WO2019140817A1 - 一种视网膜假体植入芯片的封装结构及其封装方法 - Google Patents

一种视网膜假体植入芯片的封装结构及其封装方法 Download PDF

Info

Publication number
WO2019140817A1
WO2019140817A1 PCT/CN2018/087067 CN2018087067W WO2019140817A1 WO 2019140817 A1 WO2019140817 A1 WO 2019140817A1 CN 2018087067 W CN2018087067 W CN 2018087067W WO 2019140817 A1 WO2019140817 A1 WO 2019140817A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
metal
substrate
cover
glass substrate
Prior art date
Application number
PCT/CN2018/087067
Other languages
English (en)
French (fr)
Inventor
杨佳威
杨旭燕
於广军
Original Assignee
杭州暖芯迦电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州暖芯迦电子科技有限公司 filed Critical 杭州暖芯迦电子科技有限公司
Priority to US16/962,788 priority Critical patent/US11478654B2/en
Priority to EP18900745.3A priority patent/EP3741326B1/en
Priority to AU2018403777A priority patent/AU2018403777B2/en
Priority to ES18900745T priority patent/ES2963666T3/es
Priority to JP2020539259A priority patent/JP7095912B2/ja
Publication of WO2019140817A1 publication Critical patent/WO2019140817A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • H01L23/055Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body the leads having a passage through the base
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0543Retinal electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36046Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the eye
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/3756Casings with electrodes thereon, e.g. leadless stimulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/007Interconnections between the MEMS and external electrical signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00301Connecting electric signal lines from the MEMS device with external electrical signal lines, e.g. through vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • H01L23/08Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/3752Details of casing-lead connections
    • A61N1/3754Feedthroughs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/06Bio-MEMS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/01Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS
    • B81B2207/012Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS the micromechanical device and the control or processing electronics being separate parts in the same package
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/09Packages
    • B81B2207/091Arrangements for connecting external electrical signals to mechanical structures inside the package
    • B81B2207/094Feed-through, via
    • B81B2207/095Feed-through, via through the lid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0109Bonding an individual cap on the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/07Integrating an electronic processing unit with a micromechanical structure
    • B81C2203/0785Transfer and j oin technology, i.e. forming the electronic processing unit and the micromechanical structure on separate substrates and joining the substrates
    • B81C2203/0792Forming interconnections between the electronic processing unit and the micromechanical structure

Definitions

  • the invention relates to the field of medical instruments, in particular to a package structure of a retinal prosthesis implanted chip and a packaging method thereof.
  • Implantable neurostimulators have a wide range of applications in medicine. As an important tool for the treatment of neurological diseases, microelectrode stimulators have attracted more and more attention and have become an important research direction.
  • the stimulating electrodes of the retinal prosthesis are microelectrodes of flexible MEMS.
  • the microelectrodes are connected to the outer wall of the eyeball by a plurality of connecting wires, and the connecting electrodes on the stimulating electrodes inside the eyeball do not need to be connected, so For a very tight airtight package, simply wrap the silicone on the surface.
  • the chip For such a retinal stimulating electrode that needs to be flip-chip connected to the ASIC chip on the microelectrode, the chip must be hermetically sealed, on the one hand, the chip is not corroded by the human body fluid environment, and on the other hand, the substance in the package body is prevented from being applied to the human body. The organization caused an adverse reaction.
  • the present invention provides a package structure of a retinal prosthesis implanted chip, as follows:
  • a package structure of a retinal prosthesis implanted chip comprising a stimulating electrode assembly, the stimulating electrode assembly comprising a glass substrate on which a plurality of stimulating electrodes and a pad structure for signal connection with an external body are disposed
  • An ASIC chip is further connected to the stimulating electrode assembly, and the ASIC chip is covered with a package cover.
  • the package cover is made of a glass material, and the package cover is further provided with a stimulating electrode assembly.
  • a connected metal feedthrough structure is implemented that encapsulates the pad structure and the ASIC chip.
  • the substrate of the stimulating electrode is a glass substrate, and a glass substrate can be used to process a high-density stimulating electrode thereon.
  • the package cover is also made of glass material.
  • the glass cover encapsulates the ASIC chip and the pad structure, and directly connects the metal feedthrough structure and the pad structure on the glass cover to realize signal connection, and does not need to be connected from the inside of the package body, and the sealing effect is good. .
  • the stimulation electrode assembly has a stimulation portion for stimulating the retina, and a pad structure on the glass substrate is disposed on a side opposite to the stimulation portion, and the metal feedthrough structure on the package cover A top portion of the package lid is placed through the glass from top to bottom and aligned to the pad structure.
  • the pad structure is used for signal connection with the outside, and if it is connected to the same side of the stimulation electrode stimulation portion, it is easy to interfere with the stimulation portion during the packaging process, so in the present invention, the pad structure on the glass substrate is set. On the opposite side of the stimulus.
  • the pad structure is plural, and the metal feedthrough structure is also plural.
  • the thermal expansion coefficient of the package cover and the metal feedthrough structure therein is matched.
  • the glass cover and the glass substrate are sealed together by laser welding.
  • a UBM layer is deposited on the contact surface of the inside of the package cover and the glass substrate, and a UBM layer is deposited on the peripheral surface of the glass substrate and the contact portion of the glass cover, in the metal feedthrough structure.
  • a UBM layer is also deposited on the contact portion of the pad structure, and the glass cover and the glass base are connected by Au-Au bonding, and the metal feedthrough structure and the glass cover are The pad structures on the glass pedestals are also joined together by Au-Au bonding.
  • the glass cover and the glass substrate are sealed together by laser welding, and the metal feedthrough structure on the glass cover and the pad structure on the glass base are bonded by Au-Au or tin. Welding or laser welding is connected together.
  • the pad structure and the metal feedthrough structure are connected together by a signal connection line.
  • the invention also provides a packaging method for a retinal prosthesis implanted chip, comprising the following steps:
  • S1 providing a metal substrate, processing the metal substrate to form a stimulating electrode assembly having a glass substrate, and processing a plurality of stimulating electrodes and a pad structure for realizing signal connection on the stimulating electrode assembly, at the stimulating electrode Soldering the ASIC chip on the component;
  • S3 Covering the glass cover on the glass substrate, the metal feedthrough structure on the glass cover is aligned with the pad structure on the glass substrate and connected, and the glass cover and the glass substrate are sealed around the glass cover to realize the connection between the glass cover and the glass substrate.
  • the specific processing method for the metal substrate is as follows:
  • One side is processed so that the metal post in the glass substrate protrudes from the glass surface to form a stimulating portion, and a stimulating electrode having a glass substrate is integrally formed.
  • a glass material is processed by using a glass material to form a glass cover having a cavity, and then a metal feedthrough structure is embedded in the glass cover.
  • the method of processing the glass cover with the metal feedthrough is as follows:
  • the specific packaging process is as follows:
  • the specific packaging process in the step 3 is as follows:
  • the substrate and the package cover of the stimulating electrode are made of glass material.
  • the glass cover also encapsulates the pad structure on the glass substrate to prevent the pad structure from being exposed, and the gas is prone to occur during soldering. Defects in the sealing problem;
  • a metal feedthrough structure is arranged on the glass cover, and the metal feedthrough structure directly contacts the pad structure on the glass substrate to realize signal connection, which can conveniently realize signal connection and avoid problems of airtightness;
  • the pad structure and the feedthrough structure on the glass cover are connected by Au-Au thermocompression bonding, and the Au-Au thermocompression bonding method can be used at a lower temperature. Under the connection, to avoid high temperature impact on the chip.
  • the stimulating electrode member is processed by a glass filling method, so that the high-density stimulating electrode assembly can be realized.
  • Figure 1 is a schematic view showing the structure of a stimulating electrode assembly of the present invention
  • Figure 2 is a schematic view showing the structure of a glass substrate with a metal post
  • FIG. 3 is a schematic structural view of a first embodiment of a package of the present invention.
  • FIG. 4 is a schematic structural view of a second embodiment of a package according to the present invention.
  • Figure 5 is a schematic structural view of a third embodiment of the package of the present invention.
  • FIG. 6 is a schematic diagram of a packaging process in the present invention.
  • Figure 7 is a schematic view showing the flow of a stimulating electrode with a glass substrate in the present invention.
  • Figure 8 is a schematic view of a stimulating electrode with a glass substrate processed in the present invention.
  • 1 is the stimulation electrode assembly
  • 2 is the package cover
  • 3 is the glass substrate
  • 4 is the stimulation electrode
  • 41 is the stimulation part
  • 5 is the pad structure
  • 6 is the ASIC chip
  • 7 is the metal feedthrough structure
  • 8 is the UBM precipitation layer.
  • the present invention first demonstrates a package structure for a retinal prosthesis implanted chip, comprising a stimulating electrode assembly 1 comprising a glass substrate 3, a plurality of stimulating electrodes 4 disposed on the glass substrate 3, and for external implementation.
  • a signal-connected pad structure 5 the stimulating electrode assembly 1 is formed by cutting a metal substrate and casting glass, and a high-density stimulating electrode can be fabricated, and an ASIC chip 6 is connected to the stimulating electrode assembly, and the ASIC chip 6 is passed through The flip-chip soldering and the stimulating electrodes are connected together.
  • the ASIC chip 6 Since the ASIC chip 6 is implanted inside the human eyeball, in order to prevent the body fluid from eroding the chip, the ASIC chip 6 is covered with a package cover 2, and the package cover 2 is further provided with a signal connection with the stimulation electrode assembly 1.
  • the metal feedthrough structure 7 encloses the pad structure 5 and the ASIC chip 6.
  • the package cover In order to ensure the airtightness of the package, the package cover is also made of a glass material, and the glass cover encapsulates the ASIC chip 6 and the pad structure 5 directly through the metal feedthrough structure 7 and the pad structure 5 on the glass cover 2.
  • the connection realizes the signal connection, and it is not necessary to lead the connection line from the inside of the package body, and the sealing effect is good.
  • the pad structure 5 on the glass substrate 3 is disposed on the opposite side of the stimulation portion 41, and the metal feedthrough structure 7 on the package cover 2 is disposed at the top of the package cover 2 from the top to the bottom through the glass and aligned with the welding Disk structure 5.
  • the pad structure 5 is used for signal connection with the outside. If it is connected to the same side of the stimulation portion 4 of the stimulation electrode 4, the signal connection line may affect the stimulation portion and the retina, which may affect the stimulation effect.
  • the pad structure on the glass substrate is disposed on the opposite side of the stimulation portion.
  • the thermal expansion coefficient of the glass package cover 2 and the metal feedthrough structure 7 therein is generally matched.
  • the glass cover 2 is covered on the glass substrate 3.
  • the connection of the pad structure and the metal feedthrough structure and the glass cover glass can be realized by Au-Au bonding.
  • the sealing of the substrate is specifically as follows:
  • a UBM layer is deposited on the contact surface between the inside of the package cover 2 and the glass substrate 3, and a UBM layer is deposited on the peripheral surface of the glass substrate and the contact portion of the glass cover, and UBM is precipitated at the contact portion between the metal feedthrough structure and the pad structure.
  • the layer, the glass cover and the glass base are connected by Au-Au bonding, the metal feedthrough structure on the glass cover and the pad structure on the glass base are also connected by Au-Au bonding.
  • the invention also provides a packaging method for a retinal prosthesis implanted chip, comprising the following steps:
  • S1 providing a metal substrate, processing the metal substrate to form a stimulating electrode assembly having a glass substrate, the stimulating electrode assembly comprising a plurality of stimulating electrodes and a pad structure for implementing signal connection, on the stimulating electrode assembly Soldering ASIC chip;
  • S3 Covering the glass cover on the glass substrate, the metal feedthrough structure on the glass cover is aligned with the pad structure on the glass substrate and connected, and the glass cover and the glass substrate are sealed around the glass cover to realize the connection between the glass cover and the glass substrate.
  • the metal substrate processing method of the first step is specifically as follows:
  • a stimulating electrode having a glass substrate After the above steps are completed, one side is further processed, and the glass substrate around one of the metal pillars is removed by a cutting method, so that the metal pillars in the glass substrate protrude from the glass surface to form a stimulating portion, and the whole is formed.
  • a stimulating electrode having a glass substrate After the above steps are completed, one side is further processed, and the glass substrate around one of the metal pillars is removed by a cutting method, so that the metal pillars in the glass substrate protrude from the glass surface to form a stimulating portion, and the whole is formed.
  • a stimulating electrode having a glass substrate.
  • the metal substrate on which the metal pillar and the pad structure are processed generally adopts titanium or platinum or ruthenium or iridium or gold. It is made of a biocompatible metal material such as its alloy.
  • the thickness of the metal substrate is generally between 0.3 mm and 1.5 mm, which ensures the length of the cut metal column, and does not reduce the processing efficiency because the metal layer is too thick during the subsequent double-sided thinning process. .
  • the depth of the metal column is generally 150 um to 1000 um, and the diameter or side length of the cut metal column is 50 um to 150 um, and the specific value may be changed according to actual needs.
  • the whole substrate is often heated, so as to avoid a gap formed between the glass substrate and the metal column therein due to the temperature rise, the molten casting
  • the coefficient of thermal expansion of the glass matches the coefficient of thermal expansion of the metal substrate.
  • the processing method of the glass cover with the metal feedthrough structure of the second step is as follows:
  • Cutting with a glass material forms a glass cover with a cavity, and then a metal feedthrough structure is embedded in the glass cover.
  • step 3 the specific packaging method in step 3 is as follows:
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the metal feedthrough structure on the glass cover realizes the signal connection with the pad structure by means of Au-Au thermocompression bonding, and the periphery of the glass cover is also sealed by the Au-Au thermocompression bonding and the metal substrate.
  • the thermocompression bonding temperature is generally between 150 ° C and 400 ° C, so that it does not damage the chip due to excessive temperature.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the glass cover and the glass substrate are sealed together by laser welding, and the metal feedthrough structure on the glass cover and the pad structure on the glass base are connected by Au-Au bonding or soldering or laser welding.
  • Embodiment 3 The glass cover and the glass substrate are sealed by laser welding or other soldering, and the metal feedthrough structure on the glass cover and the pad structure on the substrate are connected by a signal connection line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Prostheses (AREA)
  • Electrotherapy Devices (AREA)

Abstract

本发明涉及医疗器械领域,具体来说属于一种视网膜假体植入芯片的封装结构及其封装方法,包括通过玻璃基底加工而成的高密度刺激电极组件,该刺激电极组件包括玻璃基底和设置玻璃基底上的若干个刺激电极以及焊盘结构,刺激电极通过在金属上切割出金属柱然后经过玻璃浇筑的方式加工而成,在刺激电极组件上连接有ASIC芯片,在ASIC芯片上盖合有玻璃封装封装盖,在玻璃封装盖上设置有用来和刺激芯片实现连通的金属馈通结构,封装盖将所述焊盘结构盖合封装在内。本发明中的封装结构,基底和封装盖均采用玻璃材质制成,可制作出高密度的刺激电极阵列,并且在玻璃盖上直接采用金属馈通结构,引线便捷,封装盖密封效果好。

Description

一种视网膜假体植入芯片的封装结构及其封装方法 技术领域
本发明涉及医疗器械领域,具体来说属于一种视网膜假体植入芯片的封装结构及其封装方法。
背景技术
植入式神经刺激器在医学上有着广泛的应用,微电极刺激器作为治疗神经疾病方面的重要工具,越来越受到人们广泛的关注,已成为当前重要的研究方向。
当前大部分视网膜假体的刺激电极都是柔性MEMS的微电极,这种微电极采用多根连接线连接到眼球外壁的封装体上,在眼球内部的刺激电极上不需要连接芯片,因此不需要进行非常严格的气密性封装,仅需在表面进行硅胶包裹即可。
为了提高视网膜假体的性能,一些研究方向是加大刺激电极的密度,提高其刺激效果。当刺激电极的密度加大之后,刺激电极的数量变多,连接线的数量就会变得非常多,因此造成连接不便,手术创伤大。为了解决这个问题,我司的研究方向是在眼球内部的刺激电极上还设置有ASIC芯片。
对于这种需要在微电极上倒装连接ASIC芯片的视网膜刺激电极,必须对芯片进行气密性封装,一方面保证芯片不受人体体液环境的腐蚀,另一方面防止封装体内的物质对人体的组织造成不良反应。
但是如何保证其密封效果,提高其密封可靠性是一个非常大的难 题。
发明内容
为了提高上述的芯片的封装可靠性,本发明提供了一种视网膜假体植入芯片的封装结构,具体如下:
一种视网膜假体植入芯片的封装结构,包括刺激电极组件,所述刺激电极组件包括玻璃基底,在所述玻璃基底上设置有若干个刺激电极以及用来和外部实现信号连接的焊盘结构,在所述刺激电极组件上还连接有ASIC芯片,在所述ASIC芯片上盖合有封装盖,所述封装盖为玻璃材质制成,在所述封装盖上还设置有用来和刺激电极组件实现连通的金属馈通结构,所述封装盖将所述焊盘结构和ASIC芯片封装在内。在本发明中刺激电极的基底为玻璃基底,使用玻璃材质的基底可以在上面加工出高密度的刺激电极,为了保证封装盖严密的封装在玻璃材质的基底上,封装盖也为玻璃材质制成,玻璃盖将ASIC芯片和焊盘结构都封装在内,直接通过玻璃盖上的金属馈通结构和焊盘结构连接实现信号接出,不需要从封装体内部接引连接线出来,密封效果好。
优选的,在所述刺激电极组件上有对视网膜进行刺激的刺激部,所述玻璃基底上的焊盘结构设置在与所述刺激部相反的一面上,所述封装盖上的金属馈通结构设置在封装盖顶部自上向下贯穿所述玻璃并且对准所述焊盘结构。焊盘结构用来和外部实现信号连接,如果将其接在刺激电极刺激部的同一侧,在封装的过程中容易对刺激部造成干涉,所以在本发明中,玻璃基底上的焊盘结构设置在与所述刺激部 相反的一面上。
优选的,所述焊盘结构为多个,所述金属馈通结构也为多个。
优选的,所述封装盖和其中的金属馈通结构的热膨胀系数相匹配。
优选的,所述玻璃盖和所述玻璃基底通过激光焊接的方式密封在一起。
优选的,在所述封装盖内侧和所述玻璃基底的接触面上沉淀有UBM层,在所述玻璃基底四周面上和所述玻璃盖接触部位也有沉淀UBM层,在所述金属馈通结构和所述焊盘结构接触部位也均沉淀有UBM层,所述玻璃盖和所述玻璃基座四周通过Au-Au键合的方式连接在一起,所述玻璃盖上的金属馈通结构和所述玻璃基座上的焊盘结构也通过Au-Au键合的方式连接在一起。
优选的,所述玻璃盖和所述玻璃基底通过激光焊接的方式密封在一起,所述玻璃盖上的金属馈通结构和所述玻璃基座上的焊盘结构通过Au-Au键合或者锡焊或者激光焊接的方式连接在一起。
优选的,所述焊盘结构和所述金属馈通结构通过信号连接线连接在一起。
本发明还提供了一种视网膜假体植入芯片的封装方法,包括以下步骤:
S1:提供一金属衬底,对金属衬底进行加工,形成具有玻璃基底的刺激电极组件,在该刺激电极组件上加工出多个刺激电极和用来实现信号连接的焊盘结构,在刺激电极组件上焊接ASIC芯片;
S2:加工出带有金属馈通的玻璃盖;
S3:将玻璃盖盖合在玻璃基底上,玻璃盖上的金属馈通结构对准玻璃基底上的焊盘结构并且实现连接,将玻璃盖四周和玻璃基底密封,实现玻璃盖和玻璃基底的连接封装。
优选的,在所述步骤1中,对金属衬底具体的加工方法如下:
(1):提供一金属衬底,在金属衬底上切割出若干金属柱和焊盘结构;
(2):对切割出的金属柱进行玻璃填充,使得切割出的金属柱全部被玻璃覆盖;
(3):对进行玻璃熔填充的金属衬底进行双面减薄,将金属衬底切割面的玻璃覆盖层减薄,直至露出金属柱为止,将金属衬底另外一面的金属衬底减薄去掉,直至到全部露出到填充的玻璃基底面为止;
(4):对其中一面进行加工,使玻璃基底中的金属柱凸出于玻璃面形成刺激部,整体形成具有玻璃基底的刺激电极。
优选的,在所述步骤2中,利用玻璃材料进行加工形成具有空腔的玻璃盖,然后在玻璃盖上嵌入金属馈通结构。
优选的,在所述步骤2中,加工带有金属馈通的玻璃盖的方法如下:
(1):提供一金属衬底,对金属衬底进行切割形成金属柱;
(2):对切割出的金属柱进行玻璃填充;
(3):对进行玻璃填充后的金属衬底进行加工,将金属面减薄去掉,形成带有金属馈通的玻璃结构,对其进行加工形成具有内凹腔的玻璃盖。
优选的,在所述步骤3中,具体的封装工艺如下:
(1):在玻璃盖和所述玻璃基底的接触面上沉淀UBM层,在所述玻璃基底四周面上和所述玻璃盖接触部位也沉淀UBM层;
(2):在所述馈通结构和所述焊盘结构接触部位上沉淀UBM层;
(3):将玻璃盖准确放置到玻璃微基底上,将玻璃基底上的焊盘结构和ASIC芯片均封装在内,并且使得玻璃盖上的金属馈通结构对准玻璃基底上的焊盘结构,玻璃盖的四周和玻璃基底紧密接触;
(4):对玻璃盖四周和玻璃基底接触的位置进行Au-Au热压健合,对玻璃盖金属馈通结构和焊盘结构接触的位置进行Au-Au热压键合。
优选的,在所述步骤3中具体的封装工艺如下:
(1):将玻璃盖放置到玻璃基底上,将玻璃基底上的焊盘结构和ASIC芯片均封装在内,将玻璃盖上的金属馈通结构对准玻璃基底上的焊盘结构,利用Au-Au键合或者锡焊或者激光焊接的方式实现金属馈通结构和焊盘结构的连接。
(2):使得玻璃盖的四周和玻璃基底紧密接触,对玻璃盖四周和玻璃基底接触的位置进行激光焊接。
本发明的有益效果:
1、刺激电极的基底和封装盖都是采用玻璃材料制成,在封装芯片时,玻璃盖同时将玻璃基底上的焊盘结构也封装在内,避免焊盘结构裸露在外,焊接时容易出现气密封性问题的缺陷;
2、在玻璃盖上设置有金属馈通结构,金属馈通结构直接和玻璃 基底上的焊盘结构相接触实现信号连通,可以便捷的实现信号接出,避免气密性出现问题;
3、在气密性封装过程中,利用Au-Au热压键合的方式对焊盘结构和玻璃盖上的馈通结构进行连接,Au-Au热压键合的方式的可以在较低温度下实现连接,避免高温对芯片造成影响。
4、采用玻璃填充的方法加工出了刺激电极部件,使得高密度刺激电极组件得以实现。
附图说明
图1为本发明中刺激电极组件结构示意图;
图2加工出带有金属柱的玻璃基底结构示意图;
图3为本发明封装体实施例一结构示意图;
图4为本发明封装体实施例二结构示意图;
图5为本发明封装体实施例三结构示意图;
图6为本发明中封装流程示意图;
图7为本发明中加工出带有玻璃基底刺激电极流程示意图;
图8为本发明中加工出带有玻璃基底刺激电极示意图。
其中1为刺激电极组件,2为封装盖,3为玻璃基底,4为刺激电极,41为刺激部,5为焊盘结构,6为ASIC芯片,7为金属馈通结 构,8为UBM沉淀层。
具体实施方式
为了便于对本发明的进一步理解,下面结合附图对其进行进一步阐述:
本发明首先展示了一种视网膜假体植入芯片的封装结构,包括刺激电极组件1,该刺激电极组件包括玻璃基底3、在玻璃基底3上设置有若干个刺激电极4以及用来和外部实现信号连接的焊盘结构5,该刺激电极组件1通过金属衬底切割后浇筑玻璃制成,可以制作出高密度的刺激电极,在刺激电极组件上还连接有ASIC芯片6,该ASIC芯片6通过倒装焊和刺激电极连接在一起,ASIC芯片上有少量的信号传输总控制点,这些数量传输总控制点通过少量的连接线和眼球外部的通讯组件进行信号互联,大大减少中间连接线的数量。由于该ASIC芯片6植入到人体眼球内部,为了避免体液侵蚀芯片造成毁坏,因此在ASIC芯片6上盖合有封装盖2,在封装盖2上还设置有用来和刺激电极组件1实现信号连通的金属馈通结构7,该封装盖2将所述焊盘结构5和ASIC芯片6封装在内。为了保证封装的气密性,封装盖也为玻璃材质制成,玻璃盖将ASIC芯片6和焊盘结构5都封装在内,直接通过玻璃盖2上的金属馈通结构7和焊盘结构5连接实现信号接出,不需要从封装体内部将连接线引出来,密封效果好。
玻璃基底3上的焊盘结构5设置在与刺激部41相反的一面上,封 装盖2上的金属馈通结构7设置在封装盖2顶部自上向下贯穿所述玻璃并且对准所述焊盘结构5。焊盘结构5用来和外部实现信号连接,如果将其接在刺激电极4刺激部41的同一侧,由此可能会造成信号连接线影响刺激部和视网膜贴合,影响刺激效果,所以在本发明中,玻璃基底上的焊盘结构设置在与所述刺激部相反的一面上。
为了避免的焊接或者加工过程中受热造成金属馈通结构和玻璃封装盖热胀冷缩发生间隙,一般来讲,玻璃封装盖2和其中的金属馈通结构7的热膨胀系数相匹配。
将玻璃盖2盖合在玻璃基底3上,为了实现玻璃盖对玻璃基底的有效封装,可全部利用Au-Au键合的方式实现焊盘结构和金属馈通结构的连接,以及玻璃盖合玻璃基底的密封,具体为:
在封装盖2内侧和玻璃基底3的接触面上沉淀有UBM层,在玻璃基底四周面上和玻璃盖接触部位也有沉淀UBM层,在金属馈通结构和焊盘结构接触部位也均沉淀有UBM层,玻璃盖和玻璃基座四周通过Au-Au键合的方式连接在一起,玻璃盖上的金属馈通结构和所述玻璃基座上的焊盘结构也通过Au-Au键合的方式连接在一起。
也可以利用激光焊接将玻璃盖2和玻璃基底3通的密封在一起,玻璃盖上的金属馈通结构7和玻璃基底3上的焊盘结构5通过Au-Au键合或者锡焊或者激光焊接等方式连接在一起。
本发明还提供了一种视网膜假体植入芯片的封装方法,包括以下步骤:
S1:提供一金属衬底,对金属衬底进行加工形成具有玻璃基底 的刺激电极组件,在该刺激电极组件上包含多个刺激电极和用来实现信号连接的焊盘结构,在刺激电极组件上焊接ASIC芯片;
S2:加工出带有金属馈通的玻璃盖;
S3:将玻璃盖盖合在玻璃基底上,玻璃盖上的金属馈通结构对准玻璃基底上的焊盘结构并且实现连接,将玻璃盖四周和玻璃基底密封,实现玻璃盖和玻璃基底的连接封装。
在上面的加工方法中,第一步的金属衬底加工方法具体如下:
(1):提供一金属衬底,在金属衬底上切割出若干金属柱;该切割方式可以利用激光来进行切割也可以利用机械来进行切割,切割出的金属柱呈阵列排布,在切割的同时一般也会切割出焊盘结构。
(2):对切割出的金属柱进行玻璃熔融浇筑,将熔融的玻璃浇筑在金属柱上,使得切割出的金属柱全部被玻璃覆盖;
(3):等到玻璃浇筑层冷却后成型后,对进行玻璃熔融浇筑的金属衬底进行双面减薄,将金属衬底切割面的玻璃覆盖层减薄直至露出金属柱为止,将金属衬底另外一面的金属衬底减薄去掉,直至到全部露出到浇筑的玻璃基底面为止。这样就可以完全去掉金属层,保留一个具有玻璃基底,并且上面一体成型包括多个刺激电极的神经刺激器。
(4):完成上述步骤后,对其中一面进行进一步加工,利用切割的方法,将其中一面金属柱四周的玻璃基底去掉,使玻璃基底中的金属柱凸出于玻璃面形成刺激部,整体形成具有玻璃基底的刺激电极。
由于该神经刺激器需要植入到人体组织内部,对其使用材料的生物相容性要求较高,所以加工出金属柱和焊盘结构的金属衬底一般采 用钛或铂或铱或钽或金或其合金等具有生物相容性的金属材料制成。
该金属衬底的厚度在一般在0.3mm-1.5mm之间,这样可保证切割出的金属柱的长度,同时在后续双面减薄的过程中也不会因为金属层太厚而降低加工效率。同时为了保证玻璃基底的厚度以及刺激部的刺激长度,切割出金属柱的深度为一般为150um-1000um,切割的金属柱的直径或者边长为50um-150um其具体数值可以根据实际需求发生变化。
在后续操作过程中,由于需要对该神经刺激器进行信号连接或者将其焊接芯片,基底整体经常会受热,为避免其由于升温造成玻璃基底和其中的金属柱之间形成间隙,该熔融浇筑的玻璃的热膨胀系数和所述金属衬底的热膨胀系数相匹配。
在上面的加工方法中,第二步的带有金属馈通结构的玻璃盖的加工方法如下:
利用玻璃材料进行切割形成具有空腔的玻璃盖,然后在玻璃盖上嵌入金属馈通结构。
也可以采用如下方法:
(1):提供一金属衬底,对金属衬底进行切割形成金属柱;
(2):对切割出的金属柱进行玻璃熔融浇筑;
(3):对进行熔融浇筑后的金属衬底进行加工,将金属面减薄去掉,形成带有金属馈通的玻璃结构,对其进行切割形成具有内凹腔的玻璃盖。
在上面的加工方法中,步骤3中的具体的封装方法如下:
实施例一:
(1):在璃盖和玻璃基底的接触面上沉淀UBM层,在玻璃基底四周面上和所述玻璃盖接触部位也沉淀UBM层;
(2):在金属馈通结构和焊盘结构接触部位上沉淀UBM层;
(3):将玻璃盖准确放置到玻璃微基底上,将玻璃基底上的焊盘结构和ASIC芯片均封装在内,并且使得玻璃盖上的金属馈通结构对准玻璃基底上的焊盘结构,玻璃盖的四周和玻璃基底紧密接触;
(4):对玻璃盖四周和玻璃基底接触的位置进行Au-Au热压键合,对玻璃盖金属馈通结构和焊盘结构接触的位置进行Au-Au热压键合。
此时玻璃盖上的金属馈通结构通过Au-Au热压键合的方式实现和焊盘结构的信号连接,玻璃盖四周也是通过Au-Au热压键合的方式实现和金属基底的密封,热压键合温度一般在150℃-400℃之间,使其不会因为温度过高造成对芯片的损伤。
实施例二:
(1):将玻璃盖放置到玻璃基底上,将玻璃基底上的焊盘结构和ASIC芯片均封装在内,将玻璃盖上的金属馈通结构对准玻璃基底上的焊盘结构,利用Au-Au键合或者锡焊或者激光焊接的方式实现金属馈通结构和焊盘结构的连接。
(2):使得玻璃盖的四周和玻璃基底紧密接触,对玻璃盖四周和玻璃基底接触的位置进行激光焊接。
此时利用激光焊接将玻璃盖和玻璃基底密封在一起,玻璃盖上的 金属馈通结构和玻璃基座上的焊盘结构通过Au-Au键合或者锡焊或者激光焊接等方式连接在一起。
实施例三:玻璃盖和玻璃基底采用激光焊接或者其它焊接的方式密封,玻璃盖上的金属馈通结构和基底上的焊盘结构通过信号连接线连接。
以上实施例仅为本发明的较佳实施例而已,并不用以限定本发明,应当指出的是,凡在本发明的精神和原则之内做出的任何修改、等同替换、改进等均在本发明的保护范围之内。

Claims (14)

  1. 一种视网膜假体植入芯片的封装结构,其特征在于,包括刺激电极组件,所述刺激电极组件包括玻璃基底、在所述玻璃基底上设置有若干个刺激电极以及用来和外部实现信号连接的焊盘结构,在所述刺激电极组件上还连接有ASIC芯片,在所述ASIC芯片上盖合有封装盖,所述封装盖为玻璃材质制成,在所述封装盖上还设置有用来和刺激电极组件实现连通的金属馈通结构,所述封装盖将所述焊盘结构和ASIC芯片封装在内。
  2. 根据权利要求1所述的一种视网膜假体植入芯片的封装结构,其特征在于,在所述刺激电极组件上有对视网膜进行刺激的刺激部,所述玻璃基底上的焊盘结构设置在与所述刺激部相反的一面上,所述封装盖上的金属馈通结构设置在封装盖顶部自上向下贯穿所述玻璃并且对准所述焊盘结构。
  3. 根据权利要求1所述的一种视网膜假体植入芯片的封装结构,其特征在于,所述焊盘结构为多个,所述金属馈通结构也为多个。
  4. 根据权利要求1所述的一种视网膜假体植入芯片的封装结构,其特征在于,所述封装盖和其中的金属馈通结构的热膨胀系数相匹配。
  5. 根据权利要求1-4所述的一种视网膜假体植入芯片的封装结构,所述玻璃盖上的金属馈通结构和所述玻璃基座上的焊盘结构通过Au-Au键合或者锡焊的方式连接在一起。
  6. 根据权利要求5中任意一项所述的一种视网膜假体植入芯片 的封装结构,所述玻璃盖和所述玻璃基底通过激光焊接的方式密封在一起。
  7. 根据权利要求1-4中任意一项所述的一种视网膜假体植入芯片的封装结构,其特征在于,在所述封装盖和所述玻璃基底的接触面上沉淀有UBM层,在所述玻璃基底四周面上和所述玻璃盖接触部位也有沉淀UBM层,在所述金属馈通结构和所述焊盘结构接触部位也均沉淀有UBM层,所述玻璃盖和所述玻璃基座四周通过Au-Au键合的方式连接在一起,所述玻璃盖上的金属馈通结构和所述玻璃基座上的焊盘结构也通过Au-Au键合的方式连接在一起。
  8. 根据权利要求1-4中任意一项所述的一种视网膜假体植入芯片的封装结构,其特征在于,所述焊盘结构和所述金属馈通结构通过信号连接线连接在一起。
  9. 一种视网膜假体植入芯片的封装方法,其特征在于,包括以下步骤:
    S1:提供一金属衬底,对金属衬底进行加工,形成具有玻璃基底的刺激电极组件,在该刺激电极组件上加工出多个刺激电极和用来实现信号连接的焊盘结构,在刺激电极组件上焊接ASIC芯片;
    S2:加工出带有金属馈通结构的玻璃盖;
    S3:将玻璃盖盖合在玻璃基底上,玻璃盖上的馈通结构对准玻璃基底上的焊盘结构并且实现连接,将玻璃盖四周和玻璃基底 密封,实现玻璃盖和玻璃基底的连接封装。
  10. 根据权利要求9所述的一种视网膜假体植入芯片的封装方法,其特征在于,在所述步骤1中,对金属衬底具体的加工方法如下:
    (1):提供一金属衬底,在金属衬底上切割出若干金属柱和焊盘结构;
    (2):对切割出的金属柱进行玻璃填充,使得切割出的金属柱全部被玻璃覆盖;
    (3):对进行玻璃熔融浇筑后的金属衬底进行双面减薄,将金属衬底切割面的玻璃覆盖层减薄,直至露出金属柱为止,将金属衬底另外一面的金属衬底减薄,直至到全部露出到填充的玻璃基底面为止;
    (4):对其中一面进行加工,使玻璃基底中的金属柱在玻璃面形成刺激部,整体形成具有玻璃基底的刺激电极。
  11. 根据权利要求9所述的一种视网膜假体植入芯片的封装方法,其特征在于,在所述步骤2中,对玻璃材料进行加工形成具有空腔的玻璃盖,然后在玻璃盖上嵌入金属馈通结构。
  12. 根据权利要求9所述的一种视网膜假体植入芯片的封装方法,其特征在于,在所述步骤2中,加工带有金属馈通结构的玻璃盖的方法如下:
    (1):提供一金属衬底,对金属衬底进行切割形成金属柱;
    (2):对切割出的金属柱进行玻璃填充;
    (3):对进行玻璃填充后的金属衬底进行加工,将金属面减薄去 掉,形成带有金属馈通结构的玻璃结构,对其进行加工形成具有凹腔的玻璃盖。
  13. 根据权利要求9所述的一种视网膜假体植入芯片的封装方法,其特征在于,在所述步骤3中,玻璃盖和玻璃基底的连接封装具体工艺如下:
    (1):在玻璃盖和所述玻璃基底的接触面上沉淀UBM层,在所述玻璃基底四周面上和所述玻璃盖接触部位也沉淀UBM层;
    (2):在所述金属馈通结构和所述焊盘结构接触部位上沉淀UBM层;
    (3):将玻璃盖准确放置到玻璃微基底上,将玻璃基底上的焊盘结构和ASIC芯片均封装在内,并且使得玻璃盖上的金属馈通结构对准玻璃基底上的焊盘结构,玻璃盖的四周和玻璃基底紧密接触;
    (4):对玻璃盖四周和玻璃基底接触的位置进行Au-Au热压键合,对玻璃盖金属馈通结构和焊盘结构接触的位置进行Au-Au热压键合。
  14. 根据权利要求9所述的一种视网膜假体植入芯片的封装方法,其特征在于,在所述步骤3中具体的封装工艺如下:
    (1):将玻璃盖放置到玻璃基底上,将玻璃基底上的焊盘结构和ASIC芯片均封装在内,将玻璃盖上的金属馈通结构对准玻璃基底上的焊盘结构,利用Au-Au键合或者锡焊或者激光焊接的方式实现金属馈通结构和焊盘结构的连接。
    (2):使得玻璃盖的四周和玻璃基底紧密接触,对玻璃盖四周和玻璃基底接触的位置进行激光焊接。
PCT/CN2018/087067 2018-01-17 2018-05-16 一种视网膜假体植入芯片的封装结构及其封装方法 WO2019140817A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/962,788 US11478654B2 (en) 2018-01-17 2018-05-16 Packaging structure and packaging method for retinal prosthesis implanted chip
EP18900745.3A EP3741326B1 (en) 2018-01-17 2018-05-16 Packaging method for retinal prosthesis implant chip
AU2018403777A AU2018403777B2 (en) 2018-01-17 2018-05-16 Packaging structure for retinal prosthesis implant chip and packaging method therefor
ES18900745T ES2963666T3 (es) 2018-01-17 2018-05-16 Estructura de empaquetado y método de empaquetado para chip implantado de prótesis de retina
JP2020539259A JP7095912B2 (ja) 2018-01-17 2018-05-16 網膜プロテーゼ埋込チップのパッケージング構造及びそのパッケージング方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810044188.8A CN108172553A (zh) 2018-01-17 2018-01-17 一种视网膜假体植入芯片的封装结构及其封装方法
CN201810044188.8 2018-01-17

Publications (1)

Publication Number Publication Date
WO2019140817A1 true WO2019140817A1 (zh) 2019-07-25

Family

ID=62514514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087067 WO2019140817A1 (zh) 2018-01-17 2018-05-16 一种视网膜假体植入芯片的封装结构及其封装方法

Country Status (8)

Country Link
US (1) US11478654B2 (zh)
EP (1) EP3741326B1 (zh)
JP (1) JP7095912B2 (zh)
CN (1) CN108172553A (zh)
AU (1) AU2018403777B2 (zh)
ES (1) ES2963666T3 (zh)
HU (1) HUE064286T2 (zh)
WO (1) WO2019140817A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112657053A (zh) * 2020-03-31 2021-04-16 深圳硅基仿生科技有限公司 植入式的双面电极及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018005733B4 (de) * 2018-07-20 2021-01-14 Schott Ag Glas-Metall-Durchführung
EP4043391A1 (en) * 2021-02-10 2022-08-17 TE Connectivity Solutions GmbH Device for supporting mems and/or asic components
CN113277748A (zh) * 2021-07-07 2021-08-20 泰极微(成都)技术发展有限公司 一种玻璃封装金属针的方法及玻璃封装产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080067664A1 (en) * 2006-09-15 2008-03-20 Samsung Electro-Mechanics Co., Ltd. Cap wafer, semiconductor chip having the same, and fabrication method thereof
US20090301994A1 (en) * 2008-05-12 2009-12-10 Rajmohan Bhandari Methods for Wafer Scale Processing of Needle Array Devices
CN106267556A (zh) * 2016-08-22 2017-01-04 深圳硅基仿生科技有限公司 无绑带的人工视网膜的植入装置及人工视网膜
CN107519575A (zh) * 2017-09-26 2017-12-29 杭州暖芯迦电子科技有限公司 一种视网膜假体

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040259325A1 (en) * 2003-06-19 2004-12-23 Qing Gan Wafer level chip scale hermetic package
JP4403821B2 (ja) * 2004-02-17 2010-01-27 ソニー株式会社 パッケージ基板とその製造方法、及び半導体装置とその製造方法、ならびに積層構造体
JP2009514602A (ja) 2005-11-02 2009-04-09 セカンド サイト メディカル プロダクツ インコーポレイテッド 植え込み型マイクロ電子デバイス及びその作製方法
JP5188816B2 (ja) * 2005-12-16 2013-04-24 イビデン株式会社 多層プリント配線板およびその製造方法
KR100772321B1 (ko) * 2006-06-14 2007-10-31 매그나칩 반도체 유한회사 Mems 소자의 패키지 및 그 제조방법
EP2422841B1 (en) * 2006-08-18 2013-10-09 Second Sight Medical Products, Inc. Package for an implantable neural stimulation device
US8120133B2 (en) * 2006-09-11 2012-02-21 Alcatel Lucent Micro-actuator and locking switch
US8000804B1 (en) * 2006-10-27 2011-08-16 Sandia Corporation Electrode array for neural stimulation
US8288654B2 (en) * 2006-11-30 2012-10-16 Medtronic, Inc. Feedthrough assembly including a ferrule, an insulating structure and a glass
JP5215587B2 (ja) * 2007-04-27 2013-06-19 ラピスセミコンダクタ株式会社 半導体装置
JP5343969B2 (ja) * 2008-07-25 2013-11-13 日本電気株式会社 封止パッケージ、プリント回路基板、電子機器及び封止パッケージの製造方法
US8428740B2 (en) 2010-08-06 2013-04-23 Nano-Retina, Inc. Retinal prosthesis techniques
EP2598934A4 (en) * 2010-07-26 2018-01-17 Elenza, Inc. Hermetically sealed implantable ophthalmic devices and methods of making same
WO2012145419A2 (en) * 2011-04-18 2012-10-26 Lawrence Livermore National Security, Llc Method of fabricating high-density hermetic electrical feedthroughs
US10008443B2 (en) * 2012-04-30 2018-06-26 California Institute Of Technology Implant device
WO2014153297A1 (en) * 2013-03-16 2014-09-25 Lawrence Livermore National Security, Llc Multi-electrode neural prothesis system
JP6357752B2 (ja) 2013-10-04 2018-07-18 株式会社ニデック 視覚再生補助装置の製造方法
US10464836B2 (en) * 2013-10-10 2019-11-05 Medtronic, Inc. Hermetic conductive feedthroughs for a semiconductor wafer
JP6693068B2 (ja) * 2015-03-12 2020-05-13 ソニー株式会社 固体撮像装置および製造方法、並びに電子機器
JP6932475B2 (ja) 2015-03-26 2021-09-08 住友ベークライト株式会社 有機樹脂基板の製造方法、有機樹脂基板および半導体装置
CN208093542U (zh) * 2018-01-17 2018-11-13 杭州暖芯迦电子科技有限公司 一种视网膜假体植入芯片的封装结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080067664A1 (en) * 2006-09-15 2008-03-20 Samsung Electro-Mechanics Co., Ltd. Cap wafer, semiconductor chip having the same, and fabrication method thereof
US20090301994A1 (en) * 2008-05-12 2009-12-10 Rajmohan Bhandari Methods for Wafer Scale Processing of Needle Array Devices
CN106267556A (zh) * 2016-08-22 2017-01-04 深圳硅基仿生科技有限公司 无绑带的人工视网膜的植入装置及人工视网膜
CN107519575A (zh) * 2017-09-26 2017-12-29 杭州暖芯迦电子科技有限公司 一种视网膜假体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112657053A (zh) * 2020-03-31 2021-04-16 深圳硅基仿生科技有限公司 植入式的双面电极及其制备方法
CN112657053B (zh) * 2020-03-31 2024-03-29 深圳硅基仿生科技股份有限公司 植入式的双面电极及其制备方法

Also Published As

Publication number Publication date
US11478654B2 (en) 2022-10-25
US20200353268A1 (en) 2020-11-12
CN108172553A (zh) 2018-06-15
JP7095912B2 (ja) 2022-07-05
HUE064286T2 (hu) 2024-02-28
AU2018403777B2 (en) 2024-04-18
EP3741326A1 (en) 2020-11-25
EP3741326A4 (en) 2021-05-05
JP2021510586A (ja) 2021-04-30
ES2963666T3 (es) 2024-04-01
EP3741326B1 (en) 2023-08-30
AU2018403777A1 (en) 2020-08-13

Similar Documents

Publication Publication Date Title
WO2019140817A1 (zh) 一种视网膜假体植入芯片的封装结构及其封装方法
US10052478B2 (en) Implantable device for the brain
US9431312B2 (en) Wafer-scale package including power source
JP5258245B2 (ja) 生理的パラメータの測定用能動センサー、マイクロ電気機械システムまたは集積回路を内蔵した植え込み型生体適合性部品
JP4958898B2 (ja) 移植可能な神経刺激装置のパッケージ
US11485670B2 (en) Hermetic conductive feedthroughs for a semiconductor wafer
US20100262208A1 (en) Electronics package for an active implantable medical device
JP6313291B2 (ja) 生体植え込み型気密性集積回路装置
US11529524B2 (en) Encapsulated electronic circuit
WO2021238418A1 (zh) 植入装置及其组装方法
CN105771089A (zh) 可植入式的人造视网膜陶瓷封装体的制造方法
WO2019140816A1 (zh) 一种神经刺激器及其制造方法
US20150314129A1 (en) Hermetic housing, particularly for encapsulating an implantable medical device
CN208093542U (zh) 一种视网膜假体植入芯片的封装结构
JP2022511413A (ja) 電子部品の気密パッケージ
WO2020034537A1 (zh) 一种视网膜植入体的导线与焊盘的生物相容性焊接方法
CN208271868U (zh) 一种视网膜假体植入芯片的封装结构
KR20240084626A (ko) 체내 이식용 티타늄 하우징 및 이의 제조방법
JP2022540836A (ja) ハーメチックシールされた電子機器および製造する方法のためのモノリシックな生体適合性フィードスルー
EP3019235B1 (en) Method for reducing zirconium oxide to elemental zirconium by laser and an implantable medical device comprising zirconium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539259

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018403777

Country of ref document: AU

Date of ref document: 20180516

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018900745

Country of ref document: EP

Effective date: 20200817