WO2019142727A1 - シリコン酸化物被覆鉄粉およびその製造方法並びにそれを用いたインダクタ用成形体およびインダクタ - Google Patents

シリコン酸化物被覆鉄粉およびその製造方法並びにそれを用いたインダクタ用成形体およびインダクタ Download PDF

Info

Publication number
WO2019142727A1
WO2019142727A1 PCT/JP2019/000616 JP2019000616W WO2019142727A1 WO 2019142727 A1 WO2019142727 A1 WO 2019142727A1 JP 2019000616 W JP2019000616 W JP 2019000616W WO 2019142727 A1 WO2019142727 A1 WO 2019142727A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron powder
silicon oxide
coated
mass
iron
Prior art date
Application number
PCT/JP2019/000616
Other languages
English (en)
French (fr)
Inventor
大輔 兒玉
後藤 昌大
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018230914A external-priority patent/JP7201417B2/ja
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to CN201980008633.8A priority Critical patent/CN111601674A/zh
Priority to KR1020207022686A priority patent/KR102376001B1/ko
Priority to US16/957,397 priority patent/US20210050132A1/en
Publication of WO2019142727A1 publication Critical patent/WO2019142727A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/12Formation of a green body by photopolymerisation, e.g. stereolithography [SLA] or digital light processing [DLP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • B22F2302/256Silicium oxide (SiO2)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a silicon oxide-coated iron powder and a method for producing the same, and a molded article for an inductor and an inductor using the same, which are suitable for producing a dust core for an inductor.
  • a powder of an iron-based metal which is a magnetic substance is formed as a green compact and used as a core of an inductor.
  • iron-based metals include powders of iron-based alloys such as Fe-based amorphous alloys containing a large amount of Si and B (Patent Document 1), Sendust of Fe-Si-Al-based, and permalloy (Patent Document 2). Carbonyl iron powder (Non-Patent Document 1) and the like are known.
  • these iron-based metal powders are compounded with an organic resin to form a paint, and are also used in the production of surface-mounted coil parts (Patent Document 2).
  • Patent Document 3 discloses a magnetic material composition in which a large particle size iron-based metal powder, a medium particle size iron-based metal powder and a fine particle size nickel-based metal powder are mixed. An inductor using a metal and a method of manufacturing the same are disclosed.
  • the reason why the nickel-based metal powder having a small particle size is mixed is to improve the degree of filling of the magnetic body by mixing powders having different particle sizes, and as a result, to increase the permeability of the inductor.
  • Patent Document 4 discloses a method of producing a soft magnetic powder coated with an insulator, but the insulator coated soft magnetic powder obtained in Patent Document 4 has a large average film thickness of the coating layer and the pressure of the magnetic powder. There is a problem that the magnetic properties deteriorate because the powder density decreases.
  • the permeability of the inductor obtained by the technique of Patent Document 3 is not so high because the permeability of the nickel-based metal powder is lower than that of the iron-based metal powder. Therefore, it is expected that an inductor having a high magnetic permeability can be obtained by mixing iron powder of a fine particle diameter, which has a magnetic permeability higher than that of a nickel-based metal.
  • iron powder of a fine particle diameter which has a magnetic permeability higher than that of a nickel-based metal.
  • there is no iron powder with a fine particle diameter of 0.8 ⁇ m or less in average particle diameter there has been a limit to improvement in permeability of the inductor.
  • iron powder and silicon oxide having a particle diameter of 0.25 to 0.80 ⁇ m, an axial ratio of 1.5 or less, and high permeability ⁇ ′ at 100 MHz.
  • a coated iron powder and a method for producing the same.
  • iron powder is manufactured by a wet method in which phosphorus-containing ions are allowed to coexist, and at that time, iron powder coated with silicon oxide containing a small amount of phosphorus is obtained.
  • the insulation property is low.
  • the present invention aims to provide a silicon oxide-coated iron powder having a small particle diameter, achieving high ⁇ ′ in a high frequency band, and having high insulation properties, and a method for producing the same. .
  • the surface of iron particles having an average particle diameter of 0.25 ⁇ m to 0.80 ⁇ m and an average axial ratio of 1.5 or less is coated with silicon oxide.
  • the P content of the iron particles is preferably 0.1% by mass or more and 1.0% by mass or less based on the mass of the iron particles, and the silicon oxide It is preferable that the green density of the green compact obtained by pressure-molding the product-coated iron powder at 64 MPa is 4.0 g / cm 3 or less.
  • silicon oxide coated iron powder in which the surface of iron particles having an average particle diameter of 0.25 ⁇ m or more and 0.80 ⁇ m or less and an average axial ratio of 1.5 or less is coated with silicon oxide. It is a manufacturing method of silicon oxide covering iron powder whose Si content is 1.0 mass% or more and 10 mass% or less, and an average particle diameter is 0.25 micrometers or more and 0.80 micrometers or less, and an average axial ratio
  • Iron powder production step of preparing iron powder consisting of iron particles having a particle size of 1.5 or less, and a mixed solvent of water and an organic substance containing water of 1% by mass or more and 40% by mass or less Slurry holding step for holding the slurry obtained by dispersing in the slurry, alkoxide addition step for dispersing the iron powder in the mixed solvent and adding the silicon alkoxide to the held slurry, and the silicon alkoxide added In the slurry
  • Iron particles The iron particles that become the core of the silicon oxide-coated iron powder of the present invention are substantially pure iron particles, except for P and other impurities that are inevitably mixed in from the manufacturing process.
  • the iron particles preferably have an average particle size of 0.25 ⁇ m or more and 0.80 ⁇ m or less and an average axial ratio of 1.5 or less.
  • the average particle diameter and the average axial ratio it is possible to achieve both large ⁇ ′ and sufficiently small tan ⁇ for the first time. If the average particle size is less than 0.25 ⁇ m, it is not preferable because ⁇ 'decreases. On the other hand, when the average particle size exceeds 0.80 ⁇ m, it is not preferable because tan ⁇ becomes high as the eddy current loss increases.
  • the average particle size is 0.30 ⁇ m or more and 0.80 ⁇ m or less, more preferably 0.31 ⁇ m or more and 0.80 ⁇ m or less, and still more preferably the average particle size is 0.40 ⁇ m or more and 0.80 ⁇ m or less It is.
  • the average axial ratio if it exceeds 1.5, it is not preferable because ⁇ 'decreases due to the increase of the magnetic anisotropy.
  • the mean axial ratio There is no lower limit in particular for the mean axial ratio, but usually, a ratio of 1.10 or more is obtained.
  • the coefficient of variation of the axial ratio is, for example, 0.10 or more and 0.25 or less.
  • individual iron particles are referred to as iron particles when they are targeted, iron particles are sometimes referred to as iron powder when the average characteristics of an assembly of iron particles are intended. is there.
  • the iron particles to be the core of the silicon oxide-coated iron powder of the present invention substantially contain P because they are produced in the coexistence of phosphorus-containing ions by a wet method as described later.
  • the average P content in iron powder composed of iron particles used in the present invention is preferably 0.1% by mass or more and 1.0% by mass or less with respect to the mass of iron powder. When the P content is out of this range, it is not preferable because it becomes difficult to produce iron particles having the above average particle size and average axial ratio.
  • the P content is more preferably 0.1% by mass to 0.7% by mass, and still more preferably 0.15% by mass to 0.4% by mass. Although the content of P does not contribute to the improvement of the magnetic properties, the content within the above range is acceptable.
  • the surface of the iron particles is coated with insulating silicon oxide by a wet coating method using a silicon alkoxide.
  • the coating method using silicon alkoxide is a method generally called a sol-gel method, and is superior in mass productivity to the dry method.
  • the silicon alkoxide is hydrolyzed, part or all of the alkoxy group is substituted with a hydroxyl group (OH group) to form a silanol derivative.
  • the silanol derivative is an organic silicon compound having a silanol group Si-OH in its molecular structure.
  • the surface of the iron powder is coated with this silanol derivative, but the coated silanol derivative takes on a polysiloxane structure by condensation or polymerization when heated, and when the polysiloxane structure is further heated, silica ( It becomes SiO 2 ).
  • silica It becomes SiO 2
  • from the silanol derivative coating in which a part of the alkoxy group which is an organic substance remains to the silica coating is generically referred to as a silicon oxide coating.
  • the content of Si contained in the silicon oxide-coated iron powder is 1.0 mass with respect to the mass of the silicon oxide-coated iron powder in order to ensure insulation and obtain high permeability ⁇ ′ in a high frequency region.
  • the content of Si Corresponds to an average film thickness of 0.5 to 8.0 nm.
  • Si content can be measured by the melt
  • the volume resistivity of the green compact measured in a state where an applied voltage of 10 V is applied to the green compact obtained by pressure forming vertically at 64 MPa is 1.0. It is preferably 10 5 ⁇ ⁇ cm or more. If the volume resistivity is less than 1.0 ⁇ 10 5 ⁇ ⁇ cm, the insulation between particles is not sufficient, the loss between the particles becomes large due to the influence of the eddy current of the eddy current, and the characteristics when used as an inductor etc. deteriorate.
  • the upper limit of the volume resistivity of the green compact is not particularly limited, but in the case of the above-mentioned content of Si, the volume resistivity of the green compact is 1.0 ⁇ 10 5 to 1.0 A product of about 10 9 ⁇ ⁇ cm can be obtained.
  • the volume resistivity increases when the thickness of the silicon oxide coating layer is increased, the silicon oxide coating is a nonmagnetic component, and the magnetic properties are deteriorated as described above.
  • the green density of the green compact obtained by pressure forming the silicon oxide-coated iron powder at 64 MPa is preferably 4.0 g / cm 3 or less. If the high magnetic permeability ⁇ ′ and the high insulation property can be obtained in a state where the green density is low, it is possible to reduce the weight and the size of the inductor.
  • the iron particles to be the core of the silicon oxide-coated iron powder of the present invention can be produced by the production method disclosed in the above-mentioned Japanese Patent Application No. 2017-134617.
  • the production method disclosed in the above-mentioned application is characterized by being carried out by a wet method in the presence of phosphorus-containing ions, and roughly classified into three types of embodiments, the above-mentioned core can be used regardless of which embodiment is used.
  • an iron powder composed of iron particles having an average particle diameter of 0.25 ⁇ m to 0.80 ⁇ m and an average axial ratio of 1.5 or less can be obtained.
  • an acidic aqueous solution containing trivalent Fe ions as a starting material of silicon oxide-coated iron oxide powder which is a precursor of silicon oxide-coated iron powder (hereinafter referred to as a raw material solution).
  • a raw material solution a precursor of silicon oxide-coated iron powder
  • trivalent Fe ion is used as the starting material instead of trivalent Fe ion
  • bivalent iron hydrate oxide or trivalent iron hydrate oxide or ferric iron hydrate oxide may be used as precipitate. Since a mixture containing magnetite and the like is formed and the shape of iron particles finally obtained varies, it is not possible to obtain iron powder and silicon oxide-coated iron powder as in the present invention.
  • acidity means that the pH of the solution is less than 7.
  • the Fe ion sources it is preferable to use water-soluble inorganic acid salts such as nitrates, sulfates and chlorides from the viewpoint of availability and cost.
  • water-soluble inorganic acid salts such as nitrates, sulfates and chlorides from the viewpoint of availability and cost.
  • Fe salts When these Fe salts are dissolved in water, Fe ions are hydrolyzed and the aqueous solution becomes acidic.
  • an alkali is added to the acidic aqueous solution containing this Fe ion for neutralization, a precipitate of hydrated iron oxide is obtained.
  • the Fe ion concentration in the raw material solution is not particularly limited in the present invention, but is preferably 0.01 mol / L or more and 1 mol / L or less. If it is less than 0.01 mol / L, the amount of precipitate obtained in one reaction is small, which is economically unpreferable. If the Fe ion concentration exceeds 1 mol / L, the reaction solution is likely to gel due to rapid precipitation of hydrated oxide, which is not preferable.
  • the phosphorus-containing ion is allowed to coexist in the precipitation of the above-mentioned hydrated oxide of iron, or the phosphorus-containing ion is added during the addition of a silane compound for coating of a hydrolysis product.
  • phosphorus-containing ions coexist in the system when the silane compound is coated.
  • soluble phosphoric acid (PO 4 3- ) salts such as phosphoric acid, ammonium phosphate, Na phosphate and their 1 hydrogen salts and 2 hydrogen salts can be used.
  • phosphate ion, dihydrogen phosphate ion, and monohydrogen phosphate ion can be present in an aqueous solution, but the form of presence is Since it depends on the pH of the aqueous solution, not the type of drug used as a phosphate ion source, the above-mentioned ions containing a phosphate group are collectively referred to as phosphate ions.
  • diphosphate pyrophosphate
  • a phosphite ion (PO 3 3- ) having a different oxidation number of P or a hypophosphite ion (PO 2 2- ) is used. It is also possible.
  • These oxide ions containing phosphorus (P) are collectively referred to as phosphorus-containing ions.
  • the amount of phosphorus-containing ions added to the raw material solution is preferably 0.003 or more and 0.1 or less in molar ratio (P / Fe ratio) to the total molar amount of Fe contained in the raw material solution.
  • P / Fe ratio When the P / Fe ratio is less than 0.003, the effect of increasing the average particle size of the iron oxide powder contained in the silicon oxide-coated iron oxide powder is insufficient, and when the P / Fe ratio exceeds 0.1 Although the reason is unclear, the effect of increasing the particle size can not be obtained.
  • the more preferable value of P / Fe ratio is 0.005 or more and 0.05 or less.
  • the mechanism by which iron particles having an average particle diameter of 0.25 ⁇ m to 0.80 ⁇ m and an average axial ratio of 1.5 or less can be obtained by the coexistence of phosphorus-containing ions is unknown, The inventors estimate that the physical properties of the silicon oxide coating layer described later, which will be described later, change because the layer contains phosphorus-containing ions.
  • the phosphorus-containing ions may be added to the raw material solution before the neutralization treatment described later, after the neutralization treatment and before the silicon oxide coating, or during the addition of the silane compound. .
  • an alkali is added to the raw material solution containing phosphorus-containing ions while being stirred by a known mechanical means, and neutralization is performed until its pH becomes 7 or more and 13 or less. Form precipitates of hydrated iron oxides.
  • the description will be mainly made based on the first embodiment. If the pH after neutralization is less than 7, it is not preferable because iron ions do not precipitate as hydrated iron oxides. If the pH after neutralization exceeds 13, hydrolysis of the silane compound added in the silicon oxide coating step described later is rapid, and coating of the hydrolysis product of the silane compound becomes nonuniform, which is also not preferable.
  • the raw material solution containing phosphorus containing ion in alkali other than the method of adding alkali to the raw material solution containing phosphorus containing ion May be adopted.
  • the value of pH as described in this specification was measured using a glass electrode based on JIS Z8802.
  • a pH standard solution it refers to a value measured by a pH meter calibrated using an appropriate buffer according to the pH range to be measured.
  • the pH described herein is a value obtained by directly reading the measurement value of the pH meter compensated by the temperature compensation electrode under reaction temperature conditions.
  • the alkali used for the neutralization may be any of hydroxides of alkali metals or alkaline earth metals, ammonia water, ammonium salts such as ammonium hydrogencarbonate, etc. It is preferable to use ammonia water or ammonium hydrogen carbonate in which impurities hardly remain when iron oxide is used as the precipitate of the substance. These alkalis may be added as a solid to the aqueous solution of the starting material, but from the viewpoint of securing the uniformity of the reaction, it is preferable to add the aqueous solution. After the end of the neutralization reaction, the slurry containing the precipitate is kept at its pH for 5 min to 24 h while stirring, and the precipitate is aged.
  • the reaction temperature at the time of neutralization treatment is not particularly limited, but is preferably 10 ° C. or more and 90 ° C. or less.
  • the reaction temperature is less than 10 ° C. or more than 90 ° C., it is not preferable in consideration of the energy cost required for temperature control.
  • an alkali is added to the raw material solution while being stirred by a known mechanical means, and neutralization is performed until the pH becomes 7 or more and 13 or less to hydrate iron oxide.
  • phosphorus-containing ions are added to the slurry containing the precipitate in the course of aging the precipitate.
  • the addition time of the phosphorus-containing ion may be immediately after the formation of the precipitate or during the ripening.
  • the aging time and reaction temperature of the precipitate in the second embodiment are the same as those in the first embodiment.
  • an alkali is added to the raw material solution while stirring by a known mechanical means, and neutralization is performed until its pH becomes 7 or more and 13 or less, thereby hydrating oxidation of iron
  • the precipitate is aged.
  • phosphorus-containing ions are added during silicon oxide coating.
  • the precipitate of hydrated iron oxide formed in the above steps is coated with a hydrolysis product of a silane compound.
  • a coating method of a hydrolysis product of a silane compound it is preferable to apply a so-called sol-gel method.
  • a slurry of a precipitate of hydrated iron oxide is a silicon compound having a hydrolyzable group, such as tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), and various silane coupling agents
  • TEOS tetraethoxysilane
  • TMOS tetramethoxysilane
  • silane compound is added to cause a hydrolysis reaction under stirring, and the resulting hydrolysis product of the silane compound coats the surface of the precipitate of hydrated iron oxide.
  • an acid catalyst or an alkali catalyst may be added, but in consideration of the treatment time, it is preferable to add those catalysts.
  • it is hydrochloric acid in the acid catalyst and ammonia in the alkali catalyst.
  • the specific procedure for coating with the hydrolysis product of the silane compound can be the same as the sol-gel method in a known process, and the total number of moles of trivalent Fe ions charged in the raw material solution and dripping into the slurry
  • the ratio of the total number of moles of Si contained in the silicon compound to be mixed (Si / Fe ratio) is 0.05 or more and 0.5 or less.
  • the reaction temperature for coating the hydrolysis product of the silane compound is 20 ° C. to 60 ° C., and the reaction time is about 1 h to 20 h.
  • a silicon compound having the above hydrolyzable group in a slurry containing the precipitate of hydrated iron oxide obtained by aging after neutralization described above The phosphorus-containing ions are simultaneously added between the start of the addition of the and the end of the addition.
  • the addition time of the phosphorus-containing ion may be simultaneous with the start of the addition of the silicon oxide having a hydrolyzable group or simultaneously with the end of the addition.
  • the precipitate of hydrated iron oxide coated with the hydrolysis product of the silane compound is separated from the slurry obtained by the above process.
  • solid-liquid separation means known solid-liquid separation means such as filtration, centrifugation, decantation and the like can be used.
  • a coagulant may be added to perform solid-liquid separation.
  • known washing means such as repulp washing can be used.
  • the precipitate of hydrated iron oxide coated with the hydrolysis product of the finally recovered silane compound is subjected to a drying treatment.
  • the said drying process aims at removing the water
  • silicon oxide which is a precursor of silicon oxide-coated iron powder
  • An object-coated iron oxide powder is obtained.
  • the atmosphere in the heat treatment is not particularly limited, but may be an air atmosphere.
  • the heating can be carried out generally in the range of 500 ° C. or more and 1500 ° C. or less. If the heat treatment temperature is less than 500 ° C., the particles do not grow sufficiently, which is not preferable. When the temperature exceeds 1500 ° C., it is not preferable because particle growth and sintering of particles occur more than necessary.
  • the heating time may be adjusted in the range of 10 minutes to 24 hours.
  • the heat treatment temperature is preferably 800 ° C. or more and 1250 ° C. or less, more preferably 900 ° C. or more and 1150 ° C. or less.
  • the hydrolysis product of the silane compound covering the precipitate of the hydrated oxide of iron is also changed to a silicon oxide.
  • the said silicon oxide coating layer also has the effect
  • the silicon oxide-coated iron oxide powder which is the precursor obtained in the above process, is heat-treated in a reducing atmosphere to obtain a silicon oxide-coated iron powder.
  • the gas forming the reducing atmosphere include hydrogen gas and a mixed gas of hydrogen gas and an inert gas.
  • the temperature of the reduction heat treatment can be in the range of 300 ° C. or more and 1000 ° C. or less. If the temperature of the reduction heat treatment is less than 300 ° C., the reduction of iron oxide becomes insufficient, which is not preferable. When the temperature exceeds 1000 ° C., the effect of reduction saturates.
  • the heating time may be adjusted in the range of 10 to 120 minutes.
  • iron powder obtained by reduction heat treatment is often subjected to stabilization treatment by gradual oxidation because the surface thereof is extremely active chemically.
  • the iron powder obtained by the method for producing iron powder according to the present invention is preferably coated with silicon oxide which is chemically inert on the surface, but a part of the surface may not be coated.
  • a stabilization treatment is applied to form an oxidation protective layer on the exposed portion of the iron powder surface.
  • the following means can be mentioned as an example.
  • the atmosphere to which the silicon oxide-coated iron powder after reduction heat treatment is exposed is replaced with an inert gas atmosphere from a reduction atmosphere, and then the oxygen concentration in the atmosphere is gradually increased, preferably 20 to 200 ° C., more preferably 60 to The oxidation reaction of the exposed portion is allowed to proceed at 100 ° C.
  • the inert gas one or more kinds of gas components selected from noble gas and nitrogen gas can be applied.
  • the oxygen-containing gas pure oxygen gas or air can be used. Steam may be introduced together with the oxygen-containing gas.
  • the oxygen concentration when the silicon oxide-coated iron powder is kept at 20 to 200 ° C., preferably 60 to 100 ° C., is finally made 0.1 to 21% by volume.
  • the introduction of the oxygen-containing gas can be performed continuously or intermittently. It is more preferable to keep the time in which the oxygen concentration is 1.0% by volume or less for 5 minutes or more at the initial stage of the stabilization step.
  • the silicon oxide-coated iron powder obtained by the above-described series of treatments can not be satisfactorily press-formed, for example, as a material for an inductor.
  • the silicon oxide so far is an auxiliary agent for obtaining iron powder by reaction as described above, and is functionally different from the coating film described later.
  • the volume resistivity of the silicon oxide coating layer is lowered by the mixture of the phosphorus-containing compound in the silicon oxide coating layer, or It is conceivable that the density of defects in the coating layer is increased by changing the physical properties of the silicon oxide coating layer.
  • aqueous alkali solution used for the dissolution treatment an industrially used ordinary aqueous alkali solution such as sodium hydroxide solution, potassium hydroxide solution, aqueous ammonia and the like can be used.
  • the pH of the treatment solution is preferably 10 or more, and the temperature of the treatment solution is preferably 60 ° C. or more and the boiling point or less.
  • the iron powder obtained by the dissolution treatment of the silicon oxide coating described above is subjected to a series of steps of the second silicon oxide coating treatment described later, but the iron powder is crushed before being subjected to the next step. It is also good.
  • By performing the pulverization it is possible to reduce the cumulative 50% particle size on a volume basis of the iron powder micro track measurement device.
  • a crushing means a known method such as a method using a crushing apparatus using media such as a bead mill or a method using a medialess crushing apparatus such as a jet mill can be adopted.
  • the particle shape of the obtained iron powder is deformed to increase the axial ratio, and as a result, the filling degree of the iron powder at the time of forming a compact in a later step is It is preferable to use a medialess pulverizer, and it is particularly preferable to carry out crushing using a jet mill pulverizer, since problems such as lowering of magnetic properties of the iron powder may occur.
  • the jet mill pulverizing apparatus refers to a pulverizing apparatus of a system in which an object to be crushed or a slurry obtained by mixing an object to be crushed and a liquid is jetted by high pressure gas and collides with a collision plate or the like.
  • a type in which the object to be crushed is jetted with high pressure gas without using a liquid is called a dry jet milling device, and a type using a slurry in which the object to be crushed and a liquid are mixed is called a wet jet milling device.
  • the object to be collided with the object to be crushed or the slurry obtained by mixing the object to be crushed and the liquid does not have to be a stationary object such as a collision plate, and the objects to be crushed sprayed with high pressure gas You may employ
  • a general dispersion medium such as pure water or ethanol
  • a wet jet mill pulverizer is used for the pulverization, a slurry after the pulverization treatment which is a mixture of the pulverized iron powder and the dispersion medium is obtained, and the dispersion medium in the slurry is dried. Crushed iron powder can be obtained.
  • a known method can be adopted as the drying method, and the atmosphere may be the atmosphere.
  • the hydrated Fe oxide surface is a kind of solid acid and behaves similarly to a weak acid as a Brnsted acid, when adding a silicon alkoxide to a slurry containing iron powder in a mixed solvent in the next step, the reactivity of the silanol derivative which is a hydrolysis product of silicon alkoxide and the iron powder surface is improved, and as a result, the uniformity of the finally formed silicon oxide coating layer is improved.
  • the content of water in the mixed solvent is preferably 1% by mass or more and 40% by mass or less. More preferably, it is 10% by mass to 35% by mass, and still more preferably 15% by mass to 30% by mass.
  • the organic solvent used for the mixed solvent it is preferable to use an aliphatic alcohol having affinity with water, such as methanol, ethanol, 1-propanol, 2-propanol, butanol, pentanol and hexanol.
  • the temperature of the slurry holding step is not particularly limited, but is preferably 20 ° C. or more and 60 ° C. or less. If the holding temperature is less than 20 ° C., the rate of hydration of the Fe oxide is slow, which is not preferable.
  • the retention time is also not particularly limited, but the conditions are appropriately selected so that the retention time is 10 minutes or more and 180 minutes or less so that the hydration reaction of the Fe compound uniformly occurs.
  • the silicon alkoxide is added while stirring the slurry obtained by the above-mentioned slurry holding step, in which iron powder is dispersed in a mixed solvent, by a known mechanical means, and then the slurry is held for a certain period of time.
  • the silicon alkoxide as described above, trimethoxysilane, tetramethoxysilane, triethoxysilane, tetraethoxysilane, tripropoxysilane, tetrapropoxysilane, tributoxysilane, tetrabutoxysilane and the like can be used.
  • the addition amount of silicon alkoxide can be set by the desired value of the volume resistivity of the green compact.
  • the alkoxide adheres almost to the surface of the iron particles.
  • the silicon alkoxide added in this step is hydrolyzed into the silanol derivative by the action of water contained in the mixed solvent.
  • the silanol derivative thus formed forms a reaction layer of the silanol derivative on the surface of the iron powder by condensation, chemical adsorption or the like.
  • the hydrolysis catalyst since the hydrolysis catalyst is not added, the hydrolysis of the silicon alkoxide slowly occurs, so that the reaction layer of the silanol derivative is considered to be uniformly formed.
  • the reaction temperature of the alkoxide addition step is not particularly limited, but is preferably 20 ° C. or more and 60 ° C. or less. If the reaction temperature is less than 20 ° C., the rate of reaction between the iron powder surface and the silanol derivative will be slow, which is not preferable.
  • the reaction time of the alkoxide addition step is not particularly limited, but conditions are suitably set such that the reaction time is 5 minutes or more and 180 minutes or less so that the reaction between the iron powder surface and the silanol derivative occurs uniformly. select.
  • [Hydrolysis catalyst addition step] In the production method of the present invention, after the reaction layer of the silanol derivative is formed on the surface of iron powder in the step of adding alkoxide, the slurry in which the iron powder is dispersed in the mixed solvent is stirred by a known mechanical means. Add a silicon alkoxide hydrolysis catalyst. In this step, the addition of the hydrolysis catalyst promotes the hydrolysis reaction of the silicon alkoxide to increase the deposition rate of the silicon oxide coating layer. The subsequent steps are the same as the film formation method by the usual sol-gel method.
  • the hydrolysis catalyst uses an alkali catalyst. Use of an acid catalyst is not preferable because iron powder dissolves.
  • Ammonia water is preferably used as the alkali catalyst in view of the fact that impurities are less likely to remain in the silicon oxide coating layer and the availability thereof.
  • the reaction temperature of the hydrolysis catalyst addition step is not particularly limited, and may be the same as the reaction temperature of the alkoxide addition step which is the previous step.
  • the reaction time of the hydrolysis catalyst addition step is not particularly limited, but a long reaction time is economically disadvantageous, so that the reaction time is 10 min or more and 180 min or less. Select as appropriate.
  • the silicon oxide-coated iron powder is recovered from the slurry containing the silicon oxide-coated iron powder obtained in the above-described series of steps using known solid-liquid separation means.
  • solid-liquid separation means known solid-liquid separation means such as filtration, centrifugation, decantation and the like can be used.
  • a coagulant may be added to perform solid-liquid separation.
  • the recovered silicon oxide-coated iron powder is washed with about 50 times the amount of pure water, and then dried in a nitrogen atmosphere at 50 ° C. to 200 ° C., for 2 hours or more, for example, 100 ° C. for 10 hours. After drying, in order to improve the magnetic properties of the magnetic material, a high temperature baking treatment may be added.
  • the particle diameter of iron particles constituting the silicon oxide-coated iron powder and the particle diameter of iron oxide particles constituting the silicon oxide-coated iron oxide powder are each coated with silicon oxide using a 10 mass% aqueous solution of sodium hydroxide Were dissolved and removed, and then determined by scanning electron microscope (SEM) observation. For SEM observation, S-4700 manufactured by Hitachi Ltd. was used. To dissolve and remove silicon oxide, place silicon oxide-coated iron powder or silicon oxide-coated iron oxide powder in a 10% by mass aqueous solution of sodium hydroxide at 60 ° C. and stir for 24 h, and then filter, wash and dry. I went there.
  • the amount of the sodium hydroxide aqueous solution was 0.8 L with respect to 5 g of silicon oxide-coated iron powder or silicon oxide-coated iron oxide powder. After dissolution and removal of the silicon oxide, SEM observation is performed, and for a certain particle, the length of the long side of the circumscribed rectangle that minimizes the area is defined as the particle diameter (long diameter) of the particle. Specifically, in an SEM photograph taken at a magnification of about 3,000 to 30,000, 300 particles in which the entire outer edge is observed are randomly selected, and their particle sizes are measured. The value was taken as the average particle size of iron particles constituting the silicon oxide-coated iron powder. In addition, the particle diameter obtained by this measurement is a primary particle diameter.
  • the length of the short side of the circumscribed rectangle that minimizes the area is called the "short diameter”
  • the ratio of the major axis / short diameter is called the “axial ratio” of the particle.
  • the “average axial ratio”, which is the average axial ratio as powder, can be determined as follows. By SEM observation, “long diameter” and “short diameter” are measured for 300 particles randomly selected, and the average value of the long diameter and the average value of the short diameter for all particles to be measured are respectively “average long diameter” and "average The ratio of the average major axis / average minor axis is defined as the “average axial ratio”. For each of the major diameter, minor diameter, and axial ratio, the variation coefficient can be calculated as an index indicating the magnitude of the variation.
  • the Si content of the starting material iron powder (uncoated product) and the silicon oxide-coated iron powder was determined by the following method.
  • the sample was weighed and dissolved with hydrochloric acid, perchloric acid was added, and heating was performed until the liquid disappeared, and then hydrochloric acid was added again to dissolve all the acid-soluble components. Thereafter, the residue mainly containing silicon dioxide was filtered off, placed in a platinum crucible, ignited in an electric furnace, and mass-measured after standing to cool.
  • hydrofluoric acid and sulfuric acid were added to dissolve silicon dioxide, and further heated to evaporate and remove silicon as silicon tetrafluoride. Thereafter, the platinum crucible was again ignited, and after standing to cool, the mass was measured, and the difference from the previously measured mass was taken as the amount of silicon dioxide.
  • the amount of silicon in the sample was calculated from the amount of silicon dioxide determined.
  • the Fe and P contents of the starting material iron powder (uncoated product) and the silicon oxide coated iron powder were determined by the following method.
  • the sample is weighed, heated and dissolved in a 100 ° C. aqueous solution in which a 36 mass% aqueous hydrogen chloride solution and a 60 mass% aqueous nitric acid solution are mixed at a volume ratio of 1: 1, the residue is filtered, and the filtrate is a volumetric flask I put it in and fixed it. After diluting this solution, Fe and P concentrations were measured by ICP emission spectroscopy (ICP-AES).
  • ICP-AES ICP emission spectroscopy
  • the residue obtained above was put together with the filter paper in a platinum crucible and ignited in an electric furnace to incinerate the filter paper, allowed to cool, and then sodium carbonate and potassium carbonate were added and melted in the electric furnace. After leaving to cool, the melt was leached into warm water, and hydrochloric acid was added to dissolve by heating. After the solution was placed in a volumetric flask and made to volume, Fe and P concentrations were measured by ICP emission spectroscopy (ICP-AES). The content of each element was determined from the ICP measurement value of the filtrate and the ICP measurement value of the solution after melting the residue.
  • ICP emission spectroscopy ICP emission spectroscopy
  • the average film thickness t of the silicon oxide is preferably 1.0 nm or more and 6.0 nm or less.
  • the average film thickness t is less than 1.0 nm, the volume resistivity of the green compact is lowered, which is not preferable. In addition, when the average film thickness t is more than 6.0 nm, it is not preferable because ⁇ ′ decreases.
  • the BH curve was measured with an applied magnetic field of 795.8 kA / m (10 kOe) using VSM (VSM-P7 manufactured by Toei Kogyo Co., Ltd.) to evaluate the coercive force Hc, saturation magnetization ⁇ s, and squareness ratio SQ.
  • VSM VSM-P7 manufactured by Toei Kogyo Co., Ltd.
  • an RF impedance analyzer manufactured by Keysight Technologies; E4990A
  • a terminal adapter manufactured by Keysight Technologies, Inc .; 42942A
  • a test fixture manufactured by Keysight Technologies, Inc .; 16454A
  • a compact having a permeability ⁇ ′ of 3.0 or more at 100 MHz can be obtained.
  • the molded product produced using the silicon oxide-coated iron powder of the present invention exhibits excellent complex magnetic permeability characteristics, and can be suitably used for applications such as the core of an inductor.
  • the BET specific surface area was determined by the BET single-point method using MACSORB MODEL-1210 manufactured by Mountech Co., Ltd.
  • a microtrack particle size distribution analyzer MT3300EXII manufactured by Microtrack Bell Inc. was used to measure the volume-based cumulative 50% particle diameter and the cumulative 90% particle diameter of the iron powder using a microtrack measurement device.
  • ethanol was used as a liquid put into the sample circulator of the measuring apparatus. Further, as a form of a slurry in which iron powder and ethanol or pure water were mixed, the slurry was stirred to such an extent that a non-uniform portion was not visually observed immediately before the supply, and was then supplied to the measuring device.
  • volume resistivity of silicon oxide-coated iron powder is measured using the powder resistance measurement unit (MCP-PD51) manufactured by Mitsubishi Chemical Analytech Co., Ltd. High resistance resistivity meter HIRESTA UP (MCP-HT450) manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • MCP-PD51 powder resistance measurement unit
  • MCP-HT450 High resistance resistivity meter HIRESTA UP
  • the volume resistivity vv was calculated by the following equation.
  • ⁇ v R ⁇ ⁇ d 2 / 4t
  • R is a measured value of volume resistance
  • d is the diameter of the inner ring of the surface electrode
  • t is the powder sample thickness.
  • the diameter d of the inner ring of the surface electrode was all 2.0 cm.
  • the green density was calculated from the sample volume and the sample weight of the green compact obtained by pressure molding at 64 MPa (20 kN).
  • Comparative Example 1 In a 5 L reaction tank, 516.24 g of pure water, 566.47 g of 99.7 mass% pure iron (III) nonahydrate, and 1.39 g of 85 mass% H 3 PO 4 as a source of phosphorus-containing ions. Was dissolved in the air with mechanical stirring using a stirring blade (Procedure 1). The pH of this solution was about 1. In this condition, the P / Fe ratio is 0.0086. In an air atmosphere, add 40.66 g of 23.47 mass% ammonia solution over 10 min (about 40 g / L) while mechanically stirring the charged solution with a stirring blade under conditions of 30 ° C .; After completion of the dropwise addition, stirring was continued for 30 minutes to age the formed precipitate.
  • the pH of the slurry containing the precipitate was about 9 (Procedure 2).
  • TEOS tetraethoxysilane
  • the precipitate was coated with the hydrolysis product of the silane compound generated by hydrolysis (Procedure 3).
  • the Si / Fe ratio is 0.18.
  • the Si / Fe ratio and P / Fe ratio of this comparative example are shown in Table 1.
  • the slurry obtained in procedure 3 was filtered, and the precipitate of the resulting hydrolyzate of the silane compound was removed as much as possible of water, dispersed again in pure water, and repulped.
  • the washed slurry was again filtered and the resulting cake was dried at 110 ° C. in air (Procedure 4).
  • the dried product obtained in Procedure 4 was heat-treated at 1050 ° C. in air using a box-type firing furnace to obtain a silicon oxide-coated iron oxide powder (Procedure 5).
  • the silicon oxide-coated iron oxide powder obtained in step 5 is placed in a ventilable bucket, and the bucket is charged into a penetration type reduction furnace and maintained at 630 ° C. for 40 minutes while flowing hydrogen gas into the furnace.
  • a reduction heat treatment was applied (Procedure 6). Subsequently, the atmosphere gas in the furnace was converted from hydrogen to nitrogen, and the temperature in the furnace was lowered to 80 ° C. at a temperature decrease rate of 20 ° C./min while nitrogen gas was flowed. Thereafter, a gas (oxygen concentration about 0.17% by volume) in which nitrogen gas and air are mixed is introduced into the furnace as the initial gas to be stabilized, so that the volume ratio of nitrogen gas / air is 125/1.
  • the oxidation protection layer was formed on the surface layer of the particles by continuously introducing volume%) into the furnace.
  • the temperature was maintained at 80 ° C., and the introduced gas flow rate was also kept approximately constant (procedure 7).
  • the silicon oxide-coated iron powder obtained in Procedure 7 was immersed in a 10% by mass aqueous solution of sodium hydroxide at 60 ° C. for 24 hours to dissolve the silicon oxide coating.
  • the obtained slurry containing iron powder was filtered by suction filtration using a membrane filter, washed with water, and then dried in nitrogen at 110 ° C. for 2 h to obtain iron powder.
  • the amount of the sodium hydroxide aqueous solution was 3.2 L with respect to 56 g of the silicon oxide-coated iron powder.
  • the SEM observation result of the iron powder obtained by this comparative example in FIG. 1 is shown.
  • the length shown by 11 white vertical lines shown in the lower right of FIG. 1 is 5 ⁇ m (the same applies to FIG. 2).
  • the measurement of the average particle diameter of iron particle, average axial ratio, a composition, BET specific surface area, and a magnetic characteristic was performed.
  • the measurement results are shown in Table 2.
  • the average particle size of iron particles constituting the obtained iron powder was 0.51 ⁇ m, and the average axial ratio was 1.27.
  • resistance measurement value R is a result below a measurement limit, and also as volume resistivity.
  • volume resistivity 9.9 ⁇ 10 4 ⁇ ⁇ cm volume resistivity 9.9 ⁇ 10 4 ⁇ ⁇ cm.
  • the volume resistivity and the density of the green compact obtained by the above method using the obtained iron powder, and the high frequency characteristics of the toroidal-shaped molded article obtained by the above method are obtained. It shows collectively in Table 2.
  • the volume resistivity of the green compact obtained in the present comparative example was a low value below the measurement limit because the iron powder was not coated with the insulating silicon oxide.
  • Example 1 A mixed solvent is prepared by adding 54.09 g of pure water and 271 g of isopropyl alcohol (IPA) in a 1 L reaction tank, and 15.00 g of iron powder obtained under the same conditions as Comparative Example 1 is added to the mixed solvent and stirred. Nitrogen was purged for 30 min at room temperature with mechanical agitation by a blade. After 30 min, the reaction solution was heated to 40 ° C. while continuing stirring and nitrogen purge. Thereafter, 9.06 g of tetraethyl orthosilicate (TEOS) was added at once in the reaction solution, and held for 10 minutes. After 10 minutes, 10.8 g of 10% by mass ammonia water was continuously added to the reaction solution over 45 minutes.
  • IPA isopropyl alcohol
  • FIG. 2 shows a result of SEM observation of iron powder recoated and removed after dissolving away silicon oxide, obtained by the above-described series of procedures.
  • the BET specific surface area, the composition, the magnetic properties, the complex permeability, the density of the green compact, and the volume resistivity were measured for the silicon oxide-coated iron powder.
  • the measurement results are shown together in Table 2.
  • the measured value R of volume resistance was 1.4 ⁇ 10 6 ( ⁇ )
  • the powder sample thickness t was 0.429 (cm).
  • Example 2 As in Example 1, using 15.00 g of iron powder obtained under the same conditions as Comparative Example 1, the conditions for coating the silicon oxide were variously changed to obtain a silicon oxide-coated iron powder. The conditions of the silicon oxide coating used in these examples are shown together in Table 1. In Example 10, the iron powder is crushed before the silicon oxide coating process. The conditions for crushing iron powder are shown below.
  • the iron powder obtained in Comparative Example 1 was mixed with pure water to produce an iron powder pure water mixed slurry containing 10% by mass of iron powder. This slurry was crushed using a jet mill pulverizer (manufactured by LIX Co., Ltd .; nano atomization device G-smasher LM-1000) to obtain a slurry after the pulverization treatment.
  • the supply rate of iron powder pure water mixed slurry was 100 ml / min, the air pressure was 0.6 MPa, and the crushing process was repeated 5 times.
  • the crushed slurry was dried in nitrogen gas at 100 ° C. for 2 h to obtain an iron powder according to Example 10.
  • the BET specific surface area, the composition, the magnetic properties, the complex permeability, the density of the green compact, and the volume resistivity were measured for the silicon oxide-coated iron powder obtained in these examples. The measurement results are shown together in Table 2.
  • Example 11 Iron powder was obtained by the same procedure as the procedure 1 to the procedure 8 of the comparative example 1 described above except that the heat treatment temperature in the air was changed to 1020.degree. About the obtained iron powder, the measurement of the average particle diameter of iron particle, average axial ratio, a composition, BET specific surface area, and a magnetic characteristic was performed. The measurement results are shown in Table 2. The iron particles constituting the obtained iron powder had an average particle size of 0.31 ⁇ m and an average axial ratio of 1.20. The obtained iron powder was mixed with pure water to prepare an iron powder pure water mixed slurry containing 10% by mass of iron powder.
  • This slurry was disintegrated using a jet mill pulverizer (Starburst Mini manufactured by Sugino Machine Co., Ltd., model number: HJP-25001) to obtain a disintegrated slurry.
  • a jet mill pulverizer Starburst Mini manufactured by Sugino Machine Co., Ltd., model number: HJP-25001
  • the pressure which pressurizes the iron powder pure-water mixed slurry was 245 Mpa, and the crushing process was repeated 10 times.
  • the crushed slurry was dried at 100 ° C. for 2 h in nitrogen gas to obtain a crushed iron powder (procedure 19).
  • a mixed solvent is prepared by charging 54.09 g of pure water and 196 g of isopropyl alcohol (IPA) in a 1 L reaction tank, 15.00 g of iron powder obtained in Procedure 19 is added to the mixed solvent, and mechanical stirring is performed with a stirring blade. The solution was purged with nitrogen for 30 minutes at room temperature while stirring. After 30 min, the reaction solution was heated to 40 ° C. while continuing stirring and nitrogen purge. Thereafter, 2.55 g of tetraethyl orthosilicate (TEOS) was added at once in the reaction solution, and held for 10 minutes. After 10 minutes, 9.4 g of ammonia water having a concentration of 10% by mass was continuously added to the reaction solution over 45 minutes.
  • IPA isopropyl alcohol
  • the reaction solution was aged for 60 minutes to carry out aging, and the surface of the iron powder was coated with the hydrolysis product of the silane compound generated by hydrolysis.
  • the conditions of the iron powder production process and the series of processes for applying the silicon oxide coating are shown together in Table 1.
  • the obtained slurry was filtered by suction filtration using a membrane filter and then washed with pure water, and the obtained iron powder cake was dried at 100 ° C. in a nitrogen atmosphere.
  • the BET specific surface area, the composition, the magnetic properties, the complex permeability, the density of the green compact, and the volume resistivity were measured for the silicon oxide-coated iron powder.
  • the measurement results are shown together in Table 2.
  • the measured value R of volume resistance was 3.9 ⁇ 10 4 ( ⁇ )
  • the powder sample thickness t was 0.381 (cm).
  • Example 12 An iron powder was obtained by the same procedure as Comparative Example 1 except that the heat treatment in the air using a box-type firing furnace was performed at 1090 ° C. Using 15.00 g of the obtained iron powder, the silicon oxide coating treatment was carried out under the same conditions as in Example 11 except that the amount of TEOS added was changed to 1.27 g, to obtain a silicon oxide-coated iron powder. . The conditions of the iron powder production process and the series of processes for applying the silicon oxide coating are shown together in Table 1. The obtained slurry was filtered by suction filtration using a membrane filter and then washed with pure water, and the obtained iron powder cake was dried at 100 ° C. in a nitrogen atmosphere.
  • the BET specific surface area, the composition, the magnetic properties, the complex permeability, the density of the green compact, and the volume resistivity were measured for the silicon oxide-coated iron powder.
  • the measurement results are shown together in Table 2.
  • the measured value R of volume resistance was 3.8 ⁇ 10 4 ( ⁇ )
  • the powder sample thickness t was 0.412 (cm).
  • Comparative Example 2 A silicon oxide-coated iron powder was obtained using the same conditions as in Example 2 except that the amount of TEOS added was 0.91 g.
  • the conditions of the silicon oxide coating used in this comparative example are shown together in Table 1.
  • the measurement results of the BET specific surface area, the composition, the magnetic properties, the complex permeability, the density of the green compact, and the volume resistivity of the silicon oxide-coated iron powder obtained in the present comparative example are also shown in Table 2.
  • the silicon oxide-coated iron powder Si content obtained in this comparative example is 0.9%, and the thickness of the silicon oxide coating layer is not sufficient, so the volume resistivity of the green compact is 9.9 ⁇ It became less than 10 4 ⁇ ⁇ cm. This volume resistivity was significantly inferior compared to that for Examples 1-10.
  • Comparative Example 3 In a 5 L reaction tank, 516.24 g of pure water, 566.47 g of 99.7 mass% pure iron (III) nonahydrate, and 1.39 g of 85 mass% H 3 PO 4 as a source of phosphorus-containing ions. Was dissolved in the air with mechanical stirring using a stirring blade (Procedure 1). The pH of this solution was about 1. In this condition, the P / Fe ratio is 0.0086. Add 40.66 g of 23.47 mass% ammonia solution over 10 min (approx. 40 g / L), while mechanically stirring this charged solution mechanically with a stirring blade under the conditions of 30 ° C.
  • the slurry obtained in procedure 3 was filtered, and the precipitate of the resulting hydrolyzate of the silane compound was removed as much as possible of water, dispersed again in pure water, and repulped.
  • the washed slurry was again filtered and the resulting cake was dried at 110 ° C. in air (Procedure 4).
  • the dried product obtained in Procedure 4 was heat-treated at 1050 ° C. in air using a box-type firing furnace to obtain a silicon oxide-coated iron oxide powder (Procedure 5).
  • the silicon oxide-coated iron oxide powder obtained in step 5 is placed in a ventilable bucket, and the bucket is charged into a penetration type reduction furnace and maintained at 630 ° C. for 40 minutes while flowing hydrogen gas into the furnace.
  • a reduction heat treatment was applied (Procedure 6). Subsequently, the atmosphere gas in the furnace was converted from hydrogen to nitrogen, and the temperature in the furnace was lowered to 80 ° C. at a temperature decrease rate of 20 ° C./min while nitrogen gas was flowed. Thereafter, a gas (oxygen concentration about 0.17% by volume) in which nitrogen gas and air are mixed is introduced into the furnace as the initial gas to be stabilized, so that the volume ratio of nitrogen gas / air is 125/1.
  • the oxidation protection layer was formed on the surface layer of the particles by continuously introducing volume%) into the furnace. During the stabilization process, the temperature was maintained at 80 ° C., and the introduced gas flow rate was also kept approximately constant (procedure 7).
  • the magnetic properties, BET specific surface area, particle diameter of iron particles, and complex magnetic permeability were measured for the silicon oxide-coated iron powder obtained by the above series of procedures. The measurement results are shown together in Table 2.
  • the silicon oxide coating of the silicon oxide-coated iron powder obtained in this comparative example contains a phosphorus-containing compound, and the volume resistivity of the green compact is 9.9 ⁇ 10 4 ⁇ ⁇ cm or less .
  • silicon powder having a small particle size, high ⁇ ′ in a high frequency band can be achieved, and silicon having high insulation properties, by applying a predetermined silicon oxide coating to the iron powder specified in the present invention It can be seen that oxide coated iron powder is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Compounds Of Iron (AREA)

Abstract

【課題】粒子径が小さく、高周波帯域において高いμ'を達成でき、なおかつ高い絶縁性を有するシリコン酸化物被覆鉄粉およびその製造方法を提供する。 【解決手段】1質量%以上40質量%以下の水を含む水と有機物の混合溶媒中に、平均粒子径が0.25μm以上0.80μm以下であり、かつ、平均軸比が1.5以下の鉄粒子からなる鉄粉を分散させたスラリーにシリコンアルコキシドを添加した後、当該シリコンアルコキシドの加水分解触媒を添加してシリコン酸化物被覆を行うことにより、高周波帯域において高いμ'を有し、かつ高絶縁性のシリコン酸化物被覆鉄粉が得られる。

Description

シリコン酸化物被覆鉄粉およびその製造方法並びにそれを用いたインダクタ用成形体およびインダクタ
 本発明は、インダクタ用の圧粉磁心の製造に適した、シリコン酸化物被覆鉄粉よびその製造方法、並びにそれを用いたインダクタ用成形体およびインダクタに関する。
 磁性体である鉄系金属の粉末は、従来、圧粉体として成形し、インダクタの磁心に用いられている。鉄系金属の例としては、SiやBを多量に含むFe系非晶質合金(特許文献1)やFe-Si-Al系のセンダスト、パーマロイ(特許文献2)等の鉄系合金の粉末やカルボニル鉄粉(非特許文献1)等が知られている。また、これらの鉄系金属粉は有機樹脂と複合化して塗料とし、表面実装型のコイル部品の製造にも用いられている(特許文献2)。
 インダクタの1つである電源系インダクタは近年高周波化が進んでおり、100MHz以上の高周波で使用可能なインダクタが求められている。高周波帯域用のインダクタの製造方法として、例えば特許文献3には、大粒径の鉄系金属粉、中粒径の鉄系金属粉に微小粒径のニッケル系金属粉とを混合した磁性体組成物を使用したインダクタおよびその製造方法が開示されている。ここで微小粒径のニッケル系金属粉を混合するのは、粒径の異なる粉を混合することにより磁性体の充填度を向上させ、結果としてインダクタの透磁率を高めるためである。しかし、特許文献3に開示された技術では、異なる粒径の磁性体を混合することにより圧粉体の充填率は増加するが、最終的に得られるインダクタの透磁率の増加は少ないという問題があった。
 インダクタ用の軟磁性粉末は一般に、絶縁物を被覆して用いる。絶縁物を被覆した軟磁性粉末の製造方法には、例えば特許文献4があるが、特許文献4で得られる絶縁物被覆軟磁性粉末は、被覆層層の平均膜厚が大きく、磁性粉末の圧粉密度が低下するため磁気特性が悪化するという問題があった。
特開2016-014162号公報 特開2014-060284号公報 特開2016-139788号公報 特開2009-231481号公報
Yuichiro Sugawa et al., 12th MMM/INTERMAG CONFERENCE, CONTRIBUTED PAPER, HU-04, final manuscript.
 特許文献3の技術により得られるインダクタの透磁率がそれ程高くならないのは、ニッケル系金属粉の透磁率が、鉄系金属粉のそれと比較して低いためであると考えられる。したがって、ニッケル系金属よりも透磁率の高い微小粒径の鉄粉を混合することにより、透磁率の高いインダクタが得られことが期待される。しかし、従来、平均粒子径が0.8μm以下の微小粒径の鉄粉はなく、インダクタの透磁率の向上には限界があった。
 本出願人は先に、日本特許出願2017-134617号において、粒子径0.25~0.80μm、軸比1.5以下であって、100MHzにおける透磁率μ’が高い鉄粉およびシリコン酸化物被覆鉄粉およびその製造方法を開示した。前記の出願において開示された製造方法においては、リン含有イオンを共存させた湿式法により鉄粉を製造するが、その際、リンを少量含有するシリコン酸化物で被覆された鉄粉が得られる。しかし、前記のリンを少量含有するシリコン酸化物で被覆された鉄粉の場合には、絶縁性が低いという問題点があった。
 本発明は、上記の問題点に鑑み、粒子径が小さく、高周波帯域において高いμ’を達成でき、なおかつ高い絶縁性を有するシリコン酸化物被覆鉄粉およびその製造方法を提供することを目的とする。
 上記の目的を達成するために、本発明では、平均粒子径が0.25μm以上0.80μm以下であり、かつ、平均軸比が1.5以下の鉄粒子の表面がシリコン酸化物で被覆されたシリコン酸化物被覆鉄粉であって、Si含有量が1.0質量%以上10質量%以下であり、前記のシリコン酸化物被覆鉄粉を64MPaで垂直に加圧成形して得られた圧粉体に、10Vの印加電圧をかけた状態で測定した圧粉体の体積抵抗率が1.0×10Ω・cm以上である、シリコン酸化物被覆鉄粉が提供される。
 前記のシリコン酸化物被覆鉄粉は、前記の鉄粒子のP含有量が、前記鉄粒子の質量に対して0.1質量%以上1.0質量%以下であることが好ましく、前記のシリコン酸化物被覆鉄粉を64MPaで加圧成形して得られた圧粉体の圧粉密度が4.0g/cm以下であることが好ましい。
 本発明ではさらに、平均粒子径が0.25μm以上0.80μm以下であり、かつ、平均軸比が1.5以下の鉄粒子の表面がシリコン酸化物で被覆されたシリコン酸化物被覆鉄粉のSi含有量が1.0質量%以上10質量%以下である、シリコン酸化物被覆鉄粉の製造方法であって、平均粒子径が0.25μm以上0.80μm以下であり、かつ、平均軸比が1.5以下の鉄粒子からなる鉄粉を準備する鉄粉製造工程と、前記の工程で得られた鉄粉を、1質量%以上40質量%以下の水を含む水と有機物の混合溶媒中に分散させて得られたスラリーを保持するスラリー保持工程と、前記の混合溶媒に前記鉄粉を分散させ、保持したスラリーにシリコンアルコキシドを添加するアルコキシド添加工程と、前記のシリコンアルコキシドを添加したスラリーに、シリコンアルコキシドの加水分解触媒を添加し、シリコン酸化物を被覆した鉄粉の分散したスラリーを得る加水分解触媒添加工程と、前記のシリコン酸化物を被覆した鉄粉を含むスラリーを固液分離し、シリコン酸化物を被覆した鉄粉を得る回収工程とを含む、シリコン酸化物被覆鉄粉の製造方法が提供される。
 本発明の製造方法を用いることにより、粒子径が小さく、高周波帯域において高いμ’を達成でき、なおかつ高い絶縁性を有するシリコン酸化物被覆鉄粉を製造することが可能になった。
比較例1により得られた鉄粉のSEM写真である。 実施例1により得られた鉄粉のSEM写真である。
[鉄粒子]
 本発明のシリコン酸化物被覆鉄粉のコアとなる鉄粒子は、その製造プロセスから不可避的に混入するPおよびその他の不純物を除き、実質的に純粋な鉄の粒子である。鉄粒子については、その平均粒子径が0.25μm以上0.80μm以下であり、かつ平均軸比が1.5以下であることが好ましい。この平均粒子径ならびに平均軸比の範囲とすることで、初めて大きいμ’と十分に小さいtanδとを両立することが可能となる。平均粒子径が0.25μm未満であると、μ’が小さくなるので好ましくない。また、平均粒子径が0.80μmを超えると、渦電流損失の増大に伴ってtanδが高くなるので好ましくない。より好ましくは、平均粒子径が0.30μm以上0.80μm以下であり、さらに好ましくは0.31μm以上0.80μm以下であり、さらに一層好ましくは、平均粒子径が0.40μm以上0.80μm以下である。平均軸比については、1.5を超えると、磁気異方性の増大によりμ’が低下するので好ましくない。平均軸比については特に下限は存在しないが、通常では1.10以上のものが得られる。軸比の変動係数は、例えば0.10以上0.25以下である。なお、本明細書においては、個々の鉄粒子を対象とする場合は鉄粒子と表現するが、鉄粒子の集合体の平均的な特性を対象とする場合には、鉄粉と表現する場合がある。
[P含有量]
 本発明のシリコン酸化物被覆鉄粉のコアとなる鉄粒子は、後述するように、湿式法により、リン含有イオンの共存下で製造されるため、実質的にPを含有する。本発明に用いられる鉄粒子により構成される鉄粉中の平均的なPの含有量としては、鉄粉の質量に対して0.1質量%以上1.0質量%以下とすることが好ましい。P含有量がこの範囲を外れると、前記の平均粒子径および平均軸比を兼ね備えた鉄粒子を製造することが困難になるので好ましくない。P含有量としては、0.1質量%以上0.7質量%以下であることがより好ましく、0.15質量%以上0.4質量%以下であることがより一層好ましい。Pの含有は磁気特性向上に寄与しないが、前記範囲の含有であれば許容される。
[シリコン酸化物被覆]
 本発明においては、シリコンアルコキシドを用いた湿式の被覆法により、前記の鉄粒子の表面に絶縁性のシリコン酸化物を被覆する。シリコンアルコキシドを用いた被覆法は、一般にゾル-ゲル法と呼ばれる手法であり、乾式法と比較して大量生産性に優れたものである。
 シリコンアルコキシドを加水分解すると、アルコキシ基の一部または全てが水酸基(OH基)と置換し、シラノール誘導体となる。シラノール誘導体とは、シラノール基Si-OHを分子構造中に持つ有機シリコン化合物のことである。本発明においては、このシラノール誘導体により前記の鉄粉の表面を被覆するが、被覆されたシラノール誘導体は、加熱すると縮合または重合することによりポリシロキサン構造をとり、ポリシロキサン構造をさらに加熱するとシリカ(SiO)になる。本発明においては、有機物であるアルコキシ基の一部が残存するシラノール誘導体被覆からシリカ被覆までを総称してシリコン酸化物被覆と呼ぶ。
 シリコン酸化物被覆鉄粉に含まれるSiの含有量は、絶縁性を確保し、かつ高周波領域における高い透磁率μ’を得るために、シリコン酸化物被覆鉄粉の質量に対して1.0質量%以上10質量%以下であることが好ましい。前述の平均粒子径が0.25μm以上0.80μm以下であり、かつ平均軸比が1.5以下である鉄粒子をコアとして用いたシリコン酸化物被覆鉄粉の場合、前記のSiの含有量は、平均膜厚で0.5~8.0nmに相当する。
 シリコン酸化物被覆鉄粉に含まれるSiの含有量が1.0質量%未満では、Si酸化物被覆層中に欠陥が多く存在し、絶縁性を確保することが困難になる。Siの含有量が10質量%を超えると、絶縁性は向上するが、圧粉密度が低下して磁気特性が悪化するために好ましくない。なお、Si含有量は、後述する溶解法により測定することができる。
[体積抵抗率]
 本発明のシリコン酸化物被覆鉄粉は、64MPaで垂直に加圧成形して得られた圧粉体に、10Vの印加電圧をかけた状態で測定した圧粉体の体積抵抗率が1.0×10Ω・cm以上であることが好ましい。体積抵抗率が1.0×10Ω・cm未満では、粒子間の絶縁が十分でなく、粒子間で渦電流の渦電流の影響で損失が大きくなり、インダクタ等にした際の特性が低下するため好ましくない。本発明においては、圧粉体の体積抵抗率の上限は特に規定するものではないが、前記のSiの含有量の場合、圧粉体の体積抵抗率として1.0×10~1.0×10Ω・cm程度のものが得られる。なお、シリコン酸化物被覆層の厚さを増大すると体積抵抗率は上昇するが、シリコン酸化物被覆は非磁性成分であり、前述のように磁気特性が悪化する。
[圧粉密度]
 本発明の場合、前記のシリコン酸化物被覆鉄粉を64MPaで加圧成形して得られた圧粉体の圧粉密度は4.0g/cm以下であることが好ましい。圧粉密度が小さい状態で上記の高い透磁率μ’と高い絶縁性とが得られれば、インダクタの軽量化、または短小化が図られるためである。
[鉄粉製造工程]
 本発明のシリコン酸化物被覆鉄粉のコアとなる鉄粒子は、前記の日本特許出願2017-134617号に開示された製造方法により製造することができる。前記の出願に開示された製造方法は、リン含有イオンの存在下で湿式法により行うことが特徴であり、大別して三種の実施形態があるが、いずれの実施形態を用いても、前記のコアとなる、平均粒子径が0.25μm以上0.80μm以下であり、かつ、平均軸比が1.5以下の鉄粒子により構成される鉄粉を得ることができる。
[出発物質]
 本発明の鉄粉製造工程においては、シリコン酸化物被覆鉄粉の前駆体であるシリコン酸化物被覆酸化鉄粉の出発物質として3価のFeイオンを含む酸性の水溶液(以下、原料溶液と言う。)を用いる。もし、出発物質として3価のFeイオンに替えて2価のFeイオンを用いた場合には、沈殿物として3価の鉄の水和酸化物のほかに2価の鉄の水和酸化物やマグネタイト等をも含む混合物が生成し、最終的に得られる鉄粒子の形状にバラつきが生じてしまうため、本発明のような鉄粉およびシリコン酸化物被覆鉄粉を得ることができない。ここで、酸性とは溶液のpHが7未満であることを指す。これらのFeイオン供給源としては、入手の容易さおよび価格の面から、硝酸塩、硫酸塩、塩化物のような水溶性の無機酸塩を用いることが好ましい。これらのFe塩を水に溶解すると、Feイオンが加水分解して、水溶液は酸性を呈する。このFeイオンを含む酸性水溶液にアルカリを添加して中和すると、鉄の水和酸化物の沈殿物が得られる。ここで鉄の水和酸化物とは一般式Fe・nHOで表される物質で、n=1の時にはFeOOH(オキシ水酸化鉄)、n=3の時にはFe(OH)(水酸化鉄)である。
 原料溶液中のFeイオン濃度は、本発明は特に規定するものではないが、0.01mol/L以上1mol/L以下が好ましい。0.01mol/L未満では1回の反応で得られる沈殿物の量が少なく、経済的に好ましくない。Feイオン濃度が1mol/Lを超えると、急速な水和酸化物の沈殿発生により、反応溶液がゲル化しやすくなるので好ましくない。
[リン含有イオン]
 本発明の鉄粉製造工程は、前記の鉄の水和酸化物の沈殿物生成の際にリン含有イオンを共存させるか、加水分解生成物被覆のためにシラン化合物を添加する間にリン含有イオンを添加する。いずれの場合にも、シラン化合物被覆の際にはリン含有イオンが系内に共存している。リン含有イオンの供給源として、リン酸やリン酸アンモニウムやリン酸Naおよびそれらの1水素塩、2水素塩等の可溶性リン酸(PO 3-)塩を用いることができる。ここでリン酸は3塩基酸であり、水溶液中で3段解離するため、水溶液中ではリン酸イオン、リン酸2水素イオン、リン酸1水素イオンの存在形態をとり得るが、その存在形態はリン酸イオンの供給源として用いた薬品の種類ではなく、水溶液のpHにより決まるので、上記のリン酸基を含むイオンをリン酸イオンと総称する。また、本発明の場合リン酸イオンの供給源として、縮合リン酸である二リン酸(ピロリン酸)を用いることも可能である。また、本発明においては、リン酸イオン(PO 3-)に替えて、Pの酸化数の異なる亜リン酸イオン(PO 3-)や次亜リン酸イオン(PO 2-)を用いることも可能である。これらのリン(P)を含む酸化物イオンを総称してリン含有イオンと称する。
 原料溶液に添加するリン含有イオンの量は、原料溶液中に含まれる全Feモル量に対するモル比(P/Fe比)で0.003以上0.1以下であることが好ましい。P/Fe比が0.003未満では、シリコン酸化物被覆酸化鉄粉中に含まれる酸化鉄粉の平均粒子径を増大させる効果が不十分であり、P/Fe比が0.1を超えると、理由は不明であるが、粒径を増大させる効果が得られない。より好ましいP/Fe比の値は0.005以上0.05以下である。
 リン含有イオンを共存させることにより、前述した平均粒子径が0.25μm以上0.80μm以下であり、かつ、平均軸比が1.5以下の鉄粒子が得られる機構は不明であるが、本発明者等は、後述する後述するシリコン酸化物被覆層がリン含有イオンを含有するために、その物性が変化するためと推定している。
 なお、前述のように、原料溶液にリン含有イオンを添加する時期は、後述する中和処理の前、中和処理後シリコン酸化物被覆を行う前、シラン化合物を添加する間のいずれでも構わない。
[中和処理]
 本発明の鉄粉製造工程の第一の実施形態においては、公知の機械的手段により撹拌しながらリン含有イオンを含む原料溶液にアルカリを添加し、そのpHが7以上13以下になるまで中和して鉄の水和酸化物の沈殿物を生成する。なお、後述する実施例においては、主としてこの第一の実施形態に基づき説明を行う。
中和後のpHが7未満では、鉄イオンが鉄の水和酸化物として沈殿しないので好ましくない。中和後のpHが13を超えると、後述のシリコン酸化物被覆工程において添加するシラン化合物の加水分解が速く、シラン化合物の加水分解生成物の被覆が不均一となるので、やはり好ましくない。
 なお、本発明の製造方法において、リン含有イオンを含む原料溶液をアルカリで中和するにあたっては、リン含有イオンを含む原料溶液にアルカリを添加する方法以外に、アルカリにリン含有イオンを含む原料溶液を添加する方法を採用してもよい。
 なお、本明細書に記載のpHの値は、JIS Z8802に基づき、ガラス電極を用いて測定した。pH標準液として、測定するpH領域に応じた適切な緩衝液を用いて校正したpH計により測定した値をいう。また、本明細書に記載のpHは、温度補償電極により補償されたpH計の示す測定値を、反応温度条件下で直接読み取った値である。
 中和に用いるアルカリとしては、アルカリ金属またはアルカリ土類金属の水酸化物、アンモニア水、炭酸水素アンモニウムなどのアンモニウム塩のいずれであっても良いが、最終的に熱処理して鉄の水和酸化物の沈殿物を鉄酸化物とした時に不純物が残りにくいアンモニア水や炭酸水素アンモニウムを用いることが好ましい。これらのアルカリは、出発物質の水溶液に固体で添加しても構わないが、反応の均一性を確保する観点からは、水溶液の状態で添加することが好ましい。
 中和反応の終了後、沈殿物を含むスラリーを撹拌しながらそのpHで5min~24h保持し、沈殿物を熟成させる。
 本発明の製造方法においては、中和処理時の反応温度は特に規定するものではないが、10℃以上90℃以下とするのが好ましい。反応温度が10℃未満、または90℃超えでは温度調整に要するエネルギーコストを考慮すると好ましくない。
 本発明の製造方法の第二の実施形態においては、公知の機械的手段により撹拌しながら原料溶液にアルカリを添加し、そのpHが7以上13以下になるまで中和して鉄の水和酸化物の沈殿物を生成した後、沈殿物を熟成させる過程で沈殿物を含むスラリーにリン含有イオンを添加する。リン含有イオンの添加時期は、沈殿物生成の直後でも熟成の途中でも構わない。なお、第二の実施形態における沈殿物の熟成時間および反応温度は、第一の実施形態のそれ等と同じである。
 本発明の製造方法の第三の実施形態においては、公知の機械的手段により撹拌しながら原料溶液にアルカリを添加し、そのpHが7以上13以下になるまで中和して鉄の水和酸化物の沈殿物を生成した後、沈殿物を熟成させる。この実施形態において、リン含有イオンはシリコン酸化物被覆を行う際に添加する。
[シラン化合物の加水分解生成物による被覆]
 本発明の鉄粉製造工程においては、前記までの工程で生成した鉄の水和酸化物の沈殿物にシラン化合物の加水分解生成物の被覆を施す。シラン化合物の加水分解生成物の被覆法としては、いわゆるゾル-ゲル法を適用することが好ましい。
 ゾル-ゲル法の場合、鉄の水和酸化物の沈殿物のスラリーに、加水分解基を持つシリコン化合物、例えばテトラエトキシシラン(TEOS)、テトラメトキシシラン(TMOS)や、各種のシランカップリング剤等のシラン化合物を添加して撹拌下で加水分解反応を生起させ、生成したシラン化合物の加水分解生成物により鉄の水和酸化物の沈殿物の表面を被覆する。また、その際、酸触媒、アルカリ触媒を添加しても構わないが、処理時間を考慮するとそれらの触媒を添加することが好ましい。代表的な例として酸触媒では塩酸、アルカリ触媒ではアンモニアとなる。酸触媒を使用する場合には、鉄の水和酸化物の沈殿物が溶解しない量の添加に留める必要がある。
 シラン化合物の加水分解生成物による被覆についての具体的手法は、公知プロセスにおけるゾル-ゲル法と同様とすることができ、原料溶液に仕込んだ3価のFeイオンの全モル数と、スラリーに滴下するシリコン化合物に含まれるSiの全モル数の比(Si/Fe比)は0.05以上0.5以下とする。シラン化合物の加水分解生成物被覆の反応温度としては20℃以上60℃以下、反応時間としては1h以上20h以下程度である。
 本発明の鉄粉製造工程の第三の実施形態においては、上記の中和後の熟成により得られた鉄の水和酸化物の沈殿物を含むスラリーに、上記の加水分解基を持つシリコン化合物の添加開始から添加終了までの間に、リン含有イオンを同時に添加する。リン含有イオンの添加時期は、加水分解基を持つシリコン酸化物の添加開始と同時、または添加終了と同時でも構わない。
[沈殿物の回収]
 前記の工程により得られたスラリーから、シラン化合物の加水分解生成物を被覆した鉄の水和酸化物の沈殿物を分離する。固液分離手段としては、濾過、遠心分離、デカンテーション等の公知の固液分離手段を用いることができる。固液分離時には、凝集剤を添加し固液分離しても構わない。引き続き、固液分離して得られたシラン化合物の加水分解生成物を被覆した鉄の水和酸化物の沈殿物を洗浄した後、再度固液分離することが好ましい。洗浄方法はリパルプ洗浄等の公知の洗浄手段を用いることができる。最終的に回収されたシラン化合物の加水分解生成物を被覆した鉄の水和酸化物の沈殿物に乾燥処理を施す。なお、当該乾燥処理は、沈殿物に付着した水分を除去することを目的としたものであり、水の沸点以上の110℃程度の温度で行っても構わない。
[加熱処理]
 本発明の鉄粉製造工程においては、前記のシラン化合物の加水分解生成物を被覆した鉄の水和酸化物の沈殿物を加熱処理することによりシリコン酸化物被覆鉄粉の前駆体であるシリコン酸化物被覆酸化鉄粉を得る。加熱処理の雰囲気中は特に規定するものではないが、大気雰囲気で構わない。加熱は概ね500℃以上1500℃以下の範囲で行うことができる。加熱処理温度が500℃未満では粒子が十分に成長しないため好ましくない。1500℃を超えると必要以上の粒子成長や粒子の焼結が起こるので好ましくない。加熱時間は10min~24hの範囲で調整すればよい。当該加熱処理により、鉄の水和酸化物は鉄酸化物に変化する。加熱処理温度は、好ましくは800℃以上1250℃以下、より好ましくは900℃以上1150℃以下である。なお、当該熱処理の際、鉄の水和酸化物の沈殿を被覆するシラン化合物の加水分解生成物もシリコン酸化物に変化する。当該シリコン酸化物被覆層は、鉄の水和酸化沈殿同士の加熱処理時の焼結を防止する作用も有している。
[還元熱処理]
 本発明の鉄粉製造工程においては、前記の工程で得られた前駆体であるシリコン酸化物被覆酸化鉄粉を還元雰囲気中で熱処理することにより、シリコン酸化物被覆鉄粉が得られる。還元雰囲気を形成するガスとしては、水素ガスや水素ガスと不活性ガスの混合ガスが挙げられる。還元熱処理の温度は、300℃以上1000℃以下の範囲とすることができる。還元熱処理の温度が300℃未満では酸化鉄の還元が不十分となるので好ましくない。1000℃を超えると還元の効果が飽和する。加熱時間は10~120minの範囲で調整すればよい。
[安定化処理]
 通常、還元熱処理により得られる鉄粉は、その表面が化学的に極めて活性なため、徐酸化による安定化処理を施すことが多い。本発明の鉄粉製造工程方法で得られる鉄粉は、その表面が化学的に不活性なシリコン酸化物で被覆されているが、表面の一部が被覆されていない場合もあるので、好ましくは安定化処理を施し、鉄粉表面の露出部に酸化保護層を形成する。安定化処理の手順として、一例として以下の手段が挙げられる。
 還元熱処理後のシリコン酸化物被覆鉄粉が曝される雰囲気を還元雰囲気から不活性ガス雰囲気に置換した後、当該雰囲気中の酸素濃度を徐々に増大させながら20~200℃、より好ましくは60~100℃で前記露出部の酸化反応を進行させる。不活性ガスとしては、希ガスおよび窒素ガスから選ばれる1種以上のガス成分が適用できる。酸素含有ガスとしては、純酸素ガスや空気が使用できる。酸素含有ガスとともに、水蒸気を導入してもよい。シリコン酸化物被覆鉄粉を20~200℃好ましくは60~100℃に保持するときの酸素濃度は、最終的には0.1~21体積%とする。酸素含有ガスの導入は、連続的または間欠的に行うことができる。安定化工程の初期の段階で、酸素濃度が1.0体積%以下である時間を5min以上キープすることがより好ましい。
[シリコン酸化物被覆の溶解処理]
 上述した一連の処理により得られたシリコン酸化物被覆鉄粉は、例えば、インダクタ用の材料として、満足な加圧成形ができない。また、ここまでのシリコン酸化物は上記のように反応により鉄粉を得るための助剤であり、後述の被覆膜とは機能的に異なるものである。一度シリコン酸化物被覆層をアルカリ水溶液中で溶解除去し、無被覆の鉄粉を得た後、その鉄粉に改めて高絶縁性のシリコン酸化物被覆を行う必要がある。
 前記の圧粉体の体積抵抗率が低い理由は、現時点では明らかでないが、シリコン酸化物被覆層中にリン含有化合物が混入することによりシリコン酸化物被覆層の体積抵抗率が低下したか、もしくは、シリコン酸化物被覆層の物性が変化することにより被覆層中の欠陥密度が増大したこと等が考えられる。
 溶解処理に用いるアルカリ水溶液としては、水酸化ナトリウム溶液、水酸化カリウム溶液、アンモニア水等、工業的に用いられている通常のアルカリ水溶液を用いることができる。処理時間等を考慮すると、処理液のpHは10以上、処理液の温度は60℃以上沸点以下であることが好ましい。
[解砕処理]
 前記のシリコン酸化物被覆の溶解処理により得られた鉄粉は、後述する二度目のシリコン酸化物被覆処理の一連の工程に供されるが、次工程に供する前に鉄粉を解砕してもよい。解砕を行うことで、鉄粉のマイクロトラック測定装置による体積基準の累積50%粒子径を小さくすることができる。解砕手段としては、ビーズミル等のようなメディアを用いた粉砕装置による方法や、ジェットミルのようにメディアレスの粉砕装置による方法など、公知の方法を採用することができる。メディアを用いた粉砕装置による方法の場合は、得られる鉄粉の粒子形状が変形して軸比が大きくなってしまい、その結果として後工程で成形体を作成する際の鉄粉の充填度が下がる、鉄粉の磁気特性が悪化する等の不具合が生じる恐れがあるため、メディアレスの粉砕装置を採用することが好ましく、ジェットミル粉砕装置を用いて解砕を行うことが特に好ましい。ここでジェットミル粉砕装置とは、粉砕対象物または粉砕対象物と液体とを混合したスラリーを、高圧ガスにより噴射させて衝突板などと衝突させる方式の粉砕装置をいう。液体を使用せずに粉砕対象物を高圧ガスで噴射させるタイプを乾式ジェットミル粉砕装置、粉砕対象物と液体とを混合したスラリーを用いるタイプを湿式ジェットミル粉砕装置と呼ぶ。この粉砕対象物または粉砕対象物と液体とを混合したスラリーを衝突させる対象物としては、衝突板などの静止物でなくともよく、高圧ガスにより噴射された粉砕対象物同士や、粉砕対象物と液体とを混合したスラリー同士を衝突させる方法を採用してもよい。
 また、湿式ジェットミル粉砕装置を用いて解砕を行う場合の液体としては、純水やエタノールなど一般的な分散媒を採用することができるが、エタノールを用いることが好ましい。
 解砕に湿式ジェットミル粉砕装置を用いた場合には、解砕された鉄粉と分散媒との混合物である解砕処理後のスラリーが得られ、このスラリー中の分散媒を乾燥させることで解砕された鉄粉を得ることができる。乾燥方法としては公知の方法を採用することができ、雰囲気としては大気でもよい。ただし、鉄粉の酸化を防止する観点から、窒素ガス、アルゴンガス、水素ガス等の非酸化性雰囲気での乾燥や、真空乾燥を行うことが好ましい。また、乾燥速度を速めるために例えば100℃以上に加温して行うことが好ましい。なお、乾燥後に得られた鉄粉を再びエタノールと混合してマイクロトラック粒度分布測定を行った場合、前記解砕処理後のスラリーにおける鉄粉のD50をほぼ再現することができる。すなわち、乾燥の前後で鉄粉のD50は変化しない。
[スラリー保持工程]
 以下に、上述の一連の鉄粉製造工程で得られた鉄粉に高絶縁性のシリコン酸化物被覆を施す工程を記述する。
 本発明の製造方法においては、前記の鉄粉製造工程で得られた鉄粉を、公知の機械的手段により撹拌しながら、1質量%以上40質量%以下の水を含む水と有機物の混合溶媒中に分散させてスラリーとした後、一定時間保持する。鉄粉の表面にはFeの極めて薄い酸化物が存在するが、このスラリー保持工程では、当該Fe酸化物が混合溶媒中に含まれる水により水和される。水和したFe酸化物表面は一種の固体酸であり、ブレンシュテッド酸として弱酸と類似の挙動を示すため、次工程において混合溶媒中に鉄粉を含むスラリーにシリコンアルコキシドを添加した際に、シリコンアルコキシドの加水分解生成物であるシラノール誘導体と鉄粉表面との反応性が向上し、その結果として最終的に生成するシリコン酸化物被覆層の均一性が向上する。
 混合溶媒中の水の含有量は、1質量%以上40質量%以下であることが好ましい。より好ましくは10質量%以上35質量%以下であり、さらに好ましくは15質量%以上30質量%以下である。水の含有量が1質量%未満では、前述したFe酸化物を水和する作用が不足する。水の含有量が40質量%を超えると、シリコンアルコキシドの加水分解速度が速くなり、均一なシリコン酸化物被覆層が得られなくなるので、それぞれ好ましくない。
 混合溶媒に用いる有機溶媒としては、水と親和性のあるメタノール、エタノール、1-プロパノール、2-プロパノール、ブタノール、ペンタノール、ヘキサノール等の脂肪族アルコールを用いることが好ましい。ただし、有機溶媒の溶解度パラメータが水のそれに近すぎると、混合溶媒中の水の反応性が低下するので、1-プロパノール、2-プロパノール(イソプロピルアルコール)、ブタノール、ペンタノール、ヘキサノールを用いることがより好ましい。
 本発明においては、スラリー保持工程の温度は特に規定するものではないが、20℃以上60℃以下とすることが好ましい。保持温度が20℃未満では、Fe酸化物の水和反応の速度が遅くなるので好ましくない。また、保持温度が60℃を超えると、次工程のアルコキシド添加工程において、添加したシリコンアルコキシドの加水分解反応速度が増大し、シリコン酸化物被覆層の均一性が悪化するので好ましくない。本発明においては、保持時間も特に規定するものではないが、Fe化物の水和反応が均一に起こるように、保持時間が10min以上180min以下になるように条件を適宜選択する。
[アルコキシド添加工程]
 前記のスラリー保持工程により得られた、混合溶媒中に鉄粉を分散させたスラリーを、公知の機械的手段により撹拌しながら、シリコンアルコキシドを添加した後、その状態でスラリーを一定時間保持する。シリコンアルコキシドとしては、前述のように、トリメトキシシラン、テトラメトキシシラン、トリエトキシシラン、テトラエトキシシラン、トリプロポキシシラン、テトラプロポキシシラン、トリブトキシシラン、テトラブトキシシラン等を使用することができる。
 シリコンアルコキシドの添加量は、圧粉体の体積抵抗率の所望値により設定できる。具体的には、10質量%以上である。この理由としては鉄粒子の軸比を1.5以下とすることにより、円形に近いため、被覆物が粒子内の異形箇所において偏在する可能性が低く、粒子間においても偏在することなく、シリコンアルコキシドが鉄粒子の表面に殆ど被着すると推察する。なお、余剰に添加すると、鉄粒子の表面から遊離して存在するため、好ましくなく、具体的には100質量%以下となる。
 本工程で添加したシリコンアルコキシドは、混合溶媒中に含まれる水の作用により加水分解してシラノール誘導体になる。生成したシラノール誘導体は、縮合、化学吸着等により、鉄粉表面にシラノール誘導体の反応層を形成する。本工程では、加水分解触媒を添加していないので、シリコンアルコキシドの加水分解が緩やかに起こるため、前記のシラノール誘導体の反応層が均一に形成されるものと考えられる。
 本発明においては、アルコキシド添加工程の反応温度は特に規定するものではないが、20℃以上60℃以下とすることが好ましい。反応温度が20℃未満では、鉄粉表面とシラノール誘導体との反応の速度が遅くなるので好ましくない。また、反応温度が60℃を超えると、添加したシリコンアルコキシドの加水分解反応速度が増大し、シリコン酸化物被覆層の均一性が悪化するので好ましくない。本発明においては、アルコキシド添加工程の反応時間も特に規定するものではないが、鉄粉表面とシラノール誘導体との反応が均一に起こるように、反応時間が5min以上180min以下になるように条件を適宜選択する。
[加水分解触媒添加工程]
 本発明の製造方法においては、前記のアルコキシド添加工程において鉄粉表面にシラノール誘導体の反応層を形成した後、混合溶媒中に鉄粉を分散させたスラリーを公知の機械的手段により撹拌しながら、シリコンアルコキシドの加水分解触媒を添加する。本工程においては、加水分解触媒の添加により、シリコンアルコキシドの加水分解反応が促進され、シリコン酸化物被覆層の成膜速度が増大する。なお、本工程以降は、通常のゾル-ゲル法による成膜法と同一の手法になる。
 加水分解触媒はアルカリ触媒を用いる。酸触媒を用いると、鉄粉が溶解するので好ましくない。アルカリ触媒としては、シリコン酸化物被覆層中に不純物が残存し難いことと入手の容易さから、アンモニア水を用いることが好ましい。
 本発明においては、加水分解触媒添加工程の反応温度は特に規定するものではなく、前工程であるアルコキシド添加工程の反応温度と同一で構わない。また、本発明においては、加水分解触媒添加工程の反応時間も特に規定するものではないが、長時間の反応時間は経済的に不利になるので、反応時間が10min以上180min以下になるように条件を適宜選択する。
[固液分離および乾燥]
 前記までの一連の工程で得られたシリコン酸化物被覆鉄粉を含むスラリーから、公知の固液分離手段を用いてシリコン酸化物被覆鉄粉を回収する。固液分離手段としては、濾過、遠心分離、デカンテーション等の公知の固液分離手段を用いることができる。固液分離時には、凝集剤を添加し固液分離しても構わない。
 回収したシリコン酸化物被覆鉄粉は、50倍量程度の純水を用いて洗浄した後、窒素雰囲気下で50℃以上200℃以下、2h以上、例えば100℃、10h乾燥させる。乾燥後、磁性体の磁気特性を改善するために、更に高温での焼成処理を加えても構わない。
[粒子径]
 シリコン酸化物被覆鉄粉を構成する鉄粒子の粒子径、および、シリコン酸化物被覆酸化鉄粉を構成する酸化鉄粒子の粒子径は、それぞれ10質量%水酸化ナトリウム水溶液を用いてシリコン酸化物被覆を溶解・除去した後、走査型電子顕微鏡(SEM)観察により求めた。SEM観察には、日立製作所製S-4700を用いた。
 シリコン酸化物の溶解除去は、シリコン酸化物被覆鉄粉またはシリコン酸化物被覆酸化鉄粉を60℃の10質量%水酸化ナトリウム水溶液に入れて、24h撹拌させた後に、ろ過、水洗ならびに乾燥することで行った。なお、前記水酸化ナトリウム水溶液の量は、シリコン酸化物被覆鉄粉またはシリコン酸化物被覆酸化鉄粉5gに対して0.8Lの割合とした。
 シリコン酸化物の溶解除去後にSEM観察を行い、ある粒子について、面積が最少となる外接する長方形の長辺の長さをその粒子の粒子径(長径)と定める。具体的には、3,000倍~30,000倍程度の倍率で撮影したSEM写真中において、外縁部全体が観察される粒子をランダムに300個選択してその粒子径を測定し、その平均値を、当該シリコン酸化物被覆鉄粉を構成する鉄粒子の平均粒子径とした。なお、この測定により得られる粒子径は、一次粒子径である。
[軸比]
 SEM画像上のある粒子について、面積が最少となる外接する長方形の短辺の長さを「短径」と呼び、長径/短径の比をその粒子の「軸比」と呼ぶ。粉末としての平均的な軸比である「平均軸比」は以下のようにして定めることができる。SEM観察により、ランダムに選択した300個の粒子について「長径」と「短径」を測定し、測定対象の全粒子についての長径の平均値および短径の平均値をそれぞれ「平均長径」および「平均短径」とし、平均長径/平均短径の比を「平均軸比」と定める。長径、短径、軸比のそれぞれについて、そのばらつきの大きさを表す指標として変動係数を算出することができる。
[Si含有量の測定]
 出発物質である鉄粉(未被覆処理品)およびシリコン酸化物被覆を施した鉄粉のSi含有量は、下記方法により求めた。試料を秤量して塩酸により溶解した後、過塩素酸を添加し、液がなくなるまで加熱した後に、再度塩酸を添加して、酸に可溶な成分を全て溶解した。その後、二酸化ケイ素を主とする残渣をろ別し、白金るつぼ中に入れ、電気炉にて強熱し、放冷後に質量を測定した。質量測定後の白金るつぼ中にフッ化水素酸と硫酸を加えて、二酸化ケイ素を溶解し、さらに加熱してケイ素分を四フッ化ケイ素として蒸発・除去した。その後、白金るつぼを再び強熱し、放冷後に質量を測定し、先に測定した質量との差を二酸化ケイ素量とした。求めた二酸化ケイ素量より、試料中のケイ素量を算出した。
[FeおよびP含有量の測定]
 出発物質である鉄粉(未被覆処理品)およびシリコン酸化物被覆を施した鉄粉のFeおよびP含有量は、下記方法により求めた。試料を秤量して36質量%の塩化水素水溶液と60質量%の硝酸水溶液とを体積比1:1で混合した100℃の水溶液にて加熱溶解した後、残渣をろ過し、ろ液をメスフラスコに入れて定容した。この溶液を希釈した後、FeおよびP濃度をICP発光分光分析法(ICP-AES)で測定した。
 また、上記で得られた残渣をろ紙ごと白金るつぼに入れて電気炉にて強熱してろ紙を焼却し、放冷後に炭酸ナトリウムと炭酸カリウムを添加して電気炉にて融解させた。放冷後、融解物を温水に浸出させ、塩酸を添加して加熱溶解した。溶液をメスフラスコに入れて定容した後、FeおよびP濃度をICP発光分光分析法(ICP-AES)で測定した。ろ液のICP測定値、残渣を融解後の溶液のICP測定値から各元素の含有量を求めた。
[シリコン酸化物被覆の平均膜厚の算出]
 また、シリコン酸化物被覆鉄粉におけるシリコン酸化物被覆の平均膜厚tを以下の数式により算出した。
 平均膜厚t=Si含有量(質量%)/100×(SiO分子量/Si原子量)/(SiO密度×鉄粉(未被覆処理品)のBET比表面積)
 なお、SiO密度は2.65(g/cm)として算出した。本発明において、シリコン酸化物の平均膜厚tは1.0nm以上6.0nm以下とすることが好ましい。平均膜厚tを上記範囲とすることで、高いμ’と圧粉体の高い体積抵抗率とを両立することができる。平均膜厚tが1.0nm未満の場合は、圧粉体の体積抵抗率が低下してしまうため好ましくない。また、平均膜厚tが6.0nm超であると、μ’が低下してしまうため好ましくない。
[磁気特性]
 VSM(東英工業社製VSM-P7)を用い、印加磁場795.8kA/m(10kOe)でB-H曲線を測定し、保磁力Hc、飽和磁化σs、角形比SQについて評価を行った。
[複素透磁率]
 鉄粉またはシリコン酸化物被覆鉄粉とビスフェノールF型エポキシ樹脂(株式会社テスク製;一液性エポキシ樹脂B-1106)を90:10の質量割合で秤量し、自転公転ミキサー(THINKY社製:ARE-250)を用いてこれらを混練し、供試粉末がエポキシ樹脂中に分散したペーストとした。このペーストをホットプレート上で60℃、2h乾燥させて金属粉末と樹脂の複合体としたのち、粉末状に解粒して、複合体粉末とした。この複合体粉末0.2gをドーナッツ状の容器内に入れて、ハンドプレス機により9800N(1TON)の荷重をかけることにより、外径7mm、内径3mmのトロイダル形状の成形体を得た。この成形体について、RFインピーダンス・アナライザ(キーサイト・テクノロジー社製;E4990A)とターミナル・アダプタ(キーサイト・テクノロジー社製;42942A)、テストフィクスチャ(キーサイト・テクノロジー社製;16454Aを用い、100MHzにおける複素比透磁率の実数部μ’および虚数部μ”を測定し、複素比透磁率の損失係数tanδ=μ”/μ’を求めた。この、複素比透磁率の実数部を、本明細書において単に「透磁率」および「μ’」と呼ぶことがある。本発明のシリコン酸化物被覆鉄粉を用いることで、100MHzにおける透磁率μ’が3.0以上の成形体が得られる。
 本発明のシリコン酸化物被覆鉄粉を用いて製造された成形体は、優れた複素透磁率特性を示し、インダクタの磁心などの用途に好適に用いることができる。
[BET比表面積]
 BET比表面積は、株式会社マウンテック製のMACSORB MODEL-1210を用いて、BET一点法により求めた。
[マイクロトラック粒度分布測定]
 鉄粉のマイクロトラック測定装置による体積基準の累積50%粒子径、ならびに累積90%粒子径の測定には、マイクロトラック・ベル社製のマイクロトラック粒度分布測定装置MT3300EXIIを用いた。なお、測定装置の試料循環器に入れる液体としては、エタノールを用いた。また、鉄粉とエタノールまたは純水とを混合したスラリーの形態として、供給直前にこのスラリーを目視で不均一な箇所が見られない程度に撹拌した後に測定装置に供給した。
[体積抵抗率および圧粉密度の測定]
 シリコン酸化物被覆鉄粉の体積抵抗率の測定は、三菱化学アナリテック株式会社製粉体抵抗測定ユニット(MCP―PD51)、三菱化学アナリテック株式会社製高抵抗抵抗率計ハイレスタUP(MCP-HT450)、三菱化学アナリテック株式会社製高抵抗粉体測定システムソフトウェアを用い、二重リング電極法により、粉末4.0gを64MPa(20kN)で垂直に加圧成形して得られた圧粉体に、電圧を10V印加した状態で測定することにより求めた。
 具体的には、体積抵抗率ρvは以下の数式で算出した。
 ρv = R×πd/4t
 ここで、Rは体積抵抗の測定値、dは表面電極の内側リングの直径、tは粉末試料厚みである。以下の実施例においては表面電極の内側リングの直径dを全て2.0cmとした。
 圧粉密度は、上記64MPa(20kN)で加圧成形して得られた圧粉体の試料体積と試料重量とから算出した。
[比較例1]
 5L反応槽にて、純水4113.24gに、純度99.7質量%の硝酸鉄(III)9水和物566.47g、リン含有イオンの供給源として85質量%HPO1.39gを大気雰囲気中、撹拌羽根により機械的に撹拌しながら溶解した(手順1)。この溶解液のpHは約1であった。なお、この条件ではP/Fe比は0.0086である。
 大気雰囲気中、この仕込み溶解液を30℃の条件下で、撹拌羽根により機械的に撹拌しながら、23.47質量%のアンモニア溶液409.66gを10minかけて添加し(約40g/L)、滴下終了後に30min間撹拌を続けて生成した沈殿物の熟成を行った。その際、沈殿物を含むスラリーのpHは約9であった(手順2)。
 手順2で得られたスラリーを撹拌しながら、大気中30℃で、純度95.0質量%のテトラエトキシシラン(TEOS)55.18gを10minかけて滴下した。その後20時間そのまま撹拌し続け、加水分解により生成したシラン化合物の加水分解生成物で沈殿物を被覆した(手順3)。なお、この条件ではSi/Fe比は0.18である。本比較例のSi/Fe比およびP/Fe比を、表1に示す。
 手順3で得られたスラリーを濾過し、得られたシラン化合物の加水分解生成物で被覆した沈殿物の水分をできるだけ切ってから純水中に再度分散させ、リパルプ洗浄した。洗浄後のスラリーを再度濾過し、得られたケーキを大気中110℃で乾燥した(手順4)。
 手順4で得られた乾燥品を、箱型焼成炉を用い、大気中1050℃で加熱処理し、シリコン酸化物被覆酸化鉄粉を得た(手順5)。
 手順5で得られたシリコン酸化物被覆酸化鉄粉を通気可能なバケットに入れ、そのバケットを貫通型還元炉内に装入し、炉内に水素ガスを流しながら630℃で40min保持することにより還元熱処理を施した(手順6)。
 引き続き、炉内の雰囲気ガスを水素から窒素に変換し、窒素ガスを流した状態で炉内温度を降温速度20℃/minで80℃まで低下させた。その後、安定化処理を行う初期のガスとして、窒素ガス/空気の体積割合が125/1となるように窒素ガスと空気を混合したガス(酸素濃度約0.17体積%)を炉内に導入して金属粉末粒子表層部の酸化反応を開始させ、その後徐々に空気の混合割合を増大させ、最終的に窒素ガス/空気の体積割合が25/1となる混合ガス(酸素濃度約0.80体積%)を炉内に連続的に導入することにより、粒子の表層部に酸化保護層を形成した。安定化処理中、温度は80℃に維持し、ガスの導入流量もほぼ一定に保った(手順7)。
 手順7で得られたシリコン酸化物被覆鉄粉を、10質量%、60℃の水酸化ナトリウム水溶液に24h浸漬し、シリコン酸化物被覆を溶解した。得られた鉄粉を含むスラリーをメンブレンフィルターを用いた吸引ろ過によりろ過し、水洗した後、窒素中110℃で2h乾燥を行い、鉄粉を得た。なお、前記水酸化ナトリウム水溶液の量は、シリコン酸化物被覆鉄粉56gに対して3.2Lの割合とした。
 図1に、本比較例により得られた鉄粉のSEM観察結果を示す。なお、図1の右下に示す11本の白い縦線で示される長さが5μmである(図2も同じ)。得られた鉄粉について、鉄粒子の平均粒子径、平均軸比、組成、BET比表面積および磁気特性の測定を行った。それらの測定結果を表2に示す。得られた鉄粉を構成する鉄粒子の平均粒径は0.51μm、平均軸比は1.27であった。また、得られた鉄粉を用い、前記の方法により成形して得られた圧粉体の体積抵抗率を測定したところ、抵抗測定値Rは測定限界以下の結果であり、体積抵抗率としても測定限界(体積抵抗率9.9×10Ω・cm)以下という結果であった。また、得られた鉄粉を用い、前記の方法により成形して得られた圧粉体の体積抵抗率、密度および、前記の方法により成形して得られたトロイダル形状の成形体の高周波特性を表2に併せて示す。本比較例で得られた圧粉体の体積抵抗率が測定限界以下と低い値であったのは、鉄粉が絶縁性のシリコン酸化物で被覆されていないためである。
[実施例1]
 1L反応槽にて純水54.09gおよびイソプロピルアルコール(IPA)271gを投入して混合溶媒を作成し、その混合溶媒に比較例1と同じ条件で得られた鉄粉15.00g添加し、撹拌羽根により機械的に撹拌しながら、室温で30min間窒素パージした。30min経過後、撹拌および窒素パージを継続しながら、反応溶液を40℃に昇温した。
 その後、反応溶液中にオルトケイ酸テトラエチル(TEOS)9.06gを一挙に添加し、10min間保持した。10min後、濃度10質量%のアンモニア水10.8gを45minかけて、反応溶液に連続的に添加した。アンモニア水添加終了後後、反応溶液を60min保持して熟成を行い、加水分解により生成したシラン化合物の加水分解生成物で鉄粉の表面を被覆した。鉄粉製造工程およびシリコン酸化物被覆を行う一連の工程の条件を、表1に併せて示す。
 得られたスラリーをメンブレンフィルターを用いた吸引ろ過によりろ過した後純水で洗浄し、得られた鉄粉のケーキを窒素雰囲気中100℃で乾燥した。図2に、以上の一連の手順により得られた、シリコン酸化物を溶解除去後に再度被覆した鉄粉のSEM観察結果を示す。当該シリコン酸化物被覆鉄粉について、BET比表面積、組成、磁気特性、複素透磁率および圧粉体の密度、体積抵抗率の測定を行った。測定結果を表2に併せて示す。なお、体積抵抗率の測定結果としては、体積抵抗の測定値Rが1.4×10(Ω)、粉末試料厚みtが0.429(cm)であった。
[実施例2~10]
 実施例1同様、比較例1と同じ条件で得られた鉄粉15.00gを用い、シリコン酸化物を被覆する条件を種々変化させてシリコン酸化物被覆鉄粉を得た。これらの実施例で用いたシリコン酸化物被覆の条件を表1に併せて示す。なお、実施例10では、シリコン酸化物被覆処理の前に鉄粉の解砕処理を行っている。鉄粉の解砕処理条件を下記に示す。比較例1で得られた鉄粉を純水と混合して、鉄粉の含有割合が10質量%の鉄粉純水混合スラリーを作製した。このスラリーをジェットミル粉砕装置(リックス株式会社製;ナノ微粒化装置G-smasher LM-1000)を用いて解砕し、解砕処理後のスラリーを得た。なお、解砕にあたっては、鉄粉純水混合スラリーの供給速度を100ml/min、エア圧力を0.6MPaとし、解砕処理を5回繰り返した。解砕処理後のスラリーを窒素ガス中100℃で2h乾燥させ、実施例10に係る鉄粉を得た。
 これらの実施例で得られたシリコン酸化物被覆鉄粉についてBET比表面積、組成、磁気特性、複素透磁率および圧粉体の密度、体積抵抗率の測定を行った。測定結果を表2に併せて示す。
[実施例11]
 大気中での加熱処理温度を1020℃に変更した以外は上述した比較例1の手順1~手順8と同じ手順により鉄粉を得た。得られた鉄粉について、鉄粒子の平均粒子径、平均軸比、組成、BET比表面積および磁気特性の測定を行った。それらの測定結果を表2に示す。得られた鉄粉を構成する鉄粒子の平均粒径は0.31μm、平均軸比は1.20であった。
 得られた鉄粉を純水と混合して、鉄粉の含有割合が10質量%の鉄粉純水混合スラリーを作製した。このスラリーをジェットミル粉砕装置(スギノマシン株式会社製のスターバーストミニ、型式番号:HJP-25001)を用いて解砕し、解砕処理後のスラリーを得た。なお、解砕にあたっては、鉄粉純水混合スラリーを加圧する圧力を245MPaとし、解砕処理を10回繰り返した。解砕処理後のスラリーを窒素ガス中100℃で2h乾燥させ、解砕処理後の鉄粉を得た(手順19)。
 1L反応槽にて純水54.09gおよびイソプロピルアルコール(IPA)196gを投入して混合溶媒を作成し、その混合溶媒に手順19で得られた鉄粉15.00g添加し、撹拌羽根により機械的に撹拌しながら、室温で30min間窒素パージした。30min経過後、撹拌および窒素パージを継続しながら、反応溶液を40℃に昇温した。
 その後、反応溶液中にオルトケイ酸テトラエチル(TEOS)2.55gを一挙に添加し、10min間保持した。10min後、濃度10質量%のアンモニア水9.4gを45minかけて、反応溶液に連続的に添加した。アンモニア水添加終了後、反応溶液を60min保持して熟成を行い、加水分解により生成したシラン化合物の加水分解生成物で鉄粉の表面を被覆した。鉄粉製造工程およびシリコン酸化物被覆を行う一連の工程の条件を、表1に併せて示す。
 得られたスラリーを、メンブレンフィルターを用いた吸引ろ過によりろ過した後純水で洗浄し、得られた鉄粉のケーキを窒素雰囲気中100℃で乾燥した。当該シリコン酸化物被覆鉄粉について、BET比表面積、組成、磁気特性、複素透磁率および圧粉体の密度、体積抵抗率の測定を行った。測定結果を表2に併せて示す。なお、体積抵抗率の測定結果としては、体積抵抗の測定値Rが3.9×10(Ω)、粉末試料厚みtが0.381(cm)であった。
[実施例12]
 箱型焼成炉を用いた大気中での加熱処理を1090℃で行った以外は比較例1と同様の手順により、鉄粉を得た。得られた鉄粉15.00gを用い、TEOS添加量を1.27gに変更した以外は実施例11と同じ条件にてシリコン酸化物被覆処理を実施して、シリコン酸化物被覆鉄粉を得た。鉄粉製造工程およびシリコン酸化物被覆を行う一連の工程の条件を、表1に併せて示す。
 得られたスラリーを、メンブレンフィルターを用いた吸引ろ過によりろ過した後純水で洗浄し、得られた鉄粉のケーキを窒素雰囲気中100℃で乾燥した。当該シリコン酸化物被覆鉄粉について、BET比表面積、組成、磁気特性、複素透磁率および圧粉体の密度、体積抵抗率の測定を行った。測定結果を表2に併せて示す。なお、体積抵抗率の測定結果としては、体積抵抗の測定値Rが3.8×10(Ω)、粉末試料厚みtが0.412(cm)であった。
[比較例2]
 TEOSの添加量を0.91gをとした以外は実施例2と同じ条件を用いてシリコン酸化物被覆鉄粉を得た。本比較例で用いたシリコン酸化物被覆の条件を表1に併せて示す。また、本比較例で得られたシリコン酸化物被覆鉄粉についてのBET比表面積、組成、磁気特性、複素透磁率および圧粉体の密度、体積抵抗率の測定結果を表2に併せて示す。
 本比較例で得られたシリコン酸化物被覆鉄粉Si含有量は0.9%であり、シリコン酸化物被覆層の厚さが十分ではなかったため、圧粉体の体積抵抗率が9.9×10Ω・cm以下となった。この体積抵抗率は、実施例1~10についてのそれと比較して著しく劣っていた。
[比較例3]
 5L反応槽にて、純水4113.24gに、純度99.7質量%の硝酸鉄(III)9水和物566.47g、リン含有イオンの供給源として85質量%HPO1.39gを大気雰囲気中、撹拌羽根により機械的に撹拌しながら溶解した(手順1)。この溶解液のpHは約1であった。なお、この条件ではP/Fe比は0.0086である。
 大気雰囲気中、この仕込み溶解液を30℃の条件下で、撹拌羽根により機械的に撹拌しながら、23.47mass%のアンモニア溶液409.66gを10minかけて添加し(約40g/L)、滴下終了後に30min間撹拌を続けて生成した沈殿物の熟成を行った。その際、沈殿物を含むスラリーのpHは約9であった(手順2)。
 手順2で得られたスラリーを撹拌しながら、大気中30℃で、純度95.0mass%のテトラエトキシシラン(TEOS)55.18gを10minかけて滴下した。その後20時間そのまま撹拌し続け、加水分解により生成したシラン化合物の加水分解生成物で沈殿物を被覆した(手順3)。なお、この条件ではSi/Fe比は0.18である。
 手順3で得られたスラリーを濾過し、得られたシラン化合物の加水分解生成物で被覆した沈殿物の水分をできるだけ切ってから純水中に再度分散させ、リパルプ洗浄した。洗浄後のスラリーを再度濾過し、得られたケーキを大気中110℃で乾燥した(手順4)。手順4で得られた乾燥品を、箱型焼成炉を用い、大気中1050℃で加熱処理し、シリコン酸化物被覆酸化鉄粉を得た(手順5)。手順5で得られたシリコン酸化物被覆酸化鉄粉を通気可能なバケットに入れ、そのバケットを貫通型還元炉内に装入し、炉内に水素ガスを流しながら630℃で40min保持することにより還元熱処理を施した(手順6)。
 引き続き、炉内の雰囲気ガスを水素から窒素に変換し、窒素ガスを流した状態で炉内温度を降温速度20℃/minで80℃まで低下させた。その後、安定化処理を行う初期のガスとして、窒素ガス/空気の体積割合が125/1となるように窒素ガスと空気を混合したガス(酸素濃度約0.17体積%)を炉内に導入して金属粉末粒子表層部の酸化反応を開始させ、その後徐々に空気の混合割合を増大させ、最終的に窒素ガス/空気の体積割合が25/1となる混合ガス(酸素濃度約0.80体積%)を炉内に連続的に導入することにより、粒子の表層部に酸化保護層を形成した。安定化処理中、温度は80℃に維持し、ガスの導入流量もほぼ一定に保った(手順7)。
 以上の一連の手順により得られた、シリコン酸化物被覆鉄粉について、磁気特性、BET比表面積、鉄粒子の粒子径および複素透磁率の測定を行った。測定結果を表2に併せて示す。
 本比較例で得られたシリコン酸化物被覆鉄粉のシリコン酸化物被覆は、リン含有化合物を含むものであり、圧粉体の体積抵抗率が9.9×10Ω・cm以下であった。
 以上の実施例および比較例から、本発明で規定する鉄粉に所定のシリコン酸化物被覆を施すことにより、粒子径が小さく、高周波帯域において高いμ’を達成でき、なおかつ高い絶縁性を有するシリコン酸化物被覆鉄粉が得られることが判る。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (6)

  1.  平均粒子径が0.25μm以上0.80μm以下であり、かつ、平均軸比が1.5以下の鉄粒子の表面がシリコン酸化物で被覆されたシリコン酸化物被覆鉄粉であって、Si含有量が1.0質量%以上10質量%以下であり、前記のシリコン酸化物被覆鉄粉を64MPaで垂直に加圧成形して得られた圧粉体に、10Vの印加電圧をかけた状態で測定した圧粉体の体積抵抗率が1.0×10Ω・cm以上である、シリコン酸化物被覆鉄粉。
  2.  前記の鉄粒子のP含有量が、前記鉄粒子の質量に対して0.1質量%以上1.0質量%以下である、請求項1に記載のシリコン酸化物被覆鉄粉。
  3.  前記のシリコン酸化物被覆鉄粉を64MPaで加圧成形して得られた圧粉体の圧粉密度が4.0g/cm以下である、請求項1または2に記載のシリコン酸化物被覆鉄粉。
  4.  平均粒子径が0.25μm以上0.80μm以下であり、かつ、平均軸比が1.5以下の鉄粒子の表面がシリコン酸化物で被覆されたシリコン酸化物被覆鉄粉のSi含有量が1.0質量%以上10質量%以下である、シリコン酸化物被覆鉄粉の製造方法であって、
     平均粒子径が0.25μm以上0.80μm以下であり、かつ、平均軸比が1.5以下の鉄粒子からなる鉄粉を準備する鉄粉製造工程と、
     前記の工程で得られた鉄粉を、1質量%以上40質量%以下の水を含む、水と有機物の混合溶媒中に分散させて得られたスラリーを保持するスラリー保持工程と、
     前記の混合溶媒に前記鉄粉を分散させ、保持したスラリーにシリコンアルコキシドを添加するアルコキシド添加工程と、
     前記のシリコンアルコキシドを添加したスラリーに、シリコンアルコキシドの加水分解触媒を添加し、シリコン酸化物を被覆した鉄粉の分散したスラリーを得る加水分解触媒添加工程と、
     前記のシリコン酸化物を被覆した鉄粉を含むスラリーを固液分離し、シリコン酸化物を被覆した鉄粉を得る回収工程と、
    を含む、シリコン酸化物被覆鉄粉の製造方法。
  5.  請求項1~3のいずれか1項に記載のシリコン酸化物被覆鉄粉を含む、インダクタ用の成形体。
  6.  請求項1~3のいずれか1項に記載のシリコン酸化物被覆鉄粉を用いたインダクタ。
PCT/JP2019/000616 2018-01-17 2019-01-11 シリコン酸化物被覆鉄粉およびその製造方法並びにそれを用いたインダクタ用成形体およびインダクタ WO2019142727A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980008633.8A CN111601674A (zh) 2018-01-17 2019-01-11 硅氧化物被覆铁粉及其制造方法和使用其的电感器用成型体及电感器
KR1020207022686A KR102376001B1 (ko) 2018-01-17 2019-01-11 실리콘 산화물 피복 철분 및 이의 제조 방법 및 이를 사용한 인덕터용 성형체 및 인덕터
US16/957,397 US20210050132A1 (en) 2018-01-17 2019-01-11 Silicon oxide-coated iron powder, method for producing the same, molded body for inductor using the same, and inductor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-005405 2018-01-17
JP2018005405 2018-01-17
JP2018-230914 2018-12-10
JP2018230914A JP7201417B2 (ja) 2018-01-17 2018-12-10 シリコン酸化物被覆鉄粉およびその製造方法並びにそれを用いたインダクタ用成形体およびインダクタ

Publications (1)

Publication Number Publication Date
WO2019142727A1 true WO2019142727A1 (ja) 2019-07-25

Family

ID=67302229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000616 WO2019142727A1 (ja) 2018-01-17 2019-01-11 シリコン酸化物被覆鉄粉およびその製造方法並びにそれを用いたインダクタ用成形体およびインダクタ

Country Status (2)

Country Link
KR (1) KR102376001B1 (ja)
WO (1) WO2019142727A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388231A (zh) * 2021-06-30 2021-09-14 航天特种材料及工艺技术研究所 一种抗锈蚀的羰基铁粉吸波材料及其制备方法
US20220020515A1 (en) * 2020-07-20 2022-01-20 Murata Manufacturing Co., Ltd. Coil component and method for manufacturing coil component
EP3969260A4 (en) * 2019-08-09 2022-12-28 Hewlett-Packard Development Company, L.P. THREE DIMENSIONS PRINTING KITS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175806A (ja) * 1988-12-27 1990-07-09 Ishihara Sangyo Kaisha Ltd 磁気記録用金属磁性粉末の製造方法
JPH03229806A (ja) * 1990-02-06 1991-10-11 Harima Chem Inc 金属微粒子の製造方法
JP2009231481A (ja) * 2008-03-21 2009-10-08 Hitachi Metals Ltd 圧粉磁心用軟磁性粉末のシリカ被覆形成方法および圧粉磁心の製造方法
JP2010024478A (ja) * 2008-07-16 2010-02-04 Sumitomo Osaka Cement Co Ltd 鉄微粒子及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646768B2 (ja) 2004-09-30 2011-03-09 住友電気工業株式会社 軟磁性材料、圧粉磁心、および軟磁性材料の製造方法
JP6115057B2 (ja) 2012-09-18 2017-04-19 Tdk株式会社 コイル部品
JP2016014162A (ja) 2014-06-30 2016-01-28 セイコーエプソン株式会社 非晶質合金粉末、圧粉磁心、磁性素子および電子機器
KR101730228B1 (ko) 2015-01-27 2017-04-26 삼성전기주식회사 자성체 조성물을 포함하는 인덕터 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175806A (ja) * 1988-12-27 1990-07-09 Ishihara Sangyo Kaisha Ltd 磁気記録用金属磁性粉末の製造方法
JPH03229806A (ja) * 1990-02-06 1991-10-11 Harima Chem Inc 金属微粒子の製造方法
JP2009231481A (ja) * 2008-03-21 2009-10-08 Hitachi Metals Ltd 圧粉磁心用軟磁性粉末のシリカ被覆形成方法および圧粉磁心の製造方法
JP2010024478A (ja) * 2008-07-16 2010-02-04 Sumitomo Osaka Cement Co Ltd 鉄微粒子及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3969260A4 (en) * 2019-08-09 2022-12-28 Hewlett-Packard Development Company, L.P. THREE DIMENSIONS PRINTING KITS
US20220020515A1 (en) * 2020-07-20 2022-01-20 Murata Manufacturing Co., Ltd. Coil component and method for manufacturing coil component
US11961645B2 (en) * 2020-07-20 2024-04-16 Murata Manufacturing Co., Ltd. Coil component and method for manufacturing coil component
CN113388231A (zh) * 2021-06-30 2021-09-14 航天特种材料及工艺技术研究所 一种抗锈蚀的羰基铁粉吸波材料及其制备方法

Also Published As

Publication number Publication date
KR20200106181A (ko) 2020-09-11
KR102376001B1 (ko) 2022-03-21

Similar Documents

Publication Publication Date Title
JP7201417B2 (ja) シリコン酸化物被覆鉄粉およびその製造方法並びにそれを用いたインダクタ用成形体およびインダクタ
JP6892797B2 (ja) 鉄粉およびその製造方法並びに前駆体の製造方法並びにインダクタ用成形体およびインダクタ
US11264155B2 (en) Epsilon-type iron oxide magnetic particles and method for producing the same, magnetic powder, magnetic coating material and magnetic recording medium containing magnetic particles
WO2019142727A1 (ja) シリコン酸化物被覆鉄粉およびその製造方法並びにそれを用いたインダクタ用成形体およびインダクタ
CN114728334B (zh) 硅氧化物被覆软磁性粉末及制造方法
WO2019142610A1 (ja) Fe-Co合金粉並びにそれを用いたインダクタ用成形体およびインダクタ
KR102387491B1 (ko) 철분 및 이의 제조 방법 및 인덕터용 성형체 및 인덕터
WO2019142611A1 (ja) Fe-Ni合金粉並びにそれを用いたインダクタ用成形体およびインダクタ
TW202144294A (zh) 鐵系氧化物磁性粉,以及使用該磁性粉而得的壓粉體及電波吸收體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19740886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207022686

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19740886

Country of ref document: EP

Kind code of ref document: A1