WO2019142720A1 - バックル、覚醒状態判定システム及び覚醒状態判定方法 - Google Patents

バックル、覚醒状態判定システム及び覚醒状態判定方法 Download PDF

Info

Publication number
WO2019142720A1
WO2019142720A1 PCT/JP2019/000515 JP2019000515W WO2019142720A1 WO 2019142720 A1 WO2019142720 A1 WO 2019142720A1 JP 2019000515 W JP2019000515 W JP 2019000515W WO 2019142720 A1 WO2019142720 A1 WO 2019142720A1
Authority
WO
WIPO (PCT)
Prior art keywords
respiration
detection unit
frequency
buckle
breathing
Prior art date
Application number
PCT/JP2019/000515
Other languages
English (en)
French (fr)
Inventor
青木 洋
Original Assignee
Joyson Safety Systems Japan株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joyson Safety Systems Japan株式会社 filed Critical Joyson Safety Systems Japan株式会社
Publication of WO2019142720A1 publication Critical patent/WO2019142720A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/02Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver
    • B60K28/06Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver responsive to incapacity of driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/18Anchoring devices
    • B60R22/22Anchoring devices secured to the vehicle floor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/48Control systems, alarms, or interlock systems, for the correct application of the belt or harness

Definitions

  • the present invention relates to a buckle, an awake state determination system, and an awake state determination method.
  • a technique for determining the awakening state of a person based on respiration data of the person acquired by a respiration sensor For example, a device that determines an awake state using, as an index, an average value of RI (Respiration Interval) indicating a breathing interval or RrMSSD (Respiration root Mean Square Successive Difference) indicating a variation of RI in a predetermined interval of about 120 seconds.
  • RI Respiration Interval
  • RrMSSD Respiration root Mean Square Successive Difference
  • a statistical index in a given section such as an average value of RI or RrMSSD is suitable for representing an average feature of respiration in that section, and is effective for rough determination of arousal state.
  • information on time-series characteristics of respiration in a section for example, periodic change in increase or decrease of respiration in the section, a pattern of increase or decrease, etc.
  • determination of arousal state Accuracy may be reduced.
  • the present disclosure provides a buckle, an awake state determination system, and an awake state determination method that can determine an awake state with high accuracy.
  • the present disclosure A sensor that outputs an output signal that changes in response to the breathing of a vehicle occupant; A detection unit that detects frequency components of the respiration from the output signal by frequency analysis; And a determination unit that determines an awake state of the occupant based on the frequency component detected by the detection unit.
  • a buckle having a sensor that outputs an output signal that changes in response to the breathing of a vehicle occupant;
  • a detection unit that detects frequency components of the respiration from the output signal by frequency analysis;
  • the awake state determination system includes: a determination unit that determines an awake state of the occupant based on the frequency component detected by the detection unit.
  • a sensor provided on the buckle outputs an output signal that changes in response to the breathing of the vehicle occupant,
  • the detection unit detects frequency components of the respiration from the output signal by frequency analysis;
  • the determination unit provides an awake state determination method that determines the awake state of the occupant based on the frequency component detected by the detection unit.
  • the awakening state can be determined with high accuracy.
  • FIG. 1 is a view showing an example of the configuration of a seat belt device.
  • the seat belt device 1 is an example of an in-vehicle system mounted on a vehicle.
  • the seat belt device 1 includes, for example, a seat belt 4, a retractor 3, a shoulder anchor 6, a tongue 7, and a buckle 8.
  • the seat belt 4 is an example of a seat belt that restrains the occupant 11 sitting on the seat 2 of the vehicle, and is a belt-like member that can be taken up by the retractor 3 so as to be drawn out.
  • the seat belt is also referred to as webbing.
  • the belt anchor 5 at the front end of the seat belt 4 is fixed to the seat 2 or the vehicle body in the vicinity of the seat 2.
  • the retractor 3 is an example of a winding device that enables the seat belt 4 to be wound or pulled out, and the seat belt 4 is pulled out of the retractor 3 when a deceleration equal to or greater than a predetermined value at the time of a vehicle collision is applied to the vehicle. Limit that.
  • the retractor 3 is fixed to the seat 2 or the vehicle body in the vicinity of the seat 2.
  • the shoulder anchor 6 is an example of a belt insertion tool through which the seat belt 4 is inserted, and is a member for guiding the seat belt 4 pulled out from the retractor 3 toward the shoulder of the occupant 11.
  • the shoulder anchor 6 is fixed to the seat 2 or the vehicle body in the vicinity of the seat 2.
  • the tongue 7 is an example of a belt insertion tool through which the seat belt 4 is inserted, and is a component slidably attached to the seat belt 4 guided by the shoulder anchor 6.
  • the buckle 8 is a component to which the tongue 7 is detachably connected, and is fixed to, for example, the seat 2 or a vehicle body near the seat 2.
  • the buckle 8 has a main body 8a and a stay 8b.
  • the main body 8a is a portion to which the tongue 7 is detachably connected.
  • the stay 8 b is an example of a support member that supports the main body 8 a of the buckle 8.
  • the stay 8 b is fixed to the seat 2 or the vehicle body in the vicinity of the seat 2.
  • a portion of the seat belt 4 between the shoulder anchor 6 and the tongue 7 is a shoulder belt portion 9 that restrains the chest and shoulders of the occupant 11.
  • a portion of the seat belt 4 between the belt anchor 5 and the tongue 7 is a lap belt portion 10 that restrains the waist of the occupant 11.
  • FIG. 2 is a block diagram showing an example of the configuration of the buckle 8 in the first embodiment.
  • the buckle 8 includes a sensor 20 and an estimation unit 30.
  • the sensor 20 outputs an output signal that changes in accordance with the respiration of the occupant 11 of the vehicle.
  • the estimation unit 30 estimates the awake state of the occupant 11 based on the output signal output from the sensor 20.
  • the estimation unit 30 includes, for example, at least one computer including at least one CPU (Central Processing Unit) and at least one memory.
  • a specific example of a computer is a microcomputer.
  • Each function of the estimation unit 30 is realized by processing that at least one program causes the CPU to execute.
  • the program is readably stored in the memory.
  • the estimation unit 30 includes a plurality of functional blocks of a detection unit 40, a determination unit 70, and an output unit 80.
  • the detection unit 40 detects respiration information representing the respiration state of the occupant 11 from the output signal of the sensor 20.
  • the determination unit 70 determines the awake state of the occupant 11 based on the respiration information detected by the detection unit 40.
  • the output unit 80 outputs the determination result of the awake state by the determination unit 70 to the external device of the buckle 8 by wire or wirelessly.
  • the external device executes predetermined control (for example, control to warn an occupant, control to support the traveling of a vehicle, and the like) based on the determination result.
  • heart rate variability HRV derived from the heart rate interval RRI may be used to estimate the arousal state of a person.
  • the heart rate variability HRV contains information representing autonomic nerve activity.
  • LF / HF which is an indicator of the balance of activities of sympathetic nerve and parasympathetic nerve, is used as an important indicator of nerve activity related to arousal state.
  • the sympathetic nerve has an action of enhancing the activity of the brain and the body. For example, when it gets up in the morning, the sympathetic nerve becomes active and a person becomes awakening state.
  • the parasympathetic nerve has the effect of suppressing the brain's excitement, and when the parasympathetic activity is dominant, the arousal state decreases. For example, when sleeping at night, this state occurs. Therefore, when the value of LF / HF is large, sympathetic nerves are dominant, and when the value of LF / HF is small, parasympathetic nerves are dominant.
  • This LF / HF index measures the power spectrum of the waveform after frequency analysis by analyzing the frequency of the heartbeat fluctuation HRV representing time-series fluctuation of the heartbeat interval RRI in a predetermined section (for example, 1 to 2 minutes) Calculated by The integrated value of the power spectrum amplitude of low frequency components in the range of 0.04 Hz to 0.15 Hz on the frequency axis of the waveform after frequency analysis is LF, and the power spectrum amplitude of high frequency components in the range of 0.15 Hz to 0.5 Hz The integrated value of is HF.
  • HF is an indicator of parasympathetic activity, and increases as parasympathetic activity becomes active.
  • LF is known as an index indicating the activity of sympathetic nerve and parasympathetic nerve
  • LF is increased by active sympathetic activity or active parasympathetic activity. Therefore, by taking the ratio of LF to HF (LF / HF), it is possible to estimate the size of the activity balance between the sympathetic nerve and the parasympathetic nerve, and this LF / HF is also used to estimate the arousal state. For example, if the sympathetic nerve becomes active, LF / HF becomes large, and if the parasympathetic nerve becomes active, LF / HF becomes small. That is, when the LF / HF becomes larger than a predetermined determination threshold because the sympathetic nerve is dominant, it can be determined that the person is in the awake state.
  • the frequency division of LF / HF differs somewhat depending on the document. In the text, figures of 0.04 Hz, 0.15 Hz and 0.5 Hz are used, but the frequency division is not limited to these figures.
  • human respiration repeats inspiratory and exhalation in a cycle of 2 seconds to 6 seconds to introduce oxygen into the body.
  • Inhalation causes air to be taken into the lungs by dilating the lungs and creating negative pressure therein.
  • Exhalation exhales air by compressing the lungs and providing a positive pressure therein.
  • the concentration of oxygen taken into the blood from the lungs decreases at negative pressure and increases at positive pressure.
  • the concentration of oxygen taken into the blood from the lungs changes up and down.
  • the heart has a function to send oxygen taken into blood to the whole body.
  • the sinus node responsible for the contraction of the atrium of the heart contracts the atrium as a pacemaker of the heart and sends blood to the ventricle.
  • the atrioventricular node contracts the ventricle at a time delay from the sinus node's excitation and sends blood throughout the body with strong pressure.
  • the sinus node responds to the oxygen concentration in the blood, and has an automatic adjustment function to suppress the heartbeat when the oxygen concentration is increased, if the oxygen concentration is decreased.
  • heart rate variability contains respiratory variation information, and it can be said that heart rate variability and respiration are correlated.
  • a method of detecting a heartbeat there is contact detection using an electrocardiograph, pulse measurement which measures a pulse wave, and the like.
  • a technology for detecting a minute movement of the body surface with a microwave or an electrostatic sensor to detect a heartbeat there is vibration or movement of the body due to running of the vehicle. It becomes difficult to stably detect minute movements of the
  • respiration is large on the surface of the body compared to the heartbeat, and the respiration frequency does not overlap so much with the vehicle vibration frequency region of 1 Hz or more (the heartbeat frequency almost overlaps with the vehicle vibration frequency region). Therefore, in the on-vehicle environment, detection of respiratory information representing a respiratory state is advantageous as compared to detection of heartbeat information representing a cardiac state.
  • the change in tension that occurs in the seat belt synchronizes with the movement of the chest and includes respiratory information. Therefore, by detecting a change in tension of the seat belt in a state in which the occupant wears the seat belt, it is possible to accurately detect breathing information without making the occupant feel bothersome.
  • the estimation unit 30 of the present embodiment can obtain characteristic information related to the activity of the autonomic nerve of the occupant (for example, information corresponding to the above-described LF / HF obtained from the heart rate fluctuation) by the detection unit 40. It is extracted from the respiration information, and the awakening state of the occupant is estimated based on the characteristic information.
  • respiration changes also by movement (body movement) of the body whose displacement is larger than respiration. Therefore, if it is considered that body movement is also considered to be a part of respiratory activity, it may be considered that the state of body movement is added to the estimation of the arousal state of the occupant by using respiratory information to estimate the arousal state of the occupant. it can.
  • Body movement includes, for example, posture change of the occupant on the seat.
  • the sensor 20 monitors a change in accordance with the breathing of the occupant 11 and outputs an output signal in accordance with the monitoring result.
  • the change according to the breathing of the occupant 11 is, for example, a change in body movement synchronized with the breathing of the chest, belly, waist, back, back or buttocks, a change synchronized with the breathing such as the flow or temperature of the breath drawn from the nostril Etc.
  • the detection unit 40 detects respiration information from a change according to the respiration of the occupant 11 acquired by the sensor 20.
  • the sensor 20 is mounted on, for example, the seat 2, the seat belt 4, the buckle 8, the tongue 7 or a dashboard.
  • the sensor 20 detects tension generated in the seat belt 4 (hereinafter, also referred to as “tension F”), and outputs an output signal that changes in accordance with the detected tension F.
  • tension F tension generated in the seat belt 4
  • the sensor 20 may be provided on the main body 8 a of the buckle 8 or may be provided on the stay 8 b of the buckle 8.
  • the sensor 20 may detect a change in accordance with the respiration of the occupant 11 as a change in tension T.
  • the sensor 20 detects, for example, a deformation or displacement caused by a change in the tension F of the seat belt 4 as the tension F of the seat belt 4.
  • the sensor 20 may be a strain sensor that detects a change in load input from the seat belt 4 to the buckle 8 via the tongue 7 or detects a change in capacitance generated by a change in tension F of the seat belt 4 It may be a capacitive sensor.
  • the sensor 20 may be a device that detects the displacement of the buckle 8 itself as a change in the tension F of the seat belt 4.
  • a non-contact sensor etc. which detect a relative distance with a reflective subject outside buckle 8 by sending and receiving of light or an electric wave are mentioned.
  • the chest movement of the occupant 11 mainly changes the tension of the shoulder belt portion 9, and the belly movement of the occupant 11 mainly changes the tension of the lap belt portion 10. Then, both the shoulder belt portion 9 and the lap belt portion 10 are connected to the buckle 8 via the tongue 7. Therefore, the sensor 20 provided on the buckle 8 can detect the information on the movement of both the chest and the belly of the occupant 11 from the change in tension, so that the sensor 20 is provided on the buckle 8 to improve the detection accuracy of the tension F. As a result, the detection accuracy of the breathing information of the occupant 11 is improved.
  • the detection unit 40 extracts a respiration signal including respiration information of the occupant 11 from the output signal of the sensor 20. For example, after checking whether the possible numerical range of the output signal of the sensor 20 is within the appropriate range, the detection unit 40 performs noise removal and filtering for selectively emphasizing the cycle and amplitude of the respiration signal.
  • the output signal of The period of steady breathing during driving is usually in the range of 3 seconds to 6 seconds, but the range differs depending on each person, and also depending on the awake state of each person or the like.
  • the detection unit 40 passes a signal of a frequency range (for example, a range from 0.04 Hz (25-second cycle) to 0.5 Hz (2-second cycle)) wider than the frequency range of steady breathing during driving, It is preferable to use a filter that selectively cuts signals of frequencies outside the frequency range.
  • a frequency range for example, a range from 0.04 Hz (25-second cycle) to 0.5 Hz (2-second cycle)
  • FIG. 3 is a flowchart illustrating an example of the respiration signal extraction process performed by the detection unit 40.
  • FIG. 4 is a flowchart showing an example of the respiratory cycle statistical process performed by the detection unit 40.
  • FIG. 5 is a flowchart showing an example of the respiratory frequency component ratio detection process performed by the detection unit 40. The detection unit 40 repeatedly performs each of these processes shown in FIGS. 3 to 5 at a predetermined cycle. Next, each process shown in FIGS. 3 to 5 will be described.
  • FIG. 3 is a flowchart illustrating an example of the respiration signal extraction process performed by the detection unit 40.
  • the detection unit 40 reads the output signal s output from the sensor 20 (step S11), and executes a process of extracting the respiration signal Rs from the read output signal s (step S13).
  • the detection unit 40 passes signals in a frequency range from 0.04 Hz (25-second cycle) to 0.5 Hz (2-second cycle) using, for example, a low pass filter and a high pass filter, and signals with frequencies other than that range To the output signal s. Thereby, the respiration signal Rs is extracted from the output signal s.
  • step S15 the detection unit 40 normalizes the extracted respiration signal Rs to generate a normalized respiration signal Rsn.
  • the detection unit 40 normalizes the respiration signal Rs by performing a normalization process of adjusting the amplitude and the offset of the respiration signal Rs in order to increase the detection accuracy of the respiration cycle and the frequency component of the respiration signal Rs.
  • FIG. 6 is a diagram showing an example of the respiration signal Rs before normalization.
  • FIG. 7 is a diagram showing an example of the respiration signal Rsn after normalization.
  • the detection unit 40 sets the respiration signal Rs such that the amplitude center Rc of the respiration signal Rs becomes zero and the average amplitude Rsmave of the respiration signal Rs becomes one. Are normalized to generate a normalized respiration signal Rsn.
  • the detection unit 40 may normalize the average amplitude Rsmave to 1, for example, in order to avoid the influence of the amplitude fluctuation, and the following simple Amplitude shaping and normalization may be performed by any method.
  • FIG. 8 is a diagram for explaining some simple methods of amplitude shaping normalization processing.
  • FIG. 8A shows an example of the respiration signal Rs before normalization.
  • FIG. 8 (b) shows an example of a normalization process for generating a normalized respiration signal Rs by limiting the amplitude of the respiration signal Rs to a predetermined level.
  • FIG. 8C shows that by limiting the rate of change in amplitude of the respiration signal Rs at predetermined upper and lower levels, fast and slow changes in amplitude are suppressed and the amplitude is limited to a certain level.
  • generates signal Rsn is shown.
  • FIG. 8D shows an example of a normalization process for generating a breathing signal Rsn of an eye pattern by comparing the amplitude of the breathing signal Rs with the zero crossing and performing angle limitation on the changing edge.
  • FIG. 8E shows an example of the original waveform of the respiration signal Rs when the amplitude of the respiration signal Rs is compared at the zero crossing.
  • FIG. 4 is a flowchart showing an example of the respiratory cycle statistical process performed by the detection unit 40.
  • the detection unit 40 detects a breathing cycle RI which is one of the breathing information from the normalized breathing signal Rsn, and generates a breathing cycle fluctuation RIV which is time series data of the breathing cycle RI.
  • the detection unit 40 detects the breathing cycle RI by detecting the zero cross or peak of the normalized respiration signal Rsn.
  • the detection unit 40 performs statistical analysis of respiratory cycle fluctuation RIV in a predetermined section.
  • the detection unit 40 detects, for example, respiratory information such as an average respiratory cycle RIsave, a respiratory cycle standard deviation RIsstd, an average difference fluctuation RIVsave, and an average amplitude Rsmave.
  • FIG. 9 is a diagram showing an example of statistical analysis of respiratory cycle fluctuation RIV in a predetermined section.
  • the detection unit 40 calculates an average value of measurement data S 1 to S n of n (n is an integer of 2 or more) respiratory cycles RI measured in a predetermined calculation interval as an average respiratory cycle RIsave.
  • the detection unit 40 calculates a standard deviation of measurement data S 1 to S n of n respiratory cycles RI measured in a predetermined calculation interval as a respiratory cycle standard deviation RIsstd.
  • the respiratory cycle standard deviation RIsstd represents the variation from the average value of the calculation interval, and decreases when the respiratory cycle RI is stable, and increases when the respiratory cycle RI changes. It can not be distinguished from the respiratory cycle standard deviation RIsstd whether the respiratory cycle RI fluctuates randomly or slowly in the calculation section.
  • the average difference fluctuation RIVsave increases when the breathing cycle RI fluctuates randomly in the calculation section, and decreases when the breathing cycle RI fluctuates slowly and greatly in the calculation section.
  • the detection unit 40 calculates an average value of the amplitudes of the respiration signal as an average amplitude Rsmave. For example, when the amplitude of the respiration signal Rs is twice or more the average amplitude Rsmave, the determination unit 70 determines that the respiration is a respiration state different from a normal state such as deep respiration or body movement.
  • FIG. 5 is a flowchart showing an example of the respiratory frequency component ratio detection process performed by the detection unit 40.
  • the respiratory signal Rs does not necessarily have to be normalized, and the respiratory signal Rs may be used as it is in the respiratory frequency component ratio detection process.
  • the frequency analysis is performed using the respiration signal Rsn normalized in step S15 of FIG. 3 to reduce the influence of the amplitude fluctuation.
  • step S33 the detection unit 40 analyzes frequency components of the respiration signal Rs in the range of 0.04 Hz to 0.5 Hz.
  • the detection unit 40 performs fast Fourier transform (FFT) by multiplying time series data of the number of powers of 2 by the same number of window functions.
  • FFT fast Fourier transform
  • the detection unit 40 performs an FFT on the respiration signal Rs to integrate the integrated value LFR of the power spectrum amplitude of the low frequency respiration component of the respiration signal Rs and the integrated value HFR of the power spectrum amplitude of the high frequency respiration component of the respiration signal Rs. And calculate.
  • the detection unit 40 preferably calculates, for example, an integrated value LFR of power spectrum amplitudes of low frequency respiration components in the same frequency range (range from 0.04 Hz to 0.15 Hz) as the above-described LF.
  • the detection unit 40 calculate, for example, an integrated value HFR of power spectrum amplitudes of high frequency breathing components in the same frequency range (range of 0.15 Hz to 0.5 Hz) as the above-described HF.
  • the power spectrum is calculated as a real number, for example, after FFT calculation of the respiration signal Rsn, multiplied by a complex conjugate.
  • the number of time series data is appropriate.
  • the number of time series data is more appropriate.
  • step S35 the detection unit 40 divides the LFR by the HFR to calculate the respiratory frequency component ratio RLHR, which is the ratio of LFR to HFR (LFR / HFR).
  • RLHRn is a normalized output of the respiratory frequency component ratio.
  • FIG. 10 is a waveform diagram showing an example of each signal detected from the driver who is driving.
  • FIG. 10 (a) is a waveform diagram showing the respiration signal Rs and the heartbeat interval RRI.
  • the heart rate interval RRI is a value measured by an electrocardiograph.
  • the horizontal axis represents data points, and the vertical axis of RRI represents heart rate per minute. As shown in FIG. 10A, the change in respiration and the heart rate fluctuation are linked.
  • FIG. 10 (b) is a waveform diagram showing LF / HF and LFR / HFR.
  • LF / HF indicates the value of LF / HF obtained from the heart rate interval RRI measured by the electrocardiograph, and is normalized so that the average value of all the sections becomes 1.
  • LFR / HFR indicates the value of LFR / HFR obtained from the respiration signal Rs in the above-described respiration frequency component ratio detection processing of FIG. 5 and is normalized so that the average value over the entire interval is 1. .
  • LFR / HFR shifts similarly to LF / HF.
  • FIG. 10 (c) shows a breathing cycle RI.
  • the unit of the vertical axis is seconds.
  • RLHR LFR / HFR
  • RLHRn normalized output of respiratory frequency component ratio calculated by respiratory frequency component ratio detection processing of FIG.
  • RLHR or RLHRn can be obtained by making the range of the frequency ratio of RLHR or RLHRn calculated from the respiration signal Rs the same as the range of the frequency ratio calculated from the heart rate interval RRI. Can be used to estimate arousal.
  • the autonomic nervous activity estimated from respiratory signal Rs is It is considered to be in good agreement with the autonomic nerve activity estimated from the interval RRI.
  • the parasympathetic nerve predominates in a period in which the value of RLHR or RLHRn is relatively low, and the correlation with respiration is higher. Therefore, for example, when the value of RLHR or RLHRn is lower than a predetermined determination threshold, the determination unit 70 can determine that the autonomic nerve is in the parasympathetic dominant state and the arousal state is reduced. For example, in FIG. 10B, when the value of RLHRn is lower than the predetermined determination threshold value 0.4, the determination unit 70 determines that the autonomic nerve is in the parasympathetic dominant state, and the awakening state decreases. It is determined that there is.
  • the determination unit 70 can determine that drowsiness has occurred in the occupant when the repeated pattern that increases after the value of RLHR or RLHRn decreases below the predetermined determination threshold is obtained from the detection unit 40.
  • normalization is performed by correlating the average period of respiration and the magnitude of RLHR and dividing RLHR by the average period according to the correlation coefficient.
  • normalization can be performed by dividing RLHR by the average value of the past several minutes of the RLHR or the infinite impulse response filter value.
  • deep and slow breathing is interpreted as relaxing and low arousal.
  • the 5-second period coincides with the frequency domain of HFR
  • the 8-second period coincides with the frequency domain of LFR.
  • the change from 5-second cycle breathing to 8-second cycle respiration may be a transition from a large HFR state to a large LFR state, and a transition from a small LFR / HFR state to a large state. That is, according to the LFR / HFR values, the arousal level is increased, so it seems to be in contradiction to the arousal decrease.
  • the awake state can be determined with high accuracy by analyzing the frequency components of respiration and determining the awake state, as compared to the method of determining the awake state by focusing only on the respiration cycle. With such a mechanism, the activity of autonomic nerve is associated with respiration.
  • the method of using the FFT to analyze the frequency component of respiration is used, it is possible to use the simple low pass filter, high pass filter and slide window filter without using the FFT.
  • Frequency components can be analyzed.
  • the simplest discrete low-pass and high-pass filters are infinite impulse response filters, and the characteristics of an analog CR filter can be realized by simple calculation of difference equations.
  • the frequency range of LFR and HFR is as shown in FIGS. 11 and 12 in combination of the low pass filter and the high pass filter.
  • the filter cutoff characteristics are not steep, the contrast between LFR and HFR is reduced. Therefore, the filter characteristics can be improved by superposing a filter having a notch characteristic in the vicinity of 0.15 Hz.
  • a convolution filter can be considered as a filter having a notch characteristic which is easy to calculate. Next, the convolution filter will be described with reference to FIGS.
  • the data sequence of the respiration signal Rsn is S0, S-1, S-2, ... S-n.
  • FIG. 14 is a schematic view of F2-F1 filter characteristics and F3 filter characteristics.
  • FIG. 15 is a diagram showing superposition of a convolution filter, a low pass filter and a high pass filter.
  • FIG. 16 is a diagram showing an example of a result of calculating RLHRn (normalized output of respiratory frequency component ratio) using the filter of FIG.
  • FIG. 16 is the same as FIG. 10 except that the waveform of RLHRn is added to FIG.
  • the contrast is lowered because the frequency discrimination ability of the filter is rough, but the tendency of increase or decrease of RLHRn almost agrees with LF / HF. ing. Therefore, it is possible to estimate the activity of the autonomic nerve even if a filter having a notch characteristic which is easy to calculate is used.
  • This embodiment is suitable for implementation in a computing environment such as an 8-bit micro processing unit (MPU) or the like in which memory or computation accuracy is insufficient.
  • MPU micro processing unit
  • the detection unit 40 converts the amplitude of the respiration signal Rs into a binary signal of 1 and 10, and calculates one respiration cycle for each rising edge or falling edge of the binary signal. .
  • the detection unit 40 calculates one breathing cycle at each change point (half cycle) of the binary signal.
  • FIG. 18 shows a frequency distribution (frequency of occurrence) in which the horizontal axis is a cycle interval of 0.5 second intervals for the 20 respiratory cycle data. Since the respiratory cycle directly corresponds to the fundamental frequency of respiration, the reciprocal of the cycle corresponds to the fundamental frequency of respiration. The frequency is 0.25 Hz for 4 seconds and 0.166 Hz for 6 seconds.
  • FIG. 19 shows a frequency distribution (occurrence frequency) in which the horizontal axis of the frequency distribution of FIG. 18 is sectioned by frequency and rearranged. The frequency distribution of FIG. 19 matches the FFT analysis result of the fundamental frequency of respiration.
  • FIG. 20 shows an example of a breathing waveform with a repetition cycle of 6 seconds.
  • FIG. 21 shows an example of the result of spectral analysis of the waveform of FIG.
  • the sampling frequency is 2 Hz
  • FFT analysis is performed on data of 64 points.
  • Two spectral peaks are observed around 0.16 Hz and 0.33 Hz.
  • 0.16 Hz corresponds to a repetition cycle of 6 seconds of the respiration waveform, which is a fundamental frequency of one respiration.
  • 0.33 Hz corresponds to a harmonic spectrum associated with imbalanced time of intake and exhaust time, and is a second harmonic component with a period of 3 seconds.
  • This second harmonic component corresponds to the occurrence of an imbalance in which the duty ratio of the waveform after shaping in FIG. 20 does not become 50%. In particular, the longer the cycle, the greater the imbalance.
  • the simplified frequency ratio calculation method using the frequency distribution estimates the frequency component of the respiration amplitude from the time series of the respiration cycle based on a predetermined rule. Then, the frequency component of one respiration waveform is distributed to the HFR component, the frequency component of time series fluctuation of respiration is distributed to the LFR component, the frequency distribution is generated, and the respiratory frequency component ratio is estimated by the ratio of LFR and HFR frequency. Do.
  • the periodic sequence is I (0) to I (-20) (the number n in parentheses is the n-th breath from the present to the past, and I (n) is its respiratory cycle).
  • the detection unit 40 reads respiration amplitude data from the respiration signal Rs (step S41).
  • the detection unit 40 repeatedly calculates one respiratory cycle based on the change in the read respiratory amplitude data, and creates a signal sequence of 21 respiratory cycles from I (0) to I (-20) (step S43). ).
  • the detection unit 40 counts respiration cycles of 2 seconds to 6 seconds as frequencies of HF_bin, including harmonic spectra (from step S45 to step S51).
  • the breathing cycle of 6 to 12 seconds has a fundamental frequency of 6 seconds or more and a harmonic frequency of 6 seconds or less because the second harmonic and third harmonic components are 6 seconds or less. . Therefore, the detection unit 40 counts a breathing cycle of 6 to 12 seconds as the frequency of both LF_bin and HF_bin (from step S49 to step S55).
  • the ratio of incorporation into LF_bin and HF_bin (that is, the ratio of LF_bin and HF_bin as a frequency to be incorporated) may be determined based on the duty ratio of one cycle. In the example, the incorporation ratio is set to 1: 1 for the sake of simplicity.
  • Step S49 Yes since the calculation of the frequency integration changes and a discontinuity occurs at the boundary of 6 seconds, in the cycle of 5 seconds to 7 seconds (Step S49 Yes), the integration balance to LF_bin and HF_bin is continuously changed according to the cycle By this (step S51), the discontinuity is reduced.
  • step S45 the detection unit 40 determines whether I (n) is data of a breathing cycle less than 5 seconds. If the detection unit 40 determines that I (n) is data of a respiration cycle less than 5 seconds (Yes at step S45), the detection unit 40 increments HF_bin by one (step S47). On the other hand, when the detecting unit 40 determines that I (n) is data of a breathing cycle of 5 seconds or more (No in step S45), the detecting unit 40 does not increment HF_bin. Next, in step S49, the detection unit 40 determines whether I (n) is data of a breathing cycle of 5 seconds or more and less than 7 seconds.
  • the detecting unit 40 determines whether I (n) is data of a breathing cycle of 5 seconds or more and less than 7 seconds (Yes in step S49).
  • the detecting unit 40 calculates HF_bin and LF_bin according to the two equations described in step S51.
  • the detection unit 40 determines whether I (n) is data of a breathing cycle of 7 seconds to 12 seconds (step S53). If the detecting unit 40 determines that I (n) is data of a breathing cycle of 7 seconds or more and 12 seconds or less (Yes at step S53), it increments LF_bin by one (step S55).
  • the detection unit 40 determines that I (n) is not data of a breathing cycle of 7 seconds or more and 12 seconds or less (No in step S53), the detection unit 40 does not increment LF_bin.
  • the detection unit 40 performs the processing from step S45 to step S55 for each of the 21 respiratory cycle data from I (0) to I (-20).
  • "Abs (*)" represents the absolute value of *. That is, when the difference B is smaller than one second (Yes at step S69), the detection unit 40 determines that I (n) and I (n-1) have frequency components with the same cycle of six seconds or less, and the frequency of HF_bin. Is incremented and counted (step S70). If the difference B is larger than 2 seconds (Yes at step S65), the detecting unit 40 determines that I (n) and I (n-1) have frequency components of 6 seconds to 12 seconds, and the LF bin frequency is one And increment (step S67).
  • the detection unit 40 increments the frequency of HF_bin by one and counts (step S79). If the difference C is greater than 3 seconds (Yes at step S73), the detection unit 40 selects four respiratory cycles (I (n), I (n-1), I (n-2), I (n-3). ), And it is determined that the four breathing cycles have frequency components of 6 seconds or more and 24 seconds or less. In this case, the detection unit 40 increments the frequency of LF_bin by one and counts it (step S75).
  • the detecting unit 40 performs the processing from step S61 to step S79 for each of n from 0 to -17 (step S81). Then, the detection unit 40 calculates LF / HF_bin corresponding to LFR / HFR by dividing LF_bin by HF_bin (step S83). In addition, (4) can be extended similarly to three or more and calculated similarly also with respect to the sum of three breathing cycles. In addition, in the incorporation into LF_bin and HF_bin, weighting factors are added and incorporated respectively in (1) to (5), but in this example, all were calculated as weighting factor 1.
  • FIG. 24 is a diagram showing an example of a result of calculating RLHRn (normalized output of respiratory frequency component ratio) using a simple estimation method of respiratory frequency component ratio.
  • FIG. 24 is the same as FIG. 16 except that the waveform of RLHRn according to the simple estimation method is added to FIG. 24 (b).
  • the waveform of RLHRn based on the simple estimation method is time series data of 10 respiratory cycles, and represents the result calculated for each determination of one respiratory cycle.
  • the tendency of increase and decrease of RLHRn by the simple estimation method is almost in agreement with LF / HF. Therefore, it is possible to estimate the activity of the autonomic nerve even by using a simple estimation method of the respiratory frequency component ratio.
  • the method of estimating the respiratory frequency component from the respiratory signal is not limited to the above.
  • the threshold value for dividing LFR and HFR is 6 seconds (0.16 Hz) in order to correspond to the activity index of the autonomic nerve estimated from the heart rate interval RRI.
  • the division range of the frequency frequency may be increased.
  • LFR may be used as a value corresponding to LF / HF without calculating the ratio (RLHR) of LFR to HFR.
  • LFR can be used as index data indicating the activity of the sympathetic nerve and the parasympathetic nerve, it may be used as an index used to determine the arousal state.
  • the index used to determine the awake state is not limited to the ratio of LFR to HFR (RLHR).
  • the threshold for estimating frequency components of fluctuations over a plurality of cycles such as 2 cycles or 3 cycles
  • the difference calculation method can be similarly changed in accordance with the purpose of feature detection.
  • Three examples of the FFT approach, the filter approach and the frequency distribution approach are described above.
  • the frequency component of one amplitude cycle of the respiration signal and the frequency component of the time-series repeated fluctuation of respiration are analyzed, the numerical value characterizing respiration is taken out from the analysis result, the estimation of the respiration state, Estimate autonomic nervous activity from respiration.
  • the respiratory state and the nerve activity state taken out by these methods are useful for estimating the arousal state and stress state of the occupant.
  • FIG. 25 is a block diagram showing an example of the configuration of a buckle in the second embodiment.
  • the description of the configuration and effects similar to those of the first embodiment in the second embodiment will be omitted or simplified by using the above description.
  • the determination unit 70 and the output unit 80 are provided in the buckle 8
  • the determination unit 70 and the output unit The reference numeral 80 is provided on a device different from the buckle 8.
  • the awake state determination system 15 shown in FIG. 25 includes a buckle 8 and an estimation unit 30.
  • the estimation unit 30 includes a detection unit 40, a determination unit 70, and an output unit 80.
  • the seat 2 may be a front seat or a rear seat of a vehicle.
  • the detection unit 40 may be provided in a device other than the buckle 8.
  • a part of the plurality of processes performed on the output signal s of the sensor 20 may be performed by the determination unit 70 instead of the detection unit 40.

Abstract

車両の乗員の呼吸に応じて変化する出力信号を出力するセンサと、前記出力信号から、前記呼吸の周波数成分を周波数分析により検出する検出部と、前記検出部により検出される前記周波数成分に基づいて、前記乗員の覚醒状態を判定する判定部とを備える、バックル。バックルに設けられるセンサは、車両の乗員の呼吸に応じて変化する出力信号を出力し、検出部は、前記出力信号から、前記呼吸の周波数成分を周波数分析により検出し、判定部は、前記検出部により検出される前記周波数成分に基づいて、前記乗員の覚醒状態を判定する、覚醒状態判定方法。

Description

バックル、覚醒状態判定システム及び覚醒状態判定方法
 本発明は、バックル、覚醒状態判定システム及び覚醒状態判定方法に関する。
 従来、呼吸センサにより取得される人の呼吸データに基づいて、人の覚醒状態を判定する技術が知られている。例えば、120秒程度の所定の区間における、呼吸間隔を示すRI(Respiration Interval)の平均値やRIのばらつきを示すRrMSSD(Respiration root Mean Square Successive Difference)とを指標として、覚醒状態を判定する装置が存在する(例えば、特許文献1参照)。
国際公開第2015/060268号
 RIの平均値やRrMSSDのような所定の区間における統計的指標は、その区間における呼吸の平均的特徴を表すのに適しており、覚醒状態の大まかな判定には有効である。しかしながら、区間内の呼吸の時系列的特徴(例えば、区間内の呼吸の増減の周期的変化や増減のパターンなど)の情報が、その区間における統計処理により丸め込まれてしまうと、覚醒状態の判定精度が低下するおそれがある。
 そこで、本開示は、覚醒状態を高精度に判定できる、バックル、覚醒状態判定システム及び覚醒状態判定方法を提供する。
 本開示は、
 車両の乗員の呼吸に応じて変化する出力信号を出力するセンサと、
 前記出力信号から、前記呼吸の周波数成分を周波数分析により検出する検出部と、
 前記検出部により検出される前記周波数成分に基づいて、前記乗員の覚醒状態を判定する判定部とを備える、バックルを提供する。
 また、本開示は、
車両の乗員の呼吸に応じて変化する出力信号を出力するセンサを有するバックルと、
 前記出力信号から、前記呼吸の周波数成分を周波数分析により検出する検出部と、
 前記検出部により検出される前記周波数成分に基づいて、前記乗員の覚醒状態を判定する判定部とを備える、覚醒状態判定システムを提供する。
 また、本開示は、
 バックルに設けられるセンサは、車両の乗員の呼吸に応じて変化する出力信号を出力し、
 検出部は、前記出力信号から、前記呼吸の周波数成分を周波数分析により検出し、
 判定部は、前記検出部により検出される前記周波数成分に基づいて、前記乗員の覚醒状態を判定する、覚醒状態判定方法を提供する。
 本開示によれば、覚醒状態を高精度に判定することができる。
シートベルト装置の構成の一例を示す図である。 第1の実施形態におけるバックルの構成の一例を示すブロック図である。 検出部が実施する呼吸信号抽出処理の一例を示すフローチャートである。 検出部が実施する呼吸周期統計処理の一例を示すフローチャートである。 検出部が実施する呼吸周波数成分比検出処理の一例を示すフローチャートである。 正規化前の呼吸信号の一例を示す図である。 正規化後の呼吸信号の一例を示す図である。 振幅成形する正規化処理についてのいくつかの簡便な方法を説明するための図である。 所定区間における呼吸周期変動の統計的分析の一例を示す図である。 運転中の運転者から検出された各信号の一例を示す波形図である。 LFR,HFRの周波数範囲と、ローパスフィルタとハイパスフィルタの通過周波数との関係の一例を示す図である。 ローパスフィルタとハイパスフィルタを用いて、LFR,HFR及びRLHRを算出する構成の一例を示す図である。 コンボリューションフィルタの生成用の関数f1,f2,f3を示す図である。 F2-F1フィルタ特性とF3フィルタ特性の模式図を示す。 コンボリューションフィルタとローパスフィルタとハイパスフィルタとの重ね合わせを示す図である。 図15のフィルタを用いてRLHRn(呼吸周波数成分比の正規化出力)を計算した結果の一例を示す図である。 20個の呼吸周期の時系列データの一例を示す図である。 20個の呼吸周期データについて、横軸を0.5秒刻みの周期区間とする度数分布(発生頻度)の一例を示す図である。 図18の度数分布の横軸を周波数で区間分けして並べ変えた度数分布(発生頻度)の一例を示す図である。 繰り返し周期6秒の呼吸波形の一例を示す図である。 図20の波形をスペクトル分析した結果の一例を示す図である。 呼吸周波数成分比の簡易推定方法の一例を示すフローチャートである。 呼吸周波数成分比の簡易推定方法の一例を示すフローチャートである。 呼吸周波数成分比の簡易推定法を用いてRLHRn(呼吸周波数成分比の正規化出力)を計算した結果の一例を示す図である。 第2の実施形態におけるバックルの構成の一例を示すブロック図である。
 以下、本発明に係る実施形態を図面を参照して説明する。
 図1は、シートベルト装置の構成の一例を示す図である。シートベルト装置1は、車両に搭載された車載システムの一例である。シートベルト装置1は、例えば、シートベルト4と、リトラクタ3と、ショルダーアンカー6と、タング7と、バックル8とを備える。
 シートベルト4は、車両のシート2に座る乗員11を拘束するシートベルトの一例であり、リトラクタ3に引き出し可能に巻き取られる帯状部材である。シートベルトは、ウェビングとも称される。シートベルト4の先端のベルトアンカー5は、シート2又はシート2の近傍の車体に固定される。
 リトラクタ3は、シートベルト4の巻き取り又は引き出しを可能にする巻き取り装置の一例であり、車両衝突時等の所定値以上の減速度が車両に加わると、シートベルト4がリトラクタ3から引き出されることを制限する。リトラクタ3は、シート2又はシート2の近傍の車体に固定される。
 ショルダーアンカー6は、シートベルト4が挿通するベルト挿通具の一例であり、リトラクタ3から引き出されたシートベルト4を乗員11の肩部の方へガイドする部材である。ショルダーアンカー6は、シート2又はシート2の近傍の車体に固定される。
 タング7は、シートベルト4が挿通するベルト挿通具の一例であり、ショルダーアンカー6によりガイドされたシートベルト4にスライド可能に取り付けられた部品である。
 バックル8は、タング7が着脱可能に連結される部品であり、例えば、シート2又はシート2の近傍の車体に固定される。
 バックル8は、本体部8aと、ステー8bとを有する。本体部8aは、タング7が着脱可能に連結される部位である。ステー8bは、バックル8の本体部8aを支持する支持部材の一例である。ステー8bは、シート2又はシート2の近傍の車体に固定される。
 タング7がバックル8に連結された状態で、シートベルト4のうちショルダーアンカー6とタング7との間の部分が、乗員11の胸部及び肩部を拘束するショルダーベルト部9である。タング7がバックル8に連結された状態で、シートベルト4のうちベルトアンカー5とタング7との間の部分が、乗員11の腰部を拘束するラップベルト部10である。
 図2は、第1の実施形態におけるバックル8の構成の一例を示すブロック図である。第1の実施形態では、バックル8は、センサ20と、推定部30とを備える。センサ20は、車両の乗員11の呼吸に応じて変化する出力信号を出力する。推定部30は、センサ20から出力される出力信号に基づいて、乗員11の覚醒状態を推定する。
 推定部30は、例えば、少なくとも一つのCPU(Central Processing Unit)と少なくとも一つのメモリとを備える少なくとも一つのコンピュータを含んで構成されている。コンピュータの具体例として、マイクロコンピュータが挙げられる。推定部30の各機能は、少なくとも一つのプログラムがCPUに実行させる処理により実現される。プログラムは、メモリに読み出し可能に記憶されている。推定部30は、検出部40と、判定部70と、出力部80との複数の機能ブロックを有する。
 検出部40は、センサ20の出力信号から、乗員11の呼吸状態を表す呼吸情報を検出する。判定部70は、検出部40により検出される呼吸情報に基づいて、乗員11の覚醒状態を判定する。出力部80は、判定部70による覚醒状態の判定結果を、バックル8の外部装置に有線又は無線で出力する。外部装置は、当該判定結果に基づいて、所定の制御(例えば、乗員に対して警報する制御や、車両の走行を支援する制御など)を実行する。
 ここで、人の覚醒状態を、人の呼吸状態を表す呼吸情報を用いて推定するのではなく、人の心拍状態を表す心拍情報を用いて推定する技術がある。例えば、心拍間隔RRIから導出される心拍変動HRVが、人の覚醒状態の推定に用いられることがある。心拍変動HRVは、自律神経の活動を表す情報を含んでいる。特に、交感神経と副交感神経の活動バランスの指標であるLF/HFは、覚醒状態にかかわる神経の重要な活動指標として用いられる。交感神経には、脳や体の活動を高める作用があり、例えば、朝起きると交感神経が活発になり、人は覚醒状態となる。副交感神経には、脳の興奮を抑える作用があり、副交感神経の活動が優位になると、覚醒状態が低下する。例えば、夜眠るときはこの状態になる。したがって、LF/HFの数値が大きいと交感神経優位となり、LF/HFの数値が小さいと副交感神経優位となる。
 このLF/HF指標は、所定の区間(例えば、1~2分間)の心拍間隔RRIの時系列変動を表す心拍変動HRVの波形を周波数分析し、周波数分析後の波形のパワースペクトラムを計測することによって算出される。周波数分析後の波形の周波数軸上の0.04Hzから0.15Hzの範囲の低周波成分のパワースペクトラム振幅の積算値をLFとし、0.15Hzから0.5Hzの範囲の高周波成分のパワースペクトラム振幅の積算値をHFとする。HFは、副交感神経の活動を示す指標となり、副交感神経の活動が活発になると、HFは高まる。一方、LFは、交感神経と副交感神経の活動を示す指標として知られており、LFは、交感神経が活発に活動しても副交感神経が活発に活動しても高まる。したがって、LFとHFとの比(LF/HF)を取ることで、交感神経と副交感神経との活動バランスの大小を推定することができ、このLF/HFが覚醒状態の推定にも用いられる。例えば、交感神経が活発になれば、LF/HFは、大きくなり、副交感神経が活発になれば、LF/HFは、小さくなる。つまり、交感神経が優位となることにより、LF/HFが所定の判定閾値よりも大きくなると、人は覚醒状態にあると判定可能となる。なお、LF/HFの周波数区分は、文献によって多少異なる。本文では、0.04Hz、0.15Hz、0.5Hzの数値が使われているが、周波数区分は、これらの数値に限定されない。
 一方、人の呼吸は、2秒から6秒の周期で吸気と呼気を繰り返し、体に酸素を取り入れる。吸気は、肺を拡張し、その中を負圧にすることで空気を肺に取り入れる。呼気は、肺を圧縮し、その中を正圧にすることで空気を吐き出す。この時、肺から血液に取り入れられる酸素濃度は、負圧の時に減少し、正圧の時に上昇する。そうすると、呼吸の周期に応じて、肺から血液に取り入れられる酸素濃度は、上下に変化する。
 心臓は、血液に取り込まれた酸素を全身に送る機能を有する。心臓の心房の収縮を司る洞結節は、心臓のペースメーカーとして心房を収縮させ、心室に血液を送る。房室結節は、洞結節の興奮から時間遅れで心室を収縮させ、強い圧力で血液を全身に送る。洞結節は、血液中の酸素濃度に反応し、酸素濃度が低下すると心拍を早め、酸素濃度が上昇すると心拍を抑える自動調整機能を持つ。このように、心拍変動は、酸素濃度の変化を通して呼吸の影響を受けることから、心拍変動には呼吸変動の情報が含まれており、心拍変動と呼吸が相関すると言える。
 また、心拍を検出する方式として、心電計を用いる接触検知や、脈波を計測する脈拍計測などが存在する。体表面の微小な動きをマイクロ波や静電センサで検知して心拍を検出する技術もある。しかしながら、車載環境下では、乗員にわずらわしさを感じさせずに心拍検知する非接触検知を行う場合でも、ベッド上の安静状態とは異なり、車両走行による振動や体の動きがあるので、体表の微小な動きを安定して検知することは難しくなる。
 これに対し、呼吸は、心拍に比べて体の表面が大きく動き、呼吸の周波数は、1Hz以上の車両振動周波数領域とはあまり重ならない(心拍の周波数は、車両振動周波数領域と略重なる)。そのため、車載環境下では、呼吸状態を表す呼吸情報の検出は、心拍状態を表す心拍情報の検出に比べて有利である。例えば、シートベルトに生ずる張力の変化は、胸などの動きに同期し、呼吸情報を含む。したがって、乗員がシートベルトを装着した状態で、シートベルトの張力変化を検出することで、乗員にわずらわしさを感じさせずに、呼吸情報を精度良く検出することが可能となる。
 このように、心拍変動は、呼吸と相関し、車載環境下では、呼吸情報は、心拍情報に比べて高精度に検出できる。そこで、本実施形態の推定部30は、乗員の自律神経の活動に関係する特徴的情報(例えば、心拍変動から得られる上述のLF/HFに相当するような情報)を検出部40により得られる呼吸情報から取り出し、その特徴的情報に基づき乗員の覚醒状態を推定する。
 なお、呼吸は、呼吸よりも変位が大きな身体の移動(体動)によっても変化する。そのため、体動も呼吸活動の一部とみなすと考えると、乗員の覚醒状態の推定に呼吸情報を利用することで、体動の状態が乗員の覚醒状態の推定に加味されると考えることもできる。体動には、例えば、シート上での乗員の姿勢変化などが含まれる。
 次に、図2に示される本実施形態の構成及び機能について、より詳細に説明する。
 センサ20は、乗員11の呼吸に応じた変化をモニタし、そのモニタ結果に応じた出力信号を出力する。乗員11の呼吸に応じた変化とは、例えば、胸、腹、腰、背中又は臀部などの呼吸に同期する体動変化、鼻孔から吸排気される息の流れや温度などの呼吸に同期する変化などが挙げられる。検出部40は、センサ20により取得される乗員11の呼吸に応じた変化から、呼吸情報を検出する。センサ20は、例えば、シート2、シートベルト4、バックル8、タング7又はダッシュボードなどに搭載される。
 例えば、センサ20は、シートベルト4に生ずる張力(以下、「張力F」とも称する)を検出し、検出された張力Fに応じて変化する出力信号を出力する。シートベルト4が乗員11に装着されていると、乗員11の体動や呼吸によって生ずる乗員11の胸や腹の動きがシートベルト4に伝わるため、シートベルト4の張力Fが変化する。シートベルト4の張力Fの変化は、タング7に伝達し、タング7を介してバックル8に伝達する。センサ20は、バックル8の本体部8aに設けられてもよいし、バックル8のステー8bに設けられてもよい。このように、センサ20は、乗員11の呼吸に応じた変化を張力Fの変化として検出してもよい。
 センサ20は、例えば、シートベルト4の張力Fの変化によって生ずる変形又は変位を、シートベルト4の張力Fとして検出する。例えば、センサ20は、シートベルト4からタング7を介してバックル8に入力される荷重の変化を検出するひずみセンサでもよいし、シートベルト4の張力Fの変化によって生ずる静電容量の変化を検出する静電容量センサでもよい。また、シートベルト4の張力Fが変化すると、シートベルト4にタング7を介して接続されるバックル8自体が変位する。そのため、センサ20は、バックル8自体の変位をシートベルト4の張力Fの変化として検出するデバイスでもよい。例えば、光又は電波の送受によって、バックル8外部の反射対象物との相対距離を検出する非接触センサなどが挙げられる。
 乗員11の胸の動きは、ショルダーベルト部9の張力を主に変化させ、乗員11の腹の動きは、ラップベルト部10の張力を主に変化させる。そして、バックル8には、ショルダーベルト部9とラップベルト部10との両方がタング7を介して接続されている。したがって、バックル8に設けられるセンサ20は、乗員11の胸と腹の両方の動きの情報を張力変化から検出できるので、センサ20がバックル8に設けられることで、張力Fの検出精度が向上し、ひいては乗員11の呼吸情報の検出精度が向上する。
 検出部40は、センサ20の出力信号から、乗員11の呼吸情報を含む呼吸信号を取り出す。検出部40は、例えば、センサ20の出力信号の取りうる数値範囲が適正範囲内かをチェックした後で、ノイズ除去や、呼吸信号の周期や振幅を選択的に強調するためのフィルタリングをセンサ20の出力信号に対して行う。運転中の定常呼吸の周期は、通常3秒から6秒の範囲にあるが、その範囲は各人によって異なるとともに、各人の覚醒状態などによっても異なる。そのため、検出部40は、運転中の定常呼吸の周波数範囲よりも広い周波数範囲(例えば、0.04Hz(25秒周期)から0.5Hz(2秒周期)までの範囲)の信号を通過させ、その周波数範囲以外の周波数の信号を選択的にカットするフィルタを用いるとよい。
 図3は、検出部40が実施する呼吸信号抽出処理の一例を示すフローチャートである。図4は、検出部40が実施する呼吸周期統計処理の一例を示すフローチャートである。図5は、検出部40が実施する呼吸周波数成分比検出処理の一例を示すフローチャートである。検出部40は、図3~5に示されるこれらの各処理を所定の周期で繰り返し実施する。次に、図3~5に示される各処理について説明する。
 図3は、検出部40が実施する呼吸信号抽出処理の一例を示すフローチャートである。検出部40は、センサ20から出力される出力信号sを読み込み(ステップS11)、読み込んだ出力信号sから呼吸信号Rsを取り出す処理を実施する(ステップS13)。検出部40は、例えば、ローパスフィルタ及びハイパスフィルタを用いて、0.04Hz(25秒周期)から0.5Hz(2秒周期)までの周波数範囲の信号を通過させ、その範囲以外の周波数の信号をカットする処理を出力信号sに対して実施する。これにより、呼吸信号Rsが出力信号sから取り出される。
 ステップS15にて、検出部40は、取り出された呼吸信号Rsを正規化し、正規化された呼吸信号Rsnを生成する。検出部40は、呼吸周期や呼吸信号Rsの周波数成分の検出精度を高めるため、呼吸信号Rsの振幅やオフセットを調整する正規化処理を行うことで、呼吸信号Rsを正規化する。
 図6は、正規化前の呼吸信号Rsの一例を示す図である。図7は、正規化後の呼吸信号Rsnの一例を示す図である。例えば、検出部40は、呼吸信号Rsの周期や周波数成分の検出精度を高めるため、呼吸信号Rsの振幅中心Rcがゼロとなり、呼吸信号Rsの平均振幅Rsmaveが1となるように、呼吸信号Rsを正規化し、正規化された呼吸信号Rsnを生成する。
 呼吸信号Rsの振幅を正規化する方法は、目的に応じて多種考えられる。呼吸周期や呼吸周波数成分を検出することを目的とする場合、振幅変動の影響を避けるため、検出部40は、例えば、平均振幅Rsmaveが1となるように正規化してもよいし、次の簡便な方法で振幅成形して正規化してもよい。
 図8は、振幅成形する正規化処理についてのいくつかの簡便な方法を説明するための図である。図8(a)は、正規化前の呼吸信号Rsの一例を示す。図8(b)は、呼吸信号Rsの振幅を所定レベルで制限して、正規化された呼吸信号Rsを生成する正規化処理の一例を示す。図8(c)は、呼吸信号Rsの振幅変化速度を所定の上限レベルと下限レベルとで制限することで、速い振幅変化と遅い振幅変化を抑制し、振幅が或るレベルに制限された呼吸信号Rsnを生成する正規化処理の一例を示す。図8(d)は、呼吸信号Rsの振幅をゼロクロスでコンパレートし、変化エッジに角度制限を施すことで、アイパターン(eye pattern)の呼吸信号Rsnを生成する正規化処理の一例を示す。図8(e)は、呼吸信号Rsの振幅をゼロクロスでコンパレートしたときの呼吸信号Rsの元波形の一例を示す。
 図4は、検出部40が実施する呼吸周期統計処理の一例を示すフローチャートである。ステップS21にて、検出部40は、正規化された呼吸信号Rsnから、呼吸情報の一つである呼吸周期RIを検出し、呼吸周期RIの時系列データである呼吸周期変動RIVを生成する。検出部40は、正規化された呼吸信号Rsnのゼロクロス又はピークを検知することにより、呼吸周期RIを検出する。
 ステップS23にて、検出部40は、例えば、所定区間における呼吸周期変動RIVの統計的分析を行う。検出部40は、例えば、平均呼吸周期RIsave、呼吸周期標準偏差RIsstd、平均差分変動RIVsave及び平均振幅Rsmaveなどの呼吸情報を検出する。
 図9は、所定区間における呼吸周期変動RIVの統計的分析の一例を示す図である。
 検出部40は、所定の計算区間で測定されるn(nは、2以上の整数)個の呼吸周期RIの測定データS~Sの平均値を平均呼吸周期RIsaveとして算出する。
 検出部40は、所定の計算区間で測定されるn個の呼吸周期RIの測定データS~Sの標準偏差を呼吸周期標準偏差RIsstdとして算出する。呼吸周期標準偏差RIsstdは、計算区間の平均値からのばらつきを表し、呼吸周期RIが安定していると小さくなり、呼吸周期RIが変動すると大きくなる。呼吸周期RIが計算区間でランダムに変動するかゆっくり大きく変動するかは、呼吸周期標準偏差RIsstdからは区別できない。
 検出部40は、一呼吸ごとの差分変化の二乗積算値の平方根を、平均差分変動RIVsaveとして算出する。つまり、「RIVsave=√((S-S+(S-S+・・・(S-Sn-1)」である。平均差分変動RIVsaveは、呼吸周期RIが計算区間でランダムに変動すると大きくなり、呼吸周期RIが計算区間でゆっくり大きく変動すると小さくなる。
 検出部40は、呼吸信号の振幅の平均値を、平均振幅Rsmaveとして算出する。判定部70は、例えば、呼吸信号Rsの振幅が平均振幅Rsmaveの2倍以上である場合、呼吸が、深呼吸や体動など通常とは異なる呼吸状態であると判定する。
 図5は、検出部40が実施する呼吸周波数成分比検出処理の一例を示すフローチャートである。なお、呼吸周波数成分比検出処理を行う場合、呼吸信号Rsを必ずしも正規化する必要はなく、呼吸信号Rsをそのまま呼吸周波数成分比検出処理に用いてもよい。しかし、本実施形態では、図3のステップS15で正規化された呼吸信号Rsnを用いて周波数分析することで、振幅変動の影響を減じている。
 ステップS31にて、検出部40は、呼吸信号Rs(又は、正規化後の呼吸信号Rsn)を所定のサンプリング周波数fsでサンプリングする。例えば、検出部40は、呼吸信号Rs(又は、正規化後の呼吸信号Rsn)をサンプリング周波数fs(=4Hz)でサンプリングし、2(=256)個以上の時系列データを作成する。サンプリング周波数fsが10Hzであれば、2(=512)個以上の時系列データ(例えば、210(=1024)個)を作成することが好ましい。
 ステップS33にて、検出部40は、0.04Hzから0.5Hzの範囲の呼吸信号Rsの周波数成分を分析する。検出部40は、2のべき乗の個数の時系列データに、同数の窓関数を掛け合わせて、高速フーリエ変換(FFT)を行う。検出部40は、呼吸信号Rsに対してFFTを行うことによって、呼吸信号Rsの低周波呼吸成分のパワースペクトラム振幅の積算値LFRと、呼吸信号Rsの高周波呼吸成分のパワースペクトラム振幅の積算値HFRとを算出する。検出部40は、例えば、上述のLFと同じ周波数範囲(0.04Hzから0.15Hzの範囲)の低周波呼吸成分のパワースペクトラム振幅の積算値LFRを算出することが好ましい。また、検出部40は、例えば、上述のHFと同じ周波数範囲(0.15Hzから0.5Hzの範囲)の高周波呼吸成分のパワースペクトラム振幅の積算値HFRとを算出することが好ましい。パワースペクトラムは、例えば、呼吸信号RsnのFFT演算後、複素共役が掛け合わされ、実数として計算される。
 サンプリング周波数fsが4Hzで2(=256)個以上の時系列データの場合、最小周波数分解能が0.033Hz(=2×4/256)となるので、0.04Hzよりも小さな値であり、時系列データの個数は適正である。サンプリング周波数fsが4Hzで2(=512)個以上の時系列データの場合、最小周波数分解能が0.016Hz(=2×4/512)となるので、0.04Hzよりもさらに小さな値であり、時系列データの個数はより適正である。
 ステップS35にて、検出部40は、LFRをHFRで除算することで、LFRとHFRとの比(LFR/HFR)である呼吸周波数成分比RLHRを算出する。検出部40は、RLHRについて無限インパルス応答フィルタによるフィルタ処理を行って、過去のRLHRの時間平均RLHRaveを計算し、RLHRn(=RLHR/RLHRave)を計算する。RLHRnは、呼吸周波数成分比の正規化出力となる。
 図10は、運転中の運転者から検出された各信号の一例を示す波形図である。図10(a)は、呼吸信号Rs及び心拍間隔RRIを示す波形図である。心拍間隔RRIは、心電計で計測された値である。横軸は、データポイントを表し、RRIの縦軸は、一分間の心拍数を表す。図10(a)に示されるように、呼吸の変化と心拍変動が連動している。
 図10(b)は、LF/HFとLFR/HFRを示す波形図である。LF/HFは、心電計で計測した心拍間隔RRIから求められたLF/HFの値を示し、全区間の平均値が1となるように正規化されている。一方、LFR/HFRは、図5の上述の呼吸周波数成分比検出処理で呼吸信号Rsから求められたLFR/HFRの値を示し、全区間の平均値が1となるように正規化されている。図10(b)に示されるように、LFR/HFRは、LF/HFと同様に推移する。
 図10(c)は、呼吸周期RIを示す。縦軸の単位は秒である。
 図10に示されるように、呼吸信号Rsに基づき図5の上述の呼吸周波数成分比検出処理で計算されたRLHR(=LFR/HFR)又はRLHRn(呼吸周波数成分比の正規化出力)は、心拍間隔RRIに基づき計算されたLF/HFの値と類似した変化となる。つまり、呼吸信号Rsに基づき計算されたRLHR(=LFR/HFR)又はRLHRn(呼吸周波数成分比の正規化出力)は、心拍間隔RRIに基づき計算されたLF/HFと同様に、交感神経と副交感神経の活動を示す指標データとして利用可能である。
 したがって、呼吸信号Rsから計算されるRLHR又はRLHRnの周波数比の範囲を、心拍間隔RRIから計算する周波数比の範囲と上述のように同じにすることにより、LF/HFの代わりに、RLHR又はRLHRnを覚醒状態の推定に使用することができる。
 特に、呼吸は、副交感神経の活動と密接に関連するため、交感神経の活動が低下し、副交感神経の活動が活発になる状態では、呼吸信号Rsから推定された自律神経の活動状態は、心拍間隔RRIから推定された自律神経の活動とよく一致すると考えられる。なぜなら、RLHR又はRLHRnの値が比較的低くなる期間では、副交感神経が優位に働いており、呼吸との相関がより高くなるからである。したがって、判定部70は、例えば、RLHR又はRLHRnの値が所定の判定閾値よりも低下した場合、自律神経が副交感神経優位の状態であると判定し、覚醒状態が低下していると判定できる。例えば図10(b)において、判定部70は、RLHRnの値が所定の判定閾値0.4よりも低下した場合、自律神経が副交感神経優位の状態であると判定し、覚醒状態が低下していると判定する。
 また、RLHR又はRLHRnの値が比較的低くなる期間では、覚醒が低下し、リラックス状態を経過した後に眠気が生じる場合がある。眠気が強まり、乗員が眠気に気づくと、乗員は目を覚まそうとする努力(覚醒努力)をし始め、覚醒させる交感神経が活発になり、副交感神経との活動バランスが大きく変動する。したがって、判定部70は、RLHR又はRLHRnの値が所定の判定閾値よりも低下した後に上昇する繰り返しパターンが検出部40から得られた場合、乗員に眠気が生じていると判定できる。
 また、図10(b)に示されるRLHR(=LFR/HFR)は、表示されている全区間の平均値が1となるように正規化されたRLHRnを表す。RLHRnを計算するための周波数範囲を呼吸周期に変換すると、HFRが2秒~6秒の呼吸周期に相当し、LFRは、6秒から25秒の呼吸周期に相当する。HFRは、呼吸そのものの周期として理解することができ、LFRは、呼吸周期の周期的増減変動成分として理解することができる。したがって、RLHR(=LFR/HFR)の値は、平均呼吸周期の大小変化でも、LFRとHFRの比率の変化により変動し、RLFRの絶対値は、呼吸周期が遅くなると、大きくなる傾向がある。したがって、呼吸の変化を確実にとらえるには、正規化することが好ましい。
 例えば、呼吸の平均周期とRLHRの大小の相関を取り、その相関係数に応じてRLHRを平均周期で除算することで、正規化が行われる。RLHRの変化に注目する場合は、RLHRの現在から過去数分の区間の平均値、又は無限インパルス応答フィルタ値で、RLHRを除算することで、正規化ができる。このように正規化された場合、各人の平均呼吸周期の変化を吸収でき、RLHRに変化があると、RLHRnには、その変化が強調して現れる。したがって、RLHRnを覚醒状態の推定に利用することで、その推定精度を高めることができる。
 また、一般的に、深くゆっくりとした呼吸は、リラックスしており、覚醒が低いと解釈される。一例として、5秒周期呼吸から8秒周期呼吸に変化した場合、呼吸がゆっくりになることを表しているので、通常は覚醒が低下していることに対応している。5秒周期はHFRの周波数領域に一致し、8秒周期はLFRの周波数領域に一致する。そうすると、5秒周期呼吸から8秒周期呼吸に変化したということは、HFRが大きい状態からLFRが大きい状態に遷移し、LFR/HFRが小さい状態から大きい状態に遷移したとも思われる。つまり、LFR/HFRの数値からでは、覚醒度が大きくなることになるので、覚醒の低下と相反しているように思われる。
 しかし、通常、呼吸が速い場合は吸気時間と排気時間がほぼ同じであるが、呼吸が長くなると排気時間が長くなる。つまり、吸気時間は、余り変わらない。そうすると、吸気にかかる時間が2秒から3秒とすると、残りの時間はずっと排気していることになるので、吸気による周波数成分が、HFRの領域のパワースペクトルを大きくする。その吸気の繰り返し周期がLFRのパワースペクトルとして加わるため、RLHR(=LFR/HFR)の分母と分子の両方が同時に大きくなり、結果としてバランスが取られる。結局、長周期の呼吸をしたからといって、長周期に相当するLFRだけが大きくなるのではなくHFRも大きくなるので、結果的には、覚醒度が大きく上がるということは起こりにくい。したがって、呼吸の周期だけに着目して覚醒状態を判定する方法に比べて、呼吸の周波数成分を分析して覚醒状態を判定する本実施形態は、高精度に覚醒状態を判定できる。このようなメカニズムで、呼吸から自律神経の活動が関連付けられる。
 上述の実施例では、FFTを用いて呼吸の周波数成分を分析する方法が使われているが、FFTを用いなくても、簡便なローパスフィルタ、ハイパスフィルタ及びスライドウインドウフィルタを用いても、呼吸の周波数成分を分析することができる。最も簡単な離散系のローパスフィルタ及びハイパスフィルタは、無限インパルス応答フィルタであり、アナログのCRフィルタの特性を差分方程式の簡単な計算で実現できる。LFR,HFRの周波数範囲は、ローパスフィルタとハイパスフィルタとの組み合わせで、図11,12のようになる。しかし、フィルタのカットオフ特性が急峻でないため、LFRとHFRのコントラストが低下する。そこで、0.15Hz付近にノッチ特性を持つフィルタを重ね合わせることで、フィルタ特性の改善が可能となる。
 計算処理が簡便なノッチ特性を持つフィルタとして、コンボリューションフィルタが考えられる。次に、コンボリューションフィルタについて、図13~15を参照して説明する。
 呼吸信号Rsnのデータ列をS0、S-1、S-2、・・・S-nとする。検出部40は、最も簡単な実施例として矩形関数を用い、矩形関数を所定の遅れ時間を起点に平行移動しながら、データ列をS0、S-1、S-2、・・・S-nに重ね足し合わせる畳み込み演算を行う。実施例では、起点はT=0である。矩形関数の振幅は1または-1であるため、検出部40は、矩形関数が1である区間のSnの総和を、その区間のデータ数で割ればよい。検出部40は、矩形関数の振幅が-1の区間では、その区間のデータに-1をかけてSnの総和を演算する。フィルタ特性は、サンプリング周波数とn0,n1,n2,n3,n4,n5の数値選択により決まる(例えば、サンプリング周波数=4Hz,n0=0,n1=13,n2=4,n3=10,n4=19,n5=39)。図14は、F2-F1フィルタ特性とF3フィルタ特性の模式図を示す。図15は、コンボリューションフィルタとローパスフィルタとハイパスフィルタとの重ね合わせを示す図である。
 図16は、図15のフィルタを用いてRLHRn(呼吸周波数成分比の正規化出力)を計算した結果の一例を示す図である。図16(b)にRLHRnの波形が追加されている点を除いて、図16は、図10と同じである。FFTを用いて呼吸の周波数成分を分析する方法による計算結果と比べると、フィルタの周波数弁別能力が荒いため、コントラストは低下しているが、RLHRnの増減の傾向は、LF/HFと略一致している。したがって、計算処理が簡便なノッチ特性を持つフィルタを用いても、自律神経の活動を推測することが可能である。
 次に、呼吸周波数成分比の演算量を抑えた実施例について説明する。この実施例は、8ビットのMPU(Micro Processing Unit)など、メモリや演算精度が十分でない計算環境への実装に好適である。
 図8(e)のように、検出部40は、呼吸信号Rsの振幅を1,0の二値信号に変換し、二値信号の立ち上がりエッジ又は立ち下がりエッジ毎に、1呼吸周期を計算する。または、検出部40は、二値信号の変化点(半周期)毎に、一呼吸周期を計算する。図17は、このようにして得られた20個の呼吸周期の時系列データである(N=20)。図18は、20個の呼吸周期データについて、横軸を0.5秒刻みの周期区間とする度数分布(発生頻度)を示す。呼吸周期はそのまま、呼吸の基本周波数に対応するため、周期の逆数が呼吸の基本周波数に相当する。4秒の場合は0.25Hz、6秒の場合は0.166Hzとなる。図19は、図18の度数分布の横軸を周波数で区間分けして並べ変えた度数分布(発生頻度)を示す。図19の度数分布は、呼吸の基本周波数のFFT解析結果と一致する。
 したがって、呼吸周期の度数分布を用いて、簡易的に周波数分析し、呼吸周波数成分の比を推定することが可能である。図の実施例では、0.04Hzから0.15Hzまでの度数の総和をLF_binとし、0.16Hzから0.5Hzまでの度数の総和をHF_binとすると、それぞれLF_bin=1、HF_bin=19となる。したがって、LFR/HFR=1/19=0.05となる。これが、呼吸周期から求めた自律神経の活動の簡易指標となる。しかし、呼吸周期が6秒以下で安定の場合は、LF_bin=0となり、LF/HF=0となる。また、呼吸周期が7秒以上で安定の場合は、LF_bin=20となり、LF/HF=20で常時活性となるなど不自然な判定となる。
 図20は、繰り返し周期6秒の呼吸波形の一例を示す。図21は、図20の波形をスペクトル分析した結果の一例を示す。図21では、サンプリング周波数を2Hzとし、64点のデータでFFT分析が行われている。0.16Hz付近と0.33Hz付近に、2つのスペクトルピークが観測される。0.16Hzは、呼吸波形の繰り返し周期6秒に対応し、一呼吸の基本周波数である。0.33Hzは、吸気と排気の時間のアンバランスに伴う高調波スペクトルに対応し、周期3秒の二次高調波成分である。この二次高調波成分は、図20の整形後の波形のデューティー比が50%とならないアンバランスが現れることに対応する。特に長周期呼吸ほど、アンバランスは大きくなる。
 度数分布を用いた簡易周波数比計算法は、呼吸周期の時系列から呼吸振幅の周波数成分を所定のルールに基づいて推定する。そして、一呼吸波形が持つ周波数成分をHFR成分に振り分け、呼吸の時系列変動が持つ周波数成分をLFR成分に振り分け、度数分布を生成し、LFRとHFRの度数の比で呼吸周波数成分比を推定する。
 次に、呼吸周波数成分比の簡易推定のルールの一実施例を図22,23を参照して説明する。周期列は、I(0)からI(-20)とする(括弧内の数字nは、現在から過去にさかのぼって、n番目の呼吸とし、I(n)はその呼吸周期とする)。
 (0)検出部40は、呼吸信号Rsから呼吸振幅データを読み込む(ステップS41)。検出部40は、読み込んだ呼吸振幅データの変化に基づいて1呼吸周期を繰り返し計算して、I(0)からI(-20)までの21個の呼吸周期の信号列を作成する(ステップS43)。
 (1)検出部40は、2秒から6秒の呼吸周期を、高調波スペクトルを含めて、すべてHF_binの度数としてカウントする(ステップS45からステップS51まで)。
 (2)一方、6秒から12秒の呼吸周期は、二次の高調波、三次の高調波成分が6秒以下となるため、6秒以上の基本周波数と6秒以下の高調波周波数を持つ。そのため、検出部40は、6秒から12秒の呼吸周期を、LF_binとHF_binの両方の度数としてカウントする(ステップS49からステップS55まで)。LF_binとHF_binへの組み入れの割合(つまり、LF_binとHF_binとのうち、どちらの度数として組み入れるのかの割合)は、一周期のデューティー比に基づいて決められるとよい。実施例では、簡易化のため、組み入れの割合を1:1とした。ただし、6秒を境に度数組み入れの計算が変わり不連続が生じるため、5秒から7秒の周期では(ステップS49 Yes)、その周期に応じてLF_binとHF_binへの組み入れバランスを連続的に変えることにより(ステップS51)、不連続を減じる。
 つまり、ステップS45にて、検出部40は、I(n)が5秒未満の呼吸周期のデータであるか否かを判定する。検出部40は、I(n)が5秒未満の呼吸周期のデータであると判定した場合(ステップS45 Yes)、HF_binを一つインクリメントする(ステップS47)。一方、検出部40は、I(n)が5秒以上の呼吸周期のデータであると判定した場合(ステップS45 No)、HF_binをインクリメントしない。次に、ステップS49にて、検出部40は、I(n)が5秒以上7秒未満の呼吸周期のデータであるか否かを判定する。検出部40は、I(n)が5秒以上7秒未満の呼吸周期のデータであると判定した場合(ステップS49 Yes)、ステップS51に記載の二つの式に従って、HF_binとLF_binを計算する。次に、検出部40は、I(n)が7秒以上12秒以下の呼吸周期のデータであるか否かを判定する(ステップS53)。検出部40は、I(n)が7秒以上12秒以下の呼吸周期のデータであると判定した場合(ステップS53 Yes)、LF_binを一つインクリメントする(ステップS55)。一方、検出部40は、I(n)が7秒以上12秒以下の呼吸周期のデータでないと判定した場合(ステップS53 No)、LF_binをインクリメントしない。検出部40は、I(0)からI(-20)までの21個の呼吸周期のデータそれぞれについて、ステップS45からステップS55までの処理を実施する。
 (3)検出部40は、2つの呼吸周期I(n)、I(n-1)の和Aが6秒以上12秒以下の場合は、その差分B(=abs(I(n)-I(n-1)))を評価する(ステップS61からステップS70まで)。“abs(*)”は、*の絶対値を表す。つまり、検出部40は、差分Bが1秒より小さい場合は(ステップS69 Yes)、I(n)とI(n-1)は6秒以下の同一周期の周波数成分を持つとして、HF_binの度数を一つインクリメントしてカウントする(ステップS70)。検出部40は、差分Bが2秒より大きな場合は(ステップS65 Yes)、I(n)とI(n-1)は6秒以上12秒以下の周波数成分を持つとして、LF_binの度数を一つインクリメントしてカウントする(ステップS67)。
 (4)検出部40は、2つの呼吸周期I(n)、I(n-1)の和Aが6秒以上24秒以下の場合において、2つの呼吸周期の和A(=I(n)+I(n-1))を一吸収周期と仮にみなし、その差分C(=(I(n)+I(n-1))-(I(n-2)+I(n-3)))を評価する(ステップS71からステップS79まで)。つまり、検出部40は、差分Cが1秒より小さい場合は(ステップS77 Yes)、4つの呼吸周期(I(n), I(n-1), I(n-2), I(n-3))に長周期変動がなく、それら4つの呼吸周期が6秒以下の類似周期の周波数成分を持つと判断する。検出部40は、この場合、HF_binの度数を一つインクリメントしてカウントする(ステップS79)。検出部40は、差分Cが3秒より大きな場合は(ステップS73 Yes)、4つの呼吸周期(I(n), I(n-1), I(n-2), I(n-3))に長周期変動があり、それら4つの呼吸周期が6秒以上24秒以下の周波数成分を持つと判断する。検出部40は、この場合、LF_binの度数を一つインクリメントしてカウントする(ステップS75)。
 (5)検出部40は、0から-17までのnのそれぞれについて、ステップS61からステップS79までの処理を実施する(ステップS81)。そして、検出部40は、LF_binをHF_binで除算することによって、LFR/HFRに相当するLF/HF_binを算出する(ステップS83)。なお、3つの呼吸周期の和に対しても、(4)を3つ以上に拡張して同様に計算できる。また、LF_binとHF_binへの組み入れでは、(1)から(5)までにおいて、それぞれ重み係数がかけられて組み入れられるが、本実施例では、すべて重み係数1として計算した。
 図24は、呼吸周波数成分比の簡易推定法を用いてRLHRn(呼吸周波数成分比の正規化出力)を計算した結果の一例を示す図である。図24(b)に簡易推定法によるRLHRnの波形が追加されている点を除いて、図24は、図16と同じである。簡易推定法によるRLHRnの波形は、10個の呼吸周期の時系列データで、一呼吸確定毎に計算された結果を表す。FFTを用いて呼吸の周波数成分を分析する方法による計算結果と比べると、簡易推定法によるRLHRnの増減の傾向は、LF/HFと略一致している。したがって、呼吸周波数成分比の簡易推定法を用いても、自律神経の活動を推測することが可能である。
 なお、呼吸信号から呼吸周波数成分を推定する方法は、上記に限られない。例えば、心拍間隔RRIから推定される自律神経の活動指標に対応するため、LFRとHFRとを分割するための閾値を6秒(0.16Hz)としているが、呼吸パターンの特徴を取り出す目的であれば、閾値を4秒や8秒としても、その特徴の検出は可能である。周波数度数の分割範囲を増やしてもよい。また、分析する呼吸数が一定であれば、LFRとHFRとの比(RLHR)を算出せずに、LFRを、LF/HFに対応する値として使用されてもよい。つまり、LFRが、交感神経と副交感神経の活動を示す指標データとして利用可能であれば、覚醒状態の判定に使用する指標として利用されてよい。このように、覚醒状態の判定に使用する指標は、LFRとHFRとの比(RLHR)に限定されない。
 2周期や3周期など、複数周期に亘る変動の周波数成分の推定の閾値や差分演算方法も、同様に特徴検出の目的に合わせて変えることができる。また、2周期や3周期に亘る変動の判定閾値の前後で判定条件の変化による数値の不連続変化を抑えるには、1周期の場合で例示したバランスを連続的に変える手法の適用が可能である。FFT手法、フィルタ手法及び度数分布手法の3つの実施例が上記されている。いずれの手法も、呼吸信号の一振幅周期が持つ周波数成分と、呼吸の時系列繰り返し変動が持つ周波数成分とを分析し、その分析結果から呼吸を特徴づける数値を取り出し、呼吸状態の推定、及び呼吸から自律神経の活動を推定する。これらの手法で取り出した呼吸状態及び神経の活動状態は、乗員の覚醒状態やストレス状態の推定に役立つ。
 図25は、第2の実施形態におけるバックルの構成の一例を示すブロック図である。第2の実施形態のうち第1の実施形態と同様の構成及び効果についての説明は、上述の説明を援用することで省略又は簡略する。第1の実施形態(図2参照)では、判定部70及び出力部80は、バックル8に設けられているのに対し、第2の実施形態(図25参照)では、判定部70及び出力部80は、バックル8とは別のデバイスに設けられている。図25に示される覚醒状態判定システム15は、バックル8と、推定部30とを備える。推定部30は、検出部40と、判定部70と、出力部80とを備える。
 以上、バックル、覚醒状態判定システム及び覚醒状態判定方法を実施形態により説明したが、本発明は上記実施形態に限定されるものではない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。
 例えば、シート2は、車両の前側座席でもよいし、後部座席でもよい。また、図25において、検出部40は、バックル8とは別のデバイスに設けられてもよい。また、センサ20の出力信号sに対して実施される複数の処理の一部(例えば、正規化処理)は、検出部40で実行されるのではなく、判定部70で実行されてもよい。
 本国際出願は、2018年1月18日に出願した日本国特許出願第2018-006304号に基づく優先権を主張するものであり、日本国特許出願第2018-006304号の全内容を本国際出願に援用する。
1 シートベルト装置
8 バックル
15 覚醒状態判定システム
20 センサ
30 推定部
40 検出部
70 判定部
80 出力部

Claims (8)

  1.  車両の乗員の呼吸に応じて変化する出力信号を出力するセンサと、
     前記出力信号から、前記呼吸の周波数成分を周波数分析により検出する検出部と、
     前記検出部により検出される前記周波数成分に基づいて、前記乗員の覚醒状態を判定する判定部とを備える、バックル。
  2.  前記検出部は、前記周波数成分を用いて、交感神経と副交感神経の活動を示す指標データを算出し、
     前記判定部は、前記検出部により算出される前記指標データに基づいて、前記乗員の覚醒状態を判定する、請求項1に記載のバックル。
  3.  前記判定部は、前記指標データが所定の判定閾値よりも低下した場合、前記乗員の覚醒状態が低下していると判定する、請求項2に記載のバックル。
  4.  前記判定部は、前記指標データが所定の判定閾値よりも低下した後に上昇する繰り返しパターンが前記検出部から得られた場合、前記乗員に眠気が生じていると判定する、請求項2に記載のバックル。
  5.  前記指標データは、前記呼吸の低周波成分のパワースペクトラムの振幅の積算値と、周波数範囲が前記低周波成分よりも高い前記呼吸の高周波成分のパワースペクトラムの振幅の積算値との比である、請求項2に記載のバックル。
  6.  前記指標データは、正規化されたデータである、請求項2に記載のバックル。
  7.  車両の乗員の呼吸に応じて変化する出力信号を出力するセンサを有するバックルと、
     前記出力信号から、前記呼吸の周波数成分を周波数分析により検出する検出部と、
     前記検出部により検出される前記周波数成分に基づいて、前記乗員の覚醒状態を判定する判定部とを備える、覚醒状態判定システム。
  8.  バックルに設けられるセンサは、車両の乗員の呼吸に応じて変化する出力信号を出力し、
     検出部は、前記出力信号から、前記呼吸の周波数成分を周波数分析により検出し、
     判定部は、前記検出部により検出される前記周波数成分に基づいて、前記乗員の覚醒状態を判定する、覚醒状態判定方法。
PCT/JP2019/000515 2018-01-18 2019-01-10 バックル、覚醒状態判定システム及び覚醒状態判定方法 WO2019142720A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018006304A JP6975649B2 (ja) 2018-01-18 2018-01-18 バックル、覚醒状態判定システム及び覚醒状態判定方法
JP2018-006304 2018-01-18

Publications (1)

Publication Number Publication Date
WO2019142720A1 true WO2019142720A1 (ja) 2019-07-25

Family

ID=67301789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000515 WO2019142720A1 (ja) 2018-01-18 2019-01-10 バックル、覚醒状態判定システム及び覚醒状態判定方法

Country Status (2)

Country Link
JP (1) JP6975649B2 (ja)
WO (1) WO2019142720A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021182249A1 (ja) * 2020-03-11 2021-09-16 パナソニックIpマネジメント株式会社 信号処理システム、センサシステム、生体管理システム、環境制御システム、信号処理方法、及びプログラム
JP2023006626A (ja) * 2021-06-30 2023-01-18 Joyson Safety Systems Japan合同会社 バックル、判定システム及び判定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012105835A (ja) * 2010-11-18 2012-06-07 Nissan Motor Co Ltd 車両用生体信号検出装置
JP2012157435A (ja) * 2011-01-31 2012-08-23 Citizen Holdings Co Ltd 血圧計
JP2013216187A (ja) * 2012-04-06 2013-10-24 Autoliv Development Ab シートベルト装置
WO2015060268A1 (ja) * 2013-10-21 2015-04-30 テイ・エス テック株式会社 覚醒装置、シート及び覚醒度判定方法
JP2017190076A (ja) * 2016-04-14 2017-10-19 タカタ株式会社 バックル及び車載システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012105835A (ja) * 2010-11-18 2012-06-07 Nissan Motor Co Ltd 車両用生体信号検出装置
JP2012157435A (ja) * 2011-01-31 2012-08-23 Citizen Holdings Co Ltd 血圧計
JP2013216187A (ja) * 2012-04-06 2013-10-24 Autoliv Development Ab シートベルト装置
WO2015060268A1 (ja) * 2013-10-21 2015-04-30 テイ・エス テック株式会社 覚醒装置、シート及び覚醒度判定方法
JP2017190076A (ja) * 2016-04-14 2017-10-19 タカタ株式会社 バックル及び車載システム

Also Published As

Publication number Publication date
JP2019122652A (ja) 2019-07-25
JP6975649B2 (ja) 2021-12-01

Similar Documents

Publication Publication Date Title
JP6118097B2 (ja) 運転時生体状態判定装置及びコンピュータプログラム
US10618522B2 (en) Drowsiness detection and intervention system and method
JP3976752B2 (ja) 睡眠状態推定装置及びプログラム
JP5553303B2 (ja) 生体状態推定装置及びコンピュータプログラム
JP5929020B2 (ja) 意識状態推定装置及びプログラム
JP5086834B2 (ja) 疲労解析装置及びコンピュータプログラム
US8768442B2 (en) Wakeful-state data generating apparatus and wakefulness degree determining apparatus
JP5874489B2 (ja) 睡眠状態判定装置及び睡眠状態判定方法
CN113473910A (zh) 睡眠监测系统和方法
WO2019142720A1 (ja) バックル、覚醒状態判定システム及び覚醒状態判定方法
US20180263567A1 (en) Method and device for quantifying a respiratory sinus arrhythmia and use of said type of method or said type of device
JP4832914B2 (ja) 筋疲労評価装置
Szypulska et al. Prediction of fatigue and sleep onset using HRV analysis
Purnamasari et al. Mobile EEG based drowsiness detection using K-nearest neighbor
JP2001204714A (ja) メンタルストレス判定装置
JP5785791B2 (ja) 入眠状態判定装置
JP6209395B2 (ja) 生体状態推定装置及びコンピュータプログラム
JP4609539B2 (ja) 眠気検出装置
JP2016047305A (ja) 意識状態推定装置及びプログラム
KR101853102B1 (ko) 가속도 센서 기반 수면분류 정보 측정기
JP6750229B2 (ja) 眠気検知プログラム、眠気検知方法および眠気検知装置
WO2016093347A1 (ja) 生体状態分析装置及びコンピュータプログラム
CN111939423B (zh) 基于自体心跳节奏的入睡引导方法、装置和计算机设备
JP5812265B2 (ja) 自律神経の状態評価システム
KR102186916B1 (ko) 생체신호 패턴 분석 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19741374

Country of ref document: EP

Kind code of ref document: A1