使用于通路管2和手术部位的烟气清除中的过滤气体开始加速,而出口14的管腔直径沿着进入通路管的方向逐渐增大,用于减少储气袋与手术部位之间的流动阻力,从而使手术腔和储气袋成为一个整体回应。
图5展示通路平台的横截面展示近端连接入口15处的烟圈喷射口16,烟圈喷射口16引导来自充气和排烟回路的已过滤的气腹气体。烟圈喷射口16引导气流向远端循环,“清除”处于通路管2远端的手术部位和周围的烟气。这些烟气和残渣接着经由出口14去除,经过充气稳定和排烟系统过滤后再循环。图5也更好地展示出褶皱9,所述褶皱9被设计成能够让器械通道7围绕接近褶皱9的中心支点做低阻力旋转。
烟圈喷射口16的气流喷射,特别用于促使气流沿通路管2轴线运动,从而在手术部位周围形成CO 2流。烟圈喷射口靠近通路平台封盖1是仔细实验和测试的结果。该位置避免了烟圈喷射口16干扰通过器械通道7引入的器械,还防止喷射太靠近患者的组织,在极端情况下喷射到组织可能使组织干燥或脱水。烟圈喷射口16还附带加热加湿循环气体的功能,比如加热气腹机内外、储气容器内或泵内气体。
图6展示了多器械通路平台的切面示意图,图中圆圈的放大部分详见图7。如图6和图7所示,通路平台封盖1和通路管2的密封连接是通过了通路管2上设置橡胶凸缘25,通路平台封盖1在与刚性环形框10连接的内侧设置有一体成型的锥形面26,锥形面26和橡胶凸缘25匹配对接,能有效密封。锥形面26和橡胶凸缘25与内部加压空腔共同作用,给橡胶凸缘25施加额外密封压力,从而维持气腹,并且不需要凝胶或泡沫垫片来防止从加压区域的泄漏。
图8展示的是通路平台封盖1盖合在通路管2上,与图2不同的是,可变向棘轮3与支撑环4连接,支撑环4在完全缩回状态下,这时通路管2插入最深;图2中的支撑环4完全伸出状态下,这时通路管2插入深度最小。可根据解剖需要伸出或缩回的支撑环4,支撑环4周向位置分布着缝合孔5,随后将其通过缝线固定在患者处从而为手术中的器械提供稳定性。
如图1-图8所示,多器械通路平台包括通路平台封盖1和通过由可变向棘轮 机构3控制的高度/深度调整机构来调节高度和进入深度的通路管2,通路平台封盖1一部分由半柔性橡胶顶盖8构成,这个半柔性橡胶顶盖8谨慎平衡了弹性与刚度,使其在充气时既能维持原位又能让使用者确认充气过程;它使穿过器械通道7的器械的支点位置不动,同时允许器械以支点为中心自由地点动/转动。半柔性橡胶顶盖8上设有3个或更多器械通道7,这些器械通道7与半柔性橡胶顶盖8连接处是专门设计的褶皱9,其与半柔性橡胶顶盖8平面形态相比,为器械穿过器械通道7的密封阀时的移动和定位提供更多灵活性和更小的阻力。半柔性橡胶顶盖8固定在刚性环形框10上,通路管2顶端对接刚性环形框10,同时刚性环形框10上有一体成型的多个连接管:充气入口11是一个直管连接着充气阀门12和接头13,接头13再连接传统气腹机;充气入口11对侧是出口14和入口15,所述出口14形成充气稳定和烟气过滤系统的流出部分,所述入口15用于稍后在本说明书中描述的排烟回路和充气稳定系统。
本实用新型提供的多器械通路平台可以应用于腹腔镜手术的系统或其他手术中,与现有技术中的通路平台相比,本实用新型的多器械通路平台具备如下优点:
1.多器械通路平台包括支撑环使得手术中通路管插入深度能够调整,从而根据病变位置更好地定位通路管或在不同直肠条件下(相对一般直肠更长或短的直肠)更有效的工作。
2.多器械通路平台能够移除和重新安装通路平台封盖、旋转和重新定位通路平台封盖和器械通道,以在手术过程中提供更好的器械定位,并且如果术中需要切除组织,便于单手移除和安装封盖。
3.多器械通路平台的半柔性橡胶顶盖和器械通道连接处呈褶皱,仪器和可视化系统(腹腔镜)可以以支点为中心更大范围的移动,同时保持仪器枢转的固定支点。
4.多器械通路平台的密封机构防止加压空间内的气体泄漏,密封盖内橡胶凸缘紧压锥形面,通路管内的气压也使额外压力施加在橡胶凸缘上,帮助形成完全密封的通路管。
5.多器械通路平台包括一个充气入口通道充气,另外一个入口和一个出口专用于形成视野除烟和气体循环系统。
6.多器械通路平台的出口通道被特别设计成宽孔通道,入口通道则逐渐变窄,窄端连接一个靠近通路平台封盖向通路管远端喷射的喷射口,以引导气体沿着平行于通路管的方向流动,并因此形成清除循环回路,将气体,烟雾和有毒物质从手术部位转移带有专用流入和流出过滤系统的储气容器中。
7.多器械通路平台还包括烟圈喷射口,引导气体从通路平台封盖近端向远端手术部位流动,以避免手术腔内组织损伤的潜在风险。这种风险是由冷气体冲刷手术部位的人体组织时的干燥和冷却效应带来的,如干燥和脱水。
8.多器械通路平台不仅可控制不同的插入深度,易于拆卸的可旋转和重新定位的通路平台封盖,而且通路平台封盖上有三个集成口用于实现充气,排烟,和充气稳定。
实施例2
如图9所示,本实用新型提供一种手术排烟装置,包括储气容器20,储气容器20包括在入口孔和/或出口孔分别设置流入过滤器21和流出过滤器23,流入过滤器21和流出过滤器23分别连接流入管19和流出管24;储气容器20还包括体积可变的腔室。
在本实用新型的变通实施例中,手术排烟装置包括在连接所述流出过滤器23的流出管24上设置泵22;泵22采用集成电池或电源供电;泵22是可变速工作的泵。
如图9所示,以典型手术腔36的手术截面示意图展现出本实用新型的一种手术排烟装置,图中展示的是正进行电外科解剖或凝固嵌在手术部位17中的病理手术。气腹机27经由标准无菌柔性管28连接到多器械通路平台33的接头13以此来扩大手术腔,其中多器械通路平台33固定在穿过患者腹壁32的切口中。气腹机27的气体沿着气体流向34所示的方向流动穿过标准无菌柔性管28以维持稳定的腹腔内压力,并为视觉观察人体组织35和手术部位17、处理解剖和移除提供空间。各种手术器械和查看设备经由多器械通路平台33的器械通道7进入手术腔36。如前面的实施例所述,多器械通路平台33的器械通道7有三个或者更多。器械通道7中设置密封阀,密封阀的目的是使手术器械能在不损失手术腔36内的压力的情况下穿行、移除和移动。在一个器械通道7中放置腹腔镜29,这是为了方便观察内部器官,在大多数情况下,其连接到摄像头和外部屏幕以供 临床医生观察;另一个器械通道7中放置电外科电刀头31,其是利用高频热来切割和凝固而用于切割和凝固组织的。当在手术中电外科电刀头31与组织接触时,这些仪器将形成烟流和气化组织,会模糊执刀医生的视野并粘附到腹腔镜29上。还有一个器械通道7中放置切割仪器30,也可以是用于操控、缩回和移动组织的抓握器械。一旦手术腔用气腹机27供应的气体加压,气体将经由出口14向外流动且接着经由流入管19向前进入流入过滤器21并且经由流入过滤器21进入储气容器20。气腹机27将使储气容器20的压力正常化,使其与手术腔36内的压力相匹配,且储气容器20将膨胀。气腹机27将测量手术腔36和储气容器20两者的压力,并且由于增加外部储气使得手术腔36的有效体积增加能够更有效地稳定腹内压,因此消除波义耳定律所描述的影响,能有效地稳定解剖、尤其是腹壁32和其他可能振荡或鼓胀的柔性结构,因为气腹机27通过仪器进出器械通道7的泄漏和气体的生理吸收来维持稳定压力并且补偿压力损失。
储气容器20对由内部流出的其他安装流出过滤器23,气体经由流出过滤器23通过柔性管进入到内嵌地安装在流出管24上的泵22,然后经由连接件进入多器械通路平台33。连接泵电机18推动泵22会促进气体流到手术部位17中,并且完成迂回流,同时将在其循环路线内含有烟雾和有害烟流的气体朝向过滤的储气容器20流动。环路的完成创造了稳定的气体循环,携带有烟雾和有害气体的气体经由流入过滤器21和流出过滤器23过滤后返回,从而创造清晰的视线和无烟雾的环境来完成外科手术,并且结合储气容器20的稳定效果,创造了稳定的、不会鼓胀的手术部位和仪器。
现在参考图10展示出更常规的腹腔镜检查方法:使用标准腹腔镜套管针器械通道7来进入腹部或手术腔。如同常规标准技术一样,形成气腹,使通常提供二氧化碳气体的气腹机27经由标准无菌柔性管28向手术腔36吹气并且连接到位于腹腔镜孔口外罩上的鲁尔连接接头或接头13。气体将进入手术部位17,并且根据于患者的情况通常设置10-20mmHg的压力。接着,气腹机27尽快地维持稳定压力来补偿经由其它孔口和仪器的泄漏或吸收造成的压力损失,以防止过度压力或过度吸收气体进入周围组织和器官。通常两个或更多个额外腹腔镜器械通道7定位成能容易对仪器进行接触和直接观察,以便开始对手术的组织和病变进行操作解剖或电疗。视觉化腹腔镜29以及在此情况下电外科电刀头31或抓握或 切割仪器30的位置在手术过程中会有所不同,其中器械通道7通过在手术部位17的穿刺而更固定从而接触病变。
特别取决于手术的条件,外科医生可以在注意到组织的鼓胀或移动的情况下选择只连接吹气压力稳定或只连接排烟环路或这两者都连接,具体如下所述:
吹气稳定:流入管19一端连接到器械通道7的出口14,另一端连接到流入过滤器21上并进入储气容器20,结合储气容器20的体积与手术部位17体积的增大有效体积将使气腹稳定。如果在吹气稳定之后期望烟雾去除和稳定,流出过滤器23连接具有泵22的流出管24到器械通道7的入口15的入口连接件,启动泵电机18来促使气体流动并完成除气环路,使烟雾和蒸汽经由过滤且启动的循环系统从手术部位17转移。
现在参考图11,图11是可膨胀体积的储气容器20的图示,在此情况下示出所述可膨胀体积储气容器20连接到过滤器,其中19表示流入管,24表示流出管。可变体积储气容器20可采用各种材料制造,例如医用级塑料、玻璃纸或可生物降解的塑料材料,以有助于处理并避免环境污染。还可以包括至少一个储气袋,储气袋37通过压力密封的拉链线38(其通过滑动拉链39打开)与其相邻者第二个储气袋37分开且单独密封,因此储气袋37开始时有一定的体积,随着拉链线逐渐打开而逐渐增加有效体积。在此图示中,示出三个储气袋37充气,而储气袋腔第四个储气袋37保持与已经打开且连接的储气袋腔相隔开密封。如果每个储气袋腔有500mL,那么三个组合的储气袋腔将因此表示且有效增加1.5升的储气袋体积。可以理解的是,本实施例不应该视为对本实用新型的限制,只是列举其中一种使用情况。
本实用新型的目的是提供一种手术排烟装置,其能确保在手术时压力稳定,腔体或腔壁的移动最小,从而创造稳定的手术环境;同时允许气腹机在腔体内保持安全有效的吹入气体流动而无论腔体的大小和手术期间的泄漏量。
用于腹腔镜手术的能量源仪器,例如电烙装置、激光系统和超声波解剖刀,产生具有气溶胶的气体副产物,包括可存活的和不可存活的细胞物质。这种手术烟雾会使手术区模糊不清,并且会对人体产生不利的影响。大多数腹腔镜外科医生都专注于保持手术区的良好视线,最常见的是将烟雾释放或排放到手术室环境中。一些医疗中心对手术烟雾使用过滤器,但这些过滤器重在清除烟雾以保持执刀医生的视线,而不是保护手术设施内的人员健康。
在常规腹腔镜手术中,外科医生将通过打开和闭合腹腔镜进出孔口(套管针)或其阀来定期将此烟流排放到大气,或在一些情况下,将进出孔口连接到专用烟雾去除系统,所述专用烟雾去除系统有效地将烟流从腹部去除到专门设计和过滤的容器中。
在身体内的较小腔体中,当使用电外科技术时这种烟雾积聚会更进一步放大并会对一定手术的完成造成严重限制,因为外科医生的视线受损,且通常认为这种烟雾积聚严重限制了TATME或TAMIS或其它经自然孔道内镜手术技术的广泛应用。
本实用新型的另一目标是创造一种系统,无论手术腔大小如何,它都能去除在腹腔镜手术中产生的烟雾,且不影响所使用的气腹机的操作安全性。
本实用新型的又一目标是能同时以简单且具有成本效益的方式解决排烟同时又能保持吹气期间气腹稳定这两个独立但又关联的问题。
实施例3
一种手术通路系统,它包括一个吹气装置、如实施例1所述的进入手术部位的器械通路平台和如实施例2所述的手术排烟装置;通路平台有出口和入口连接着手术排烟装置的储气袋或储气容器,使系统内充气稳定;储气容器通过有集成电池或电源供电的泵来使促使烟气循环,并通过过滤系统清除视觉路径、防止潜在有害颗粒烟雾的再循环。本手术通路系统中的吹气装置是气腹机,更优选的是脉冲式气腹机。
在一些实施例中,系统中的通路平台或手术排烟装置可以独立于彼此起作用。在一个实施例中,多器械通路平台提供改进的经由自然腔道或人工切口的通路,使进入腔道或切口的深度能够根据需要调整和固定,易于操控器械和可视化装备,例如多器械通路平台放入通路平台封盖上器械通道周围的褶皱使得腹腔镜和腹腔镜器械(剪刀、抓钳和内镜外科手术器械)操作起来更容易,而且使用了一种安全又容易控制的按压闩扣使通路平台封盖容易固定和拆卸。另外,所述系统能够在放置时或手术中旋转通路平台封盖,使用者可以根据手术情况、患者解剖情况或使用者偏好灵活调整。
在另一个实施例中,手术通路系统中多器械通路平台和手术排烟装置的任意一个连接传统腹腔镜通道(有时也称为穿刺器)就可以独立用来维持气腹和/或排烟。如图12所示,通过将流入管19连接到常规脉冲式气腹机的出口,并且将流出管24连接到常规腹腔镜通道穿刺器的入口,没有流入过滤器21、流出过滤 器23和泵22的情况下,储气容器20也能实现完全的气腹稳定。
在另一个实施例中,当连接到气腹机和常规腹腔镜通道的鲁尔接头或其它接头时(替代连接到所述新型器械通道),储气容器20连同已有的流入管19、流出管24、泵22以及流入过滤器21和流出过滤器23就会形成用于常规腹腔镜手术中的排烟回路。
在再一个实施例中,多器械通路平台的出口14与硅胶或其他有类似柔软内腔的流入管19连接,流入管19将气体和有毒烟气输送到储气容器20中,储气容器20的主要功能是实施例1中解释的原理通过增加和扩张有效体积对空腔进行充气和加压。在进入时包含微生物和碳化的气体通过流入管19进入流入过滤器21对气体和烟流进行过滤,然后输送到储气容器20中,过滤后的气体接着经由流出过滤器23,在电池或电源供电的专用泵22(图示有单独的泵机,可以是一次性或重复使用的)的作用下通过硅胶流出管24连接多器械通路平台的入口15,气体在多器械通路平台的烟圈喷射口的加速效应下,清除器械通路平台的通路管远端的手术部位周围的烟气。这一过程通过手术通路系统的排烟和过滤系统使电外科手术产生的烟气能不断循环,同时又能使气腹保持稳定。
以上内容是结合具体的优选实施方式对本实用新型所作的进一步详细说明,不能认定本实用新型的具体实施只局限于这些说明。对于本实用新型所属技术领域的技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本实用新型的保护范围。

Claims (10)

  1. 一种多器械通路平台,其特征在于,包括通路平台封盖和通路管,所述通路平台封盖盖合在所述通路管上;
    所述通路平台封盖上包括半柔性橡胶顶盖和刚性环形框固定在一起,所述半柔性橡胶顶盖上设置至少三个器械通道,所述器械通道通过褶皱与所述半柔性橡胶顶盖连接;所述刚性环形框与所述通路管匹配对接;
    所述刚性环形框上还设置一体成型的充气入口,所述充气入口在所述通路平台封盖的对侧设置出口和入口;
    所述通路管上设置可变向棘轮,所述可变向棘轮与支撑环连接。
  2. 如权利要求1所述的多器械通路平台,其特征在于,所述支撑环周向位置设置缝合孔。
  3. 如权利要求1所述的多器械通路平台,其特征在于,所述通路平台封盖通过按压闩扣盖合在所述通路管上。
  4. 如权利要求1所述的多器械通路平台,其特征在于,所述入口通向所述通路管的一端连接有烟圈喷射口。
  5. 如权利要求1所述的多器械通路平台,其特征在于,所述入口的管腔直径沿着进入通路管的方向逐渐减小。
  6. 如权利要求1所述的多器械通路平台,其特征在于,所述出口的管腔直径沿着进入通路管的方向逐渐增大。
  7. 如权利要求1所述的多器械通路平台,其特征在于,所述通路管上设置橡胶凸缘,所述通路平台封盖在与所述刚性环形框连接的内侧设置有一体成型的锥形面,所述锥形面和所述橡胶凸缘匹配对接。
  8. 如权利要求1所述的多器械通路平台,其特征在于,刚性环形框为硬性橡胶材质。
  9. 如权利要求1所述的多器械通路平台,其特征在于,所述充气入口是一个直管且连接着充气阀门和接头,所述接头连接气腹机。
  10. 一种腹腔镜手术的系统,其特征在于,包括如权利要求1-9任一所述的多器械通路平台。
PCT/CN2018/074678 2018-01-31 2018-01-31 一种多器械通路平台 WO2019148345A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/074678 WO2019148345A1 (zh) 2018-01-31 2018-01-31 一种多器械通路平台
CN201890000017.9U CN209032467U (zh) 2018-01-31 2018-01-31 一种多器械通路平台及腹腔镜手术的系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/074678 WO2019148345A1 (zh) 2018-01-31 2018-01-31 一种多器械通路平台

Publications (1)

Publication Number Publication Date
WO2019148345A1 true WO2019148345A1 (zh) 2019-08-08

Family

ID=67045293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074678 WO2019148345A1 (zh) 2018-01-31 2018-01-31 一种多器械通路平台

Country Status (2)

Country Link
CN (1) CN209032467U (zh)
WO (1) WO2019148345A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116211363B (zh) * 2022-12-02 2024-03-08 上海交通大学医学院附属仁济医院 一种轨道式多角度单孔腹腔镜操作平台

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201905937U (zh) * 2010-11-24 2011-07-27 上海英诺伟微创医疗器械有限公司 腹腔微创手术隐形内镜通道
CN204468267U (zh) * 2014-11-24 2015-07-15 吕伟民 多器械通路装置
CN205006853U (zh) * 2015-08-14 2016-02-03 罗双灵 一种多器械导入套管装置
CN105769257A (zh) * 2016-01-22 2016-07-20 姚蔼晟 多器械通道脊柱内窥镜
US20170105765A1 (en) * 2014-07-08 2017-04-20 Apifix Ltd. Ratcheted spinal devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201905937U (zh) * 2010-11-24 2011-07-27 上海英诺伟微创医疗器械有限公司 腹腔微创手术隐形内镜通道
US20170105765A1 (en) * 2014-07-08 2017-04-20 Apifix Ltd. Ratcheted spinal devices
CN204468267U (zh) * 2014-11-24 2015-07-15 吕伟民 多器械通路装置
CN205006853U (zh) * 2015-08-14 2016-02-03 罗双灵 一种多器械导入套管装置
CN105769257A (zh) * 2016-01-22 2016-07-20 姚蔼晟 多器械通道脊柱内窥镜

Also Published As

Publication number Publication date
CN209032467U (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
ES2912252T3 (es) Sistemas para realizar la evacuación de humo durante procedimientos quirúrgicos laparoscópicos
US8025670B2 (en) Methods and apparatus for natural orifice vaginal hysterectomy
WO2019148346A1 (zh) 一种手术通路系统
JP6689865B2 (ja) 煙排出を伴う腹腔鏡外科手術処置のための分岐マルチルーメンチューブセット
ES2235173T3 (es) Aparato para desarrollar un espacio anatomico para procedimientos laparoscopicos.
EP2231233B1 (en) Insufflating access system
US20190307973A1 (en) Trocar Sleeve
US20060241651A1 (en) Surgical port device and associated method
WO2010088241A1 (en) Surgical access device
US10188400B2 (en) Intraluminal occluding catheter
US9486240B2 (en) Inflatable instrument for transanal minimal invasive surgery
EP3560536B1 (en) Air purifier for laparoscopic surgery
JP2010227575A (ja) 一体化通気弁
CN114344669A (zh) 冲洗吸引管及手术装置
JP2000507482A (ja) カニューレ付膨張装置
ES2358628T3 (es) Dispositivo médico inflable.
JPH11342107A (ja) 医療用腹腔鏡挿入用外套管
US20120245423A1 (en) Retention member for laparoscopic access device
WO2019148345A1 (zh) 一种多器械通路平台
WO2019148347A1 (zh) 一种手术排烟装置
CN217187392U (zh) 冲洗吸引管及手术装置
BRPI0805192A2 (pt) aperfeiçoamento em trocarte
CA2607090A1 (en) Method for distending the abdominal cavity with a liquid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903301

Country of ref document: EP

Kind code of ref document: A1