WO2019142302A1 - 駆動装置、流体利用装置及び空気調和機 - Google Patents

駆動装置、流体利用装置及び空気調和機 Download PDF

Info

Publication number
WO2019142302A1
WO2019142302A1 PCT/JP2018/001459 JP2018001459W WO2019142302A1 WO 2019142302 A1 WO2019142302 A1 WO 2019142302A1 JP 2018001459 W JP2018001459 W JP 2018001459W WO 2019142302 A1 WO2019142302 A1 WO 2019142302A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronous motor
current
unit
sub
angle difference
Prior art date
Application number
PCT/JP2018/001459
Other languages
English (en)
French (fr)
Inventor
健治 ▲高▼橋
宰 桝村
晃弘 津村
康彦 和田
朱音 本行
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/001459 priority Critical patent/WO2019142302A1/ja
Priority to JP2019565638A priority patent/JP6833071B2/ja
Publication of WO2019142302A1 publication Critical patent/WO2019142302A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • H02P5/52Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another additionally providing control of relative angular displacement

Definitions

  • the present invention relates to a drive device for driving two synchronous motors connected in parallel to one power converter, a fluid utilization device including the drive device, and an air conditioner including the fluid utilization device.
  • the synchronous motor can not generate torque properly and stop operation or stop operation without applying an appropriate voltage according to the rotational position using information on the rotor position, which is the rotational position of the rotor.
  • one of two synchronous motors connected to one power converter is a main synchronous motor, the other is a sub synchronous motor, and the driving device includes two synchronous motors;
  • a method of controlling using the rotational speed of a stand synchronous motor is disclosed.
  • the driving device vector-controls the main synchronous motor, and the d-axis current of the main synchronous motor using the difference in rotational speed and the difference in rotational position between the two synchronous motors.
  • Vector control is a control method of decomposing a current flowing through a synchronous motor into a current component generating a torque and a current component generating a magnetic flux, and controlling each current component independently.
  • Patent Document 1 since the method described in Patent Document 1 has low robustness to fluctuations in motor constants, the occurrence of uneven speed in the rotational speed of the sub-side synchronous motor increases vibration and noise of the sub-side synchronous motor. There is also a problem that the motor efficiency is reduced.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a drive device capable of improving the robustness against variations in motor constant even when driving two synchronous motors using one power converter. With the goal.
  • the drive device of the present invention comprises: a power converter for supplying power to a first synchronous motor and a second synchronous motor connected in parallel; A first current detector for detecting a first current flowing to the motor and a second current detector for detecting a second current flowing to the second synchronous motor.
  • the drive device detects a first magnetic pole position detection unit for detecting a first magnetic pole position of a rotor of a first synchronous motor, and detects a second magnetic pole position of a rotor of a second synchronous motor.
  • a magnetic pole position detection unit and a control unit that outputs a voltage command for driving the first synchronous motor using the torque current command, the magnetic flux current command, the first current, and the first magnetic pole position.
  • the driving device is based on a difference between a first subtractor for obtaining a first angular difference which is a difference between the first magnetic pole position and the second magnetic pole position, and respective motor constants of the first synchronous motor and the second synchronous motor.
  • An angle difference correction unit that corrects a first angle difference based on information indicating electrical behavior caused by a difference in motor constants or a motor constant, and outputs a second angle difference that is an angle difference after correction;
  • a pulsating component extraction unit for extracting at least one pulsating component of the pulsating component included in the torque current flowing to the synchronous motor of No. 2 and the active power pulsating component included in the active power consumed by the second synchronous motor.
  • the drive device is characterized by comprising a magnetic flux current command determination unit that determines the compensation direction of the magnetic flux current command using the second angle difference, and determines the magnetic flux current command using the determined compensation direction and the pulsation component.
  • FIG. 7 is a diagram showing a first configuration example of a pulsation component extraction unit shown in FIG.
  • the figure which shows the 3rd structural example of the pulsation component extraction part shown in FIG. A first diagram for explaining the behavior of torque change of the sub-side synchronous motor shown in FIG.
  • the 5th figure for demonstrating the behavior of the torque change of the sub side synchronous motor shown in FIG. The 6th figure for demonstrating the behavior of the torque change of the sub side synchronous motor shown in FIG.
  • symbol determination device shown in FIG. The 2nd figure for demonstrating the code
  • FIG. 7 shows a first configuration example of the angle difference correction unit shown in FIG. 1
  • FIG. 7 shows a second configuration example of the angle difference correction unit shown in FIG. 1
  • the figure for demonstrating the torque current waveform of the sub side synchronous motor at the time of adding -30% error to the armature resistance of the main side synchronous motor shown in FIG. The block diagram of the angle difference correction
  • amendment part with which the drive device based on Embodiment 4 of this invention is provided.
  • the block diagram of the fluid utilization apparatus which concerns on Embodiment 5 of this invention The block diagram of the air conditioner concerning Embodiment 6 of this invention
  • FIG. 1 is a diagram showing a configuration of a drive device according to Embodiment 1 of the present invention.
  • the synchronous motor utilizes a permanent magnet field type synchronous motor in which a permanent magnet is provided on the rotor, a winding field type synchronous motor in which field windings are wound on the rotor, and saliency of the rotor. It is roughly divided into a reluctance type synchronous motor to obtain a rotational torque.
  • the permanent magnet field type synchronous motor includes a surface magnet type synchronous AC motor in which permanent magnets are provided on the outer peripheral surface of a rotor core, and a permanent magnet embedded motor in which permanent magnets are embedded in the rotor core. It is divided roughly.
  • each of the two synchronous motors is described as a three-phase synchronous motor. However, in the two synchronous motors, synchronization of the number of phases other than three, such as two or five phases, is performed. A motor may be used.
  • one of the two synchronous motors may be referred to as “main synchronous motor 1a”, and the other may be referred to as “sub synchronous motor 1b".
  • the main synchronous motor 1a is a first synchronous motor
  • the sub synchronous motor 1b is a second synchronous motor.
  • the motor constants of the two synchronous motors may be approximately the same or different. However, even if synchronous motors of the same specification are used as the two synchronous motors, the motor constants may be different. In the synchronous motor of the same specification, the motor constant may be different due to the variation of the dimensions at the time of manufacture of the parts constituting each of the main synchronous motor 1a and the sub synchronous motor 1b, the main synchronous motor 1a and the sub synchronous motor There is a difference in temperature generated with each driving of 1b.
  • the motor constants differ, the difference between the impedance of the wiring provided from the main synchronous motor 1a to the power converter 2 and the impedance of the wiring provided from the sub synchronous motor 1b to the power converter 2 etc. There is. Moreover, as a factor which a motor constant differs, the difference of each load torque of the main side synchronous motor 1a and the sub side synchronous motor 1b, the difference of the magnetic saturation point of each inductance of the main side synchronous motor 1a and the sub side synchronous motor 1b and so on.
  • the magnetic material is linearly magnetized with respect to the applied magnetic field in a weak magnetic field, but is not linearly magnetized when a magnetic field of a predetermined intensity or more is applied. The phenomenon that is not linearly magnetized in this manner is called magnetic saturation, and the portion where it is not linearly magnetized and the magnetic flux has a constant value is the aforementioned magnetic saturation point.
  • Drive device 100 detects a first current flowing through power converter 2 supplying power to main side synchronous motor 1a and sub side synchronous motor 1b connected in parallel, relay circuit 11, and main side synchronous motor 1a.
  • a current detection unit 4a and a current detection unit 4b for detecting a second current flowing through the sub-side synchronous motor 1b are provided.
  • the power converter 2 converts DC power supplied from the DC voltage source 3 into AC power and outputs the AC power to the main synchronous motor 1a and the sub synchronous motor 1b.
  • a voltage source inverter is used for power converter 2.
  • the voltage type inverter is a device that switches the DC voltage supplied from the DC voltage source 3 and converts it into an AC voltage.
  • Power converter 2 is not limited to a voltage type inverter as long as it can output AC power for driving main side synchronous motor 1a and sub side synchronous motor 1b, and current type inverter, AC power amplitude is not limited. And, it may be a circuit such as a matrix converter that converts into alternating current power with different frequencies, and a multilevel converter in which the outputs of a plurality of converters are connected in series or in parallel.
  • the relay circuit 11 is used when only one of the two synchronous motors is driven.
  • the power converter 2 is provided in a wire connecting the sub synchronous motor 1 b.
  • the relay circuit 11 is used when the number of synchronous motors driven by the power converter 2 is switched from two to one, or from one to two.
  • the contacts of the relay circuit 11 are controlled by the presence or absence of a switching signal output from a switching unit (not shown). When two synchronous motors are simultaneously driven, the contacts of the relay circuit 11 are closed, and the sub synchronous motor 1 b is electrically connected to the power converter 2 through the relay circuit 11.
  • the relay circuit 11 may be provided in a wire connecting the main synchronous motor 1 a to the power converter 2 instead of being provided in the wire connecting the sub synchronous motor 1 b to the power converter 2.
  • the relay circuit 11 may be configured by a mechanical relay or may be configured by a semiconductor switch. When two synchronous motors are always driven, the drive device 100 may omit the relay circuit 11 and directly connect the main synchronous motor 1a and the sub synchronous motor 1b to the power converter 2.
  • a current detection unit 4a which is a first current detector, detects a phase current flowing from the power converter 2 to the main synchronous motor 1a, and outputs current information indicating the value of the detected phase current.
  • a current detection unit 4b which is a second current detector, detects a phase current flowing from the power converter 2 to the sub-side synchronous motor 1b, and outputs current information indicating the value of the detected phase current.
  • the current detection units 4a and 4b may be current sensors using a current transformer for measurement called CT (Current Transformer), or may be current sensors using a shunt resistor.
  • CT Current Transformer
  • the current detection units 4a and 4b may be a combination of these.
  • current is detected by current detection units 4a and 4b provided near the synchronous motor.
  • the phase current flowing through the synchronous motor is directly detected in the example shown in FIG. 1, the current detection method is not limited to the example of directly detecting the current flowing through the synchronous motor according to Kirchhoff's current law.
  • a single-shunt current detection method using a shunt resistor provided on the negative DC bus of power converter 2 a lower-arm shunt current detection method using a shunt resistor connected in series with the lower arm of power converter 2, etc.
  • the phase current flowing in the synchronous motor may be detected using
  • the lower arm shunt current detection method is also referred to as a three shunt current detection method because shunt resistances connected in series to each of the three lower arms are used.
  • drive device 100 includes a magnetic pole position detection unit 5a that is a first magnetic pole position detection unit, a magnetic pole position detection unit 5b that is a second magnetic pole position detection unit, and a current control that is a control unit that outputs a voltage command.
  • a section 6, a subtractor 8, a pulsation component extraction section 7, an angle difference correction section 10, and a magnetic flux current command determination section 9 are provided.
  • the magnetic pole position detection unit 5a detects the magnetic pole position of the rotor of the main synchronous motor 1a and outputs a signal indicating the magnetic pole position.
  • the magnetic pole position detection unit 5b detects the magnetic pole position of the rotor of the sub synchronous motor 1b and outputs a signal indicating the magnetic pole position.
  • Each of the magnetic pole position detection unit 5a and the magnetic pole position detection unit 5b is, for example, a rotary encoder, a resolver, a hall sensor or the like.
  • the rotary encoder converts the amount of mechanical displacement of the rotor into an electrical signal, processes the converted signal, and outputs a signal indicating the magnetic pole position.
  • the resolver is configured by combining an excitation coil and two detection coils orthogonal to each other. When a sine wave signal is input to the excitation coil, the voltage output from the detection coil changes in proportion to the rotation angle of the rotor. The change in voltage is output as a signal indicating the magnetic pole position of the rotor.
  • the Hall sensor detects the magnetic field generated by the magnetic field emitted by the magnet or the coil using the Hall effect, converts the detected magnetic field into an electrical signal, and converts the electrical signal to the magnetic pole position of the rotor. Output as a signal shown.
  • Each of the magnetic pole position detection unit 5a and the magnetic pole position detection unit 5b is not limited to a rotary encoder, a resolver, or a Hall sensor as long as the magnetic pole position of the rotor can be detected.
  • the magnetic pole position detection unit 5a estimates the magnetic pole position of the main synchronous motor 1a using the phase current flowing in the main synchronous motor 1a and the voltage command output from the current control unit 6, It is also good.
  • the magnetic pole position detection unit 5b estimates the magnetic pole position of the sub synchronous motor 1b using the phase current flowing through the sub synchronous motor 1b and the voltage command output from the current control unit 6. May be
  • the magnetic pole position is determined using information indicating the speed electromotive force of the synchronous motor in the medium to high speed region of the rotational speed range of the rotor included in the synchronous motor. It is common to estimate.
  • the speed electromotive force is an induced power generated inside the synchronous motor as the rotor rotates, and is proportional to a field generated between the rotor and the stator included in the synchronous motor, and a rotational speed of the rotor.
  • the Lissajous locus represents the temporal change of the magnetic flux density by a locus on a two-dimensional coordinate plane.
  • the current control unit 6 sets the direction of the magnetic flux by the permanent magnet of the rotor included in the main synchronous motor 1a as d axis, and the axis orthogonal to the d axis as q axis
  • the vector controller coordinate-transforms the current detected by the current detector 4a into a current command value in the dq coordinate system.
  • current control is performed on dq coordinates based on the magnetic poles of the rotor.
  • the AC amount becomes a DC amount and control becomes easy.
  • the q-axis current is proportional to the magnet torque of the synchronous motor
  • the q-axis is referred to as a "torque axis”
  • the q-axis current is referred to as a "torque current”.
  • the d-axis current is referred to as the "magnetic flux axis” because the d-axis current changes the magnetic flux generated in the stator and changes the amplitude of the output voltage of the synchronous motor with respect to the q-axis current. It is called “magnetic flux current", “excitation current” or the like.
  • the q-axis current acts on the torque because the reluctance torque changes due to the d-axis current.
  • the q-axis current is called a torque current. There are many.
  • the magnetic pole position detected by the magnetic pole position detection unit 5a is used for coordinate conversion.
  • the current control unit 6 may use a polar coordinate system such as an ⁇ stator coordinate system or a ⁇ coordinate system in addition to the dq coordinate system in vector control.
  • direct torque control may be adopted for the current control unit 6 instead of vector control.
  • DTC direct torque control
  • the torque current and the magnetic flux current can be calculated more strictly.
  • This coordinate system is often referred to as an ft coordinate system, an nt coordinate system, etc., but since it is known it will not be described in detail.
  • the q-axis current may be referred to as "torque current” and the d-axis current may be referred to as "magnetic flux current”.
  • the magnet torque is the principle This is not the case when using a reluctance synchronous motor that does not occur as a result.
  • the current control unit 6 is controlled such that the torque current flowing through the main synchronous motor 1a matches the value of the torque current command, and the magnetic flux current flowing through the main synchronous motor 1a matches the value of the magnetic flux current command To be controlled.
  • the current control unit 6 is generally configured by a proportional integral controller and a non-interference controller.
  • the torque current command may be calculated as a result of the speed control in the magnetic flux current command determination unit 9, or may be input from a host controller. Details of the magnetic flux current command will be described later.
  • the synchronous motor when the synchronous motor is driven in an open loop, the synchronous motor may self-oscillate at the natural angular frequency ⁇ n and control may become unstable.
  • the natural angular frequency ⁇ n is expressed by the following approximate expression (1).
  • P m is the number of pole pairs
  • ⁇ a is the armature flux linkage number
  • L a is the armature inductance
  • J is the moment of inertia.
  • the electromechanical coupling vibration may be referred to as an electric spring resonance
  • the natural angular frequency ⁇ n represented by the above equation (1) is also referred to as an electric spring resonance angular frequency.
  • the stabilization compensator is added to the technique disclosed in the above-mentioned reference 1 in order to suppress the electrical spring resonance, the same stabilization compensation is required also in the drive device 100. For that purpose, it is necessary to check how much the torque current flowing through the sub-side synchronous motor 1b shown in FIG. 1 vibrates due to the electrical spring resonance.
  • the pulsation component extraction unit 7 shown in FIG. 1 extracts a pulsation component in the vicinity of the electrical machine spring resonance angular frequency included in the torque current of the sub-side synchronous motor 1b.
  • There are two methods for the pulsation component extraction unit 7 to extract the pulsation component near the electrical machine spring resonance frequency because there are two methods, a method using a high pass filter and a method using a band pass filter, these will be described in order .
  • FIG. 2 is a diagram showing a first configuration example of the pulsation component extraction unit shown in FIG.
  • FIG. 2 shows a configuration example of the pulsation component extraction unit 7A using a first-order high pass filter, and its transfer function is expressed by the following equation (2).
  • s is the Laplace transform operator and ⁇ c is the cutoff angular frequency.
  • n is an integer of 2 or more.
  • the cutoff angular frequency ⁇ c is preferably set to 1/3 or less of the electric motor resonance frequency, for example, 1/5 to 1/20 of the electric spring resonance frequency.
  • FIG. 3 is a diagram showing a second configuration example of the pulsation component extraction unit shown in FIG.
  • FIG. 3 shows a configuration example of a pulsation component extraction unit 7B using a second order band pass filter, and its transfer function is expressed by the following equation (3).
  • s is the Laplace transform operator and ⁇ p is the peak angular frequency.
  • q is a quality factor, which is a factor that determines the passband width of the filter.
  • a band pass filter of order m may be used.
  • m is an integer of 3 or more.
  • the pulsation component extraction unit 7B matches the peak angular frequency ⁇ p with the electrical machine resonance frequency.
  • the electrical machine spring resonance angular frequency has the property of fluctuating depending on the driving condition. Therefore, the pass band width of the band pass filter needs to be designed to be wider in anticipation of fluctuation of the electrical spring resonance angular frequency. Incidentally, it may take a configuration such as to actually measure the electric spring resonance angular frequency to track the peak angular frequency omega p in electrical spring resonance angular frequency, if the can narrow the pass bandwidth.
  • FIG. 4 is a diagram showing a third configuration example of the pulsation component extraction unit shown in FIG.
  • the pulsation component extraction unit 7C shown in FIG. 4 includes a pulsation frequency measurement unit 71, a cosine wave generator 72, a sine wave generator 73, a Fourier cosine coefficient operation unit 74, a Fourier sine coefficient operation unit 75, and an AC restorer 76.
  • the pulsation frequency measurement unit 71 measures the pulsation frequency included in the input signal that is the current detected by the current detection unit 4b, that is, the pulsation frequency included in the current detected by the current detection unit 4b.
  • the cosine wave generator 72 generates a cosine wave signal oscillating at a pulsating frequency
  • the sine wave generator 73 generates a sinusoidal signal oscillating at a pulsating frequency.
  • the Fourier cosine coefficient operation unit 74 performs Fourier series expansion of the input signal which is the current detected by the current detection unit 4b using the cosine wave signal from the cosine wave generator 72, and the specific frequency included in the input signal The components are converted to DC and Fourier cosine coefficients are calculated.
  • the Fourier cosine coefficient is a coefficient obtained by expanding an even function having an arbitrary period into a series of cos.
  • the Fourier sine coefficient calculation unit 75 performs Fourier series expansion of the input signal using the sine wave signal from the sine wave generator 73, converts the specific frequency component of the input signal into a direct current, and calculates a Fourier sine coefficient. .
  • the Fourier sine coefficient is a coefficient obtained by expanding an odd function having an arbitrary period into a series of sin.
  • the ac restorer 76 comprises the cosine wave signal from the cosine wave generator 72, the sine wave signal from the sine wave generator 73, the Fourier cosine coefficient obtained by the Fourier series expansion, and the Fourier obtained by the Fourier series expansion.
  • the alternating current is restored using the sine coefficient.
  • the characteristics of the band pass filter can be obtained by Fourier series expansion and inverse transformation.
  • the method of extracting the pulsation component in the vicinity of the electrical machine spring resonance angular frequency included in the torque current of the sub-side synchronous motor 1b using Fourier series expansion is excellent in terms of mounting. From this, the method of extracting the pulsation component using Fourier series expansion is considered to be useful when changing the peak frequency of the band pass filter, but if the calculation accuracy can be ensured, the pulsation frequency shown in FIG.
  • a band pass filter obtained by combining the measurement unit 71 and the equation (3) may be used as the pulsation component extraction unit 7 shown in FIG.
  • the pulsation component extraction unit 7 can extract the pulsation component in the vicinity of the electrical machine spring resonance angular frequency included in the torque current of the sub-side synchronous motor 1b, it may be configured by any of the filters shown in FIGS. Good.
  • the high pass filter is easier to design and to be mounted on a circuit than a band pass filter. Therefore, when importance is placed on the ease of design and mounting on a circuit, it is preferable to select the high pass filter. In addition, when it is desired to obtain sharp cutoff characteristics, it is preferable to select a band pass filter.
  • the speed difference which is the difference between the rotational speeds of the rotors of the main synchronous motor and the sub synchronous motor is determined, and the speed difference is stabilized by using this speed difference. Compensation is being done. Since the main side synchronous motor is controlled stably by this, it can be said that the technique disclosed by patent document 1 calculated
  • Pulsating component extraction methods other than the technique disclosed in Patent Document 1 are the method of extracting the pulsating component included in the torque current of the sub-side synchronous motor 1b as in Embodiment 1, and the effective power of the sub-side synchronous motor 1b.
  • the speed pulsation appearing in the speed signal may be very small.
  • the S / N ratio (Signal to Noise Radio) is higher in torque pulsation than in velocity pulsation, and magnetic pole position detection is easy. Therefore, using the pulsating component of the torque current as in the first embodiment instead of the speed difference is reasonable in detecting the magnetic pole position.
  • the pulsation component extraction unit 7 may be configured to detect the pulsation of the active power.
  • the main synchronous motor 1a since the main synchronous motor 1a is vector controlled, the main synchronous motor 1a should be driven following the torque current command value.
  • weak vibrations may occur in the main synchronous motor 1a due to various disturbance factors. Disturbance factors include the short circuit prevention time of the semiconductor elements of the upper and lower arms in series constituting the power converter 2, offset of the current sensor, gain imbalance of the current sensor, distortion of the magnetic flux generated from the magnet provided in the rotor, etc. Conceivable.
  • the drive device 100 subtracts the pulsating component of the main side synchronous motor 1a from the pulsating component of the sub side synchronous motor 1b in consideration of the case where the weak vibration is generated as described above. The influence of the pulsation component of the synchronous motor 1a may be removed.
  • the pulsation component extraction unit 7 outputs the sensor such as an acceleration sensor or a torque sensor.
  • the pulsation component of the sub-side synchronous motor 1b may be extracted from the value.
  • the subtractor 8 shown in FIG. 1 obtains a first angular difference which is a difference between the magnetic pole positions of the rotors of the main synchronous motor 1a and the sub synchronous motor 1b.
  • the magnetic pole position is equal to the rotational position of the rotor of each of the main synchronous motor 1a and the sub synchronous motor 1b, or equal to the rotational angle of each rotor of the main synchronous motor 1a and the sub synchronous motor 1b.
  • the first angle difference may be simply referred to as "angle difference”.
  • voltage and torque equations in the steady state of the permanent magnet synchronous motor will be shown below.
  • the voltage equation is expressed as the following equation (4).
  • a torque equation is represented like the following (5) Formula.
  • the first term of the right side of the following equation (5) represents the magnet torque, and the second term represents the reluctance torque.
  • the magnet torque is proportional to the q-axis current, and the reluctance torque is proportional to the product of the d-axis current and the q-axis current.
  • R a is an armature resistance
  • L d is a d-axis inductance
  • L q is a q-axis inductance
  • P m is a pole pair number
  • a a is an armature flux linkage number
  • ⁇ e represents angular velocity
  • i d is the d-axis current
  • i q is the q-axis current
  • v d is d-axis voltage
  • v q is q-axis voltage
  • t the generation torque.
  • the subscripts “ x ” of these coefficients are for identifying whether the synchronous motor is the main side or the sub side.
  • the subscript "x” is attached to, or the subscript "x" is omitted.
  • the subscript "m” is attached in place of the "x” subscript represents the main side
  • "s” is attached in place of the "x” subscript represents the sub side.
  • FIG. 5 is a first diagram for explaining the behavior of the torque change of the sub-side synchronous motor shown in FIG.
  • FIG. 6 is a second diagram for explaining the behavior of the torque change of the sub-side synchronous motor shown in FIG.
  • FIG. 7 is a third diagram for explaining the behavior of the torque change of the sub-side synchronous motor shown in FIG.
  • FIG. 8 is a fourth diagram for explaining the behavior of the torque change of the sub-side synchronous motor shown in FIG.
  • FIG. 9 is a fifth diagram for explaining the behavior of the torque change of the sub-side synchronous motor shown in FIG. FIG.
  • FIG. 10 is a sixth diagram for explaining the behavior of the torque change of the sub-side synchronous motor shown in FIG.
  • FIG. 11 is a diagram showing the d-axis current on the main side shown in FIGS. 6, 7, 9 and 10, the sign of the angle difference, and the state of the torque of the sub-side synchronous motor in association with each other.
  • FIGS. 5 to 10 The behavior of the torque change of the sub-side synchronous motor 1b by magnetic flux current compensation is shown in FIGS. 5 to 10, and the contents of FIGS. 5 to 10 are disclosed in Patent Document 1.
  • FIG. 5 to 10 it is assumed that the motor constants of the main synchronous motor 1a and the sub synchronous motor 1b are equal.
  • the load of the main synchronous motor 1a is larger than the load of the sub synchronous motor 1b. That is, the main synchronous motor 1a has a heavy load.
  • the drive device 100 applies the same voltage to the two synchronous motors, but when the main synchronous motor 1a has a heavy load, the magnetic flux current of the sub synchronous motor 1b flows in the positive direction. This is apparent by solving the above equation (4).
  • the case where a positive magnetic flux current flows in the main synchronous motor 1a will be considered.
  • q-axis voltage of the main synchronous motor 1a is by increasing in the positive direction, the voltage command vector v ⁇ changes from dq * into v ⁇ dq **.
  • the q-axis voltage of the main synchronous motor 1a changes as described above, the d-axis voltage of the sub synchronous motor 1b decreases, and the q axis voltage of the sub synchronous motor 1b increases.
  • the torque of the sub-side synchronous motor 1b changes compared to the torque of the sub-side synchronous motor 1b shown in FIG.
  • the synchronous motor is a surface magnet type synchronous AC motor and there is no reluctance torque.
  • the torque of the sub synchronous motor 1b when the current of the sub synchronous motor 1b changes is reduced compared to the state of FIG.
  • FIG. 7 shows the torque state of the sub-side synchronous motor 1b when the negative magnetic flux current flows through the main-side synchronous motor 1a, contrary to the case of FIG.
  • the voltage command vector v ⁇ changes from dq * into v ⁇ dq **.
  • the d-axis voltage of the sub-side synchronous motor 1 b increases, and the q-axis voltage of the sub-side synchronous motor 1 b decreases.
  • the q-axis current of the sub-side synchronous motor 1b increases, and the q-axis voltage of the sub-side synchronous motor 1b decreases.
  • the shaft current decreases. In this case, the torque of the sub synchronous motor 1b is increased compared to the state of FIG.
  • the d-axis current of the main synchronous motor 1a is zero, and the load of the main synchronous motor 1a is larger than the load of the sub synchronous motor 1b, that is, the main synchronous motor 1a is heavier. It has become. Since the same voltage is applied to the main synchronous motor 1a and the sub synchronous motor 1b, the d-axis current of the sub synchronous motor 1b flows in the negative direction when the load on the sub synchronous motor 1b is heavy. .
  • the q-axis voltage of the sub-side synchronous motor 1b increases, the d-axis current of the sub-side synchronous motor 1b decreases. In this case, the torque of the sub synchronous motor 1b is increased compared to the state of FIG.
  • FIG. 10 shows the torque state of the sub-side synchronous motor 1b when the negative magnetic flux current flows through the main-side synchronous motor 1a, contrary to the case of FIG. In this case, the q-axis current of the sub synchronous motor 1b decreases. Therefore, the torque of the sub synchronous motor 1b is reduced compared to the state of FIG.
  • FIG. 11 shows the main d-axis current shown in FIGS. 6, 7, 9 and 10, the sign of the angle difference, and the state of the torque of the sub-side synchronous motor 1b in association with each other.
  • ⁇ es in the following equation (6) represents the magnetic pole position of the sub-side synchronous motor 1b in electrical angle
  • ⁇ em represents the magnetic pole position of the main-side synchronous motor 1a in electrical angle. is there.
  • the drive device 100 uses the subtracter 8 to obtain the angle difference ⁇ .
  • the motor constant of the main synchronous motor 1a is equal to the motor constant of the sub synchronous motor 1b
  • the motor constant of the main synchronous motor 1a is equal to the motor constant of the sub synchronous motor 1b. If different, there are cases where the intended torque change can not be obtained. The problem that the intended torque change can not be obtained is found by the study of the inventor of the present application. The reason why the intended torque change can not be obtained will be described later, and the function of the magnetic flux current command determination unit 9 shown in FIG. 1 will be described first.
  • the magnetic flux current command determination unit 9 determines a magnetic flux current command for stabilizing driving of the sub-side synchronous motor 1 b. As described above, the torque of the sub synchronous motor 1 b can be changed by changing the magnetic flux current.
  • FIG. 12 is a diagram showing a configuration example of the magnetic flux current command determination unit shown in FIG.
  • FIG. 13 is a first diagram for explaining the code judging process by the code judging device shown in FIG.
  • FIG. 14 is a second diagram for explaining the sign determination processing by the sign determiner shown in FIG.
  • FIG. 15 is a third diagram for explaining the sign determination processing by the sign determiner shown in FIG.
  • the magnetic flux current command determination unit 9 illustrated in FIG. 12 includes a pulsation suppression control unit 91 and a compensation direction determination unit 92.
  • the magnetic flux current command determination unit 9 receives the pulsation component of the torque current of the sub-side synchronous motor 1b as an input, and determines the magnetic flux current command using the pulsation suppression control unit 91 and the compensation direction determination unit 92.
  • the pulsation suppression control unit 91 includes a gain multiplication unit 911 and a phase adjustment unit 912. In the technique of Patent Document 1, the speed difference is used for the input of the magnetic flux current command determination unit 9, but in the magnetic flux current command determination unit 9 of the first embodiment, the pulsation component of the torque current is used. There is.
  • the input to the magnetic flux current command determination unit 9 is not limited to the pulsation component of the torque current, and may be a pulsation component included in the active power.
  • the gain multiplication unit 911 adjusts the gain of the pulsating component that is the input signal.
  • the phase adjustment unit 912 adjusts the phase of the pulsation component which is the input signal, and outputs the pulsation component whose amplitude is adjusted. If stability of the system can be ensured by only one of the gain multiplication unit 911 and the phase adjustment unit 912, the pulsation suppression control unit 91 needs to include both the gain multiplication unit 911 and the phase adjustment unit 912. There is no.
  • the gain multiplication unit 911 multiplies the pulsation component which is the input signal by a specific gain and outputs the result, and has a function of adjusting the stability and quick response of the system.
  • the gain may be changed according to the operating conditions.
  • the operating condition is equal to the angular velocity command of each of the main synchronous motor 1a and the sub synchronous motor 1b.
  • the gain in the gain multiplication unit 911 may be increased in the low speed range, and the gain in the gain multiplication unit 911 may be reduced in the high speed range.
  • the reason for lowering the gain in the gain multiplication unit 911 in the high-speed range is that the rotation of the synchronous motor is stable even in the high-speed operation even if the gain is low compared to the low-speed operation even at the same angle difference as the low speed operation. Sometimes, if the gain is increased as in the low speed operation, the compensation is too much and the rotation of the synchronous motor becomes unstable.
  • the phase adjustment unit 912 includes, for example, a phase delay compensator, a low pass filter, an integration controller, and the like.
  • the phase delay compensator is intended to stabilize by lowering the gain by a fixed value in a high frequency region, and is generally used in the industry. Since the low pass filter and the integral controller also have the property of changing the signal phase in the high frequency region, the low pass filter or the integral controller can be used in the same manner as the phase delay compensator.
  • the cut-off angular frequency may be set to 1/3 or less of the electrical machine resonance angle frequency. If possible, the value is made to be 1/10 to 1/20 of the electric motor resonance angle frequency. By setting in this manner, the phase can be delayed by approximately 90 degrees in the vicinity of the electrical machine spring resonance angular frequency, and control stability is enhanced.
  • a dead zone may be provided in any of the input and output of the pulsation suppression control unit 91.
  • the dead zone is useful for removing frequency components other than the electrical spring resonance that could not be removed by the above-described pulsation component extraction unit 7.
  • the compensation direction determination unit 92 includes a sign determiner 921 and a multiplier 922, and determines the compensation direction of the magnetic flux current command from the angle difference according to the operation principle described with reference to FIGS.
  • the code determiner 921 performs the code determination process shown in FIG. 13 to FIG.
  • the horizontal axes in FIGS. 13 to 15 represent angle differences which are inputs of the code determination unit 921.
  • the angular difference indicates a positive or negative value as shown in FIG.
  • the vertical axes in FIG. 13 to FIG. 15 indicate the value of the output of the code determination unit 921.
  • the most basic code determination process is the method shown in FIG.
  • the sign determiner 921 outputs “1” when the angle difference indicates positive, and outputs “ ⁇ 1” when the angle difference indicates negative.
  • chattering may occur when the angle difference is close to zero. Therefore, as shown in FIG. 14, in the region where the angle difference is close to zero, the output of the code determination unit 921 is gradually switched from “1” to “ ⁇ 1”, or the output of the code determination unit 921 is “ ⁇ 1” to “1”. It may be configured to gradually switch to “1”.
  • the output value of the code determination unit 921 may be gradually lowered as the angle difference becomes larger.
  • the multiplier 922 multiplies the output of the sign determination unit 921 and the output of the pulsation suppression control unit 91 to generate a magnetic flux current command. That is, the magnetic flux current command determination unit 9 determines the magnetic flux current command based on the pulsation component suppressed by the pulsation suppression control unit 91 and the compensation direction determined by the sign determiner 921 of the compensation direction determination unit 92.
  • Patent Document 1 the control of the synchronous motor is performed based on the compensation direction determined from the angle difference, and the compensation direction of the magnetic flux current is switched at a point where the angle difference becomes zero.
  • the motor constants of the two synchronous motors are different, in the control method of Patent Document 1, an erroneous determination of the compensation direction occurs. The reason is as follows.
  • v dm is the d-axis voltage of the main synchronous motor 1 a
  • v qm is the q-axis voltage of the main synchronous motor 1 a
  • ⁇ v dm is a small perturbation of the d-axis voltage of the main synchronous motor 1a that is caused by a small perturbation of the d-axis current of the main synchronous motor 1a
  • ⁇ v qm is a small perturbation of the q-axis voltage of the main synchronous motor 1a that is caused by a small perturbation of the d-axis current of the main synchronous motor 1a.
  • R am is the armature resistance of the main synchronous motor 1a
  • ⁇ em is the angular velocity of the main synchronous motor 1a
  • L dm is the inductance of the d axis of the main synchronous motor 1a
  • L qm is the q axis of the main synchronous motor 1a It is an inductance.
  • i dm is the d-axis current of the main synchronous motor 1a
  • i qm is q-axis current of the main synchronous motor 1a
  • .DELTA.i dm is very small perturbation of the d-axis current of the main synchronous motor 1a.
  • ⁇ am is the number of armature linkage fluxes of the main synchronous motor 1a.
  • v ds is the d-axis voltage of the sub-side synchronous motor 1 b
  • v qs is the q-axis voltage of the sub-side synchronous motor 1 b.
  • ⁇ v ds is a minute perturbation of the d-axis voltage of the sub-side synchronous motor 1 b which is caused by a minute perturbation of the d-axis current of the main side synchronous motor 1 a.
  • ⁇ v qs is a small perturbation of the q-axis voltage of the sub-side synchronous motor 1 b which is caused by a small perturbation of the d-axis current of the main side synchronous motor 1 a.
  • Equation (11) is obtained by solving the voltage equation in the steady state of the sub-side synchronous motor 1b for the current.
  • i ds is d-axis current of the sub-side synchronous motor 1b
  • i qs are q-axis current of the sub-side synchronous motor 1b.
  • R as is the armature resistance of the sub synchronous motor 1b
  • ⁇ es is the angular velocity of the sub synchronous motor 1b
  • L ds is the d-axis inductance of the sub synchronous motor 1 b
  • L qs is the q axis of the sub synchronous motor 1 b It is an inductance.
  • as is the number of armature linkage fluxes of the sub-side synchronous motor 1 b.
  • the small perturbation of the equation (10) is added to the dq-axis voltage of the sub-side synchronous motor 1b shown in the last term of the right side of the equation (11), and the dq-axis of the sub-side synchronous motor 1b generated thereby If the change of the current is added to the left side of the above equation (11) as ⁇ i ds and ⁇ i qs , the following equation (12) is obtained.
  • A R as R am + ⁇ em ⁇ es L dm L qs .
  • B ⁇ em L dm R as - ⁇ es L qs R am.
  • C ⁇ em L d m R as ⁇ es L ds R am .
  • D ⁇ em ⁇ es L dm L ds + R am R as .
  • the following equation (17) can be obtained by adding a small perturbation to the dq axis current of the sub-side synchronous motor 1b.
  • the subscript " 0 " in the following equation (17) represents the value of the operating point.
  • Equation (18) If the part related to the dq-axis current perturbation of the sub-side synchronous motor 1b is extracted from the above-mentioned equation (17), the following equation (18) is obtained.
  • the first term of the right side of the following equation (18) is the magnet torque perturbation of the sub-side motor, and the second term is the reluctance torque perturbation.
  • the above equation (20) includes the respective d-axis inductances of the two synchronous motors, the respective armature resistances of the two synchronous motors, and the angular velocities of the two synchronous motors.
  • the angular velocities of the two synchronous motors are considered to be equal to each other, so here, assuming that there is no difference between the angular velocities of the two synchronous motors, 2
  • the motor constants of the two synchronous motors are equal to each other, the numerator of the fraction on the right side of the above equation (20) is zero, so d at the point where the angular difference becomes zero is d of the main synchronous motor 1a.
  • An increase / decrease relationship between the shaft current and the torque of the sub-side synchronous motor 1b changes. From this, in the control method disclosed in Patent Document 1, processing for switching the compensation direction of the magnetic flux current is performed at a point where the angular difference is zero.
  • the continuous vibration generation process of the sub-side synchronous motor 1b is as follows. First, since the compensation direction of the magnetic flux current is erroneously determined, unintended torque change occurs in the sub-side synchronous motor 1b. This increases the angular difference. When the angular difference exceeds a certain value, the determination of the compensation direction returns to the normal state. This reduces the angular difference. However, when the angle difference decreases and becomes close to zero, the compensation direction is misjudged again. By repeating such a vicious circle, the sub-side synchronous motor 1b is continuously vibrated.
  • the angle difference correction unit 10 is for correcting the compensation direction of the magnetic flux current.
  • the angle difference signal may be corrected as in the following equation (21).
  • ⁇ es represents the magnetic pole position of the sub-side synchronous motor 1 b in electrical angle
  • ⁇ em represents the magnetic pole position of the main-side synchronous motor 1 a in electrical angle.
  • C ⁇ em L d m R as ⁇ es L ds R am .
  • D ⁇ em ⁇ es L dm L ds + R am R as .
  • L dm , L ds , R as and R am correspond to motor constants.
  • the second term including the arc tangent represents an angle difference correction amount which is a correction amount of the first angle difference.
  • the angular difference correction amount may be calculated in the angular difference correction unit 10 each time the rotational speed of the rotor changes using the equation of the second term, but the value calculated in advance may be corrected by the angular difference.
  • the angle difference correction unit 10 stores an angle difference correction amount corresponding to the rotational speed of the rotor by referring to the data table and stores the read angle difference correction amount as a data table. Alternatively, it may be used in place of the angle difference correction amount obtained by the equation of the second term.
  • a specific example of the calculation method of the angle difference correction amount using the data table will be described with reference to FIG.
  • FIG. 16 is a diagram showing the relationship between the angular difference correction amount calculated by the angular difference correction unit shown in FIG. 1 and the rotational speed of the rotor.
  • the vertical axis indicates the amount of angular difference correction
  • the horizontal axis indicates the rotational speed of the rotor.
  • the rotational speed of the rotor is described as "speed”. According to FIG. 16, it can be seen that the angle difference correction amount changes in accordance with the rotational speed.
  • the angle difference correction amount corresponding to such a rotational speed is calculated in advance, and the calculated angle difference correction amount is stored in the above-described data table.
  • angle difference correction unit 10 calculates an approximation derived instead of the second term including the arc tangent of the above equation (21).
  • An equation may be used to calculate the amount of angular difference correction.
  • FIG. 17 is a diagram showing a first configuration example of the angle difference correction unit shown in FIG.
  • FIG. 17 shows a configuration example of the angle difference correction unit 10A for obtaining the second angle difference which is the angle difference after correction using the above equation (21).
  • the second angle difference is referred to as “corrected angular velocity”.
  • the angle difference correction unit 10A includes a correction amount calculation unit 10a and a subtractor 10b.
  • the correction amount calculation unit 10a performs calculation of the second term including the arc tangent of the equation (21) using the motor constant and the speed command.
  • the calculation of the second term including the arc tangent of equation (21) may be performed using the rotational speed instead of the speed command.
  • the subtractor 10b calculates the corrected angle difference by subtracting the angle difference correction amount calculated by the correction amount calculation unit 10a from the angle difference according to the equation (21).
  • FIG. 18 is a view showing a second configuration example of the angle difference correction unit shown in FIG.
  • FIG. 18 shows a configuration example of the angle difference correction unit 10B for obtaining the angle difference after correction using the data table 10c.
  • the angle difference correction unit 10B includes a correction amount calculation unit 10d and a data table 10c instead of the correction amount calculation unit 10a shown in FIG. It is assumed that a plurality of angle difference correction amounts that change according to the motor constant and the rotational speed are stored in the data table 10c of FIG.
  • the angle difference correction unit 10B reads the angle difference correction amount corresponding to the motor constant and the speed command by referring to the data table 10c, and outputs the read angle difference correction amount.
  • the data table 10c may have interpolation processing means (not shown).
  • the synchronous motor is a surface magnet type synchronous AC motor
  • an example of a configuration in which the angle difference is corrected on the assumption that there is no reluctance torque has been described. If approximation is performed on the assumption that the difference is a value close to zero, it is relatively easy to derive a condition in which the magnet torque perturbation on the sub side synchronous motor 1b side due to the d axis current perturbation on the main side synchronous motor 1a side becomes zero relatively easily. Can. Since the first embodiment is directed to a phenomenon in which the compensation direction of the magnetic flux current is misjudged when the angle difference is a value close to zero, the above approximation is appropriate.
  • the following equation (22) represents the condition under which the sum of the reluctance perturbation and the magnet torque perturbation of the sub-side synchronous motor 1b due to the d-axis current perturbation on the main side synchronous motor 1a side becomes zero.
  • A R as R am + ⁇ em ⁇ es L dm L qs .
  • B ⁇ em L dm R as - ⁇ es L qs R am.
  • C ⁇ em L d m R as ⁇ es L ds R am .
  • E ⁇ i dm / (R as 2 + ⁇ es 2 L ds L qs ).
  • the perturbation term of the d-axis current on the main synchronous motor 1a side is eliminated in the process of the equation deformation, whereas in the case of a synchronous motor having reluctance torque, the perturbation term is not eliminated.
  • the amount of angle difference correction if the perturbation term of the d-axis current on the side of the main synchronous motor 1a is taken into consideration, the calculation becomes too complicated. Therefore, in practice, it is better to erase the perturbation term of the d-axis current on the main side synchronous motor 1 a side as it is minute.
  • the compensation direction of the magnetic flux current is set in consideration of the difference of the motor constants. If not determined, an erroneous determination of the compensation direction may occur. According to the method described in Patent Document 1, even if two synchronous motors of the same specification are driven in parallel, if the motor constants of the two synchronous motors are different, an erroneous determination of the compensation direction may occur. is there. Since this erroneous determination causes the sub-side synchronous motor 1 b to continuously vibrate, a large speed unevenness occurs in the sub-side synchronous motor 1 b. Along with this, there is concern about the increase in vibration and noise of the sub-side synchronous motor 1b and the decrease in motor efficiency.
  • drive device 100 is configured to determine the compensation direction of the magnetic flux current in consideration of the difference in motor constant, two synchronous motors are configured using one power converter. Even in the case of driving, the robustness against the fluctuation of the motor constant is improved, and the magnetic flux current command determination unit 9 can be prevented from erroneously determining the compensation direction of the magnetic flux current. Therefore, the occurrence of the uneven velocity due to the erroneous determination of the compensation direction of the magnetic flux current is suppressed. Further, since the occurrence of the speed unevenness is suppressed, it is possible to suppress the increase of the vibration and the noise of the sub-side synchronous motor 1b, and it is possible to suppress the decrease of the motor efficiency.
  • FIG. 19 is a configuration diagram of a current control unit provided in the drive device according to Embodiment 2 of the present invention.
  • FIG. 20 is a configuration diagram of an angle difference correction unit provided in the drive device according to Embodiment 2 of the present invention.
  • Drive device 100 of the second embodiment includes a current control unit 6A and an angle difference correction unit 10C instead of current control unit 6 and angle difference correction unit 10 of the first embodiment.
  • the other configuration is the same as or equivalent to the configuration of the first embodiment, and the same or equivalent components are denoted by the same reference numerals and redundant description will be omitted.
  • the current control unit 6A shown in FIG. 19 is a function for controlling the torque current and the magnetic flux current.
  • the current control unit 6A includes an adder 61a, an adder 61b, a subtractor 61c, a subtractor 61d, an adder 61e, a subtractor 61f, an adder 61g, an adder 61h, and a proportional integral derivative ( Proportional integral (PID) controller 62a and a PID controller 62b.
  • the current control unit 6A also includes a non-interference controller 63 and a test signal generation unit 64 that generates a test signal for measuring the motor constant.
  • current control unit 6A converts the phase current of main side synchronous motor 1a into a current of a desired coordinate system, and reverses the voltage command to a three-phase coordinate system. And a second coordinate converter for converting. In FIG. 19, illustration of the first coordinate converter and the second coordinate converter is omitted.
  • the current control unit 6A of the second embodiment preferably uses a vector controller on dq rotor coordinates, but dq in vector control is preferable.
  • a polar coordinate system such as an ⁇ stator coordinate system or a ⁇ coordinate system may be used.
  • a DTC may be adopted for the current control unit 6A instead of the vector control.
  • the test signal generation unit 64 performs test signals of DC voltage, DC current, AC voltage or AC current when the main synchronous motor 1a and the sub synchronous motor 1b are stopped in order to measure the motor constant. And to the sub-side synchronous motor 1b.
  • the test signal is a signal for changing the torque current command, the magnetic flux current command, the q-axis voltage command, and the d-axis voltage command. The details of the test signal generated by the test signal generation unit 64 will be described later.
  • the adder 61 a adds the torque current command and the test signal for changing the torque current command output from the test signal generation unit 64.
  • the subtractor 61c calculates a torque current deviation by subtracting the torque current from the torque current command and the test signal added by the adder 61a.
  • the PID controller 62a determines the control amount by performing proportional operation, integral operation and differential operation on the torque current deviation.
  • the adder 61 b adds the magnetic flux current command and the test signal for changing the magnetic flux current command output from the test signal generator 64.
  • the subtractor 61d calculates the magnetic flux current deviation by subtracting the magnetic flux current from the magnetic flux current command and the test signal added by the adder 61b.
  • the PID controller 62b determines the control amount by performing proportional operation, integral operation and differential operation on the magnetic flux current deviation.
  • the non-interference controller 63 performs feedforward control using the torque current command and test signal added by the adder 61a, the speed command, and the flux current command and test signal added by the adder 61b. It generates d-axis voltage and q-axis voltage to remove control interference between dq axes. Specifically, the decoupling controller 63 cancels the voltage interfering with the q-axis voltage generated by the d-axis current using the speed command and the flux current command and the test signal added by the adder 61b. To generate an output voltage to the adder 61e.
  • the non-interference controller 63 generates a voltage for canceling a voltage interfering with the d-axis voltage generated by the q-axis current, using the torque current command and the test signal added by the adder 61a and the speed command. And output to the subtractor 61f.
  • the adder 61e adds the output of the decoupling controller 63 to the output of the PID controller 62a and outputs the result.
  • the adder 61g adds the test signal for changing the q-axis voltage command output from the test signal generation unit 64 to the output of the adder 61e to output the q-axis voltage command.
  • the subtractor 61 f subtracts the output of the decoupling controller 63 from the output of the PID controller 62 b and outputs the result.
  • the adder 61 h outputs a d-axis voltage command by adding a test signal for changing the d-axis voltage command output from the test signal generation unit 64 to the output of the subtractor 61 f.
  • the angle difference correction unit 10C shown in FIG. 20 includes the correction amount calculation unit 10d and the data table 10c shown in FIG. 18 in order to correct the angle difference using the analysis result of the voltage change or current change by the current control unit 6A.
  • a test signal analysis unit 10e receives a main side phase current that is a phase current on the main side synchronous motor 1a side, a sub side phase current that is a phase current on the sub side synchronous motor 1b, and a voltage command.
  • the test signal analysis unit 10 e measures and outputs the motor constant by analyzing these, and further analyzes the pulsation component of the sub-side torque current which is the electrical behavior caused by the difference of the motor constant.
  • the test signal analysis unit 10 e analyzes a voltage change or a current change caused by the test signal. If the d-axis inductance and armature resistance of each of the main synchronous motor 1a and the sub synchronous motor 1b are known as a result of the measurement, it is possible to calculate the angle difference correction amount by the correction amount calculation unit 10d.
  • the angle difference correction unit 10C may calculate the angle difference correction amount using the correction amount calculation unit 10a shown in FIG. 17 instead of the correction amount calculation unit 10d and the data table 10c.
  • the test signal generation unit 64 applies a test signal of alternating current voltage or alternating current to the main synchronous motor 1a and the sub synchronous motor 1b when the main synchronous motor 1a and the sub synchronous motor 1b are stopped. Measure the phase current of each synchronous motor of a set.
  • the test signal analysis unit 10 e can measure the armature resistance of each of the two synchronous motors by measuring this phase current.
  • an error is included in the output voltage due to the influence of the short circuit prevention time of the upper and lower arms and the like, so that a measurement error occurs in the armature resistance when the compensation accuracy of the voltage error is low.
  • the test signal analysis unit 10 e measures the ratio of the phase current flowing in each of the two synchronous motors. Since the nominal value of the armature resistance is generally available, the test signal analysis unit 10e may compare the nominal value of the armature resistance with the value of the measured phase current ratio. In the method of measuring the phase current ratio, it is not known which motor constant of the main synchronous motor 1a or the sub synchronous motor 1b has changed, but practically, when calculating the equation (21), there is a problem Absent.
  • test signal generation unit 64 sends a test signal of alternating current voltage or alternating current in the d-axis direction to the main synchronous motor 1a and the sub synchronous motor 1b when the main synchronous motor 1a and the sub synchronous motor 1b are stopped.
  • the test signal analysis unit 10e can measure the d-axis inductance from the value of the current flowing to each of the main synchronous motor 1a and the sub synchronous motor 1b. When the voltage error can not be ignored, the test signal analysis unit 10e extracts the AC amplitude of the phase current flowing in each of the main synchronous motor 1a and the sub synchronous motor 1b, measures the ratio thereof, and 21) The equation may be calculated.
  • the armature resistance and the d-axis inductance of each of the two synchronous motors may be known, but to calculate the equation (23), the sub-side synchronous motor
  • the armature linkage flux number ⁇ as of 1 b and the q-axis inductance L qs are also required.
  • the armature linkage flux number as as changes due to temperature change and overcurrent demagnetization, and the q-axis inductance L qs changes due to magnetic saturation when a large current flows. In order to calculate the equation (23) with high accuracy, these constants also need to be measured.
  • Reference 2 As a method of measuring the inductance, for example, the method of Japanese Patent No. 5634620 (hereinafter referred to as reference document 2) is known.
  • Reference 2 voltage commands of a plurality of constant DC voltages are applied to a rotating machine, and a measuring voltage command arbitrarily selected from the applied voltages, and a rotating machine current before and after the application of the voltage command for measuring A method has been devised to calculate the inductance using it.
  • the test signal generating unit 64 shown in FIG. 19 When the inductance calculation method disclosed in reference 2 is applied to the second embodiment, the test signal generating unit 64 shown in FIG. 19 generates voltage commands of a plurality of constant DC voltages as test signals, and the test signal analysis is performed. Unit 10e calculates the inductance using the measurement voltage command arbitrarily selected from the voltage commands generated by test signal generation unit 64 and the rotary machine current before and after the generation of the measurement voltage command.
  • the test signal is an impulse-like voltage.
  • the principle of the calculation of the inductance is described in detail in reference 2, so the explanation will be omitted here.
  • the q-axis inductance can be measured even in the drive device 100 according to the second embodiment.
  • the d-axis inductance can also be measured by applying the inductance method disclosed in Reference 2.
  • a flux observer is known as a method of measuring the number of armature linkage fluxes.
  • An application example of the magnetic flux observer is disclosed in Japanese Patent Application Laid-Open No. 2003-302413 (hereinafter referred to as reference 3).
  • the magnetic flux observer estimates a stator magnetic flux and a rotor magnetic flux using a voltage applied to the motor and a current flowing to the motor.
  • the speed estimation of the synchronous motor is performed by combining the magnetic flux observer and the adaptive control, but in the calculation process, estimation of the rotor d-axis magnetic flux, that is, the number of armature linkage fluxes is performed.
  • speed information is required to estimate the rotor d-axis magnetic flux, the speed information may be a speed estimated value calculated by adaptive control, or may be a true speed value detected by sensors.
  • a magnetic flux observer may be provided inside the test signal analysis unit 10 e.
  • the test signal generation unit 64 does not need to generate a test signal, so the test signal is zero.
  • a method of measuring the number of armature linkage fluxes in this manner is also known.
  • the second embodiment measurement of the armature resistance, the d-axis inductance, the q-axis inductance, and the number of armature flux linkages is possible. Then, if the motor constant is known, it is easy to calculate the equations (21) and (23). According to the second embodiment, by providing the motor constant measuring function to the drive device 100, the angle difference between the two synchronous motors can be accurately corrected, and the erroneous determination of the compensation direction of the magnetic flux current can be prevented.
  • FIG. 21 is a diagram for explaining a torque current waveform of the sub-side synchronous motor when an error of + 30% is added to the armature resistance of the main-side synchronous motor shown in FIG.
  • FIG. 22 is a diagram for explaining a torque current waveform of the sub-side synchronous motor when an error of -30% is added to the armature resistance of the main-side synchronous motor shown in FIG.
  • FIGS. 21 and 22 it is assumed that there is a difference between the motor constants of the two synchronous motors as a result of only one of the two synchronous motors having the same motor constant being driven in parallel driving. ing. Only one synchronous motor is driven when the contacts of the relay circuit 11 shown in FIG. 1 are opened.
  • the sub-side torque current which is the torque current of the sub-side synchronous motor 1b, vibrates at the natural angular frequency described by the approximate expression of the above equation (1) due to the above-described electrical spring resonance.
  • the upper part of FIG. 21 shows the original waveform of the sub torque current and the fundamental wave component of the natural angular frequency.
  • the original waveform is shown by a solid line, and the fundamental wave component is shown by a broken line.
  • the horizontal axis is time.
  • the fundamental wave component is a natural angular frequency component included in the original waveform of the sub torque current.
  • the original waveform and the fundamental wave component are described together in order to clearly show how much the natural angular frequency component is included in the original waveform of the sub-side torque current.
  • the magnetic flux current command determination unit 9 described above changes the magnetic flux current appropriately in order to suppress the electric spring resonance, in FIG. 21 the magnetic flux current command is not performed because the angle difference correction of the above equation (21) is not performed. It is assumed that the determination unit 9 erroneously determines the compensation direction of the magnetic flux current, and the sub-side synchronous motor 1 b is continuously vibrating. As described above, it can be seen that distortion is generated in the waveform of the sub-side torque current when the sub-side synchronous motor 1 b continuously vibrates.
  • the lower part of FIG. 21 shows the pulsation component of the sub-side torque current caused by the erroneous determination.
  • the pulsation component includes a waveform component obtained by subtracting the fundamental wave component from the original waveform, and a second harmonic component of electrical spring resonance.
  • the waveform component obtained by subtracting the fundamental wave component from the original waveform is indicated by a solid line
  • the second harmonic component of the electrical spring resonance is indicated by a broken line.
  • the horizontal axis is time.
  • FIG. 22 shows the original waveform of the sub-side torque current and the fundamental wave component of the natural angular frequency.
  • the original waveform is shown by a solid line, and the fundamental wave component is shown by a broken line.
  • the horizontal axis is time.
  • the lower part of FIG. 22 shows the pulsation component of the sub-side torque current caused by the erroneous determination. According to FIG. 22, as in FIG. 21, it is understood that the pulsation due to the erroneous determination is generated, and it is understood that the even harmonic component of the electrical spring resonance is generated.
  • the waveform of the sub torque current shown in FIG. 22 is different from the waveform of the sub torque current of FIG.
  • the reason why the waveforms are different is that the ideal value of the angle difference correction shown in the above equation (21) changes and the ideal value of the angle difference correction changes because the armature resistance changes from the state shown in FIG. This is because the timing of occurrence of an erroneous determination changes, and the direction of torque shock that occurs due to an erroneous determination changes.
  • the peak of torque shock is in the negative direction, but in FIG. 22, the peak of torque shock is in the positive direction.
  • the phases of the second harmonic components are also different in FIG. 21 and FIG.
  • the calculation result of the ideal value of the angle difference correction represented by the above equation (20) is a negative value in the case of FIG. 21 and a positive value in the case of FIG.
  • FIG. 23 is a configuration diagram of an angle difference correction unit provided in the drive device according to Embodiment 3 of the present invention.
  • the drive device 100 of the third embodiment includes an angle difference correction unit 10D instead of the angle difference correction unit 10 of the first embodiment.
  • the angle difference correction unit 10D includes a pulsation component analysis unit 10f and an offset amount control unit 10g.
  • the other configuration is the same as or equivalent to the configuration of the first embodiment, and the same or equivalent components are denoted by the same reference numerals and redundant description will be omitted.
  • the pulsation component analysis unit 10f has a function of performing frequency analysis on a pulsation component included in the sub torque current flowing to the sub synchronous motor 1b.
  • the sub-side torque current is obtained by converting the current value in the three-phase coordinate system detected by the current detection unit 4b into a dq-axis current in rotational rectangular coordinates (dq-axis) by a coordinate converter (not shown). Indicates the q-axis current. Since the electrical machine spring resonance angular frequency represented by the above equation (1) includes an approximation error, the pulsation component analysis unit 10 f measures the resonance angular frequency measurement unit 10 h for measuring the resonance angular frequency included in the sub torque current. Equipped with The resonance angular frequency measurement unit 10 h is preferably provided in the pulsation component analysis unit 10 f not only for measuring the resonance angular frequency but also considering that the motor constant changes when the synchronous motor is driven.
  • the pulsation component analysis unit 10 f includes a filter unit 10 i that extracts a specific harmonic component by performing analysis processing on the pulsation component of the sub-side torque current.
  • a filter unit 10i for example, a band pass filter that extracts a second harmonic component of the electrical machine spring resonance angular frequency from the pulsation component of the sub-side torque current can be used.
  • the filter unit 10i may be a combination of a high pass filter that removes a direct current component of the pulsation component of the sub-side torque current and a notch filter that removes a fundamental wave component of the electrical machine spring resonant angular frequency.
  • the offset amount control unit 10g is a function of adding a correction amount to the angle difference so that the harmonic component of the pulsation component is reduced. Details of the offset amount control unit 10g will be described later.
  • the subtractor 10b subtracts the output of the offset amount control unit 10g from the angle difference to determine the corrected angle difference.
  • the offset amount control unit 10g As the simplest configuration example of the offset amount control unit 10g, a method using a search algorithm can be considered. There are various search algorithms, but here we take hill climbing, which is one of the most famous search algorithms, as an example. The hill climbing method has been selected merely for ease of illustration, and the configuration of the third embodiment is not limited to this.
  • the offset amount control unit 10g includes an automatic search unit 10j.
  • the automatic search unit 10 j automatically searches for the optimum value of the angle difference correction amount by the hill climbing method by investigating increase and decrease of the harmonic component while changing the angle difference correction amount with respect to the harmonic component from the filter unit 10 i.
  • FIG. 24 is a view showing an image of the automatic search of the angle difference correction amount by the hill climbing method used in the automatic search unit shown in FIG.
  • the vertical axis represents the second harmonic component of the resonant angular frequency
  • the horizontal axis represents the angular difference correction amount.
  • the generation factor of the second harmonic component of the pulsating component is due to an erroneous determination of the compensation direction of the magnetic flux current, and therefore, it is expected that the second harmonic component is minimized when the angle difference correction amount is optimally adjusted.
  • the angular difference correction amount is zero, and an erroneous determination of the compensation direction of the magnetic flux current has occurred, so the second harmonic component is observed to some extent.
  • the angle difference correction amount is increased and the operating point is changed from X to Y. In this case, since the operating point moves away from the direction of the optimum point, the frequency of erroneous determination increases and the second harmonic component increases. Since this is undesirable, consider reducing the amount of angular difference correction.
  • the operating point When the angle difference correction amount is decreased and the operating point is changed from X to Z, the operating point approaches the direction of the optimum point, so the frequency of erroneous determination decreases and the second harmonic component decreases.
  • the optimal point is reached in due course.
  • the angle difference signal is appropriately corrected, not only the second harmonic component of the electrical spring resonance but also the fundamental wave component of the electrical spring resonance gradually weakens. Therefore, even if a point at which the second harmonic component is minimized has not been found, the search may be aborted if the vibration is weakened to a certain extent.
  • a method using PID control may be considered instead of using a search algorithm by the automatic search unit 10j.
  • PID control of the offset amount control unit 10g for example, from the sub-side torque current pulsation shown in FIG. 21 or FIG. 22, a place where a sharp peak is generated is extracted, and the extracted peak part is integrated. Thus, an appropriate correction amount can be obtained.
  • the automatic search based method is excellent in that it requires a certain amount of time for searching but does not require motor constants.
  • many motor constants are required to solve the above equation (23), so many motor constant measuring means as described in the second embodiment, for example, the test signal generating unit 64 , Test signal analysis unit 10e, etc.
  • the method based on the automatic search of the third embodiment can obtain an effect that the control configuration can be simplified. Further, the method based on the automatic search of the third embodiment does not require a motor constant, so that on-line angle difference correction is possible, and it becomes possible to cope with constant change when the synchronous motor is operated for a long time.
  • FIG. 25 is a configuration diagram of an angle difference correction unit provided in a drive device according to Embodiment 4 of the present invention.
  • the angle difference correction unit 10E according to the fourth embodiment includes the test signal analysis unit 10e, the correction amount calculation unit 10d, and the data table 10c according to the second embodiment, and further, the pulsation component analysis unit 10f and the offset amount according to the third embodiment.
  • a control unit 10g is provided.
  • the angle difference after correction is calculated by subtracting the angle difference correction amount calculated based on the value of the motor constant from the angle difference, or the even harmonics generated due to the erroneous determination of the compensation direction
  • An angle difference after correction is calculated by subtracting the angle difference correction amount calculated based on the angle difference.
  • the angular difference correction unit 10E can separately calculate the angular difference correction amount calculated based on the value of the motor constant and the angular difference correction amount calculated based on the even harmonics.
  • the angular difference correction unit 10E may be configured to subtract both the angular difference correction amount calculated based on the value of the motor constant and the angular difference correction amount calculated based on the even harmonics from the angle difference. .
  • the fourth embodiment by using the angle difference correction amount calculated based on the value of the motor constant, it is possible to prevent the erroneous determination of the compensation direction of the magnetic flux current when the motor having a large reluctance torque is used. Even when the motor constant is not required, it is possible to obtain the corrected angular difference using the angular difference correction amount calculated based on the even harmonics.
  • FIG. 26 is a configuration diagram of a fluid utilization device according to Embodiment 5 of the present invention.
  • a fluid utilization device 300 will be described in which a propeller fan 300a is provided on the rotation shaft of the main synchronous motor 1a and a propeller fan 300b is provided on the rotation shaft of the sub synchronous motor 1b.
  • the fluid utilization device 300 shown in FIG. 26 includes the drive device 100 according to the first embodiment, and the drive device 100 includes the power converter drive device 200.
  • the power converter driver 200 includes a processor 201 and a memory 202.
  • the functions shown in FIG. 1, that is, the current control unit 6, the pulsation component extraction unit 7, the subtractor 8, the angle difference correction unit 10, and the magnetic flux current command determination unit 9 are realized using the processor 201 and the memory 202. Ru.
  • the processor 201 and the memory 202 are used as shown in FIG. 26, each of the functions described above is realized by software, firmware or a combination thereof.
  • the software or firmware is written as a program and stored in the memory 202.
  • the processor 201 reads out and executes a program stored in the memory 202. It can also be said that these programs cause a computer to execute the procedures and methods performed by each of the above functions.
  • the memory 202 is a semiconductor memory such as a random access memory (RAM), a read only memory (ROM), a flash memory, an erasable programmable read only memory (EPROM), or an electrically erasable programmable read only memory (EEPROM) (registered trademark). .
  • the semiconductor memory may be non-volatile memory or volatile memory.
  • the memory 202 corresponds to a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
  • the processor 201 may output or store data such as an operation result to the memory 202, or may store the data in an auxiliary storage device (not shown) via the memory 202.
  • the fluid utilization apparatus 300 may include the drive device 100 according to the second, third, or fourth embodiment instead of the drive device 100 according to the first embodiment.
  • the current control unit 6A shown in FIG. 19 the angle difference correction unit 10C shown in FIG. 20, the angle difference correction unit 10D shown in FIG. 23, and the angle difference correction unit 10E shown in FIG.
  • the memory 202 is used to implement the function.
  • the power converter 2 may basically have any circuit configuration as long as it can supply any alternating current power to the main synchronous motor 1a and the sub synchronous motor 1b. .
  • Information detected by the current detection units 4 a and 4 b and the magnetic pole position detection units 5 a and 5 b is transmitted to the processor 201.
  • the relay circuit 11 is not an essential component, by using the relay circuit 11, the number of operating synchronous motors can be changed.
  • one synchronous motor of the two synchronous motors is operated for a long time, when switching to parallel operation of the two synchronous motors, there is a temperature difference between the temperatures of the two synchronous motors.
  • the stability of the sub-side synchronous motor 1b may be reduced due to the temperature difference.
  • two synchronous motors can be stably operated in parallel by using the method described in the first, second, third, or fourth embodiments.
  • the two propeller fans 300a and 300b may have the same shape as each other or may have different shapes. Further, the air flow paths of the two propeller fans 300a and 300b may not necessarily be the same.
  • the fluid utilization device 300 is an air conditioner
  • the two propeller fans 300a and 300b correspond to two blower fans provided in a blower chamber in the outdoor unit of the air conditioner, and the air flow path It corresponds to the air blowing chamber.
  • the air blowing chamber is a space formed by being surrounded by the side plate, the ceiling plate, the bottom plate, the heat exchanger, and the like of the outdoor unit. A flow of air is formed in the blowing chamber as the propeller fans 300a and 300b rotate.
  • two synchronous motors may be provided with fans of different shapes.
  • the cross-sectional area of the flow path in which the fan is provided may be smaller than the cross-sectional area of the flow path in which the other fan is provided.
  • the propeller fan may be driven by one of the synchronous motors, and the pump may be driven by the other synchronous motor, or the like, and fluid utilization devices of different specifications may be driven.
  • the fluid utilization device 300 includes a voltage detection unit that detects a voltage output from the power converter 2, and voltage information detected by the voltage detection unit is input to the processor 201. It may be configured as follows. Although not shown in FIG. 26, the fluid utilization device 300 may include a wind speed sensor for measuring the wind speed of a fan, and may be configured to input wind speed information detected by the wind speed sensor to the processor 201. . Although not shown in FIG. 26, a temperature sensor may be provided to detect the temperature of an object cooled by a fan, and temperature information detected by the temperature sensor may be input to the processor 201. .
  • the fluid load of the fluid utilization device 300 has a damper characteristic, and in a high rotation range, the damper characteristic stabilizes the driving of the open-loop driven synchronous motor. However, in the low rotation range, the damper characteristics weaken and the drive of the synchronous motor becomes unstable. Therefore, the fluid utilization device 300 stabilizes the drive of the synchronous motor by changing the magnetic flux current. However, in the case where the control method of the magnetic flux current disclosed in Patent Document 1 is applied to the power converter drive device 200 of the fluid utilization device 300, when the motor constants of the two synchronous motors are different, the angle In the region where the difference is close to zero, an erroneous determination of the compensation direction of the flux current occurs.
  • the angle difference approaches zero in the low rotation range, and erroneous determination frequently occurs.
  • the erroneous determination of the compensation direction frequently occurs in the low rotation range where the stability is low, there is a possibility of the step out.
  • the vibration and noise of the synchronous motor increase and the motor efficiency decreases. From such a thing, in order to use the control method of the magnetic flux current disclosed by patent document 1 for the power converter drive device 200 of the fluid utilization apparatus 300, there existed a subject in the surface of the drive characteristic in low speed.
  • the fluid utilization apparatus 300 of the fifth embodiment By using the angle difference correction method or the constant measurement method described in the first, second, third, or fourth embodiments for the power converter drive device 200 of the fluid utilization device 300 shown in FIG. Can be prevented. Thereby, in the fluid utilization apparatus 300 of the fifth embodiment, parallel drive of synchronous motors can be realized in a wide speed range. In addition, the fluid utilization apparatus 300 according to the fifth embodiment can realize an existing synchronous motor drive apparatus that drives one synchronous motor with one power converter by performing software rewriting and the like, and therefore, the cost increases. Thus, it is possible to obtain a fluid utilization device 300 capable of driving the two propeller fans 300a and 300b while suppressing the
  • FIG. 27 is a configuration diagram of an air conditioner according to Embodiment 6 of the present invention.
  • the air conditioner 400 according to Embodiment 6 includes a fluid utilization device 300, a refrigerant compressor 401, a condenser 403, a receiver 404, an expansion valve 405, and an evaporator 406.
  • the refrigerant compressor 401 and the condenser 403 are connected by piping.
  • the condenser 403 and the receiver 404 are connected by piping
  • the receiver 404 and the expansion valve 405 are connected by piping
  • the expansion valve 405 and the evaporator 406 are piping It connects, and between the evaporator 406 and the refrigerant compressor 401 is connected by piping.
  • the refrigerant circulates through the refrigerant compressor 401, the condenser 403, the liquid receiver 404, the expansion valve 405, and the evaporator 406.
  • the fluid utilization device 300 includes the current detectors 4a and 4b, the magnetic pole position detectors 5a and 5c, and the like shown in FIG.
  • the steps of evaporation, compression, condensation, and expansion of the refrigerant are repeatedly performed, so the refrigerant changes from liquid to gas and further from gas to liquid, so that it is between the refrigerant and the air outside the machine. Heat exchange takes place.
  • the evaporator 406 exerts a cooling function by evaporating the refrigerant liquid in a low pressure state and depriving the air around the evaporator 406 of heat.
  • the refrigerant compressor 401 is for compressing the refrigerant gas gasified by the evaporator 406 to condense the refrigerant into a high pressure gas.
  • the condenser 403 condenses the high-pressure refrigerant gas by releasing the heat of the refrigerant gas that has become high temperature in the refrigerant compressor 401, and converts the refrigerant gas into a refrigerant liquid.
  • the fluid utilization device 300 generates a wind by rotating the propeller fans 300 a and 300 b and cools the condenser 403 by passing the wind to the condenser 403.
  • the expansion valve 405 squeezes and expands the refrigerant liquid to convert the refrigerant liquid into a low pressure liquid in order to evaporate the refrigerant.
  • the receiver 404 is provided to control the amount of circulating refrigerant, and may be omitted in a small device.
  • the air conditioner 400 is highly required to reduce the cost, and on the other hand, since the energy saving regulations are being tightened year by year, high efficiency is also required. In recent energy saving regulations, not only the rated operating point but also the driving efficiency at the operating point of low output driving is regarded as important. Therefore, it is necessary to lower the lower limit of the operating speed of the cooling fan as much as possible.
  • the air conditioner 400 according to the sixth embodiment uses the parallel drive method described in the first to fourth embodiments, so that the drive in the low speed region does not become unstable, and the drivable range can be expanded. . Further, the air conditioner 400 according to the sixth embodiment does not require the addition of sensors for realizing parallel drive, as compared with the control method of the magnetic flux current disclosed in the cited reference 1. Therefore, in the sixth embodiment, it is possible to achieve both cost reduction required for the cooling fan of the air conditioner 400 and high cooling performance. Further, in the sixth embodiment, compared to the technique disclosed in the cited reference 1, the reliability against the fluctuation of the motor constant can be significantly improved.
  • the drive device 100 can stably drive the synchronous motor even when the motor constants of the two synchronous motors are completely different, and therefore, other than the fluid utilization device 300 and the air conditioner 400. It can be applied to all kinds of equipment and is useful for industrial development.
  • the configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.
  • Reference Signs List 1a main side synchronous motor, 1b sub side synchronous motor, 2 power converter, 3 DC voltage source, 4a, 4b current detection unit, 5a, 5b, 5c magnetic pole position detection unit, 6, 6A current control unit, 7, 7A, 7B, 7C Pulsating component extraction unit, 8, 10b, 61c, 61d, 61f Subtractor, 9 Magnetic flux current command determination unit, 10, 10A, 10B, 10C, 10D, 10E Angle difference correction unit, 10a, 10d Correction amount calculation unit , 10c data table, 10e test signal analysis unit, 10f pulsation component analysis unit, 10g offset amount control unit, 10h resonance angular frequency measurement unit, 10i filter unit, 10j automatic search unit, 11 relay circuits, 61a, 61b, 61e, 61g , 61 h Adder, 62a, 62b PID Controller, 63 Decoupling Controller, 64 Test Signal Generation 71, pulsating frequency measurement unit, 72 cosine wave generator, 73

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

駆動装置(100)は、メイン側同期電動機(1a)に流れる電流を検出する電流検出部(4a)と、サブ側同期電動機(1b)に流れる電流を検出する電流検出部(4b)とを備える。駆動装置(100)は、メイン側同期電動機(1a)が有する回転子の磁極位置を検出する磁極位置検出部(5a)と、サブ側同期電動機(1b)が有する回転子の磁極位置を検出する磁極位置検出部(5b)とを備える。駆動装置(100)は、第1の磁極位置と第2の磁極位置の差である第1の角度差を求める減算器(8)と、第1の角度差を補正し、補正後の角度差である第2の角度差を出力する角度差補正部(10)とを備える。駆動装置(100)は、電流制御部(6)と、脈動成分を抽出する脈動成分抽出部(7)と、磁束電流指令を決定する磁束電流指令決定部(9)とを備えることを特徴とする。

Description

駆動装置、流体利用装置及び空気調和機
 本発明は、1台の電力変換器に並列接続される2台の同期電動機を駆動する駆動装置、駆動装置を備える流体利用装置及び流体利用装置を備える空気調和機に関する。
 同期電動機は、回転子の回転位置である回転子位置に関する情報を用いて回転位置に応じた適切な電圧を印加しなければ、トルクを適切に発生できずに脱調し又は動作を停止する可能性がある。そのため、複数台の同期電動機を駆動する場合、それぞれの同期電動機が備える回転子の回転位置に応じた電圧を印加するために、従来では、同期電動機の台数と同じ台数の電力変換器が用いられていた。しかしながら、このように構成した場合、同期電動機の台数が増加する程、電力変換器の台数が増加するため、コストの増加が課題となる。そこで近年では、同期電動機の制御技術の高度化により、2台の同期電動機を1台の電力変換器で駆動する試みがなされている。
 特許文献1には、1台の電力変換器に接続される2台の同期電動機の内、一方をメイン側同期電動機とし他方をサブ側同期電動機として、駆動装置が2台の同期電動機を、2台の同期電動機の回転速度を用いて制御する手法が開示されている。特許文献1に記載される手法では、駆動装置は、メイン側同期電動機をベクトル制御し、2台の同期電動機間の回転速度の差及び回転位置の差を用いてメイン側同期電動機のd軸電流指令を決定することによって、サブ側同期電動機の駆動を安定化させている。ベクトル制御は、同期電動機を流れる電流を、トルクを発生する電流成分と磁束を発生する電流成分とに分解し、それぞれの電流成分を独立に制御する制御方式である。
米国特許出願公開第2015/0229245号明細書
 特許文献1に記載の手法は、2台の同期電動機のそれぞれのモータ定数が同じである場合を想定している。しかしながら、互いに同じ仕様の同期電動機であっても、2台の同期電動機のそれぞれのモータ定数が必ずしも一致するとは限らない。このため、特許文献1に記載の手法では、モータ定数が変動すると、磁束電流の補償方向の誤判定が生じるおそれがある。これにより、サブ側同期電動機の回転速度に速度斑(むら)が生じる。この速度むらは、一定速度で回転しようとする回転子の回転速度が変動することである。このように、特許文献1に記載の手法は、モータ定数の変動に対するロバスト性が低いため、サブ側同期電動機の回転速度に速度むらが生じることによって、サブ側同期電動機の振動及び騒音が増加し、またモータ効率が低下するという課題がある。
 本発明は、上記に鑑みてなされたものであって、1台の電力変換器を用いて2台の同期電動機を駆動する場合でも、モータ定数の変動に対するロバスト性を向上できる駆動装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の駆動装置は、並列接続される第1の同期電動機及び第2の同期電動機に電力を供給する電力変換器と、第1の同期電動機に流れる第1の電流を検出する第1の電流検出器と、第2の同期電動機に流れる第2の電流を検出する第2の電流検出器とを備える。駆動装置は、第1の同期電動機が有する回転子の第1の磁極位置を検出する第1の磁極位置検出部と、第2の同期電動機が有する回転子の第2の磁極位置を検出する第2の磁極位置検出部と、トルク電流指令と磁束電流指令と第1の電流と第1の磁極位置とを用いて、第1の同期電動機を駆動するための電圧指令を出力する制御部とを備える。駆動装置は、第1の磁極位置と第2の磁極位置の差である第1の角度差を求める減算器と、第1の同期電動機及び第2の同期電動機のそれぞれのモータ定数の差異に基づいて、又はモータ定数の差異によって生じる電気的挙動を示す情報に基づいて、第1の角度差を補正し、補正後の角度差である第2の角度差を出力する角度差補正部と、第2の同期電動機に流れるトルク電流に含まれる脈動成分と第2の同期電動機で消費される有効電力に含まれる有効電力脈動成分との少なくとも一方の脈動成分を抽出する脈動成分抽出部とを備える。駆動装置は、第2の角度差を用いて磁束電流指令の補償方向を決定し、決定した補償方向と脈動成分とを用いて磁束電流指令を決定する磁束電流指令決定部を備えることを特徴とする。
 本発明によれば、1台の電力変換器を用いて2台の同期電動機を駆動する場合でも、モータ定数の変動に対するロバスト性を向上できる、という効果を奏する。
本発明の実施の形態1に係る駆動装置の構成を示す図 図1に示す脈動成分抽出部の第1の構成例を示す図 図1に示す脈動成分抽出部の第2の構成例を示す図 図1に示す脈動成分抽出部の第3の構成例を示す図 図1に示すサブ側同期電動機のトルク変化の挙動を説明するための第1の図 図1に示すサブ側同期電動機のトルク変化の挙動を説明するための第2の図 図1に示すサブ側同期電動機のトルク変化の挙動を説明するための第3の図 図1に示すサブ側同期電動機のトルク変化の挙動を説明するための第4の図 図1に示すサブ側同期電動機のトルク変化の挙動を説明するための第5の図 図1に示すサブ側同期電動機のトルク変化の挙動を説明するための第6の図 図6、図7、図9及び図10に示すメイン側のd軸電流と、角度差の符号と、サブ側同期電動機のトルクの状態とを対応付けて示す図 図1に示す磁束電流指令決定部の構成例を示す図 図12に示す符号判定器による符号判定処理を説明するための第1の図 図12に示す符号判定器による符号判定処理を説明するための第2の図 図12に示す符号判定器による符号判定処理を説明するための第3の図 図1に示す角度差補正部で演算される角度差補正量と回転子の回転速度との関係を示す図 図1に示す角度差補正部の第1の構成例を示す図 図1に示す角度差補正部の第2の構成例を示す図 本発明の実施の形態2に係る駆動装置が備える電流制御部の構成図 本発明の実施の形態2に係る駆動装置が備える角度差補正部の構成図 図1に示すメイン側同期電動機の電機子抵抗に+30%の誤差を加えた場合のサブ側同期電動機のトルク電流波形を説明するための図 図1に示すメイン側同期電動機の電機子抵抗に-30%の誤差を加えた場合のサブ側同期電動機のトルク電流波形を説明するための図 本発明の実施の形態3に係る駆動装置が備える角度差補正部の構成図 図23に示す自動探索部に用いられる山登り法による角度差補正量の自動探索のイメージを示す図 本発明の実施の形態4に係る駆動装置が備える角度差補正部の構成図 本発明の実施の形態5に係る流体利用装置の構成図 本発明の実施の形態6に係る空気調和機の構成図
 以下に、本発明の実施の形態に係る駆動装置、流体利用装置及び空気調和機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は本発明の実施の形態1に係る駆動装置の構成を示す図である。同期電動機は、回転子に永久磁石が設けられる永久磁石界磁式同期電動機と、回転子に界磁巻線が巻かれている巻線界磁式同期電動機と、回転子の突極性を利用して回転トルクを得るリラクタンス式同期電動機とに大別される。永久磁石界磁式同期電動機は、回転子鉄心の外周面に永久磁石が設けられた表面磁石型同期交流電動機と、回転子鉄心の内部に永久磁石が埋め込まれた永久磁石埋込型電動機とに大別される。実施の形態1に係る駆動装置100には、これらの同期電動機の種別の内、同種の同期電動機を2台用いてもよいし、異種の同期電動機を2台用いてもよい。また、実施の形態1では、2台の同期電動機のそれぞれが三相同期電動機であるとして説明するが、2台の同期電動機には、二相、五相などの三相以外の相数の同期電動機を用いてもよい。
 実施の形態1では、2台の同期電動機の内、一方を「メイン側同期電動機1a」と称し、他方を「サブ側同期電動機1b」と称する場合がある。メイン側同期電動機1aは第1の同期電動機であり、サブ側同期電動機1bは第2の同期電動機である。
 実施の形態1では、2台の同期電動機のそれぞれのモータ定数が同程度でもよいし、異なるものであってもよい。但し、2台の同期電動機として同一仕様の同期電動機を用いたとしてもモータ定数が異なる可能性がある。同一仕様の同期電動機において、モータ定数が異なる要因としては、メイン側同期電動機1a及びサブ側同期電動機1bのそれぞれを構成する部品の製造時の寸法のばらつき、メイン側同期電動機1a及びサブ側同期電動機1bのそれぞれの駆動に伴い発生する温度の違いなどがある。また、モータ定数が異なる要因としては、メイン側同期電動機1aから電力変換器2までに設けられる配線のインピーダンスと、サブ側同期電動機1bから電力変換器2までに設けられる配線のインピーダンスとの違いなどがある。また、モータ定数が異なる要因としては、メイン側同期電動機1a及びサブ側同期電動機1bのそれぞれの負荷トルクの違い、メイン側同期電動機1a及びサブ側同期電動機1bのそれぞれのインダクタンスの磁気飽和点の違いなどがある。磁性体は、弱い磁場では印加された磁場に対し、線形に磁化されてゆくが、一定強度以上の磁場が印加された場合、線形に磁化されなくなる。このように線形に磁化されない現象を磁気飽和と呼び、線形に磁化されなくなり磁束が一定の値となる部分が、前述した磁気飽和点である。
 駆動装置100は、並列接続されるメイン側同期電動機1a及びサブ側同期電動機1bに電力を供給する電力変換器2と、リレー回路11と、メイン側同期電動機1aに流れる第1の電流を検出する電流検出部4aと、サブ側同期電動機1bに流れる第2の電流を検出する電流検出部4bとを備える。
 電力変換器2は、直流電圧源3から供給される直流電力を交流電力に変換してメイン側同期電動機1a及びサブ側同期電動機1bへ出力する。実施の形態1では電力変換器2に電圧形インバータが用いられる。電圧形インバータは、直流電圧源3から供給される直流電圧をスイッチングして交流電圧に変換する装置である。なお、電力変換器2は、メイン側同期電動機1a及びサブ側同期電動機1bを駆動するための交流電力を出力できるものであれば、電圧形インバータに限定されず、電流形インバータ、交流電力を振幅及び周波数が異なる交流電力に変換するマトリックスコンバータ、複数の変換器の出力を直列又は並列に接続したマルチレベル変換器などの回路でもよい。
 リレー回路11は、2台の同期電動機の内、一方のみ駆動する場合に利用される。図1では、電力変換器2にサブ側同期電動機1bを接続する配線に設けられている。リレー回路11は、電力変換器2によって駆動される同期電動機の台数を2台から1台に切り替え、又は1台から2台に切り替える場合に利用される。リレー回路11の接点は、不図示の切替部から出力される切替信号の有無によって制御される。2台の同期電動機が同時に駆動される場合、リレー回路11の接点は閉じた状態となり、サブ側同期電動機1bはリレー回路11を介して電力変換器2と電気的に接続される。
 なお、リレー回路11は、電力変換器2にサブ側同期電動機1bを接続する配線に設けられる代わりに、電力変換器2にメイン側同期電動機1aを接続する配線に設けられてもよい。また、リレー回路11は、機械式リレーで構成されてもよいし、半導体スイッチで構成されてもよい。また、2台の同期電動機を常に駆動する場合、駆動装置100は、リレー回路11を省いて、電力変換器2にメイン側同期電動機1a及びサブ側同期電動機1bを直接接続する構成としてもよい。
 第1の電流検出器である電流検出部4aは、電力変換器2からメイン側同期電動機1aに流れる相電流を検出し、検出した相電流の値を示す電流情報を出力する。第2の電流検出器である電流検出部4bは、電力変換器2からサブ側同期電動機1bに流れる相電流を検出し、検出した相電流の値を示す電流情報を出力する。
 電流検出部4a,4bはCT(Current Transformer)と呼ばれる計器用変流器を用いた電流センサであってもよいし、シャント抵抗を用いた電流センサであってもよい。また電流検出部4a,4bは、これらを組み合わせたものでもよい。実施の形態1に係る駆動装置100では、同期電動機の近くに設けられた電流検出部4a,4bによって電流が検出される。図1に示した例では、同期電動機に流れる相電流を直接検出しているが、電流検出方式は、キルヒホッフの電流則によって同期電動機に流れる電流を演算できればよく、直接検出する例に限定されない。例えば、電力変換器2の負側直流母線に設けられるシャント抵抗を用いた1シャント電流検出方式、電力変換器2の下アームと直列に接続されるシャント抵抗を用いた下アームシャント電流検出方式などを用いて同期電動機に流れる相電流を検出してもよい。なお、三相の電力変換器2の場合、下アームシャント電流検出方式は、3つの下アームのそれぞれに直列に接続されるシャント抵抗を用いるため、3シャント電流検出方式とも呼ばれる。但し、1シャント電流検出方式又は3シャント電流検出方式では、メイン側同期電動機1a及びサブ側同期電動機1bのそれぞれに流れる電流の合計値のみ計測されるため、メイン側同期電動機1a及びサブ側同期電動機1bの内、何れか一方の同期電動機の近くに電流センサを設ける必要がある。また、言うまでもないが、三相の同期電動機の場合、同期電動機に接続される三相の配線の内の何れか二相の配線に電流センサを設ければ、残りの一相の電流はキルヒホッフの電流則で計算可能であるため、三相の配線の全てに電流センサを設ける必要がない。また電流検出部4a及び電流検出部4bの構成及び配置に関しては様々な方式が考えられるが、基本的にはどの方式を用いても構わない。
 また、駆動装置100は、第1の磁極位置検出部である磁極位置検出部5aと、第2の磁極位置検出部である磁極位置検出部5bと、電圧指令を出力する制御部である電流制御部6と、減算器8と、脈動成分抽出部7と、角度差補正部10と、磁束電流指令決定部9とを備える。
 磁極位置検出部5aは、メイン側同期電動機1aが有する回転子の磁極位置を検出して、磁極位置を示す信号を出力する。磁極位置検出部5bは、サブ側同期電動機1bが有する回転子の磁極位置を検出して、磁極位置を示す信号を出力する。
 磁極位置検出部5a及び磁極位置検出部5bのそれぞれは、例えばロータリーエンコーダ、レゾルバ、ホールセンサなどである。ロータリーエンコーダは、回転子の機械的変位量を電気信号に変換し、変換した信号を処理して磁極位置を示す信号を出力する。レゾルバは、励磁コイルと互いに直交する2つの検出コイルとを組み合わせて構成されている。励磁コイルに正弦波信号が入力されると、検出コイルから出力される電圧は、回転子の回転角度に比例して変化する。この電圧の変化が回転子の磁極位置を示す信号として出力される。ホールセンサは、ホール効果を利用して磁石が発する磁界又はコイルに電流が流れることで発生する磁界を検出し、検出した磁界を電気信号に変換し、この電気信号を、回転子の磁極位置を示す信号として出力する。
 なお、磁極位置検出部5a及び磁極位置検出部5bのそれぞれは、回転子の磁極位置を検出できれば、ロータリーエンコーダ、レゾルバ又はホールセンサに限定されない。例えば、磁極位置検出部5aは、メイン側同期電動機1aに流れる相電流と、電流制御部6から出力される電圧指令とを用いて、メイン側同期電動機1aの磁極位置を推定するものであってもよい。同様に、磁極位置検出部5bは、サブ側同期電動機1bに流れる相電流と、電流制御部6から出力される電圧指令とを用いて、サブ側同期電動機1bの磁極位置を推定するものであってもよい。
 磁極位置の推定方法には様々な方法が存在するが、同期電動機が備える回転子の回転速度全域の内、中高速域では、同期電動機の速度起電力を示す情報を利用して、磁極位置を推定するのが一般的である。速度起電力は、回転子が回転することによって同期電動機内部に生じる誘起電力であり、同期電動機が備える回転子と固定子の間に生じる界磁と、回転子の回転速度とに比例する。また、回転子の回転速度全域の内、低速域において、同期電動機に高周波電圧を印加した際に発生する高周波電流のリサージュ軌跡を調べ、インダクタンスの突極性から磁極位置を推定する手法もある。リサージュ軌跡とは、磁束密度の時間変化を、2次元座標面上における軌跡で表すものである。
 電流制御部6は、メイン側同期電動機1aに流れる電流を制御するために、メイン側同期電動機1aが備える回転子の永久磁石による磁束の方向をd軸とし、d軸に直交する軸をq軸として、ベクトル制御によって、電流検出部4aで検出された電流をdq座標系の電流指令値に座標変換するベクトル制御器である。一般的なベクトル制御器では、回転子の磁極を基準としたdq座標上での電流制御が行われる。相電流をdq座標上の値に変換すると、交流量が直流量となり制御が容易となるためである。同期電動機では、q軸電流と同期電動機のマグネットトルクとが比例するため、q軸は「トルク軸」と称され、q軸電流は「トルク電流」と称される。q軸電流に対してd軸電流は、固定子で発生する磁束の変化をもたらし、同期電動機の出力電圧の振幅を変化させるため、d軸は「磁束軸」と称され、d軸電流は「磁束電流」、「励磁電流」などと称される。なお、前述した永久磁石埋込型電動機では、d軸電流によってリラクタンストルクが変化するため、q軸電流のみがトルクに作用するわけではないが、一般的にはq軸電流をトルク電流と呼ぶことが多い。
 座標変換には、磁極位置検出部5aで検出される磁極位置が用いられる。なお、電流制御部6には、ベクトル制御におけるdq座標系以外にも、αβ固定子座標系、γδ座標系などの極座標系を用いてもよい。また、電流制御部6には、ベクトル制御の代わりに直接トルク制御(Direct Torque Control:DTC)を採用してもよい。但し、DTCを採用する場合、電流指令を、磁束指令及びトルク指令に換算する必要がある。
 なお、dq座標系ではなく、固定子から発生する磁束を基準とした座標系で制御を行えば、トルク電流と磁束電流をより厳密に計算できる。この座標系は、f-t座標系、n-t座標系などと呼ばれることが多いが、公知であるため詳細については説明を割愛する。実施の形態1では、q軸電流を「トルク電流」と称し、d軸電流を「磁束電流」と称する場合があるが、dq座標系以外の座標系を使って制御する場合、マグネットトルクが原理的に発生しないリラクタンス同期電動機を用いる場合などは、この限りではない。
 なお、電流制御部6は、メイン側同期電動機1aに流れるトルク電流がトルク電流指令の値と一致するように制御され、またメイン側同期電動機1aに流れる磁束電流が磁束電流指令の値と一致するように制御される。電流制御部6の具体的な実現方法はどのような方法であってもよいが、電流制御部6は一般的には比例積分制御器及び非干渉化制御器により構成される。トルク電流指令は、磁束電流指令決定部9において速度制御の結果、算出されるものであってもよいし、上位のコントローラから入力されるものであってもよい。磁束電流指令の詳細は後述する。
 電流制御部6によってメイン側同期電動機1aがベクトル制御されたとき、サブ側同期電動機1bはメイン側同期電動機1aに連れ回り駆動されるため、サブ側同期電動機1bがオープンループ駆動している状態になる。同期電動機のオープンループ駆動に関する有名な論文として以下の参考文献1がある。
 (参考文献1)伊東淳一、豊崎次郎、大沢博著 「永久磁石同期電動機のV/f制御の高性能化」、電気学会論文誌D、122巻(2002年)3号 P253-259
 上記参考文献1によれば、同期電動機をオープンループ駆動すると、同期電動機が固有角周波数ωで自己発振して、制御が不安定になる場合があると述べられている。固有角周波数ωは、下記(1)式の近似式により表される。但し、Pは極対数、Φは電機子鎖交磁束数、Lは電機子インダクタンス、Jは慣性モーメントを表す。
Figure JPOXMLDOC01-appb-M000001
 機電連成振動は、電機ばね共振と呼ばれる場合があるため、上記(1)式によって表される固有角周波数ωは、電機ばね共振角周波数とも呼ばれる。上記参考文献1に開示される技術には、電機ばね共振を抑えるために安定化補償器が追加されているが、駆動装置100でも同様の安定化補償が必要となる。そのために、図1に示すサブ側同期電動機1bに流れるトルク電流が電機ばね共振によってどの程度振動しているかを調べる必要がある。
 サブ側同期電動機1bに流れるトルク電流には、加減速トルクによる成分と、負荷トルクによる成分とが重畳されている。図1に示す脈動成分抽出部7では、サブ側同期電動機1bのトルク電流に含まれる電機ばね共振角周波数付近の脈動成分が抽出される。なお、脈動成分抽出部7が電機ばね共振角周波数付近の脈動成分を抽出する方法には、ハイパスフィルタを用いる方法と、バンドパスフィルタを用いる方法との2種類があるため、これらを順に説明する。
 図2は図1に示す脈動成分抽出部の第1の構成例を示す図である。図2には、1次のハイパスフィルタを用いた脈動成分抽出部7Aの構成例が示され、その伝達関数は下記(2)式で表される。但し、sはラプラス変換の演算子、ωはカットオフ角周波数である。
Figure JPOXMLDOC01-appb-M000002
 上記(2)式には、1次のハイパスフィルタを用いた場合の伝達関数が示されるが、より急峻なフィルタ特性を得たい場合、次数がnのハイパスフィルタを用いてもよい。nは2以上の整数である。ハイパスフィルタを用いる場合、カットオフ角周波数ωは、電機ばね共振角周波数の1/3以下、例えば電機ばね共振角周波数の1/5から1/20の値に設定するのが好適である。
 図3は図1に示す脈動成分抽出部の第2の構成例を示す図である。図3には、2次のバンドパスフィルタを用いた脈動成分抽出部7Bの構成例が示され、その伝達関数は下記(3)式で表される。但し、sはラプラス変換の演算子、ωはピーク角周波数を表す。qは、クオリティファクタであり、フィルタの通過帯域幅を決定する係数である。
Figure JPOXMLDOC01-appb-M000003
 上記(3)式には、2次のバンドパスフィルタを用いた場合の伝達関数が示されるが、より急峻なフィルタ特性を得たい場合、次数がmのバンドパスフィルタを用いてもよい。mは3以上の整数である。バンドパスフィルタを用いる場合、脈動成分抽出部7Bは、ピーク角周波数ωと電機ばね共振角周波数とを一致させる。但し、上記の参考文献1では言及されていないが、電機ばね共振角周波数は、駆動条件により変動する性質がある。そのため、バンドパスフィルタの通過帯域幅は、電機ばね共振角周波数の変動分を見越して広めに設計する必要がある。なお、電機ばね共振角周波数を実測してピーク角周波数ωを電機ばね共振角周波数にトラッキングするような構成を取っても良く、その場合は通過帯域幅を狭くできる。
 なお、上記(3)式の計算を行う代わりに、図4に示すようにフーリエ級数展開を用いたバンドパスフィルタを用いてもよい。図4は図1に示す脈動成分抽出部の第3の構成例を示す図である。図4に示す脈動成分抽出部7Cは、脈動周波数計測部71、余弦波発生器72、正弦波発生器73、フーリエ余弦係数演算部74、フーリエ正弦係数演算部75及び交流復元器76を備える。
 電流検出部4bで検出された電流である入力信号に含まれる脈動周波数、すなわち電流検出部4bで検出された電流に含まれる脈動周波数が、脈動周波数計測部71で計測される。余弦波発生器72は、脈動周波数で振動する余弦波信号を発生し、正弦波発生器73は、脈動周波数で振動する正弦波信号を発生する。
 フーリエ余弦係数演算部74は、余弦波発生器72からの余弦波信号を用いて、電流検出部4bで検出された電流である入力信号のフーリエ級数展開を行い、当該入力信号に含まれる特定周波数成分を直流化して、フーリエ余弦係数を演算する。フーリエ余弦係数は、任意の周期を持つ偶関数をcosの級数に展開したときの係数である。フーリエ正弦係数演算部75は、正弦波発生器73からの正弦波信号を用いて、当該入力信号のフーリエ級数展開を行い、当該入力信号の特定周波数成分を直流化して、フーリエ正弦係数を演算する。フーリエ正弦係数は、任意の周期を持つ奇関数をsinの級数に展開したときの係数である。
 交流復元器76は、余弦波発生器72からの余弦波信号と、正弦波発生器73からの正弦波信号と、フーリエ級数展開によって得られたフーリエ余弦係数と、フーリエ級数展開によって得られたフーリエ正弦係数とを用いて、交流を復元する。図4に示す脈動成分抽出部7Cによれば、フーリエ級数展開と逆変換とによって、バンドパスフィルタの特性が得られる。
 上記(3)式を離散化すると計算精度が低下し易くなるが、フーリエ級数展開を使うことによって計算精度の低下が抑制される。従って、サブ側同期電動機1bのトルク電流に含まれる電機ばね共振角周波数付近の脈動成分を、フーリエ級数展開を用いて抽出する方法は、実装の面で優れている。このことから、フーリエ級数展開を用いて脈動成分を抽出する方法は、バンドパスフィルタのピーク周波数を変化させる場合に有用と考えられるが、計算精度を確保できる場合には、図4に示す脈動周波数計測部71と上記(3)式とを組み合わせたバンドパスフィルタを、図1に示す脈動成分抽出部7として利用してもよい。
 このように、脈動成分抽出部7は、サブ側同期電動機1bのトルク電流に含まれる電機ばね共振角周波数付近の脈動成分を抽出できれば、図2から図4に示す何れのフィルタで構成してもよい。なお、バンドパスフィルタに比べてハイパスフィルタは、設計及び回路への実装が簡便であるため、設計及び回路への実装の簡便さを重視する場合、ハイパスフィルタを選択するとよい。また、鋭い遮断特性を得たい場合には、バンドバスフィルタを選択するとよい。
 なお、特許文献1に開示される技術では、メイン側同期電動機及びサブ側同期電動機がそれぞれ有する回転子の回転速度の差である速度差が求められ、この速度差を用いることによって速度差安定化補償が行われている。これによりメイン側同期電動機は安定に制御されているため、特許文献1に開示される技術は、サブ側同期電動機の速度脈動成分を求めて安定化補償を行っていたと言える。特許文献1に開示される技術以外の脈動成分抽出方法は、実施の形態1のようにサブ側同期電動機1bのトルク電流に含まれる脈動成分を抽出方法と、サブ側同期電動機1bの有効電力に含まれる脈動成分を抽出する方法とが考えられる。本願発明者の調査の結果、磁極位置検出部5a,5bによる磁極検出精度が高い場合には、特許文献1に開示される脈動成分抽出方法が有効であり、磁極位置検出部5a,5bによる磁極位置検出精度が低い場合には、トルク電流又は有効電力に含まれる脈動成分を抽出方法が有効であることが判明した。
 例えば、機械系の慣性モーメントが大きいファン、ブロワーなどの流体利用装置では、トルク脈動が大きくても、速度信号に現れる速度脈動はごく小さいことがある。この場合、速度脈動よりもトルク脈動の方がS/N比(Signal to Noise Radio)が高く、磁極位置検出が容易である。従って、速度差の代わりに、実施の形態1のようにトルク電流の脈動成分を用いることは、磁極位置検出をする上で合理的である。また、機械系の慣性モーメントが大きくても速度脈動が小さい場合、有効電力の脈動は、トルクの脈動と等価に扱える。そのため、脈動成分抽出部7は、有効電力の脈動を検出する構成としてもよい。
 また実施の形態1ではメイン側同期電動機1aがベクトル制御されているため、トルク電流指令値に追従してメイン側同期電動機1aが駆動されるはずである。しかしながら、現実には様々な外乱要因によってメイン側同期電動機1aにも微弱な振動が生じる場合がある。外乱要因としては、電力変換器2を構成する直列の上下アームの半導体素子の短絡防止時間、電流センサのオフセット、電流センサのゲインアンバランス、回転子に設けられる磁石から発生する磁束の歪みなどが考えられる。実施の形態1に係る駆動装置100は、このように微弱な振動が生じた場合を考慮して、サブ側同期電動機1bの脈動成分からメイン側同期電動機1aの脈動成分を差し引くことによって、メイン側同期電動機1aの脈動成分の影響を除去する構成としてもよい。
 また、磁極位置検出部5a,5b以外に、加速度センサ、トルクセンサなどのセンサをサブ側同期電動機1bに取付が可能な場合、脈動成分抽出部7は、加速度センサ、トルクセンサなどのセンサの出力値からサブ側同期電動機1bの脈動成分を抽出する構成としてもよい。
 図1に示す減算器8は、メイン側同期電動機1a及びサブ側同期電動機1bがそれぞれ有する回転子の磁極位置の差である第1の角度差を求める。磁極位置は、メイン側同期電動機1a及びサブ側同期電動機1bのそれぞれの回転子の回転位置に等しく、又はメイン側同期電動機1a及びサブ側同期電動機1bのそれぞれの回転子の回転角度に等しい。以下では第1の角度差を単に「角度差」と称する場合がある。角度差を求める理由を説明するために、以下に永久磁石同期電動機の定常状態における電圧方程式とトルク方程式を示す。
 電圧方程式は下記(4)式のように表される。またトルク方程式は下記(5)式のように表される。下記(5)式の右辺の第一項はマグネットトルクを表し、第二項はリラクタンストルクを表す。マグネットトルクはq軸電流に比例し、リラクタンストルクはd軸電流とq軸電流の積に比例する。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 上記(4)式及び(5)式において、Rは電機子抵抗、Lはd軸インダクタンス、Lはq軸インダクタンス、Pは極対数、Φは電機子鎖交磁束数、ωは角速度、iはd軸電流、iはq軸電流、vはd軸電圧、vはq軸電圧、tは発生トルクを表す。これらの各係数の添字「」は、同期電動機がメイン側であるかサブ側であるかを識別するためのものである。例えば、メイン側とサブ側を識別する必要がない場合、添字に「」が付けられ、又は添字「」が省略される。また添字に「」の代わりに「」が付けられた場合にはメイン側を表し、添字に「」の代わりに「」が付けられた場合にはサブ側を表す。
 次に、図5から図11を用いて、磁束電流補償によるサブ側同期電動機1bのトルク変化の挙動について説明する。図5は図1に示すサブ側同期電動機のトルク変化の挙動を説明するための第1の図である。図6は図1に示すサブ側同期電動機のトルク変化の挙動を説明するための第2の図である。図7は図1に示すサブ側同期電動機のトルク変化の挙動を説明するための第3の図である。図8は図1に示すサブ側同期電動機のトルク変化の挙動を説明するための第4の図である。図9は図1に示すサブ側同期電動機のトルク変化の挙動を説明するための第5の図である。図10は図1に示すサブ側同期電動機のトルク変化の挙動を説明するための第6の図である。図11は図6、図7、図9及び図10に示すメイン側のd軸電流と、角度差の符号と、サブ側同期電動機のトルクの状態とを対応付けて示す図である。
 図5から図10には磁束電流補償によるサブ側同期電動機1bのトルク変化の挙動が示され、図5から図10の内容は特許文献1で開示されている。なお、図5から図10では、メイン側同期電動機1a及びサブ側同期電動機1bのそれぞれのモータ定数が等しいものとして説明する。
 まず図5を基準として、メイン側同期電動機1aのd軸がサブ側同期電動機1bのd軸よりも遅れ位相となっているケースについて説明する。図5ではメイン側同期電動機1aの磁束電流idmが零であり、メイン側同期電動機1aのトルク電流iqmが正方向に流れている場合、電圧指令ベクトルv dq は第二象限の方向に発生する。2台の同期電動機に異なる負荷トルクが発生したとき、2台の同期電動機のモータ定数が等しい場合には、重負荷の同期電動機の位相が遅れる。そのため、図5のケースでは、メイン側同期電動機1aの負荷がサブ側同期電動機1bの負荷よりも大きいと言える。すなわちメイン側同期電動機1aの方が重負荷である。駆動装置100は2台の同期電動機に同じ電圧を印加するが、メイン側同期電動機1aの方が重負荷である場合、サブ側同期電動機1bの磁束電流は正方向に流れる。これは上記(4)式を解くことにより明らかである。
 ここで、図6のようにメイン側同期電動機1aに正の磁束電流が流れた場合を考える。この場合、メイン側同期電動機1aのq軸電圧が正方向に増加することによって、電圧指令ベクトルがv dq からv dq **に変化する。このようにメイン側同期電動機1aのq軸電圧が変化することにより、サブ側同期電動機1bのd軸電圧が減少して、サブ側同期電動機1bのq軸電圧が増加する。サブ側同期電動機1bのd軸電圧が減少すると、サブ側同期電動機1bのq軸の電機子反作用であるωesqsqsが減少する。そのため、サブ側同期電動機1bのq軸電流が減少する。また、サブ側同期電動機1bのq軸電圧が増加することによって、サブ側同期電動機1bのd軸電流が増加する。このようにメイン側同期電動機1aの磁束電流idmであるd軸電流を変化させることによって、サブ側同期電動機1bの電流が変化する。このサブ側同期電動機1bの電流の変化によって、サブ側同期電動機1bのトルクは、図5に示すサブ側同期電動機1bのトルクと比べて変化する。ここでは説明を簡単にするために、同期電動機が表面磁石型同期交流電動機であるとして、リラクタンストルクがないものとする。この場合、サブ側同期電動機1bの電流が変化したときのサブ側同期電動機1bのトルクは、図5の状態に比べて減少する。
 図7には、図6の場合とは逆に、メイン側同期電動機1aに負の磁束電流が流れた場合のサブ側同期電動機1bのトルク状態が示される。この場合、メイン側同期電動機1aのq軸電圧が減少することによって、電圧指令ベクトルがv dq からv dq **に変化する。これにより、サブ側同期電動機1bのd軸電圧が増加して、サブ側同期電動機1bのq軸電圧が減少する。サブ側同期電動機1bのd軸電圧が増加したことにより、サブ側同期電動機1bのq軸電流は増加し、サブ側同期電動機1bのq軸電圧が減少することにより、サブ側同期電動機1bのd軸電流は減少する。この場合、サブ側同期電動機1bのトルクは、図5の状態に比べて増加する。
 次に図8を基準として、メイン側同期電動機1aのd軸がサブ側同期電動機1bのd軸よりも進み位相となっているケースについて説明する。図8では、メイン側同期電動機1aのd軸電流が零であり、メイン側同期電動機1aの負荷がサブ側同期電動機1bの負荷よりも大きい状態、すなわちメイン側同期電動機1aの方が重負荷となっている。メイン側同期電動機1aとサブ側同期電動機1bには同じ電圧が印加されているため、サブ側同期電動機1bの方が重負荷となる場合、サブ側同期電動機1bのd軸電流は負方向に流れる。
 ここで、図9のようにメイン側同期電動機1aに正のd軸電流が流れた場合を考える。この場合、メイン側同期電動機1aのq軸電圧が増加することによって、電圧指令ベクトルがv dq からv dq **に変化する。このようにメイン側同期電動機1aのq軸電圧が変化することにより、サブ側同期電動機1bのd軸電圧が増加して、サブ側同期電動機1bのq軸電圧も増加する。サブ側同期電動機1bのd軸電圧が増加したことにより、サブ側同期電動機1bのq軸電流が増加する。また、サブ側同期電動機1bのq軸電圧が増加することによりサブ側同期電動機1bのd軸電流が減少する。この場合、サブ側同期電動機1bのトルクは、図8の状態に比べて増加する。
 図10には、図9の場合とは逆に、メイン側同期電動機1aに負の磁束電流が流れた場合のサブ側同期電動機1bのトルク状態が示される。この場合、サブ側同期電動機1bのq軸電流は減少する。従って、サブ側同期電動機1bのトルクは、図8の状態に比べて減少する。
 図6、図7、図9及び図10に示すメイン側のd軸電流と、角度差の符号と、サブ側同期電動機1bのトルクの状態とを対応付けて示すものが図11である。2台の同期電動機の角度差λを下記(6)式のように定めた場合、メイン側同期電動機1aのd軸電流を増加させた際、角度差λが正であれば、サブ側同期電動機1bのトルクは減少し、角度差λが負であればサブ側同期電動機1bのトルクは増加する。但し、下記(6)式のθesは、サブ側同期電動機1bの磁極位置を電気角で表したものであり、θemは、メイン側同期電動機1aの磁極位置を電気角で表したものである。一方、メイン側同期電動機1aのd軸電流を減少させた際、角度差λが正であればサブ側同期電動機1bのトルクは増加し、角度差λが負であればサブ側同期電動機1bのトルクは減少する。すなわち、メイン側同期電動機1aのd軸電流を変化させることによりサブ側同期電動機1bのトルクを変化させてサブ側同期電動機1bの駆動を安定化させようとする場合、角度差λが正であるか負であるかによって、d軸電流の補償方向を決定する必要がある。このような理由から、駆動装置100は、減算器8を用いて角度差λを求めている。
Figure JPOXMLDOC01-appb-M000006
 しかしながら、上記説明は、メイン側同期電動機1aのモータ定数がサブ側同期電動機1bのモータ定数と等しいことを前提としているため、メイン側同期電動機1aのモータ定数がサブ側同期電動機1bのモータ定数と異なる場合、意図したトルク変化が得られないケースがある。意図したトルク変化が得られないという課題は、本願発明者の検討によって発見されたものである。意図したトルク変化が得られない理由については後述することとし、先に、図1に示す磁束電流指令決定部9の機能を説明する。
 磁束電流指令決定部9は、サブ側同期電動機1bの駆動を安定化させるための磁束電流指令を決定する。磁束電流を変化させることでサブ側同期電動機1bのトルクを変えることができることはすでに述べたとおりである。
 図12は図1に示す磁束電流指令決定部の構成例を示す図である。図13は図12に示す符号判定器による符号判定処理を説明するための第1の図である。図14は図12に示す符号判定器による符号判定処理を説明するための第2の図である。図15は図12に示す符号判定器による符号判定処理を説明するための第3の図である。
 図12に示す磁束電流指令決定部9は、脈動抑制制御部91及び補償方向決定部92を備える。磁束電流指令決定部9は、サブ側同期電動機1bのトルク電流の脈動成分を入力とし、脈動抑制制御部91と補償方向決定部92を用いて、磁束電流指令を決定する。脈動抑制制御部91は、ゲイン乗算部911及び位相調整部912により構成される。なお、特許文献1の技術では、磁束電流指令決定部9の入力に速度差が用いられているが、実施の形態1の磁束電流指令決定部9には、トルク電流の脈動成分が用いられている。なお、磁束電流指令決定部9への入力は、トルク電流の脈動成分に限定されず、有効電力に含まれる脈動成分でもよい。
 ゲイン乗算部911は、入力信号である脈動成分のゲインを調整する。位相調整部912は、入力信号である脈動成分の位相を調整し、振幅が調整された脈動成分を出力する。なお、ゲイン乗算部911と位相調整部912の何れか一方だけで系の安定性を確保できるのであれば、脈動抑制制御部91は、必ずしもゲイン乗算部911及び位相調整部912の双方を備える必要は無い。
 ゲイン乗算部911は、入力信号である脈動成分に特定のゲインを乗算して出力するものであり、系の安定性と即応性を調節する機能を有する。ゲインは動作条件に応じて変更してもよい。動作条件は、メイン側同期電動機1a及びサブ側同期電動機1bのそれぞれの角速度指令に等しい。例えば、低速域ではゲイン乗算部911におけるゲインを高くし、高速域ではゲイン乗算部911におけるゲインを低くしてもよい。高速域でゲイン乗算部911におけるゲインを低くする理由は、高速運転では、低速運転時と同じ角度差でも、低速運転時に比べてゲインが低い場合でも同期電動機の回転が安定しており、高速運転時に低速運転時と同様にゲインを高くすると、補償し過ぎとなり同期電動機の回転が不安定になるためである。位相調整部912は例えば、位相遅れ補償器、ローパスフィルタ、積分制御器などで構成される。位相遅れ補償器は高周波域でゲインを一定値下げて安定化を図るものであり、産業界で一般的に用いられている。ローパスフィルタ及び積分制御器にも高周波域の信号位相を変化させる性質があるため、位相遅れ補償器と同じようにローパスフィルタ又は積分制御器を用いることができる。
 1次ローパスフィルタによる近似積分器を位相調整部912として使用する場合、そのカットオフ角周波数は、電機ばね共振角周波数の1/3以下に設定するとよい。可能であれば電機ばね共振角周波数の1/10から1/20までの値とする。このように設定すると、電機ばね共振角周波数付近で位相を90度前後遅らせることができ、制御安定性が高まる。
 図12には示されていないが、脈動抑制制御部91の入出力の何れかに不感帯を設けてもよい。この不感帯は前述の脈動成分抽出部7で除去しきれなかった電機ばね共振以外の周波数成分を除去するのに役立つ。
 補償方向決定部92は、符号判定器921及び乗算器922により構成され、図5から図11で説明した動作原理に則り、角度差から、磁束電流指令の補償方向を決定する。符号判定器921は図13から図15に示される符号判定処理を行う。図13から図15の横軸は、符号判定器921の入力である角度差を表す。角度差は図11に示すように正又は負の値を示す。図13から図15の縦軸は符号判定器921の出力の値を示す。
 最も基本的な符号判定処理は図13に示す方法である。符号判定器921は、角度差が正を示す場合には「1」を出力し、角度差が負を示す場合には「-1」を出力する。但し、図13の方法では角度差が零に近いときにチャタリングが発生するおそれがある。そのため、図14のように角度差が零に近い領域では、符号判定器921の出力を「1」から「-1」へ徐々に切り替え、又は符号判定器921の出力を「-1」から「1」へ徐々に切り替えるように構成してもよい。
 また、角度差が大きい条件では、角度差が小さい条件に比べて、メイン側同期電動機1aの磁束電流の変化量がサブ側同期電動機1bのトルクの変化量に及ぼす影響が大きくなる。そのため、図15のように角度差が大きい領域では、角度差が大きくなるに従って、符号判定器921の出力値を徐々に下げるようにしてもよい。
 乗算器922は符号判定器921の出力と脈動抑制制御部91の出力とを掛け合わせ、磁束電流指令を生成する。すなわち、磁束電流指令決定部9では、脈動抑制制御部91により抑制された脈動成分と、補償方向決定部92の符号判定器921により決定された補償方向とにより、磁束電流指令を決定する。
 特許文献1では、角度差から決定された補償方向に基づいて同期電動機の制御が行われており、角度差が零となる点を境に、磁束電流の補償方向を切り換えている。しかしながら、2台の同期電動機のそれぞれのモータ定数が異なる場合、特許文献1の制御方式では、補償方向の誤判定が生じる。その理由は以下の通りである。
 特許文献1の技術では、メイン側同期電動機1aのd軸電流が操作される。以下では、メイン側同期電動機1aのd軸電流が操作されることは、サブ側同期電動機1bにどのような影響を及ぼすかを、数式的に明らかにする。ここでは、2台の同期電動機のそれぞれのモータ定数が同じ場合だけでなく、2台の同期電動機のそれぞれのモータ定数が異なる場合についても述べる。
 メイン側同期電動機1aの定常状態における電圧方程式において、d軸電流に対して微小摂動が加えられると、下記(7)式が得られる。
Figure JPOXMLDOC01-appb-M000007
 上記(7)式において、vdmはメイン側同期電動機1aのd軸電圧、vqmはメイン側同期電動機1aのq軸電圧である。Δvdmは、メイン側同期電動機1aのd軸電流の微小摂動によって生じる、メイン側同期電動機1aのd軸電圧の微小摂動である。Δvqmは、メイン側同期電動機1aのd軸電流の微小摂動によって生じる、メイン側同期電動機1aのq軸電圧の微小摂動である。Ramはメイン側同期電動機1aの電機子抵抗、ωemはメイン側同期電動機1aの角速度、Ldmはメイン側同期電動機1aのd軸のインダクタンス、Lqmはメイン側同期電動機1aのq軸のインダクタンスである。idmはメイン側同期電動機1aのd軸電流、iqmはメイン側同期電動機1aのq軸電流、Δidmはメイン側同期電動機1aのd軸電流の微小摂動である。Φamはメイン側同期電動機1aの電機子鎖交磁束数である。
 上記(7)式と上記(4)式との差を取ることによって、メイン側同期電動機1aのdq軸電圧の微小摂動を下記(8)式のように求めることができる。
Figure JPOXMLDOC01-appb-M000008
 角度差を、上記(6)式で述べたλで表すと、メイン側同期電動機1aのdq軸電圧摂動は、下記(9)式のように、サブ側同期電動機1bのdq平面上に座標変換することができる。下記(9)において、vdsはサブ側同期電動機1bのd軸電圧、vqsはサブ側同期電動機1bのq軸電圧である。
Figure JPOXMLDOC01-appb-M000009
 上記(9)式に上記(8)式を代入して整理すると、下記(10)式が得られる。下記(10)式において、Δvdsは、メイン側同期電動機1aのd軸電流の微小摂動によって生じる、サブ側同期電動機1bのd軸電圧の微小摂動である。Δvqsは、メイン側同期電動機1aのd軸電流の微小摂動によって生じる、サブ側同期電動機1bのq軸電圧の微小摂動である。
Figure JPOXMLDOC01-appb-M000010
 次に、サブ側同期電動機1bの定常状態における電圧方程式を電流について解くことで、下記(11)式が得られる。下記(11)式において、idsはサブ側同期電動機1bのd軸電流、iqsはサブ側同期電動機1bのq軸電流である。Rasはサブ側同期電動機1bの電機子抵抗、ωesはサブ側同期電動機1bの角速度、Ldsはサブ側同期電動機1bのd軸のインダクタンス、Lqsはサブ側同期電動機1bのq軸のインダクタンスである。Φasはサブ側同期電動機1bの電機子鎖交磁束数である。
Figure JPOXMLDOC01-appb-M000011
 ここで、上記(11)式の右辺の最後の項に示されるサブ側同期電動機1bのdq軸電圧に、上記(10)式の微小摂動を加え、それによって生じるサブ側同期電動機1bのdq軸電流の変化をΔids、Δiqsとして、上記(11)式の左辺に加えると、下記(12)式が得られる。
Figure JPOXMLDOC01-appb-M000012
 上記(12)式から上記(11)式を減じることによって、サブ側同期電動機1bのdq軸電流の微小摂動分を抽出することができる。サブ側同期電動機1bのdq軸電流の微小摂動分は下記(13)式のように表すことができる。
Figure JPOXMLDOC01-appb-M000013
 上記(13)式に上記(10)式を代入して整理すると、メイン側同期電動機1aのd軸電流摂動によるサブ側同期電動機1bのdq軸電流の変化は、下記(14)式のように表すことができる。
Figure JPOXMLDOC01-appb-M000014
 上記(14)式は係数が複雑なため、下記(15)式のように簡単な係数に置き換えて整理する。下記(15)において、Aは、A=Rasam+ωemωesdmqsで求められる。Bは、B=ωemdmas-ωesqsamで求められる。Cは、C=ωemdmas-ωesdsamで求められる。Dは、D=ωemωesdmds+Ramasで求められる。Eは、E=Δidm/(Ras +ωes dsqs)で求められる。
Figure JPOXMLDOC01-appb-M000015
 一方、サブ側同期電動機1bのトルクtは下記(16)式により表される。
Figure JPOXMLDOC01-appb-M000016
 上記(16)式において、サブ側同期電動機1bのdq軸電流に対し、微小摂動を加えると下記(17)式が得られる。下記(17)式の添字「」は動作点の値を表す。
Figure JPOXMLDOC01-appb-M000017
 上記(17)式から、サブ側同期電動機1bのdq軸電流摂動に関係する部分を抽出すると、下記(18)式が得られる。下記(18)式の右辺の第一項はサブ側モータのマグネットトルク摂動であり、第二項はリラクタンストルク摂動である。
Figure JPOXMLDOC01-appb-M000018
 ここでは、説明を分かり易くするために、まずはリラクタンストルク摂動が非常に小さく無視できる場合を想定する。このとき、マグネットトルク摂動と角度差λと関係は、下記(19)式によって表すことができる。下記(19)式において、Cは、C=ωemdmas-ωesdsamで求められる。Dは、D=ωemωesdmds+Ramasで求められる。Eは、E=Δidm/(Ras +ωes dsqs)で求められる。
Figure JPOXMLDOC01-appb-M000019
 リラクタンストルクの摂動を無視すれば、角度差λがどのような値のときに、マグネットトルク摂動が常に零になるかを、計算で求めることができる。上記(19)式の左辺に零を代入して、角度差λについて式を整理すれば下記(20)式が得られる。下記(20)式において、Cは、C=ωemdmas-ωesdsamで求められる。Dは、D=ωemωesdmds+Ramasで求められる。
Figure JPOXMLDOC01-appb-M000020
 上記(20)式には、2台の同期電動機のそれぞれのd軸インダクタンスと、2台の同期電動機のそれぞれの電機子抵抗と、2台の同期電動機のそれぞれの角速度とが含まれる。
 並列駆動が、ある程度適切に行われている場合、2台の同期電動機のそれぞれの角速度は互いに等しいと考えられるので、ここでは、2台の同期電動機のそれぞれの角速度に差異がないものとして、2台の同期電動機のそれぞれのモータ定数の差異、すなわちd軸インダクタンスの差異と、電機子抵抗の差異とについて考える。2台の同期電動機のそれぞれのモータ定数が互いに等しい場合、上記(20)式の右辺の分数の分子は零となるため、角度差が零となるポイントを境に、メイン側同期電動機1aのd軸電流とサブ側同期電動機1bのトルクとの増減関係が変化する。このことから、特許文献1に開示される制御方式では、角度差が零となるポイントで、磁束電流の補償方向を切り替える処理が行われている。
 2台の同期電動機のそれぞれのモータ定数が互いに異なる場合、上記(20)式の右辺の分数の分子は零にならない。この場合、メイン側同期電動機1aのd軸電流とサブ側同期電動機1bのトルクとの増減関係が変化するポイントは、角度差が零になる点ではない。そのため、特許文献1に開示される制御方式では、2台の同期電動機のそれぞれのモータ定数が互いに異なる場合、角度差が零近くになるとき、磁束電流の補償方向を誤判定するという欠点がある。
 磁束電流の補償方向を誤判定すると、サブ側同期電動機1bに意図しないトルク変化が発生するため、サブ側同期電動機1bに持続的な振動が生じるおそれがある。サブ側同期電動機1bの持続的な振動の発生プロセスは以下のとおりである。まず、磁束電流の補償方向が誤判定されたことにより、サブ側同期電動機1bに意図しないトルク変化が発生する。これにより角度差が増大する。角度差が一定値を超えると、補償方向の判定が正常な状態に戻る。これにより角度差が減少する。しかしながら、角度差が減少して零近くになると、再度、補償方向を誤判定する状態に陥る。こういった悪循環を繰り返すことでサブ側同期電動機1bに持続的な振動が生じるのである。
 このことから、2台の同期電動機のそれぞれのモータ定数が互いに異なる場合には、磁束電流の補償方向をモータ定数の差異を加味して決定する必要があると言える。実施の形態1に係る角度差補正部10は、磁束電流の補償方向を修正するためのものである。例えば、2台の同期電動機のそれぞれのモータ定数が既知である場合、下記(21)式のように、角度差信号を修正すればよい。下記(21)式において「」は「補正後」という意味である。θesは、サブ側同期電動機1bの磁極位置を電気角で表したものであり、θemは、メイン側同期電動機1aの磁極位置を電気角で表したものである。Cは、C=ωemdmas-ωesdsamで求められる。Dは、D=ωemωesdmds+Ramasで求められる。Ldm、Lds、Ras及びRamがモータ定数に相当する。
Figure JPOXMLDOC01-appb-M000021
 上記(21)式において、アークタンジェントを含む第二項は、第1の角度差の補正量である角度差補正量を表す。角度差補正量は、当該第二項の式を用いて、回転子の回転速度が変化する度に角度差補正部10内で計算してもよいが、事前に計算した値を、角度差補正部10にデータテーブルとして格納しておき、角度差補正部10は、当該データテーブルを参照することによって、回転子の回転速度に対応する角度差補正量を読み出して、読み出した角度差補正量を、上記の第二項の式で求められる角度差補正量の代わりに用いてもよい。図16を参照して、データテーブルを用いた角度差補正量の計算方法の具体例を説明する。
 図16は図1に示す角度差補正部で演算される角度差補正量と回転子の回転速度との関係を示す図である。図16において、縦軸には角度差補正量が示され、横軸には回転子の回転速度が示される。図16では回転子の回転速度が「速度」と表記される。図16によれば、回転速度に応じて角度差補正量が変化していることが分かる。このような回転速度に対応する角度差補正量を事前に計算しておき、計算した角度差補正量を前述したデータテーブルに格納する。なお、このような角度差補正量の推移から簡単な近似式を導出しておき、角度差補正部10は、上記(21)式のアークタンジェントを含む第二項の代わりに、導出された近似式を用いて、角度差補正量を計算してもよい。
 次に図17及び図18を参照して、図1に示す角度差補正部10の構成例を説明する。図17は図1に示す角度差補正部の第1の構成例を示す図である。図17には、上記(21)式を用いて、補正後の角度差である第2の角度差を求める角度差補正部10Aの構成例が示される。以下では第2の角度差を「補正後角速度」と称する。角度差補正部10Aは、補正量演算部10a及び減算器10bを備える。補正量演算部10aは、モータ定数及び速度指令を用いて、上記(21)式のアークタンジェントを含む第二項の計算を行う。なお、2台の同期電動機の回転速度を正確に検出できる場合、速度指令の代わりに回転速度を用いて、上記(21)式のアークタンジェントを含む第二項の計算を行ってもよい。減算器10bは、上記(21)式に従い、角度差から、補正量演算部10aで演算された角度差補正量を差し引くことにより、補正後角度差を演算する。
 図18は図1に示す角度差補正部の第2の構成例を示す図である。図18には、データテーブル10cを用いて補正後角度差を求める角度差補正部10Bの構成例が示される。角度差補正部10Bは、図17に示す補正量演算部10aの代わりに、補正量演算部10d及びデータテーブル10cを備える。図18のデータテーブル10cには、モータ定数及び回転速度に応じて変化する複数の角度差補正量が格納されているものとする。角度差補正部10Bは、データテーブル10cを参照することによって、モータ定数及び速度指令に対応する角度差補正量を読み出して、読み出した角度差補正量を出力する。なお、データテーブル10cに格納するデータ量を減らすために、データテーブル10cは不図示の補間処理手段を有していてもよい。
 なお、実施の形態1では、同期電動機が表面磁石型同期交流電動機であると仮定して、リラクタンストルクがないものとして角度差を補正する構成例について説明したが、リラクタンストルクがある場合でも、角度差が零に近い値であるとして近似を行えば、メイン側同期電動機1a側のd軸電流摂動によるサブ側同期電動機1b側のマグネットトルク摂動が零となる条件を、比較的簡単に導出することができる。実施の形態1は、角度差が零に近い値であるときに、磁束電流の補償方向を誤判定する状態に陥る現象を対象としているため、上記の近似は妥当なものである。下記(22)式は、メイン側同期電動機1a側のd軸電流摂動によるサブ側同期電動機1b側のマグネットトルク摂動と、リラクタンス摂動との和が零となる条件を表している。下記(22)において、Aは、A=Rasam+ωemωesdmqsで求められる。Bは、B=ωemdmas-ωesqsamで求められる。Cは、C=ωemdmas-ωesdsamで求められる。Dは、D=ωemωesdmds+Ramasで求められる。Eは、E=Δidm/(Ras +ωes dsqs)で求められる。Fは、F=P(Φas+(Lds-Lqs)ids0で求められる。Gは、G=P(Lds-Lqs)iqs0で求められる。Hは、H=P(Lds-Lqs)で求められる。
Figure JPOXMLDOC01-appb-M000022
 リラクタンストルクがない同期電動機の場合、式変形の過程でメイン側同期電動機1a側のd軸電流の摂動項が消去されるのに対し、リラクタンストルクがある同期電動機の場合、摂動項が消去されない。しかしながら、角度差補正量を決定する際、メイン側同期電動機1a側のd軸電流の摂動項まで加味すると計算が複雑になりすぎる。そのため、実用上は、メイン側同期電動機1a側のd軸電流の摂動項が微小であるとして、消去したほうがよい。その結果、リラクタンストルクが大きい同期電動機における角度差補正値の理論式は下記(23)式のように表される。下記(23)式を演算すれば、リラクタンストルクが大きい同期電動機でも、表面磁石型同期電動機と同様の安定化補償を行うことができる。但し、下記(23)式を計算するのには、必要なパラメータが多く、計算も煩雑である。このような課題の対策については実施の形態2以降で説明する。
Figure JPOXMLDOC01-appb-M000023
 モータ定数が異なる2台の同期電動機を並列駆動する際、磁束電流を変化させることでサブ側同期電動機1bの安定化を図る場合には、モータ定数の差異を考慮して磁束電流の補償方向を決定しなければ、補償方向の誤判定が生じるときがある。特許文献1に記載の手法では、同仕様の2台の同期電動機を並列駆動する場合であっても、2台の同期電動機のそれぞれのモータ定数が異なると、補償方向の誤判定が生じるおそれがある。この誤判定は、サブ側同期電動機1bに持続的な振動を引き起こすため、サブ側同期電動機1bに大きな速度むらが生じる。これに伴い、サブ側同期電動機1bの振動及び騒音の増加と、モータ効率の低下が懸念される。
 実施の形態1に係る駆動装置100は、モータ定数の差異を考慮して磁束電流の補償方向を決定するように構成されているため、1台の電力変換器を用いて2台の同期電動機を駆動する場合でも、モータ定数の変動に対するロバスト性が向上し、磁束電流指令決定部9が磁束電流の補償方向を誤判定することを防止できる。従って、磁束電流の補償方向の誤判定に起因する速度むらの発生が抑制される。また、速度むらの発生が抑制されるため、サブ側同期電動機1bの振動及び騒音の増加を抑制でき、更にモータ効率の低下を抑制できる。
実施の形態2.
 実施の形態1では、角度差の補正を行うために、2台の同期電動機のそれぞれのモータ定数が必要である。但し、これらのモータ定数は様々な要因で変化する。実施の形態2では、角度差の補正のためのモータ定数測定機能を備えた駆動装置100について説明する。図19は本発明の実施の形態2に係る駆動装置が備える電流制御部の構成図である。図20は本発明の実施の形態2に係る駆動装置が備える角度差補正部の構成図である。実施の形態2の駆動装置100は、実施の形態1の電流制御部6及び角度差補正部10の代わりに電流制御部6A及び角度差補正部10Cを備える。その他の構成については、実施の形態1の構成と同一又は同等であり、同一又は同等の構成部には同一の符号を付して、重複する説明は省略する。
 図19に示す電流制御部6Aは、トルク電流及び磁束電流をそれぞれ制御するための機能である。電流制御部6Aは、加算器61aと、加算器61bと、減算器61cと、減算器61dと、加算器61eと、減算器61fと、加算器61gと、加算器61hと、比例積分微分(Proportional Integral Derivative:PID)制御器62aと、PID制御器62bとを備える。また電流制御部6Aは、非干渉化制御器63と、モータ定数を測定するためのテスト信号を発生するテスト信号発生部64とを備える。また電流制御部6Aは、これらの機能以外にも、メイン側同期電動機1aの相電流を所望の座標系の電流に座標変換する第1の座標変換器と、電圧指令を三相座標系に逆変換する第2の座標変換器とを備える。図19では、第1の座標変換器及び第2の座標変換器の図示が省略されている。なお、実施の形態2の電流制御部6Aには、実施の形態1の電流制御部6と同様に、dq回転子座標上でのベクトル制御器を用いるのが好適であるが、ベクトル制御におけるdq座標系以外にも、αβ固定子座標系、γδ座標系などの極座標系を用いてもよい。また、電流制御部6Aには、ベクトル制御の代わりにDTCを採用してもよい。
 テスト信号発生部64は、モータ定数測定を行うために、メイン側同期電動機1a及びサブ側同期電動機1bの停止時に、直流電圧、直流電流、交流電圧又は交流電流のテスト信号をメイン側同期電動機1a及びサブ側同期電動機1bに与える。テスト信号は、トルク電流指令、磁束電流指令、q軸電圧指令及びd軸電圧指令を変化させるための信号である。なお、テスト信号発生部64が発生するテスト信号の詳細については後述する。
 加算器61aは、トルク電流指令と、テスト信号発生部64から出力されるトルク電流指令を変化させるためのテスト信号とを加算する。減算器61cは、加算器61aで加算されたトルク電流指令及びテスト信号からトルク電流を減じることによって、トルク電流偏差を計算する。PID制御器62aは、トルク電流偏差に対して比例演算、積分演算及び微分演算を行うことによって制御量を決定する。
 加算器61bは、磁束電流指令と、テスト信号発生部64から出力される磁束電流指令を変化させるためのテスト信号とを加算する。減算器61dは、加算器61bで加算された磁束電流指令及びテスト信号から磁束電流を減じることによって、磁束電流偏差を計算する。PID制御器62bは、磁束電流偏差に対して比例演算、積分演算及び微分演算を行うことによって制御量を決定する。
 非干渉化制御器63は、加算器61aで加算されたトルク電流指令及びテスト信号と、速度指令と、加算器61bで加算された磁束電流指令及びテスト信号とを用いて、フィードフォワード制御により、dq軸間の制御干渉を除去するためのd軸電圧及びq軸電圧を生成する。具体的には、非干渉化制御器63は、速度指令と、加算器61bで加算された磁束電流指令及びテスト信号とを用いて、d軸電流によって発生するq軸電圧に干渉する電圧を打ち消すための電圧を生成して、加算器61eへ出力する。非干渉化制御器63は、加算器61aで加算されたトルク電流指令及びテスト信号と、速度指令とを用いて、q軸電流によって発生するd軸電圧に干渉する電圧を打ち消すための電圧を生成して、減算器61fへ出力する。
 加算器61eは、PID制御器62aの出力に非干渉化制御器63の出力を加算して出力する。加算器61gは、加算器61eの出力に、テスト信号発生部64から出力されるq軸電圧指令を変化させるためのテスト信号を加算することによって、q軸電圧指令を出力する。
 減算器61fは、PID制御器62bの出力から非干渉化制御器63の出力を減算して出力する。加算器61hは、減算器61fの出力に、テスト信号発生部64から出力されるd軸電圧指令を変化させるためのテスト信号を加算することによって、d軸電圧指令を出力する。
 図20に示す角度差補正部10Cは、電流制御部6Aによる電圧変化又は電流変化の分析結果を用いて角度差を補正するために、図18に示す補正量演算部10d及びデータテーブル10cを備えると共に、テスト信号分析部10eを備える。テスト信号分析部10eには、メイン側同期電動機1a側の相電流であるメイン側相電流と、サブ側同期電動機1b側の相電流であるサブ側相電流と、電圧指令とが入力される。テスト信号分析部10eは、これらを分析することで、モータ定数を計測して出力し、更にモータ定数の差異によって生じる電気的挙動である、サブ側トルク電流の脈動成分を分析する。すなわち、テスト信号分析部10eは、テスト信号によって生じる電圧変化又は電流変化を分析する。計測の結果、メイン側同期電動機1a及びサブ側同期電動機1bのそれぞれのd軸インダクタンス及び電機子抵抗が分かれば、補正量演算部10dによって角度差補正量の演算が可能である。なお、角度差補正部10Cは、補正量演算部10d及びデータテーブル10cの代わりに、図17に示す補正量演算部10aを用いて、角度差補正量の演算を行ってもよい。
 モータ定数の計測法には、様々な計測法が提案されているが、それらの全ての計測法を例示することができないため、実施の形態2では一例を説明する。
 例えば、テスト信号発生部64は、メイン側同期電動機1a及びサブ側同期電動機1bの停止時に、メイン側同期電動機1a及びサブ側同期電動機1bに交流電圧又は交流電流のテスト信号を与えることによって、2台の同期電動機のそれぞれの相電流を計測する。そして、テスト信号分析部10eは、この相電流を計測することによって、2台の同期電動機のそれぞれの電機子抵抗が計測できる。但し、一般に、電力変換器2では、上下アームの短絡防止時間の影響などによって、出力電圧に誤差が含まれるため、電圧誤差の補償精度が低い場合、電機子抵抗に計測誤差が生じる。そのような場合、テスト信号分析部10eは、2台の同期電動機のそれぞれに流れる相電流の比率を計測する。電機子抵抗のノミナル値は一般に入手可能であるから、テスト信号分析部10eは、電機子抵抗のノミナル値と、計測した相電流比率の値とを比較すればよい。相電流比率を測定する方法では、メイン側同期電動機1a及びサブ側同期電動機1bのどちらのモータ定数が変化したのかまでは分からないが、実用上、上記(21)式の計算を行うに際して支障はない。
 また、テスト信号発生部64は、メイン側同期電動機1a及びサブ側同期電動機1bの停止時に、メイン側同期電動機1a及びサブ側同期電動機1bに、d軸方向の交流電圧又は交流電流のテスト信号を与え、テスト信号分析部10eは、メイン側同期電動機1a及びサブ側同期電動機1bのそれぞれに流れる電流の値から、d軸インダクタンスを計測できる。電圧誤差が無視できない場合、テスト信号分析部10eは、メイン側同期電動機1a及びサブ側同期電動機1bのそれぞれに流れる相電流の交流振幅を抽出し、その比率を計測して、この比率から上記(21)式の計算をしてもよい。
 このように、同期電動機が停止中に、2台の同期電動機のそれぞれの電機子抵抗とd軸インダクタンスとを測定すれば、上記(21)式の計算を容易に行うことができる。しかしながら、運転中の同期電動機の温度変化により、電機子抵抗は変化する。そこで、同期電動機が運転しているときに、電機子抵抗の変化を計測する方法を考える。一つの方法として、上記(8)式の右辺の1行目のRamを、下記(24)式のように変形し、定常運転中にメイン側同期電動機1aのd軸電流に、直流のテスト信号を重畳することによって、重畳前後のd軸電圧の変化を計測する方法が考えられる。この計測方法は、電力変換器2の出力電圧に対して高い精度が必要となるが、運転中に電機子抵抗を測定できるメリットがある。なお、上記(8)式はメイン側同期電動機1aに関する数式であるが、サブ側同期電動機1bに関しても同様の数式で電機子抵抗を計算できる。なお、巻線の温度変化を計測する温度センサを使用できる場合、同期電動機で発生する温度の変化を温度センサによって計測し、ノミナル値からの抵抗の変化量を算出してもよい。
Figure JPOXMLDOC01-appb-M000024
 上記(21)式の計算を行うには、2つの同期電動機のそれぞれの電機子抵抗及びd軸インダクタンスが既知であればよいが、上記(23)式の計算を行うには、サブ側同期電動機1bの電機子鎖交磁束数Φasと、q軸インダクタンスLqsも必要となる。電機子鎖交磁束数Φasは温度変化及び過電流減磁といった要因で変化し、q軸インダクタンスLqsは、大電流が流れたときの磁気飽和により変化する。上記(23)式の計算を精度良く行うためにはこれらの定数も計測する必要がある。
 インダクタンスの測定方法としては、例えば特許第5634620号公報(以下、参考文献2という)の手法が公知である。参考文献2では、複数の一定の直流電圧の電圧指令を、回転機に印加し、印加した電圧の中から任意に選択した測定用電圧指令と、測定用電圧指令印加前後の回転機電流とを用いて、インダクタンスを演算する手法が考案されている。
 実施の形態2に、参考文献2に開示されるインダクタンス演算手法を適用した場合、図19に示すテスト信号発生部64が複数の一定の直流電圧の電圧指令をテスト信号として発生し、テスト信号分析部10eは、テスト信号発生部64が発生した電圧指令の中から任意に選択した測定用電圧指令と、測定用電圧指令の発生前後の回転機電流とを用いて、インダクタンスを演算する。ここで、テスト信号はインパルス状の電圧となる。インダクタンスの演算の原理は、参考文献2で詳細に記述されているため、ここでは説明を割愛する。このインダクタンス測定方法を用いることによって、実施の形態2に係る駆動装置100でも、q軸インダクタンスを計測することが可能である。なお、参考文献2に開示されるインダクタンス手法を適用して、d軸インダクタンスを計測することもできる。
 電機子鎖交磁束数を計測する手法としては、例えば磁束オブザーバが公知である。磁束オブザーバの活用例は特開2003-302413号公報(以下、参考文献3という)に開示されている。磁束オブザーバは、モータに印加される電圧とモータに流れる電流とを用いて、固定子磁束及び回転子磁束を推定するものである。参考文献3では、磁束オブザーバと適応制御とを組み合わせて、同期電動機の速度推定を実施しているが、その計算過程において回転子d軸磁束、すなわち電機子鎖交磁束数の推定が行われている。回転子d軸磁束の推定には速度情報が必要となるが、速度情報は、適応制御により算出された速度推定値でもよいし、センサ類によって検出された速度真値でもよい。
 実施の形態2に、参考文献3に開示される電機子鎖交磁束数の計測方法を適用する場合、テスト信号分析部10eの内部に磁束オブザーバを設ければよい。この場合、テスト信号発生部64はテスト信号を発生させる必要がないため、テスト信号は零とする。このように電機子鎖交磁束数を計測する手法も公知である。
 以上の方法により、実施の形態2では、電機子抵抗、d軸インダクタンス、q軸インダクタンス及び電機子鎖交磁束数の計測が可能である。そして、モータ定数が既知であれば、上記(21)式及び(23)式の計算を行うことは容易である。実施の形態2によれば、駆動装置100にモータ定数測定機能を設けることによって、2台の同期電動機の角度差が的確に補正され、磁束電流の補償方向の誤判定を防ぐことができる。
実施の形態3.
 実施の形態3では、磁束電流の補償方向を誤判定した際のサブ側同期電動機1bの脈動成分の特徴を調べることで、角度差の補正を行う構成例を説明する。実施の形態3の具体的な構成例を説明する前に、磁束電流の補償方向を誤判定した場合に、どのようなことが発生するかを図21及び図22を用いて説明する。
 図21は図1に示すメイン側同期電動機の電機子抵抗に+30%の誤差を加えた場合のサブ側同期電動機のトルク電流波形を説明するための図である。図22は図1に示すメイン側同期電動機の電機子抵抗に-30%の誤差を加えた場合のサブ側同期電動機のトルク電流波形を説明するための図である。図21及び図22では、並列駆動時にはモータ定数が等しい2つの同期電動機の内、一方の同期電動機のみが駆動されたことによって、2台の同期電動機のモータ定数に差異が発生したケースを想定している。一方の同期電動機のみが駆動されるのは、図1に示すリレー回路11の接点が開放された場合である。
 サブ側同期電動機1bのトルク電流であるサブ側トルク電流は、前述した電機ばね共振により、上記(1)式の近似式で記述される固有角周波数で振動する。図21の上側の図には、サブ側トルク電流の原波形と、固有角周波数の基本波成分とが示される。原波形は実線で示され、基本波成分は破線で示される。横軸は時間である。基本波成分は、サブ側トルク電流の原波形に含まれる固有角周波数成分である。図21の上側の図には、サブ側トルク電流の原波形に固有角周波数成分がどの程度含まれるかを明示するため、原波形と基本波成分とが併記されている。
 前述した磁束電流指令決定部9は、電機ばね共振を抑え込むため、磁束電流を適宜変化させているが、図21では、上記(21)式の角度差補正が行われていないために磁束電流指令決定部9が磁束電流の補償方向を誤判定して、サブ側同期電動機1bに持続的な振動が生じているものとする。このように、サブ側同期電動機1bに持続的な振動が生じている場合のサブ側トルク電流には、波形に歪みが生じていることが分かる。
 図21の下側の図には、誤判定によって生じるサブ側トルク電流の脈動成分が示される。脈動成分には、原波形から基本波成分を差し引いた波形成分と、電機ばね共振の2次高調波成分とが含まれる。原波形から基本波成分を差し引いた波形成分が実線で示され、電機ばね共振の2次高調波成分が破線で示される。横軸は時間である。
 補償方向の誤判定が定常的に発生する状態になると、電機ばね共振1周期に2回の誤判定が発生する。そのため、サブ側トルク電流を周波数解析すると、電機ばね共振の偶数次の高調波成分が増加する傾向がある。電機ばね共振の偶数次の高調波成分が増加していることを明示するため、図21の下側の図には、原波形から基本波成分を差し引いた波形成分と、電機ばね共振の2次高調波成分とが併記される。
 図22の上側の図には、サブ側トルク電流の原波形と、固有角周波数の基本波成分とが示される。原波形は実線で示され、基本波成分は破線で示される。横軸は時間である。図22の下側の図には、誤判定によって生じるサブ側トルク電流の脈動成分が示される。図22によれば、図21と同様に、誤判定による脈動が生じていることが分かり、また電機ばね共振の偶数次の高調波成分が生じていることが分かる。
 但し、図22に示すサブ側トルク電流の波形は、図21のサブ側トルク電流の波形と異なっている。波形が異なる理由は、図21に示す状態から電機子抵抗が変化したことによって、上記(21)式で示される角度差補正の理想値が変化し、角度差補正の理想値が変化したことによって、誤判定の発生タイミングが変化し、更に、誤判定によって生じるトルクショックの方向が変化したためである。図21では、トルクショックのピークは負の方向であるが、図22では、トルクショックのピークは正の方向である。また、2次高調波成分の位相も図21と図22では異なっている。なお、上記(20)式で示される角度差補正の理想値の計算結果は、図21の場合、負の値となり、図22の場合、正の値となる。
 これらの結果は、磁束電流の補償方向を誤判定した場合に、サブ側同期電動機1bに電機ばね共振の偶数次の振動が発生することを示唆している。また、角度差補正の最適値が正であるか負であるかによって、トルクショックのピークの発生方向と偶数次高調波成分の位相とが変化することを示唆している。
 本願発明者の調査の結果、このような事実が判明したため、本願発明者は、トルク電流の波形を解析して、補償方向の誤判定を検出する方法を検討した。なお、図21及び図22では、最も分かり易い例としてトルク電流の波形を示したが、トルク電流の代わりに有効電力の脈動、速度の脈動などから図21及び図22に示すような現象を観測することもできる。
 図23は本発明の実施の形態3に係る駆動装置が備える角度差補正部の構成図である。実施の形態3の駆動装置100は、実施の形態1の角度差補正部10の代わりに角度差補正部10Dを備える。角度差補正部10Dは、脈動成分分析部10f及びオフセット量制御部10gを備える。その他の構成については、実施の形態1の構成と同一又は同等であり、同一又は同等の構成部には同一の符号を付して、重複する説明は省略する。
 脈動成分分析部10fは、サブ側同期電動機1bに流れるサブ側トルク電流に含まれる脈動成分を周波数分析する機能である。サブ側トルク電流は、電流検出部4bで検出された三相座標系での電流値が、不図示の座標変換器によって回転直交座標(dq軸)でのdq軸電流へ変換された後の、q軸電流を示す。上記(1)式によって表される電機ばね共振角周波数は、近似誤差を含むため、脈動成分分析部10fは、サブ側トルク電流に含まれる共振角周波数を計測するための共振角周波数計測部10hを備える。なお、共振角周波数計測部10hは、共振角周波数を計測するためだけでなく、同期電動機が駆動したときモータ定数が変化することも考慮して、脈動成分分析部10fに設けた方が望ましい。
 また、脈動成分分析部10fは、サブ側トルク電流の脈動成分に対して解析処理を行うことによって特定の高調波成分を抽出するフィルタ部10iを備える。フィルタ部10iには、例えば、サブ側トルク電流の脈動成分から電機ばね共振角周波数の2次高調波成分を抽出するバンドパスフィルタを用いることができる。また、フィルタ部10iは、サブ側トルク電流の脈動成分の直流成分を除去するハイパスフィルタと、電機ばね共振角周波数の基本波成分を除去するノッチフィルタとを組み合わせたものでもよい。
 オフセット量制御部10gは、脈動成分の高調波成分が減少するよう角度差に対して補正量を加える機能である。オフセット量制御部10gの詳細は後述する。減算器10bは、角度差からオフセット量制御部10gの出力を差し引き、補正後角度差を決定する。
 オフセット量制御部10gの最も単純な構成例としては、探索アルゴリズムを用いる方法が考えられる。探索アルゴリズムは様々存在するが、ここでは最も有名な探索アルゴリズムの1つである山登り法を例として取り上げる。なお、山登り法を選んだのは単に例示のしやすさを考慮しただけであり、実施の形態3の構成がこれに限定されるものではない。
 オフセット量制御部10gは、自動探索部10jを備える。自動探索部10jは、フィルタ部10iからの高調波成分に対して、角度差補正量を変化させながら高調波成分の増減を調査することにより、山登り法により角度差補正量の最適値を自動探索する。図24は図23に示す自動探索部に用いられる山登り法による角度差補正量の自動探索のイメージを示す図である。縦軸は共振角周波数の2次高調波成分、横軸は角度差補正量を表す。
 脈動成分の2次高調波成分の発生要因は磁束電流の補償方向の誤判定によるものであるから、角度差補正量を最適に調整した場合、2次高調波成分が最小になると予想される。初期条件の動作点Xでは、角度差補正量が零であり、磁束電流の補償方向の誤判定が起こっているため、2次高調波成分がある程度観測されている。ここで、角度差補正量を増加させ、動作点をXからYに変化させたとする。この場合、動作点が最適点の方向から遠ざかるので、誤判定の頻度が増えて2次高調波成分が増加する。これは望ましくないので、角度差補正量を減少させることを考える。角度差補正量を減少させ、動作点をXからZに変化させた場合、動作点が最適点の方向に近づくので、誤判定の頻度が減って2次高調波成分が減少する。このように、山登り法を用いることによって、角度差補正量を徐々に変化させながら脈動成分の2次高調波成分が最小となるポイントを探していけば、やがて最適点にたどり着く。なお、角度差信号を適切に補正していくと、電機ばね共振の2次高調波成分だけでなく、電機ばね共振の基本波成分も徐々に弱まっていく。そのため、2次高調波成分が最小となるポイントが見つかっていなくても、ある程度、振動が弱まったら、探索を打ち切ってもよい。
 なお、オフセット量制御部10gの別の構成例としては、自動探索部10jによる探索アルゴリズムを用いる代わりに、PID制御を用いる方法が考えられる。オフセット量制御部10gのPID制御では、例えば図21又は図22に示されるサブ側トルク電流脈動の中から、鋭いピークが発生している箇所が抽出され、抽出されたピーク部分が積分されることによって、適切な補正量が得られる。
 自動探索に基づく手法は、探索にある程度の時間を要するものの、モータ定数を必要としない点で優れている。リラクタンストルクが大きいモータの場合、上記(23)式を解くのには多くのモータ定数が必要となるため、実施の形態2で述べたような多数のモータ定数測定手段、例えばテスト信号発生部64、テスト信号分析部10eなどが必要になる。これに対して、実施の形態3の自動探索に基づく手法は、制御構成を簡素化できるという効果を得ることができる。また、実施の形態3の自動探索に基づく手法は、モータ定数を必要としないためオンラインでの角度差補正が可能であり、また同期電動機が長時間運転した際の定数変化に対応可能となる。
実施の形態4.
 図25は本発明の実施の形態4に係る駆動装置が備える角度差補正部の構成図である。実施の形態4に係る角度差補正部10Eは、実施の形態2のテスト信号分析部10e、補正量演算部10d及びデータテーブル10cを備え、更に実施の形態3の脈動成分分析部10f及びオフセット量制御部10gを備える。
 角度差補正部10Eでは、モータ定数の値に基づき演算される角度差補正量が角度差から差し引かれることにより補正後角度差が演算され、又は、補償方向の誤判定により生じる偶数次高調波に基づき演算される角度差補正量が角度差から差し引かれることにより補正後角度差が演算される。このように角度差補正部10Eは、モータ定数の値に基づき演算される角度差補正量と、偶数次高調波に基づき演算される角度差補正量とを個別に演算することができる。なお、角度差補正部10Eは、モータ定数の値に基づき演算される角度差補正量と、偶数次高調波に基づき演算される角度差補正量との双方を、角度差から差し引く構成としてもよい。
 実施の形態4によれば、モータ定数の値に基づき演算される角度差補正量を用いることによって、リラクタンストルクが大きいモータが利用される場合における磁束電流の補償方向の誤判定を防止でき、またモータ定数を必要としない場合にも偶数次高調波に基づき演算される角度差補正量を用いて補正後角度差を求めることが可能である。
実施の形態5.
 実施の形態5では、実施の形態1,2,3,4に係る駆動装置100を用いた流体利用装置の構成例について説明する。図26は本発明の実施の形態5に係る流体利用装置の構成図である。実施の形態5では、メイン側同期電動機1aの回転軸にプロペラファン300aが設けられ、サブ側同期電動機1bの回転軸にプロペラファン300bが設けられている流体利用装置300について説明する。
 図26に示す流体利用装置300は、実施の形態1の駆動装置100を備え、駆動装置100は電力変換器駆動装置200を備える。電力変換器駆動装置200は、プロセッサ201及びメモリ202を備える。図1に示す各機能、すなわち電流制御部6、脈動成分抽出部7、減算器8、角度差補正部10及び磁束電流指令決定部9は、プロセッサ201及びメモリ202を用いてその機能が実現される。
 図26に示すようにプロセッサ201及びメモリ202を利用する場合、上記の各機能のそれぞれは、ソフトウェア、ファームウェア又はこれらの組合せにより実現される。ソフトウェア又はファームウェアはプログラムとして記述され、メモリ202に記憶される。プロセッサ201はメモリ202に記憶されたプログラムを読み出して実行する。またこれらのプログラムは、上記の各機能のそれぞれが実行する手順及び方法をコンピュータに実行させるものであるとも言える。メモリ202は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、又はEEPROM(Electrically Erasable Programmable Read Only Memory)(登録商標)といった半導体メモリが該当する。半導体メモリは不揮発性メモリでもよいし揮発性メモリでもよい。またメモリ202は、半導体メモリ以外にも、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク又はDVD(Digital Versatile Disc)が該当する。なお、プロセッサ201は、演算結果等のデータをメモリ202に出力しても記憶させてもよいし、メモリ202を介して不図示の補助記憶装置に当該データを記憶させてもよい。
 なお、流体利用装置300は、実施の形態1の駆動装置100の代わりに実施の形態2、3又は4の駆動装置100を備えてもよい。この場合、図19に示す電流制御部6Aと、図20に示す角度差補正部10Cと、図23に示す角度差補正部10Dと、図25に示す角度差補正部10Eとは、プロセッサ201及びメモリ202を用いてその機能が実現される。
 実施の形態1でも述べたように、電力変換器2はメイン側同期電動機1a及びサブ側同期電動機1bに任意の交流電力を供給できるものであれば、基本的にどのような回路構成でも構わない。電流検出部4a,4b及び磁極位置検出部5a,5bで検出された情報はプロセッサ201へ送信される。
 リレー回路11は必須の構成要件ではないが、リレー回路11を用いることによって、同期電動機の運転台数を変えることができる。また、2台の同期電動機の内、一方の同期電動機を長時間運転させた後に、2台の同期電動機の並列運転へ切り替える際、2台の同期電動機の温度には温度差が生じているため、温度差の影響でサブ側同期電動機1bの安定性が低下する恐れがある。しかしながら、このような切り替えを行う場合でも、実施の形態1,2,3,4で説明した手法を用いることによって、2台の同期電動機を安定に並列運転することが可能である。
 2つのプロペラファン300a,300bは、互いに同一形状のものであってもよいし、異なる形状のものであってもよい。また、2つのプロペラファン300a,300bの空気の流路は必ずしも同じでなくともよい。例えば流体利用装置300が空気調和機の場合、2つのプロペラファン300a,300bは、当該空気調和機の室外機内の送風室に設けられる2つの送風ファンに相当し、上記の空気の流路は、当該送風室に相当する。送風室は、室外機の側面板、天井板、底板、熱交換器などに囲まれることで形成される空間である。送風室には、プロペラファン300a,300bが回転することによって空気の流れが形成される。
 2つのプロペラファン300a,300bの回転数と負荷トルクとの特性は、異なっていた方が安定に並列駆動しやすいため、2台の同期電動機に異なる形状のファンを設けてもよいし、一方のファンが設けられる流路の断面積を、他方のファンが設けられる流路の断面積よりも小さくしてもよい。また、一方の同期電動機でプロペラファンを駆動し、他方の同期電動機でポンプを駆動するなど、それぞれ異なる仕様の流体利用装置を駆動する構成としてもよい。
 なお図26には示されていないが、流体利用装置300は、電力変換器2が出力する電圧を検出する電圧検出部を備え、電圧検出部で検出された電圧情報がプロセッサ201へ入力されるように構成してもよい。また図26には示されていないが、流体利用装置300は、ファンの風速を計測する風速センサを備え、風速センサで検出された風速情報がプロセッサ201へ入力されるように構成してもよい。また図26には示されていないが、ファンによって冷却される対象物の温度を検出する温度センサを備え、温度センサで検出された温度情報がプロセッサ201へ入力されるように構成してもよい。
 流体利用装置300の流体負荷は、ダンパ特性を持っており、高回転域では、そのダンパ特性がオープンループ駆動された同期電動機の駆動を安定化させる。しかしながら、低回転域では、そのダンパ特性が弱まり、同期電動機の駆動が不安定になるため、流体利用装置300は、磁束電流を変化させることによって、同期電動機の駆動の安定化を図る。しかしながら、特許文献1に開示される磁束電流の制御方法を、流体利用装置300の電力変換器駆動装置200に適用した場合、2台の同期電動機のそれぞれのモータ定数に差異が生じたとき、角度差が零に近い領域において、磁束電流の補償方向の誤判定が生じる。流体利用装置300は、低回転域では低負荷であるため、低回転域では角度差が零に近づき、誤判定が頻発する。このように、安定性が低い低回転域で補償方向の誤判定が頻発すると、脱調のおそれが生じる。また、誤判定に起因して発生する持続的な振動により、同期電動機の振動及び騒音の増加と、モータ効率の低下が懸念される。このようなことから、特許文献1に開示される磁束電流の制御方法を流体利用装置300の電力変換器駆動装置200に用いるには、低速での駆動特性の面で課題があった。
 実施の形態1,2,3,4で述べた角度差補正法又は定数測定法を図26に示す流体利用装置300の電力変換器駆動装置200に用いることにより、低回転域で補償方向の誤判が発生することを防止できる。これにより、実施の形態5の流体利用装置300では、幅広い速度範囲で同期電動機の並列駆動を実現することができる。また、実施の形態5の流体利用装置300は、1つの電力変換器で1台の同期電動機を駆動する既存の同期電動機駆動装置を、ソフトウェアの書き換えなどを行うことで実現できるため、コストの増加を抑制しながら2つのプロペラファン300a,300bを駆動可能な流体利用装置300を得ることができる。
実施の形態6.
 実施の形態6では、実施の形態4に係る流体利用装置300を用いた空気調和機の構成例について説明する。図27は本発明の実施の形態6に係る空気調和機の構成図である。実施の形態6に係る空気調和機400は、流体利用装置300、冷媒圧縮機401、凝縮器403、受液器404、膨張弁405及び蒸発器406を備える。冷媒圧縮機401と凝縮器403との間は配管で接続される。同様に、凝縮器403と受液器404との間は配管で接続され、受液器404と膨張弁405との間は配管で接続され、膨張弁405と蒸発器406との間は配管で接続され、蒸発器406と冷媒圧縮機401との間は配管で接続される。これにより、冷媒圧縮機401、凝縮器403、受液器404、膨張弁405及び蒸発器406には冷媒が循環する。なお、図27では図示が省略されているが、流体利用装置300は、図1などに示す電流検出部4a,4b、磁極位置検出部5a,5cなどを備える。
 空気調和機400では冷媒の蒸発、圧縮、凝縮、膨張という工程が繰り返し行われるため、冷媒は液体から気体へ変化し、更に気体から液体へ変化することにより、冷媒と機外空気との間で熱交換が行われる。
 蒸発器406は、低圧の状態で冷媒液を蒸発させ、蒸発器406の周囲の空気から熱を奪うことによって、冷却作用を発揮するものである。冷媒圧縮機401は、冷媒を凝縮するために蒸発器406でガス化された冷媒ガスを圧縮して、高圧のガスにするものである。凝縮器403は、冷媒圧縮機401で高温になった冷媒ガスの熱を放出することで、高圧の冷媒ガスを凝縮し、冷媒液に変換するものである。流体利用装置300は、プロペラファン300a,300bを回転することによって、風を発生させて、この風を凝縮器403に通過させることにより、凝縮器403を冷却する。膨張弁405は、冷媒を蒸発させるために、冷媒液を絞り膨張して、冷媒液を低圧の液に変換するものである。受液器404は循環する冷媒量の調節のために設けられるもので、小型の装置では省略してもよい。
 空気調和機400の大出力化に伴って凝縮器403が大型化すると、凝縮器403を冷却するための冷却装置として機能する流体利用装置300の冷却性能を増加させる必要が生じる。但し、凝縮器403の寸法を大きくするのに合わせて、冷却装置として機能する流体利用装置300の仕様変更を行うのは煩雑である。また、流体利用装置300の冷却性能を増加させるために、流体利用装置300を大出力化するためには、流体利用装置300を量産するための製造ラインの変更が必要となる場合もあり、製造ラインを構築するための初期投資がかさむ。そのため、大型の空気調和機400では、複数の冷却ファンを備えた流体利用装置300を使用することで冷却性能を向上させている。
 また、空気調和機400には、低コスト化の要求が高く、その一方で省エネルギー規制が年々強化されているため高効率化も要求されている。近年の省エネルギー規制では、定格動作点だけでなく、低出力駆動の動作点での駆動効率も重要視される。そのために冷却ファンの動作回転数の下限値を極力引き下げる必要がある。
 ここまで述べてきたとおり、特許文献1で開示される技術を用いた並列駆動装置は、コスト面では非常に優れているものの、特許文献1で開示される技術では、モータ定数に差異がある場合、磁束電流の補償方向の誤判定が生じて、誤判定に起因して持続的な振動が発生する。流体利用装置300を空気調和機400用の冷却ファンとして用いる場合、流体負荷の特性上、低速側での制御が不安定になりやすい。そのため、風量の指令値が低速の指令である場合、図1に示すリレー回路11を用いて、同期電動機の運転台数を2台から1台に減らしてもよいのだが、そうした場合、2台の同期電動機のそれぞれに発生する温度に温度差が生じる可能性がある。このような温度差が生じると、温度差に起因してモータ定数の差異が生じるため、特許文献1に開示される磁束電流の制御方法を用いた駆動装置では、磁束電流の補償方向の誤判定が生じるおそれがある。このようなことから、特許文献1に開示される磁束電流の制御方法を用いた駆動装置では、冷却ファンの動作回転数の下限値を一定値以下に下げることができず、当該駆動装置を備える空気調和機の運転動作範囲が狭まるという問題があった。従って、特許文献1に開示される磁束電流の制御方法を用いた駆動装置は、空気調和機の冷却ファンに求められる低コスト化と高冷却性能とを両立させることが困難である。
 実施の形態6に係る空気調和機400は、実施の形態1から4で述べた並列駆動法を利用しているため、低速域の駆動が不安定になることがなく、駆動可能範囲を拡大できる。また、実施の形態6に係る空気調和機400は、引用文献1に開示される磁束電流の制御方法に比べて、並列駆動を実現するためのセンサ類の追加を必要としない。従って、実施の形態6では、空気調和機400の冷却ファンに要求される低コスト化と高冷却性能とを両立させることが可能である。また、実施の形態6では、引用文献1に開示される技術に比べて、モータ定数の変動に対する信頼性を大幅に向上することができる。
 なお、実施の形態1から4に係る駆動装置100は、2台の同期電動機のそれぞれのモータ定数が全く異なる場合でも、同期電動機を安定に駆動できるため、流体利用装置300及び空気調和機400以外のあらゆる機器に適用でき、産業の発展に有用である。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1a メイン側同期電動機、1b サブ側同期電動機、2 電力変換器、3 直流電圧源、4a,4b 電流検出部、5a,5b,5c 磁極位置検出部、6,6A 電流制御部、7,7A,7B,7C 脈動成分抽出部、8,10b,61c,61d,61f 減算器、9 磁束電流指令決定部、10,10A,10B,10C,10D,10E 角度差補正部、10a,10d 補正量演算部、10c データテーブル、10e テスト信号分析部、10f 脈動成分分析部、10g オフセット量制御部、10h 共振角周波数計測部、10i フィルタ部、10j 自動探索部、11 リレー回路、61a,61b,61e,61g,61h 加算器、62a,62b PID制御器、63 非干渉化制御器、64 テスト信号発生部、71 脈動周波数計測部、72 余弦波発生器、73 正弦波発生器、74 フーリエ余弦係数演算部、75 フーリエ正弦係数演算部、76 交流復元器、91 脈動抑制制御部、92 補償方向決定部、100 駆動装置、200 電力変換器駆動装置、201 プロセッサ、202 メモリ、300 流体利用装置、300a,300b プロペラファン、400 空気調和機、401 冷媒圧縮機、403 凝縮器、404 受液器、405 膨張弁、406 蒸発器、911 ゲイン乗算部、912 位相調整部、921 符号判定器、922 乗算器。

Claims (12)

  1.  並列接続される第1の同期電動機及び第2の同期電動機に電力を供給する電力変換器と、
     前記第1の同期電動機に流れる第1の電流を検出する第1の電流検出器と、
     前記第2の同期電動機に流れる第2の電流を検出する第2の電流検出器と、
     前記第1の同期電動機が有する回転子の第1の磁極位置を検出する第1の磁極位置検出部と、
     前記第2の同期電動機が有する回転子の第2の磁極位置を検出する第2の磁極位置検出部と、
     トルク電流指令と磁束電流指令と前記第1の電流と前記第1の磁極位置とを用いて、前記第1の同期電動機を駆動するための電圧指令を出力する制御部と、
     前記第1の磁極位置と前記第2の磁極位置の差である第1の角度差を求める減算器と、
     前記第1の同期電動機及び前記第2の同期電動機のそれぞれのモータ定数の差異に基づいて、又は前記モータ定数の差異によって生じる電気的挙動を示す情報に基づいて、前記第1の角度差を補正し、補正後の角度差である第2の角度差を出力する角度差補正部と、
     前記第2の同期電動機に流れるトルク電流に含まれる脈動成分と前記第2の同期電動機で消費される有効電力に含まれる有効電力脈動成分との少なくとも一方の脈動成分を抽出する脈動成分抽出部と、
     前記第2の角度差を用いて前記磁束電流指令の補償方向を決定し、決定した前記補償方向と前記脈動成分とを用いて前記磁束電流指令を決定する磁束電流指令決定部と、
     を備えることを特徴とする駆動装置。
  2.  前記角度差補正部は、前記第1の同期電動機及び前記第2の同期電動機のそれぞれの動作条件と前記モータ定数の差異とから、前記第1の角度差の補正量を演算し、演算した前記補正量を用いて前記第1の角度差を補正することを特徴とする請求項1に記載の駆動装置。
  3.  前記角度差補正部は、
     前記第1の角度差の補正量と同期電動機の回転子の回転速度と前記モータ定数の差異とを対応付けたデータテーブルを備え、
     前記データテーブルを参照して前記モータ定数の差異及び速度指令に対応する前記第1の角度差の補正量を演算し、演算した前記補正量を用いて前記第1の角度差を補正することを特徴とする請求項1に記載の駆動装置。
  4.  前記制御部は、前記モータ定数の差異を測定するためのテスト信号を発生するテスト信号発生部を備え、
     前記角度差補正部は、
     前記テスト信号によって生じる電圧変化又は電流変化を分析するテスト信号分析部を備え、
     前記電圧変化又は前記電流変化の分析結果を用いて、前記第1の角度差を補正することを特徴とする請求項1に記載の駆動装置。
  5.  前記角度差補正部は、
     前記第2の同期電動機の脈動成分を周波数分析する脈動成分分析部と、
     前記脈動成分の高調波成分が減少するよう前記第1の角度差に対して補正量を加えるオフセット量制御部と、
     を備え、
     前記オフセット量制御部は、前記高調波成分を用いて前記第1の角度差を補正することを特徴とする請求項1に記載の駆動装置。
  6.  前記オフセット量制御部は、前記第1の角度差の補正量を変化させながら前記高調波成分の増減を調査することにより、前記高調波成分が減少する補正量を自動探索することを特徴とする請求項5に記載の駆動装置。
  7.  前記テスト信号発生部は、前記第1の同期電動機及び前記第2の同期電動機の停止時に、前記第1の同期電動機及び前記第2の同期電動機に対して、直流電圧又は直流電流の前記テスト信号を与え、
     前記テスト信号分析部は、前記第1の同期電動機及び前記第2の同期電動機のそれぞれに流れる電流の値又は電流の比率から、前記第1の同期電動機及び前記第2の同期電動機のそれぞれの電機子抵抗を計測し、
     前記角度差補正部は、前記電機子抵抗に基づいて前記第1の角度差の補正量を決定することを特徴とする請求項4に記載の駆動装置。
  8.  前記テスト信号発生部は、前記第1の同期電動機及び前記第2の同期電動機の停止時に、前記第1の同期電動機及び前記第2の同期電動機に対して、d軸方向に交流電圧又は交流電流の前記テスト信号を与え、
     前記テスト信号分析部は、前記第1の同期電動機及び前記第2の同期電動機のそれぞれに流れる電流の値又は電流の比率から、d軸インダクタンスを計測し、
     前記角度差補正部は、前記d軸インダクタンスに基づいて前記第1の角度差の補正量を決定することを特徴とする請求項4に記載の駆動装置。
  9.  前記テスト信号発生部は、前記第1の同期電動機及び前記第2の同期電動機の停止時に、前記第1の同期電動機及び前記第2の同期電動機に対して、d軸方向及びq軸方向の少なくとも一方にインパルス状の電圧の前記テスト信号を与え、
     前記テスト信号分析部は、前記第1の同期電動機及び前記第2の同期電動機のそれぞれに流れるdq電流の微小変化から、d軸インダクタンス及びq軸インダクタンスの少なくとも一方を計測し、
     前記角度差補正部は、d軸インダクタンス及びq軸インダクタンスの少なくとも一方に基づいて前記第1の角度差の補正量を決定することを特徴とする請求項4に記載の駆動装置。
  10.  前記テスト信号発生部は、前記第1の同期電動機及び前記第2の同期電動機の駆動時に、磁束電流指令の直流分を変化させ、
     前記テスト信号分析部は、前記磁束電流指令の直流分を変化させる前と後のそれぞれで前記第1の同期電動機及び前記第2の同期電動機のそれぞれに流れる電流値から電機子抵抗を計算し、
     前記角度差補正部は、前記電機子抵抗に基づいて前記第1の角度差の補正量を決定することを特徴とする請求項4に記載の駆動装置。
  11.  請求項1から10の何れか一項に記載の駆動装置を備えることを特徴とする流体利用装置。
  12.  請求項11に記載の流体利用装置を備えることを特徴とする空気調和機。
PCT/JP2018/001459 2018-01-18 2018-01-18 駆動装置、流体利用装置及び空気調和機 WO2019142302A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/001459 WO2019142302A1 (ja) 2018-01-18 2018-01-18 駆動装置、流体利用装置及び空気調和機
JP2019565638A JP6833071B2 (ja) 2018-01-18 2018-01-18 駆動装置、流体利用装置及び空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/001459 WO2019142302A1 (ja) 2018-01-18 2018-01-18 駆動装置、流体利用装置及び空気調和機

Publications (1)

Publication Number Publication Date
WO2019142302A1 true WO2019142302A1 (ja) 2019-07-25

Family

ID=67300975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001459 WO2019142302A1 (ja) 2018-01-18 2018-01-18 駆動装置、流体利用装置及び空気調和機

Country Status (2)

Country Link
JP (1) JP6833071B2 (ja)
WO (1) WO2019142302A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021118625A (ja) * 2020-01-27 2021-08-10 株式会社富士通ゼネラル センサレスモータ制御装置
CN114421818A (zh) * 2022-01-26 2022-04-29 合肥倍豪海洋装备技术有限公司 一种船用全回转推进器回转系统的负荷平衡控制方法
US20230327583A1 (en) * 2022-04-08 2023-10-12 Abb Schweiz Ag Parallel synchronous machines with single motor drive

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003116293A (ja) * 2001-10-05 2003-04-18 Fuji Electric Co Ltd Dcブラシレスモータの並列駆動回路
US20070273310A1 (en) * 2006-03-24 2007-11-29 Airbus France Power system comprising several synchronous machines synchronously self-controlled by a converter and control method for such a system
JP2012196091A (ja) * 2011-03-17 2012-10-11 Fujitsu Telecom Networks Ltd モータ駆動電流アンプとモータ駆動装置とその駆動方法とモータ駆動システム
JP2014217226A (ja) * 2013-04-26 2014-11-17 東洋電機製造株式会社 電動機制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003116293A (ja) * 2001-10-05 2003-04-18 Fuji Electric Co Ltd Dcブラシレスモータの並列駆動回路
US20070273310A1 (en) * 2006-03-24 2007-11-29 Airbus France Power system comprising several synchronous machines synchronously self-controlled by a converter and control method for such a system
JP2012196091A (ja) * 2011-03-17 2012-10-11 Fujitsu Telecom Networks Ltd モータ駆動電流アンプとモータ駆動装置とその駆動方法とモータ駆動システム
JP2014217226A (ja) * 2013-04-26 2014-11-17 東洋電機製造株式会社 電動機制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021118625A (ja) * 2020-01-27 2021-08-10 株式会社富士通ゼネラル センサレスモータ制御装置
JP7363524B2 (ja) 2020-01-27 2023-10-18 株式会社富士通ゼネラル センサレスモータ制御装置
CN114421818A (zh) * 2022-01-26 2022-04-29 合肥倍豪海洋装备技术有限公司 一种船用全回转推进器回转系统的负荷平衡控制方法
US20230327583A1 (en) * 2022-04-08 2023-10-12 Abb Schweiz Ag Parallel synchronous machines with single motor drive

Also Published As

Publication number Publication date
JP6833071B2 (ja) 2021-02-24
JPWO2019142302A1 (ja) 2020-04-09

Similar Documents

Publication Publication Date Title
JP7113939B2 (ja) 駆動装置及び空気調和機
KR100724667B1 (ko) 동기 전동기의 제어 장치, 전기 기기 및 모듈
JP6622452B2 (ja) モータ制御装置、圧縮機、空気調和機およびプログラム
JP6537725B2 (ja) 交流電動機の速度推定装置、交流電動機の駆動装置、冷媒圧縮機および冷凍サイクル装置
JP5326429B2 (ja) 電動機の脈動抑制装置
JP5877733B2 (ja) 電動モータの制御装置
JP6456650B2 (ja) モータ制御装置、圧縮機、空気調和機およびプログラム
JP2006191737A (ja) モータ制御装置及びこれを有するモータ駆動システム
WO2019142302A1 (ja) 駆動装置、流体利用装置及び空気調和機
US11499537B2 (en) Closed loop torque compensation for compressor applications
JP5644203B2 (ja) 回転電気機械のトルクリプル抑制制御装置および制御方法
JP4906819B2 (ja) 圧縮機およびトルク制御装置並びに空気調和機
JP7218700B2 (ja) モータ制御装置
JP3995377B2 (ja) 冷凍サイクルの制御装置及びその方法
EP3998702B1 (en) Driving device, fluid utilization device, and air conditioner
US11705847B2 (en) Drive device for AC motor, compressor drive device, and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901370

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565638

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901370

Country of ref document: EP

Kind code of ref document: A1